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Abstract

This paper proposes a unified approach to constructing confidence limits for a future percentile

duration or event-time. The construction is based on an analytical calibration of the Box-Cox type

“plug-in” percentile limits (PL). The performance of the calibrated Box-Cox PL is investigated

using Monte Carlo experiments. Comparisons are made with PLs that are specifically designed for

a particular distribution such as Weibull and lognormal. Excellent performances of the calibrated

Box-Cox PL are observed. Simulation based on other popular duration models such as gamma and

inverse Gaussian reveal that the proposed PL is robust against distributional assumptions and that

it performs much better than the distribution-free PL. An empirical illustration is also provided.
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1 Introduction

Duration analysis has become a rapidly growing area of econometric research in the

past two decades. Kieffer (1988) gives a detailed survey on the economic duration and

hazard models. Indeed, actual and potential areas of applications include the strike duration

(Lancaster, 1972; Kennan, 1985), unemployment duration (Lancaster, 1979; Sider, 1985;

Kiefer, et al., 1985), financial transaction duration (Engle and Russell, 1998; Zhang, et al.,

2001), duration of marriages, time to adoption of new technology, lifetimes of firms, product

durability, and others2. Essentially, the literature of economic duration analysis is heavily

based on statistical methods developed in areas of industrial engineering and biomedical

sciences, concentrating on model specification and analysis of duration data. The issue of

adequately predicting future percentile durations has remained relatively unexplored. See

Collins (1991) and Yang (1999b, 2001).

In this paper, we propose a unified approach to constructing confidence limits for

the percentile of a future duration or event-time. Percentile durations can offer important

scopes for empirical studies in applied economics. For example, if one is concerned with

the ’typical’ unemployment duration, then the median duration (the 50th percentile) is

appropriate. If one wants to know when only 1% of the firms turn bankrupt, then the

1st percentile life is essential. And if one wants to gauge the duration after which most of

the unemployed find a job, then the 95th or even 99th percentile are useful. However, the

existing methods to construct reliable confidence limits for future percentiles still face some

practical problems. First, it is often unclear which lifetime distribution should be used.

Second, even if one picks the correct model, the percentile limits for this model could be

unavailable, unsatisfactory, or too complicated to be implemented in practice. Third, the

standard nonparametric or distribution-free methods do not give reliable percentile limits

for extreme percentiles as such methods often require unrealistically large samples. Hence,

it is highly desirable to construct a unified PL for a percentile duration of event-time that

works for any duration or event-time model, thereby reducing the impact of distributional

2More useful references include Heckman and Singer (1984a, b), Kiefer (1988), Lancaster (1985, 1990),

Ryu (1993), Torelli and Trivellato (1993), Koop and Ruhm (1993), Saha and Hilton (1997), and Baker and

Melino (2000)
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assumptions in econometric models. See Heckman and Singer (1984b).

The Box-Cox transformation (Box and Cox, 1964) aims to transform non-negative

continuous observations to exact or near normality. Hernandze and Johnson (1980) showed

that observations following popular distributions such as lognormal, Weibull, gamma, and

inverse Gaussian are all transformable to exact or near normality by the Box-Cox power

transformation. Moreover, percentiles are invariant under a one-to-one transformation. As

such, we shall use the Box-Cox method to construct percentile limits for a transformed per-

centile based on normal theory, and then retrieve percentile limits for the original percentile

from a simple inversion. The whole process is valid if the transformation is known and exact

normality is achievable. However, the problem is that the transformation (parameter) is

often unknown and has to be estimated from the data. In this case, a common practice is

to replace the unknown transformation by its estimate which is then treated as if it were

the true one (Box and Cox, 1964; Collins, 1991; Hahn and Meeker, 1991). Clearly, this

approach ignores the effect of estimating transformation. If such an approach is successful,

the standard methods of statistical inference become applicable and it renders a unified

approach to constructing confidence limits for percentile durations. However, as shown in

Yang (2001) for the case of median and as we will show in this paper for the case of general

percentile, the effect of estimating transformation cannot be ignored and a correction to the

confidence limits is necessary.

In this paper, we extend the approach of Yang (2001) to derive the analytical cal-

ibration of the Box-Cox percentile limits (PL). As the construction of normal-theory PL

involves a noncentral t distribution, the analytical calibration now comes with two factors,

one corresponding to the variance adjustment and the other the mean adjustment. How-

ever, the two calibration factors remain simple, and Monte Carlo experiments show that

the calibrated PL is accurate and robust against the distributional assumptions. The rest

of this paper is set out as follows. Section 2 presents the Box-Cox PL and its asymp-

totic properties. Section 3 derives the analytical calibration of the Box-Cox PL. Section 4

presents Monte Carlo simulations for checking the small sample performance of the Box-Cox

and calibrated Box-Cox PLs. Comparisons are also made with the existing PLs that are

specifically designed for a certain distribution as well as the distribution-free PL. Section
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5 illustrates the superiority of the proposed PLs using the strike duration data of Kennan

(1985). Finally Section 6 gives some concluding remarks. All proofs are contained in the

Appendix.

2 Box-Cox percentile limits and their properties

Let Y = (Y1, Y2, · · · , Yn) be a sample of n non-negative durations or event-times from
a certain distribution. Let Y0 be a future observation from the same population. We are

interested in constructing the confidence limits for yp, the 100pth percentile of Y0. Suppose

that there exists a monotonic increasing transformation h(·,λ), indexed by a transformation
parameter λ, such that the transformed observations are normally distributed with mean µ

and standard deviation σ. That is,

h(Yi,λ)
iid∼ N(µ,σ2), i = 1, · · · , n.

It can be shown that the maximum likelihood estimators (MLE) of µ, σ and λ are

µ̂(λ̂) =
1

n
1Inh(Y, λ̂) ≡ h̄(Y, λ̂),

σ̂(λ̂) =
1√
n
,h(Y, λ̂)− h̄(Y, λ̂)1n,

λ̂ = argmin
f

,h(Y, f)− h̄(Y, f)1n,
ḣy(Y, f)

,

where , · , is the Euclidian norm, 1n is a vector of 1Is, and ḣy(Y, f) is the geometric mean
of {hy(Yi, f) = ∂h(Yi, f)/∂Yi, i = 1, · · · , n}. When λ is known, the restricted MLEs of µ and
σ are denoted by µ̂(λ) and σ̂(λ), respectively.

When λ is known, the usual normal theories can directly be applied to give a prediction

or confidence interval for the transformed quantity of interest, which is then inverted to give

prediction or confidence interval of the quantity in the original scale. However, when λ is

unknown, the usual approach is to follow Box and Cox (1964) to estimate λ and then

proceed with the usual inferences as if the estimated transformation parameter λ were the

true one. This is the popular Box-Cox Transformation Method.

4
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2.1 The Box-Cox percentile limits

As h is an one-to-one mapping, yp is related to zp, the 100pth percentile of the standard

normal, via h(yp,λ) = µ+ σzp. A natural estimator of h(yp,λ) is thus µ̂(λ) + s(λ)zp, and a

natural pivotal quantity for making inference about yp is

Tp(λ) =
µ̂(λ) + s(λ)zp − h(yp,λ)

s(λ)/
√
n

, (1)

where s(λ) is the sample standard deviation in λ-scale. Rewriting Tp(λ) as

Tp(λ) =

√
n[µ̂(λ)− µ]/σ −√nzp

s(λ)/σ
+
√
nzp, (2)

one immediately sees that the first term on the right hand side of (2) is tn−1(−√nzp), a
noncentral t random variable with n− 1 degrees of freedom and a noncentrality parameter

−√nzp. This implies that Tp(λ) ∼ tn−1(−√nzp) +√nzp. Hence,

µT = E[Tp(λ)] = −
√
nzp

^5
n− 1
2

Γ(n−22 )
Γ(n−12 )

− 1
�
, (3)

and

σ2T = V ar[Tp(λ)] =
n− 1
n− 3(1 + nz

2
p)− nz2p

n− 1
2

^
Γ(n−22 )
Γ(n−12 )

�2
. (4)

It can be shown that, as n becomes large, µT converges to 0 and σT converges to 1.

However, the convergence of σT can be very slow for small or large percentiles. This implies

that when n is small to moderate, µT is close to 0 but σT can be significantly larger than 1.

These observations are useful in developing the calibration factors for the percentile limits

when λ is unknown, which will be discussed in Section 3.

Denote the δth quantile of tn−1(−√nzp) by tδn−1(−
√
nzp). Then, with an exact prob-

ability of (1− α) the following will be true

t
α/2
n−1(−

√
nzp) +

√
nzp ≤ Tp(λ) ≤ t1−α/2n−1 (−√nzp) +

√
nzp,

which leads immediately to the exact 100(1− α)% confidence limits for h(yp,λ)F
µ̂(λ)− t1−α/2n−1 (−√nzp)s(λ)√

n
, µ̂(λ)− tα/2n−1(−

√
nzp)

s(λ)√
n

k
(5)

Finally, inverting the lower limit L(λ) and the upper limit U(λ) of the interval in (5), we

obtain the exact 100(1− α)% confidence limits for yp as follows.+
h−1[L(λ), λ], h−1[U(λ), λ]

�
(6)
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where h−1 represents the inverse transformation.

When the transformation parameter λ is unknown, a common practice is to replace

the unknown λ by its MLE λ̂, and treat the estimated transformation as the true one.3 The

resultant confidence limits for yp are+
h−1[L(λ̂), λ̂], h−1[U(λ̂), λ̂]

�
(7)

As the confidence limits given in (7) are obtained by directly plugging λ̂ in (6), they

are termed in this paper as the Box-Cox Percentile Limits. Note that the Box-Cox

percentile limits ignore the possible effect of the transformation estimation. Carroll and

Ruppert (1981) showed that such an effect is usually small for the case of median. In

contrast, we show that the effect of estimating transformation can be very large when

extreme percentiles are concerned. For most percentiles (10% to 90%, say), the effect is

usually small, but not negligible.

2.2 Large sample properties of Box-Cox PL

We say that effect of estimating transformation is small if the PL defined in (7)

behaves like the PLs defined in (6), i.e., the coverage probabilities and the expected lengths

of the two PLs are similar. Clearly, for this to be true, it is necessary that

Tp(λ̂) =
µ̂(λ̂) + s(λ̂)zp − h(yp, λ̂)

s(λ̂)/
√
n

(8)

behaves like Tp(λ) as expressed in (1). Unfortunately, it is not the case as shown by Theorem

1 below. We first state a lemma with its proof given in the Appendix.

Lemma 1 Under the usual regularity conditions for the likelihood inference theory,

we have that
√
n(λ̂− λ) and Tp(λ) are asymptotically independent.

Theorem 1. Assume that i) λ̂ is root-n consistent, and ii) both E[hλ(Yi,λ)] and

E[h(Yi,λ)hλ(Yi,λ)] exist, where hλ(Yi,λ) =
∂
∂λh(Yi,λ). Then, we have

Tp(λ̂) = Tp(λ) +

√
n(λ̂− λ)
σ

{E[hλ(Y0,λ)] +E[sλ(λ)]zp − hλ(yp,λ)}+Op(n−1/2), (9)

3See also Collins (1991), Hahn and Meeker (1991, p.72), and Yang (1999b, 2001)
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where sλ(λ) =
d
dλs(λ). It follows that

E[Tp(λ̂)] = E[Tp(λ)] +O(n
−1/2), (10)

V ar[Tp(λ̂)] = V ar[Tp(λ)] + c
2(µ,σ,λ) +O(n−1/2), (11)

where c2(µ,σ,λ) = V ar

}√
n(λ̂−λ)
σ

]
[Ehλ(Y0,λ) +Esλ(λ)zp − hλ(yp,λ)]2.

Proof of Theorem 1 is given in the Appendix. Note that the order of the second term

on the right hand side of (9) is Op(1), which is of the same order as Tp(λ). This means

that Tp(λ̂) and Tp(λ) do not agree in distribution even when n is large. The results in (10)

and (11) imply that the difference is mainly in the second moments. Hence, a correction

to the variance of Tp(λ̂) is necessary. The feasibility of obtaining an analytical correction

depends on the availability of an explicit expression of c2(µ,σ,λ), which will be discussed

in the next section.

3 Analytically calibrated Box-Cox PL

We now derive an analytical adjustment to Tp(λ̂) so that its limiting distribution is

equivalent to that of Tp(λ), which in turn gives a corresponding adjustment to the Box-

Cox PL. From the results of Theorem 1 we see that E[Tp(λ̂)] agrees with E[Tp(λ)] when

n is large, but V ar[Tp(λ̂)] exceeds V ar[Tp(λ)] by a factor c
2(µ,σ,λ), called the variance

inflation factor. To rectify the discrepancies in variances, it is necessary to obtain a

convenient estimator of c2(µ,σ,λ). Clearly, an explicit expression for c2(µ,σ,λ) renders a

very simple estimator.

3.1 The power transformation

In general, the results obtained above are valid for any monotonic increasing trans-

formation. However, to derive an explicit expression or approximation to c2(µ,σ,λ), it is

necessary to specify the transformation function. There are several options available. The

most appropriate one for transforming duration and event-time data may be the Box-Cox

7
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power transformation

h(Yi,λ) =

⎧⎪⎨⎪⎩ (Y λ
i − 1)/λ, λ W= 0,

logYi, λ = 0,

Some remarks are in order: i) hy(Y0,λ) = Y
λ−1
0 ; ii) hλ(Y0,λ) =

1
λ [Y

λ
0 logY0−h(Y0,λ)], which

becomes 12 log
2 Y0 when λ = 0; iii) for h(yp,λ) = µ+ σzp, we have yp = [1 + λ(µ+ σzp)]

1/λ,

which becomes exp(µ + σzp) when λ = 0; and iv) h(Yi,λ) cannot be exact normal unless

λ = 0. It, however, can be very close to normal if λσ/(1 + λµ) is small. See Yang (1999a)

for a detailed discussion on this issue.

Corollary 1. Under the conditions of Theorem 1, the standard Box-Cox power

transformation function, and θ = λσ/(1 + λµ), we have for large n,

(i) c2(µ,σ,λ) ≈ 1

6

p
1− z2p − 3θzp + θz3p

Q2
, when λ W= 0, θ U 1,

(ii) c2(µ,σ,λ) =
1

6
(1− z2p)2, when λ = 0.

The proof of Corollary 1 is given in the Appendix. It turns out the variance inflation

factor has very simple expressions. It depends on the parameters only through θ when

λ W= 0, and is parameter free when λ = 0. When p = 0.5 it reduces to a pure constant 1/6,
which is the special case of median considered in Yang (2001).

The results of Corollary 1 allow us to draw some qualitative conclusions regarding the

magnitude of variance inflation due to transformation estimation. Note that θ is assumed

to be small. Thus, the magnitude of the variance inflation c2(µ,σ,λ) depends mainly on

zp. It is small when z
2
p is close to 1 (i.e., around 16th or 84th percentiles); not negligible

when z2p is close to zero (i.e., around the median); and large when z
2
p is much larger than 1

(i.e., at the extreme percentiles). We note in passing that these features provide important

practical implications as to when the more conventional Box-Cox Pl works well and when

it needs an adjustment.

3.2 Analytical calibration

We are now ready to discuss calibrating the Box-Cox PL so that it has correct or

approximately correct coverage for any percentile. Write c2(µ,σ,λ) as c2(θ) and define

8
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θ̂ = λ̂σ̂/(1 + λ̂µ̂). From Theorem 1, we see that the adjusted pivotal Tp(λ̂)/
�
1 + c2(θ̂)

has approximately the same asymptotic distribution as Tp(λ) when n is large. However, as

discussed in Section 2.1, V ar[Tp(λ)] can be far from 1 when n is not large enough, especially

when the extreme percentiles are considered. Thus, for small to moderate n, the correction

factor should be
�
1 + c2(θ̂)/σ2T , where σ

2
T is the variance of Tp(λ) given in (4). Further, as

E[Tp(λ̂)] W= 0 for finite n, a change in variance causes a change in the mean, which should
then be recovered afterwards. Thus, the adjusted pivotal quantity takes the form

T ∗p (λ̂) =
Tp(λ̂)− Cm(θ̂)

Cs(θ̂)
, (12)

where Cm(θ̂) = µT (1 − Cs(θ̂)), Cs(θ̂) =
�
1 + c2(θ̂)/σ2T , and µt = E[Tp(λ)] given in (3).

Hence, a handy calibration of the percentile limits factoring into the effects of estimating

transformation parameter are obtained as

+
[1 + λ̂L∗(λ̂)]1/λ̂, [1 + λ̂U∗(λ̂)]1/λ̂

�
, (13)

with

L∗(λ̂) = µ̂(λ̂)− t1−α/2n−1 (−√nzp)Cs(θ̂)s(λ̂)√
n
+ (1− Cs(θ̂))(

√
nzp + µT )

s(λ̂)√
n
,

U∗(λ̂) = µ̂(λ̂)− tα/2n−1(−
√
nzp)Cs(θ̂)

s(λ̂)√
n
+ (1−Cs(θ̂))(

√
nzp + µT )

s(λ̂)√
n
.

We shall call the percentile limits specified by (13) the Calibrated Box-Cox Percentile

Limits. When λ̂ = 0, they become {exp[L∗(0)], exp[U∗(0)]}.

4 Small sample behavior of the PLs

We have performed Monte Carlo experiments for the following purposes: i) to check

the finite sample performance of the calibrated Box-Cox PL and its robustness against

the distributional specifications, ii) to see the effect of estimating transformation and the

necessity of calibration, and iii) to compare the performance of the calibrated Box-Cox PL

with the PL designed specifically for a given distribution, and the distribution-free PL.

The simulation process is described as follows. For each random sample of size n

generated from a specified distribution, various percentile limits are calculated. For each

9
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type of PLs, check if it contains the true percentile and record the length of the interval

(upper limit - lower limit). Repeat this process 10,000 times. For each type of PLs, for

example the calibrated Box-Cox PL, the proportion of the PLs among the 10,000 generated

that cover the true percentile gives a Monte Carlo estimate of the true coverage probability

of the calibrated Box-Cox PL. Similarly, the average length of these 10,000 PLs gives a

Monte Carlo estimate of the expected length of the PL in question.

Four models, the lognormal, Weibull, gamma and the inverse Gaussian, are used

in our simulation studies. Note that an exact PL exists for the lognormal (Hanh and

Meeker, 1991, p.56) and an approximate PL exists for the Weibull (Nelson, 1982, p.232).

The PLs for gamma and inverse Gaussian are either too complicated or not available, but

they are included in order to assess the robustness of each of the four PLs against the

data distribution. A distribution-free PL is also available (Hahn and Meeker, 1991, p.82),

which usually requires a large sample to yield a reasonable performance, especially at the

extreme percentiles. For each chosen distribution, four parameter configurations are used

to generate a range of population skewness from small to large, thereby capturing the effect

of the skewness on the performance of the Box-Cox type PLs. In addition, four sample sizes

(10, 20, 30 and 50) are used; and thirteen percentile points (1%, 5%, 10%, · · · , 90%, 95%,
and 99%) are considered. All simulations are performed using Fortran 90 on a mainframe

at the National University of Singapore.

Selected simulation results are presented in tables, for easy comparisons of the five

PLs (calibrated Box-Cox PL, Box-Cox PL, lognormal PL, Weibull PL and distribution-free

PL) in terms of both the coverage probability and the average length. Detailed simulation

results on coverage probabilities of the PLs (except the distribution-free PL) are presented

in plots. The distribution-free PL is excluded from the plots as the method breaks down

for small and large percentiles when sample sizes are not large enough.

The Lognormal Model.4 The lognormal distribution is of particular interest as

in this case an exact normality is achievable by transformation and hence pure effects of

4A random variable Y is said to follow a lognormal distribution, denoted by LN(µ,σ), if log Y ∼ N(µ,σ2).
The parameter σ controls the skewness of the distribution and as σ increases, the population skewness

increases quickly.
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estimating transformation as well as analytical calibration can be seen. The simulation

results are summarized in Table 1 and Figures 1a-1c.

Table 1 and Figure 1 here

From Table 1, we see that the calibrated Box-Cox PL performs excellently, with the

coverage probabilities and the average lengths very close to those of lognormal PL. The effect

of calibration is not negligible at the 50th percentile, but negligible at the 20th and 80th

percentiles. However we note from Figure 1 that the effect of calibration is very significant

at extreme percentiles, including the 1st, 5th, 95th and 99th, respectively. These empirical

findings are consistent with the theory (see the discussions following Corollary 1). In general,

we find that an adjustment to the Box-Cox PL should be given. The population skewness

significantly affects the length of percentile interval, but does not play a significant role when

coverage probability is concerned. More detailed observations from the plots are in order.

As sample size increases, the coverage probabilities of the calibrated Box-Cox PL move

closer to the nominal levels. In addition, the larger the n, the more significant is the effect

of calibration. Again, these features are consistent with the theoretical results developed in

Section 3. Moreover, the Weibull PL, which is a wrong PL against the chosen lognormal,

performs rather poorly with its coverage probability varying wildly. The distribution free

PL is rather conservative and can be much longer than the lognormal PL and calibrated

Box-Cox PL as seen from Table 1.

The Weibull Model.5 The Weibull model is one of the most popular models used in

duration and event-time analysis. A Weibull random variable is transformable to near (but

not exact) normality by raising it to a power of 0.2654β (Hernandze and Johnson, 1981;

Yang 1999, 2001). The simulation results are summarized in Table 2 and Figures 2a-2c.

Table 2 and Figure 2 here

From Table 2, we see that the calibrated Box-Cox PL even outperforms the PL

specifically designed for the Weibull distribution, for small to moderate sample sizes and

5The Weibull distribution, denoted by WB(ν, β), has a cumulative distribution function of the form:

1 − exp[−(y/ν)β ], where ν is the scale parameter and β is the shape parameter. The skewness of the

population is completely controlled by β, and the smaller the β, the more skewed is the distribution.

11
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for percentile points ranging from 10% to 90%. This is particularly true for the 99% PLs.

In fact, the Weibull PL can be rather liberal when the sample size is small. When the wrong

lognormal PL is used for data generated from the Weibull population, its performance is

rather unstable. The distribution-free PL is again conservative and can be much longer than

the calibrated Box-Cox PL and the Weibull PL. It should be pointed out that a Weibull

random variable can not be transformed to exact normality by power transformation. Hence,

it is not necessarily true that the calibrated Box-Cox PL has the correct asymptotic coverage.

However, our simulation results show that such a non-normality effect is small except at

the extreme percentile points. Similar to the case of lognormal distribution, population

skewness does not seem to play an important role except in changing the length of the

confidence intervals.

The Gamma Model.6 The purpose of including the gamma and the following

inverse Gaussian model in the simulation is to understand the performance of each of the

PLs, particularly when none of the PLs is the right one. Note that a gamma random

variable is also transformable to near normality by a power transformation (Hernandze and

Johnson, 1981), where the power depends only on the shape parameter and it approaches

to 1/3 as the shape parameter goes to ∞. The simulation results are summarized in Table
3 and Figures 3a-3c.

Table 3 and Figure 3 here

As can be observed from Table 3 and Figure 3 only the calibrated Box-Cox PL

generally performs in an acceptable way. All other PLs can perform rather poorly at certain

situations, with coverage probabilities fluctuating wildly with the change of the population

skewness and the percentile point. The population skewness affects the PL behavior in both

the coverage probability and the average length. From Figure 3, it seems that the calibrated

Box-Cox PL performs better when the population is not so skewed compared with the case

when the population is very skewed. An increase in sample size generally improves the

6The pdf of the gamma distribution is of the form: 1
Γ(β)νβ

yβ−1 exp(−y/ν), where as in the case of Weibull
distribution, ν is the scale parameter, β is the shape parameter, and the value of β completely controls the

population skewness.
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coverage of the calibrated Box-Cox PL, except at the extreme percentile points and with

a highly skewed population. These reflect the nonormality effect as the more skewed the

gamma population is, the less transformable it is to normality.

The inverse Gaussian Model.7 Once again, the inverse Gaussian distribution is

transformable to near normality by a simple power transformation with its power depending

only on the ratio of the two parameters. The simulation results for the inverse Gaussian

model are summarized in Table 4 and Figures 4a-4c.

Table 4 and Figure 4 here

Similar to the case of gamma distribution, the simulation results indicate that only

the calibrated Box-Cox PL performs acceptably in general. All other intervals can perform

poorly at certain situations. Also, similar to the gamma case, increasing the sample size

generally improves the coverage of the calibrated Box-Cox PL, except the 90% and 99%

confidence limits for the extreme percentiles of a highly skewed population. These again

reflect the effect of non-normality.

Based on the combined analysis of all the simulation results given above, we may

conclude that the calibrated Box-Cox PL is very robust with respect to the distributional

assumptions. Our findings have bearing on practical applications as to which of the duration

or lifetime model should be used to fit the data.

5 Empirical illustration

We now use the well-known strike duration data of Kennan (1985) to illustrate the

methods of constructing percentile limits introduced in this paper. The data set is repro-

duced as follows: 7 9 13 14 26 29 52 130 9 37 41 49 52 119 3 17 19 28 72 99 104 114 152

153 216 15 61 98 2 25 85 3 10 1 2 3 3 3 4 8 11 22 23 27 32 33 35 43 43 44 100 5 49 2 12 12

21 21 27 38 42 117. They represent the durations in days of 62 strikes in the period from

1968 to 1976. It has been subsequently analyzed by many authors including Keifer (1988)

7The pdf of inverse Gaussian is of the form:
p

β
2πy3

Q1/2
exp
p
−β(y−ν)2

2ν2y

Q
, where ν is the location parameter,

β is the scale parameter, and the population skewness is 3(ν/β)1/2.
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and Greene (2000), using models such as exponential, lognormal, log logistic and Weibull.

The data is positively skewed. We fit the Box-Cox model to the data and obtain the MLE

of λ being λ̂ = 0.1668. The goodness of fit tests indicate that the Box-Cox model fits the

data better than other duration models.

The four types of percentile limits are calculated at p = 0.05, .1, .2, .3, .4, .5, .6, .7,

.8, .9, .95, and the resultant lower and upper limits are plotted in Figure 5. The Box-Cox

estimates of the percentiles are included in the same plots. For easy comparisons, the plots at

each nominal coverage level are done in two parts: one corresponding to p = .05, .1, .3, .4, .5

and the other corresponding to p = .6, .7, .8, .9, .95. From the plots in Figure 5, we see that

fitting different models to the data results in substantial different PLs. We recommend

the calibrated Box-Cox PL as most adequate on grounds that it is robust against the

distributional assumptions and that it is similar in width to the other PLs.

Figure 5 here

Besides the unified approach to constructing the PLs, we have experimented with

some distribution-free methods. As often encountered, the distribution-free method breaks

down at p=0.05 and 0.95 even for such a sample of size n = 62. We thus did not include

it in the plots of Figure 5. However, we have calculated a few of the distribution-free PL

and compared them with the calibrated Box-Cox PL. The results are summarized in Table

5. Consistently, the calibrated Box-Cox PLs are generally shorter.

Table 5: Selected PLs for strike duration data

Calibrated Box-Cox PL Distribution-free PL
p 90% PL 95% PL 99% PL 90% PL 95% PL 99% PL
.1 2.3 6.1 2.0 6.6 1.5 7.5 2 5 2 5 1 8
.2 5.3 11.4 4.8 12.1 3.9 13.5 3 12 3 12 3 14
.8 52.1 87.8 49.8 92.9 45.7 104.4 49 114 44 117 43 119
.9 79.7 143.1 75.9 152.8 69.2 174.9 98 152 98 153 72 216

6 Concluding remarks

In this paper, we have proposed a unified approach to analytically calibrating the

Box-Cox type “plug-in” percentile limits for a percentile of a future duration or event-
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time. Percentile limits based on the correct variance of the Box-Cox pivotal quantity are

duly constructed. We also examine the small-sample properties of the proposed Box-Cox

type percentile limits using Monte Carlo simulations. We find that the Box-Cox PLs are

quite robust against the distributional assumptions for duration and event-time models and

that it does not require a large sample for the PL to function well. Based on Kennan’s

strike duration data, we illustrate that the Box-Cox PLs are superior to other PLs under

various distributional assumptions. Our findings may help to shed light on a topic for future

research where exogenous variables affect the duration or event-time.

There are two interesting issues remain to be resolved: one is to compare our cal-

ibration approach with that based on inverting the likelihood ratio test in constructing

confidence intervals for yp (see, e.g., Hanh and Meeker, 1991, ch. 12), and the other is

to compare the proposed calibration methodology with some extreme quantile estimators

proposed in the extreme value literature when the main interest is in extrapolation (see,

e.g., Embrecgts, et al., 1997, ch. 6).8 However, both issues are quite involved either com-

putationally or theoretically, we decide to deal with them in a separate paper.
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Appendix

Proof of Lemma 1. Let θ = (β,σ)I, U1(θ,λ) and U2(θ,λ) be the score functions

that correspond to the estimation of θ and λ, respectively. For example, when λ is known,

then U1(θ,λ) = 0 defines θ̂(λ) = [β̂(λ), σ̂(λ)]I. Let I be the expected Fisher information

matrix, partitioned according to θ and λ, with its elements denoted by Iθθ, Iθλ, Iλθ, and

8The authors are grateful to an anonymous referee for raising these two issues.
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Iλλ. It is easy to see that

√
n(θ̂(λ)− θ) = − 1√

n
I−1θθ U1(θ,λ) + op(1)

√
n(λ̂− λ) = − 1√

n
IλλU2(θ,λ) +

1√
n
IλλIθλI

−1
θθ U1(θ,λ) + op(1)

where Iλλ is the lower-right corner element in I−1. From these two expansions, we have

Cov[
√
n(θ̂(λ)− θ),√n(λ̂− λ)] = op(1),

hence
√
n(θ̂(λ) − θ) is asymptotically independent of

√
n(λ̂ − λ). As Tp(λ) depends on Y

only through θ̂(λ), it follows that Tp(λ) is asymptotically independent of
√
n(λ̂− λ).

Proof of Theorem 1. It can be shown that

h̄λ(Y,λ) = E[hλ(Y0,λ)] +Op(n
−1/2)

By Taylor expansions, we have

µ̂(λ̂) + s(λ̂)zp = µ̂(λ) + s(λ)zp + (λ̂− λ)[h̄λ(Y,λ) + sλ(λ)zp] +Op(n−1)
= µ̂(λ) + s(λ)zp + (λ̂− λ) {E[hλ(Y0,λ)] +E[sλ(λ)]zp}+Op(n−1),

h(yp, λ̂) = h(yp,λ) + (λ̂− λ)hλ(yp,λ) +Op(n−1).

It follows that

µ̂(λ̂) + s(λ̂)zp − h(yp, λ̂) = µ̂(λ) + s(λ)zp − h(yp,λ)
+(λ̂− λ)[Ehλ(Y0,λ) +Esλ(λ)zp − hλ(yp,λ)] +Op(n−1).

In addition,
1

s(λ̂)
=

1

s(λ)
+Op(n

−1/2) =
1

σ
+Op(n

−1/2).

Combining the above leads to (9) and then (10). Finally, (11) follows from Lemma 1.

Proof of Corollary 1. First, the derivative of h(.,λ) with respect to λ is,

hλ(Y0,λ) =
d

dλ
h(Y0,λ) =

1

λ
[Y λ
0 log Y0 − h(Y0,λ)],

which converges to 1
2 log

2 Y0 as λ converges to zero.
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Second, when λ W= 0, λ log Y0 = log(1 + λh(Y0,λ)). A Taylor expansion leads to

λ log Y0 ≈ log(1 + λµ) + θe0 − 1
2
θ2e20,

where θ = λσ/(1 + λµ), and e0 = [h(Y0,λ)− µ]/σ. After some algebra, it follows that

hλ(Y0,λ) ≈ 1

λ2
φ logφ+

σ

2λ
θe20 +

σ

λ
e0 logφ− σ

2λ
θ2e30 −

µ

λ
.

and

hλ(yp,λ) ≈ 1

λ2
φ logφ+

σ

2λ
θz2p +

σ

λ
(logφ)zp − σ

2λ
θ2z3p −

µ

λ
.

Similarly, we differentiate s(λ) with respect to λ to get

sλ(λ) =
d

dλ

l
1

n− 1
n3
i=1

[h(Yi,λ)− h̄(Y,λ)]2
M1/2

=
1

(n− 1)s(λ)

l
n3
i=1

[h(Yi,λ)− h̄(Y,λ)][hλ(Yi,λ)− h̄λ(Y,λ)]
M

=
1

(n− 1)σ

l
n3
i=1

[h(Yi,λ)− h̄(Y,λ)]hλ(Yi,λ)
M
+Op(n

−1/2)

=
1

n− 1
n3
i=1

eihλ(Yi,λ) +Op(n
−1/2)

= E[e0hλ(Y0,λ)] +Op(n
−1/2)

Since h(Y0,λ) is approximate normal, the first four moments of e0 are approximately the

same as those of the standard normal random variable. Thus,

E[hλ(Y0,λ)] ≈ 1

λ2
φ logφ+

σ

2λ
θ

and

E[e0hλ(Y0,λ)] ≈ σ

λ
logφ− 3

2

σ

λ
θ2,

A little calculation yields

E[hλ(Y0,λ)] +E[sλ(λ)]zp − hλ(yp,λ) ≈ σθ

2λ
(1− z2p)−

σθ2

2λ
(3zp − z3p).

Finally, we use a result from Yang (1999a). That is

V ar[
√
n(λ̂− λ)] ≈ 2λ2/(3θ2).
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Putting the relevant approximations together gives the results as stated in Corollary 1.
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Table 1: Selected simulation results for LN(µ,σ), µ = 1, n = 30

Coverage Probability Average Length
1-α σ CBC BC LN WB DF CBC BC LN WB DF

50th percentile
.90 0.5 .8945 .8679 .8966 .7151 .9003 0.88 0.82 0.84 0.81 1.05

1.0 .8941 .8697 .9027 .7245 .8994 1.81 1.68 1.72 1.80 2.17
1.5 .8916 .8672 .9010 .7116 .9007 2.85 2.64 2.70 3.06 3.49
2.0 .8918 .8640 .9018 .7155 .8975 4.05 3.74 3.81 4.66 5.10

.95 0.5 .9470 .9291 .9476 .8054 .9547 1.07 0.99 1.02 0.97 1.31
1.0 .9504 .9325 .9519 .8094 .9580 2.21 2.05 2.10 2.17 2.74
1.5 .9483 .9328 .9510 .8023 .9581 3.52 3.25 3.33 3.71 4.47
2.0 .9469 .9281 .9490 .7994 .9579 5.04 4.63 4.73 5.69 6.65

.99 0.5 .9902 .9846 .9899 .9218 .9936 1.44 1.34 1.37 1.28 1.86
1.0 .9911 .9847 .9895 .9187 .9951 3.05 2.82 2.89 2.89 4.05
1.5 .9912 .9849 .9917 .9225 .9959 4.95 4.54 4.66 5.00 6.89
2.0 .9910 .9848 .9905 .9211 .9947 7.38 6.71 6.87 7.88 10.9

20th percentile
.90 0.5 .8946 .8918 .8976 .9208 .9281 0.64 0.64 0.63 0.88 0.93

1.0 .8950 .8930 .9045 .9186 .9283 0.85 0.84 0.84 1.28 1.16
1.5 .8939 .8918 .9025 .9179 .9293 0.87 0.87 0.85 1.44 1.14
2.0 .8923 .8900 .9011 .9167 .9294 0.81 0.80 0.78 1.46 1.05

.95 0.5 .9444 .9431 .9522 .9559 .9667 0.77 0.76 0.76 1.06 1.02
1.0 .9403 .9387 .9474 .9590 .9621 1.02 1.01 1.00 1.55 1.33
1.5 .9446 .9432 .9511 .9595 .9647 1.04 1.03 1.02 1.76 1.35
2.0 .9446 .9428 .9517 .9566 .9637 0.99 0.98 0.95 1.85 1.28

.99 0.5 .9857 .9853 .9895 .9881 .9959 1.02 1.01 1.01 1.40 1.45
1.0 .9857 .9853 .9905 .9900 .9961 1.35 1.34 1.32 2.11 1.87
1.5 .9868 .9866 .9899 .9894 .9963 1.40 1.38 1.36 2.52 1.95
2.0 .9887 .9880 .9909 .9898 .9963 1.32 1.31 1.28 2.77 1.90

80th percentile
.90 0.5 .8898 .8874 .8975 .7782 .9313 1.54 1.53 1.55 1.11 2.73

1.0 .8956 .8922 .9017 .7832 .9275 4.96 4.90 5.02 3.43 10.2
1.5 .8886 .8872 .8984 .7834 .9300 12.4 12.3 12.6 8.22 30.6
2.0 .8861 .8843 .8939 .7771 .9253 28.0 27.6 28.7 17.7 84.2

.95 0.5 .9422 .9412 .9524 .8533 .9616 1.89 1.86 1.89 1.32 2.89
1.0 .9419 .9408 .9523 .8530 .9634 6.21 6.12 6.24 4.13 10.6
1.5 .9446 .9436 .9532 .8591 .9638 15.7 15.5 15.8 9.82 31.1
2.0 .9436 .9420 .9507 .8587 .9677 36.6 36.0 37.0 21.3 86.4

.99 0.5 .9858 .9856 .9901 .9364 .9954 2.64 2.61 2.63 1.75 4.77
1.0 .9834 .9829 .9896 .9352 .9952 9.09 8.94 9.01 5.48 20.6
1.5 .9857 .9857 .9905 .9376 .9965 24.8 24.3 24.5 13.4 75.9
2.0 .9837 .9832 .9906 .9363 .9951 62.4 60.8 60.9 29.6 298.

Notes: CBC, BC, LN, WB and DF stand, respectively, for calibrated Box-Cox PL, Box-Cox PL,

lognormal PL, Weibull PL and distribution-free PL.

20

Appeared in:  Insurance: Mathematics and Economics, 2004, 35, 649-677.



Table 2: Selected simulation results for WB(ν,β), ν = 1, n = 30

Coverage Probability Average Length
1-α β CBC BC LN WB DF CBC BC LN WB DF

50th percentile
.90 3.0 .8894 .8647 .8101 .8856 .9058 0.21 0.20 0.21 0.20 0.26

2.0 .8841 .8591 .8031 .8803 .9035 0.30 0.28 0.29 0.29 0.37
1.0 .8894 .8639 .8063 .8835 .8991 0.50 0.46 0.45 0.49 0.62
0.5 .8862 .8597 .8003 .8807 .9010 0.74 0.68 0.58 0.76 0.97

.95 3.0 .9419 .9222 .8932 .9303 .9564 0.26 0.24 0.26 0.24 0.32
2.0 .9426 .9236 .8980 .9308 .9571 0.36 0.33 0.35 0.35 0.45
1.0 .9430 .9246 .8937 .9332 .9587 0.60 0.56 0.55 0.59 0.77
0.5 .9460 .9247 .8962 .9382 .9610 0.91 0.84 0.73 0.93 1.26

.99 3.0 .9893 .9835 .9810 .9793 .9956 0.35 0.32 0.35 0.32 0.45
2.0 .9883 .9806 .9791 .9796 .9953 0.48 0.45 0.48 0.46 0.63
1.0 .9913 .9849 .9821 .9795 .9943 0.82 0.76 0.77 0.80 1.10
0.5 .9885 .9811 .9791 .9785 .9942 1.31 1.20 1.10 1.34 1.94

20th percentile
.90 3.0 .8873 .8768 .7351 .8905 .9293 0.22 0.21 0.17 0.24 0.34

2.0 .8877 .8768 .7293 .8864 .9266 0.26 0.25 0.20 0.28 0.38
1.0 .8853 .8737 .7251 .8863 .9250 0.25 0.24 0.18 0.28 0.33
0.5 .8883 .8747 .7292 .8859 .9251 0.13 0.13 0.08 0.17 0.17

.95 3.0 .9355 .9277 .8150 .9291 .9593 0.27 0.26 0.21 0.28 0.37
2.0 .9415 .9338 .8169 .9335 .9629 0.31 0.30 0.23 0.34 0.42
1.0 .9402 .9323 .8194 .9343 .9644 0.30 0.29 0.21 0.35 0.38
0.5 .9382 .9308 .8134 .9297 .9600 0.17 0.16 0.10 0.22 0.21

.99 3.0 .9846 .9822 .9263 .9735 .9956 0.36 0.34 0.27 0.37 0.53
2.0 .9848 .9824 .9309 .9768 .9950 0.41 0.39 0.31 0.45 0.58
1.0 .9863 .9841 .9262 .9779 .9969 0.39 0.38 0.28 0.48 0.52
0.5 .9853 .9818 .9270 .9761 .9958 0.23 0.22 0.14 0.34 0.33

80th percentile
.90 3.0 .9097 .9076 .9658 .8956 .9277 0.26 0.25 0.37 0.27 0.38

2.0 .9093 .9074 .9670 .8953 .9305 0.42 0.42 0.62 0.44 0.64
1.0 .9068 .9055 .9679 .8914 .9272 1.08 1.07 1.71 1.13 1.82
0.5 .9052 .9040 .9656 .8946 .9252 3.84 3.81 7.21 4.13 8.21

.95 3.0 .9531 .9517 .9900 .9426 .9617 0.31 0.31 0.45 0.32 0.41
2.0 .9508 .9497 .9872 .9387 .9609 0.50 0.50 0.76 0.52 0.69
1.0 .9530 .9520 .9880 .9397 .9670 1.32 1.32 2.14 1.36 1.93
0.5 .9535 .9520 .9888 .9395 .9630 4.85 4.82 9.88 5.16 8.37

.99 3.0 .9901 .9897 .9994 .9820 .9952 0.42 0.42 0.62 0.42 0.61
2.0 .9904 .9901 .9989 .9831 .9965 0.69 0.68 1.06 0.69 1.04
1.0 .9886 .9883 .9990 .9832 .9963 1.86 1.85 3.22 1.84 3.10
0.5 .9887 .9881 .9986 .9827 .9952 7.53 7.47 18.4 7.50 16.9

Notes: CBC, BC, LN, WB and DF stand, respectively, for calibrated Box-Cox PL, Box-Cox PL,

lognormal PL, Weibull PL and distribution-free PL.
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Table 3: Selected simulation results for GA(ν,β), ν = 1, n = 30

Coverage Probability Average Length
1-α β CBC BC LN WB DF CBC BC LN WB DF

50th percentile
.90 3.0 .8938 .8681 .8686 .8397 .8971 1.03 0.96 0.98 0.96 1.24

2.0 .8920 .8698 .8524 .8566 .9064 0.81 0.75 0.76 0.77 0.98
1.0 .8869 .8568 .8002 .8781 .8987 0.50 0.46 0.45 0.49 0.62
0.5 .8750 .8461 .7181 .8918 .8987 0.25 0.23 0.21 0.26 0.34

.95 3.0 .9502 .9322 .9339 .9069 .9546 1.25 1.16 1.18 1.15 1.54
2.0 .9539 .9369 .9267 .9191 .9623 0.98 0.91 0.92 0.92 1.22
1.0 .9428 .9208 .8936 .9313 .9561 0.60 0.56 0.55 0.59 0.77
0.5 .9335 .9112 .8435 .9406 .9559 0.31 0.29 0.26 0.32 0.42

.99 3.0 .9899 .9823 .9871 .9612 .9948 1.69 1.57 1.60 1.51 2.18
2.0 .9901 .9852 .9865 .9710 .9945 1.32 1.23 1.26 1.22 1.72
1.0 .9890 .9809 .9817 .9797 .9948 0.82 0.76 0.77 0.80 1.10
0.5 .9875 .9789 .9700 .9852 .9940 0.43 0.40 0.38 0.45 0.62

20th percentile
.90 3.0 .8912 .8848 .8197 .9023 .9286 0.78 0.76 0.66 0.94 1.13

2.0 .8885 .8811 .7916 .8981 .9271 0.55 0.53 0.44 0.65 0.78
1.0 .8874 .8780 .7355 .8887 .9272 0.25 0.24 0.18 0.28 0.33
0.5 .8852 .8705 .6669 .8739 .9269 0.07 0.07 0.04 0.08 0.09

.95 3.0 .9443 .9407 .8917 .9464 .9639 0.94 0.91 0.79 1.12 1.25
2.0 .9388 .9329 .8636 .9380 .9605 0.66 0.64 0.53 0.78 0.86
1.0 .9429 .9354 .8198 .9347 .9642 0.30 0.29 0.21 0.35 0.38
0.5 .9368 .9253 .7574 .9226 .9645 0.09 0.08 0.05 0.10 0.11

.99 3.0 .9850 .9837 .9683 .9788 .9951 1.24 1.21 1.04 1.50 1.75
2.0 .9843 .9829 .9546 .9804 .9966 0.86 0.84 0.70 1.05 1.19
1.0 .9868 .9853 .9277 .9806 .9966 0.39 0.38 0.28 0.48 0.52
0.5 .9861 .9831 .8791 .9729 .9963 0.12 0.11 0.06 0.14 0.16

80th percentile
.90 3.0 .9011 .8992 .9437 .8473 .9302 1.65 1.64 2.02 1.43 2.74

2.0 .9052 .9040 .9565 .8643 .9305 1.40 1.39 1.83 1.28 2.34
1.0 .8980 .8959 .9642 .8893 .9265 1.08 1.08 1.71 1.14 1.83
0.5 .9212 .9180 .9751 .9210 .9284 0.83 0.82 1.93 1.15 1.42

.95 3.0 .9441 .9433 .9758 .9035 .9628 2.00 1.99 2.47 1.70 2.91
2.0 .9516 .9505 .9809 .9169 .9626 1.71 1.70 2.26 1.53 2.49
1.0 .9542 .9528 .9880 .9378 .9637 1.32 1.31 2.14 1.37 1.93
0.5 .9637 .9615 .9924 .9620 .9666 1.03 1.02 2.57 1.41 1.48

.99 3.0 .9895 .9893 .9981 .9699 .9967 2.76 2.75 3.47 2.26 4.56
2.0 .9874 .9868 .9977 .9691 .9953 2.36 2.35 3.23 2.03 3.91
1.0 .9903 .9896 .9992 .9804 .9956 1.86 1.85 3.21 1.84 3.11
0.5 .9938 .9929 .9996 .9899 .9958 1.50 1.48 4.39 1.96 2.46

Notes: CBC, BC, LN, WB and DF stand, respectively, for calibrated Box-Cox PL, Box-Cox PL,

lognormal PL, Weibull PL and distribution-free PL.
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Table 4: Selected simulation results for IG(ν,β), ν = 1, n = 30

Coverage Probability Average Length
1-α β CBC BC LN WB DF CBC BC LN WB DF

50th percentile
.90 9.00 .8863 .8613 .8970 .7127 .8961 0.20 0.19 0.19 0.18 0.24

4.00 .8921 .8666 .8992 .7026 .9017 0.27 0.26 0.26 0.25 0.33
1.00 .8856 .8603 .9011 .6578 .9071 0.38 0.35 0.37 0.38 0.48
0.25 .8725 .8421 .8631 .5265 .9028 0.32 0.30 0.34 0.37 0.42

.95 9.00 .9476 .9294 .9510 .8036 .9554 0.24 0.22 0.23 0.21 0.30
4.00 .9468 .9299 .9527 .8045 .9582 0.33 0.31 0.32 0.30 0.41
1.00 .9388 .9185 .9472 .7530 .9570 0.46 0.43 0.45 0.45 0.60
0.25 .9336 .9132 .9295 .6383 .9592 0.40 0.37 0.41 0.45 0.55

.99 9.00 .9905 .9826 .9897 .9155 .9947 0.33 0.30 0.31 0.28 0.42
4.00 .9893 .9820 .9885 .9189 .9951 0.45 0.42 0.43 0.40 0.59
1.00 .9868 .9797 .9885 .8961 .9945 0.63 0.59 0.61 0.60 0.88
0.25 .9851 .9753 .9842 .8280 .9942 0.56 0.51 0.58 0.60 0.86

20th percentile
.90 9.00 .8889 .8865 .8998 .9149 .9248 0.17 0.17 0.17 0.23 0.25

4.00 .8941 .8919 .9059 .9099 .9264 0.20 0.20 0.20 0.28 0.29
1.00 .9001 .8987 .9225 .9079 .9270 0.20 0.20 0.21 0.31 0.26
0.25 .9096 .9081 .9492 .9256 .9309 0.11 0.11 0.13 0.20 0.13

.95 9.00 .9440 .9428 .9524 .9555 .9668 0.20 0.20 0.20 0.27 0.27
4.00 .9457 .9444 .9533 .9527 .9650 0.24 0.24 0.24 0.33 0.32
1.00 .9497 .9489 .9657 .9543 .9654 0.24 0.24 0.25 0.37 0.30
0.25 .9516 .9505 .9761 .9669 .9647 0.13 0.13 0.15 0.25 0.16

.99 9.00 .9880 .9873 .9911 .9892 .9967 0.27 0.27 0.27 0.36 0.39
4.00 .9873 .9869 .9926 .9884 .9965 0.32 0.32 0.32 0.44 0.45
1.00 .9859 .9859 .9927 .9885 .9968 0.31 0.31 0.33 0.50 0.42
0.25 .9913 .9911 .9975 .9943 .9956 0.18 0.18 0.20 0.35 0.23

80th percentile
.90 9.00 .8934 .8912 .9035 .7729 .9308 0.30 0.30 0.30 0.22 0.51

4.00 .8934 .8900 .8968 .7754 .9264 0.48 0.47 0.47 0.34 0.83
1.00 .8960 .8916 .8945 .7577 .9289 0.97 0.96 0.93 0.64 1.89
0.25 .8977 .8910 .8714 .7357 .9323 1.45 1.40 1.30 0.86 3.62

.95 9.00 .9473 .9467 .9559 .8541 .9676 0.36 0.36 0.36 0.26 0.54
4.00 .9455 .9438 .9495 .8457 .9643 0.58 0.57 0.57 0.40 0.87
1.00 .9476 .9459 .9475 .8428 .9658 1.21 1.19 1.15 0.77 2.00
0.25 .9420 .9380 .9260 .8068 .9651 1.87 1.81 1.64 1.04 3.78

.99 9.00 .9839 .9835 .9878 .9311 .9939 0.50 0.50 0.50 0.34 0.84
4.00 .9872 .9868 .9911 .9341 .9952 0.81 0.80 0.79 0.53 1.41
1.00 .9877 .9875 .9886 .9226 .9956 1.77 1.74 1.64 1.03 3.42
0.25 .9862 .9854 .9803 .9014 .9955 3.11 2.97 2.49 1.42 7.61

Notes: CBC, BC, LN, WB and DF stand, respectively, for calibrated Box-Cox PL, Box-Cox PL,

lognormal PL, Weibull PL and distribution-free PL.
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Figure 1a. Coverage probabilities of the 90% PLs: Lognormal data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of sigma=.5, 1., 1.5, 2.
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Figure 1b. Coverage probabilities of the 95% PLs: Lognormal data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of sigma=.5, 1., 1.5, 2.
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Figure 1c. Coverage probabilities of the 99% PLs: Lognormal data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of sigma=.5, 1., 1.5, 2.
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Figure 2a. Coverage probabilities of the 90% PLs: Weibull data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=3, 2, 1, .5
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Figure 2b. Coverage probabilities of the 95% PLs: Weibull data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=3, 2, 1, .5
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Figure 2c. Coverage probabilities of the 99% PLs: Weibull data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=3, 2, 1, .5
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Figure 3a. Coverage probabilities of the 90% PLs: Gamma data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=3, 2, 1, .5
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Figure 3b. Coverage probabilities of the 95% PLs: Gamma data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=3, 2, 1, .5
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Figure 3c. Coverage probabilities of the 99% PLs: Gamma data
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Figure 4a. Coverage probabilities of the 90%: Inverse Gaussian data
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The horizontal index (1-52) corresponds to p=.01, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .99, for each of beta=9, 4, 1, .25
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Figure 4b. Coverage probabilities of the 95% PLs: Inverse Gaussian data
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Figure 4c. Coverage probabilities of the 99% PLs: Inverse Gaussian data
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Figure 5.  Percentile limits for strike duration data: 
        90%(1st row), 95%(2nd row), 99%(3rd row) 
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