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 The maximum likelihood estimator of the Weibull shape parameter can be very biased.  An estimator based 

on the modified profile likelihood is proposed and its properties are studied.  It is shown that the new estimator 

is almost unbiased with relative bias being less than 1% in most of situations, and it is much more efficient than 

the regular MLE.  The smaller the sample or the heavier of the censoring, the more efficient is the new estimator 

relative to the regular MLE.   
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1. INTRODUCTION 

 Because of its flexibility in modeling both increasing failure rate and decreasing failure 

rate, Weibull distribution is now widely used in reliability studies. As the failure rate trend 

for Weibull distribution is characterized by the value of its shape parameter, the estimation of 

the Weibull shape parameter is of particular interest.  Several methods exist in the literature, 

such as the maximum likelihood estimation (MLE) method (Lawless, 1982), linear estimator 

(Lawless, 1982), method based on probability plot and a modified version of it (Drapella and 

Kosznik, 1999), shrunken estimator (Pandey and Singh), etc.   

 Among the above-mentioned methods, the MLE is a very popular one due to its simplic-

ity and efficiency (Ross, 1994).  The Weibull probability plot is usually used to get some 

rough estimates that might serve as starting values for numerical procedures in solving the 

likelihood equation. However, the MLE of the Weibull shape parameter is known to be bi-
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ased, and can very biased in the case of small sample or heavy censoring (Mackisack and 

Stillman, 1996) (e.g, for a complete sample of size 10, the relative bias is about 21%).  Ross 

(1994) provided a simple unbiasing formula for the case of complete sample, which was 

shown to work quite well, and added another formula (Ross, 1996) for the case of Type II 

censored data.  

 In this paper, we propose an estimator for the Weibull shape parameter based on modified 

profile likelihood of Cox and Reid (1987, 1989, 1992) under the notion of parameter or-

thogonalization.  It turns out that the modification is extremely simple – it involves only a 

simple adjustment on the profile likelihood or the likelihood equation. The modified MLE 

performs surprisingly well as compared with the regular MLE.  The relative bias can be re-

duced to less than 1% in most cases.  Also, the modified MLE is much more efficient than the 

regular MLE.  It is also more efficient than the unbiased MLE of Ross (1994, 1996).  The 

modified MLE works the best for the complete or Type II censored data. 

 This paper is organized as follows. Section 2 discusses the use of parameter orthogonali-

zation for the estimation of the Weibull parameters that provides the basic motivation for this 

study. Section 3 derives the formulas for the profile likelihood estimates for the Weibull 

shape parameter. Section 4 presents some simulation results regarding the performance of the 

new estimator relative to the regular likelihood estimator and its adjusted version. 

 

2. PARAMETER ORTHOGONOLIZATION 

 A problem with the MLE for Weibull parameters is that the estimators are highly corre-

lated. The basic idea behind the parameter orthogonalization is that if the two parameters are 

orthogonal, then the MLEs of the two parameters are asymptotically independent.  Hence, 

making inference on one parameter is not affected (at least asymptotically) by whether the 

other parameter is estimated or given.  Let Y be a Weibull random variable with the probabil-

ity density function (pdf) 

 f(y; α , β ) = 














−
















− ββ

ααα
β yy

exp
1

, (1) 

Appeared in:  Journal of Statistical Computation and Simulation, 2003, 73, 115-123.



 3 

where β  is the shape parameter and α  is the scale parameter.  We are now interested in es-

timating β  in the presence of the nuisance parameter α . 

 Suppose that a reparameterization is made from ( β , α ) to ( β , λ ) so that β  and λ  are 

orthogonal in the sense that the element of the expected Fisher information matrix  βλI  = 0 

(Cox and Reid, 1987).  The orthogonality condition can be reexpressed in terms of the origi-

nal parameter setting as follows 

 ααi
β
α

∂
∂

 + βαi  = 0, 

where ααi  = ]),([ 22 ααβ ∂∂− fE = ( )2αβ , βαi  = ]),([ 2 αβαβ ∂∂∂− fE  = αγ )1( − , and 

γ = 0.577215 … is Euler’s constant.  Solving the resulted differential equation one gets α  = 

λ [ ]βγ )1(exp −  and hence the orthogonal nuisance parameter: 

 λ  = α [ ]βγ )1(exp − . 

 The above result is given in Cox and Reid (1987), but there is a typographical error for 

the expression of βαi .  This orthogonal parameter setting was used to give a modified profile 

likelihood and hence an estimator of the Weibull shape parameter, but simulation results 

show that it is not quite satisfactory although it is able to reduce the bias by 50% or more, de-

pending the true value of the shape parameter β . 

 It was noted in Cox and Reid (1989) that if λ  is orthogonal to β , so is any smooth func-

tion of λ .  This suggests that a fur ther improvement is possible.  Following the method of 

Cox and Reid (1989), we show that the optimal orthogonal parameterization takes the log 

form, i.e.  

 oλ  ∝  )log( λ  =  )log( α + βγ )1( − . 

However, similar to the example 3 considered in Cox and Reid (1989), the proportionality 

constant involves β , which is a phenomenon not being able to be explained by the original 

authors.  Nevertheless, this leads us with a flexible choice of this constant. 

 Another important point is that the derivation of the orthogonal parameter is based on the 

complete sample. It would be of interest to investigate this orthogonal parameterization for 
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the case of censored data.  Naturally, this orthogonal parameterization should be reserved un-

der censoring, but it is difficult to verify as in the case of censored data one cannot work out 

exact expressions for certain expectations.  We will take primarily the log form, but allow 

some flexibility in the form of the β  component with regard to different types of censoring.   

 
3.  MODIFIED PROFILE LIKELIHOOD 
 
 The purpose of modifications to the profile likelihood is to approximate more closely the 

likelihood function used in ‘exact’ marginal or conditional inference (Cox and Reid, 1992).  

In terms of the likelihood equation, the modified version should provide us with estimates 

that are much less biased than those corresponding to the profile likelihood.  With these in 

mind, we investigate the usefulness of the method in the context of estimating the Weibull 

shape parameter.   

 Let Y1, Y2, …, Yk be a random sample from WB(α , β ) and ),( αβl  be the log likelihood 

function.  The profile likelihood for β  is defined as  

)(βpl  = )](ˆ,[ βαβl , 

where )(ˆ βα  is the restricted MLE of α  for a given β . The modified profile likelihood [1] is  

as follows 

 )(βml  = )(βpl  − ( )[ ])(ˆ,detlog
2
1

βλβλλJ , (2) 

where ( ))(ˆ, βλβλλJ  is the element of the observed information matrix for ( β , λ ), evaluated 

for fixed β  at the corresponding restricted MLE )(ˆ βλ . 

 

3.1.  The Case of Complete Data 

 Here, we give a detailed description of the method for the case of complete sample.  The 

case of censored will be discussed later for different censoring assumptions.  Let Y1, Y2, …, 

Yn be a random sample from WB(α , β ).  The log likelihood function is 

 ),( αβl  = 
β

αα
β
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For a given β , the restricted MLE of α  is  

)(ˆ βα = ( ) ββ 1
1 nyi

n
i=∑ . 

Substituting )(ˆ βα  into (3) gives the profile log likelihood for β : 

 )(βpl  = )1(log −nn + ( ) ∑∑
==

−+







−
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i
i

n

i
i yynn

11
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The usual MLE of β  is obtained by maximizing the profile log likelihood, or equivalently by 

solving the profile likelihood equation  

)(βpS  = ββ dd p )(l  = 0, 

where the profile score function is 

 )(βpS  = ∑
∑

∑
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By taking the parameterization  

 oλ  = 
β

λ)log(
 = 

β
α )log(

 + 2
1

β

γ−
, (5) 

and using the relationship,  

)](ˆ,[ βλβ
λλ

o
ooJ  = ( ))(ˆ, βαβααJ ( ) )(ˆ

2
βααλα =∂∂ o , 

one can easily see that )](ˆ,[ βλβ
λλ

o
ooJ ∝ 4β .  Hence, from Equation (2), we have that 

)(βml  ∝  )(βpl  − 2log β  

and the modified profile likelihood equation becomes,  
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Solving the modified profile likelihood equation )(βmS  = 0 gives the modified MLE for β .  

This modification is simple, but works surprisingly well as shown by the Monte Carlo simu-

lations next section. 

 

3.2. The Case of Censored Data 

 For the case of censored data, it is reasonable to use the same orthogonal parameter set-

ting.  Only extra work is to derive, under different censorship mechanism, the observed in-

formation number ))(ˆ,( βλβλλj , the key quantity in the modification term.   

 Let Y1, Y2, …, Yr now denote the r smallest observations in a random sample of n from 

WB( β ,α ), i.e., the data are Type II censored.   The observed information is found to be of 

the same form as in the case of complete sample if the same parameterization is used.  This 

gives the modified the modified profile score function for β : 

 )(βmS  = ∑
=

−
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compared with the usual profile score function 
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where a notational convention, i

r

i
w*

1=
∑  = i

r

i
w

1=
∑ + rwrn )( − , is used. 

 In the situation of Type I censoring, define Ti, i = 1, 2, …, n, as the actual Weibull life-

time, Ci the censoring time, and Yi  = min(Ti , Ci ).  Thus, the data (Y1,  Y2, …,  Yn) now repre-

sent the Type I censored data with r of them the real lifetimes and n − r of them the censored 

lifetimes.  We assume that r ≥ 1.  In this case, we employ the orthogonal parameterization  

oλ  = )log( λ  = )log( α  + βγ )1( − . 

The observed information is )](ˆ,[ βλβλλ
oj ∝ 2β  and we have from (2) that )(βml  = 

)(βpl  − log β . The profile and modified profile scores are 
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and 
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respectively, where D is the set of uncensored observations and r is the total number of them. 

 

4.  MONTE CARLO SIMULATION 

 In this section, some simulation results are presented to compare modified MLE with the 

traditional one. The bias and MSE of the two estimators are simulated.  The reported results 

include: the relative bias, E( β̂ − β )/ β , and the relative efficiency of Mβ̂  to β̂ ,  

REF = MSE( β̂ )/MSE( Mβ̂ ). 

We first consider the case of complete or Type II censored data.  Several sample sizes (n) and 

degrees of censorship (r) are considered.  Ten different β  values are used for each combina-

tion of n and r.  The α  value is fixed at 100 as the estimation of β  for both methods is inde-

pendent of α .  Simulation results are summarized in Table 1.   

 The results in Table 1 indicate that the new estimator denoted as MMLE is almost unbi-

ased with relative bias being less than 1% in most of situations.  It is also much more efficient 

than the regular MLE.  The smaller the sample or the heavier of the censoring, the more effi-

cient is the new estimator relative to the regular MLE.  

 Ross (1994) proposed a simple bias-reduction factor )68.0()2( −− nn  for the case of 

complete data, and added another formula [ ]{ } 1)92.1(37.11 −−+ rrn  for Type II censored 

data (Ross, 1996).  It was shown by simulation that these simple factors work well and can 

reduce the relative bias to less than 0.3%.  However, these two formulas do not match when n 

= r, and there is no simple formula available for other type of censored data.  

 It is easy to see that in the cases of complete and Type II censored data, our modified 

MLE is more efficient than the bias-reduced MLE of Ross.  For examples, for n = r = 10, the 

relative efficiency of the bias-reduced MLE to the regular MLE is 1.36, compared with 1.64 

for the modified MLE, for n = r = 20, the numbers are, respectively, 1.15 and 1.30, and for n 

= 30 and r = 10, the numbers are 1.67 and 1.90, respectively. 
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Table 1.  Relative Bias (%) and Relative Efficiency of MLE and Modified MLE 
Complete or Type II Censored Sample 

   Relative Bias  Relative Bias  Relative Bias  Relative Bias 
β  MLE  MMLE  REF  MLE  MMLE REF  MLE  MMLE REF  MLE   MMLE  REF 
                 (n=10, r=10)               (n=20, r=10)                (n=20, r=15)                (n=20, r=20)           
0.5 17.11 1.82 1.64 21.57 0.52 1.82 12.30 0.70 1.48 7.75 0.94 1.30 
0.8 17.16 1.83 1.64 21.52 0.48 1.83 11.90 0.34 1.47 7.61 0.80 1.29 
1.0 17.33 2.01 1.64 21.66 0.59 1.84 12.40 0.79 1.48 7.57 0.76 1.30 
1.5 16.90 1.62 1.64 21.43 0.38 1.84 12.44 0.83 1.48 7.52 0.72 1.29 
2.0 16.80 1.52 1.63 22.64 1.40 1.86 11.95 0.39 1.47 7.76 0.93 1.31 
3.0 16.90 1.62 1.62 21.50 0.45 1.83 12.02 0.45 1.47 7.62 0.81 1.30 
4.0 16.94 1.64 1.64 21.47 0.41 1.85 12.36 0.74 1.48 7.50 0.71 1.29 
5.0 16.92 1.66 1.62 22.21 1.03 1.84 12.28 0.67 1.48 7.56 0.76 1.29 
8.0 16.25 1.05 1.61 21.77 0.68 1.83 11.79 0.24 1.46 7.83 1.01 1.30 
10.0 16.40 1.22 1.62 21.79 0.70 1.85 12.00 0.42 1.47 7.38 0.59 1.29 
                 (n=30, r=10)                (n=30, r=15)              (n=30, r=20)                 (n=30, r=25)           
0.5 23.04 0.53 1.90 13.08 0.06 1.52 9.11 0.33 1.36 6.63 0.36 1.26 
0.8 22.26 -0.11 1.88 13.54 0.46 1.53 9.11 0.32 1.36 6.93 0.65 1.27 
1.0 22.59 0.16 1.89 13.26 0.21 1.52 8.91 0.14 1.36 6.53 0.27 1.25 
1.5 23.86 1.21 1.89 13.19 0.16 1.52 8.87 0.10 1.35 7.14 0.85 1.28 
2.0 23.02 0.51 1.88 13.55 0.48 1.54 9.17 0.38 1.36 6.94 0.66 1.27 
3.0 23.06 0.54 1.91 12.81 -0.17 1.51 9.16 0.38 1.36 6.65 0.39 1.26 
4.0 22.77 0.31 1.91 13.76 0.66 1.55 8.88 0.13 1.36 6.81 0.54 1.27 
5.0 22.63 0.19 1.89 13.47 0.40 1.53 8.73 -0.02 1.35 6.45 0.20 1.26 
8.0 23.28 0.72 1.92 13.76 0.66 1.54 9.18 0.40 1.36 6.65 0.38 1.26 
10.0 23.65 1.03 1.91 13.45 0.39 1.54 8.85 0.09 1.35 6.76 0.49 1.26 
 

 

  For the Type I censored case, we take the simple situation that the censoring time is con-

stant across the observations.  This is the case that all the testing units are put on test at the 

same time, and the test terminates at time C.  The simulation is run at several degrees of cen-

sorship represented by p0, the proportion of censoring.  Fewer β  values are considered rela-

tive to the complete or Type II censored case since the behavior of the estimators is quite sta-

ble with respect to the β  value.  The α  value is again fixed at 100 since the estimation of β  

is independent of the α  value.  The simulation results are summarized in Table 2.  

 The results show that the modified MLE again performs much better than the regular 

MLE in terms of biasness and efficiency, although not as good as the cases of complete or 

Type II censored data.  The bias of the MLE increases with p0, the proportion of censoring, 

but the modified MLE does not.  The relative efficiency of the modified MLE over the regu-

lar MLE increases with p0 as well. 
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Table 2.  Relative Bias (%) and Relative Efficiency of MLE and Modified MLE 
Type I Censored Data. 

   Relative Bias      Relative Bias 
 p0 β  MLE  MMLE REF   p0 β  MLE  MMLE REF 
   (n = 20)      (n = 30) 
 0.10 0.5 6.51 2.44 1.13  0.10 0.5 3.85 1.20 1.08 
 0.10 1.0 6.26 2.20 1.13  0.10 1.0 3.79 1.14 1.08 
 0.10 2.0 6.36 2.29 1.14  0.10 2.0 3.66 1.01 1.08 
 0.25 0.5 6.49 1.01 1.15  0.25 0.5 4.14 0.58 1.10 
 0.25 1.0 6.84 1.34 1.16  0.25 1.0 4.32 0.76 1.10 
 0.25 2.0 7.00 1.52 1.16  0.25 2.0 4.18 0.63 1.10 
 0.50 0.5 10.87 0.81 1.31  0.50 0.5 6.98 0.68 1.19 
 0.50 1.0 10.37 0.35 1.30  0.50 1.0 6.93 0.57 1.19 
 0.50 2.0 10.88 0.79 1.32  0.50 2.0 7.29 0.95 1.19 
 0.75 * * * *  0.65 0.5 10.41 0.13 1.33 
 0.75 * * * *  0.65 1.0 10.67 0.31 1.35 
 0.75 * * * *  0.65 2.0 10.56 0.26 1.30 
   (n = 100)     (n = 50) 

0.25 0.5 1.31 0.28 1.03  0.10 0.5 2.34 0.78 1.05 
 0.25 1.0 1.01 -0.03 1.03  0.10 1.0 2.36 0.79 1.05 
 0.25 2.0 1.28 0.24 1.03  0.10 2.0 2.38 0.81 1.05 
 0.50 0.5 2.09 0.32 1.06  0.25 0.5 2.41 0.31 1.06 
 0.50 1.0 1.99 0.21 1.05  0.25 1.0 2.43 0.34 1.06 
 0.50 2.0 1.85 0.09 1.05  0.25 2.0 2.76 0.66 1.07 
 0.75 0.5 4.13 0.11 1.12  0.50 0.5 3.87 0.23 1.11 
 0.75 1.0 4.12 0.09 1.12  0.50 1.0 3.60 -0.02 1.10 
 0.75 2.0 4.07 0.07 1.12  0.50 2.0 4.23 0.58 1.11 
 0.90 0.5 12.56 0.22 1.41  0.75 0.5 9.00 0.27 1.28 
 0.90 1.0 12.81 0.43 1.41  0.75 1.0 8.89 0.12 1.29 
 0.90 2.0 12.58 0.28 1.36  0.75 2.0 9.45 0.73 1.25 
 

 Note that all the simulations are carried out using Fortran 90, where an IMSL subroutine  

UVMID is used for solving the likelihood equations.  For the purpose of real data analysis, it 

may be more convenient to use Mathematica or Maple to do the job.  The Fortran code and 

the Mathematica code are available from the fist author upon request. 

 

5. CONCLUSIONS 

 The traditional MLEs for the Weibull parameters are highly biased. This is especially so 

for the shape parameter, which is a very important parameter in reliability decision making 

and planning such as burn- in and replacement time determination.  This problem is basically 

caused by the fact that the estimators are highly correlated. Through parameter orthogonaliza-

tion, an inference procedure is developed in this paper. 

 Specifically, for the Weibull shape parameter, a modified profile likelihood under the no-

tion of parameter orthogonalization is studied.  The modification involves only a simple ad-
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justment to the likelihood equation. Compared with the traditional MLE, the modified MLE 

performs surprisingly well. The modified MLE not only reduces the bias significantly, but is 

also more efficient than both the regular MLE and the unbiased MLE of Ross (1994, 1996).     

 Finally, it should be mentioned that a good estimator for the shape parameter is crucial in 

obtaining a good estimator for the scale parameter as the latter is often a function of the for-

mer and an estimate of the scale parameter can be computed when the shape parameter is es-

timated.  Also, when the shape parameter is estimated, the distribution can be transformed to 

exponential with a simple power transformation and statistical inferences can be carried out 

easily (Xie, Yang and Gaudoin, 2000). 

 

REFERENCES 

D.R. Cox and N. Reid, “Parameter orthogonality and approximate conditional inference (with 
discussion)”,  J. R. Statist. Soc. B, vol 49, 1987, pp 1-30.   

D.R. Cox and N. Reid, “On the stability of maximum-likelihood estimators of orthogonal pa-
rameters”,  Canadian J. Statist., vol 17, 1989, pp 229-233.  

D.R. Cox and N. Reid, “A note on the difference between profile and modified profile likeli-
hood”,  Biometrika, vol 79, 1992, pp 408-411. 

A. Drapella and S. Kosznik,  “An alternative rule for placement of empirical points on 
Weibull probability paper”,  Quality and Reliab. Eng. Int., vol 15, 1999, pp 57-59. 

J.F. Lawless,  Statistical Models and Methods for Lifetime Data, 1982; John Wiley & Sons, 
New York. 

M.S. Mackisack and R.H. Stillman, “A cautionary tale about Weibull analysis”, IEEE Trans. 
Reliability, vol 45, 1996, pp 244 -248. 

M. Pandey and U.S. Singh, “Shrunken estimators of Weibull shape parameter from Type II 
censored samples”,  IEEE Trans. Reliability, vol 42, 1993, pp 81-86. 

R. Ross,  “Formulas to describe the bias and standard deviation of the ML-estimated Weibull 
shape parameter”, IEEE Trans. Dielectrics and Electrical Insulation, vol 1, 1994, pp 
247-253. 

R. Ross,  “Bias and standard deviation due to Weibull parameter estimation for small data 
sets”,  IEEE Trans. Dielectrics and Electrical Insulation, vol 3, 1996, pp 28-42.  

M. Xie, Z. Yang and O. Gaudoin, “More on the mis-specification of the shape parameter with 
Weibull-to-exponential transformation”, Quality and Reliab. Eng. Int., vol. 16, 2000, pp 
281-290. 

Appeared in:  Journal of Statistical Computation and Simulation, 2003, 73, 115-123.




