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SUMMARY
Using the Box–Cox regression model with heteroscedasticity (BCHR), we re-examine the size distribution
of the Portuguese manufacturing firms studied by Machado and Mata (2000) using the Box–Cox quantile
regression (BCQR) method. We show that the BCHR model compares favourably against the BCQR method.
In particular, the BCHR model can answer the key questions addressed by the BCQR method, with the
advantage that the estimated quantile functions are monotonic. Furthermore, estimation of the BCHR model
is straightforward and the confidence intervals of the BCHR regression quantiles are easy to compute.
Copyright  2006 John Wiley & Sons, Ltd.

1. INTRODUCTION

In a recent article Machado and Mata (MM hereafter) (2000) analysed the size distribution of
manufacturing firms in Portugal. Using the Box–Cox quantile regression (BCQR) method they
examined and tested some implications of Gibrat’s Law, including the prediction that firm sizes
are log-normally distributed. They argued that the usual linear regression model is unable to give a
complete picture of the conditional size distribution, and that the shifts in the conditional location
and scale are not sufficiently captured by incorporating heteroscedasticity into the model. Also, as
the marginal effects of the covariates on the shape of the size distribution may vary at different
points of the distribution, regression analysis is not flexible enough to allow for these diverse
effects. MM used the BCQR method to estimate the impact of the covariates on many attributes
of the conditional distribution, such as the scale, skewness and kurtosis. They also proposed the
use of marginal effects as a measure of the impact of the changes in the covariates on the quantiles,
and maintained that classical linear regression models are unable to provide similar measures.

The purpose of this paper is to re-examine the use of the heteroscedastic regression model in
analysing the firm-size distribution. Instead of imposing the logarithmic transformation, however,
we adopt the flexible Box–Cox transformation. Thus, we consider the Box–Cox heteroscedastic
regression (BCHR) model. We show that the BCHR model fits the firm-size data well and is able to
answer the key questions addressed by MM. Furthermore, while the empirical conditional quantile
function estimated by MM is not monotonic, this drawback does not occur in the BCHR method.
Also, the estimated marginal effects of the covariates on the quantiles using the BCHR method are
smooth functions, whereas estimates using the BCQR method are irregular and ‘disparate’. Thus,
we are able to draw coherent inferences about the marginal effects of the covariates on firm size,
which was lacking in MM’s study. Finally, the BCHR method is computationally easier than the
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BCQR method. Inference concerning the quantiles is not restricted to the choice set of quantiles
in the estimation stage.

The rest of the paper is organized as follows. Section 2 summarizes the BCQR method and MM’s
results on analysing the Portuguese firm-size distribution. We also outline the BCHR estimation
method, as well as the calculation of the confidence intervals of the quantiles and the marginal
effects of the covariates. The data and the empirical results are described in Section 3. Section 4
concludes and discusses possible applications of the BCHR model and extensions.

2. BCQR AND BCHR ANALYSIS OF FIRM SIZE

Let y denote the response variable of interest and x a vector of k covariates. The p-quantile of y
at x is defined by yp�x� D inffyjF�yjx� ½ pg, where F�yjx� is the cumulative distribution function
of y given x. Consider a sample of data fyi, xig for i D 1, . . . , n, the quantile regression model
with transformation specifies that

h�yp�xi�, �p� D x0
iˇp �1�

where h�Ð, �p� is a monotonic one-to-one transformation that depends on a parameter �p, and ˇp

is a vector of regression coefficients. Note that in this model both the regression parameter ˇp

and the transformation parameter �p vary with p. A common example of the transformation h�Ð�
is the well-known Box–Cox transformation. If we let g�Ð, �p� be the inverse of h�Ð, �p�, then
yp�xi� D g�x0

iˇp, �p�. Buchinsky (1998) provides a survey of the techniques and applications of
the quantile regression model. Chamberlain (1994) and Buchinsky (1995) discuss the method of
estimation for the parameters ˇp and �p.

Given a covariate vector x, the marginal effect on the p-quantile under the BCQR model is
defined as

mp�x� D ∂yp�x�

∂x
D

[
∂g�t, �p�

∂t

]
ˇp �2�

Note that mp�x� is a k-element vector, the jth element of which is the change in the p-quantile
per unit increase in the jth covariate. It describes the marginal effects of the covariates at
different quantile points of the size distribution and is one of the main aims of modelling firm-size
distribution using the BCQR approach proposed by MM.

MM’s data set consists of manufacturing firms in Portugal in 1983 and 1991. There are 18 552
firms in 1983 and 26 515 firms in 1991. These firms were operating in 155 industries. The response
variable is Firm Size (as measured by employment) and the covariates are: Age, Growth, Patents,
Imports, Exports, MES (minimum efficient scale), Turbulence, Industry Size and State.1 MM
focused on the conditional distribution and quantile function evaluated at the sample mean of the
covariates.2 They found that the firm-size distribution in 1991 has shifted to the left of 1983. Their

1 Age (of the firm) affects size through Gibrat’s Law. MES and Industry Size reflect economies of scale. Patents measures
product differentiation. Imports and Exports capture the international trade environment. Growth (of industry employment)
and Turbulence (a measure of entry and exit rates) measure the industry’s dynamics. State is a proxy for state intervention.
See Machado and Mata (2000) for the details. Except for Age, which is firm-specific, all other covariates are industry-
specific.
2 The term ‘quantile function’ is used to refer to yp�x�, i.e., the conditional quantile evaluated at the mean of the covariates.
This notion of conditional quantile will be adopted in subsequent discussions.
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estimated quantile functions, however, are not monotonic in p.3 Also, the marginal-effect functions
as evaluated by equation (2) are irregular and not smooth in p. Furthermore, the characteristics
of the conditional distribution (scale, skewness and kurtosis) computed from the quantile function
are ‘rather unstable’ and ‘quite different from 1983 to 1991’.

MM’s analysis of the conditional distribution depends on the estimated quantiles using the
BCQR method. We shall show that the quantiles can also be estimated using the BCHR method.
As a consequence, we can compute other characteristics of the conditional distribution, as well
as the marginal effects of the covariates, as proposed by MM. Apart from the simplicity in the
estimation of the BCHR model as compared to the BCQR model, which requires two-step iterations
over the transformation and regression parameters, the estimation of the marginal effects and the
effects of the covariates on other characteristics for any p-quantile under the BCHR model are
straightforward once the estimated model is obtained. In contrast, for the BCQR model, inference
is only available for the p-quantiles that are included in the estimation stage.

The BCHR model specifies the following equation for the response variable:

h�yi, �� D x0
i���ˇ C �ω�vi, ��ei, i D 1, . . . , n �3�

where x0
i��� D fx0

1i, x0
2i���g is the covariate vector. Thus, x1i is the vector of covariates which are

not transformed (these may include dummy variables and time trend) and x2i��� is the vector of
covariates which are transformed (with the same transformation function as the response variable).
The model allows for heteroscedasticity, with vi being the vector of weighting variables, � the
scaling factor for the standard deviation of the errors, and ω the weighting function with parameter
� . Note that vi may or may not overlap with xi. We assume the ei are i.i.d. N�0, 1�.

Let yp�xi, vi� be the p-quantile of y at xi and vi, and zp be the p-quantile of ei. As the ei are
i.i.d., zp is a constant across i. As h is a one-to-one transformation, we have

h�yp�xi, vi�, ��� D x0
i���ˇ C �ω�vi, ��zp �4�

which implies, after an inverse transformation, yp�xi, vi� D g�x0
i���ˇ C �ω�vi, ��zp, ��. A point

estimator for yp�xi, vi� can be obtained by plugging the maximum likelihood estimates (MLE),
denoted by hats, for the parameters. Thus, we have

Oyp�xi, vi� D g�x0
i� O�� Ǒ C O�ω�vi, O��zp, O�� �5�

which is a consistent estimate of the conditional quantile. Note that Oyp�xi, vi� is a monotonic
function of p. Yang and Tse (2002) proposed a confidence interval for the conditional quantile,
called the corrected plug-in quantile limits (CPQL). Their method, though developed for a model
with no transformed exogenous variables, can easily be extended to the model considered in this
paper. The formulae for calculating the MLE and the CPQL when some of the covariates are
subject to the same transformation as the dependent variable are given in a longer version of this
paper.4 In particular, the CPQL can also be used to calculate a confidence interval for the quantile
of an out-of-sample covariate vector x0 and a weighting vector v0, serving the prediction purpose.

3 Bassett and Koenker (1982) showed that the conditional quantile functions of the linear model evaluated at the sample
mean of the covariates are monotonic in p. This result, however, does not hold for the case when the response variable
is transformed.
4 The paper is available from www.sess.smu.edu.sg/research/research introduction.htm. Yang and Tse (2002) provide the
derivation of the CPQL for regression models with no transformation in the covariates. They present some Monte Carlo
results to show that the CPQL performs very well in small samples compared to the delta method.
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To measure the effects of the covariates on the firm-size distribution, we calculate the marginal
effects of the covariates on the p-quantile, i.e., mp�x, v� D ∂yp�x, v�/∂x, given by

mp�x, v� D �1 C �[x0���ˇ C �ω�v, ��zp]��1���/�[�∂x���/∂x� þ ˇ

C �zp�∂v0/∂x��∂ω�v, ��/∂v�] �6�

where þ is the Hadamard product of two vectors (i.e., the elementwise multiplication operator).
Finally, the scale, skewness and kurtosis of the conditional distribution can be calculated from
the conditional quantiles (see Machado and Mata, 2000, table II). The marginal effects of the
covariates on these characteristics can be calculated by differentiating these quantities numerically
with respect to x.

3. EMPIRICAL RESULTS

We estimate the BCHR model for the two years of firm data separately. As the covariate Industry
Size is of a similar nature as the dependent variable Firm Size, there may be a case for transforming
this variable in the regression. We fitted models with and without transformation for Industry
Size. The results for the two cases are similar in many aspects (parameter estimates as well
as diagnostics). The model with no transformation on Industry Size, however, provides tighter
intervals for the conditional quantiles. Also, the results reported by MM appear to be based on the
case with no transformation on Industry Size. Thus, in what follows we present only the results
with no transformation on the covariates.5

We first estimate a Box–Cox transformation model with homoscedastic errors and test the
homoscedasticity assumption using the Lagrange Multiplier (LM) test with all covariates taken
as the weighting variables. The LM statistic is asymptotically distributed as a �2 with 9 degrees
of freedom (the number of weighting variables) under the null of homoscedasticity, which is
convincingly rejected with the LM statistic being 270.8 for 1983 and 359.0 for 1991. Following
Yu et al. (2003) we plot the conditional p-quantiles of the Firm Size against the covariates for
different values of p. These quantiles are expected to be parallel if the errors are homoscedastic
and transformations are not necessary (i.e., � D 1). Figure 1 plots the conditional quantiles of the
Box–Cox homoscedastic regression model for 1983 against Age and MES. The results suggest
strongly that the distributions of firm sizes are heteroscedastic.

We proceed to estimate the Box–Cox regression model with heteroscedasticity. In particular,
we assume multiplicative heteroscedasticity in which the weighting function is the exponential
function, i.e., ω�vi, ��2 D exp�v0

i��. We assume the weighting variables vi consist of the whole set
of covariates xi. This assumption is not expected to affect the main conclusions of the study. As
seen below, most of the covariates are indeed significant weighting variables.

Table I summarizes the results of the estimated BCHR models for 1983 and 1991. Almost
all covariates are significantly different from zero at the 5% level (the only exception is State in
1983). All the weighting variables are statistically significant at the 5% level except for Growth and
Imports.6 The null hypothesis of a linear functional relationship (i.e., � D 1) is strongly rejected

5 Results for the model with Industry Size transformed can be obtained from the authors on request.
6 This is true for both years. It is interesting to observe that Exports, but not Imports, is significant for heteroscedasticity.
Thus, higher exports induce larger variations in firm size (not just larger firm size), probably through providing scope
and opportunity for growth. In contrast, the effects of imports on firm size appear to be of first order (affects firm size
negatively) and not second order (no effects on variation of firm size).
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Figure 1. Conditional quantile versus Age and MES (Box–Cox homoscedastic regression, 1983)

with the LM statistic being 5485.66 for 1983 and 3048.77 for 1991. Also, the null hypothesis of
a log-linear functional relationship (i.e., � D 0) is soundly rejected with the LM statistic being
139.75 and 277.57 for 1983 and 1991, respectively. The regression coefficients of the covariates
over the two years are quite similar, except for Turbulence and State.

Figure 2 plots the empirical density functions of the standardized residuals of the BCHR
model against the standard normal density for comparison. The empirical density functions of the
standardized residuals over the two years overlap a lot, and are very close to the standard normal
density. Figure 3 plots the quantile functions evaluated at the sample means of the covariates,
i.e., Oyp�x, v�. Apart from the conditional quantile functions for the 1983 and 1991 data, we also
plot the conditional quantile function based on the estimated 1983 model evaluated at the sample
mean of the 1991 data, labelled as 1983–91. It is clear from the plots that the distribution of firm
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Table I. Estimated BCHR models

1983 1991

Estimate Standard error Estimate Standard error

Covariates
Intercept �0.7420 0.0755 �0.5699 0.0673
Age 0.5448 0.0096 0.4980 0.0074
Growth 0.6401 0.0939 0.3477 0.0745
Patents 9.3959 1.8281 8.7646 1.6978
Imports �0.0227 0.0033 �0.0269 0.0033
Exports 0.3142 0.0252 0.2942 0.0144
MES 0.3121 0.0114 0.2893 0.0109
Turbulence �11.0892 1.8625 �61.8533 3.4545
Industry Size 0.0243 0.0070 0.0222 0.0059
State 0.0211 0.1348 0.3364 0.1361

Weighting variables
Age 0.1046 0.0064 0.0605 0.0050
Growth �0.0387 0.0614 0.0524 0.0456
Patents 2.8741 1.2578 2.4820 1.2306
Imports �0.0009 0.0024 0.0040 0.0024
Exports 0.0391 0.0164 0.0234 0.0112
MES 0.0753 0.0084 0.0947 0.0079
Turbulence 3.3004 1.3880 18.3768 1.8469
Industry Size �0.0156 0.0054 �0.0352 0.0046
State 0.3944 0.0737 0.4682 0.0803

Transformation and scale parameters
� �0.0655 0.0055 �0.0816 0.0047
� 0.5735 0.0366 0.6618 0.0453

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4 Standard Normal
BCHR (1983)
BCHR (1991)

Figure 2. Density functions of standardized residuals of firm size

size has shifted to the left from 1983 to 1991. In other words, there were (conditionally) more
smaller firms in 1991 than in 1983. It can be seen that, however, the graph for 1983–91 has shifted
upwards versus the graph for 1983, which suggests that the difference between 1983 and 1991 is
due to the change in the effects of the covariates on the firm size rather than the changes in the
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Figure 3. Conditional quantile functions

Table II. Descriptive statistics of the conditional distributions

1983 1991 1983–91

Location y0.5 10.832 9.435 11.751
Scale �y0.5 � y0.25�/�y0.75 C y0.25� 0.620 0.616 0.616
Skewness �y0.5 C y0.25 � 2y0.5�/�y0.75 � y0.25� 0.369 0.371 0.366
Kurtosis �y0.90 � y0.10�/�y0.75 � y0.25� 2.466 2.485 2.455

covariates. Figure 3 provides similar results to those of MM (see figure 3 of MM). However, one
important drawback of MM’s empirical conditional quantile is that it is not monotonic.

Table II summarizes some summary statistics of the conditional (on the sample mean of the
covariates) distributions.7 This can be compared against table II of the BCQR results of MM.
Similar to MM, the location has shifted to the left, the scale has become smaller, and the tail has
become thicker. In contrast to MM, however, the skewness has shifted slightly to the right. Thus,
similar to the BCQR method, the BCHR method is able to provide additional information about
the shape of the conditional distribution.

Table III provides the point estimates as well as the 95% confidence intervals of the conditional
quantiles. We observe that the confidence intervals get wider for larger p. Also, the intervals of
all percentiles over the two years do not overlap, showing that the conditional quantiles change
significantly over time. In contrast, the confidence intervals of the conditional quantiles are not
available in MM. Table IV presents the estimated marginal effects at selected values of p. The
results can be compared against table III of MM. It can be seen that the marginal effects of all
covariates are statistically significant at the 5% level except for Industry Size and State. While
Industry Size is insignificant in the higher quantiles, State is significant in the higher quantiles. This
finding shows that industry-wide economies of scale have little impact on the big firms, while state
interventions are mostly restricting the big firms. In contrast, MM’s results show ‘considerable

7 The set of values p chosen follow those of MM. This is to facilitate comparison with MM’s results. This remark applies
to other tables below.
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Table III. Conditional quantile estimates and 95% confidence intervals

p (%) 1983 1991

Lower
limit

Point
estimate

Upper
limit

Lower
limit

Point
estimate

Upper
limit

1 1.032 1.068 1.104 0.971 0.991 1.011
10 2.839 2.896 2.951 2.551 2.592 2.632
20 4.417 4.497 4.576 3.921 3.978 4.033
30 6.117 6.227 6.335 5.397 5.469 5.541
40 8.122 8.269 8.417 7.135 7.228 7.321
50 10.637 10.832 11.031 9.294 9.435 9.579
60 13.997 14.258 14.528 12.225 12.390 12.558
70 18.878 19.239 19.617 16.460 16.697 16.942
80 26.990 27.529 28.102 23.521 23.899 24.296
90 44.875 45.901 47.007 39.256 40.014 40.822
95 69.026 70.948 73.043 60.910 62.292 63.779
99 158.954 166.318 174.502 145.147 149.586 154.426

Table IV. Marginal effects of covariates on conditional quantiles

p (%) Age Growth Patents Imports Exports MES Turbulence Industry
size

State

1983
10 1.308 2.129 18.652 �0.067 0.832 0.693 �46.507 0.132 �1.378

(0.038) (0.405) (6.942) (0.013) (0.081) (0.045) (8.817) (0.030) (0.500)
25 2.856 3.952 45.305 �0.132 1.725 1.579 �78.181 0.202 �1.330

(0.060) (0.646) (11.403) (0.021) (0.140) (0.073) (13.565) (0.048) (0.849)
50 6.897 8.103 118.954 �0.287 3.997 3.951 �140.391 0.308 0.268

(0.119) (1.188) (23.144) (0.042) (0.318) (0.144) (23.509) (0.089) (1.707)
75 17.034 17.212 312.339 �0.649 9.456 10.024 �252.614 0.410 7.428

(0.314) (2.620) (57.317) (0.104) (0.859) (0.349) (50.015) (0.207) (3.974)
90 36.396 35.053 753.840 �1.398 21.246 23.636 �424.473 0.352 28.664

(0.955) (6.281) (144.641) (0.265) (2.251) (0.901) (121.711) (0.525) (9.451)
95 66.933 54.534 1288.976 �2.250 35.016 39.952 �571.641 0.071 57.949

(1.957) (11.115) (258.207) (0.477) (4.703) (1.684) (219.235) (0.954) (16.424)

1991
10 1.203 0.807 16.662 �0.088 0.750 0.509 �231.665 0174 �0.546

(0.035) (0.198) (5.058) (0.012) (0.062) (0.036) (14.581) (0.022) (0.472)
25 2.463 1.687 38.831 �0.156 1.494 1.241 �388.328 0.231 0.303

(0.049) (0.362) (8.600) (0.019) (0.090) (0.061) (22.369) (0.036) (0.785)
50 5.644 3.940 99.328 �0.305 3.335 3.279 �700.978 0.252 3.813

(0.082) (0.845) (19.242) (0.037) (0.163) (0.123) (38.670) (0.067) (1.543)
75 13.465 9.553 258.302 �0.618 7.770 8.720 �1282.582 0.301 15.530

(0.281) (2.247) (51.934) (0.095) (0.448) (0.315) (78.041) (0.163) (3.573)
90 30.643 22.017 626.267 �1.210 17.350 21.459 �2217.356 �0.956 46.924

(1.040) (5.759) (137.138) (0.252) (1.350) (0.904) (173.044) (0.444) (8.691)
95 51.157 37.007 1080.507 �1.841 28.662 37.297 �3062.983 �2.531 88.884

(2.244) (10.311) (250.047) (0.461) (2.661) (1.821) (295.260) (0.855) (15.523)

Note: Figures in parentheses are standard errors.

diversity’, finding almost all possible cases, ranging from variables which are significant at all
quantiles to those which are significant at a single quantile, and some which are significant only
in the middle range.

Copyright  2006 John Wiley & Sons, Ltd. J. Appl. Econ. 21: 641–653 (2006)

Appeared in:  Journal of Applied Econometrics, 2006, 21, 641-653.



MODELLING FIRM-SIZE DISTRIBUTION USING BCHR 649

Figure 4 plots the marginal effects of various covariates against p and can be compared against
figure 4 of MM. Overall the shapes of our marginal-effect curves are similar to those of MM, except
for Industry Size. However, while the BCHR method provides smooth marginal-effect curves, those
computed using the BCQR method are erratic. This appears to arise from the instability of the
algorithm rather than the nature of the underlying structure. Note that similar to MM, we find that
the covariates Imports, Turbulence and Industry Size have quite different marginal-effect curves
compared to others. First, the marginal effects of these covariates decrease as p increases. Second,
the marginal effects of Turbulence are quite different over the two years. In contrast to MM,
however, we find the effects of Industry Size over the two years to be similar and decreasing
when p is large.

Following MM, we provide results of tests for the equality of marginal effects over adjacent
quantiles as well as over the two different years. The results are summarized in Tables V and VI,
which provide the t-ratios of the tests. Similar results using the BCQR method can be found in
tables IV and V of MM. Table V shows that most t-ratios are significant at the 5% level, except
for the covariate Industry Size. In contrast, many of the t-ratios in MM’s results are statistically
insignificant. In particular, none of the marginal effects between the 50th and 75th percentiles
are statistically significant in 1991. In view of the differences in the results between 1983 and
1991, as well as the results in other quantiles, this finding appears to be anomalous. Indeed, MM
commented that ‘the majority of the covariates exert rather disparate effects across the distribution
and that these have changed over time’. In contrast, we note that the BCHR results are quite stable
across different quantiles. Furthermore, the computation of the asymptotic variance in the BCHR
model is quite straightforward, while that of the BCQR method requires the delta method. It is
not sure whether the apparent anomaly is due to the computational instability.

From Table VI we can see that the marginal effects of Age, Growth, MES and Turbulence are
largely significantly different over the two years. This result is in agreement with that of MM. Our
results, however, show coherency and consistency in signs, while this cannot be said of MM’s
BCQR results. For example, there are several irregular changes in signs of the t-ratios in table V
of MM.

Finally, Table VII summarizes the marginal effects of the covariates on the scale, skewness
and kurtosis of the conditional distribution, with standard errors in parentheses. While table VI
of MM produces some results on the ‘marginal’ effects of the covariates on these attributes,
they are computed using a different method (by taking a one-standard-deviation variation in the
covariates). Thus, we will not compare our results against those of MM, except in concurring with
MM that their ‘estimated effects are rather unstable’. In contrast, our results show coherency and
stability over the two years. In particular, Age, Patents, Exports, MES, Industry Size and State
have significant marginal effects on the distribution attributes in both years, while Growth and
Imports are insignificant. Turbulence is significant in 1991, but not in 1983.

4. CONCLUSIONS, OTHER APPLICATIONS AND EXTENSIONS

We have examined the use of the BCHR model for analysing firm-size distribution of manu-
facturing firms in Portugal. Following the work of Machado and Mata (2000), we estimate the
conditional quantile function, the scale, skewness and kurtosis of the conditional distribution, the
marginal effects of the covariates on the quantiles as well as on the scale, skewness and kurto-
sis. We have shown that the BCHR model provides a useful alternative to the BCQR model in
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Table V. t-statistics for tests of equality of adjacent marginal effects

p (%) Age Growth Patents Imports Exports MES Turbulence Industry
size

State

1983
10–25 55.871 6.813 5.126 �6.853 12.530 27.124 �5.973 3.483 0.124
25–50 56.124 6.655 5.454 �6.375 11.234 28.714 �5.215 2.167 1.694
50–75 45.477 5.674 5.242 �5.361 9.607 26.973 �3.610 0.763 2.957
75–90 32.726 4.585 4.885 �4.472 8.277 23.280 �2.217 �0.172 3.735
90–95 25.087 3.895 4.623 �3.944 7.454 19.997 �1.451 �0.636 4.100

1991
10–25 65.965 4.667 5.156 �8.157 20.438 26.200 �18.083 3.735 2.464
25–50 55.123 4.307 5.018 �6.687 18.261 28.537 �16.551 0.574 4.179
50–75 33.488 3.865 4.613 �4.944 13.536 25.721 �12.894 �2.055 5.362
75–90 21.955 3.494 4.226 �3.666 10.206 20.446 �9.048 �3.323 5.876
90–95 16.819 3.263 3.974 �2.965 8.482 16.697 �6.568 �3.726 5.967

Table VI. t-statistics for tests of equality of marginal effects between 1983 and 1991

p (%) Age Growth Patents Imports Exports MES Turbulence Industry
size

State

10 2.032 2.933 0.232 1.187 0.804 3.193 10.866 �1.129 �1.210
25 5.073 3.059 0.453 0.847 1.388 3.553 11.855 �0.483 �1.412
50 8.670 2.856 0.652 0.322 1.797 3.548 12.387 0.503 �1.541
75 8.470 2.219 0.699 �0.220 1.740 2.774 11.112 1.438 �1.516
90 6.199 1.530 0.640 �0.514 1.484 1.706 8.475 1.902 �1.422
95 4.943 1.156 0.580 �0.617 1.306 1.070 6.774 2.031 �1.369

Table VII. Marginal effects on distribution attributes

Age Growth Patents Imports Exports MES Turbulence Industry
size

State

1983
Scale 0.065 0.005 1.606 �0.001 0.028 0.044 1.096 �0.006 0.177

(0.002) (0.027) (0.570) (0.001) (0.008) (0.004) (0.604) (0.002) (0.033)
Skewness 0.049 0.003 1.211 �0.001 0.021 0.033 0.826 �0.005 0.133

(0.002) (0.020) (0.429) (0.001) (0.006) (0.003) (0.455) (0.002) (0.025)
Kurtosis 0.179 0.013 4.392 �0.003 0.077 0.121 2.997 �0.017 0.484

(0.008) (0.074) (1.552) (0.003) (0.022) (0.010) (1.648) (0.007) (0.091)

1991
Scale 0.049 0.039 1.493 0.0001 0.023 0.055 5.502 �0.015 0.224

(0.002) (0.022) (0.578) (0.001) (0.005) (0.003) (0.757) (0.002) (0.036)
Skewness 0.037 0.031 1.125 0.000 0.019 0.042 4.008 �0.010 0.170

(0.001) (0.017) (0.437) (0.001) (0.004) (0.002) (0.564) (0.002) (0.027)
Kurtosis 0.139 0.110 4.264 0.002 0.067 0.157 15.709 �0.042 0.640

(0.008) (0.062) (1.647) (0.003) (0.016) (0.009) (2.098) (0.007) (0.103)

Note: Figures in parentheses are standard errors.

analysing firm-size distribution. It has the advantage of producing monotonic empirical quantile
functions. Furthermore, the results on the marginal effects of the covariates are more coherent and
provide a more stable description of these effects compared to the BCQR method.
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The BCHR model may be applied to other areas of research interest, including income
distribution, health-care expenses and wage structure. Income inequality has recently developed
into a major research area. Current studies in the literature adopt subclassification of the sample to
examine within and between group inequality. This methodology, however, may not appropriately
capture the interaction between groups. In contrast, the BCHR model provides a method to
more efficiently extract information and formal hypothesis testing can be conducted under the
BCHR model. Also, the income inequality literature has made use of scalar measures such as the
Gini coefficient, variance of natural log of earnings and coefficient of variation. Some of these
measures (such as the coefficient of variation) can be expressed or approximated by functions of
the quantiles. Detailed analysis can then be conducted on the marginal impact of the covariates
on these (approximate) scalar inequality measures using the BCHR model.

Health-care and wage data are well known to be skewed and non-normal (see Lambert and
Larcker, 1995; Buchinsky, 1995), and may be analysed using the BCHR model. Tuckman et al.
(1999) considered a regression model in which the response (surplus per discharge) variable
is transformed using the modulus transformation. Their model can be extended by allowing
for heteroscedasticity, with analysis of the impact of the covariates on the quantiles and other
distributional characteristics.

The multiplicative heteroscedasticity model is used in this paper due to its popularity in the
literature and its easy control of the non-negativity condition in estimation. For further discussion
of the choice of the heteroscedasticity function, see Carroll and Rupert (1988). The BCHR model
may also be extended beyond the Box–Cox transformation. In particular, as economic data are
not always positive, a more general transformation that allows for both positive and negative
observations may be required.

ACKNOWLEDGEMENTS

We are indebted to the Portuguese Ministry of Employment and Jose Mata for making the
manufacturing firms’ data available, and Chenwei Li for excellent research assistance. Research
support from the Wharton-SMU Research Center, Singapore Management University, is gratefully
acknowledged. We thank John Rust, the Editor, and three anonymous referees for their many
helpful comments. The usual disclaimer applies.

REFERENCES

Bassett G Jr, Koenker R. 1982. An empirical quantile function for linear models with iid errors. Journal of
the American Statistical Association 77: 407–415.

Buchinsky M. 1995. Quantile regression, Box–Cox transformation model, and the U.S. wage structure,
1963–1987. Journal of Econometrics 65: 109–154.

Buchinsky M. 1998. Recent advances in quantile regression models: a practical guideline for empirical
research. Journal of Human Resources 33: 88–126.

Carroll RJ, Ruppert D. 1988. Transformation and Weighting in Regression. Chapman and Hall: New York.
Chamberlain G. 1994. Quantile regression, censoring and the structure of wages. In Advances in Economet-

rics, Sims C (ed.). Cambridge University Press: New York; 171–209.
Lambert RA, Larcker DF. 1995. The prospective payment system, hospital efficiency, and compensation

contracts for senior-level hospital administrators. Journal of Accounting and Public Policy 14: 1–31.
Machado JAF, Mata J. 2000. Box–Cox quantile regression and the distribution of firm sizes. Journal of

Applied Econometrics 15: 253–274.

Copyright  2006 John Wiley & Sons, Ltd. J. Appl. Econ. 21: 641–653 (2006)

Appeared in:  Journal of Applied Econometrics, 2006, 21, 641-653.



MODELLING FIRM-SIZE DISTRIBUTION USING BCHR 653

Tuckman HP, Chang CF, Okunade AA. 1999. A transformation-both-side modulus power model: an appli-
cation in health care. Applied Economic Letters 6: 741–745.

Yang ZL, Tse YK. 2002. A corrected plug-in method for the quantile confidence interval of a transformed
regression. SMU Economics & Statistics Working Paper Series, #22-2002 (www.sess.smu.edu.sg/research/
research introduction.htm).

Yu K, Liu Z, Stander J. 2003. Quantile regression; applications and current research areas. The Statistician
52: 331–350.

Copyright  2006 John Wiley & Sons, Ltd. J. Appl. Econ. 21: 641–653 (2006)

Appeared in:  Journal of Applied Econometrics, 2006, 21, 641-653.




