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Abstract

Motivated by a recent study of Bao and Ullah (2007a) on finite sample properties of

MLE in the pure SAR (spatial autoregressive) model, a general method for third-order

bias and variance corrections on a nonlinear estimator is proposed based on stochastic

expansion and bootstrap. Working with concentrated estimating equation simplifies

greatly the high-order expansions for bias and variance; a simple bootstrap procedure

overcomes a major difficulty in analytically evaluating expectations of various quantities

in the expansions. The method is then studied in detail using a more general SAR model,

with its effectiveness in correcting bias and improving inference fully demonstrated

by extensive Monte Carlo experiments. Compared with the analytical approach, the

proposed approach is much simpler and has a much wider applicability. The validity of

the bootstrap procedure is formally established. The proposed method is then extended

to the case of more than one nonlinear estimator.
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1 Introduction

Many econometric models share the following common features: (i) there is a nonlinear
parameter that is the main source of bias in model estimation and main cause of difficulty
in bias correction, (ii) there are many other parameters in the model but their estimates,
given this nonlinear parameter, are either unbiased or can be easily bias-corrected, and (iii)
the constrained estimates possess analytical expressions, leading to an analytical form for a
concentrated estimating equation. These include the spatial autoregressive model, spatial
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panel model with fixed effects, dynamic regression model, dynamic panel model with fixed
effects, Box-Cox regression, Weibull duration model, etc.. The bias problem arising from
the estimation of the nonlinear parameter has been widely recognized and a satisfactory
treatment of it has been the main focus of many researchers in the last two decades (see,
among others, Kiviet, 1995; Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Bun and
Carree, 2005; Bao and Ullah, 2007a,b; Bao, 2013). Another important issue, the high-order
correction on the variance of a bias-corrected estimator, has not been formally addressed.

Stochastic expansion (Rilstone et al., 1996; Ullah, 2004) is seen to be a very useful tool
for studying the finite sample properties of a nonlinear estimator (Bao and Ullah, 2007a,b,
2009; Kundhi and Rilstone, 2008; Bao, 2013). However, in high-order bias and variance
corrections: (i) it involves high dimension matrix manipulations and (ii) it requires closed
form expressions of expectations of various quantities in the expansions, which are either
very cumbersome to derive or simply do not even exist. We show in this paper that (i) can
be overcome by focusing on the nonlinear parameter and working with the concentrated
estimating equation, and (ii) can be overcome by a simple bootstrap procedure.

To illustrate the above ideas, consider first the spatial autoregressive (SAR) model:

Yn = λWnYn +Xnβ + εn, εn = σun, (1)

where Yn is a vector of observations on n spatial units, Xn is an n × p matrix of values
of p exogenous regressors, Wn is a specified n × n spatial weights matrix, εn is a vector of
independent and identically distributed (iid) disturbances of zero mean and finite variance
σ2, λ is a scalar spatial parameter, and β is a p× 1 vector of regression coefficients.1

Denote θ = {λ, β′, σ2}′. The Gaussian log-likelihood function is,

�n(θ) = −n
2

log(2πσ2) + log |An(λ)| − 1
2σ2

[An(λ)Yn −Xnβ]′ [An(λ)Yn −Xnβ] , (2)

where An(λ) = In − λWn and In is an n × n identity matrix. Maximizing �(θ) gives the
maximum likelihood estimator (MLE) of θ if the errors are exactly normal, otherwise the
quasi-MLE (QMLE). Given λ, the constrained QMLEs of β and σ2 are

β̂n(λ) = (X ′
nXn)−1X ′

nAn(λ)Yn and σ̂2
n(λ) = n−1Y ′

nA
′
n(λ)MnAn(λ)Yn, (3)

where Mn = In −Xn(X ′
nXn)−1X ′

n. These lead to the concentrated log-likelihood of λ as

�cn(λ) = −n
2
[log(2π) + 1]− n

2
log σ̂2

n(λ) + log |An(λ)|. (4)

Maximizing �cn(λ) gives the unconstrained QMLE λ̂n of λ. The unconstrained QMLEs of β
and σ2 are thus β̂n ≡ β̂n(λ̂n) and σ̂2

n ≡ σ̂2
n(λ̂n). Write θ̂n = (λ̂n, β̂

′
n, σ̂

2
n)′.

1For theory and applications, see Cliff and Ord (1973, 1981), Ord (1975), Anselin (1988, 2001), Case

(1991), Case, et al. (1993), Besley and Case (1995), Brueckner (1998), Anselin and Bera (1998), Kelejian

and Prucha (1998, 1999, 2001), Bell and Bockstael (2000), Bertrand, et al. (2000), Topa (2001), Lee (2002,

2003, 2004a, 2007a,b), Mynbaev and Ullah (2008), Robinson (2010), Su and Jin (2010), Su (2012), etc..
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To study the finite sample properties of θ̂n following the stochastic expansion approach,
one needs to derive analytically the expectations of various quantities involving derivatives
of �n(θ) (up to fourth order for third-order bias and variance corrections). While finding
the expectations is not a problem in theory as it involves only quadratic forms of un, the
dimensionality of the problem (up to (p + 2)3 × (p + 2)) greatly complicates the results
that in turn hinders their practical tractability (see Bao, 2013, for a second-order bias
formula). We note that if λ were known, then β̂n(λ) is unbiased and σ̂2

n(λ) can be made
unbiased by multiplying a factor n/(n − p). This suggests that in estimating the SAR
model the main source of bias and the main difficulty in correcting the bias are associated
with the estimation of λ. Lee (2007a) made a similar remark based on his Monte Carlo
results. Further, given λ the finite sample variances of β̂n(λ) and σ̂2

n(λ) both possess explicit
expressions. Thus, for bias and variance corrections for the SAR model it may be only
necessary to focus on the estimation of λ. A multidimensional problem is thus reduced
to a scalar one, which greatly simplifies the higher-order stochastic expansions. However,
working with the concentrated log-likelihood �cn(λ) makes the analytical derivation harder
as it now involves ratios of quadratic forms (see Section 3 for details). Thus, for these
expansions to be of a general practical value, they must be supplemented with simple ways
for evaluating various expectations involving ratios of quadratic forms.

The above arguments extend directly to all other models of similar features as the
SAR model. Take, for example, the Box-Cox transformation model (Box and Cox, 1964):
h(Yn, λ) = Xnβ + σun, where all quantities are defined similarly as the SAR model (1),
except that h denotes a known nonlinear monotonic transformation indexed by an unknown
transformation parameter λ, applied to Yn elementwise. The concentrated log-likelihood of
λ takes the form �cn(λ) = −n

2 [log(2π)+1]− n
2 log σ̂2

n(λ)+
∑n

i=1 loghy(Yn,i, λ), where σ̂2
n(λ) =

n−1h′(Yn, λ)Mnh(Yn, λ) and hy(Yn,i, λ) = ∂h(Yn,i, λ)/∂Yn,i. It is clear that the analytical
expectations of various quantities involving the derivatives of �cn(λ) are not obtainable, and
working with the full likelihood in this case does not solve this problem.

The above discussions show clearly the need for a general method for high-order bias
and variance corrections that avoids the analytical derivations of various expectations, and
thus works for all models even when the analytical expectations are not obtainable. Noting
that the derivatives of �cn(λ) for both the SAR model and the Box-Cox model discussed
above can be expressed as functions of the parameter vector θ and the error vector un with
iid elements, naturally, their expectations can be bootstrapped (see Efron, 1979).

In this paper we present a general method for third-order bias and variance corrections
under a fairly general model specification that encompasses all the models mentioned above.
The proposed approach is hybrid – combining stochastic expansion and bootstrap, with the
former providing tractable approximations to the bias and variance (up to third-order) of a
nonlinear estimator, and the latter making these expansions practically implementable. A
key assumption followed in the literature is relaxed, resulting in different bias and variance
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formulas when concentrated estimating equation is used. The important issue: third-order
correction on the standard error of a bias-corrected estimator, is formally studied.

When applied to the SAR model, the proposed approach quickly leads to a complete set
of results for third-order bias and variance corrections, which extends Bao and Ullah (2007a)
by (i) allowing regressors in the model, (ii) allowing nonnormal errors, and (iii) providing a
third-order bias correction on λ̂n, and second- and third-order corrections on the variances
of λ̂n and the bias-corrected λ̂n. Compared with Bao (2013), where only a second-order
bias formula for θ̂n is derived based on the full likelihood, our method can be viewed as a
simpler alternative when only second-order bias correction on λ̂n is concerned. In addition,
our method provides a complete set of third-order results, including the third-order variance
of the bias-corrected λ̂n. More importantly, the proposed approach is much simpler and
has a much wider applicability than the analytical approach. The validity of the proposed
bootstrap procedure is formally established, in general and under the SAR model. Finally,
the method is extended to the models of more than one nonlinear parameter.

The rest of the paper is organized as follows. Section 2 presents the general method
for third-order bias and variance corrections of a general nonlinear estimator. Section 3
presents the main theoretical results corresponding to the SAR model, followed by Monte
Carlo results for the finite sample performance of the proposed method under the SAR
model, where the effectiveness of the proposed method in correcting bias, variance, and
hence in improving inference is fully demonstrated. Section 4 extends the proposed method
to models of more than one nonlinear parameter. Section 5 concludes the paper.

2 A General Method for Bias and Variance Corrections

In this section, we first present revised third-order results by relaxing a key assumption,
to suit the concentrated estimating equation, and then we introduce the bootstrap method
for estimating quantities in the bias and variance formulas and prove its validity.

2.1 Third-Order Bias and Variance of a Nonlinear Estimator

Bao and Ullah (2007a), extending Rilstone et al. (1996), considered a general class of√
n-consistent estimators identified by the moment condition or estimating equation

θ̂n = arg{ψn(θ) = 0}, (5)

where ψn(θ) ≡ ψn(Zn; θ) is a k × 1 vector-valued function of the observable data Zn =
{Zi}n

i=1 (iid or non-iid) and a parameter vector θ, of the same dimension as θ, and normalized
to have order Op(n−1/2).2 They obtained a third-order stochastic expansion for θ̂n, and a

2This is in fact a generalized version of the well-known M-estimation (maximum likelihood type esti-

mation) of Huber (1964). Obviously, the maximum likelihood or quasi-maximum likelihood, least squares,

method of moments, and generalized method of moments are the special cases of this estimation method.
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second-order bias and a third-order MSE for θ̂n, assuming Eψn(θ0) = 0, where θ0 denotes
the true value of the parameter vector θ.

We note that the condition, Eψn(θ0) = 0, is neither necessary nor true in general for
deriving high-order results based on a general estimation equation as in (5). It is required
for achieving asymptotic efficiency but not for achieving consistency (see, e.g., Amemiya,
1985; White, 1994). Under the joint estimation, it is usually true if the model is correctly
specified and the ML method is followed, but may fail if the model is misspecified. Under
the constrained estimation, however, it is generally untrue whichever the estimation method
is followed and whether or not the model is correctly specified, except in some special cases,
e.g., the pure (no regressors) SAR model with σ2 unknown (Bao and Ullah, 2007a). Thus,
this condition needs to be relaxed, in particular under the constrained estimation framework.

To fix the idea, let θ = (λ, α′)′ where λ is the scalar nonlinear parameter of which the
estimation incurs bias that is difficult to correct, and given λ the estimation of the parameter
vector α has an analytical solution, either unbiased or easily bias-correctable. Let α̂n(λ)
be the constrained estimator of α for a given λ value. Let θ0 = (λ0, α

′
0)

′. Partition ψn(θ)
according to (λ, α′)′, i.e., ψn(θ) = {ψλn(λ, α), ψ′

αn(λ, α)}′. Define ψ̃n(λ) ≡ ψλn(λ, α̂n(λ)).
Then, the estimator λ̂n of λ would typically be

λ̂n = arg{ψ̃n(λ) = 0}, (6)

with ψ̃n(λ) = 0 being referred to as the concentrated estimating equation (CEE), in contrast
to the joint estimating equation (JEE) embedded in (5).3 Note that by ‘nonlinear’ we mean
the CEE, ψ̃n(λ) = 0, does not have an analytical solution. We first focus on the cases
where λ is a scalar. The CEE looks identical to the JEE when θ is a scalar, and thus
the corresponding expansion is expected to have the same form, though the regularity
conditions need to be strengthened. However, there is a major difference: the expectation
of ψ̃n(λ0) may not be zero even if Eψn(θ0) = 0. If α̂n(λ) is

√
n-consistent, it is typical

that E[ψ̃n(λ0)] = O(n−1), i.e., the expectation goes to zero at an n-rate. If this is true,
then E[ψ̃n(λ0)] constitutes an important term in the bias correction. In this case, the bias
formulas need to be modified. As a consequence, the higher-order approximations to the
variance need to be modified as well. The mean squared error (MSE), however, remains in
the same form as it directly follows the stochastic expansions for λ̂n.

Let Hrn(λ) = drψ̃(λ)/dλr, r = 1, 2, 3. Let ψ̃n ≡ ψ̃n(λ0), Hrn ≡ Hrn(λ0) and H◦
rn =

Hrn − E(Hrn), r = 1, 2, 3. Define Ωn = −E(H1n)−1. Note that here and hereafter the
expectation operator ‘E’ corresponds to the true model or the true parameter values θ0.

3Making inference about the parameter of interest in the presence of many parameters not of direct interest

(called the nuisance parameters) is a standard statistical problem, and it is typical in these situations to

replace the nuisance parameters by their estimators (constrained) in the object function or the estimating

function. There is a vast literature on the satisfactory handling of nuisance parameters. Most of this work

focused on the modification of the likelihood function and the concentrated likelihood function. See Laskar

and King (1998) for a survey and a comparison of the various methods.

5



Let Λ be the parameter space of λ. So far we have not yet specified the form of the ψ̃n(λ)
function, thus as general theories we need some generic smoothness conditions on ψ̃n(λ).

Assumption A: Λ is compact with λ0 being an interior point. E(ψ̃n) = O(n−1), and
λ̂n, as a solution of ψ̃n(λ) = 0, is a

√
n-consistent estimator of λ0.

Assumption B: ψ̃n(λ) is differentiable up to rth order for λ in a neighborhood of λ0,
E(Hrn) = O(1), and H◦

rn = Op(n−
1
2 ), r = 1, 2, 3.

Assumption C: E(H1n)−1 = O(1), and H−1
1n = Op(1).

Assumption D: |Hrn(λ) − Hrn(λ0)| ≤ |λ− λ0|Un for λ in a neighborhood of λ0, r =
1, 2, 3, and E(|Un|) < C <∞ for some constant C.

The
√
n-consistency is a standard requirement for a higher-order stochastic expansion.

In the context of CEE, the
√
n-consistency of λ̂n implies E(ψ̃n) = o(n−1/2) but not zero in

general due to the estimation of the nuisance parameters. If the estimators of the nuisance
parameters are also

√
n-consistent, it can be argued that E(ψ̃n) = O(n−1). Further, the√

n-consistency of λ̂n implies ψ̃n = Op(n−
1
2 ). Assumptions B and C are the tightened

versions of Assumptions 4 and 5 in Bao and Ullah (2007a). The conditions E(Hrn) = O(1)
and H◦

rn = Op(n−
1
2 ) are needed so that Hrn in a relevant term can be replaced by E(Hrn)

with the error Op(n−
1
2 ) being absorbed into the overall error term.4 We are ready to state

the general theorems. All the proofs are given in Appendix A.

Theorem 2.1: Under Assumptions A-D, we have a third-order stochastic expansion:

λ̂n − λ0 = a−1/2 + a−1 + a−3/2 +Op(n−2), (7)

where a−s/2 represents terms of order Op(n−s/2) for s = 1, 2, 3, and they are: a−1/2 = Ωnψ̃n,
a−1 = ΩnH

◦
1na−1/2 + 1

2ΩnE(H2n)(a2
−1/2), and a−3/2 = ΩnH

◦
1na−1 + 1

2ΩnH
◦
2n(a2

−1/2) +
ΩnE(H2n)(a−1/2a−1) + 1

6ΩnE(H3n)(a3
−1/2).

The third-order stochastic expansion for λ̂n based on CEE is seen to have an identical
form as those in Rilstone et al. (1996) and Bao and Ullah (2007a,b) when there is only one
parameter in the model. The same holds for the MSE expansion given below.

Corollary 2.1: Under Assumptions A-D, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the MSE of λ̂n:

MSE(λ̂n) = m−1 +m−3/2 +m−2 + O(n−
5
2 ), (8)

where m−s/2 = O(n−s/2), s = 2, 3, 4, with m−1 = E(a2
−1/2), m−3/2 = 2E(a−1/2a−1), and

m−2 = 2E(a−1/2a−3/2) + E(a2
−1).

4Under a specific model with a specific estimation method, these generic conditions may be replaced

by a set of weaker and more primitive conditions. Assumption A may be relaxed to allow for asymptotic

(first-order) bias, and our methods can in principle be applied to do higher-order bias reduction for dynamic

or nonlinear panel models with fixed effects, see Hahn and Kuersteiner (2002) and Hahn and Newey (2004).
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The leading term m−1 = Ω2
nE(ψ̃2

n) gives the asymptotic variance of λ̂, and m−1 +m−3/2

and m−1 +m−3/2 +m−2 give, respectively, the 2nd- and 3rd-order expansions for MSE(λ̂n).
Turning to the expansions for bias and variance of λ̂n, the relaxed Assumption A leads to
results that are different from those based on JEE. First, we give the result for bias.

Corollary 2.2: Under Assumptions A-D, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the bias of λ̂n:

Bias(λ̂n) = b−1 + b−3/2 +O(n−2), (9)

where b−s/2 = O(n−s/2), s = 2, 3, with b−1 = E(a−1/2 + a−1) and b−3/2 = E(a−3/2).

Thus, b−1 alone gives a second-order expansion for the bias of λ̂n, and b−1 + b−3/2 gives
a third-order expansion. Note that E(a−1/2) = ΩnE(ψ̃n). This term is O(n−1) under CEE,
and can be identically zero when JEE is used. Rilstone et al. (1996) and Bao and Ullah
(2007a,b) considered in their general theory only second-order expansions for the bias. Their
formulas correspond to our b−1 term only. Comparing with their second-order expansions
for the bias, we see that b−1 contains an extra term, 2ΩnE(ψ̃n). When CEE is used, this
term plays a pivotal role in bias and variance corrections. This point is confirmed by the
additional Monte Carlo results for the SAR model, available from the author upon request.

Adding a third-order bias-correction term b−3/2 into the formula gives us a choice for
further improvement on the bias-correction procedure if necessary. With the results of
Corollary 2.2, the second- and third-order bias-corrected estimators of λ are, respectively,

λ̂bc2
n = λ̂n − b̂−1 and λ̂bc3

n = λ̂n − b̂−1 − b̂−3/2, (10)

where b̂−1 and b̂−3/2 are the estimates of b−1 and b−3/2, respectively.

Remark 1: The practical implementation of λ̂bc3
n requires the estimation of b−3/2, which

greatly complicates the algebraic work and computer coding if the analytical approach is
followed, but adds only a little if the bootstrap procedure introduced later is followed.

Remark 2: There is an issue on the validity of replacing b−1 by b̂−1 for feasible third-
order bias correction. This issue is addressed in Corollary 2.5, in conjunction with the issue
on the validity of using a bootstrap method to obtain the estimates b̂−1 and b̂−3/2.

While it is important to have higher-order expansions for MSE(λ̂n) for the purpose of
efficiency comparison, it is more important to have higher-order expansions for the variances
of λ̂n, λ̂bc2

n and λ̂bc3
n for inference purpose. For λ̂n, one is tempted to simply combine the

expansions for bias and MSE to give second- and third-order expansions: Var(λ̂n) = m−1 +
m−3/2 +O(n−2), and Var(λ̂n) = m−1 +m−3/2 +m−2 − b2−1 +O(n−

5
2 ). Theoretically these

are correct, but empirically they do not guarantee positiveness of the variance estimator
when n is not large. We thus propose having variance expansions directly out of (7).
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Corollary 2.3: Under Assumptions A-D, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the variance of λ̂n:

Var(λ̂n) = v−1 + v−3/2 + v−2 +O(n−
5
2 ), (11)

where v−1 = Var(a−1/2), v−3/2 = 2Cov(a−1/2, a−1), and v−2 = 2Cov(a−1/2, a−3/2) +
Var(a−1 + a−3/2), with v−s/2 = O(n−s/2), s = 2, 3, 4.

The third-order expansions are presented by clearly separating out the terms of different
order, thus allowing one to choose between the 2nd- or 3rd-order approximations according
to the actual needs. With the results of Corollaries 2.2 and 2.3, one can correct λ̂n and its
standard error for an improved inference for λ. However, the bias-corrected estimators, λ̂bc2

n

and λ̂bc3
n , contain additional random elements due to the estimation of the bias. Therefore,

for improving finite sample inference for λ it is more relevant to use Var(λ̂bc2
n ) or Var(λ̂bc3

n )
to calculate the standard errors of λ̂bc2

n or λ̂bc3
n . We have the following corollary.

Corollary 2.4: Under Assumptions A-D, assume further that (i) a quantity bounded
in probability has a finite expectation, and (ii) b̂−1 − b−1 = Op(n−

3
2 ) and b̂−3/2 − b−3/2 =

Op(n−2). We have the third-order expansions:

Var(λ̂bc3
n ) = v−1 + v−3/2 + v−2 − 2ACov(λ̂n, b̂−1) + O(n−

5
2 ), (12)

where ACov denotes asymptotic covariance. Further, Var(λ̂bc2
n ) = Var(λ̂bc3

n ) +O(n−
5
2 ).

Thus, the variances of λ̂bc3
n and λ̂n agree only up to second order, suggesting that for

improving finite sample inference for λ, λ̂bc3
n should be used in conjunction with Var(λ̂bc3

n ).

2.2 A bootstrap method for estimating the bias and variance corrections

The second- or third-order corrections on the bias and variance of nonlinear estimators
are practically tractable only if one could find a simple way to estimate the quantities like
E(Hrn), E(ψ̃2

n), E(H1nψ̃
2
n), etc. The analytical approach is to first find the closed form

expressions for these expectations and then replace θ0 in the resulted expressions by its
consistent estimator θ̂n. In case that the error distribution is not fully specified, these ex-
pectations may involve higher order moments of the errors which have to be estimated as
well. However, finding these expectations analytically is either very cumbersome or impos-
sible (see Section 4 for more cases, and Section 5 for more discussions). Thus, alternative
methods are highly desirable. We now introduce a simple bootstrap method for estimating
these quantities. Consider a general model of the form

g(Zn, θ0) = un, (13)

where un is the standardized disturbance vector of iid (not necessarily normal) components
with zero mean, unit variance, and cumulative distribution function (CDF) F0. Clearly,
the SAR model given in (1) can be written in this form: σ−1

0 [An(λ0)Yn −Xnβ0] = un.

8



Assume that the key quantities ψ̃n and Hrn can be expressed as ψ̃n ≡ ψ̃n(un, θ0) and
Hrn ≡ Hrn(un, θ0), r = 1, 2, 3. Let ûn = g(Zn, θ̂n) be the vector of estimated residuals based
on the original data, and F̂n be the empirical distribution function (EDF) of ûn (centered).
The bootstrap estimates of the quantities in the bias and variance corrections are thus;

Ê(ψ̃i
nH

j
rn) = E∗[ψ̃i

n(û∗n, θ̂n)Hj
rn(û∗n, θ̂n)], i, j = 0, 1, 2, . . . , r = 1, 2, 3, (14)

where E∗ denotes the expectation with respect to F̂n, and û∗n is a vector of n random draws
from F̂n. To make (14) practically feasible, we propose the following bootstrap procedure:

1. Compute θ̂n defined by (5), ûn = g(Zn, θ̂n) by (13), and EDF F̂n of centered ûn;

2. Draw a random sample of size n from F̂n, and denote the resampled vector by û∗n,b,

3. Compute ψ̃n(û∗n,b, θ̂n) and Hrn(û∗n,b, θ̂n), r = 1, 2, 3;

4. Repeat steps 2.-3. for B times, to give approximate bootstrap estimates as,

E∗[ψ̃i
n(û∗n, θ̂n)Hj

rn(û∗n, θ̂n)] =̇ 1
B

∑B
b=1 ψ̃

i
n(û∗n,b, θ̂n)Hj

rn(û∗n,b, θ̂n),

for i, j = 0, 1, 2, . . . , r = 1, 2, 3,

where the approximations in the last step can be made arbitrarily accurate by choosing
an arbitrarily large B, leading directly to the bootstrap estimates of b−s/2, m−s/2 and
v−s/2 appeared in Corollaries 2.1-2.4, except ACov(λ̂n, b̂−1) in Corollary 2.4, which will
be addressed in the next subsection under the ‘specified’ model (13). Note that in the
entire bootstrap process, the same estimate θ̂n based on the original data is used when
recalculating ψ̃n and Hrn based on each bootstrap sample û∗n,b. The reestimation of the
model parameter θ is thus avoided, which makes this bootstrap procedure time-efficient.

2.3 Validity of the bootstrap method

As in Remark 2, the validity of the bootstrap procedure for third-order bias correction
centers on the validity of replacing b−1 by its bootstrap estimate b̂−1. Clearly, b−s/2 depends
on θ0. It may also depend on F0 through some of its higher order moments μ0 ≡ μ(F0).
In general, denote b−s/2 ≡ b−s/2(ϑ0) where ϑ0 = (θ′0, μ′0)′, s = 2, 3. Then, the bootstrap
estimates of b−s/2 must be such that b̂−s/2 ≡ b−s/2(ϑ̂n) where ϑ̂n = (θ̂′n, μ̂′n)′ and μ̂n ≡
μ(F̂n), the corresponding moments of F̂n.5 Let Nϑ0 be a neighborhood of ϑ0.

Assumption E: (i) ϑ̂n is
√
n-consistent for ϑ0, (ii) Bias(ϑ̂n) = O(n−1), and (iii)

b−1(ϑ) is continuously differentiable and b−3/2(ϑ) is differentiable in ϑ ∈ Nϑ0.

Assumptions E(i) and E(ii) are satisfied by the nonlinear estimator λ̂n, and thus are
expected to hold for ϑ̂n (see Lemma B.6). Assumption E(iii) is satisfied if the ψ̃n function
is smooth enough. The validity of bootstrap bias corrections is established below.

5Introducing μ0 and μ̂n is only for theoretical purpose, as practical implementation of the bootstrap

method does not require μ̂n. This stands in contrast to the analytical approach.
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Corollary 2.5: Under the model specified by (13), Assumptions A-E, and the assump-
tion that a quantity bounded in probability has a finite expectation, we have:

E(̂b−1) = b−1 + O(n−2) and E(̂b−3/2) = b−3/2 + O(n−2). (15)

It follows that Bias(λ̂bc2
n ) = O(n−

3
2 ) and Bias(λ̂bc3

n ) = O(n−2).

The results of Corollary 2.5 show that the bias-corrected estimators defined in (10) are
valid in the sense that replacing b−1 by its bootstrap estimate b̂−1 does not induce additional
bias of order lower than O(n−2). It is evident that replacing the third-order term b−3/2 by
its bootstrap estimate b̂−3/2 only induces an additional bias of order O(n−2) or higher.

The validity of the bootstrap implementation of the third-order variance correction given
in (12) rests on the validity of replacing v−1 by its estimate. Similarly to the case of bias
correction, write v−s/2 = v−s/2(ϑ0) and let v̂−s/2 ≡ v−s/2(ϑ̂n) be the bootstrap estimates of
v−s/2, s = 2, 3, 4. Unlike the case of third-order bias correction where Bias(̂b−1) has the same
order as the error term, Bias(v̂−1) may not have the desired order for a third-order variance
correction. Thus, a further correction on v̂−1 may be necessary. Note that v−1 is the first-
order variance of λ̂n based on CEE, which relates to ν−1, the first-order variance of λ̂n based
on JEE, through v−1 = ν−1 + ν−3/2 + ν−2 + O(n−

5
2 ) where ν−s/2 = O(n−s/2), s = 2, 3, 4.

Thus, to bias-correct v̂−1 it is sufficient to bias-correct ν̂−1. The higher-order terms ν−3/2

and ν−2 are not needed as seen from the proof of Corollary 2.6. As ν−1 is typically an explicit
and smooth function of ϑ0, and μ̂n is an explicit and smooth function of θ̂n, a Taylor series
expansion of v−1(ϑ̂n) and then of μ̂n ≡ μn(θ̂n) leads to a second-order bias-corrected v̂−1:

v̂bc2
−1 = v̂−1 − ν̂′−1,θ0

b̂−1 − ν̂′−1,μ0
ĉ−1 − d̂−2, (16)

where b−1 is the second-order bias of θ̂n which can be obtained from the second-order
stochastic expansion of θ̂n based on the JEE defined in (5) or simply using b−1 and then
further bias-correcting α̂(λ̂bc2

n ); c−1 is the second-order bias of μ̂n which relates to b−1

through a Taylor expansion of μn(θ̂n); d−2 = 1
2tr[ν−1,ϑ0ϑ′

0
AVar(ϑ̂n)]; and ν−1,ϑ = ∂

∂ϑν−1(ϑ)
and ν−1,ϑϑ′ = ∂2

∂ϑ∂ϑ′ν−1(ϑ), partitioned according to θ and μ. To ease the presentation, the
detailed derivation of (16) is given in Appendix A along the proof of Corollary 2.6, and the
exact expressions of b−1, c−1 and d−2 are given in (A-12), (A-14) and (A-15).

Let b−1,ϑ = ∂
∂ϑb−1(ϑ) = (b′−1,θ, b

′−1,μ)
′. Let Fn be the EDF of un ≡ un(θ0), μn,r the rth

moment of Fn, μ̇n,r = ∂
∂θ0

μn,r and μ̈n,r = ∂
∂θ′0
μ̇n,r . Put μn = (μn,r, r = 3, 4, . . .)′. For the

validity of (16) and our third-order variance correction, the following conditions are needed.

Assumption F: (i) v−1(ϑ) is twice differentiable, v−3/2(ϑ) is continuously differen-
tiable, and v−2(ϑ) is differentiable in ϑ ∈ Nϑ0 , (ii) b′−1,μ0

Cov(ψ̃n, μn) = O(n−
5
2 ), and (iii)

μ̇n,r = E(μ̇n,r) + Op(n−
1
2 ) and μ̈n,r = E(μ̈n,r) + Op(n−

1
2 ), r = 3, 4, . . ..

The smoothness conditions in F(i) ensure the proper order of the quantities in certain
expansions. Assumption F(ii) says that either the dependence of b−1 on μ0 is weak or the

10



correlation between ψ̃n and μn is weak. This is reasonable considering the fact that ψ̃n is
the concentrated estimating function of λ0 and μn represents higher-order moments of Fn.
Assumption F(iii) follows from some smoothness conditions on the g function in (13).

Corollary 2.6: Under Model (13), Assumptions A-F, and the assumption that a quan-
tity bounded in probability has a finite expectation, the variance expansion (12) becomes:

Var(λ̂bc3
n ) = v−1 + v−3/2 + v−2 − 2E(b̃′−1,θ0

)ACov(λ̂n, θ̂n) + O(n−
5
2 ), (17)

where b̃−1,θ0 = ∂
∂θ̂n

b−1(θ̂n, μn(θ̂n))|θ̂=θ0
, and E(v̂bc2

−1 + v̂−3/2 + v̂−2) = v−1 + v−3/2 + v−2 +

O(n−
5
2 ). Thus, the bootstrap estimate of Var(λ̂bc3

n ) with v̂bc2
−1 has a bias of order O(n−

5
2 ).

Note that ACov(θ̂n, λ̂n) often has a closed-form expression and hence can be estimated
by the plug-in method. As b̃−1,θ0 −E(b̃−1,θ0) = Op((n−

3
2 )), E(b̃−1,θ0) in (17) can be replaced

by b̃−1,θ0 of which the bootstrap estimate can be obtained simply by numerical differentia-
tion. When the underlining JEE involves only the linear and quadratic forms of un, as in
many applications, ν−1 typically depends on the 3rd and 4th moments of F0 and in a linear
manner. See Sections 3 and 5 for more discussions. In summary, our proposed approach for
bias and variance corrections takes the advantages of both stochastic expansions and boot-
strap, neither of which alone allows us to handle a problem of this type comfortably. The
usefulness and effectiveness of this approach is fully demonstrated in the following section
using the SAR model, and the validity of this approach is established therein.

3 Bias and Variance Corrections for SAR Model

We now consider the estimation of spatial lag parameter λ in the general SAR model
specified in (1), to give a detailed demonstration of the applications of the general methods
presented in the earlier section. The nature of the SAR model indeed renders it a special
attention in terms of bias and variance corrections. First, the parameter λ enters the
model in a nonlinear manner, hence the estimation of it is likely to incur bias. Second, the
degree of spatial dependence among the spatial units depends not only on the magnitude
of the spatial parameter λ, but also on the number of neighbors each spatial unit has, or
equivalently the number of non-zero elements that each row of the Wn matrix contains. A
very important special case of this is that the number of neighbors, hn say, grows with n

(see, e.g., Case, 1991), and in this case, Lee (2004a) showed that the QML estimators of λ
and β may not be

√
n-consistent, but rather

√
n/hn-consistent. Thus, the effective sample

size is n/hn, and the bias and variance formulas given above need to be adjusted to allow for
this possibility. Conceptually, this may be fairly straightforward as one may simply replace
n by hn/n everywhere in the expansion formulas. Theoretically, however, much needs to
be done in terms of regularity conditions and formal proofs of the results. We do so in this
paper by following the theoretical foundations laid out in Lee (2004a).

11



Bao and Ullah (2007a) made their first attempt to address the bias issue by working
with the pure SAR model with normal errors, and provided analytical formulas for the
second-order bias and mean squared error (MSE) for the MLE λ̂n based on the stochastic
expansion technique first introduced by Rilstone et al. (1996). Their results, though limited
to the pure SAR model with normal errors, shed much light on a general solution to the
bias problem of the general SAR model (or a class of similar models). Bao (2013) followed
up with this issue through the full likelihood and derived an analytical second-order bias
for the QMLE θ̂n, but the MSE formula and the third-order results were not given.

In dealing with the case of σ2 unknown in the pure SAR model, Bao and Ullah (2007a,
p.400) advocate the use of concentrated likelihood function of λ as (i) it simplifies the
maximization procedure substantially, and (ii) it also simplifies the derivations for the
higher-order results since it is much easier to work with a scalar case than with a vector.
We concur with their view and stress further that (i) these simplifications are even greater
if the SAR model involves exogenous regressors, and (ii) for the purpose of bias correction,
λ is the parameter of primary interest as, given λ, the model reduces to a linear regression,
and the constrained QMLEs β̂n(λ) and σ̂2

n(λ) are either unbiased or can be made unbiased.
More importantly, as the general result in Section 2 suggests, use of CEE captures the
additional second-order bias inherited from the estimation of linear or scale parameters.

3.1 The main results

The QMLE λ̂n of the spatial parameter λ, which maximizes the concentrated log-
likelihood function �cn(λ) given in (4), can be equivalently defined as λ̂n = arg{ψ̃n(λ) = 0},
where ψ̃n(λ) is the derivative of hn

n �
c
n(λ) and has the form,

ψ̃n(λ) = −hnT0n(λ) + hnR1n(λ), (18)

with its rth derivative, Hrn(λ) = dr

dλr ψ̃n(λ), r = 1, 2, 3, given as follows

h−1
n H1n(λ) = −T1n(λ)−R2n(λ) + 2R2

1n(λ), (19)

h−1
n H2n(λ) = −2T2n(λ)− 6R1n(λ)R2n(λ) + 8R3

1n(λ), (20)

h−1
n H3n(λ) = −6T3n(λ) + 6R2

2n(λ)− 48R2
1n(λ)R2n(λ) + 48R4

1n(λ), (21)

where Trn(λ) = n−1tr(Gr+1
n (λ)), r = 0, 1, 2, 3, Gn(λ) = WnA

−1
n (λ),6

R1n(λ) =
Y ′

nA
′
n(λ)MnWnYn

Y ′
nA

′
n(λ)MnAn(λ)Yn

and R2n(λ) =
Y ′

nW
′
nMnWnYn

Y ′
nA

′
n(λ)MnAn(λ)Yn

. (22)

Clearly the function ψ̃n(λ) defined in (18) leads to a concentrated estimating equation,
and fits into the general framework described in Section 2. The difference is that the quantity

6The author is very grateful to Jihai Yu and a referee for pointing out errors in the expressions for H2n(λ)

and H3n(λ). The corrections, though correspond to the higher-order terms, do lead to further improved and

more coherent results in that λ̂bc3
n performs consistently better than λ̂bc2

n . See Yang (2010a).
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hn may alter the rate of convergence of λ̂n in the first-order asymptotics (Lee, 2004a) and
of course the magnitude of the quantities in the higher-order asymptotics. Paralleled with
the general theories given in Section 2, we now present a complete and rigorous treatment
for the SAR model, taking into account the possibility that hn is unbounded.

Recall ψ̃n = ψ̃n(λ0) and Hrn = Hrn(λ0), r = 1, 2, 3. Similarly, let An = An(λ0), Gn =
Gn(λ0), Trn = Trn(λ0), r = 0, 1, 2, 3, and Rrn = Rrn(λ0), r = 1, 2. Let ηn = 1

σ0
GnXnβ0.

With the specification of the SAR model and the quasi-maximum likelihood estimation
method, the generic regularity conditions listed in Section 2 can be made more specific or
more primitive. First, the set of rather primitive conditions of Lee (2004a) for the

√
n/hn-

consistency of the QMLE λ̂n are essential and are summarized below in Assumptions 1-6.

Assumption 1: The true λ0 is in the interior of a compact set Λ.
Assumption 2: The innovations {un,i} are iid with mean zero, variance one, and CDF

F0. E|un,i|4+γ exists for some γ > 0.
Assumption 3: The elements wn,ij of Wn are at most of order h−1

n uniformly for all i
and j, where the rate sequence {hn} can be bounded or divergent but satisfying h1+ε

n /n→ 0
for some ε > 0 as n → ∞. As a normalization, wn,ii = 0 for all i. Furthermore, the
matrices {Wn} are uniformly bounded in both row and column sums.

Assumption 4: The matrix An is nonsingular, {A−1
n } are uniformly bounded in both

row and column sums, and {A−1
n (λ)} are uniformly bounded in either row or column sums,

uniformly in λ ∈ Λ.
Assumption 5: The elements of the n× p matrix Xn are uniformly bounded for all n,

and limn→∞ 1
nX

′
nXn exists and is nonsingular.

Assumption 6: The elements ofMnηn are O(h
− 1

2
n ) uniformly, and limn→∞ hn

n η
′
nMnηn =

c, where either c > 0, or c = 0 but limn→∞ hn
n (ln |σ2

0A
−1
n A′−1

n |− ln |σ2
n(λ)A−1

n (λ)A′−1
n (λ)|) �=

0, whenever λ �= λ0, where σ2
n(λ) = σ2

0
n tr[A′−1

n A′
n(λ)An(λ)A−1

n ].

Assumptions 1-6 listed above are Assumptions 1, 2, 3′, 4-7, and 10 of Lee (2004a). Under
these assumptions, the QMLE λ̂n is a

√
n/hn-consistent estimator of λ0. In the regular case

where hn is bounded, i.e., the degree of spatial dependence does not grow with the sample
size, λ̂n becomes

√
n-consistent. These assumptions lead to the first-order asymptotics for

θ̂n, which are shown to be essential as well for the higher-order stochastic expansions for
λ̂n, and the higher-order expansions for the bias, MSE, and variance of λ̂n. Some further
conditions are needed for ensuring proper orders of R1n and R2n, which are crucial for the
proper behavior of the derivatives Hrn, r = 1, 2, 3. Denote σ̂2

n0 ≡ σ̂2
n(λ0).

Assumption 7: (i) E[hn
n (Y ′

nA
′
nMnWnYn)(σ̄−4

n0 − σ−4
0 )(σ̂2

n0 − σ2
0)] = O((hn

n )
1
2 ); and (ii)

E[hn
n (Y ′

nW
′
nMnWnYn)(σ̄−4

n0 − σ−4
0 )(σ̂2

n0 − σ2
0)] = O((hn

n )
1
2 ), for σ̄2

n0 between σ2
0 and σ̂2

n0.

These conditions are weak as under the earlier assumptions hn
n (Y ′

nA
′
nMnWnYn) = Op(1),

hn
n (Y ′

nW
′
nMnWnYn) = Op(1), σ̂2

n0−σ2
0 = Op(n−

1
2 ), and σ̄−4

n0 −σ−4
0 = Op(n−

1
2 ); see Appendix

B for their proofs. Thus, the two random quantities involved in (i) and (ii) of Assumption
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7 are both Op(n−1), suggesting that their expectations would be of order O(n−1), which
is smaller than the desired order O((hn

n )
1
2 ). To ensure the proper stochastic behavior of

Hrn, r = 1, 2, 3, the following conditions are needed.

Assumption 8: (i) hs
nE[(R1n−ER1n)s] = O((hn

n )
1
2 ), s = 2, 3, 4; (ii) h2

nE[(R2n−ER2n)2]
= O((hn

n )
1
2 ); and (iii) hs+1

n E[(R1n − ER1n)s(R2n − ER2n)] = O((hn
n )

1
2 ), s = 1, 2.

The three conditions in Assumption 8 are in fact rather weak since, following the results
of Lemma 3.1, all the random quantities inside the expectation sign are of order Op(hn

n ) or
lower, which suggests the conditions are met as long as their expectations do not ‘explode’
beyond the order O((hn

n )
1
2 ). We have the following important lemma.

Lemma 3.1: Under Assumptions 1-7, we have
(i) hnR1n = Op(1), E(hnR1n) = O(1), and hnR1n = E(hnR1n) +Op((hn

n )
1
2 );

(ii) hnR2n = Op(1), E(hnR2n) = O(1), and hnR2n = E(hnR2n) +Op((hn
n )

1
2 ).

With this lemma and under the conditions listed above, we are able to prove the following
theorem and corollaries. These theorem and corollaries parallel the general theorem and
corollaries given in Section 2 with the order of magnitude of each term adjusted to allow
for the possibility that hn increases with n. All proofs are given in Appendix B.

Theorem 3.1: Under Assumptions 1-8, we have a third-order stochastic expansion:

λ̂n − λ0 = a−1/2 + a−1 + a−3/2 +Op((hn
n )2), (23)

where a−1/2 = Ωnψ̃n, a−1 = Ωnψ̃n + Ω2
nH1nψ̃n + 1

2Ω3
nE(H2n)ψ̃2

n, and

a−3/2 = Ωnψ̃n + 2Ω2
nH1nψ̃n + Ω3

nE(H2n)ψ̃2
n + Ω3

nH
2
1nψ̃n + 1

2Ω3
nH2nψ̃

2
n

+3
2Ω4

nE(H2n)H1nψ̃
2
n + 1

2Ω5
nE(H2n)2ψ̃3

n + 1
6Ω4

nE(H3n)ψ̃3
n,

having stochastic orders a−s/2 = Op((hn
n )s/2), s = 1, 2, 3; and Ωn = −1/E(H1n).

Note that {a−s/2} have the same expressions as those in Theorem 2.1. The difference is
in their stochastic orders. To simplify the presentations and to facilitate the practical im-
plementations of our results, define c1n = {Ωn, 0′6×1}′, c2n = {Ωn, Ω2

n,
1
2Ω3

nE(H2n), 0′4×1}′,
c3n = {Ωn, 2Ω2

n, Ω3
nE(H2n), Ω3

n,
1
2Ω3

n,
3
2Ω4

nE(H2n), 1
2Ω5

nE(H2n)2 + 1
6Ω4

nE(H3n)}′, C2n =
c1n + c2n and C3n = c1n + c2n + c3n. Let

ζn = {ψ̃n, H1nψ̃n, ψ̃
2
n, H

2
1nψ̃n, H2nψ̃

2
n, H1nψ̃

2
n, ψ̃

3
n}′. (24)

Then, a−1/2 = c′1nζn, a−1 = c′2nζn, a−3/2 = c′3nζn, and λ̂n − λ0 = C′
3nζn +Op((hn

n )2).

Corollary 3.1: Under Assumptions 1-8, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the bias of λ̂n:

Bias(λ̂n) = b−1 + b−3/2 +O((hn
n )2), (25)

where b−1 = C′
2nE(ζn) and b−3/2 = c′3nE(ζn); and 2nd- and 3rd-order bias-corrected QMLEs:

λ̂bc2
n = λ̂n − Ĉ ′

2nÊ(ζn) and λ̂bc3
n = λ̂n − Ĉ ′

3nÊ(ζn), (26)
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where the quantity with an ̂ denotes the estimate of the corresponding quantity.

Comparing with the second-order bias formula of Bao and Ullah (2007a) for the pure
SAR model, we see that our second-order bias formula b−1 contains an extra term 2ΩnE(ψ̃n),
which is of order O((hn

n )) in general but vanishes under the pure SAR model with normal
errors. If the second-order bias-correction is not enough, our approach provides an easy
way for the third-order correction. In contrast, the analytical approach involves tremendous
amount of extra algebraic work even with a simple model of normal errors.

Corollary 3.2. Under Assumptions 1-8, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the MSE of λ̂n:

MSE(λ̂n) = m−1 +m−3/2 +m−2 +O((hn
n )

5
2 ), (27)

for m−1 = c′1nE(ζnζ ′n)c1n, m−3/2 = 2c′1nE(ζnζ ′n)c2n, m−2 = c′2nE(ζnζ ′n)c2n+2c′1nE(ζnζ ′n)c3n.

It is seen that introducing the notation cin and ζn greatly simplifies the expression for
the MSE expansion. Simplification is even greater for the variance expansions as seen from
the following corollaries, which makes the practical implementations much easier.

Corollary 3.3. Under Assumptions 1-8, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the variance of λ̂n:

Var(λ̂n) = v−1 + v−3/2 + v−2 +O((hn
n )

5
2 ); (28)

where v−1 = c′1nVar(ζn)c1n, v−3/2 = 2c′1nVar(ζn)c2n, and v−2 = (c2n + c3n)′Var(ζn)(c2n +
c3n) + 2c′1nVar(ζn)c3n.

Note that v−1 + v−3/2 + v−2 = Var(a−1/2 + a−1 + a−3/2) = C′
3nVar(ζn)C3n, which

guarantees the positiveness of the third-order variance estimate. Similarly, one may use
Var(a−1/2 + a−1) = C′

2nVar(ζn)C2n for second-order variance correction. The asymptoti-
cally equivalent but simpler variance expansions, Var(λ̂n) = m−1 +m−3/2 + O((hn

n )2) and
Var(λ̂n) = m−1 +m−3/2 +m−2 − b2−1 +O((hn

n )
5
2 ), may be used. However, as pointed out in

Section 2, these simplifications may not guarantee the positiveness of the variance estimates,
thus it is recommended that the results in (28) be followed in the practical applications.

One important issue left is the variances of the bias-corrected estimators, i.e., Var(λ̂bc2
n )

and Var(λ̂bc3
n ), which is more relevant in improving the finite sample inferences for λ.

Corollary 3.4. Under the assumptions of Corollary 3.3, assume further that b̂−1−b−1 =
O((hn

n )
3
2 ) and b̂−3/2 − b−3/2 = O((hn

n )2). We have the third-order expansion:

Var(λ̂bc3
n ) = v−1 + v−3/2 + v−2 − 2ACov(λ̂n, b̂−1) + O((hn

n )
5
2 ) (29)

and Var(λ̂bc2
n ) = Var(λ̂bc3

n ) + O((hn
n )

5
2 ), where ‘ACov’ denotes the asymptotic covariance.
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It turns out that the variance of λ̂n agrees with the variances of λ̂bc2
n and λ̂bc3

n to the
second-order O((hn

n )
3
2 ) but differ on the third-orderO((hn

n )2). With the results of Corollaries
3.1-3.4, various t-ratios for inference for λ can be formed:

tij =
λ̂bci

n − λ0√
V̂j(λ̂bci

n )
, (30)

where λ̂bci
n denotes the ith-order bias-corrected estimator, and V̂j(·) the estimated jth-order

corrected variance, i, j = 1, 2, 3. Clearly, i = 1 and j = 1 correspond to the original QMLE
λ̂n and its asymptotic variance. Monte Carlo results given in Section 4 show that the usual
t-ratio, t11, leads to the worst results, whereas the fully third-order corrected t-ratio, t33,
leads to the best inferences for λ.

It would be interesting to see the impacts of bias correcting λ̂n on the estimation of
the regression coefficients β and the error variance σ2. As discussed in the introduction, in
estimating an econometric model with nonlinear, linear and scale parameters, the estima-
tion of the nonlinear parameter is the main source of bias and the main difficulty in bias
correction. Now, given the bias corrected QMLE of λ, λ̂bc2

n say, what are the finite sample
properties of β̂n(λ̂bc2

n ) and σ̂∗2n (λ̂bc2
n ) = n

n−p σ̂
2
n(λ̂bc2

n )? We have, for λ̃n = λ̂n or λ̂bc2
n :

Bias[β̂n(λ̃n)] = −bnBias(λ̃n) − σ0ΩnE(ξnψ̃n) + O(hnn
− 3

2 ), (31)

Bias[σ̂∗2n (λ̃n)] = −2σ2
0T0nBias(λ̃n) + 2ΩnE(ζnψ̃n) + σ2

0dnΩ2
nE(ψ̃2

n) +O(hnn
− 3

2 ), (32)

where bn = (X ′
nXn)−1X ′

nGnXnβ0 = O(1), ξn = (X ′
nXn)−1X ′

nGnun = Op(n−
1
2 ), ζn =

σ2
0T0n − 1

nY
′
nA

′
nMnWnYn = Op((hnn)−

1
2 ), and dn = T1n + 1

nη
′
nηn = O(h−1

n ).
As Bias(λ̂n) = O(hn

n ) and Bias(λ̂bc2
n ) = O((hn

n )
3
2 ), the above results show clearly the

impacts of using λ̃n = λ̂n or λ̂bc2
n on the finite sample performance of β̂n(λ̃n) and σ̂∗2n (λ̃n).

Monte Carlo results (not reported for brevity) show that the biases of β̂n(λ̂bc2
n ) and σ̂∗2n (λ̂bc2

n )
are very small, and can be significantly smaller than those of β̂n(λ̂n) and σ̂∗2n (λ̂n). Although
in theory the second term in (31) is O(

√
hn

n ) and the middle two terms in (32) are O(n−1),
Monte Carlo results do not show that they have significant contributions to bias. Indeed,
we can show that when λ = 0, the second term in (31) becomes O(hn

n2 ). These are consistent
with our discussion in the introduction. In any case, the above results can be used to further
correct β̂n(λ̂bc2

n ) and σ̂∗2n (λ̂bc2
n ) so that they become truly unbiased up to O(hn

n ).

3.2 The bootstrap method for practical implementation

While working with the concentrated estimating equation greatly simplifies various ex-
pansions, it does not overcome the difficulty in analytically evaluating the expectations of
various quantities in the expansions. From the expressions given in (18) to (21) we see
that, in order to calculate various expectations in the bias, MSE, and variance expansions,
all we need is to find the expectations of R1n and R2n (the ratios of linear-quadratic and
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quadratic forms), their powers, and the cross-products of powers, and then evaluate them
at the estimated parameter values. In other words we need to derive analytically,

E(Rk
1n), k = 1, · · · , 10; E(Rk

2n), k = 1, · · · , 4; and E(Rk
1nR

m
2n), k = 1, · · · , 6, m = 1, 2,

and then in the resulted closed form expressions replace θ0 by θ̂n and certain moments of F0

by their estimates, for up to third-order expansions. However, this is either too cumbersome
if the errors are normal, or too difficult if the errors are nonnormal, unless for the special case
of a pure SAR model with normal errors.7 For the general SAR model with normal errors,
we managed to derive only a second-order bias formula (requiring only E(Rk

1n), k = 1, 2, 3,
E(R2n) and E(R1nR2n)) by extending the results of Smith (1993). However, the results are
too tedious to be fit into the current paper. In the case of the general SAR model with
nonnormal errors, we failed to obtain any analytical results.

Thus, for the higher-order results presented above to be practically feasible for a general
SAR model, it is highly desirable to have an alternative way to evaluate these expectations.
Clearly, it is when the errors are non-normal and the model contains regressors that gives
a practical attraction. To solve this puzzle, the bootstrap procedure outlined in Section 2
is made explicit below. Note that the two key ratios can be written as:

R1n ≡ R1n(un, θ0) =
u′nMnGnun + u′nMnηn

u′nMnun
,

R2n ≡ R2n(un, θ0) =
u′nG′

nMnGnun + 2u′nG′
nMnηn + η′nMnηn

u′nMnun
,

where ηn = σ−1
0 GnXnβ0. These show that ψ̃n = ψ̃n(un, θ0) and Hn = {H1n, H2n, H3n} =

Hn(un, θ0). Hence, ζn = ζn(un, θ0). In other words, all the random quantities in the bias,
MSE, and variance formulas can be expressed in terms of un and θ0. This leads naturally to
a bootstrap procedure for estimating the expected values of these random quantities (see,
e.g., Efron, 1979; Amemiya, 1985, p. 135). The suggested bootstrap procedure is:

1. Compute the QMLEs θ̂n = (β̂′n, σ̂2
n, λ̂n)′ based on the original data,

2. Compute QML residuals ûn = σ̂−1
n (ÂnYn −Xnβ̂n), where Ân = In − λ̂nWn,

3. Resample ûn (centered) in the usual way, and denote the resampled vector by û∗n,b,

4. Compute R1n(û∗n,b, θ̂n) and R2n(û∗n,b, θ̂n), and thus Hn(û∗n,b, θ̂n), and ζn(û∗n,b, θ̂n),

5. Repeat steps 3-4 B times to give sequences of bootstrapped values for Hn and ζn.
7In this case, the high-order bias and variance formulas involve E{(u′

nA1un)i(u′
nA2un)j/(u′

nun)i+j} for

symmetric matrices A1 and A2, and i, j = 0, 1, 2, ..., which can be found using the results of Smith (1993).

For this simple model, the resulted analytical expressions (Bao and Ullah, 2007a) are complicated but

manageable. Either dropping normality or adding exogenous regressors or both invalidate these results.

Working with the full likelihood function makes it possible for an analytical solution but at the expense

of more tedious expressions; see Bao (2013) for a second-order bias formula for θ̂n. As we are primarily

interested in the finite sample properties of λ̂n, we thus work with the concentrated likelihood function.
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The bootstrap estimates of various expectations thus follow. For example, the bootstrap
estimates of the mean and variance of ψ̃2

n (the third element of ζn) are, respectively, Ê(ψ̃2
n) =

1
B

∑B
b=1 ψ̃

2
n(û∗n,b, θ̂n), and V̂ar(ψ̃2

n) = 1
B

∑B
b=1 ψ̃

4
n(û∗n,b, θ̂n) − [Ê(ψ̃2

n)]2. With the quantities
cin, i = 1, 2, 3, and ζn introduced below Theorem 3.1, the practical implementations of
our bootstrap-based bias and variance corrections (whether 2nd-order or 3rd-order) can be
made much simpler – all that are needed are the following bootstrap estimates:

Ê(Hn) = 1
B

∑B
b=1 Hn(û∗n,b, θ̂n),

Ê(ζn) = 1
B

∑B
b=1 ζn(û∗n,b, θ̂n), and

Ê(ζnζ ′n) = 1
B

∑B
b=1 ζn(û∗n,b, θ̂n)ζ ′n(û∗n,b, θ̂n).

See, e.g., Efron (1979) and Lahiri (2003) for details on the general bootstrap principles.

3.3 Validity of the bootstrap method

We first provide some heuristic arguments for the validity of the proposed bootstrap
method. Formal results are given in Corollaries 3.5 and 3.6 and proofs are given in Appendix
B. As all the quantities in the expansions are smooth functions of either R1n only or both
R1n and R2n. It may suffice to argue that the above bootstrap procedure leads to valid
estimates of E(R1n) and E(R2n). Recall F0 is the CDF of uni. Let μ0 = μ(F0) be the higher-
order moments of F0 that E(R1n) and E(R2n) depend upon. Let F̂n be the EDF of ûn.
Consistency of θ̂n ensures the consistency of using μ̂n = μ(F̂n) to estimate μ0 (see Lemma
B.6, Appendix B). If, in the real world, one knew both F0 and θ0, one may approximate
E(Rjn), j = 1, 2, to an arbitrary accuracy by

E(Rjn) =̇ 1
M

∑M
m=1 Rjn(un,m, θ0), j = 1, 2,

where un,m is a random n-vector drawn from F0 and M is a large positive integer. If,
however, one knew F0 but not θ0, one may estimate E(Rjn) by

E(Rjn) =
(

1
M

∑M
m=1 Rjn(un,m, θ0)

)∣∣∣
θ0=θ̂n

= 1
M

∑M
m=1 Rjn(un,m, θ̂n), j = 1, 2,

where the estimation error comes only from the estimation of the model parameters. If,
instead, one knew θ0 but not F0, one may estimate E(Rjn) using the bootstrap estimates

Ẽ(Rjn) = E∗(Rjn(u∗n,b, θ0)) =̇ 1
B

∑M
b=1 Rjn(u∗n,b, θ0), j = 1, 2,

for a large B, where u∗n,b
iid∼ Fn, Fn is the EDF of un, and E∗ denotes expectation with

respect to Fn. The error in estimating E(Rjn) now comes from the estimation of F0.
In reality, however, one knows neither θ0 nor F0. Under the bootstrap world, these

unknown quantities are made ‘known’ to be their estimates θ̂n and F̂n, and the bootstrap
DGP that mimics the real world DGP given in (1) is

Y ∗
n,b = λ̂nWnY

∗
n,b +Xnβ̂n + σ̂nû

∗
n,b,
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where û∗n,b
iid∼ F̂n, and θ̂n = (λ̂n, β̂

′
n, σ̂

2
n)′ are the estimates of θ0 = (λ0, β

′
0, σ

2
0)

′ based on
the original data. Based on the generated bootstrap data {Y ∗

n,b, Xn, Wn} and the bootstrap
parameters θ̂n, one computes the bootstrap analogue of R1n and R2n defined in (22) as

R∗
1n,b =

Y ∗′
n,bÂ

′
nMnWnY

∗
n,b

Y ∗′
n,bÂ

′
nMnÂnY

∗
n,b

and R∗
2n,b =

Y ∗′
n,bWnMnWnY

∗
n,b

Y ∗′
n,bÂ

′
nMnÂnY

∗
n,b

,

which after simplifications become R1n(û∗n,b, θ̂n) and R2n(û∗n,b, θ̂n), the bootstrap analogue
of R1n(un, θ0) and R1n(un, θ0) given above. Thus, the bootstrap estimates of E(Rjn) are

Ê(Rjn) = E∗[Rjn(û∗n,b, θ̂n)] =̇ 1
B

∑B
b=1 Rjn(û∗n,b, θ̂n), j = 1, 2,

for a large B, where E∗ denotes expectation with respect to the EDF F̂n. In this case, the
error of using Ê(Rjn) to estimate E(Rjn) comes from the estimations of both θ0 and F0.

The bootstrap estimates Ê(Rjn) are seen to have identical structures as the Monte Carlo
estimates E(Rjn) assuming a known F0, the simple bootstrap estimates Ẽ(Rjn) assuming
a known θ0, and the original estimand E(Rjn) assuming both θ0 and F0 known. These
arguments suggest that if we write E(Rjn) ≡ Rjn(θ0, μ0), then we have E∗[Rjn(û∗n,b, θ̂n)] =
Rjn(θ̂n, μ̂n). On the other hand, if the closed form expressions for Rjn(θ0, μ0) exist, then
their analytical or plug-in estimates are Rjn(θ̂n, μ̂n), the same as the bootstrap estimates.
From these, we conclude that the validity of the proposed bootstrap method follows that of
the analytical method. However, the bootstrap method avoids the analytical derivations of
the expectations and the direct estimations of μ0, which, in particular the former, greatly
extends the applicability of the methods for bias and variance corrections.

The above arguments extend directly to the more general functions b−s/2(θ0, μ0), s =
2, 3, and v−s/2(θ0, μ0), s = 2, 3, 4, in that their bootstrap estimates can be written as
b̂−s/2 = b−s/2(θ̂n, μ̂n) and v̂−s/2 = v−s/2(θ̂n, μ̂n). Evidently, both the b and v functions
satisfy the general smoothness conditions set out in Assumptions E and F in Section 2.3.
The validity of the bootstrap method for bias correction is established as follows.

Corollary 3.5: Assume the assumptions of Corollary 3.1 hold. For the bias-corrected
estimators defined in (26) with bias corrections estimated using the proposed bootstrap
method, we have: Bias(λ̂bc2

n ) = O((hn
n )

3
2 ) and Bias(λ̂bc3

n ) = O((hn
n )2).

Note that the exact content of μ0 is not important as μ̂n is not required in the bootstrap
process. The proof of the results, however, requires that μ̂n, or in general F̂n, possess similar
properties as θ̂n, i.e., being

√
n/hh-consistent and having a bias of order O(hn

n ). These
properties are shown in Lemma B.6 for F̂n, and in detail for the case of third moment. The
cases of higher order moments can be shown in a similar manner.

The validity of the bootstrap method for third-order variance correction follows closely
the arguments used in the proof of Corollary 3.5, except that the estimation of the first-
order term v−1 needs an additional attention for achieving a third-order variance correction.
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Similar to the general case of Section 2, one shows for the SAR model v−1 = ν−1 + ν−3/2 +
ν−2 +O((hn

n )
5
2 ), and by (A-9) the first-order variance of λ̂n based on JEE takes the form:

ν−1 = τ−1
n + τ−2

n [2μ0,3 g
◦′
nMnηn + (μ0,4 − 3)g◦′n g

◦
n], (33)

where τn = η′nMnηn + tr[G◦
n(G◦

n +G◦′
n )], G◦

n = Gn − 1
ntr(Gn)In, g◦n = diag(G◦

n) (the vector
of diagonal elements of G◦

n), and μ0,r is the rth moment of uni, r = 3 and 4. Clearly, ν−1

is an explicit and smooth function of ϑ0, and it depends on μ0 = (μ0,3, μ0,4)′ linearly.
With b̃−1,θ0 defined in Corollary 2.6 and v̂bc2

−1 defined by (16) with n replaced by n/hn,
the validity of the third-order variance correction is established as follows.

Corollary 3.6: Assume the assumptions of Corollary 3.4 hold. The variance expansion
(29) becomes Var(λ̂bc3

n ) = v−1+v−3/2+v−2−2E(b̃′−1,θ0
)ACov(λ̂n, θ̂n)+O((hn

n )
5
2 ), and further

E(v̂bc2
−1 + v̂−3/2 + v̂−2) = v−1 + v−3/2 + v−2 + O((hn

n )
5
2 ).

The implication of the result in Corollary 3.6 is that the bootstrap estimate of Var(λ̂bc3
n )

with v̂bc2
−1 is valid in that it does not induce additional bias larger than O((hn

n )
5
2 ), because

the other term E(b̃′−1,θ0
)ACov(λ̂n, θ̂n) is of order O((hn

n )2) and the error from the estimation

of it will be O((hn
n )

5
2 ). ACov(λ̂n, θ̂n) can be estimated by the plug-in method as an explicit

expression of AVar(θ̂n) is available (Lee, 2004a), and E(b̃−1,θ0) can be replaced by b̃−1,θ0

which can be estimated numerically (see Sec 3.4 for details). The full expression for v̂bc2−1 is
given in (B-9) and (B-10), and the details for the practical implementation of v̂bc2

−1 are given
in Appendix B, after the proof of Corollary 3.6. Some useful remarks are given below.

The v̂bc2
−1 can be simplified greatly when either hn is unbounded, under which hn

n g
◦′
n g

◦
n =

O(h−1
n ) = o(1) and hn

n g
◦′
n ηn ≤ O(h

− 1
2

n ) = o(1), or the variability in the number of neighbors
for each unit gets small as n goes large.8 In these cases, ν−1 essentially equals τ−1

n , and

v̂bc2
−1 = v̂−1 − ν̂−1,θ0 b̂−1 − 1

2 tr[ν̂−1,θ0θ′0ÂVar(θ̂n)], (34)

where ν−1,θ0 = −τ−2
n τ̇n and ν−1,θ0θ′0 = 2τ−3

n τ̇nτ̇
′
n − τ−2

n τ̈n with τ̇n and τ̈n being the gradient
and Hessian of τn; b̂−1 = {b̂−1, (β̂n − β̂bc2

n )′, σ̂2
n − σ̂2,bc2

n }′ with β̂bc2
n and σ̂2,bc2

n being the
second-order bias-corrected estimators of β0 and σ2

0 obtained from (31) and (32) using λ̂bc2
n .

Monte Carlo results show that v̂bc2−1 defined in (34) works very well in that the additional
terms in the full expression of v̂bc2

−1 are negligible unless n is small and errors are skewed.

3.4 Monte Carlo Simulation

Extensive Monte Carlo experiments are carried out to investigate (i) the finite sample
performance of the QMLE λ̂n and the bias-corrected QMLEs λ̂bc2

n and λ̂bc3
n of the spatial

8This is seen from (i) 1
n
g◦′

n g◦
n is the sample variance of the elements of diag(Gn), which is 0 when λ0 = 0;

(ii) Gn = Wn + λ0W
2
n + λ2

0W
3
n + . . ., if |λ0| < 1 and wn,ij < 1; and (iii) the diagonal elements of W r

n , r ≥ 2

inversely relate to the number of neighbors for each unit, say {ki}n
i=1, see Anselin (2003). In fact, when Wn

is row-normalized and symmetric, diag(W 2
n) = {k−1

i }. That Var(ki) = o(1) can be seen to be true for many

popular spatial layouts such as Rook, Queen, group interactions, etc, see Yang (2010b). Note τn = O( n
hn

).
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lag parameter λ, (ii) the finite sample performance of the corrected standard errors (se),
(iii) the impact of the bias and se corrections on the subsequent inferences for λ, and (iv)
the impact of bias corrections for λ̂n on the estimators of β and σ2.

Monte Carlo experiments are carried out based on the following SAR model:

Yn = λWnYn + β01n +Xn1β1 +Xn2β2 + σun,

where 1n is an n-vector of ones. For all the Monte Carlo experiments, β′ = {β0, β1, β2} is set
at {5, 1, 1} or {.5, .1, .1}, σ at 1 or 2, λ takes values {.5, .25, 0,−.25,−.5}, and n takes values
{50, 100, 200, 500}.9 Several ways of generating Wn, (Xn1, Xn2), and un are considered.
First, the values {x1i} or {x1,ir} of Xn1, and the values {x2i} or {x2,ir} of Xn2 are

MRSAR-A: {x1i} iid∼ N (0, 1)/
√

2, and {x2i} iid∼ N (0, 1)/
√

2, or
MRSAR-B: {x1,ir} = (2zr + zir)/

√
7, and {x2,ir} = (vr + vir)/

√
7,

where in MRSAR-B, {zr, zir, vr, vir} iid∼ N (0, 1), across all i and r. Apparently, MRSAR-A gives
iid X values, and MRSAR-B gives non-iid X values, or different group means under group
interaction, see Lee (2004a) and below for details. The two schemes give signal-to-noise
ratios 1 when β1 = β2 = σ = 1. Partial results with β = {5, 1, 1}′ and σ = 1 are reported.
More extensive results are available at http://www.mysmu.edu/faculty/zlyang/.

Spatial layouts. Three general spatial layouts are considered in the Monte Carlo
experiments. The first is based on Rook contiguity, the second is based on Queen contiguity
and the third is based on the notion of group interactions. The methods used in generating
these three spatial layouts are similar to those used in Yang (2010b).

The details for generating the Wn matrix under rook contiguity are as follows: (i) index
the n spatial units by {1, 2, · · · , n}, randomly permute these indices and then allocate them
into a lattice of k ×m(≥ n) squares, (ii) let Wij = 1 if the index j is in a square which
is on immediate left, or right, or above, or below the square which contains the index i,
otherwise Wij = 0, i, j = 1, · · · , n, to form an n×n matrix, and (iii) divide each element of
this matrix by its row sum to give Wn. Similarly, one generates the Wn matrix under Queen
contiguity with additional neighbors sharing a common vertex with the unit of interest.

To generate the Wn matrix according to the group interaction scheme, suppose we have
k groups of sizes m1, m2, · · · , mk. Define Wn = diag{Wj/(mj − 1), j = 1, · · · , k}, a matrix
formed by placing the submatrices Wj along the diagonal direction, where Wj is an mj ×mj

matrix with ones on the off-diagonal positions and zeros on the diagonal positions. The
9As in Lee (2007a), the maximization of �c

n(λ) is performed globally without imposing a restricted lower

bound on λ. This is important when the true λ value is negative and big, because QMLE is downward biased

and a restricted lower bound, −0.9999 say, would result in the searching process to hit the lower bound quite

often, thus failing to reach the true maximum point. This would in turn give a wrong impression that the

QMLE can be upward biased and the bias-correction may not work in certain cases. This is believed to be

the reason for the incoherent Monte Carlo results of Bao and Ullah (2007a). See Anselin (1988, p. 78-79)

for a theoretical discussion on the parameter space of λ in relation to the eigenvalues of Wn.
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group sizes {mj} can be the same or different, and independent or dependent on n, allowing
for a full range of spatial scenarios considered in Lee (2004a). The details are as follows:
(i) calculate the number of groups according to k = K(n), and the approximate average
group size m = n/k, (ii) generate the group sizes (m1, m2, · · · , mk) according to a discrete
distribution centered at m, and (iii) adjust the group sizes so that

∑k
j=1 mj = n.10

In our Monte Carlo experiments, we useK(n) = Round(nε) with ε = 0.35, 0.50, and 0.75,
representing respectively the situations where (a) there are few groups of many spatial units
in each, (b) the number of groups and the sizes of the groups are of the same magnitude,
and (c) there are many groups of few elements in each. Clearly, hn = O(n1−ε). The group
sizes are drawn from a discrete uniform distribution from 0.5m to 1.5m.

Error distributions. To generate un, three distributions are considered: dgp1: the el-
ements {ui} of un are iid standard normal, dgp2: {ui} are iid standardized normal mixture,
and dgp3: {ui} are iid standardized log-normal. Specifically, for dgp2,

ui = ((1− ξi)Zi + ξiτZi)/(1− π + π ∗ σ2)0.5, i = 1, · · · , n,

where {ξi} iid∼ Bernoulli(π), and {Zi} iid∼ N (0, 1) independent of {ξi}. The parameter π
represents the proportion of mixing the two normal populations. In our experiments, we
choose π = 0.1, meaning that 90% of the random variates are from standard normal and the
remaining 10% are from another normal population with standard deviation τ . We choose
τ = 4 to simulate the situation where there are gross errors in the data. For dgp3,

ui = [exp(Zi) − exp(0.5)]/[exp(2)− exp(1)]0.5, i = 1, · · · , n,

which gives an error distribution that is both skewed and leptokurtic. The normal mixture
gives an error distribution that is still symmetric like normal but leptokurtic. Other non-
normal distributions, such as normal-gamma mixture and chi-square, are also considered
and the results (available from the author upon request) exhibit a similar pattern.

Finite sample performance of bias and se corrections. We report the Monte
Carlo means, rmses and sds of λ̂n, λ̂bc2

n and λ̂bc3
n under various combinations of the values for

(n, λ, σ), the error distributions, and the spatial layouts. We also report the averages (over
Monte Carlo samples) of the 1st-, 2nd- and 3rd-order ses: V̂1(λ̂n)

1
2 , V̂2(λ̂n)

1
2 , V̂3(λ̂n)

1
2 and

V̂3(λ̂bc3
n )

1
2 , defined in (28)-(29) and calculated based on the proposed bootstrap method.11

10Clearly, this design covers the scenario considered in Case (1991). Typical forms of K(n) include

K(n) = n/m where m is a prespecified constant independent of n and K(n) = Round(nε). Lee (2007b)

shows that the group size variation plays an important role in the identification and estimation of econometric

models with group interactions, contextual factors and fixed effects. Yang (2010b) shows that it also plays

an important role in the robustness of the LM test of spatial error components.
11In connection to Corollary 3.6 and discussions thereafter, the partial derivative b̃−1,θ0 needed in

bV3(λ̂
bc3
n )

1
2 is estimated by the bootstrap numerical derivative: [(bb−1 at θ̂n + ειi) − (bb−1 at θ̂n)]/ε, where

ιi is a (p+2) × 1 vector with 1 on its ith position and zero elsewhere, i = 1, · · · , p+2, and ε is taken to be

0.0001 in our experiments. The v−1 in bV3(λ̂
bc3
n )

1
2 is estimated by bvbc2

−1 with details given in and after (B-9).
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Each set of results is based on 10,000 Monte Carlo samples, and 999+floor(n0.75) bootstrap
samples for each Monte Carlo sample. Table 1 summarizes partial results with β = {5, 1, 1}′
and σ = 1. From the results (also unreported), some general observations are in order:

(i) the bias-corrected QMLEs λ̂bc2
n and λ̂bc3

n are in general nearly unbiased and clearly
outperform the original QMLE λ̂n;

(ii) λ̂n is always downward biased and the bias can be very serious depending on the
spatial layout, the sample size and the error standard deviation;

(iii) λ̂bc3
n improves over λ̂bc2

n , but using λ̂bc2
n seems to be sufficient under most of the

situations as far as bias-correction is concerned;12

(iv) spatial layouts can have a huge impact on the finite sample performance of λ̂n – the
stronger the spatial dependence the worse λ̂n performs;

(v) the values of σ and the slope parameters also have a big impact – the bigger the σ is,
or the smaller the |β1| and |β2| are, the bigger are the biases, rmses and sds of λ̂n;

(vi) the value of λ and the way the regressors being generated affect the finite sample
performance of λ̂n – as λ decreases, the bias of λ̂n decreases under iid regressors but
increases under non-iid regressors, whereas the [rmse](se) of λ̂n always increases as λ
decreases, with a sharper amount for the case of non-iid regressors;

(vii) the error distribution does not affect much on the general performance of the three
estimators, showing the robustness of the proposed approach;

(viii) the empirical sd of λ̂n can be slightly different from that of λ̂bc3
n when sample size is

small, suggesting that the variances of λ̂n and λ̂bc3
n may differ on higher-order term

(see panels (a)-(c), Table 1). The results in the last four columns of Table 1 show
that V̂3(λ̂bc3

n ) provides the best approximation to the variance of λ̂bc3
n . The empirical

sds of λ̂bc2
n and λ̂bc3

n agree closely, suggesting that the finite sample variances of λ̂bc2
n

and λ̂bc3
n are about the same. These are consistent with the result of Corollary 3.4.

In summary, the proposed bias-correction procedure works excellently in general, it is simple
and widely applicable, and thus should be recommended for the practitioners.

The performance of t-ratios. The finite sample behavior of the t-ratios tij for testing
H0 : λ = 0, defined in (30) are investigated. Partial Monte Carlo results in terms of means,
sds, and tail probabilities are reported in Table 2. From the results, the following conclusions
can be drawn: (i) the asymptotic t-ratio t11 can perform quite badly with severe distortions
on mean and sizes; (ii) use of second-order bias-corrected estimator only (t21) immediately
improves; (iii) use of the second-order bias-corrected estimator and its second-order variance

12In many cases, such as AR and MA models, b−3/2 is in fact zero as a referee points out. This might

help explain the small difference between λ̂bc2
n and λ̂bc3

n for the SAR model we consider.
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gives further improvements; and (iv) use of the third-order bias-corrected estimator and its
third-order variance estimate gives the best results.

The performance of β̂n(λ̂bc2
n ) and n

n−p σ̂
2
n(λ̂bc2

n ). Monte Carlo experiments are also
carried out to investigate the performance of QMLEs of β and σ2 following a second-order
bias corrected λ̂n. Monte Carlo results (not reported for brevity) show that the biases of
β̂n(λ̂bc2

n ) and n
n−p σ̂

2
n(λ̂bc2

n ) are very small, and can be significantly smaller than those of
β̂n(λ̂n) and n

n−p σ̂
2
n(λ̂n). Thus, further bias corrections as discussed around (31) and (32)

may not be necessary. More detailed study is interesting but beyond the scope of this paper.

4 Extension to a Vector of Nonlinear Estimators

In previous sections, we have focused on the models of only one nonlinear parameter.
Econometric or spatial econometric models may well contain two or more nonlinear pa-
rameters. An immediate example is the so-called SARAR model, which extends the SAR
model given in (1) by allowing the disturbance εn to follow a SAR process. Other examples
include the spatial heteroskedastic model and the Box-Cox heteroskedastic model. We will
discuss these three examples in some detail after the extension of the method.

When there are two or more nonlinear parameters in the model that are the main
source of bias in model estimation and the main cause of difficulty in bias-correction, our
method can be extended in a straightforward manner. Use of CEE still greatly reduces the
dimensionality, and more importantly it captures the additional second-order bias inherited
from the estimation of linear and scale parameters.13 Furthermore, as far as bootstrap
method is concerned, there is little difficulty in extending a scalar nonlinear estimator
problem to a vector nonlinear estimator problem. The details are as follows.

Using the same notation, under the same set-up (except that ψ̃n is now a vector), and
with almost identical conditions as in Section 2 (except that | · | in |Hrn(λ) − Hrn(λ0)|
and |λ − λ0| of Assumption D is replaced by the matrix norm ‖ · ‖), we have the third-
order stochastic expansion for the vector λ̂n defined by the CEE, λ̂n = arg{ψ̃n(λ) = 0}:
λ̂n − λ0 = a−1/2 + a−1 + a−3/2 +Op(n−2), where

a−1/2 = Ωnψ̃n, a−1 = ΩnH
◦
1na−1/2 + 1

2ΩnE(H2n)(a−1/2 ⊗ a−1/2),

a−3/2 = ΩnH
◦
1na−1 + 1

2ΩnH
◦
2n(a−1/2 ⊗ a−1/2) + 1

2ΩnE(H2n)(a−1/2 ⊗ a−1

+a−1 ⊗ a−1/2) + 1
6ΩnE(H3n)(a−1/2 ⊗ a−1/2 ⊗ a−1/2),

and ⊗ denotes the Kronecker product. This CEE-based expansion takes the same form as
that based on JEE of Bao and Ullah (2007a), except that when taking the expectations for

13However, if one is interested in the analytical properties of the bias corrections, e.g., the main cause of

the bias problem and the factors affecting the magnitude of the bias, it is easier to work with JEE.
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deriving the biases, the terms involving E(ψ̃n) do not vanish. The bias terms of λ̂n are:

b−1 = 2ΩnE(ψ̃n) + ΩnE(H1nΩnψ̃n) + 1
2ΩnE(H2n)E[(Ωnψ̃n)⊗ (Ωnψ̃n)], and

b−3/2 = ΩnE(H◦
1na−1) + 1

2ΩnE[H◦
2n(a−1/2 ⊗ a−1/2)] + 1

2ΩnE(H2n)E(a−1/2 ⊗ a−1

+a−1 ⊗ a−1/2) + 1
6ΩnE(H3n)E(a−1/2 ⊗ a−1/2 ⊗ a−1/2).

We have the options of performing second-order bias correction on λ̂n: λ̂bc2
n = λ̂n − b̂−1,

and the third-order bias correction: λ̂bc3
n = λ̂n − b̂−1 − b̂−3/2, where b̂−1 and b̂−3/2 are the

bootstrap estimates. Note that the nonstochastic matrices Ωn and E(H2n) appear between
the random quantities H1n and ψ̃n inside the expectation sign. This makes the evaluation
of the expectations more difficult. Using the well-known properties of Kronecker product
A ⊗ B)(C ⊗ D) = AC ⊗ BD and vec(ACB) = (B′ ⊗ A)vec(C), where ‘vec’ vectorizes
a matrix by stacking its columns, one can ‘pull’ these nonstochastic matrices outside the
expectation sign (see, e.g., Horn and Johnson, 1985). For example, b−1 can be expressed as

b−1 = 2ΩnE(ψ̃n) + ΩnE(ψ̃′
n ⊗H1n)vec(Ωn) + 1

2ΩnE(H2n)(Ωn ⊗ Ωn)E(ψ̃n ⊗ ψ̃n),

which simplifies the estimation (plug-in and bootstrap) of various expectations. While the
same can be done for b−3/2, the final expression becomes lengthy. To avoid this complication,
we revise the bootstrap procedure described in Section 2.2 as follows:

1. Draw B independent random samples, {û∗n,b, b = 1, 2, . . . , B}, from F̂n,

2. Calculate the bootstrap estimates of E(H1n) and E(H2n),

Ê(H1n) = 1
B

∑n
b=1 H1n(û∗n,b, θ̂n) and Ê(H2n) = 1

B

∑n
b=1H2n(û∗n,b, θ̂n)

3. Based on the bootstrap estimates Ω̂n = −Ê−1(H1n) and Ê(H2n), calculate the bootstrap
estimate of, e.g., E[H◦

2n(a−1/2 ⊗ a−1/2)], as

1
B

n∑
b=1

{
[H2n(û∗n,b, θ̂n)− Ê(H2n)][Ω̂nψ̃n(û∗n,b, θ̂n) ⊗ Ω̂nψ̃n(û∗n,b, θ̂n)]

}
.

All the other expectations in b−3/2 can be handled in the same manner. The compu-
tational cost is still low as the bootstrap replications do not involve reestimation of model
parameters. The validity of this procedure can be inferred from that in Section 2.2. The
results on higher-order variance-covariance matrix of λ̂n can be handled in a similar man-
ner. We outline a few applications, concentrating on bias correction, to demonstrate the
extended method. Detailed treatments are beyond the scope of the paper.

The SARAR Model. Consider an extension of Model (1) by allowing the disturbance
to follow a SAR process (Anselin, 1988): Yn = λW1nYn +Xnβ + εn, εn = ρW2nεn + σun.

25



Both spatial parameters enter the model in a nonlinear fashion and thus their estimation is
expected to incur bias. Letting An(λ) = In−λW1n and Bn(ρ) = In−ρW2n, the concentrated
quasi-Gaussian loglikelihood for (λ, ρ), assuming un ∼ N (0, In), is

�cn(λ, ρ) = −n
2
[log(2π) + 1]− n

2
log[σ̂2

n(λ, ρ)] + log |An(λ)|+ log |Bn(ρ)|,

where σ̂2
n(λ, ρ) = 1

nY
′
n(λ)Mn(ρ)Yn(λ), Yn(λ) = An(λ)Yn, and Mn(ρ) is an n × n matrix

involving only the ρ parameter. The concentrated estimating function is

ψ̃(λ, ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−T0n(λ) +

Y ′
n(λ)Mn(ρ)W1nYn

Y ′
n(λ)Mn(ρ)Yn(λ)

,

−K0n(ρ)− Y ′
n(λ)Ṁn(ρ)Yn(λ)

2Y ′
n(λ)Mn(ρ)Yn(λ)

,

where T0n(λ) = 1
ntr(W1nA

−1
n (λ)), K0n(ρ) = 1

n tr(W2nB
−1
n (ρ)), and Ṁn(ρ) = d

dρMn(ρ).
Straightforward but tedious algebra leads to the expressions for the 2 × 2 matrix H1n(λ, ρ),
the 2 × 4 matrix H2n(λ, ρ), and the 2 × 8 matrix H3n(λ, ρ). Bias and variance corrections
proceed with the above bootstrap method.

Spatial heteroskedastic regression. An alternative extension of Model (1) is to let

εn = σΓ
1
2
n (γ)un, where Γn(γ) = diag{�i(γ), i = 1 . . . , n} and �i(γ) are the given skedastic

functions with a q vector of unknown heteroskedasticity parameters γ (Anselin, 1988). The
concentrated quasi-Gaussian loglikelihood for (λ, γ), assuming un ∼ N (0, In), is

�cn(λ, γ) = −n
2
[log(2π) + 1]− n

2
log[σ̂2

n(λ, γ)]+ log |An(λ)| −
n∑

i=1

log�i(γ),

where σ̂2
n(λ, γ) = 1

nY
′
n(λ)Mn(γ)Yn(λ), Yn(λ) = An(λ)Yn, and Mn(γ) is a projection matrix

involving only the γ parameters. The concentrated estimating function is

ψ̃(λ, γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−T0n(λ) +

Y ′
n(λ)Mn(γ)W1nYn

Y ′
n(λ)Mn(γ)Yn(λ)

,

−1
n

n∑
i=1

�iγj (γ)
�i(γ)

− Y ′
n(λ)Ṁnj(γ)Yn(λ)

2Y ′
n(λ)Mn(γ)Yn(λ)

, j = 1, . . . , q,

where �iγj(γ) = ∂
∂γj

�i(γ), and Ṁnj(γ) = ∂
∂γj

Mn(γ), j = 1, . . . , q. Straightforward but
more tedious algebra leads to the expressions for the matrices Hjn(λ, γ), j = 1, 2, 3. Bias
and variance corrections proceed with the above bootstrap method.

Box-Cox heteroskedastic regression. Consider a non-spatial model: h(Yn, λ) =

Xnβ + σΓ
1
2
n (γ)un, where the response Yn is transformed by the Box-Cox transformation

h(y, λ) = 1
λ(yλ −1), λ �= 0; logy, λ = 0, λ is an unknown transformation parameter, and the

disturbances are heteroskedastic defined as in the spatial heteroskedastic model considered
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above. See, e.g., Yang and Tse (2006, 2007) for some interesting applications of this model.
The concentrated quasi-Gaussian loglikelihood for (λ, γ), assuming normality, is

�cn(λ, γ) = −n
2
[log(2π) + 1]− n

2
log[σ̂2

n(λ, γ)]+
n∑

i=1

loghY (Yi, λ)−
n∑

i=1

log�i(γ),

where σ̂2
n(λ, γ) = 1

nh(Yn, λ)′Mn(γ)h(Yn, λ), hY (Yi, λ) = ∂
∂Yi
h(Yi, λ) and Mn(γ) is as in the

spatial heteroskedastic model considered above. The concentrated estimating function is

ψ̃(λ, γ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n

n∑
i=1

hY λ(Yi, λ)
hY (Yi, λ)

− h′λ(Yn, λ)Mn(γ)h(Yn, λ)
h′(Yn, λ)Mn(γ)h(Yn, λ)

,

−1
n

n∑
i=1

�iγj(γ)
�i(γ)

− h′(Yn, λ)Ṁnj(γ)h(Yn, λ)
2h′(Yn, λ)Mn(γ)h(Yn, λ)

, j = 1, . . . , q,

where hλ(Yn, λ) = ∂
∂λh(Yn, λ) and hY λ(Yi, λ) = ∂

∂λhY (Yi, λ). The expressions for Hjn(λ, γ),
j = 1, 2, 3, can be derived in a straightforward manner though tedious, but their expecta-
tions do not have closed form expressions, even working with the joint likelihood function,
as the expectations of the form, E[hY λ(Yi, λ0)], E

(hY λ(Yi,λ)
hY (Yi,λ)

)
, etc., do not have closed form

expressions. However, the proposed bootstrap method does not require the closed form
expressions for these expectations, which stands in contrast to the analytical method.

Each of the three cases presented above merits a detailed study theoretically and em-
pirically, but are quite involved and thus are clearly beyond the scope of the current paper.
We will pursue these studies in future research.14

5 Conclusions and Discussions

To address the bias issue in a model containing nonlinear, location as well as scale param-
eters, one can focus on the estimation of the nonlinear parameter and use the concentrated
estimating equation to obtain higher-order expansions to achieve bias and variance cor-
rections. This often turns a multidimensional problem to a single dimension and greatly
simplifies the higher-order expansions. It is argued that for these abstract formulas to be
practically useful, it is necessary to have a feasible method for estimating the various ex-
pectations in the formulas. Thus, a simple bootstrap procedure is introduced. These ideas
and methods are explored in full details in the context of a spatial autoregressive model.
Monte Carlo results show that this approach is very effective in that it almost eliminates
the bias of the QMLE, which can be quite large when spatial dependence is strong.

14There is a general issue on the existence of E(a−s/2) in conducting bootstrap bias corrections, which

boils down to the existence of the moments of ratios of two stochastic quantities. If the denominator of a

random ratio is bounded away from zero with probability one (indeed it is, as it typically corresponds to

the estimator of the error variance), the existence of the moments of the random ratio boils down to the

existence of the moments of the numerator. Thus, moment requirements for bias correction based on a CEE

are essentially equivalent to the moment requirements for bias correction based on a JEE.
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We have emphasized through out the paper the two important aspects of the proposed
method: simplicity and generality. That is, in cases where the analytical approach is
feasible, the proposed approach provides a simpler solution that works equally well; in cases
where the analytical approach is infeasible, the proposed approach again provides a simple
and satisfactory solution. The latter aspect is further demonstrated using the well-known
Box-Cox regression models. Another example where the analytical approach is infeasible
but the proposed one is may be the dynamic panel regression with short time periods and
endogenous initial observations (see Hsiao, et. al., 2002, or Hsiao, 2003). The advantage
of the proposed approach can be further seen by extending the SAR model to panel with
fixed individual effects (Lee and Yu, 2010): our results can be easily extended over, but the
analytical results of Bao (2013) cannot be easily done due to the lack of independence in
the transformed disturbances. In summary, the approach proposed in this paper offers a
general solution for a class of problems that cannot be solved, or cannot be easily solved by
the analytical approach, and thus should be recommended to the practitioners.

An important extension of the proposed method is made to the models involving two or
more nonlinear parameters that are the main source of bias in model estimation and the main
cause of difficulty in bias-correction. The proposed bootstrap method shows little difficulty
in such an extension. Further, besides the dimensionality reduction, it is emphasized that
use of CEE captures the additional bias inherited from the estimation of linear and scale
parameters, which is typically of second order. This latter point is very interesting and
deserves more attention in line with the models discussed in the early section. However,
these are beyond the scope of the paper and will be dealt with in future research.

Our methods can in principle be further generalized to allow for asymptotic (first-order)
bias. Typical models of both features are the panel models (dynamic or nonlinear) with fixed
effects, and in these cases, it would be interesting, as a future work, to extend our methods
to give higher-order bias correction to the problems considered in Hahn and Kuersteiner
(2002) and to offer an alternative to the jackknife and analytical bias reduction method of
Hahn and Newey (2004) which is based on an iid data set-up.

A referee has raised two intriguing issues which we are unable to address in this paper:
one is to provide theoretical interpretation for the downward bias of the QMLE of λ, and
the other is to compare the high-order analytical bias derived from the CEE with the one
derived from the JEE considered in Bao (2013). As a rigorous study on either issue can
be quite involved, we plan to pursue these two issues in future research. Finally, there is
an issue on bias-correcting v̂−1 when ν−1 does not possess a closed form expression. An
alternative would be the jackknife-bootstrap estimate of the bias of v̂−1: (n−1)(v̂−1 − v̂−1),
where v̂−1 = 1

n

∑n
i=1 v̂−1,i, and v̂−1,i is obtained in the same way as v̂−1 except that the

ith residual is deleted. This leads to a jackknife-bootstrap bias-corrected estimator of v−1:
v̂jbbc
−1 = nv̂−1−(n−1)v̂−1. This approach is simple but computationally demanding. Clearly,

a rigorous study on its properties renders a separate future research.
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Appendix A: Proofs of the Results in Section 2

Proof of Theorem 2.1: Assumption B allows the Taylor expansions of ψ̃n(λ̂n) = 0
around λ0 to be carried out up to third-order, and Assumptions A and D guarantee that
the errors in the Taylor approximations are of order Op(n−1), Op(n−3/2), and Op(n−2),
respectively, for the 1st-, 2nd- and 3rd-order Taylor expansions. We thus have,

0 = ψ̃n +H1n(λ̂n − λ0) +Op(n−1),

0 = ψ̃n +H1n(λ̂n − λ0) + 1
2H2n(λ̂n − λ0)2 +Op(n−

3
2 ),

0 = ψ̃n +H1n(λ̂n − λ0) + 1
2H2n(λ̂n − λ0)2 + 1

6H3n(λ̂n − λ0)3 +Op(n−2),

which give, as −H−1
1n = Op(1) from Assumption C,

λ̂n − λ0 = −H−1
1n ψ̃n +Op(n−1), (A-1)

λ̂n − λ0 = −H−1
1n ψ̃n − 1

2H
−1
1n H2n(λ̂n − λ0)2 + Op(n−

3
2 ), (A-2)

λ̂n − λ0 = −H−1
1n ψ̃n − 1

2H
−1
1n H2n(λ̂n − λ0)2 − 1

6H
−1
1n H3n(λ̂n − λ0)3 + Op(n−2).(A-3)

Under Assumptions B and C, Ωn = −E(H1n)−1 = O(1), H−1
1n = Op(1), and H◦

1n =
H1n − E(H1n) = Op(n−1/2). These conditions lead to the following result

−H−1
1n = (Ω−1

n −H◦
1n)−1 = (1− ΩnH

◦
1n)−1Ωn = Ωn + Ω2

nH
◦
1n + Ω3

nH
◦2
1n +Op(n−

3
2 ),

which reduces to −H−1
1n = Ωn + Ω2

nH
◦
1n + Op(n−1), or = Ωn + Op(n−1/2). Substituting

−H−1
1n = Ωn +Op(n−1/2) into (A-1) gives a first-order stochastic expansion for λ̂n,

λ̂n − λ0 = Ωnψ̃n + Op(n−1) = a−1/2 + Op(n−1). (A-4)

Substituting (A-4) into (A-2) for λ̂n − λ0, and replacing −H−1
1n in the first two terms of

(A-2) respectively by Ωn + Ω2
nH

◦
1n +Op(n−1) and Ωn + Op(n−

1
2 ), we obtain,

λ̂n − λ0 = a−1/2 + a−1 +Op(n−
3
2 ), (A-5)

where a−1 = ΩnH
◦
1na−1/2 + 1

2ΩnE(H2n)(a2
−1/2). Finally, substituting (A-4) and (A-5) into

(A-3) for λ̂n − λ0 in the 3rd and 2nd terms, respectively, and replacing −H−1
1n in the first

three terms of (A-3) respectively by Ωn+Ω2
nH

◦
1n+Ω3

nH
◦2
1n+Op(n−

3
2 ), Ωn+Ω2

nH
◦
1n+Op(n−1),

and Ωn +Op(n−1/2), we obtain a third-order stochastic expansion for λ̂n,

λ̂n − λ0 = a−1/2 + a−1 + a−3/2 +Op(n−2), (A-6)

where a−3/2 = ΩnH
◦
1na−1 + 1

2ΩnH
◦
2n(a2

−1/2) + ΩnE(H2n)(a−1/2a−1) + 1
6ΩnE(H3n)(a3

−1/2).

Proof of Corollary 2.1: We have MSE(λ̂n) = E[(a−1/2 + a−1 + a−3/2 + Op(n−2))2],
which simplifies to MSE(λ̂n) = m−1 + m−3/2 + m−2 + O(n−

5
2 ), where m−1 = E(a2

−1/2),
m−3/2 = 2E(a−1/2a−1), and m−2 = E(2a−1/2a−3/2 + a2

−1), following the assumption in the
corollary: a quantity bounded in probability has a finite expectation.
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Proof of Corollary 2.2: We have b−1 = E(a−1/2) + E(a−1), and b−3/2 = E(a−3/2).
The result follows as the expected error term is O(n−2) by the assumption in the corollary.

Proof of Corollary 2.3: Straightforward from the proofs of Corollaries 2.1 and 2.2.

Proof of Corollary 2.4: The additional assumptions stated in the Corollary ensure
that Var(λ̂bc3

n ) = Var(λ̂n− b̂−1− b̂−3/2) = Var(λ̂n)− 2Cov(λ̂n, b̂−1)+O(n−
5
2 ) = v−1+v−3/2+

v−2− 2ACov(λ̂n, b̂−1) +O(n−
5
2 ) as the other terms can all be merged into O(n−

5
2 ).

Proof of Corollary 2.5: Recall b−1,ϑ = ∂
∂ϑb−1(ϑ). The mean value theorem gives

b−1(ϑ̂n) = b−1(ϑ0) + b′−1,ϑ0
(ϑ̂n − ϑ0) + (b′−1,ϑ̄n

− b′−1,ϑ0
)(ϑ̂n − ϑ0), (A-7)

where ϑ̄n lies between ϑ̂n and ϑ0. Under Assumption E, E(ϑ̂n − ϑ0) = O(n−1), b−1,ϑ0 =
O(n−1), b−1,ϑ̄n

− b−1,ϑ0 = Op(n−
3
2 ), and ϑ̂n − ϑ0 = Op(n−

1
2 ). Taking expectation on

both sides of (A-7) leads to E[b−1(ϑ̂n)] = b−1(ϑ0) + O(n−2). The result E[b−3/2(ϑ̂n)] =
b−3/2(ϑ0) +O(n−2) follows from the differentiability of b−3/2(ϑ) and

√
n-consistency of ϑ̂n.

Proof of Corollary 2.6: Under Assumption E, we have by Taylor series expansions,

b−1(θ̂n, μn(θ̂n)) = b−1(θ0, μn) + b̃′−1,θ0
(θ̂n − θ0) +Op(n−2)

= b−1(θ0, μ0) + b′−1,μ0
(μn − μ0) + E(b̃′−1,θ0

)(θ̂n − θ0) + Op(n−2)
(A-8)

noticing that b̃−1,θ0 depends on μn and μn−μ0 = Op(n−
1
2 ). It follows that ACov(λ̂n, b̂−1) =

b′−1,μ0
ACov(λ̂n, μn)+E(b̃′−1,θ0

)ACov(λ̂n, θ̂n)+O(n−
5
2 ). As ACov(λ̂n, μn) = ΩnCov(ψ̃n, μn) =

O(n−
3
2 ) by Assumption F(ii), the first result of Corollary 2.6 thus follows.

The proof of the second result starts from the derivation of (16). First, recall ψn ≡ ψ(θ0)
defined in (5). Let Σn = E(ψnψ

′
n) and In = −E( ∂

∂θ′0
ψn). Partition ψn = (ψ1n, ψ

′
2n)′,

Σn = {Σij}, and In = {Iij} according to λ0 (or 1) and α0 (or 2). Note that v−1 = Ω2
nVar(ψ̃n)

and Ωn = −[E( d
dλ0

ψ̃(λ0))]−1. A 3rd-order Taylor expansion of ψ̃n = ψ1n(λ0, α̂n(λ0)) around
α̂n(λ0) = α0, combined with a 3rd-order stochastic expansion of α̂n(λ0) − α0 based on
ψ2n(λ0, α̂n(λ0)) = 0, gives a 3rd-order stochastic expansion for ψ̃n with its first-order term
being ψ1n − I12I

−1
22 ψ2n, which in turn gives a 2nd-order expansion for −[E( d

dλ0
ψ̃(λ0))] with

its first-order term being τn = I11 − I12I
−1
22 I21. Combining these two expansions leads to

v−1 = ν−1 + ν−3/2 + ν−2 + O(n−
5
2 ), where the 1st-order term of Var(λ̂n) based on JEE,

ν−1 = τ−2
n (Σ11 − 2I12I

−1
22 Σ21 + I12I

−1
22 Σ22I

−1
22 I21), (A-9)

and the exact expressions for ν−3/2 and ν−2 are available but not needed as seen below.
Under Assumptions E and F(i), we have by a Taylor series expansion,

v−1(ϑ̂n) = v−1(ϑ0) + v′−1,ϑ0
(ϑ̂n − ϑ0) + 1

2 (ϑ̂n − ϑ0)′v−1,ϑ0ϑ′
0
(ϑ̂n − ϑ0) +Op(n−

5
2 ), (A-10)

where v−1,ϑ = ∂
∂ϑv−1(ϑ) and v−1,ϑϑ′ = ∂2

∂ϑ∂ϑ′v−1(ϑ). By v−1 = ν−1 + ν−3/2 + ν−2 +O(n−
5
2 ),

E[v−1(ϑ̂n)] = v−1 + v′−1,ϑ0
E(ϑ̂n − ϑ0) + 1

2 tr[v−1,ϑ0ϑ′
0
AVar(ϑ̂n)] +O(n−

5
2 )

= v−1 + ν′−1,ϑ0
E(ϑ̂n − ϑ0) + 1

2tr[ν−1,ϑ0ϑ′
0
AVar(ϑ̂n)] +O(n−

5
2 )

≡ v−1 + ν′−1,θ0
b−1 + ν′−1,μ0

c−1 + d−2 +O(n−
5
2 ). (A-11)
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The result of (A-11) immediately suggests a 2nd-order bias-corrected estimator of v−1:

v̂bc2
−1 = v̂−1 − ν̂′−1,θ0

b̂−1 − ν̂′−1,μ0
ĉ−1 − d̂−2,

as given in (16). Obviously, b−1 is the 2nd-order bias of θ̂n and can be obtained from the 2nd-
order stochastic expansion based on ψn(θ) defined in (5): θ̂n − θ0 = a−1/2 +a−1 +Op(n−

3
2 ),

where a−1/2 = Ωnψn and a−1 = ΩnH◦
1na−1/2 + 1

2ΩnE(H2n)(a−1/2 ⊗ a−1/2), ⊗ denotes
the Kronecker product, Ωn = −E(H1n)−1, H1n = ∂

∂θ′0
ψn(θ0), H◦

1n = H1n − E(H1n), and

H2n = ∂
∂θ′0

H1n. This gives Bias(θ̂n) = E(a−1/2 + a−1) + O(n−
3
2 ) ≡ b−1 + O(n−

3
2 ) where,

b−1 = 2ΩnE(ψn) + ΩnE(ψ′
n ⊗ H1n)vec(Ωn) +

1
2
ΩnE(H2n)(Ωn ⊗ Ωn)vec(Σn). (A-12)

Note that, unlike the early works which assume E(ψn) = 0, E(ψn) can be O(n−1).
Alternatively, b−1 can be defined with its first component being b−1 defined in (9), and

the second component being the second-order bias of α̂(λ̂bc2
n ) that can be easily obtained

for a given specific model bearing in mind that α is a vector of linear parameters and that
α̂(λ0) has an explicit expression, as demonstrated in the subsequent sections.

The quantity c−1 is the 2nd-order bias of μ̂n and can be obtained from the expansion
of μ̂n,r = 1

n

∑n
i=1 û

r
ni, the rth moment of the EDF F̂n of ûn ≡ un(θ̂n), r = 3, 4, . . .,

μ̂n,r = μn,r + μ̇′n,r(θ̂n − θ0) + 1
2 (θ̂n − θ0)′μ̈n,r(θ̂n − θ0) +Op(n−

3
2 ),

= μn,r + μ̇′n,r(a−1/2 + a−1) + 1
2a

′
−1/2μ̈n,ra−1/2 +Op(n−

3
2 ), (A-13)

where we recall μn,r is the rth moment of the EDF Fn of un ≡ un(θ0), μ̇n,r = ∂
∂θ0
μn,r and

μ̈n,r = ∂2

∂θ0∂θ′0
μn,r. Under Assumption F(iii), we obtain Bias(μ̂n,r) = c−1 + O(n−

3
2 ), where

c−1 =
{
tr[ΩnE(ψnμ̇

′
n,r)] + E(μ̇′n,r)[b−1 −ΩnE(ψn)] + tr[E(μ̈n,r)ΩnΣnΩn]

}
d×1

, (A-14)

and d denotes the dimension of μn.
Finally, using θ̂n−θ0 = a−1/2 +Op(n−1) = Ωnψn +Op(n−1), and μ̂n,r = μn,r + μ̇′n,r(θ̂n−

θ0) +Op(n−1) = μn,r + μ̇′n,ra−1/2 +Op(n−1) = μn,r + E(μ̇′n,r)Ωnψn +Op(n−1), we obtain

d−2 = 1
2tr[ν−1,ϑ0ϑ′

0
AVar(ϑ̂n)]

= 1
2 tr(ν−1,θ0θ′0ΩnΣnΩn) + tr[ν−1,μ0θ′0ΩnCov(ψn, �

′
n)] + 1

2tr[ν−1,μ0μ′
0
Var(�n)], (A-15)

where �n =
{
μn,r + E(μ̇n,r)Ωnψn

}
d×1

.

It is easy to verify that b̂−1 = b−1 +Op(n−
3
2 ), and that the same results hold for ĉ−1,

v̂−1,θ0 , and v̂−1,μ0 . It follows that E(v̂bc2−1 ) = v−1 + O(n−
5
2 ) as d̂−2 = d−2 + op(n−

5
2 ). By

Assumptions E(i) and F(i), v̂−3/2 = v−3/2 +( ∂
∂ϑ′

0
v−3/2)(ϑ̂n −ϑ0)+Op(n−

5
2 ), which leads to

E(v̂−3/2) = v−3/2 +O(n−
5
2 ); and E(v̂−2) = v−2 + O(n−

5
2 ). The rest is trivial.

Appendix B: Proofs of the Results in Section 3
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Lemma B.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two
sequences of n × n matrices that are uniformly bounded in both row and column sums. Let
Cn be a sequence of conformable matrices whose elements are uniformly O(h−1

n ). Then
(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(h−1

n ).

Lemma B.2 (Lee, 2004a, p.1918): Let Xn be an n×p matrix such that (i) its elements
are uniformly bounded; and (ii) limn→∞ 1

nX
′
nXn exists and is nonsingular. Then the pro-

jectors Pn = Xn(X ′
nXn)−1X ′

n and Mn = In − Xn(X ′
nXn)−1X ′

n are uniformly bounded in
both row and column sums.

Lemma B.3 (Lemma A.9, Lee, 2004b): Let {An} be a sequence of n× n matrices that
are uniformly bounded in both row and column sums. For Mn defined in Lemma B.2,

(i) tr(MnAn) = tr(An) + O(1), (ii) tr(A′
nMnAn) = tr(A′

nAn) +O(1),
(iii) tr[(MnAn)2] = tr(A2

n) +O(1), (iv) tr[(A′
nMnAn)2] = tr[(A′

nAn)2] + O(1).

Furthermore, if the elements an,ij of An are O(h−1
n ) uniformly in all i and j, then,

(v) tr2(MnAn) = tr2(An) + O( n
hn

), and (vi)
∑n

i=1((MnAn)ii)2 =
∑n

i=1 a
2
ii + O(h−1

n ),

where (MnAn)ii is the ith diagonal element of MnAn.

Lemma B.4 (Lemma A.12, Lee, 2004b, extended): Let {An} be a sequence of n ×
n matrices that are uniformly bounded in either row or column sums. Suppose that the
elements an,ij of An are O(h−1

n ) uniformly in all i and j. Let εn be a random n-vector of iid
elements with mean zero, variance σ2 and finite 4th moment, and bn be a constant n-vector
of which the elements are of uniform order O(h−1/2

n ). Then
(i) E(ε′nAnεn) = O( n

hn
), (ii) Var(ε′nAnεn) = O( n

hn
),

(iii) Var(ε′nAnεn + b′nεn) = O( n
hn

), (iv) ε′nAnεn = Op( n
hn

),
(v) ε′nAnεn − E(ε′nAnεn) = Op(( n

hn
)

1
2 ), (vi) ε′nAnbn = Op(( n

hn
)

1
2 ).

Note that the results (v) and (vi) in Lemma B.4 extend Lemma A.12 of Lee (2004b),
where (v) follows directly from the generalized Chebyshev’s inequality and the result (ii):
P ((hn

n )
1
2 |ε′nAnεn−E(ε′nAnεn)| ≥M) ≤ 1

M2
hn
n Var(ε′nAnεn) = 1

M2O(1); and (vi) follows from
the generalized Chebyshev’s inequality: P ((hn

n )
1
2 |ε′nAnbn)| ≥ M) ≤ 1

M2
hn
n Var(ε′nAnbn) =

1
M2

hn
n b

′
nA

′
nAnbn = 1

M2O(1).

Lemma B.5 (Kelejian and Prucha, 2001, p.227, extended): Let An and Dn be n × n

matrices, bn an n×1 vector, and εn an n×1 random vector of iid elements with mean zero,
variance σ2, skewness γ, and excess kurtosis κ. Let Qn = ε′nAnεn +b′nεn and Sn = ε′nDnεn.
Then, (i) E(Qn) = σ2tr(An) and E(Sn) = σ2tr(Dn),

(ii) Var(Qn) = σ4tr[An(An + A′
n)] + σ4κa′nan + σ2b′nbn + 2σ3γa′nbn,

(iii) Var(Sn) = σ4tr[Dn(Dn +D′
n)] + σ4κd′ndn,

(iv) Cov(Qn, Sn) = σ4tr[An(Dn +D′
n)] + σ4κa′ndn + σ3γb′ndn,

where an and dn are column vectors of diagonal elements of An and Dn, respectively.
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Lemma B.6: For the SAR model specified by (1) satisfying Assumptions 1-6, the EDF
F̂n of the QML residuals ûn is such that for each continuity point u of F0,

(i) E(F̂n(u)) = F0(u) + O(hn
n ), and F̂n(u) = F0(u) +Op((hn

n )
1
2 );

if further E|un,i|r+ε exists for some ε > 0 and r = 3, 4, . . ., then the sample and population
moments μ̂n = μ(F̂n) and μ0 = μ(F0) are such that

(ii) μ̂n = μ(F̂n) = μ0 + Op((hn
n )

1
2 ), and E(μ̂n) = μ0 +O(hn

n ).

Proof. To prove (i), assume W.L.O.G. σ0 = 1, so that ε̂n(= ûn) = MnAn(λ̂n)Yn =
ε̃n + r̂n where ε̃n = Mnεn is the OLS residuals from regressing AnYn on Xn and r̂n =
−(λ̂n − λ0)MnWnYn. Let F̃n be the EDF of ε̃n. We first show that (i) holds for F̃n.

Write ε̃n = εn + r̃n where r̃n = (In −Mn)εn. Note that Var(r̃n) = In −Mn = O(n−1),
and F̃n(u) = 1

n

∑n
i=1 1(ε̃n,i ≤ u) where 1(·) is the indicator function. We have, E(F̃n(u)) =

1
n

∑n
i=1 P (ε̃n,i ≤ u) = 1

n

∑n
i=1 P (εn,i + r̃n,i ≤ u). For some ε > 0,

P (εn,i + r̃n,i ≤ u) = P (εn,i + r̃n,i ≤ u, |r̃n,i| < ε) + P (εn,i + r̃n,i ≤ u, |r̃n,i| ≥ ε)
≤ P (εn,i ≤ u+ ε) + P (|r̃n,i| ≥ ε)
= F0(u+ ε) +O(n−1),

where P (|r̃n,i| ≥ ε) ≤ 1
ε2

Var(r̃n,i) = O(n−1) by Chebyshev’s inequality. Similarly, we have,
P (εn,i + r̃n,i ≤ u) ≥ F0(u− ε) +O(n−1). These imply that P (ε̃n,i ≤ u) = F0(u) + O(n−1).
Hence, E(F̃n(u)) = 1

n

∑n
i=1 P (ε̃n,i ≤ u) = F0(u) + O(n−1). For the second part, note that

Var(F̃n(u)) = 1
n2

∑n
i=1 Var

(
1(ε̃n,i ≤ u)

)
+ 2

n2

∑n
i=1

∑n
j=i+1 Cov

(
1(ε̃n,i ≤ u), 1(ε̃n,j ≤ u)

)
,

where Var
(
1(ε̃n,i ≤ u)

)
= P (ε̃n,i ≤ u)[1 − P (ε̃n,i ≤ u)] = F0(u)[1 − F0(u)] + O(n−1), and

Cov
(
1(ε̃n,i ≤ u), 1(ε̃n,j ≤ u)

)
= P (ε̃n,i ≤ u, ε̃n,j ≤ u) − P (ε̃n,i ≤ u)P (ε̃n,j ≤ u). We have,

P (ε̃n,i ≤ u, ε̃n,j ≤ u) = P (εn,i + r̃n,i ≤ u, εn,j + r̃n,j ≤ u, |r̃n,i| < ε, |r̃n,j| < ε)
+P (εn,i + r̃n,i ≤ u, εn,i + r̃n,j ≤ u, (|r̃n,i| ≥ ε or |r̃n,j| ≥ ε))

≤ P (εn,i ≤ u+ ε, εn,j ≤ u+ ε) + P (|r̃n,i| ≥ ε) + P (|r̃n,j| ≥ ε)
= F0(u+ ε)2 + O(n−1).

Similarly, we have P (ε̃n,i ≤ u, ε̃n,j ≤ u) ≥ F0(u − ε)2 + O(n−1). It follows that P (ε̃n,i ≤
u, ũε,j ≤ u) = F0(u)2 + O(n−1), and that Cov

(
1(ε̃n,i ≤ u), 1(ε̃n,j ≤ u)

)
= O(n−1) as

P (ε̃n,i ≤ u)P (ε̃n,j ≤ u) = (F0(u) + O(n−1))(F0(u) + O(n−1)) = F0(u)2 + O(n−1). Thus,
Var(F̃n(u)) = O(n−1). It follows that F̃n(u) = F0(u) +Op(n−

1
2 ).

Now, moving from F̃n to F̂n, we have Var(r̂n) = Var[(λ̂n−λ0)Mnηn+(λ̂n−λ0)MnGnun]
= Var(λ̂n)Mnηnη

′
nMn + Var((λ̂n−λ0)MnGnun) + 2Cov[(λ̂n−λ0)Mnηn, (λ̂n−λ0)MnGnun]

= O(hn
n ), by noticing that the elements of MnGnun and of Mnηnu

′
nG

′
nmn are Op(1), and

that the elements of Mnηnη
′
nMn are O(1). Repeating the same process as for F̃n on F̂n, and

applying the results for F̃n(u), we obtain, E(F̂n(u)) = E(F̃n(u)) +O(hn
n ) = F0(u) +O(hn

n )
and F̂n(u) = F̃n(u) + Op((hn

n )
1
2 ) = F0(u) + Op((hn

n )
1
2 ).

For (ii), we prove the result for the case where μ0 is the third moment. The cases of
higher moments can be proved in a similar manner but with more tedious algebraic work.
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It suffices to work with the original residuals ε̂n = MnAn(λ̂n)Yn instead of the standardized
residuals ûn = σ̂−1

n ε̂n as defined in the main text as bootstrap is invariant of σ̂n.
We have ε̂n = ε̃n − (λ̂n − λ0)Ȳn, where ε̃n = Mnεn and Ȳn = WnYn. Let � denote the

Hadamard product, then μ̂n = 1
n(ε̂n � ε̂n)′ε̂n = 1

n(ε̃n � ε̃n)′ε̃n − 3
n (λ̂n − λ0)(ε̃n � ε̃n)′Ȳn +

Op(hn
n ) = 1

n (ε̃n � ε̃n)′ε̃n + Op((hn
n )

1
2 ). Thus μ̂n is

√
n/hn-consistent as 1

n (ε̃n � ε̃n)′ε̃n =
μ0 +Op(n−

1
2 ) due to the properties of OLS residuals. If a quantity bounded in probability

has a finite expectation, then E(μ̂n) = 1
nE[(ε̃n� ε̃n)′ε̃n]− 3

nE[(λ̂n−λ0)(ε̃n� ε̃n)′Ȳn]+O(hn
n ),

where the first term equals μ0 + O(n−1) by the property of OLS residuals, and the second
term is O(hn

n ) because E(λ̂n − λ0) = O(hn
n ), E[(ε̃n � ε̃n)′Ȳn] = O(1), and (ε̃n � ε̃n)′Ȳn −

E[(ε̃n � ε̃n)′Ȳn] = Op((hn
n )

1
2 ). Thus, E(μ̂n) = μ0 + O(hn

n ). Q.E.D.

Proof of Lemma 3.1. Denote σ̂2
n0 = σ̂2

n(λ0). By the mean value theorem,

σ̂−2
n0 = σ−2

0 − σ−4
0 (σ̂2

n0 − σ2
0) − (σ̄−4

n0 − σ−4
0 )(σ̂2

n0 − σ2
0), (B-1)

where σ̄2
n0 lies between σ̂2

n0 and σ2
0 . We need to show σ̂2

n0 −σ2
0 = Op(n−

1
2 ) and σ̄−4

n0 −σ−4
0 =

Op(n−
1
2 ), so that σ̂−2

n0 − σ−2
0 = Op(n−

1
2 ). As σ̂2

n0 = 1
nY

′
nA

′
nMnAnYn = 1

nu
′
nMnun, by

Assumptions 2 and 5, and Lemmas B.2, B.1(ii) and B.5(ii), Var(σ̂2
n0) = O(n−1). By the

generalized Chebyshev’s inequality: P (
√
n|σ̂2

n0 − σ2
0 | ≥ M) ≤ 1

M2nVar(σ̂2
n0) = 1

M2O(1). It
follows that σ̂2

n0 −σ2
0 = Op(n−

1
2 ), and hence σ̄2

n0 −σ2
0 = Op(n−

1
2 ), σ̄4

n0 = (σ2
0 +Op(n−

1
2 ))2 =

σ4
0 +Op(n−

1
2 ), and finally σ̄−4

n0 = (σ4
0+Op(n−

1
2 ))−1 = σ−4

0 (1+Op(n−
1
2 ))−1 = σ−4

0 +Op(n−
1
2 ).

For Lemma 3.1(i), hnR1n = hn
n σ̂

−2
n0 Y

′
nA

′
nMnWnYn = hn

n σ̂
−2
n0 (u′nMnGnun + u′nMnηn).

Lemma B.4(iv) implies hn
n u

′
nMnGnun = Op(1) and Lemma B.4(vi) implies hn

n u
′
nMnηn =

Op((hn
n )

1
2 ). As σ̂−2

n0 = σ−2
0 + Op(n−

1
2 ), it follows that

hnR1n = hn

nσ2
0
u′nMnGnun + Op((hn

n )
1
2 ) = Op(1). (B-2)

Now, by (B-1), E(hnR1n) = σ−2
0 E[(hn

n Y
′
nA

′
nMnWnYn)] − σ−4

0 E[(hn
n Y

′
nA

′
nMnWnYn)(σ̂2

n0 −
σ2

0)]−E[(hn
n Y

′
nA

′
nMnWnYn)(σ̄−4

n0 −σ−4
0 )(σ̂2

n0−σ2
0))], where the 1st term equals hn

n tr(MnGn) =
O(1) and the 3rd term isO((hn

n )
1
2 ) by Assumption 7. For the 2nd term, the Cauchy-Schwarz

inequality and Lemma B.4(iii) lead to,

|E[(Y ′
nA

′
nMnWnYn)(σ̂2

n0 − σ2
0)]|

≤ |E[(Y ′
nA

′
nMnWnYn − σ2

0tr(MnGn))(σ̂2
n0 − σ2

0)]|+ σ2
0|E[tr(MnGn)(σ̂2

n0 − σ2
0)]|

≤ 1
n{Var(u′nMnGnun + u′nMnηn)Var(u′nMnun − nσ2

0)}
1
2 +O(h−1

n )

= 1
n{O( n

hn
)O(n)} 1

2 +O(h−1
n ) = O(h

− 1
2

n ),

where we note E(σ̂2
n0) = σ2

0 +O(n−1) and E[tr(MnGn) = O( n
hn

). These lead to,

E(hnR1n) = hn
n tr(MnGn) +O(h

1/2
n
n ) + O((hn

n )
1
2 ) = O(1). (B-3)

Taking difference between (B-2) and (B-3) and using Lemma B.4(v), we obtain hnR1n −
E(hnR1n) = hn

σ2
0n
u′nMnGnun − hn

n tr(MnGn) +Op((hn
n )

1
2 )− O(h

1/2
n
n ) = Op((hn

n )
1
2 ).
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For Lemma 3.1(ii), note that hnR2n = hn
n σ̂

−2
n0 Y

′
nW

′
nMnWnYn = hn

n σ̂
−2
n0 (u′nG′

nMnGnun +
2u′nG′

nMnηn + η′nMnηn). Similar arguments as for Lemma 3.1(i) lead to

hnR2n = hn

nσ2
0
(u′nG′

nMnGnun + η′nMnηn) + Op((hn
n )

1
2 ) = Op(1), (B-4)

E(hnR2n) = hn
n tr(G′

nMnGn) + hn

nσ2
0
η′nMnηn + O(h

1/2
n
n ) = O(1). (B-5)

The results follow by differencing (B-4) and (B-5) and applying Lemma B.4(v). Q.E.D.

Proof of Theorem 3.1. Clearly, the ψ̃(λ) function given in (13) is differentiable for
λ in a neighborhood of λ0 with its first three derivatives Hrn(λ), r = 1, 2, and 3, given in
(14)-(16). These allow us to implement the following third-order Taylor expansion:

0 = ψ̃n(λ̂n) = ψ̃n +H1n(λ̂n − λ0) + 1
2H2n(λ̂n − λ0)2 + 1

6H3n(λ̂n − λ0)3

+1
6 [H3n(λ̄) −H3n](λ̂n − λ0)3,

where λ̄ lies between λ̂n and λ0. Under Assumptions 1-6, λ̂n is
√
n/hn-consistent. Incor-

porating hn and following the arguments leading to the result of Theorem 2.1, the result of
Theorem 3.1 follows if the following results hold:

(a) ψ̃n = Op((hn
n )

1
2 ) and E(ψ̃n) = O(hn

n );
(b) E(Hrn) = O(1) and H◦

rn = Op((hn
n )

1
2 ), r = 1, 2, 3;

(c) H−1
1n = Op(1) and E(H1n)−1 = O(1); and

(d) H3n(λ̄) −H3n = Op((hn
n )

1
2 ).

First, Lemma B.1 and Assumptions 3 and 4 give hnTrn = O(1), r = 1, 2, 3.

For (a), by (B-2), ψ̃n = −hnT0n + hnR1n = −hnT0n + hn

σ2
0n
u′nMnGnun +Op((hn

n )
1
2 ). As

u′nMnGnun−σ2
0tr(MnGn) = Op(( n

hn
)

1
2 ) by Lemma B.4(v) and tr(MnGn) = tr(Gn)+O(1) =

nT0n+O(1) by Lemma B.3(i), ψ̃n = Op((hn
n )

1
2 ). By (B-3), E(ψ̃n) = −hnT0n+hn

n tr(MnGn)+

O(h
1/2
n
n ). By Lemma B.3(i), tr(MnGn) = tr(Gn) + O(1). It follows that E(ψ̃n) = O(hn

n ).

For (b), Lemma 3.1 implies (hnR1n)s = (E(hnR1n))s + Op((hn
n )

1
2 ), for s = 2, 3, 4;

(hnR2n)2 = (E(hnR2n))2 + Op((hn
n )

1
2 ); and (hnR1n)s(hnR2n) = (E(hnR1n))s(E(hnR2n)) +

Op((hn
n )

1
2 ), for s = 1, 2. These and Assumption 8 give E((hnR1n)s) = (E(hnR1n))s +

O((hn
n )

1
2 ), s = 2, 3, 4; E((hnR2n)2) = (E(hnR2n))2 + O((hn

n )
1
2 ); and E((hnR1n)s(hnR2n)) =

(E(hnR1n))sE(hnR2n) + O((hn
n )

1
2 ), s = 1, 2. Finally, as hnTrn = O(1), r = 1, 2, 3, the above

results lead immediately to E(Hrn) = O(1), r = 1, 2, 3, and H◦
rn = Op((hn

n )
1
2 ), r = 1, 2, 3.

For (c), by (B-3) and (B-5), and the result E((hnR1n)2) = (E(hnR1n))2 +O((hn
n )

1
2 ),

E(H1n) = −hnT1n − E(hnR2n) + 2
hn

E((hnR1n)2)

= −hnT1n − hn
n tr(G′

nMnGn) − hn

σ2
0n
η′nMnηn −O(h

1/2
n
n ) + 2

hn
(hn

n tr(MnGn) +O(h
1/2
n
n ))2

= −hnT1n − hn
n tr(G′

nMnGn) − hn

σ2
0n
η′nMnηn + 2

hn
(hn

n tr(MnGn))2 + O(h
1/2
n
n )

= −hn
n tr(G2

n) − hn
n tr(G′

nGn)− hn

σ2
0n
η′nMnηn + 2

hn
(hn

n tr(Gn))2 + O(hn
n )

= −hn
n [tr(Gn − T0nIn)2 + tr(Gn − T0nIn)′(Gn − T0nIn) + 1

σ2
0
η′nMnηn] +O(hn

n ).
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This shows that E(H1n) < 0 for n sufficiently large and thus E(H1n)−1 = O(1). As
H1n = E(H1n) +Op((hn

n )
1
2 ), we have H−1

1n = Op(1).

For (d), as σ̂2
n(λ̄) = 1

nY
′
nA

′
n(λ̄)MnAn(λ̄)Yn, we have

σ̂2
n(λ̄) = 1

nY
′
nA

′
nMnAnYn − 2(λ̄− λ0) 1

nY
′
nA

′
nMnWnYn + (λ̄− λ0)2 1

nY
′
nW

′
nMnWnYn

= σ̂2
n0 − 2(λ̄− λ0)Op(h−1

n ) + (λ̄− λ0)2Op(h−1
n ) = σ̂2

n0 +Op((hnn)−
1
2 ),

leading to σ̂−2
n (λ̄) = (σ̂2

n0+Op((hnn)−
1
2 ))−1 = σ̂−2

n0 (1+Op((hnn)−
1
2 ))−1 = σ̂−2

n0 +Op((hnn)−
1
2 ).

Now, as hnR1n(λ̄) = σ̂−2
n (λ̄)hn

n Y
′
nA

′
n(λ̄)MnWnYn, we have,

hnR1n(λ̄) = σ̂−2
n (λ̄)hn

n Y
′
nA

′
nMnWnYn − σ̂−2

n (λ̄)(λ̄− λ0)hn
n Y

′
nW

′
nMnWnYn

= (hnR1n + Op((hnn)
1
2 ))−Op((hn

n )
1
2 ) = hnR1n +Op((hn

n )
1
2 ).

Similarly, one shows that hnR2n(λ̄) = hnR2n + Op((hn
n )

1
2 ). By the mean value theorem,

hnT3n(λ̄) = hn
n tr(G4

n(λ̄)) = hn
n tr(G4

n)+4hn
n tr(G3

n(λ̌))(λ̄−λ0), where λ̌ lies between λ̄ and λ0.
By Assumption 4 and Lemma B.1, hn

n tr(G3
n(λ̌)) = O(1). It follows that hnT3n(λ̄)−hnT3n =

Op((hn
n )

1
2 ). These lead to H3n(λ̄) −H3n = Op((hn

n )
1
2 ). Q.E.D.

Proof of Corollary 3.1. Straightforward.

Proof of Corollary 3.2. Straightforward.

Proof of Corollary 3.3. Straightforward.

Proof of Corollary 3.4. Straightforward.

Proof of Corollary 3.5. As b−1 is differentiable to the desired order, the expansion
(A-7) holds. By Assumptions 1-6 and Lemma B.6, ϑ̂n is

√
n/hn-consistent and has bias

of order O(hn
n ). It follows immediately that E(̂b−1) = b−1 + O((hn

n )2). Similarly, b−3/2 is
differentiable, giving E(̂b−3/2) = b−3/2 + O((hn

n )2). The results thus follow.

Proof of Corollary 3.6. As b̂−1 = b−1(θ̂n, μn(θ̂n)) is differentiable w.r.t. θ̂n up to the
desired order, the expansion (A-8) holds with n replaced by n/hn, i.e.,

b−1(θ̂n, μn(θ̂n)) = b−1(θ0, μn) + b̃′−1,θ0
(θ̂n − θ0) +Op((hn

n )2)
= b−1(θ0, μ0) + b′−1,μ0

(μn − μ0) + E(b̃′−1,θ0
)(θ̂n − θ0) +Op((hn

n )2).

This gives ACov(λ̂, b̂−1) = b′−1,μ0
ΩnCov(ψ̃n, μn) + E(b̃′−1,θ0

)ACov(λ̂n, θ̂n) + O((hn
n )

5
2 ).

It is easy to show that ψ̃n = hnT0n + hnR
◦
1n − hnE(R◦

1n)(σ̂2
n0 − σ2

0) + Op(hn
n ), where

R◦
1n = 1

n (u′nMnGnun + u′nMnηn) and σ̂2
n0 = 1

nu
′
nMnun. It follows that

Cov(ψ̃n, μn,r) = hnCov(R◦
1n, μn,r) − hn

n tr(MnGn)Cov(σ2
n0, μn,r) +O((hn

n )
3
2 )

= hn
n2 E[(u′nMnGnun + u′nMnηn)

∑n
i=1(u

r
ni − μ0,r)]

+hn
n2 tr(MnGn)E[(u′nMnun)

∑n
i=1(u

r
ni − μ0,r)] + O((hn

n )
3
2 )

= hn
n2 (μ0,r+2 − μ0,r)tr(MnGn) + hn

n2 μ0,r+11′nMnηn

−hn
n2 (μ0,r+2 − μ0,r)tr(MnGn) +O((hn

n )
3
2 )

= O((hn
n )

3
2 ), r = 3, 4,
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where μ0,r is the rth moment of F0. Thus, b′−1,μ0
ΩnCov(ψ̃n, μn) = O((hn

n )
5
2 ), showing that

Assumption F(ii) is satisfied, and the first result of Corollary 3.6 follows.
The proof of the second result starts from deriving v̂bc2

−1 under the SAR model. With the
joint estimating function: ψn(θ) = hn

n

{
1
σ2 [ε′n(λ, β)WnYn − σ2tr(Gn(λ))], 1

σ2 εn(λ, β)′Xn,
1

2σ4 [ε′n(λ, β)εn(λ, β)−nσ2]
}′, where εn(λ, β) = An(λ)Yn−Xnβ, it is straightforward to derive

Σn, In, H1n, and H2n, defined around (A-9). The top-left corner element of I−1
n ΣnI−1

n or
(A-9) leads to ν−1 given in (33). Obviously, v−1 is differentiable up to the desired order.
By Lemma B.6, the expansion (A-10) holds with n replaced by n/hn, i.e.,

v−1(ϑ̂n) = v−1(ϑ0) + v′−1,ϑ0
(ϑ̂n − ϑ0) + 1

2 (ϑ̂n − ϑ0)′v−1,ϑ0ϑ′
0
(ϑ̂n − ϑ0) + Op((hn

n )
5
2 ). (B-6)

As θ̂n = arg{ψn(θ) = 0}, which is
√
n/hn-consistent in general, we have as in Bao

(2013) a second-order stochastic expansion: θ̂n − θ0 = a−1/2 + a−1 + Op((hn
n )

3
2 ), where

a−1/2 = Ωnψn, a−1 = ΩnH◦
1na−1/2 + 1

2ΩnE(H2n)(a−1/2⊗a−1/2), and H◦
1n = H1n −E(H1n).

Further, as μn,r is differentiable w.r.t. θ0, we have similar to (A-13),

μ̂n,r = μn,r + μ̇′n,r(θ̂n − θ0) + 1
2 (θ̂n − θ0)′μ̈n,r(θ̂n − θ0) +Op((hn

n )
3
2 ),

= μn,r + μ̇′n,r(a−1/2 + a−1) + 1
2a

′
−1/2μ̈n,ra−1/2 +Op((hn

n )
3
2 ), (B-7)

where, we recall, μn,r is the rth moment of the EDF Fn of un ≡ un(θ0), and μ̇n,r and μ̈n,r

are its first- and second-order partial derivatives, r = 3, 4, which can easily be seen to satisfy
Assumption F(iii) with n replaced by n/hn. Similar arguments as in the proof of Corollary
2.6 lead to v−1 = ν−1 + ν−3/2 + ν−2 +O((hn

n )
5
2 ). Putting everything together, we obtain

E[v−1(ϑ̂n)] = v−1 + ν′−1,θ0
b−1 + ν′−1,μ0

c−1 + d−2 +O((hn
n )

5
2 ), (B-8)

where, as E(ψn) = 0 and ν−1,μ0μ′
0

= 0, the quantities b−1, c−1 and d−2 are simplified to

b−1 = ΩnE(ψ′
n ⊗ H1n)vec(Ωn) + 1

2ΩnE(H2n)(Ωn ⊗ Ωn)vec(Σn),
c−1 =

{
tr[ΩnE(ψnμ̇

′
n,r)] + E(μ̇′n,r)b−1 + tr[E(μ̈n,r)ΩnΣnΩn]

}
2×1

,

d−2 = 1
2tr(ν−1,θ0θ′0ΩnΣnΩn) + tr[ν−1,μ0θ′0ΩnE(ψn�

′
n)],

(B-9)

and �n =
{
μn,r + E(μ̇′n,r)Ωnψn, r = 3, 4

}′. Therefore, a bias-corrected estimator of v−1 is:

v̂bc2
−1 = v̂−1 − ν̂−1,θ0 b̂−1 − ν̂−1,μ0 ĉ−1 − d̂−2, (B-10)

which can readily be shown to have a bias of order O((hn
n )

5
2 ) for estimating v−1. The bias

from estimating the other terms in Var(λ̂bc3
n ) are all O((hn

n )
5
2 ), completing the proof.

Practical Implementation of v̂bc2
−1 : First note that to avoid the handling of the

additional large matrices E(ψ′
n ⊗ H1n) and E(H2n), b−1 can simply be estimated through

b−1, (31) and (32) as pointed out in the remarks given below (34).
For estimating E(μ̇n,r), E(μ̈n,r), E(ψnμ̇

′
n,r), and E(ψn�

′
n) = {E(ψnμn,r)+ΣnΩnE(μ̇n,r)},

note that un ≡ un(θ0) = σ−1
0 [A(λ0)Yn −Xnβ0] and μn,r = 1

n

∑n
i=1 u

r
ni(θ0). We have,
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μ̇n,r = r
n

∑n
i=1 u

r−1
ni u̇ni and μ̈n,r = r

n

∑n
i=1[(r − 1)ur−2

ni u̇niu̇
′
ni + ur−1

ni üni], (B-11)

where u̇ni = ∂
∂θ0
uni(θ0) = (− 1

σ0
w′

niYn,− 1
σ0
x′ni,− 1

2σ2
0
uni(θ0))′ with w′

ni being the ith row

of Wn and x′ni the ith row of Xn, and üni = ∂2

∂θ0∂θ′0
uni(θ0) is a symmetric matrix with

last column a = ( 1
2σ3

0
w′

niYn,
1

2σ3
0
x′ni,

3
4σ4

0
uni(θ0))′, last row a′, and other elements zero. To

facilitate the calculations, (B-11) can be expressed in matrix form, for r = 3, 4,

μ̇n,r = r
n u̇

′
nu

r−1
n and μ̈n,r = r(r−1)

n u̇′n(u̇n � (1′p+2 ⊗ ur−2
n )) + r

nDr, (B-12)

where u̇n = (u̇n1, . . . , u̇nn)′ = −( 1
σ0
WnYn,

1
σ0
Xn,

1
2σ2

0
un(θ0)), ar = {ar

i} for a vector a, 1m is

an m× 1 vector of ones, and Dr has last row a =
(

1
2σ3

0
Y ′

nW
′
nu

r−1
n , 1

2σ3
0
(X ′

nu
r−1
n )′, 3

4σ4
0
1′nur

n

)
,

last column a′, and other elements zero. Clearly, E(μ̇n,r) and E(μ̈n,r) can be estimated by
their sample analogue, i.e., μ̇n,r and μ̈n,r evaluated at θ̂n. E(ψnμ̇

′
n,r) and E(ψnμn,r) can be

easily estimated by bootstrap, although their analytical expressions can be derived.
It left with the estimation of v−1,ϑ and v−1,ϑϑ′ . Rewrite (33) as v−1 = τ−1

n + τ−2
n κn,

where τn = σ−2
0 β′0ΦnΦnβ0 + Gn, κn = 2σ−1

0 μ0,3g
◦′
n Φnβ0 + (μ0,4 − 3)g◦′n g

◦
n, Φn = MnGnXn,

and Gn = tr[G◦
n(G◦

n +G◦′
n )]. Noting that g◦n, Φn and Gn depend only on λ0, τn depends only

on θ0, and κn depends on both θ0 and μ0 and linear in μ0, we obtain,

v−1,θ0 = τ−2
n (κn,θ0 − τ̇n)− 2τ−3

n τ̇nκn; v−1,μ0 = τ−2
n κn,μ0 ;

v−1,θ0μ′
0

= τ−2
n κn,θ0μ′

0
− 2τ−3

n τ̇nκ
′
n,μ0

; v−1,μ0μ′
0

= τ−2
n κn,μ0μ′

0
;

v−1,θ0θ′0 = 2τ−3
n (τ̇nτ̇ ′n − κn,θ0 τ̇

′
n − τ̈nκn − τ̇nκ

′
n,θ0

) + τ−2
n (κn,θ0θ′0 − τ̈n) + 6τ−4

n τ̇nτ̇
′
nκn.

where τ̇n and τ̈n are the gradient and Hessian of τn, having the forms

τ̇n =

⎛⎜⎝ 2σ−2
0 β′0Φ

′
nΦ̇nβ0 + Ġn

2σ−2
0 Φ′

nΦnβ0

−σ−4
0 β′0Φ

′
nΦnβ0

⎞⎟⎠ and τ̈n =

⎛⎜⎝ τ̈n,11, 4σ−2
0 β′0Φ

′
nΦ̇n, −2σ−4

0 β′0Φ
′
nΦ̇nβ0

∼, 2σ−2
0 Φ′

nΦn, −2σ−4
0 Φ′

nΦnβ0

∼, ∼, 2σ−6
0 β′0Φ

′
nΦnβ0

⎞⎟⎠
where τ̈n,11 = 2σ−2

0 β′0(Φ̇
′
nΦ̇n+Φ′

nΦ̈n)β0+G̈n; and the partial derivatives of κn have the forms:
κn,θ0 =

{
2σ−1

0 μ0,3(ġ◦′n Φn + g◦′n Φ̇n)β0 + 2(μ0,4 − 3)ġ◦′n g
◦
n, 2σ−1

0 μ0,3g
◦′
n Φn, −σ−3

0 μ0,3g
◦′
n Φnβ0

}′,
κn,μ0 =

(
2σ−1

0 g◦′n Φnβ0, g◦′n g
◦
n

)′, κn,μ0μ′
0

= 02×2,

κn,μ0θ′0 =

(
2σ−1

0 (ġ◦′n Φn + g◦′n Φ̇n)β0, 2σ−1
0 g◦′n Φn, −σ−3

0 g◦′n Φnβ0

2ġ◦′n g
◦
n, 0, 0

)
, and

κn,θ0θ′0 =

⎛⎜⎝ κnλ0λ′
0
, 2σ−1

0 μ0,3(ġ◦′n Φn + g◦′n Φ̇n), −σ−3
0 μ0,3(ġ◦′n Φn + g◦′n Φ̇n)β0

∼, 0, −σ−3
0 μ0,3Φ′

ng
◦
n

∼, ∼, 3
2σ

−5
0 μ0,3ġ

◦′
n Φnβ0

⎞⎟⎠,

where κnλ0λ′
0

= 2σ−1
0 μ0,3(g̈◦′n Φn + 2ġ◦′n Φ̇n + g◦′n Φ̈n)β0 + 2(μ0,4 − 3)(g̈◦′n g

◦
n + ġ◦′n ġ

◦
n), and the

single dotted and double dotted g◦n, Φn and Gn denote the first and second derivatives.
Finally, we have Ġn = 2tr[Ġ◦

n(G◦
n +G◦′

n )] and G̈n = 2tr[G̈◦
n(G◦

n +G◦′
n ) + Ġ◦

n(Ġ◦
n + Ġ◦′

n )],
which can be easily calculated based on Ġn = G2

n, and G̈n = 2G3
n.
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Table 1. Empirical Mean[rmse](sd) of Estimators of λ, and Averaged Bootstrap SEs

λ n λ̂n λ̂bc2
n λ̂bc3

n se1 se2 se3 sec
3

(a) Queen Contiguity, Normal Errors, MRSAR-A

.50 50 .411 [.195](.174) .492 [.175](.175) .497 [.175](.175) .159 .171 .179 .172
100 .459 [.123](.116) .498 [.117](.117) .500 [.117](.117) .113 .116 .120 .116
200 .480 [.078](.076) .499 [.075](.075) .499 [.075](.075) .073 .074 .076 .075
500 .493 [.049](.048) .501 [.048](.048) .501 [.048](.048) .048 .048 .049 .049

.25 50 .163 [.222](.204) .242 [.209](.209) .246 [.210](.210) .190 .203 .202 .204
100 .212 [.146](.140) .248 [.142](.142) .250 [.143](.143) .136 .139 .139 .140
200 .231 [.094](.092) .250 [.093](.093) .250 [.093](.093) .090 .092 .092 .092
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060) .060 .060 .060 .060

.00 50 -.078 [.229](.216) -.006 [.224](.224) -.003 [.226](.226) .210 .222 .215 .225
100 -.034 [.157](.153) -.002 [.156](.156) -.001 [.157](.157) .151 .154 .151 .155
200 -.018 [.106](.104) -.000 [.105](.105) .000 [.105](.105) .103 .104 .104 .104
500 -.008 [.068](.067) -.000 [.068](.068) -.000 [.068](.068) .068 .068 .068 .068

-.25 50 -.317 [.233](.223) -.255 [.236](.236) -.254 [.237](.237) .221 .232 .220 .236
100 -.279 [.164](.161) -.253 [.166](.166) -.253 [.166](.166) .158 .161 .156 .163
200 -.266 [.112](.111) -.252 [.112](.112) -.251 [.112](.112) .110 .112 .110 .112
500 -.256 [.073](.072) -.250 [.073](.073) -.250 [.073](.073) .072 .073 .072 .072

-.50 50 -.552 [.228](.222) -.504 [.236](.236) -.504 [.237](.237) .223 .232 .217 .237
100 -.519 [.162](.161) -.501 [.166](.166) -.501 [.166](.166) .159 .161 .155 .163
200 -.514 [.113](.113) -.502 [.114](.114) -.502 [.114](.114) .113 .114 .112 .114
500 -.505 [.073](.073) -.500 [.073](.073) -.500 [.073](.073) .074 .074 .073 .074

(b) Queen Contiguity, Normal Mixture Errors, MRSAR-A

.50 50 .420 [.182](.164) .494 [.165](.165) .498 [.165](.165) .149 .160 .167 .162
100 .462 [.120](.114) .499 [.114](.114) .500 [.114](.114) .108 .111 .115 .112
200 .482 [.076](.074) .500 [.074](.074) .500 [.074](.074) .071 .072 .074 .074
500 .492 [.049](.048) .500 [.048](.048) .500 [.048](.048) .048 .048 .048 .048

.25 50 .169 [.207](.190) .241 [.195](.195) .244 [.195](.195) .179 .190 .191 .194
100 .213 [.140](.135) .248 [.136](.136) .249 [.137](.137) .130 .133 .134 .136
200 .230 [.092](.090) .249 [.090](.090) .249 [.090](.090) .088 .089 .090 .090
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060) .059 .059 .060 .060

.00 50 -.070 [.217](.206) -.004 [.213](.213) -.002 [.214](.214) .197 .207 .204 .215
100 -.032 [.150](.147) -.002 [.150](.150) -.001 [.150](.150) .145 .148 .146 .151
200 -.018 [.104](.103) -.001 [.103](.103) -.001 [.103](.103) .100 .101 .101 .102
500 -.008 [.068](.067) -.001 [.067](.067) -.001 [.067](.067) .067 .067 .067 .067

-.25 50 -.314 [.223](.213) -.258 [.224](.224) -.257 [.225](.225) .208 .216 .209 .226
100 -.275 [.155](.153) -.251 [.157](.157) -.250 [.157](.157) .152 .154 .151 .158
200 -.263 [.111](.110) -.249 [.112](.112) -.249 [.112](.112) .108 .109 .108 .111
500 -.257 [.072](.072) -.251 [.072](.072) -.251 [.072](.072) .071 .072 .071 .072

-.50 50 -.550 [.218](.212) -.506 [.224](.224) -.505 [.225](.225) .210 .216 .207 .228
100 -.520 [.155](.153) -.503 [.158](.158) -.503 [.158](.158) .152 .154 .150 .159
200 -.513 [.112](.111) -.502 [.113](.113) -.502 [.113](.113) .111 .111 .110 .112
500 -.505 [.074](.073) -.500 [.074](.074) -.500 [.074](.074) .073 .073 .073 .074

Note: se1 = mean(bV1(λ̂n)
1
2 ), se2 = mean(bV2(λ̂n)

1
2 ), se3 = mean(bV3(λ̂n)

1
2 ) and sec

3 = mean(bV3(λ̂
bc3
n )

1
2 ).
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Table 1 (cont’d). Empirical Mean[rmse](sd) of Estimators of λ, and Averaged Bootstrap SEs

λ n λ̂n λ̂bc2
n λ̂bc3

n se1 se2 se3 sec
3

(c) Queen Contiguity, Lognormal Errors, MRSAR-A

.50 50 .426 [.163](.146) .491 [.146](.146) .493 [.146](.146) .138 .144 .154 .151
100 .465 [.110](.105) .498 [.105](.105) .498 [.105](.105) .102 .103 .106 .104
200 .482 [.072](.069) .499 [.069](.069) .499 [.069](.069) .067 .067 .069 .069
500 .491 [.047](.046) .499 [.046](.046) .499 [.046](.046) .046 .046 .046 .046

.25 50 .179 [.185](.171) .241 [.174](.174) .244 [.174](.174) .163 .170 .176 .180
100 .216 [.128](.124) .247 [.126](.125) .248 [.126](.125) .123 .123 .124 .127
200 .232 [.087](.085) .249 [.085](.085) .249 [.085](.085) .084 .083 .085 .085
500 .242 [.058](.057) .249 [.057](.057) .249 [.057](.057) .057 .057 .057 .057

.00 50 -.067 [.198](.186) -.011 [.192](.191) -.008 [.192](.192) .180 .186 .190 .200
100 -.029 [.139](.136) -.003 [.138](.138) -.002 [.138](.138) .135 .136 .136 .141
200 -.017 [.099](.097) -.002 [.098](.098) -.001 [.098](.098) .095 .095 .096 .097
500 -.007 [.065](.064) -.000 [.065](.065) .000 [.065](.065) .065 .064 .065 .065

-.25 50 -.307 [.199](.191) -.258 [.198](.198) -.256 [.199](.199) .189 .194 .197 .212
100 -.272 [.142](.140) -.252 [.144](.144) -.251 [.144](.144) .141 .142 .141 .149
200 -.264 [.105](.104) -.251 [.105](.105) -.250 [.105](.105) .102 .102 .102 .104
500 -.256 [.070](.070) -.250 [.070](.070) -.250 [.070](.070) .069 .069 .069 .070

-.50 50 -.548 [.196](.190) -.509 [.200](.199) -.507 [.200](.200) .191 .195 .196 .215
100 -.514 [.145](.144) -.500 [.148](.148) -.499 [.148](.148) .141 .141 .141 .150
200 -.511 [.106](.106) -.501 [.107](.107) -.501 [.107](.107) .105 .105 .105 .106
500 -.505 [.070](.070) -.501 [.070](.070) -.500 [.070](.070) .071 .070 .070 .070

(d) Group Interaction with k = n0.5, Normal Errors, MRSAR-B

.50 50 .426 [.145](.124) .495 [.122](.122) .499 [.122](.122) .111 .123 .128 .121
100 .449 [.112](.099) .498 [.097](.097) .500 [.097](.097) .092 .097 .102 .096
200 .474 [.073](.068) .499 [.067](.067) .500 [.067](.067) .065 .067 .069 .068
500 .491 [.042](.041) .500 [.041](.041) .500 [.041](.041) .040 .041 .041 .041

.25 50 .142 [.209](.179) .239 [.178](.178) .244 [.179](.178) .159 .175 .180 .173
100 .177 [.160](.143) .248 [.141](.141) .250 [.141](.141) .133 .140 .146 .139
200 .212 [.108](.102) .249 [.101](.101) .249 [.101](.101) .096 .098 .101 .100
500 .236 [.062](.060) .250 [.061](.061) .250 [.061](.061) .060 .060 .060 .061

.00 50 -.134 [.261](.224) -.013 [.226](.226) -.007 [.227](.227) .202 .220 .223 .220
100 -.094 [.206](.183) -.005 [.182](.182) -.003 [.182](.182) .172 .180 .186 .180
200 -.047 [.137](.128) .001 [.128](.128) .001 [.128](.128) .125 .128 .131 .129
500 -.019 [.081](.079) -.000 [.079](.079) -.000 [.079](.079) .078 .079 .079 .079

-.25 50 -.404 [.303](.260) -.265 [.266](.266) -.259 [.267](.267) .240 .258 .259 .261
100 -.358 [.243](.218) -.253 [.219](.219) -.251 [.219](.219) .207 .215 .221 .217
200 -.308 [.170](.160) -.251 [.160](.160) -.250 [.160](.160) .153 .156 .159 .159
500 -.274 [.101](.098) -.252 [.098](.098) -.252 [.098](.098) .097 .098 .098 .098

-.50 50 -.670 [.337](.291) -.516 [.302](.301) -.511 [.303](.302) .273 .290 .288 .297
100 -.620 [.281](.254) -.501 [.257](.257) -.499 [.257](.257) .238 .246 .252 .250
200 -.568 [.198](.186) -.502 [.187](.187) -.501 [.187](.187) .179 .183 .186 .186
500 -.527 [.118](.115) -.500 [.116](.116) -.500 [.116](.116) .115 .116 .116 .116

Note: se1 = mean(bV1(λ̂n)
1
2 ), se2 = mean(bV2(λ̂n)

1
2 ), se3 = mean(bV3(λ̂n)

1
2 ) and sec

3 = mean(bV3(λ̂
bc3
n )

1
2 ).
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Table 1 (cont’d). Empirical Mean[rmse](sd) of Estimators of λ, and Averaged Bootstrap SEs

λ n λ̂n λ̂bc2
n λ̂bc3

n se1 se2 se3 sec
3

(e) Group Interaction with k = n0.5, Normal Mixture Errors, MRSAR-B

.50 50 .427 [.144](.124) .489 [.121](.120) .493 [.120](.120) .104 .114 .120 .115
100 .449 [.111](.098) .495 [.096](.096) .497 [.096](.096) .088 .093 .098 .093
200 .474 [.073](.068) .498 [.068](.068) .499 [.068](.068) .064 .065 .067 .067
500 .490 [.042](.041) .500 [.041](.041) .500 [.041](.041) .040 .040 .041 .041

.25 50 .147 [.203](.175) .234 [.172](.171) .239 [.172](.171) .149 .163 .171 .167
100 .179 [.157](.140) .245 [.138](.137) .248 [.138](.138) .128 .133 .140 .135
200 .214 [.104](.097) .249 [.097](.097) .249 [.097](.097) .093 .095 .099 .098
500 .236 [.062](.060) .250 [.060](.060) .250 [.060](.060) .059 .059 .060 .060

.00 50 -.126 [.250](.215) -.017 [.214](.213) -.011 [.214](.214) .191 .207 .215 .214
100 -.089 [.203](.182) -.006 [.180](.180) -.004 [.181](.181) .164 .171 .179 .174
200 -.047 [.137](.129) -.002 [.129](.128) -.001 [.129](.129) .122 .124 .128 .128
500 -.020 [.082](.080) -.002 [.080](.080) -.002 [.080](.080) .078 .078 .079 .080

-.25 50 -.393 [.294](.256) -.267 [.259](.259) -.261 [.260](.259) .227 .244 .251 .255
100 -.358 [.241](.216) -.259 [.216](.216) -.257 [.216](.216) .199 .205 .213 .211
200 -.306 [.165](.156) -.251 [.155](.155) -.250 [.155](.155) .149 .151 .156 .156
500 -.274 [.101](.098) -.251 [.099](.099) -.251 [.099](.099) .096 .096 .097 .099

-.50 50 -.658 [.330](.289) -.519 [.298](.297) -.513 [.298](.298) .260 .277 .282 .291
100 -.618 [.270](.243) -.507 [.245](.245) -.505 [.245](.245) .230 .237 .245 .245
200 -.566 [.197](.185) -.503 [.186](.186) -.502 [.186](.186) .175 .178 .183 .184
500 -.528 [.120](.117) -.501 [.117](.117) -.501 [.117](.117) .113 .114 .115 .116

(f) Group Interaction with k = n0.5, Lognormal Errors, MRSAR-B

.50 50 .437 [.127](.110) .488 [.107](.106) .492 [.106](.106) .094 .102 .117 .110
100 .452 [.104](.092) .492 [.090](.090) .494 [.090](.090) .083 .085 .092 .087
200 .475 [.071](.067) .497 [.066](.066) .497 [.066](.066) .060 .060 .065 .064
500 .490 [.041](.039) .499 [.040](.040) .499 [.040](.040) .038 .037 .039 .040

.25 50 .165 [.180](.158) .236 [.156](.155) .241 [.155](.155) .135 .146 .166 .160
100 .184 [.146](.131) .242 [.128](.128) .244 [.128](.128) .118 .120 .130 .126
200 .215 [.101](.094) .247 [.094](.093) .247 [.093](.093) .088 .088 .094 .094
500 .235 [.060](.059) .248 [.059](.059) .248 [.059](.059) .056 .056 .058 .059

.00 50 -.109 [.231](.203) -.020 [.202](.201) -.014 [.201](.201) .174 .187 .210 .206
100 -.081 [.179](.160) -.008 [.159](.159) -.006 [.159](.158) .151 .152 .164 .161
200 -.046 [.131](.123) -.005 [.122](.122) -.004 [.122](.122) .114 .114 .122 .122
500 -.018 [.078](.076) -.001 [.077](.077) -.001 [.077](.076) .074 .073 .077 .077

-.25 50 -.377 [.274](.243) -.272 [.245](.244) -.265 [.244](.244) .210 .225 .253 .248
100 -.346 [.216](.193) -.261 [.194](.194) -.259 [.194](.193) .181 .181 .194 .193
200 -.307 [.159](.148) -.258 [.148](.148) -.257 [.148](.148) .140 .139 .148 .148
500 -.273 [.099](.096) -.252 [.097](.097) -.252 [.097](.097) .092 .091 .095 .095

-.50 50 -.639 [.312](.279) -.524 [.286](.285) -.516 [.285](.285) .241 .258 .285 .285
100 -.610 [.245](.219) -.516 [.222](.221) -.514 [.222](.221) .209 .208 .220 .221
200 -.565 [.186](.174) -.508 [.174](.174) -.507 [.174](.174) .165 .164 .173 .174
500 -.527 [.117](.114) -.503 [.114](.114) -.502 [.114](.114) .110 .109 .113 .114

Note: se1 = mean(bV1(λ̂n)
1
2 ), se2 = mean(bV2(λ̂n)

1
2 ), se3 = mean(bV3(λ̂n)

1
2 ) and sec

3 = mean(bV3(λ̂
bc3
n )

1
2 ).
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Table 2a. Null Behavior of t-Ratios for Testing H0 : λ = 0: Group Interaction with k = n0.35

Empirical Tail Probabilities: L=left, R=right
n Test dgp Mean SD L-1% L-2.5% L-5% R-5% R-2.5% R-1%

Nominal Values 0.0000 1.0000 0.0100 0.0250 0.0500 0.0500 0.0250 0.0100

50 t11 1 -0.5904 1.0572 0.0470 0.0965 0.1553 0.0210 0.0113 0.0051
2 -0.6080 1.0801 0.0554 0.0974 0.1585 0.0209 0.0109 0.0042
3 -0.5607 1.1100 0.0622 0.1072 0.1590 0.0159 0.0069 0.0030

t21 1 0.0088 1.1571 0.0193 0.0404 0.0729 0.0796 0.0472 0.0265
2 -0.0526 1.1665 0.0246 0.0505 0.0794 0.0712 0.0436 0.0244
3 -0.0655 1.1712 0.0339 0.0601 0.0926 0.0610 0.0340 0.0151

t22 1 -0.0085 1.0573 0.0143 0.0315 0.0591 0.0574 0.0323 0.0156
2 -0.0644 1.0830 0.0201 0.0417 0.0705 0.0563 0.0323 0.0152
3 -0.0739 1.0780 0.0280 0.0487 0.0809 0.0425 0.0208 0.0077

t33 1 0.0151 1.0400 0.0122 0.0279 0.0527 0.0565 0.0323 0.0156
2 -0.0206 1.0105 0.0138 0.0283 0.0539 0.0487 0.0282 0.0131
3 -0.0191 0.9636 0.0175 0.0324 0.0533 0.0354 0.0162 0.0063

100 t11 1 -0.5341 1.0220 0.0383 0.0771 0.1376 0.0185 0.0084 0.0038
2 -0.5089 1.0464 0.0387 0.0828 0.1385 0.0202 0.0101 0.0035
3 -0.5296 1.0904 0.0518 0.0959 0.1508 0.0241 0.0111 0.0047

t21 1 0.0300 1.0906 0.0138 0.0315 0.0590 0.0687 0.0403 0.0203
2 0.0339 1.1103 0.0169 0.0351 0.0657 0.0745 0.0423 0.0200
3 -0.0398 1.1400 0.0205 0.0468 0.0812 0.0722 0.0407 0.0199

t22 1 0.0189 1.0320 0.0111 0.0274 0.0529 0.0574 0.0304 0.0137
2 0.0216 1.0671 0.0153 0.0326 0.0612 0.0647 0.0339 0.0151
3 -0.0479 1.1219 0.0209 0.0470 0.0791 0.0664 0.0365 0.0161

t33 1 0.0345 1.0163 0.0094 0.0244 0.0484 0.0564 0.0299 0.0135
2 0.0455 1.0131 0.0099 0.0242 0.0451 0.0579 0.0298 0.0134
3 -0.0070 0.9977 0.0094 0.0242 0.0496 0.0506 0.0261 0.0112

200 t11 1 -0.3593 1.0045 0.0254 0.0539 0.0978 0.0236 0.0125 0.0059
2 -0.3578 1.0367 0.0283 0.0581 0.1062 0.0295 0.0148 0.0063
3 -0.3633 1.0686 0.0326 0.0628 0.1104 0.0328 0.0163 0.0053

t21 1 0.0483 1.0508 0.0114 0.0277 0.0523 0.0628 0.0346 0.0173
2 0.0393 1.0823 0.0137 0.0302 0.0555 0.0690 0.0414 0.0199
3 0.0054 1.1089 0.0159 0.0363 0.0626 0.0701 0.0433 0.0206

t22 1 0.0445 1.0266 0.0105 0.0255 0.0498 0.0578 0.0313 0.0146
2 0.0346 1.0680 0.0130 0.0295 0.0550 0.0648 0.0378 0.0176
3 0.0003 1.1114 0.0176 0.0372 0.0648 0.0703 0.0419 0.0199

t33 1 0.0455 1.0044 0.0093 0.0238 0.0467 0.0531 0.0282 0.0130
2 0.0399 1.0202 0.0100 0.0243 0.0477 0.0594 0.0325 0.0137
3 0.0182 1.0088 0.0099 0.0230 0.0464 0.0557 0.0301 0.0116

Note: (1) X1 and X2 are generated from MRSAR-B schme, σ = 1, and β = (5, 1, 1)′;
(2) dgp: 1=normal, 2=normal mixture(τ = 4, p = .1), 3=lognormal;

(3) tij : t-ratio with ith-order corrected estimator and jth-order corrected variance of it.

45



Table 2b. Null Behavior of t-Ratios for Testing H0 : λ = 0: Group Interaction with k = n0.5

Empirical Tail Probabilities: L=left, R=right
n stat dgp Mean SD L-1% L-2.5% L-5% R-5% R-2.5% R-1%

Nominal Values 0.0000 1.0000 0.0100 0.0250 0.0500 0.0500 0.0250 0.0100

50 t11 1 -0.5396 1.0523 0.0430 0.0833 0.1395 0.0220 0.0118 0.0055
2 -0.5609 1.0624 0.0468 0.0875 0.1460 0.0199 0.0096 0.0054
3 -0.5135 1.0627 0.0427 0.0841 0.1398 0.0227 0.0111 0.0049

t21 1 0.0607 1.1225 0.0167 0.0342 0.0627 0.0767 0.0467 0.0245
2 0.0036 1.1299 0.0218 0.0410 0.0675 0.0706 0.0413 0.0209
3 -0.0106 1.1193 0.0201 0.0393 0.0696 0.0660 0.0386 0.0186

t22 1 0.0412 1.0279 0.0120 0.0269 0.0517 0.0569 0.0317 0.0139
2 -0.0115 1.0438 0.0171 0.0327 0.0572 0.0530 0.0277 0.0117
3 -0.0205 1.0448 0.0162 0.0333 0.0589 0.0530 0.0281 0.0121

t33 1 0.0789 1.0401 0.0102 0.0244 0.0463 0.0651 0.0384 0.0185
2 0.0332 1.0210 0.0125 0.0260 0.0467 0.0553 0.0303 0.0144
3 0.0275 0.9763 0.0102 0.0238 0.0422 0.0497 0.0260 0.0122

100 t11 1 -0.3930 1.0200 0.0292 0.0619 0.1088 0.0219 0.0126 0.0049
2 -0.3850 1.0367 0.0288 0.0632 0.1112 0.0266 0.0131 0.0059
3 -0.3872 1.0523 0.0332 0.0677 0.1129 0.0271 0.0134 0.0055

t21 1 0.0542 1.0577 0.0121 0.0289 0.0543 0.0625 0.0351 0.0171
2 0.0470 1.0737 0.0128 0.0292 0.0576 0.0710 0.0405 0.0185
3 0.0103 1.0824 0.0167 0.0355 0.0643 0.0638 0.0364 0.0162

t22 1 0.0472 1.0117 0.0100 0.0245 0.0496 0.0533 0.0274 0.0129
2 0.0391 1.0373 0.0108 0.0268 0.0524 0.0629 0.0335 0.0148
3 0.0053 1.0654 0.0161 0.0347 0.0620 0.0597 0.0332 0.0146

t33 1 0.0638 1.0149 0.0094 0.0234 0.0479 0.0560 0.0304 0.0137
2 0.0590 1.0145 0.0085 0.0220 0.0435 0.0627 0.0332 0.0146
3 0.0301 0.9899 0.0099 0.0226 0.0440 0.0525 0.0273 0.0112

200 t11 1 -0.3265 1.0085 0.0213 0.0499 0.0939 0.0265 0.0124 0.0050
2 -0.3182 1.0250 0.0239 0.0524 0.0979 0.0288 0.0133 0.0055
3 -0.3165 1.0360 0.0237 0.0552 0.0972 0.0322 0.0173 0.0072

t21 1 0.0418 1.0376 0.0094 0.0251 0.0492 0.0640 0.0343 0.0141
2 0.0433 1.0531 0.0121 0.0280 0.0521 0.0663 0.0353 0.0149
3 0.0217 1.0610 0.0125 0.0287 0.0575 0.0649 0.0377 0.0182

t22 1 0.0377 1.0101 0.0087 0.0220 0.0463 0.0575 0.0296 0.0119
2 0.0386 1.0330 0.0116 0.0268 0.0503 0.0602 0.0316 0.0134
3 0.0179 1.0592 0.0129 0.0290 0.0575 0.0634 0.0358 0.0175

t33 1 0.0437 1.0078 0.0084 0.0215 0.0448 0.0580 0.0303 0.0121
2 0.0475 1.0119 0.0101 0.0228 0.0464 0.0574 0.0306 0.0123
3 0.0346 0.9970 0.0083 0.0201 0.0465 0.0559 0.0310 0.0135

Note: (1) X1 and X2 are generated from MRSAR-B scheme, σ = 1, and β = (5, 1, 1)′;
(2) dgp: 1=normal, 2=normal mixture(τ = 4, p = .1), 3=lognormal;

(3) tij : t-ratio with ith-order corrected estimator and jth-order corrected variance of it.
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