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Summary We present a generalized LM test of heteroscedasticity allowing the presence
of data transformation and a generalized LM test of functional form allowing the
presence of heteroscedasticity. Both generalizations are meaningful as non-normality and
heteroscedasticity are common in economic data. A joint test of functional form and
heteroscedasticity is also given. These tests are further ‘studentized’ to account for possible
excess skewness and kurtosis of the errors in the model. All tests are easy to implement. They are
based on the expected information and are shown to possess excellent finite sample properties.
Several related tests are also discussed and their finite sample performances assessed. We
found that our newly proposed tests significantly outperform the others, in particular in the
cases where the errors are non-normal.

Keywords: Box-Cox transformation, Double length regression, Functional form,
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1. INTRODUCTION

Non-normality and heteroscedasticity are common in economic data. A popular approach to
modelling these data is to apply a non-linear transformation to the response and some of the
regressors, with the anticipation that the transformed model is of independent and homoscedastic
normal errors, and a simple model structure. In practice, however, it may not be the case that all of
these goals can be achieved simultaneously by a single transformation. Typically, when genuine
heteroscedasticity is present in the data, it may not be possible to find a transformation to bring
the data to normality as well as homoscedasticity. A more proper and realistic approach is perhaps
to directly model the heteroscedasticity while allowing the presence of data transformation in the
model. Thus, the role of transformation is basically to induce normality and a relatively simpler
model structure (or a correct functional form). This model, termed as Box-Cox heteroscedastic
regression (BCHR) in the literature, has found interesting applications in economics (see, e.g.
Yang and Tse, 2006).

This paper presents three LM tests for the BCHR model based on the expected information
(EI). We first derive a simple but general LM test for heteroscedasticity allowing the presence
of data transformation in the model. There is a large literature on tests for heteroscedasticity,
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and most of these tests are based on the assumption that the observations are normal.1 Some
authors have relaxed the normality condition and provided robust tests for heteroscedasticity (see,
e.g. Koenker, 1981 and Ruppert and Carroll, 1981). Allowing a normalizing data transformation
in the model is perhaps another way to account for the non-normality of the data. Also, most
of these tests concern only a null hypothesis of homoscedastic errors (e.g. Breusch and Pagan,
1979). The need for a more general test is evident: when the null hypothesis of homoscedasticity
is rejected, one would like to know which heteroscedastic variables are responsible for it. Hence,
our test generalizes that of Breusch and Pagan (1979) in two dimensions: (i) from a null hypothesis
of homoscedasticity to a null hypothesis of a certain form of heteroscedasticity and (ii) from a
regular linear regression model to a transformed regression model. To further safeguard against
non-normality, we provide a studentized LM test which generalizes that of Koenker (1981).

We then derive a generalized LM test for functional form allowing the presence of
heteroscedasticity in the model. This test generalizes that of Yang and Abeysinghe (2003). Most
of the functional form tests concern either a specific functional form (linear or log-linear) or a
model with homoscedastic errors.2 Our test allows for a general Box-Cox functional form that
includes linear, log-linear, square-root, cubic-root, etc. as special cases, and the presence of a
general heteroscedastic structure in the model. Interestingly, this test is shown, through Monte
Carlo simulations, to be fairly robust against non-normality. Finally, a joint test of functional form
and heteroscedasticity is given, which generalizes Lahiri and Egy (1981), and a robust version of
it follows from the studentization or the robustness property of the two marginal tests.

There are other tests one could use such as the LM test based on the Hessian, LM test based
on outer-product-of-gradient (OPG), LM test based on double length regression (DLR), and the
likelihood ratio (LR) test.3 They are all much easier to derive than the EI-based LM test, but not
necessarily easier to implement in practical applications. More importantly, their finite sample
performance remains unknown, at least in the context of the BCHR model. In this paper, we present
empirical evidence on the finite sample performance of the tests discussed above, including the
newly proposed ones, through extensive Monte Carlo simulations. In terms of size, some general
observations are in order: (i) the three EI-based LM tests generally outperform all the others;
(ii) the tests are ranked in the following order: LM-EI, LM-DLR, LR, LM-Hessian and LM-
OPG; (iii) LM-DLR performs reasonably well especially considering the fact that it is based on
only the first derivatives of the log-likelihood function; (iv) LM-OPG often performs very poorly
and (v) the studentized LM test for heteroscedasticity, the LM-EI for functional form, and the
studentized joint test are all quite robust against non-normality. In terms of size-adjusted power of
the tests, it is observed that the EI-based tests always have better or similar power compared with
others.

Section 2 presents the model and the estimation procedure. Section 3 presents the three
tests. Section 4 contains the Monte Carlo simulation results and Section 5 concludes the paper.
Appendix A contains the score and Hessian functions, Appendix B discusses some related tests,
and Appendix C contains the proofs of the theorems and corollaries.

1See, for example, Goldfeld and Quant (1965), Glejser (1969), Harvey (1976), Amemiya (1977), Breusch and Pagan
(1979), Ali and Giaccotto (1984), Griffiths and Surekha (1986), Farebrother (1987), Maekawa (1987), Evans and King
(1988), Kalirajan (1989), Evans (1992), Wallentin and Agren (2002), Dufour et al. (2004) and Godfrey et al. (2006).

2See, for example, Box and Cox (1964), Godfrey and Wickens (1981), Tse (1984), Davidson and MacKinnon (1985),
Lawrance (1987), Baltagi (1997) and Yang and Abeysinghe (2003).

3For a comparison of the observed and expected Fisher information, see Lindsay and Li (1997).
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2. MODEL ESTIMATION

The BCHR model takes the following general form:

h(yi , λ) =
k1∑

j=1

xi jβ j +
k∑

j=k1+1

h(xi j , λ)β j + σ ω(vi , γ ) ei ,

≡ x ′
i (λ)β + σ ω(vi , γ ) ei , i = 1, . . . , n, (2.1)

where h(·, λ) is a monotonic increasing transformation dependent on a parameter vector λ with
p elements, β = {β1, . . ., βk}′ is k × 1 vector of regression coefficients, and xi j is the ith value
of the jth regressor, ω (vi , γ ) ≡ ωi (γ ) is the weight function, vi is a set of q weighting variables,
γ is a q × 1 vector of weighting parameters, σ is a constant, and {ei} are independent and
identically distributed (i.i.d.) with zero mean and unit variance. The first k1 of the k regressors are
not transformed as they correspond to the intercept, dummy variables, etc.

Let ψ = {β ′, σ 2, γ ′, λ′}′, � 1
2 (γ ) = diag{ω1(γ ), . . . , ωn(γ )}, �(γ ) = �

1
2 (γ )�

1
2 (γ ), X(λ) be

the n × k regression matrix, and Y be the n × 1 vector of (untransformed) dependent variable.
The Gaussian log-likelihood function of model (2.1), ignoring the constant, is

	(ψ) = −n
2

log σ 2 −
n∑

i=1

log ωi (γ ) − 1

2σ 2

n∑
i=1

[
h(yi , λ) − x ′

i (λ)β

ωi (γ )

]2

+
n∑

i=1

log hy(yi , λ),

(2.2)

where hy(y, λ) = ∂h(y, λ)/∂ y.
Define M(γ, λ) = In − �− 1

2 (γ )X(λ)[X′(λ)�−1(γ )X(λ)]−1X′(λ)�− 1
2 (γ ) where I n is the n ×

n identity matrix. Maximizing (2.2) under given γ and λ results in constrained estimates:

β̂(γ, λ) = [X′(λ)�−1(γ )X(λ)]−1X′(λ)�−1(γ )h(Y, λ), (2.3)

σ̂ 2(γ, λ) = 1

n
h′(Y, λ)�− 1

2 (γ )M(γ, λ)�− 1
2 (γ )h(Y, λ), (2.4)

which upon substitution gives the concentrated Gaussian log-likelihood,

	p(γ, λ) = n log[ J̇ (λ)/ω̇(γ )] − n
2

log σ̂ 2(γ, λ), (2.5)

where ω̇(γ ) and J̇ (λ) are the geometric means of ωi (γ ) and J i (λ) = hy(yi , λ), respectively.
When {ei} are exactly normal, maximizing 	p(γ , λ) over λ gives the constrained maximum

likelihood estimate (MLE) λ̂c of λ for a given γ , maximizing 	p(γ , λ) over γ gives the constrained
MLE γ̂c of γ for a given λ, and maximizing 	p(γ , λ) jointly over γ and λ gives the unconstrained
MLEs γ̂ and λ̂ of γ and λ, respectively. Substituting these constrained or unconstrained MLEs into
equations (2.3) and (2.4) gives the constrained or unconstrained MLEs of β and σ 2. When {ei} are
not exactly normal, the above procedure leads to Gaussian quasi-MLEs (QMLEs) of the model
parameters. Under mild conditions, these MLEs or QMLEs of the model parameters are consistent
and asymptotic normal with the same mean but different variance-covariance matrices.4

4See Hernandez and Johnson (1980), Bickel and Doksum (1981), Carroll and Ruppert (1984) and Chen et al. (2002) for
asymptotic results for some related models.
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3. GENERALIZED LM TESTS

We first introduce some general notations. Define D◦(γ ) = {ω′
iγ (γ )/ωi (γ )}n×q and D(γ ) = {1n ,

D◦(γ )}, where 1n is the n × 1 vector of ones, and ωiγ (γ ) = ∂ωi (γ )/∂γ . Let ε(γ , λ) = {εi (γ ,
λ)}n×1, where εi (γ, λ) = [h(yi , λ) − x ′

i (λ)β̂(γ, λ)]/[ωi (γ )σ̂ (γ, λ)], and g(γ , λ) = {gi (γ , λ)}n×1,
where gi (γ , λ) = ε2

i (γ , λ) − 1. Let hλ(yi , λ) and gλ(γ , λ) be, respectively, the partial derivatives
of the h and g functions with respect to λ.

Some basic assumptions are as follows. We assume ω(vi , 0)= constant (as commonly assumed
in the literature) so that γ = 0 represents a model with homoscedastic errors. Without loss of
generality, we take ω(vi , 0) = 1. We assume that ωi (γ ) is twice differentiable, and that h(yi ,
λ) is differentiable once with respect to yi and twice with respect to λ. Some general technical
assumptions are as follows. Proofs of all results are given in Appendix C.

ASSUMPTION 3.1. The disturbances {ei} are independent and identically distributed with mean
zero, variance one, skewness α, and finite kurtosis κ .

ASSUMPTION 3.2. The limit limn→∞ 1
n X′(λ)�−1(γ )X(λ) exists, and is positive definite.

ASSUMPTION 3.3. The limit limn→∞ 1
n D′(γ )D(γ ) exists, and is positive definite. Further, the

elements of D(γ ) are uniformly bounded.

3.1. A generalized LM test for heteroscedasticity

THEOREM 3.1. Under Assumptions 3.1–3.3, assume further that (i) α = 0 and κ = 3, (ii)
1√
n D′(γ )gλ(γ, 	) = Op(1) uniformly in 	 in a neighborhood of λ, and (iii) λ̃ is a consistent

estimator of λ.5 The LM statistic for testing H0: γ = γ 0 versus H a : γ 	= γ 0 takes the form

LME(γ0) = 1

2
g′(γ0, λ̃)D(γ0)[D′(γ0)D(γ0)]−1 D′(γ0)g(γ0, λ̃), (3.1)

which has an asymptotic χ2
q distribution under H0.

It turns out that this new test statistic is very simple. It is just one half of the explained sum
of squares of the regression of gi (γ0, λ̃) + 1 on Di (γ 0), the ith column of D′ (γ 0). On the other
hand, the test is very general as it works with any smooth transformation function h and weighting
function ω. Robustness of (3.1) against non-normality of the original data Y is enhanced as the
test allows the normalizing transformation to be chosen according to the data. Furthermore, If
ω(vi , γ ) = ω(v′

iγ ), the special test for homoscedasticity takes a simpler form, and the test (like
that of Breusch and Pagan 1979) does not depend on the exact form of the ω function. We have
the following corollary.

5λ̃ could be λ̂c , or λ̂, or any other estimator which converges in probability to λ as n → ∞. For example, such an
estimator could be constructed by adapting the method proposed by Powell (1996).
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COROLLARY 3.1. Under the conditions of Theorem 3.1, assume further that ω(vi , γ ) = ω(v′
iγ ).

Then, the LM statistic for testing H0: γ = 0 becomes

LME(0) = 1

2
g′(0, λ̃)V (V ′V )−1V ′g(0, λ̃), (3.2)

where V = {1, v′
i}n×(q+1) .

The test statistic for homoscedasticity in Corollary 3.1 is simply one half of the explained sum
of squares of the regression of gi (0, λ̃) + 1 on V i = (1, v′

i )
′. It gives a one-step generalization

to that of Breusch and Pagan (1979) by allowing a normalizing transformation to be present
in the model, and hence it is more robust against the non-normality of the data. The test in
Theorem 3.1 gives a two-step generalization by allowing for both a normalization transformation
and a non-zero null vector γ 0. Hence, the test is not only more robust against the non-normality
of the data, it also allows for easy identifications of truly heteroscedastic variables. It turns out
that the asymptotic distribution of the test statistic does not depend on whether the λ parameter
is pre-specified or estimated from the data.

3.2. Studentizing the LM test for heteroscedasticity

The LM tests given in Theorem 3.1 and Corollary 3.1 require that α = 0 and κ = 3, which
means that the disturbances {ei} are essentially Gaussian. This is in line with the aims of a data
transformation: to induce normality, homoscedasticity as well as a simple model structure (or
correct functional form). However, in many practical applications, it may not be possible to achieve
these three goals simultaneously with a single transformation, in particular the exact normality in
the errors. In this case, it might be more reasonable to assume that after the transformation, one
has a correct functional form for the model while the errors obey Assumption 3.1 with arbitrary
α and κ .

In this subsection we explore generalizations of the results given in Theorem 3.1 and
Corollary 3.1 by dropping the assumptions that α = 0 and κ = 3. Koenker (1981) generalized
the result of Breusch and Pagan (1979) by providing a studentized version of the LM test for
homoscedasticity, which is robust against non-normality of the errors in terms of excess kurtosis.
Very recently, Dufour et al. (2004) and Godfrey et al. (2006) presented simulation-based tests for
heteroscedasticity in linear regression models. While allowing the presence of data transformations
and general heteroscedastic structure in the model complicates the matter, we are able to provide
a result that very much parallels that of Koenker (1981).6

COROLLARY 3.2. Under Assumptions of Theorem 3.1 with arbitrary α and κ , the LM statistic
for testing H0: γ = γ 0 versus H a : γ 	= γ 0 takes the form

LM∗
E(γ0) = 1

κ̃ − 1
g′(γ0, λ̃)D(γ0)[D′(γ0)D(γ0)]−1 D′(γ0)g(γ0, λ̃), (3.3)

6We are very grateful to a referee for directing our attention to the robustness issue of the LM tests for heteroscedasticity,
which directly results in a new and more useful result as stated in Corollary 3.2. This idea is further explored in
Sections 3.3 and 3.4 to provide robust tests for the other two cases.
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where κ̃ − 1 = 1
n

∑n
i=1 g2

i (γ0, λ̃). The statistic has an asymptotic χ2
q distribution under H0.

Furthermore, if γ 0 = 0 and ωi (vi , γ ) = ω(v′
iγ ), then LM∗

E(0) = 1
κ̃−1 g′(0, λ̃)V (V ′V )−1V ′g(0, λ̃).

Note that LM∗
E(γ 0) can be written as nR2, where R2 is the uncentered coefficient of

determination from the regression of g(γ0, λ̃) on D(γ 0). Also note that LM ∗
E(γ 0) is as simple as

LME(γ 0), but should be much more useful when there exist excess skewness and kurtosis even
if a normalizing transformation is applied to the data. This point is later confirmed by the Monte
Carlo simulation.

3.3. A generalized LM test for functional form

Unlike the LM test for heteroscedasticity which requires only the submatrix of the expected
information for a given λ, the main difficulty in deriving the expected information-based LM
test for functional form is that it requires the explicit expression of the full expected information
matrix. This is impossible for a general transformation function. However, when h is the Box-Cox
power transformation: h(y, λ) = (yλ − 1)/λ if λ 	= 0; log y if λ = 0 (Box and Cox 1964), we
are able to derive a very accurate approximation to the full expected information matrix, based
on which a simple LM test for functional form emerges. The approximation is based on the
expansion:

λ log yi = log(1 + ληi ) + θi ei − 1

2
θ2

i e2
i + · · · + (−1)k+1

k
θ k

i ek
i + · · · , (3.4)

where θ i = λσωi (γ )/(1 + ληi ) and ηi = x ′
i (λ)β. Typically, the θ ′

i s are small, and in this case,
one may just need a few terms to obtain the desired degree of approximation accuracy.7

We need further notations. Let u(γ, λ) = {[hλ(yi , λ) − x ′
iλ(λ)β̂(γ, λ)]/[ωi (γ )σ̂ (γ, λ)]}n×1,

where xiλ(λ) is the first derivative of xi (λ). Let hλλ(yi , λ) = ∂2

∂λ2 h(yi , λ). Define θ0 =
max{|θi |, i = 1, . . . , n}, θ = {θi }n×1, φ = {log(1 + ληi )}n×1, A = In − 1

n 1n1′
n , and R(γ ) =

AD◦(γ )[D′
◦(γ )AD◦(γ )]−1 D′

◦(γ )A. Common functions applied to a vector are operated
elementwise, e.g. θ2 = {θ2

i } and log θ = {log θ i}. Element-by-element multiplication (or
Hadamard product) of two vectors, e.g. θ and φ, is denoted as θ � φ.

THEOREM 3.2. Under Assumptions 3.1–3.3, assume further that (i) h is the Box-Cox power
transformation with θ0 � 1; (ii) {ei} are Gaussian, and (iii) E[h2

λ(yi , λ)], E[h(yi , λ)hλ(yi , λ)]
and E[h(yi , λ)hλλ(yi , λ)] exist for all i. The EI-based LM test for testing H0: λ = λ0 is

LME(λ0) = 1′
n log Y − ε′(γ̂c, λ0)u(γ̂c, λ0)

{ξ ′M(γ̂c, λ0)ξ + δ − 2ζ ′ R(γ̂c)ζ }1/2
, (3.5)

where when λ 	= 0, δ = 1
λ2 ( 3

2θ ′θ − 2φ′ Aθ2 + 2φ′ Aφ) + O(θ4
0 ), ξ = 1

λ
( 1

2θ + φ � θ−1 + θ3) −
1
σ
�− 1

2 (γ )Xλ(λ)β + O(θ4
0 ), and ζ = 1

λ
(φ − 1

2θ2) + O(θ4
0 ); when λ = 0, δ = 3

2σ 2tr(�(γ )) +

7There is a well known truncation problem for the Box-Cox power transformation. Model assumption requires this
truncation effect to be negligible, which in turn requires θ ′

i s to be small. This is seen as follows. Since (yλ
i − 1)/λ =

x ′
i (λ)β + σωi (γ )ei , we have yλ

i = 1 + λ x ′
i (λ)β + λσωi (γ )ei . As yi > 0 implies yλ

i > 0, this in turn implies |λσωi (γ )| �
1 + λ x ′

i (λ)β for the truncation on ei to be negligible.
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2η′ Aη, ξ = 1
2σ

�− 1
2 (γ )[η2 + σ 2�(γ )1n − 2 log(X)β], and ζ = η. All the quantities θ , φ, δ, ζ

and ξ are evaluated at the constrained MLEs at λ0. Under H0, LME (λ0) is asymptotic N (0, 1).

Note that the order of the remainder term in the approximation to δ, ξ and ζ is O(θ4
0), indicating

that the third-order approximation, i.e. k = 3 in (3.4), is used. Our simulation results show that
this approximation is very accurate. Although the test statistic given in Theorem 3.2 is derived
under the assumption that the errors are Gaussian, it turns out that it is fairly robust against the
non-normality of the errors as long as Assumption 3.1 is satisfied. This is seen from (i) the Monte
Carlo results presented in Section 4 and (ii) tedious but straightforward approximations to the
numerator of (3.5) using (3.4), which show that the effects of higher-order moments of errors are
involved in terms of smaller magnitude.

3.4. Joint LM test for functional form and heteroscedasticity

It is sometimes desirable to conduct a joint test first for both functional form and heteroscedasticity
simply because if the null hypothesis H0: γ = 0, λ = λ0 (where λ0 can be any of the convenient
values such as 0, 1, 1/2, 1/3, etc.) is not rejected, one may just need to fit an ordinary linear
regression model with response and explanatory variables appropriately transformed according
to the fixed λ0 value. Of course, it is arguable that the two one-dimensional tests given earlier are
more interesting as one would typically ask: given that we have fitted a transformation model, do
we still need heteroscedasticity, or given that we have fitted a heteroscedastic regression model,
do we still need to transform the data? Nevertheless, a joint test should be useful in certain
applications, and a strong rejection of the null would simply lead to the consideration of the full
transformed heteroscedastic regression model. Following the set up in Theorem 3.2, we have our
third result.

THEOREM 3.3. Under the same set of assumptions as in Theorem 3.2, the EI-based LM statistic
for testing H0: γ = γ 0 and λ = λ0 is given by

LME(γ0, λ0) = S′
c(γ0, λ0)

(
2D′

◦(γ0)AD◦(γ0), −2D′
◦(γ0)Aζ

−2ζ ′ AD◦(γ0), ξ ′M(γ0, λ0)ξ + δ

)−1

Sc(γ0, λ0), (3.6)

where the concentrated score Sc(γ 0, λ0) = {D′
◦(γ 0)g(γ 0, λ0), 1′

nlog Y − ε′(γ 0, λ0) u(γ 0, λ0)}′.
All the quantities ξ , ζ and δ are give in Theorem 3.2, but evaluated at the constrained MLEs at
γ 0 and λ0. Under H 0, LME(γ 0, λ0) is asymptotic χ2

q+1.

Although the derivations for the LME(λ0) and LME(γ 0, λ0) statistics are more tedious than
the other forms of LM tests, their implementations are not, and may even be simpler than the
other versions of the LM tests. Besides, their excellent finite sample performance as shown
in Section 4 indicates that for the cases where one has only a small data set, the LME(λ0) or
LME(γ 0, λ0) should be used. The point of having a test with good finite sample behaviour is
further emphasized in Dufour et al. (2004) and Godfrey et al. (2006).

Following the result of Corollary 3.2 and the robustness property of the test given in (3.5),
one easily generalizes the result of Theorem 3.3 to provide a studentized (robustified) version of
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the joint LM test, allowing the errors to be non-Gaussian satisfying Assumption 3.1.

LM∗
E(γ0, λ0) = S′

c(γ0, λ0)

(
τ̄ D′

◦(γ0)AD◦(γ0), −τ̄ D′
◦(γ0)Aζ

−τ̄ ζ ′ AD◦(γ0), ξ ′M(γ0, λ0)ξ + δ

)−1

Sc(γ0, λ0), (3.7)

where τ̄ = 1
n

∑n
i=1 g2

i (γ0, λ0).

4. MONTE CARLO RESULTS

Section 3 introduces three EI-based LM tests for three different testing situations, and Appendix B
discusses some related tests. While all the tests for a given situation are asymptotically equivalent
when the errors are normally distributed and hence any of them can be used when a large data
set is available, their small sample performance remains an important question. The purpose of
the Monte Carlo experiment is: (i) to assess the small sample performance of the three new tests,
(ii) to assess the small sample performance of the related (and readily available) tests and (iii) to
compare and contrast all the tests to give practical guidance on which to use when only small data
set is available. We consider the following data generation process (DGP):

h(yi , λ) = β0 + β1x1i + β2x2i (λ) + σ exp(γ1x1i + γ2x2i )ei , i = 1, . . . , n, (4.1)

where the values for x1i are generated from U (0, 10) and the values for x2i are generated from either
U (0, 10) or U (0, 5), and then fixed throughout the whole Monte Carlo experiment. Throughout,
the regression coefficient are set to β0 = 25, β1 = 10, and β2 = 10.

The sample size n, transformation parameter λ, heteroscedasticity parameters γ 1 and γ 2, and
the error standard deviation σ are the quantities that could potentially affect the finite sample
behaviour of the LM tests. Thus, for a thorough investigation, we have considered various
combinations of the values of these quantities for which n ∈ {30, 80, 200}, λ ∈ {0.0, 0.2, 0.5, 0.8,
1.0}, γ 1 ∈ {0.0, 0.1, 0.2}, γ 2 ∈ {0.0, 0.1, 0.2, 0.3}, and σ ∈ {0.1, 0.5, 1.0}. All parameter
configurations are chosen so that the probability of truncation, i.e. the probability that 1 +
λ[β0 + β1x1i + β2x2i (λ) + σexp(γ 1x1i + γ 2x2i )ei ] ≤ 0, is negligible.

The simulation process is as follows. For a given parameter configuration, i.e. each set of
values of n, σ , γ 1, γ 2, and λ, a random sample of e′

i s are generated from N (0, 1) or a non-
normal population with zero mean and unit variance, which is then converted to the values for
y′

i s through the DGP in (4.1). Then, we proceed with model estimation and calculation of test
statistics assuming the parameters are not known. Record 1 for each test if it rejects the null
hypothesis. Repeat this process 10,000 times and the proportion of rejections gives a Monte Carlo
estimate of the size (empirical size) of the test. The comparison of the small-sample performance
of the tests will be based on their empirical sizes. As the tests are asymptotically equivalent under
the null and local alternatives, the small-sample size is the most basic criterion for performance
comparison.

To examine the effects of non-normal errors on the tests, two non-normal populations are
considered: a normal mixture and a normal-gamma mixture, both standardized to have zero mean
and unit variance. In the case of the normal mixture, 80% of the e′

i s are from N (0, 1), and the
remaining 20% from N (0, 4); whereas in the case of the normal-gamma mixture, 80% of the e′

i s
are from N (0, 1), and the remaining 20% from GA(1, 1), a gamma distribution with both scale
and shape parameters being one.

C© 2008 The Author(s). Journal compilation C© The Royal Economic Society 2008



Generalized LM tests for functional form and heteroscedasticity 357

For brevity, we report only a representative part of the Monte Carlo results. Full results are
available from the authors upon request. For clarity and conciseness, we use plots to summarize
the simulation results. In each plot, the vertical scale is the empirical size, and the horizontal
scale is the index for the 60 possible combinations of parameter values of γ 1 ∈ {0.0, 0.1, 0.2},
γ 2 ∈ {0.0, 0.1, 0.2, 0.3} and λ ∈ {0.0, 0.2, 0.5, 0.8, 1.0} with λ being the fastest changing index,
followed by γ 2 and then γ 1.

4.1. Tests for heteroscedasticity

Seven tests are investigated in this case, namely, (i) LME0 which is (3.1) with λ̃ replaced by the
true value λ, (ii) LME which is (3.1), (iii) LME∗ which is the studentized statistic in (3.3), (iv)
LMD (LM test based on double length regression), (v) LR (likelihood ratio test), (vi) LMH (LM test
based on Hessian) and (vii) LMG (LM test based on gradient). The last four tests are described in
Appendix B. As these seven tests all allow for any smooth monotonic h function, we consider
two transformations in this case: the Box-Cox power transformation (Box and Cox 1964) and the
dual power transformation of Yang (2006), where h(y, λ) = (yλ − y−λ)/2λ if λ 	= 0; log y if λ =
0. Figure 1 summarizes the results.

From Figure 1 the following regularities are observed: (i) LME∗ has an excellent finite sample
performance even when the sample size is as small as 30, irrespective of whether the errors are
normal or non-normal, and of what transformation is used; (ii) LME and LMEo have excellent finite
sample performance only when the errors are normal, showing the necessity of studentizing LME to
safeguard against possible departures from normality of the error distribution; (iii) LMD performs
very well under normal errors when the Box-Cox transformation is used, but not well enough
when the dual power transformation is used; (iv) In the case of non-normal errors, all the tests
except LME∗ suffer from size distortions, and furthermore, their empirical sizes apparently do not
converge to the nominal level 5% as n increases; (v) when errors are normal, the empirical sizes of
all the seven tests converge fairly quickly to 5% as n increases, except for LMG with its empirical
coverages still nearly double the nominal size when n = 200 and (vi) changing the error standard
deviation and the ranges of the covariates’ values changes the empirical sizes of the tests slightly,
but not the general regularities summarized above.

4.2. Tests for functional form

In this case, we report the empirical sizes for five tests: LME, LMD, LMH, LMG, and LR. Selected
results are summarized in Figure 2. Some general observations are in order: (i) LME generally
possesses excellent finite sample properties and outperforms all the others; (ii) the tests are ranked
in the following order: LME, LMD, LR, LMH and LMG, with LMG often performing very poorly;
(iii) it is worthnoting that LMD performs reasonably well, especially considering the fact that it
is based on only the first derivatives of the loglikelihood function; (iv) all tests are fairly robust
against departures from normality of the error distribution; (v) as n increases, empirical sizes
converge to 5% and (vi) changing the parameter values does not affect much the empirical sizes.

4.3. Tests for functional form and heteroscedasticity

Six tests, namely, LME, LMD, LMH, LMG, LR and LME∗ (defined in (3.7)), are compared, where
when the errors are normal, LME∗ is excluded. Selected results are summarized in Figure 3. For
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the case of normal errors, general observations remain the same as for testing functional form.
One difference is that LMH and LMG perform notably poorer. This reinforces the necessity of using
the EI-based LM test when sample size is small. Again, LMD performs reasonably well. However,
unlike the EI-based LM test, LMD does not perform well uniformly for all situations. For the case
of non-normal errors, LME∗ performs exceptionally well even when sample size is as small as 30,
whereas all others perform poorly. Furthermore, the empirical sizes of the other tests apparently
do not converge to the nominal level as n increases.

4.4. Power of the tests

The power of the tests is another important consideration for practitioners in choosing among the
alternative tests. As the sizes of the tests can differ substantially, we use the simulated critical
values to ensure fairness in making power comparison.8 Selected results are summarized in
Figure 4 with β0 = 25, β1 = β2 = 10, and σ = 1.0. For the tests of heteroscedasticity, the null
hypothesis is H0: γ 1 = γ 2 = 0.1, and the alternative values are γ 1 = γ 2 = (−0.16, −0.12, −0.08,
−0.04, 0.0, 0.04, 0.07, 0.1, 0.13, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36); for the tests of functional form,
the null hypothesis is H0: λ = 0.1 with the alternative values λ = (0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17); and for the joint tests, the null hypothesis
is H0: γ 1 = γ 2 = λ = 0.1, and alternative values are elementwise combinations of γ 1 = γ 2 =
(−0.04, −0.02, 0.0, 0 .02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24) and λ =
(0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17), which are
then indexed by the integers 1 to 15 for plotting.

From Figure 4, we see that (i) LME tests always have better or similar power compared with
others, (ii) LME∗ for testing heteroscedasticity may have a notably lower power than the others
when the sample size is small due to its robustness nature, but when the sample size increases
it quickly catches up in power, (iii) The LME∗ for joint test performs as well as LME in terms of
power and (iv) LMH and LMG may have significantly lower power than the others in the cases of
functional form tests and joint tests.9

5. CONCLUSIONS

We provide an LM test for heteroscedasticity with the allowance of a transformation being
present in the model to take care of potential non-normality of the data. With this test, one
can test any specifications on the heteroscedasticity parameters so that variables attributable to
heteroscedasticity can be identified. In the case of normal errors, the test compares favourably
against the commonly used likelihood ratio test in both the ease of application and in the finite
sample performance. The test compares also favourably against other versions of LM tests. In the
case of non-normal errors, the robustified version of the EI-based LM test clearly outperforms all
others.

8For each test, 10,000 test statistic values are generated at a given parameter configuration. The 95th percentile is
calculated, which is then used in the subsequent power comparisons.

9Note (i) for brevity the results based on other sample sizes are not plotted and (ii) the size-adjusted tests are not feasible
in practice as one does not know the true values of the model parameters.
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We also provide an LM test for functional form allowing for heteroscedasticity to be present
in the model. This flexibility is important as genuine heteroscedasticity often exists in the data
and transformation cannot get rid of it. Monte Carlo simulations show that this test outperforms
other tests. All the tests of functional form considered are quite robust against non-normality of
the error distribution.

Based on the test of heteroscedasticity and the test of functional form, we provide a joint test
of functional form and heteroscedasticity, and a robust version of it. Monte Carlo simulation
shows excellent finite sample performance of the proposed tests, as compared with other
tests. Considering the simplicity in their practical implementation and excellent small sample
performance, the three proposed tests, in particular the second and the studentized versions of the
first and third, should be recommended for practical applications.
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APPENDIX A: SCORES AND OBSERVED INFORMATION

For the model with a general transformation and a general weighting function, the score function S(ψ),
where ψ = {β ′, σ 2, γ ′, λ}′, has the following elements:

Sβ = 1

σ 2

n∑
i=1

[h(yi , λ) − x ′
i (λ)β]xi (λ)

ω2
i (γ )

,

Sσ 2 = 1

2σ 4

n∑
i=1

[h(yi , λ) − x ′
i (λ)β]2

ω2
i (γ )

− n
2σ 2

,

Sγ = 1

σ 2

n∑
i=1

ωiγ (γ )

ω3
i (γ )

[h(yi , λ) − x ′
i (λ)β]2 −

n∑
i=1

ωiγ (γ )

ωi (γ )
,

Sλ =
n∑

i=1

hyλ(yi , λ)

hy(yi , λ)
− 1

σ 2

n∑
i=1

[h(yi , λ) − x ′
i (λ)β][hλ(yi , λ) − x ′

iλ(λ)β]

ω2
i (γ )

,

from which the gradient matrix for use in the OPG LM test can be easily formulated. Let ei (ψ) = [h(yi , λ)
− x ′

i (λ)β]/[σωi (γ )], and eiλ(ψ) and eiλλ(ψ) be its first and second partial derivatives with respect to λ. The
elements of the Hessian matrix H (ψ) = ∂S(ψ)/∂ψ ′ are:

Hββ ′ = − 1

σ 2

n∑
i=1

xi (λ)x ′
i (λ)

ω2
i (γ )

,

Hσ 2σ 2 = − 1

σ 4

n∑
i=1

e2
i (ψ) + n

2σ 4
,

Hγ γ ′ = −
n∑

i=1

(
ωiγ γ ′ (γ )

ωi (γ )
− ωiγ (γ )ω′

iγ (γ )

ω2
i (γ )

)
+

n∑
i=1

e2
i (ψ)

(
ωiγ γ ′ (γ )

ωi (γ )
− 3ωiγ (γ )ω′

iγ (γ )

ω2
i (γ )

)
,

Hλλ = −
n∑

i=1

[
e2

iλ(ψ) + ei (ψ)eiλλ(ψ)
] +

n∑
i=1

(
∂2 log hy(yi , λ)

∂λ2

)
,

Hβσ 2 = − 1

σ 3

n∑
i=1

ei (ψ)xi (λ)

ωi (γ )
,

Hβγ ′ = − 2

σ
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i=1

ei (ψ)xi (λ)ω′
iγ (γ )

ω2
i (γ )

,

Hβλ = 1

σ

n∑
i=1

eiλ(ψ)xi (λ) + ei (ψ)xiλ(λ)

ωi (γ )
,
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Hσ 2γ = − 1

σ 2

n∑
i=1

e2
i (ψ)ωiγ (γ )

ωi (γ )
,

Hσ 2λ = 1

σ 2

n∑
i=1

ei (ψ)eiλ(ψ),

Hγ λ = 2
n∑

i=1

ei (ψ)eiλ(ψ)ωiγ (γ )

ωi (γ )
.

Now, for the Box-Cox transformation, we have hy(y, λ) = yλ−1, hyλ(y, λ) = yλ−1 log y, hyλλ(y, λ) =
yλ−1 (log y)2, and

hλ(y, λ) =
{

1
λ
[1 + λh(y, λ)] log y − 1

λ
h(y, λ), λ 	= 0,

1
2 (log y)2, λ = 0,

hλλ(y, λ) =
⎧⎨
⎩ hλ(y, λ)

(
log y − 1

λ

)
+ 1

λ2 [h(y, λ) − log y], λ 	= 0,

1
3 (log y)3, λ = 0.

For the dual-power transformation of Yang (2006), we have hy(y, λ) = 1
2 [yλ−1 + y−λ−1], hyλ(y, λ) =

1
2 (yλ−1 − y−λ−1) log y, hyλλ(y, λ) = 1

2 (yλ−1 + y−λ−1)(log y)2, and

hλ(y, λ) =
{

1
2λ

(yλ + y−λ) log y − 1
λ

h(y, λ), λ 	= 0,

0, λ = 0,

hλλ(y, λ) =
{

h(y, λ)(log y)2 − 2
λ

hλ(y, λ) λ 	= 0,

1
3 (log y)3, λ = 0.

The inverse of the dual power transformation is y = (λh + √
1 + λ2h2)1/λ when λ 	= 0, and

exp(h) when λ = 0, where h = (yλ − y−λ)/2λ when λ 	= 0, and log y when λ = 0.
These partial derivatives are also available for other transformations such as MacKinnon and Magee

(1990), and Yeo and Johnson (2000).

APPENDIX B: SOME RELATED TEST STATISTICS

The same notations as in Appendix A are followed. Let I (ψ) be the expected information matrix. If ψ̂0 is
the constrained MLE of ψ under the constraints imposed by the null hypothesis, the LM statistic is defined
as follows

LME = S′(ψ̂0)I −1(ψ̂0)S(ψ̂0).

See, for example, Godfrey (1988). In situations where the test concerns only a subvector ψ2 of ψ = {ψ ′
1,

ψ ′
2}′, the test reduces to the following form

LME = S′
2(ψ̂0)I 22(ψ̂0)S2(ψ̂0),

where S2(ψ) denotes the relevant subvector of S(ψ), and I 22 (ψ) denotes the submatrix of
I −1(ψ) corresponding to ψ2.

As I (ψ) may not be easily obtainable, alternative ways of estimating the information matrix have
been proposed. In particular, I (ψ) may be replaced by −H (ψ) or the outer product of the gradient (OPG)
G(ψ)′G(ψ), with G(ψ) = {∂	i (ψ)/∂ψ ′}, where 	i is the element of the log likelihood 	 corresponding to
the ith observation. Hence, the Hessian form and the OPG form of the LM statistic, denoted by LMH and

C© 2008 The Author(s). Journal compilation C© The Royal Economic Society 2008



374 Zhenlin Yang and Yiu-Kuen Tse

LMG, respectively, can be calculated as follows:

LMH = −S′
2(ψ̂0)H 22(ψ̂0)S2(ψ̂0),

LMG = S′
2(ψ̂0)D22(ψ̂0)S2(ψ̂0),

where H 22(ψ) and D22 (ψ) are, respectively, the submatrices of H−1(ψ) and [G ′(ψ)G(ψ)]−1 corresponding
to ψ2. In addition, the LM statistic can also be calculated from the double-length artificial regression proposed
by Davidson and MacKinnon (1984). We denote this version of the LM statistic by LMD. Then, LMD is
the explained sum of squares of the regression of {e′(ψ̂0), 1′

n}′ on {−∂e(ψ̂0)/∂ψ ′, ∂(log |∂e(ψ̂0)/∂ y|)/∂ψ ′},
which has 2n observations and k + p + q + 1 regressors.

The LMD statistic has been found to outperform the LMH and LMG statistics in finite-sample performance
(Davidson and MacKinnon, 1993), and has been applied by many authors in different situations (see Tse,
1984, Baltagi and Li, 2000, among others).

Although the four forms of LM statistic are asymptotically equivalent with the same limiting chi-squared
distribution under the null, LME is expected to give the best finite-sample performance.10 This is verified
empirically in our present context using Monte Carlo experiment.

The likelihood ratio (LR) test for testing, for example, heteroscedasticity is simply defined as

LR(γ0) = 2(	p(γ̂ , λ̂) − 	p(γ0, λ̂c)) (B.1)

where λ̂c is the constrained MLE of λ at γ 0.

APPENDIX C: PROOFS OF THE THEOREMS AND COROLLARIES

Proof of Theorem 3.1: We start our derivation by first assuming that λ is known. Since λ is known,
ψ = {β ′, σ 2, γ ′}′, ψ̂0 = {β̂ ′(γ0, λ), σ̂ (γ0, λ), γ ′

0}′ and the score

Sγ (ψ̂0) =
n∑

i=1

ωiγ (γ0)

ωi (γ0)

[h(yi , λ) − x ′
i (λ)β̂(γ0, λ)]2

ω2
i (γ0)σ̂ 2(γ0, λ)

−
n∑

i=1

ωiγ (γ0)

ωi (γ0)
= D′

◦(γ0)g(γ0, λ).

The elements of the expected information matrix I (ψ) are: Iββ = 1
σ 2 X′(λ)�−1(γ )X(λ), Iβσ 2 = 0, Iβγ =

0, Iσ 2σ 2 = n
2σ 4 , Iσ 2γ = 1

σ 2 1′
n D◦(γ ), and I γ γ = 2D′

◦(γ )D◦(γ ). Thus, the γ γ -block of I −1(ψ) is

I γ γ =
(

Iγ γ − Iγ σ 2 I −1
σ 2σ 2 Iσ 2γ ′

)−1
= 1

2
[(D◦(γ ) − 1n D̄◦(γ ))′(D◦(γ ) − 1n D̄◦(γ ))]−1,

where D̄◦(γ ) = 1
n 1′

n D◦(γ ). These give the LM test statistic of a known λ as

LM(γ0|λ) = 1

2
g′(γ0, λ)D◦(γ0)[(D◦(γ0) − 1n D̄◦(γ0))′(D◦(γ0) − 1n D̄◦(γ0))]−1 D′

◦(γ0)g(γ0, λ)

= 1

2
g′(γ0, λ)D(γ0)[D′(γ0)D(γ0)]−1 D′(γ0)g(γ0, λ).

The proof for the asymptotic distribution of LM(γ 0 | λ) parallels that of Koenker (1981), except that
we consider only the null distribution of LM(γ 0 | λ). It is easy to see that g(r 0, λ) can be decomposed into
g(r0, λ) = σ 2

σ̂ 2(γ0,λ)
(v1 − 2v2 + v3 + v4), where v1 = e2 − 1, v2 = e � (K (γ 0, λ)e), v3 = (K (γ 0, λ)e)2,

10Bera and MacKenzie (1986) has argued for the superior small-sample performance of LME over LMH and LMG,
which has been found to be empirically supported. Also, the superior performance of LMD over LMH and LMG in small
samples has been shown in many empirical studies (see Davidson and MacKinnon, 1983, 1984). We shall show below,
however, that LMD is dominated by LME in tests of functional form and heteroscedasticity.
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and v4 = (1 − σ̂ 2(γ0,λ)
σ 2 )1n with K (γ , λ) = I n − M(γ , λ). Under Assumptions 3.1–3.3, it is easy

to prove that (i)
√

n[D′(γ0)D(γ0)]−1 D′(γ0)vk = op(1), for k = 2, 3, 4; (ii) σ̂ 2(γ0, λ)
p−→ σ 2; and

(iii)
√

n[D′(γ0)D(γ0)]−1 D′(γ0)v1
d−→ N (0, 2�−1), where � = limn→∞ 1

n D′(γ0)D(γ0). It follows that

LM(γ0 | λ)
d−→ χ 2

q under H0.
What is being left now is to prove that LME(γ0 | λ̃), the LM statistic when λ is replaced by

λ̃, is asymptotically equivalent to LME(γ 0 | λ). Under Assumption 3.2, it is sufficient to show that
1√
n D′(γ0)[g(γ0, λ̃) − g(γ0, λ)]

p→ 0. By the mean value theorem, we have

1√
n

D′(γ0)[g(γ0, λ̃) − g(γ0, λ)] = 1√
n

D′(γ0)gλ(γ0, λ
∗)(λ̃ − λ),

where λ∗ lies between λ̃ and λ. As λ̃
p−→ λ, λ∗ p−→ λ. Now, as 1√

n D′(γ0)gλ(γ0, 	) is bounded in probability

uniformly in 	 in a neighborhood of λ, we have 1√
n D′(γ0)gλ(γ0, λ

∗) = Op(1). The result of the theorem thus
follows. �

Proof of Corollary 3.1: As ωi (γ ) = ω(v′
iγ ), it must be that ωiγ (0) = cvi for a constant c, which directly

leads to equation (3.2). �

Proof of Corollary 3.2: The proof of Corollary 3.2 is identical to the proof of Theorem 3.1, except that

under the relaxed distributional assumption,
√

n[D′(γ0)D(γ0)]−1 D′(γ0)v1
d−→ N (0, (κ − 1)�−1), where κ

is consistently estimated by κ̃ = 1 + 1
n

∑n
i=1 g2

i (γ0, λ̃). �

Proof of Theorems 3.2 and 3.3: Now, ψ = {β ′, σ 2, γ ′, λ′}′. The elements of I (ψ) corresponding
to β, σ 2, and γ are given in the proof of Theorem 3.1. With the addition of the λ parameter
and with h being the Box-Cox power transformation, the other elements of I (ψ) are: I λλ = E
[e′

λ(ψ)eλ(ψ)] + E[e′
λ(ψ)eλλ(ψ)]; Iβλ = − 1

σ
X′(λ)�− 1

2 (γ )E[eλ(ψ)]; Iσ 2λ = − 1
σ 2 E[e′(ψ)eλ(ψ)]; and I γ λ =

−2D′
◦(γ ) E [e(ψ) � eλ(ψ)]. These give the (γ , λ)-block and the λ-element of I −1 (ψ) respectively as

(
2D′

◦(γ )AD◦(γ ), −2D′
◦(γ )Aζ

−2ζ ′ AD◦(γ ), ξ ′M(γ, λ)ξ + δ

)−1

, and

{
ξ ′M(γ, λ)ξ + δ − 2ζ ′ AD◦(γ )[D′

◦(γ )AD◦(γ )]−1 D′
◦(γ )Aζ

}−1
,

where ξ = E [eλ(ψ)], ζ = E [e(ψ) � eλ(ψ)], and δ = ∑n
i=1{Var[eiλ(ψ)] + E[ei (ψ)eiλλ(ψ)]} − 2

n (1′
nζ )2.

The former corresponds to the middle term of (3.6), and the latter corresponds to the denominator of
(3.5). However, the three quantities ξ , ζ and δ do not possess explicit expressions in general. Thus, some
approximations are desirable.

From the basic properties of the Box-Cox power transformation given at the end of Appendix A, we
see that in order to obtain approximations to ξ , ζ and δ, one only needs to approximate log yi when λ 	= 0.
Using the expansion (3.4) with k = 3, we obtain

E[eiλ(ψ)] =
(

θi

2λ
+ φi

λθi
+ θ3

i

λ
− ηi

λσωi (γ )
− x ′

iλ(λ)β

σωi (γ0)

)
+ O

(
θ 4

i

)
,

E[ei (ψ)eiλ(ψ)] = 1

λ

(
φi − 1

2
θ 2

i

)
+ O

(
θ 4

i

)
,

Var[eiλ(ψ)] = 1

λ2

(
1

2
θ2

i − φiθ
2
i + φ2

i

)
+ O

(
θ 4

i

)
,

E[ei (ψ)eiλλ(ψ)] = 1

λ2

(
θ2

i − φiθ
2
i + φ2

i

) + O
(
θ 4

i

)
,
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for i = 1, . . . , n. The first expression gives an approximation to ξ after removing the fourth term as it
is absorbed by the M(γ , λ) matrix, the second expression gives an approximation to ζ , and the last three
expressions together give an approximation to δ. When λ = 0, exact expressions for δ, ξ and ζ follow directly
from the calculations using log yi = ηi + σωi (γ )ei , or from finding the limits of the above quantities when
λ approaches zero. Finally, Assumptions 3.2 and 3.3 ensure that the denominator of (3.5) and the middle
term of (3.6) exist for all n. This, together with Assumption 3.1 and the normality of the errors, leads to the
asymptotic normal or chi-square distribution for Theorems 3.2 and 3.3, respectively. �
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