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Comment 7: Zhenlin YANG

1. INTRODUCTION

The effect of estimating a transformation on the subsequent inferences is an important issue in
the applications of the Box—Cox transformation method. Many have made their contributions
to this issue, directly or indirectly. Those include, among others, Bickel & Doksum (1981),
Carroll & Ruppert (1981), Carroll (1982), Doksum & Wong (1983), Hinkley & Runger (1984),
Taylor (1989), Duan (1993) and Yang (1999).

The present authors have studied this issue by concentrating on the ratio of the regression
slope and the error standard deviation and provide important results to show that the estimation
of this scaled slope is much more stable than the estimation of the slope itself with respect to
the transformation estimation. Making use of some of the results of Yang (1999), | am able to
provide some similar results under a slightly different set-up. Also, | carry out some Monte Carlo
experiments to investigate the finite sample effect of transformation estimation. Both reinforce
the authors’ findings.

2. THE GENERAL RESULTS

First, I introduce some different notation to reflect the changes in the set-up: Y(Xg) = XG0 +
ooe, m; = x}foand &; = Agoo/(1+Aomi). Thus By, and hence 6 = 3y /g, includes the intercept
parameter and the definition of &; incorporates the values of the regressors. Let &, = (35, Ao, 00)
and let ¢ be an M-estimator of &, that solves the following estimating equation

1 & .
n Z\I’i(yﬁﬁ) = Ogpt3)x1,
i=1
where the function ¥; is partitioned according to 3q, Ag, and . Define

U= lz‘l’i(yi,{fo),

3

and A = E (8¥/d¢), both partitioned accordingly. The elements of ¥ are denoted by ¥;,
¢ = 1,2,3, and the elements of A by A;;, 7,7 = 1,2,3. Let [3’ and & be, respectively, the
M-estimate of 3y and oo when Aq is known. Assume that the conditions C1, C2, C3, and C5 of
Yang (1999) are satisfied. Following Taylor expansions on the estimating equation, we find

B—Po = —ALTI— AT Ap(A—Xg) + O0p(n™1), (13)
o — gq = —A§31§3 — A531A32(5\— )\0) + Op(n_l), (14)
. Ty — Az AT T3 — Ay ATT

A=) = 2 oeatss 3 ALl 4 0,(n7Y). (15)

Agi AT A1y — Agy + ApzAT] Agsy

Equating A to g in (1) and (2) gives

B—Bo=—A7¥ +0p(n)

and .
& —0o=—A3 U3+ 0p(n7h).

-1

Now, considering &~ as a function of &, a first-order Taylor expansion around & gives

e =6 =0 (6 -0)+0,(n" ) =57 405 AZ Asa(A — Xo) + O, (nY).  (16)
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Writing (1) as 3 = 8 — A" A1a(A — Ao) + O, (n~") and combining this with (4), we find

0 =0+ (0A55 A3 — AT A1) (A = ooyt + Op(n7h). (17)
The second term in the expansion (5) reflects the effect of the estimating transformation. The
magnitude of this effect can be studied in detail if the estimating function ¥; and the transforma-
tion function Y () are both specified. This result can be compared with the expansion for 3 to

see which quantity is more stable with respect to .

3. THE BOX—-COX POWER TRANSFORMATION AND NEAR NORMAL ERRORS

When the Box—Cox power transformation is used and the errors are approximately normal, the
estimating function corresponding to the maximum likelihood estimation takes the form

Uy, (Yi,60) = o5z {Yi(ho) —zifo},
Ui(Yi,6o) = 4 Wyy(Vi,60) = log¥; —op 2 {Yi(Ao) —:v’-ﬂo}ﬂé(ko),
U3i(Yi, &) = o5 {Yi(ho) — 2480} — o7 !,

where

Yi(Xo) = Yi(Xo) /0o = { o {14 AoYi(Ao)} log ¥i —Ag¥i(ho), Ao #0,

1 (log Y;)?, Ao = 0.

With the Box—Cox power transformation, the exact normality of Y; (\q) is incompatible with
the positivity of Y;. Hence there is a truncation effect when the above W; function is used to
approximate to the true likelihood estimating function. However, this truncation effect is small if
do = max|d;| is small, which is achievable when (i) o is small, (ii) g is small, or (iii) min |r;|
is large.

Assuming that the truncation effect is small and using the ¥; function given above, one can
easily evaluate all the quantities involved in (1)—(3) to simplify the expansions. Further, when
Ag = 0, all the expansions can be expressed explicitly in terms of £, and ; s, which allows one
to examine the affecting term in detail as well as to find an explicit expression for the variance
inflation. When A, # 0, however, an approximation to log Y; is necessary. When dg is small, we
have,

Ao log Vi = log(1 + Xomi) + diei — 367} + O,(37). (18)
| use €2 to mean (), x1, etc. Thus,
1 2 G 2 2
. = + 2noge + o Ao = 0,
Y()\o) _ 21(77 oo ) 0
X [(1+ Xon)#4)] + ¢# + —5# - Rﬁ# +0p(6%), Ao #0.

By assuming the first six moments of ¢, are the same as those of a standard normal random
variable and making use of the above approximations, Yang (1999) derived the following explicit
expansions:

A— ) —1(Mp?)e — Cn1)e? 4 Lo21/(3e — &3
0 = 2( 177)6920-0(7.7 277)6—+220-03(i 6)+Op(n_1)a )\0201
70 1 IMn?[|2 + 205([n — 71| + 5oy
A=do _ —(07'#6+ 30)Me — (6 — 9)'e” + 3 (3 — 7) - 5
= 2 — +O0,(n77) + 0,(d3), Ao #0,
%o T IME e+ 0P + 2ot + e T O )T O X7
where ¢ = log(1 + Agn) and || - || denotes the Euclidean norm. These lead immediately to the

approximations to the variance of A for large n and small dq,

72(60) = var(A) & o2 { HIMp?||? + 202l — L[ + Enodl T, Ao =0,
72(€0) = var(\) ~ AZ{|IM(8 4o + 16)|1 + 2|6 — 61| +§||6||2}‘1, Ao #0.
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Now,

o2’

1 1 . —
A1 =——=X'X, Ap=—XE{Y(\ Ajsz =
11 no_g ’ 12 no_g { ( 0)}a 33 2

2 .
A32 = n—o'g E{EIY(AO)}

With the approximation (6) and the explicit expansion for A, the expansion (5) becomes

0 =0+vE)A—Ao)og ' 4+ 0, (n™1) +0,(63), (19)
where
v@o):{ XX -t - (o) Ao =0,
AR TN (4 Aom)#S — (1 + 6 — 36%)n+ 3006}, Ao #0.

Finally, considering ¢~ as a function of 5 and Taylor expanding it around o2 give

1 _ _ R _
ﬂ(02—03)+0p(n 1)2001+R—%Z(6?—1)+0p(n h).

i=1

~—1 _ -1
o =0y, +

This, combined with
B=0— A7 4+ 0,(n"Y) = fo + 0o X'X ' X'e + O, (n™ )
gives

- g
f=0+(X'X)"'X'e + ~ D (e = 1)+ 0p(n7Y)

i=1

These lead to approximations for the variances of 6 and 6 when n is large and d, is small
. 1 1
V(6 ~ (X'X)"! + 2—66’ + —v(é)v(éa) 7% (&0)
n g

and V(0) ~ (X'X)~! + >-00'. Similarly, one obtains the expansions for $ and its variance,
namely o i
B =B+ w(E) (A= Ao) + Op(n™")

and

V(B) & of (X'X) ™! + w(éo)w(éo) 7% (o),
where

w(éo) = { $(X'X)"' X (n? + 031), Ao =0,
(XX) I X AT (L 4+ Aon)#d — Ay '+ 200716}, Ao # 0.

The expansions for the Ay = 0 case are the same as those given by the authors, except that
the intercept parameter is also included here. The effect of estimating the transformation on the
estimation of ¢ is governed by v(£o), and that on the estimation of g is governed by w(&g).
A close examination of the two quantities for the case of Ay = 0 reveals that there are many
cases in which the component of v () corresponding to the slope parameters vanishes (see the
detailed discussions provided by the authors), but no such cases exist for w(¢). In the case of
Ao # 0, the two quantities behave similarly to the case of Aq = 0. This means that the effect on
the estimation of # can be zero or small, but the effect on the estimation of 3, is generally large.
Note that the effect of the estimating transformation on the estimation of the (scaled) intercept
parameter is not small in general. When the regressors are centered, 7 = po.
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4. MONTE CARLO SIMULATION

I now present some Monte Carlo simulation results to show the finite sample effect of the es-
timating transformation. The model used in the simulation is: Y;(Ao) = po + Soz; + oo,
i =1,...,n. The z values are centered values of exp(2i/n), i = 1,...,n. | use the relative
bias (RB) and the relative efficiency (REF) to measure the effects. The simulation results are
summarized in Table 7-1. From the results, we see that there is generally a large effect on the
estimation of J,, but a very small effect on the estimation of 3y/0q. It is interesting to note
that as the sample size increases, the effect on the estimation of 3, /o reduces significantly, but
the effect on the estimation of 3, does not seem to change much. Estimating the transformation
induces extra bias in the estimation of 3, /g, but only slightly. Additional simulations (not re-
ported here) reveal that the spread in the = values matters. A larger spread gives a smaller effect
on the estimation of /0. The magnitude of 3y /0 affects the value of MSE, but affects very
little on the relative efficiency.

TABLE 7-1: A summary of simulated RB and REF, where, for example, RB(f) = 100 x (6 — 6)/6
and REF(6, §) = MSE(6)/MSE(§). The MSE stands for the mean squared error.

Relative bias Relative efficiency

¢ oo RB(8) RB(3) RB(4) RB() MSE(3) REF(3,8) MSE(f) REF(4,6)

n=20, po =280 pBo=20

25 .05 0.00 0.02 10.18 13.77 .000036 81.14 79.6946 1.28
0.00 0.08 9.63 13.18 .000143 80.52 18.5465 1.32

. 0.01 4.49 10.11 13.76 .003639 80.07 0.7933 1.30

0 .05 0.00 0.02 10.40 13.93 .000035 30.23 80.3997 1.29
0.00 0.09 10.09 13.60 .000143 30.26 19.4002 1.27

0.01 2.57 10.08 13.65 .003565 29.34 0.7782 1.28

n=>50, uo =80 pBo=20

25 .05 0.00 0.03 364 476  .000015 82.74  20.9905 1.11
0.00 0.14 373 487  .000061 83.14 5.3149 1.11

. —0.03 1.95 353 472 001512 76.03 0.2155 1.13

0 .05 0.00 0.02 368 480  .000015 3116  20.8424 1.11
. —0.01 0.04 366 483  .000060 32.13 5.2787 1.12

5 0.02 1.05 371 492 001494 28.64 0.2202 1.13

n=100, po =280, Bo=20

25 .05 0.00 0.00 1.76 229  .000008 85.55 9.1725 1.05
1 0.00 0.04 1.87 241  .000030 87.02 2.3389 1.06

. 0.02 0.84 1.87 242  .000768 7357 0.0951 1.08

0 .05 0.00 0.01 1.84 237  .000008 31.15 9.3085 1.06
. 0.00 0.01 173 228  .000031 32.75 2.2728 1.06

5 —0.02 0.59 173 230  .000769 27.81 0.0942 1.08
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