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Abstract: Many process characteristics follow exponential distribution and control charts 

based on such a distribution have attracted a lot of attention. Traditional control limits 

may be not appropriate because of the lack of symmetry. In this paper, process 

monitoring through a normalizing power transformation is studied. The traditional 

individual measurements control charts can be used based on the transformed data. The 

properties of this control chart are investigated. Comparison with the chart using 

probability limits is also carried out for the cases of known and estimated parameter. 

Without losing much accuracy even compared with the exact probability limits, the power 

transformation approach can easily be used to produce charts that can be interpreted when 

the normality assumption is valid. 
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1.  Introduction 

 A basic assumption in using the traditional Shewhart-type control charts is that the 

quality characteristic involved follows a normal distribution. The Shewhart charts may 

still be applicable to non-normal situations when the sample size is large as guaranteed by 

the Central Limit Theorem. However, in modern manufacturing environment, items are 

often checked one by one and control charts for individual measurements are desirable, 

see e.g., Sheil (1995), Gong et al. (1997) and Xie et al. (1998). The normality assumption 

for individual value is usually questionable and the normality should be tested before the 

implementation of traditional technique.  In case the normality is rejected, it can be 

convenient to first transform a non-normal variable to near normal and then apply the 

traditional control charts on the transformed values.  

 In this paper, process monitoring for exponentially distributed quality characteristic 

is discussed and properties for such a chart based on transformation are studied. One 

usefulness of a control chart for the exponential measurement is that it can be used as a 

control chart for parts-per-million nonconforming items (Nelson, 1994 and Radaelli, 

1998). The idea is that if the number of nonconforming items is assumed to be a Poisson 

random variable then the 'time' until a defective item has an exponential distribution. 

Usually this 'time' can be real time, length or volume, etc. If the production process has a 

constant speed, then obviously the count and the time until a defective item are equivalent 

quantities (Nelson, 1994) that can both be modeled by an exponential distribution. 

 Nelson (1994) proposed a normalizing transformation which may be not an optimal(*) 

one and the properties of the chart based on this transformation have not been 

investigated. A control chart based on an optimal normalizing transformation is proposed 

                                                 
(*) It should be noted that the “optimality” depends on the adopted “optimality” criterion. 
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in this paper. The property of this chart is investigated. At the same time it is compared 

with the chart for exponential distribution with probability limits. Both the case of known 

parameter and estimated one are discussed. The investigation or comparison for 

parameter unknown case are done via an extensive Monte Carlo simulation.  

 This paper is organized as follows. Section 2 discusses the best transformation within 

the power family. Section 3 investigates the properties of the control charts when the 

model parameter is known, whereas Section 4 considers the case of unknown parameter 

where extensive Monte Carlo simulation results are presented. Two illustrative examples 

are also presented in Section 5. 

2.  The Best Normalizing Power Transformation 

2.1. Background 

 In studying the large sample behavior of transformations to normality, Hernandez 

and Johnson (1981) considered an information number approach to transform a known 

distribution to near normality, to serve as benchmarks for the maximum amount of 

improvement achievable through Box-Cox transformation (Box and Cox, 1964). The 

Box-Cox transformation technique aims to transform the nonnegative data to near normal 

through a simple power transformation so that the normal theory procedures can be 

applied to the transformed data. It is seen to have many applications in reliability, quality 

control and lifetime data analysis. See for example, Hinkle and Emptage (1991), Fearn 

and Nebenzahl (1995) and Yang (1999). 

 Let the probability density function (pdf) of a continuous nonnegative random 

variable X be );( xg  where  is the mean. Denote by  Y = X  the power transformed 

observation and ),;( yf  its pdf. Let ),;(  y  be a normal pdf with mean  and 

standard deviation (SD) . The basic idea of finding the `best` normalizing transformation 
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is to find ,  and  such that ),;( yf  and ),;(  y are closest in a certain sense. 

Hernandez and Jonhson (1981) suggested the so-called Kullback-Leibler (KL) 

information number as a measure of closeness: 

  ),( fI  = dy
y

yf
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Thus, the optimal transformation value 0  is found by minimizing (2.1). That is,  

 minimize )],;(),,;([  fI  over (, , ). (2.2) 

This can be done by using the general result of Hernandez and Johnson (1981). For an 

exponential distribution, a direct algebraic manipulation can be easier.  

2.2. Derivation of the best power transformation for exponential variables 

 If X is an exponential random variable, then its pdf has the form );( xg  = 

)exp(1  x ,   > 0. The pdf of Y = X  is thus ),;( yf  = )exp()( 1111   yy   

by change of variable technique. Indeed, it can be noticed that ),;( yf  is a Weibull pdf 
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pdf with mean  and SD , then the Kullback-Leibler information between ),;( yf and 
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By introducing 1yx  , the first integral becomes 
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Finally, we have 

),( fI  = 







2log  + (1)(log)  1 + 


2

2 )12(
2

1   

 )1(2  + 2

2

2
 . 

Now, setting the partial derivatives of ),( fI  with respect to  and  to zero and 

solving the equations, it can be shown that ),( fI  is partially minimized at 

() = )1(      and  )(2   = )]1()12([ 22    . 

Substituting () and )(2   back into ),( fI  gives the partially minimized Kullback-

Leibler information number 

I() = )2log(2
1   + (1)  2

1  log  + 2
1 log[ )12(    )1(2   ]. 

Finally, minimizing I() gives the best transformation. This can be done by any of 

numerical maximization procedure.  The resulted optimal parameter values are: 

   0  = 0.2654, 0  = 0.9034 0  and 0  = 0.2675 0  
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and the minimized distance is  

 )],;(),,;([ 000  fI  = 0.00278. 

 Notice that I() is independent of the parameter  , which makes the transformation 

very attractive to the practitioners. It is interesting to point out that the original 

exponential pdf ( = 1), having a KL number of 0.4189, is very 'far' from a normal pdf. 

Comparison of the minimized KL information numbers shows therefore a great 

improvement to normality by such a simple power transformation. 

 It can be further noted that using the power transformation proposed in Nelson 

(1994), by matching the first few moments,  = 0.2777, we have a KL number of 

0.00293, that is approximately 5% larger than that from the transformation 0 = 0.2654, 

showing that  = 0.2777 is not optimal in terms of KL minimizing criterion. Hence, 

although the two transformations perform similarly, the former is recommended as it has 

a sound theoretical basis.  

 Table 2.1 presents some tail probabilities of the optimally transformed Y with the 

related normal variable. It has seen that the tail probabilities of Y are very close to those 

of the corresponding normal random variable.  

 

Table 2.1.  Tail Probabilities for the Transformed Exponential Random Variable 
 K 0.5 1.0 1.5 2.0 2.5 3.0
 )( 00  kYP   0.311204 0.166061 0.071875 0.022950 0.004234 0.000176

 )( 00  kYP   0.317539 0.163359 0.065652 0.019569 0.004089 0.000564

Normal Tail Prob. 0.308538 0.158655 0.066807 0.022750 0.006210 0.001350
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3. Control Chart when  is Known

 In this section the operating characteristic (OC) function of the chart for Y is 

investigated for the case when the in-control exponential mean, , is known and compared 

with the chart for X based on the exact probability limits. It should be pointed out that for 

asymmetrically distributed characteristics the exact probability limits should be usually 

preferable to the traditional 3-sigma limits. Indeed, it can be noted that for the exponential 

distributions, 3-sigma limits would lead to a negative LCL.  The two-sided control chart 

for the original X, with allowed false alarm probability or Type I risk  is of the form: 

 LCL = )21log(   ,  

   CL = 6931.0 ,   (3.1) 

 UCL = )2log( . 

 

In accordance with the usual approach, the two-sided control chart for Y can be defined as 

follows: 

 LCL = 0  k 0 ,   

    CL = 0 ,   (3.2) 

 UCL = 0 + k 0 , 

where 0 =0.9034 2654.0 , 0 =0.2675 2654.0  and k is the number of SDs allowed in the 

control limits.  

 The ability to detect shifts in process quality is an important factor to be considered 

in designing a control chart. Such ability is often measured by the OC function of the 

control chart, which is defined as the probability of not detecting a shift under an out-of-

control situation. This probability represents the type II risk . As we are interested in 
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detecting a shift in exponential mean  , the -risk for an r SDs shift in the mean of X is 

given (under the X chart) by  

 )(rX  =  0000 )log()1log( 22   rXP                     (3.3) 

 = )1(1)21( r )1/(1)2( r  . 

For the Y chart, the OC function is:  

 )(rY  =  000000  rkYkP    
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where  k > 0 is so that   00  kYP   +  00  kYP   =  . 

 Notice that one SD shift in X scale causes less than one SD shift in Y scale. The X 

chart centers at the median position while the Y chart centers at the mean position. This is 

not unexpected since the distribution of Y is almost symmetric, with mean and median 

almost the same, which are 0.9034 0  and 0)6931.0(  = 0.9073 0 , respectively.  Figure 

3.1 shows the OC function of X and Y charts, for two typical values of k, i.e., k = 2 

(equivalently   = 0.0455) and k = 3 (  = 0.0027). 

 

 

 

 

 

 

Figure 3.1.  OC Curves for X chart (solid line) and Y chart (dashed line). 
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As expected, for k =2 two charts perform very similarly, whereas for k = 3 the exact 

probability limits will perform slightly better than the transformed Y chart. However, the 

chart based on the transformation is able to provide a similar level of sensitivity, 

especially for the case of small to medium shift.  Lastly, it can be remarked that, as   is 

known, comparison between the Average Run Lengths (ARLs) of X and Y charts is 

readily derivable from the OC curves. 

4. Control Chart when  is Unknown 

 When is unknown, it can be commonly estimated on earlier process data. In this 

case, the properties of the two charts are not obvious. In this section, the two approaches 

are compared for the case that  is unknown and supposed to be estimated from n past 

observations X1, X2, …,  Xn. 

4.1. Derivation of the control limits 

 For the X chart, the sample mean X  can be used to estimate , which gives the X 

chart with estimated control limits:  

 )21log(*  XLCLX ,  

   XCLX 6931.0*  , (4.1) 

 )2log(* XUCLX  . 

For the Y chart, one can work directly with the transformed data and construct a control 

chart in the usual way as if the transformed data are exactly normal. A typical control 

chart would be the one which uses the mean of past data as an estimator or 0  and the 

mean of the moving ranges as an estimator of 0 (Nelson, 1994): 
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 22
* dMRkYLCLY  ,  

    YCLY * , (4.2) 

 22
* dMRkYUCLY  . 

where 2MR  is the mean of the moving ranges of two observations and 2d  = 1.128.  There 

are other ways to estimate the control limits of the Y chart. However, we will focus our 

study on (4.2) as it is more common for individual chart that is the case here. 

4.2. Comparison of the alarm rate  

 Since the control limits are estimated in this case, it is difficult to evaluate the -risk, 

the -risk and the ARL. Monte Carlo simulation is helpful and convenient for the 

investigations. There are three issues that have to be addressed for the Y chart with 

estimated control limits: i) the effect of nonnormality as the transformed data are still not 

exactly normal, ii) the effect of estimated control limits, and iii) the relative performance 

compared with the X chart. As the comparison of the Y chart with X chart is the aim of 

this paper, we will concentrate on the last issue. The simulation process can be simply 

described as follows. 

 Let iB  be the event that the next ith observation falls either below *LCL  or above 

*UCL . Then P( iB ) represents the probability that the next ith observation signals a 

process out of control. When process is in control, P( iB ) is the -risk while when the 

process is shifted, then 1P( iB ) is the -risk. Notice that in contrast to the known control 

limit case, the iB 's are not independent anymore. Hence the ARL does not equal to 1/ or 

1/(1). We first simulate P( iB ) and then ARL for certain values of n and r. 
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 To simulate P( iB ) for the X chart, n values from Exp() are generated to calculate 

*
XLCL  and *

XUCL . Then a value from Exp(+ r) is generated and is counted by one if 

this value is either below *
XLCL  or above *

XUCL . Repeat this process many times. The 

proportion of times that the extra value falls either below *
XLCL  or above *

XUCL  gives a 

Monte Carlo estimate of P( iB ). 

 To simulate P( iB ) for the Y chart, generate n values from Exp(), raise these values 

to a power of 0 , and then calculate *
YLCL  and *

YUCL . Generate another value from 

Exp(+ r), and raise it to a power of 0 , and then check to see if this value falls below 

*
YLCL  or above *

YUCL . Repeat this process many times. The proportion of times that the 

extra value falls outside of the control limits gives a Monte Carlo estimate of P( iB ) for 

the Y chart. All the simulation results in this paper were based on 100,000 runs, that 

ensured a good accuracy of the simulated probabilities. For example, the estimated 

standard error of the estimated probability 0.002 is only 0.000141.  Some results are 

presented in Table 4.1. It can be seen that the alarm rate is similar for both methods.  

Table 4.1. Simulated probabilities of acceptance at r sigma shift 

Upper entry is for the X chart; lower entry is for the Y chart. 
 

    r=-0.8   -0.5    0.0    1.0     2.0     3.0     4.0     5.0     6.0 
     k = 2 = 0.0455)  
n = 20  0.8923 0.9543 0.9465 0.8254  0.7011  0.5976  0.5186  0.4566  0.4102 
        0.8516 0.9309 0.9347 0.8291  0.7144  0.6142  0.5384  0.4768  0.4299 
    50  0.8914 0.9539 0.9510 0.8336  0.7037  0.6039  0.5221  0.4632  0.4122 
        0.8738 0.9454 0.9490 0.8444  0.7188  0.6225  0.5401  0.4809  0.4302 
   100  0.8922 0.9543 0.9534 0.8363  0.7070  0.6035  0.5247  0.4620  0.4172 
        0.8844 0.9514 0.9541 0.8470  0.7228  0.6215  0.5435  0.4791  0.4335 
     k = 3 ( = 0.0027) 
n = 20  0.9933 0.9972 0.9951 0.9531  0.8759  0.7963  0.7226  0.6568  0.6024 
        0.9784 0.9912 0.9912 0.9571  0.8943  0.8275  0.7620  0.7023  0.6517 
    50  0.9934 0.9972 0.9969 0.9586  0.8840  0.8014  0.7288  0.6638  0.6053 
        0.9929 0.9968 0.9975 0.9694  0.9092  0.8391  0.7722  0.7118  0.6546 
   100  0.9931 0.9973 0.9969 0.9613  0.8867  0.8040  0.7278  0.6674  0.6102 
        0.9963 0.9986 0.9982 0.9731  0.9150  0.8437  0.7728  0.7167  0.6584 
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4.3. Comparison of the ARL  

 Unlike the case of a known , the ARL cannot be easily calculated as the events iB 's 

are no longer independent. Monte Carlo simulation is used here. To obtain the ARL, n 

values with zero shift from the target value are generated to calculate the estimated 

control limits. Then a number of values are generated with an r sigma shift from the target 

value, until an out of control signal is given. This number serves as one observation 

drawn from the run length distribution. Repeat this process many times. The mean of all 

the observations drawn from the run length distribution serves as an estimate of the ARL. 

 Since the original measurements are exponential and the transformed measurements 

are Weibull where both cases give closed form cdfs, it is possible to give an equivalent 

but simpler algorithm for simulating ARL. Instead of generating additional measurements 

at the shifted mean until one out of control signal, we can simply generate a geometric 

observation with the probability of success (out of control) being the conditional prob-

ability that a new observation is out of the estimated control limits. For the X chart, it is 

 

             p = )()( *0*0 XX XX UCLXPLCLXP    
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and for the Y chart, it is given by 

   p = )()( *0*0 YY YY UCLYPLCLYP    
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where X and Y denote the original and transformed vectors of past observations. Notice 

that to calculate p for the Y chart, it is necessary that *
YLCL  be nonnegative.  This is not 

always true for the Y chart using MR .  We thus use the Y chart with X̂  for 
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simulation and comparison. The simulated ARLs are summarized in Table 4.2. Again, 

each simulated ARL is based on 100,000 runs.   In this case, it can be found that all the 

estimated standard errors are around 0.4% of the corresponding simulated ARLs, showing 

that the simulated ARLs are very accurate. 

Table 4.2.  Simulated ARLs:  Upper entry is for X chart;  lower entry is for Y chart. 
      r=-0.8    -0.5      0.0    1.0    2.0    3.0    4.0    5.0    6.0 
       k = 2  ( = 0.0455) 
n = 20  9.64    22.11    20.52   6.53   3.54   2.58   2.14   1.89   1.72 
        9.62    22.02    21.83   7.00   3.73   2.70   2.21   1.93   1.75 
    50  9.37    22.09    21.39   6.32   3.50   2.55   2.12   1.87   1.71 
        9.31    22.11    22.67   6.75   3.66   2.67   2.19   1.93   1.75 
   100  9.28    22.19    21.61   6.24   3.45   2.54   2.12   1.87   1.71 
        9.25    21.96    23.10   6.66   3.64   2.64   2.19   1.92   1.74 
       k = 3   ( = 0.0027)  
n = 20  156.42  380.75   330.09  34.75  10.20   5.60   3.90   3.10   2.64 
       1189.47 2834.75  1529.13  61.22  14.26   7.09   4.74   3.62   3.00 
    50  152.24  377.35   350.84  29.82   9.44   5.36   3.81   3.04   2.60 
       1158.46 2861.14  1486.41  48.64  12.86   6.71   4.55   3.53   2.94 
   100  149.98  375.08   359.23  28.00   9.22   5.28   3.77   3.03   2.58 
       1148.80 2844.56  1443.02  44.95  12.50   6.62   4.51   3.53   2.93 

 

From Table 4.2 we see that, for k = 2 ( = 0.0455) and when the process is in control (r = 

0), the ARLs for both charts are all very close to the nominal value 1/ = 1/.0455 = 21.98, 

though the values for the Y chart are slightly larger. When there is a shift in the process 

mean, the ARLs for the X chart and Y chart are again very close, showing that the two 

charts are essentially equivalent in detecting a process shift.   

 Also from Table 4.2, for the charts with  = 0.0027 or k = 3, the Y chart has much 

larger ARLs than the X chart when process is in control, which is not bad.  For relatively 

small shifts the Y chart leads to a larger out-of-control ARL than the X chart (e.g., for n = 

100 and r = 3, Y-ARL was approximately 25% larger than the X-ARL). However, when 

there is a large enough shift in process mean, the ARLs for the two charts are very close, 

meaning that the power transformation-based chart will be able to detect process shift at a 

comparable fast speed to the original X chart (e.g., for n = 100 and r = 6, Y-ARL was 

approximately only 13% larger than the X-ARL).  
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5. Two Implementation Examples 

 In this section, two examples are used to illustrate the control charts discussed above. 

The first example uses a simulated data set for illustrating the  known case and the 

second uses a real data set of Baker (1996) for illustrating the  unknown case.  

Example 5.1.  The simulated data. The first 30 values are generated from an exponential 

population with  = 10 and used in deriving control limits, assuming   = 0.0027 (i.e., k = 

3). The next 20 values are generated from an exponential population with  = 30 and the 

last 20 with  = 50. The simulated data are listed below and the control charts are given in 

Figures 5.1 where the observations are plotted on the chart in the same order as they are 

listed in the table.  

Table 5.1. A set of simulated data. 
  = 10 

 3.678  5.071  0.865  30.042 13.380  3.317  7.442  11.140  5.786  11.683 
14.985  2.665 31.648  11.776  1.313  9.261 20.668   7.428 19.834  21.223 
 0.199  0.589 13.219   5.128  0.518  0.598 14.661   2.408  0.732   5.677 

  = 30 
0.863  48.736 73.381  23.543  4.823  7.259 14.300 135.508  0.895  23.334 
0.149  16.438 42.033   2.421 66.695 52.075 19.376  16.974 60.683   0.498 

  = 50 
20.108 54.567 294.152  1.068 52.832 54.063 14.668  16.530  6.785   1.385 
27.902 46.721  23.642 61.648 80.148 58.981 53.652  26.465  9.470 207.671 
 

 From the original X chart, we see that the plotted points cluster between LCL and CL 

which are very close to each other. This makes the data visualization difficult. From the 

control chart for the transformed data, we see that the plotted points scatter evenly around 

the center line.  The two charts perform similarly as far as the ability of identifying a 

process shift is concerned, but the latter is easier to interpret. In fact, suppose that run 

rules and other tests (Nelson, 1984 and Wang et al., 1998) are to be implemented, it is 

much clearer if the transformed plot is used. 
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Figure 5.1. Control charts for the simulated data 

 

Example 5.2.  The interfailure time data. The data set given in Table 5.2 represents the 

interfailure times for 92 successive failures of a photocopier system.  It was originally 

given in Baker (1996) in the form of age (in days) at the failures. 

Table 5.2.  A set of interfailure time data 

7  1 1 49 26 2 12 6 0 8 1 6 2 6 0 67 1 17 4 13 

0  1 36 1 12 13 8 1 7 9 7 11 2 15 32 9 18 8 42 9 

5  7 23 4 18 6 19 3 6 0 14 12 16 19 8 5 4 7 5 0 

22 11 8 1 2 3 11 3 2 8 9 11 26 63 37 7 50 12 3 3 

3  0 6 2 3 36 20 64 22 9 17 10         
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The likelihood ratio test (Lawless, 1982, p441) is performed on the original as well as the 

transformed data and the results are consistent with the hypothesized distributional 

assumptions.  The sample mean of the original data is X =12.337. With  = 0.0027 and k 

= 3, the control charts specified by (4.1) and (4.2) can be easily constructed, see Figure 

5.2. It can be seen that the plotted points in Y chart scatter evenly on both sides of the 

centre line and again further interpretations are straightforward. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 
 
 
 

 
 

Figure 5.2. Control charts for the interfailure time data 

1009080706050403020100

90

80

70

60

50

40

30

20

10

0

Observation Number

In
d

iv
id

u
a

l V
a

lu
e

1

1
1

1

1

CL=8.5508

UCL=81.5186

LCL=0.0167

X Chart

Appeared in:  Journal of Applied Statistics, 2000, 27, 1050-1063.



   17

6. Conclusions 

 The Box-Cox transformation can be used to transform a non-normal distribution to 

normal. In this paper, we have studied the use of this transformation for exponentially 

distributed quality characteristic by minimizing the Kullback-Leibler information number. 

The study indicates that it is easy to use and possesses a number of interesting statistical 

properties, especially it is of great advantage that the transformation to normality does not 

depend on the specific parameter value of the exponential distribution. Similar 

transformations have been proposed in Nelson (1994) and Kittlitz, Jr. (1999), but they 

may not be optimal and no investigation has been given for the properties of the resulted 

control charts.  

 Compared with the traditional probability limits, the data transformation approach 

leads to a chart that is only a little less accurate than the exact one.  The transformed data 

should be used when a control chart is to be interpreted in a traditional sense and 

especially when run rules are to be used. This is especially the case when the model 

parameter is unknown. However, it should be pointed out that data transformation 

approach should be avoided when plotting actual observation for data recording is an 

important issue for specific implementation. 
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