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Abstract: The author considers the problem of constructing confidence intervals for the median of a future
observation at certain values of exogenous variables, following a normalizing transformation. He shows
that when this transformation is estimated, the usual interval obtained through an inverse transformation
needs to be corrected, even when the sample size is large. He then gives a simple analytical solution to
this problem and provides simulation results confirming the good small-sample properties of the corrected
interval. He also presents two concrete illustrations.

L’estimation de la médiane par l’intermédiaire d’une transformation de la régression
Résumé : L’auteur s’intéresse à la construction d’intervalles de confiancepour la médiane d’une observation
future correspondant à certaines valeurs de variables exogènes, suite à une transformation normalisatrice.
Il montre que lorsque cette transformation est estimée, l’intervalle usuel obtenu par transformation inverse
doit être corrigé, même pour de grandes tailles d’échantillon. Il propose ensuite une solution analytique
simple à ce problème et rapporte des résultats de simulation attestant des bonnes propriétés de l’intervalle
corrigé dans de petits échantillons. Il présente en outre deux illustrations pratiques.

1. INTRODUCTION

Data arising from biological, environmental, medical and economic studies are typically skewed
and an appropriate measure of the central tendency in these cases is the median. In analyzing
these data, it is popular first to use the Box–Cox transformation technique to normalize the data
and stabilize the variance and then to apply the usual regression technique to the transformed
data. Attractive features of this approach include (i) standard normal theory inference methods
can be used, and (ii) a simple inverse transformation gives point or interval estimation concern-
ing a future observation. These are especially true for a model with only the response being
transformed (Box & Cox 1964). The resulting intervals based on an inverse transformation are
exact or approximate, depending on whether the data can be transformed to exact normality or
only to near normality.

Often in practice, however, the transformation (or transformation parameter) is unknown and
has to be estimated from the data. In this case, a common practice is to replace the unknown
transformation by its estimate and treat the estimated transformation as the true one (Collins
1991; Hahn & Meeker 1991, p. 72). Such “plug-in” type intervals ignore the effect of trans-
formation estimation, which should be studied or corrected to account for the transformation
estimation.

In this paper, we study the confidence interval for the median of a future observation at certain
values of concomitant variables, obtained through a simple inverse transformation, and show that
when the transformation is unknown and is replaced by its estimate, the usual transformation-
based interval needs to be corrected even when the sample size is large. We then give a simple
analytical correction. Monte Carlo simulation shows that the corrected interval performs very
well, having coverage probabilities very close to their nominal levels for small to moderate sam-
ple sizes. Real data examples indicate that the transformation approach with correction gives
more reasonable confidence intervals than those without transformation and correction.
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Section 2 outlines the Box–Cox transformation-based confidence interval for the median of
an original future observation. Section 3 introduces the analytical correction. Section 4 contains
some Monte Carlo simulation results. Section 5 presents two real data examples and Section 6
gives a general discussion.

2. THE BOX–COX CONFIDENCE INTERVAL

Let
�

be an ����� vector of original observations, let ��� �
	���
 be a vector of transformed ob-
servations, and let � be an ����� matrix whose columns contain the values of the explanatory
variables ��� 	�������	 ��� . The Box–Cox transformed linear model (Box & Cox 1964) has the form��� ��	���
�� �� �!#"�$ 	 (1)

where  is a ���%� vector of parameters, " is the error standard deviation, $ is an �&�'� vector of
independent and identically distributed (iid) errors with zero mean and median, and unit standard
deviation, and ���)( 	���
 is a monotonically increasing function. Box and Cox assumed that there
exists a

�
such that the transformed linear model (1) is normal, which leads to the Box–Cox

estimators for  , " and
�

as follows:* +� *�,
-� �.��/0� 
21 � ��/.��� ��	 *��
3	4*",5-� *�6
7�8�� 999�: ��� ��	 *��
 999 5 	 *�;�&<>=)?+@�ACBD EF�1 D>G : ��� ��	IH3
 G 	 (2)

where : �KJ�LNM �'�O� / � 
 1 � � / and
J�L

is an �P�Q� identity matrix. For a given
�

, the Box–Cox
estimators of  and " are

* +� ��
 and
*"R� ��
 . In general, the Box–Cox estimators are not maximum

likelihood estimators (MLE) unless the S�T are exactly normal.
Consider the problem of predicting UWV � median � F V 
 at X�V . As the transformed observa-

tions are assumed to have the same mean and median and the transformation is monotonic,
we have E YW��� F V 	���
�Z#� ���.U�V 	���
 . A natural predictor for ���.U�V 	���
 is X / V * +� ��
 with varianceX / V �.� / � 
 1 � X�V6" 5 . The assumptions of the model (1) suggest that[ � ��
+� X / V * ;� ��
�M ���OU�V 	���
*"R� ��
6\ X / V �.� / � 
 1 � X V

] � M �� (3)

is distributed as a ^ L 1 � if the model errors are normal and an approximate ^ L 1 � if the model errors
are approximately normal, where ^�_ denotes Student’s distribution with ` degrees of freedom.
This immediately leads to an exact or approximate ��a7ab�)� MdcR
)e

confidence interval (CI) for���.U�V 	���
 : X / V * +� ��
�f ^ L 1 � � cRg-h-
)i L �jX�V 
-*"+� ��
3	 where

i L �kX�V 
R�ml �,X / V �O� / � 
 1 � X�V� M � �
If the function � in (1) stands for the Box–Cox power transformation, namely

��� F;	���
+�onppq ppr
� FtsuM � 
vg-� if

�xw� a 	yCz ?+F
if
�{� a 	

then a simple inverse transformation of this interval yields a ��a7ab�)� M
cR
ve CI for U>V| �+! �~} X�/V * +� ��
�f ^ L 1 � � cRg-h7
vi L �kX�V 
-*"�� ��
6�,� �v� s 	 (4)

which becomes �3����YWX / V * 4�ka 
�f ^ L 1 �b� cRg-h7
vi7L �kX V 
7*"R�ka 
�Z when
��� a . This interval is correct when

exact normality is achieved by the transformation, and it is asymptotically correct when only a
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certain degree of symmetry is achieved by the transformation, i.e., the mean and median of the
transformed observations are the same. Thus, when

�
is known, the interval can be recommended

for practical applications and should be very attractive to practitioners due to its simplicity.
Unfortunately,

�
is often unknown and has to be estimated using the same set of data. In this

case, a common practice is to replace
�

in (4) by its estimator
*�

(Collins 1991; Hahn & Meeker
1991, p. 72). Thus, the confidence interval for U>V becomes| �+! *� } X / V * +� *�,
,f ^ L 1 ��� cRg-h7
vi7L �kX V 
-*"�� *��
 �,� �v� �s 	 (5)

which reduces to �6� � } Xb/V * +�ka 
�f ^ L 1 � � cRg7h-
vi L �kX�V 
-*"R�ka 
3�
when

*�%� a . Interval (5), referred to as the Box–Cox Confidence Interval, is then used without
accounting for the extra variability introduced by

*�
.

3. THE ADJUSTED BOX–COX CONFIDENCE INTERVAL

Clearly, for the confidence interval (5) to have a good performance, it is necessary that the pivotal
quantity

[ � *��
�� Y>X / V * ;� *��
�M ���OU�V 	 *��
�ZWg Y *"R� *��
)i L �kX�V 
�Z , obtained by replacing
�

in (3) by
*�
, have

a distribution close to that of
[ � ��
 . Unfortunately, this is not true, as shown below; hence

a correction is necessary. Let � s and � s>s be, respectively, the first- and second-order partial
derivatives of � with respect to

�
. Let

� � �O / 	 " 	���
 / and let � 5 � � 
 be the asymptotic variance
of � ��� *� M���
 . We have the following result.

THEOREM 1. Assume that for some
�

, the following are true: (i) �;YW��� F V 	���
2Z�� ���OU V 	���
 ;
(ii)

*��� � �
and � �R� *�xM ��
vg �,� � 
��	��
 �ja 	 � 
 ; (iii) � / � s � ��	���
vg � and � / � s>s � ��	���
)g �

both converge in probability; (iv) � / � g � converges to a positive definite matrix; (v)� / � ��	���
 : � s � ��	���
vg � converges in probability. Then[ � *��

�M���
�� a 	 � !��65>� � 	 X�V 
��R	
where

�>� � 	 X V 
R� y AC@L���� �,� � 
�� X / V �.� / � 
 1 � � / �+� s � ��	���
�M � s �OU�V 	���
��� � i L �kX�V 
 " �
Theorem 1 is proved in Appendix A. The constant �>� � 	 X,V 
 quantifies the effect of estimating

the transformation on the Box–Cox predictive pivot
[ � ��
 , and hence on the Box–Cox confidence

interval. As � 5 � � 	 X�V 
 is a nonnegative number,
[ � *��
 has the same limiting mean as that of

[ � ��
 ,
but it has a limiting variance larger than that of

[ � ��
 . This indicates that the Box–Cox confidence
interval without accounting for the estimation of

�
is liberal. The value of � 5 � � 	 X V 
 generally

depends on the values of
�

and X V ; its general expression is given in the next theorem.

THEOREM 2. Assume that the first six moments of S T are the same as those of a standard normal
random variable. Assume that

@&< ���  T � is small. Then we have, for large � :

�>� � 	 X�V 
"! X / V �.� / � 
 1 � � / Y��)� L ! �$# 
&%(' ! � ") g-h Z M �v�+! �$# V 
&' V� " i7L �kX V 
 \ G : �* 1 � %(' !� g7h-
 G 5 ! h G ' M,+' G 5 !.- G  G 5 g7h 	 (6)

when
��w� a , and

� � � 	 X�V 
/! X / V �O� / � 
 1 � � / � # 5 ! " 5 � Lb
RM0# 5Vi L �kX�V 
 \ G : # 5 G 5 !.1-" 5 G #uM +# G 5 !.2-�,"$3 	 (7)



238 YANG Vol. 30, No. 2

when
� � a , where

##� � /  ,
'8� yCz ? �)� ! �$# 


,  � � "R�)� L ! ��# 
 1 � , # V � X / V  ,
' V �yCz ? �v�+! �$# V 
 , +#~� � /L # g � ,

+'�� � /L ',g � , and � L � �v� 
 L � � .
In Theorem 2, we use the following notational conventions: “

%
” denotes the element-

wise multiplication operator of two vectors, i.e., � %���� ��� TN� � T 
 L � � for two � � � vec-
tors � and

�
; common functions applied to a vector,

�
say, are carried out elementwise, e.g.,yCz ?��;� � yCz ?�� T 
 L � � ; and

G ( G is the Euclidean norm. Theorem 2 is proved in Appendix B.

Now, let � 5 � *� 	 X�V 
 be an estimator of � 5 � � 	 X�V 
 . Based on the results of the above theorems,
it is natural to define the adjusted Box–Cox confidence interval for U>V as� �+! *�	� X�/V * ;� *��
,f ^ L 1 �b� cRg-h-
)i7L �jX V 
-*"R� *��
 ] �+! � 5�
 *� 	 X V
����� �v� �s 	 (8)

which becomes

�3��� � X�/V * 4�ja 
,f ^ L 1 ��� cRg-h7
vi7L �kX V 
-*"��ka 
 ] �+!�� 5�
 *� 	 X V����
when

*��� a . The confidence interval given in (8) is seen to be very simple. Once the
*�

value
is obtained, it is very easy to calculate � 5 � *� 	 X V 
 and the rest is just like calculating a usual
regression confidence interval. The

*�
defined in (2) can be conveniently found by solving the

following equation: M � � / � ��	���
 : � s � ��	���
� / � ��	���
 : ��� ��	���
 !
L� T�� � yCz ? F T � a �

A Fortran subroutine for doing so is available from the author. For more practical applications,
a SAS/IML program is also available which calculates the quantity in the third equation of (2)
over a grid values of

�
, so that an approximate

*�
value can be given. This value can be further

refined when necessary using the same program.

4. MONTE CARLO SIMULATIONS

The results given in the last section say that when the sample size is large, the adjusted Box–
Cox confidence interval performs just as the confidence interval under the normal theory linear
model. However, it is not clear how well the adjusted Box–Cox confidence interval performs
when � is not large. We now study this issue using Monte Carlo simulation. Consider a simple
linear transformation model:��� F T 	���
 �  V !  ,����� T ! ",S T 	���� � 	������v	 �
where  V ���b� a ,  �� � a � � , ��� T � a ��� � �k
3	��{� � 	�������	 � and the S T are iid


 �ja 	 � 
 . For a
given parameter configuration, S-� 	�������	 S L are first generated form


 �ja 	 � 
 and then converted
to
F � 	�������	)F L through the model relation. The quantities

* ,
*�
, �>� *� 	 X�V 
 , [ � *�,
 and the adjusted

confidence interval are calculated. This process is repeated 10,000 times. The average and the
standard deviation of the 10,000

*�
values give the Monte Carlo estimates of � � *��
 and sd � *��
 .

Similarly, Monte Carlo estimates of �;Y [ � *��
�Z and sd Y [ � *��
2Z are obtained. The number of con-
fidence intervals that cover U V divided by 10,000 gives the simulated coverage probability of the
adjusted Box–Cox confidence interval. Results for � ��� a are summarized in Table 1.

We see that the adjusted confidence interval has coverage very close to its nominal level. It
is important to note that the correction is very much necessary, especially when X V is outside
of the experimental region. For example, the value of � 5 can be as big as 8.2128 (the square of
the 12th number in the fourth column of Table 1), which indicates that the confidence interval
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without correction can be very tight. The approximate asymptotic standard deviation formula\ � !�� 5 � � 	 X�V 
 for
[ � *��
 is very accurate, as seen by comparing the true value with the simulated

values. Changing the values of
�

and " does not have much effect on the coverage probabilities.
This shows the good performance of this simple analytical correction factor.

TABLE 1. Simulation results. Monte Carlo estimates of the mean and standard deviation of
��

(columns 5
and 6), and the mean and standard deviation of ��� ���� (columns 7 and 8), and simulated coverage

probabilities for the �	��
 adjusted Box–Cox confidence interval (last column).

� �
����� ����� ��� � ����� � ��� ������� �� � ���� ��� � ���� ��"! ��� ����$# ��� ! ��� ����$# �	��
&%('

��)�*,+ � +�* ) � 0 0.2931 - 0.8637 0.0989 0.0392 0.0899 1.4178 0.9434

5 0.2118 - 0.0093 0.0989 0.0393 0.0406 1.0456 0.9410

15 0.1512 0.7290 0.0988 0.0391 - 0.0159 1.3046 0.9411

35 0.4679 - 1.8385 0.0981 0.0390 - 0.0524 2.3009 0.9403

��)�* ) � +�* ) � 0 0.2931 - 0.8200 0.0000 0.0185 0.0686 1.4005 0.9402

5 0.2118 - 0.0426 - 0.0003 0.0187 0.0424 1.0425 0.9440

15 0.1512 0.7612 0.0000 0.0185 0.0091 1.3125 0.9488

35 0.4679 - 2.1171 - 0.0003 0.0183 - 0.1597 2.5546 0.9389

��)�* ) � ).*/+ � 0 0.2931 - 1.1410 0.0000 0.0024 0.0128 1.5733 0.9462

5 0.2118 - 0.1138 0.0000 0.0024 - 0.0049 1.0538 0.9433

15 0.1512 0.9418 0.0000 0.0024 - 0.0222 1.4327 0.9452

35 0.4679 - 2.8658 0.0000 0.0024 - 0.0310 3.1536 0.9439

��)�*0� � ).*/+ � 0 0.2931 - 1.2737 0.4997 0.0156 0.0451 1.7001 0.9418

5 0.2118 - 0.0583 0.4998 0.0156 0.0133 1.0426 0.9449

15 0.1512 0.8824 0.5000 0.0154 0.0075 1.3850 0.9455

35 0.4679 - 2.3368 0.5000 0.0157 - 0.0148 2.6770 0.9407

��12* ) � ).*/+ � 0 0.2931 - 1.3076 1.9993 0.0550 0.0254 1.6928 0.9469

5 0.2118 - 0.0477 1.9991 0.0545 0.0055 1.0392 0.9456

15 0.1512 0.8725 1.9991 0.0549 - 0.0262 1.3760 0.9455

35 0.4679 - 2.2474 2.0002 0.0549 - 0.0307 2.5915 0.9416

��-3+�* ) � ).*/+ �54 0 0.2931 1.2838 - 0.9999 0.0287 0.0047 1.7272 0.9428

5 0.2118 0.0515 - 1.0007 0.0288 -0.0042 1.0397 0.9497

15 0.1512 - 0.8716 - 0.9998 0.0290 0.0042 1.3768 0.9480

35 0.4679 2.2631 - 1.0000 0.0288 0.0396 2.6005 0.9475

4�6 �(7 -8�9* ) and
6 �:7 -().* � are used for this case to ensure the positivity of the ;=< .
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5. NUMERICAL EXAMPLES

Two real data examples in this section illustrate the adjusted Box–Cox confidence intervals. The
original data are omitted for brevity.

Example 1 (Biological Data). A 3 � 4 factorial design with linear additive effects and four repli-
cates is fitted to the biological data of Box & Cox (1964). The responses are survival times (in
10 hr) of animals; the two factors are poison and treatment. Confidence intervals for the median
survival time at each of the 12 design points are calculated; results are summarized in Table 2.
Notice that

i�L �jX V 
 is constant, due to the symmetric structure of the design. In this special facto-
rial design case, the estimated correction is not large, but it cannot be ignored in many cases. It is
interesting to note that the adjusted Box–Cox confidence intervals are often shorter than the ones
obtained from fitting a linear model to the original data, i.e.,

�{� � and �>� *� 	 X V 
�� a . Compared
with the original data, it seems that the transformation approach with correction provides more
reasonable confidence intervals.

TABLE 2. A summary of confidence intervals for the biological data,
�� 7 -().* � � )	1 .

���� � � � � � � � � �� ��� � � 90% CI 95% CI 99% CI

1 1 0 1 0 0 .3780 - .3310 0.34 0.43 0.33 0.44 0.32 0.47

1 1 0 0 1 0 .3780 .2018 0.74 1.15 0.71 1.22 0.66 1.37

1 1 0 0 0 1 .3780 - .1827 0.42 0.55 0.41 0.57 0.39 0.61

1 1 0 - 1 - 1 - 1 .3780 .0705 0.61 0.88 0.59 0.92 0.55 1.00

1 0 1 1 0 0 .3780 - .1283 0.29 0.36 0.29 0.36 0.28 0.38

1 0 1 0 1 0 .3780 .0215 0.57 0.80 0.55 0.83 0.52 0.91

1 0 1 0 0 1 .3780 - .0826 0.35 0.44 0.34 0.45 0.33 0.48

1 0 1 - 1 - 1 - 1 .3780 - .0113 0.48 0.65 0.47 0.67 0.44 0.72

1 - 1 - 1 1 0 0 .3780 .3529 0.19 0.23 0.19 0.23 0.19 0.24

1 - 1 - 1 0 1 0 .3780 - .4073 0.31 0.38 0.30 0.39 0.29 0.41

1 - 1 - 1 0 0 1 .3780 .1420 0.22 0.26 0.22 0.27 0.21 0.28

1 - 1 - 1 - 1 - 1 - 1 .3780 - .2190 0.28 0.34 0.27 0.34 0.26 0.36

Example 2 (Salinity Data). In forecasting the shrimp harvest in Pamlico Sound, North Carolina,
USA, & Carroll (1980) give a set of 28 observations on the salinity of water during the spring.
The three predictors are the salinity lagged two weeks, the trend dummy variable for the time
period, and the water flow or river discharge. These data were extensively analyzed by Atkinson
(1985) to illustrate techniques of model checking, data transformation, etc. As in Atkinson’s pa-
per, the water flow value for observation 16 is modified and the third observation is deleted. The
resulting confidence intervals are summarized in Table 3. Notice that the correction can be quite
large if X�V is outside the experimental region. The confidence intervals without transformation
and correction can have negative lower limits, which is clearly unreasonable.
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TABLE 3. A summary of confidence intervals for the salinity data,
�� 7 -()�*,+ ��� � .

���$� ����� ����� ��� � ����� � � �� ������� 90% CI 95% CI 99% CI

2.0 1.0 20.0 1.0233 0.0947 6.52 8.64 6.34 8.90 5.97 9.48

6.0 2.0 32.0 1.0094 0.7075 3.61 4.92 3.50 5.09 3.28 5.45

8.0 5.0 20.0 0.5076 - 0.1401 9.59 11.11 9.45 11.29 9.16 11.66

10.0 1.0 25.0 0.3060 - 0.6406 8.63 9.57 8.54 9.67 8.36 9.89

16.0 6.0 18.0 0.6949 1.5654 17.53 26.53 16.82 27.73 15.45 30.44

6. DISCUSSION

The Box–Cox transformation is a popular technique in analyzing the skewed data commonly
occurring in biological, medical and environmental sciences, as well as in economics and engi-
neering reliability. When the transformation is known, standard normal inference theories can
be applied and simple inverse transformations lead to inferences corresponding to the original
response. However, the transformation parameter is often unknown and has to be estimated from
the data. A common practice in this case is to use the so-called “plug-in” method, i.e., plug-
ging

*�
into the

�
-assumed-known intervals. Such a practice ignores the effect of estimating the

transformation, and a correction seems to be necessary in most parametric inference problems.
A simple analytical correction on the “plug-in” method, if it exists, extends the standard

theory to more complicated modelling situations and at the same time preserves the simplicity
of the standard normal inference theories. This was the original driving force behind the present
work. The results given in this paper shed light in this direction. The problems that may follow
include the confidence limits for regression quantiles, tolerance intervals for a future observation,
bounds on reliability function, etc. The results given in this paper are consistent with those of
Carroll & Ruppert (1981), where it is shown that there is a cost associated with the estimation of
the transformation when estimating the median of the original future observation. Luckily, this
cost is generally not severe.

The results of this paper may be modified to suit other transformation functions; see recent
work of Yeo & Johnson (2000). The transformability of a data set to normality can be tested
using a recent result of Chen, Lockhart & Stephens (2002).

APPENDIX A: PROOF OF THEOREM 1

Second-order Taylor expansions of
* ;� *��
 and ���.U�V 	 *��
 giveX�/V * 4� *��
o� X�/V * 4� ��
 !K� *�{M���
 � X�/V �O�Q/C� 
�1 � �&/ � s � ��	���
 �! �h{� *� M���
 5 � Xb/V �O�&/.� 
�1 � �&/.� s>s � ��	���
 !�� L � 	

���.U�V 	 *�b
o� �N�.U�V 	���
 ! � *�{M���
 � s �OU�V 	���
 ! �h � *� M���
 5RY>� s>s �.U�V 	���
 !�� /L Z 	
where � L and � /L converge to zero as

*� � �
. Taking the difference yieldsX�/V * 4� *��
2M ���.U�V 	 *��
-� X�/V * +� ��
 M ���.U�V 	���
 ! � *�WM���
 � Xb/V �O�&/.� 
�1 � �&/.� s � ��	���
WM � s �.U�V 	���
 � !	� � �k� 1 � 
6�

It is easy to see that
*" 1 � � *�,
�� *" 1 � � ��
 !�� � �j� 1 �v� 5 
4� " 1 � !�� � �k� 1 �v� 5 
 . This and the above

result lead to[ � *��
+� [ � ��
 ! � *� M
��
 � X / V �.� / � 
 1 � � / �+� s � ��	���
 M � s �OU�V 	���
 �" i-L �jX V 
 !��;���k� 1 �v� 5 
3�
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The result of Theorem 1 follows since
[ � ��
 and

*�
are asymptotically independent, which can be

easily shown using standard asymptotic theory.

APPENDIX B: PROOF OF THEOREM 2

Yang (1999) obtained an accurate approximation to � 5 � � 
 , namely

�b5 � � 
 ! � � 5G : �* 1 � %(' !� g-h7
 G 5 ! h G '{M�+' G 5 !.- G  G 5 g-h 	 A � ��w� a 	
! � �," 5G : # 5 G 5 !.1-" 5 G #�M +# G 5 !.2-�," 5 	 A � ��� a �

For the power transformation, we have � s ��� 	���
x� Y�� s yCz ? � M ����� 	���
2ZWg-� for
� w� a , anda ��� yCz ? 5 ��� 
 for

� � a . The latter leads directly to the result (7) of Theorem 2 for the case of��� a . When
��w� a , using the following approximation� yCz ? � F T 
/! ' T�!  3TvS6T M  >5T S�5T g7hb	

one obtains approximations to �+� s � F T 	���
 and � s �.U V 	���
 , which lead to the result (6) of Theo-
rem 2 after some algebra.
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