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Summary

The biasness problem of the maximum likelihood estimate (MLE) of the common shape

parameter of several Weibull populations is examined in detail. A modified MLE (MMLE) approach

is proposed. In the case of complete and Type II censored data, the bias of the MLE can be

substantial. This is noticeable even when the sample size is large. Such a bias increases rapidly

as the degree of censorship increases and as more populations are involved. The proposed MMLE,

however, is nearly unbiased and much more efficient than the MLE, irrespective of the degree of

censorship, the sample sizes, and the number of populations involved.
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1 Introduction

Equality of Weibull shape parameters across different groups of individuals is an im-

portant and common assumption in many applications. In regression problems with Weibull

distributions, such an assumption is analogous to the constant variance assumption in nor-

mal regression models (Lawless, 1982, p.178). For example, lifetimes of manufactured items

and breakdown voltages of electrical cable insulation are often assumed to follow Weibull

distributions with a constant shape parameter where different manufacturing environments

or different types of cable only alter the value of the scale parameter (Nelson, 1972; Stone

and Lawless, 1979).

The most popular method of estimating the common shape parameter is the maximum

likelihood method. Let WB(α,β) denote the Weibull population with cumulative distribu-

tion function F (y,α, β) = 1 − exp{−(y/α)β}, where α is the scale parameter and β is the
shape parameter. Let tij(j = 1, · · · , ni) be the lifetimes and censoring times in the sample
from the ith population WB(αi, β) (i = 1, · · · , k), ri be the number of observed lifetimes in
the ith sample, and Di be the set of individuals in the ith sample whose lifetimes are ob-

served. Then the maximum likelihood estimator (MLE) β̂ of the common shape parameter

β can be obtained by solving

k3
i=1

ri

⎛⎝�ni
j=1 t

β̂
ij log tij�ni

j=1 t
β̂
ij

⎞⎠− �k
i=1 ri

β̂
−

k3
i=1

3
j∈Di

log tij = 0. (1)

See Lawless (1982, p183).

The MLE β̂ is known to be biased (and sometimes significantly biased) when the sample

sizes are small or when the data is heavily censored (Thoman et al. 1969). Such a biasness

can mislead the subsequent inferences. In the case of a single random sample (k = 1),

the biasness issue has been addressed by many authors (See, among the others, Bain and

Engelhardt, 1991, p.221; Ross, 1994, 1996; Hirose, 1999; Yang and Xie, 2003; Ferrari et al.,

2007). However, the biasness issue in estimating the common shape parameter of several

Weibull populations has not been addressed. First, it is not clear how biased the MLE of
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the common shape can be. Second, how can the MLE be corrected in a simple way to give

a satisfactory estimator of the common shape?

In this paper, the biasness of the MLE is examined in detail and a simple modification

on the profile likelihood equation (1) is introduced, based on the parameter orthorgonaliza-

tion method of Cox and Reid (1987), to give a modified MLE (MMLE). It is found that for

complete and Type II censored data the bias of the MLE can be substantial and remains

noticeable even when sample sizes are fairly large. It increases rapidly as the degree of cen-

sorship increases and as the number of populations grows. The proposed MMLE, however, is

nearly unbiased and much more efficient than the MLE, irrespective of the degree of censor-

ship, the sample sizes, and the number of populations involved. For Type I censored data,

the biasness problem of the MLE is less serious (as compared to the case of Type II censored

data) and the improvement of the MMLE over the MLE is less significant. The computa-

tion for the MMLE is as simple as the computation for the MLE because the modification

is simply to subtract a constant (depending on k) from the term
�
ri in (1). Our results

generalize those of Yang and Xie (2003) for the special case of a single Weibull population,

i.e., k = 1. Such a generalization is important as comparing several Weibull populations of

the same shape is often of practical interest.

This paper is organized as follows. Section 2 derives the orthogonal parameters. The

modified MLE is introduced in Section 3. Section 4 presents extensive simulation results for

the properties of the MLE and MMLE. Two numerical examples are discussed in Section 5

for illustration. Concluding remarks and discussion are given in Section 6.

2 The Orthogonal Parameters

The biasness problem of the Weibull shape estimation is partly due to the fact that

the estimators of the Weibull parameters are highly correlated. One way to alleviate the de-

pendence of the parameter estimators is to reparameterize so that the parameters of interest
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and the nuisance parameters are orthogonal in the sense of Cox and Reid (1987). This way,

inference on the parameters of interest is not affected (asymptotically) by the estimation of

nuisance parameters. The impact of parameter orthgonalization is more significant when

more nuisance parameters are involved.

Let α = {α1, · · · ,αk}. Suppose that a reparameterization is made from (β,α) to

(β,λ). Denote by (Iββ, Iβα , Iαβ, Iαα ) and (Iββ, Iβλ , Iλβ, Iλλ ), respectively, the elements of

the expected Fisher information matrix of (β,α) and (β,λ). The β and λ are said to be

orthogonal if Iβλ = 0. It is often convenient to work with the original parameterization

under which the orthogonality condition becomes,

Iαα
∂α

∂β
+ Iβα = 0

where the αIs are implicitly functions of β and λ. To find the orthogonal parameters, it is

necessary that both Iαα and Iβα posses closed-form expressions so that partial differential

equations can be set up and solved to give orthogonal parameters. This is clearly a difficult

task when the likelihood involves censored data. The log likelihood based on complete

samples has the form

f(β,α) = m log β + (β − 1)
k3
i=1

ni3
j=1

log tij − β
k3
i=1

ni logαi −
k3
i=1

ni3
j=1

w
tij
αi

Wβ
(2)

where m =
�k
i=1 ni. It is easy to see that Iαα = diag{niβ2/α2i , i = 1, · · · , k} and Iβα =

{−n1(1− γ)/α1, · · · ,−nk(1− γ)/αk}I with γ being the Euler’s constant. Substituting these
into the above condition leads to differential equations:X

β

αi

~2 X
∂αi
∂β

~
− 1− γ

αi
, i = 1. · · · , k.

with one set of solutions being:

αi(β,λi) = λi exp

X
−1− γ

β

~
, i = 1, · · · , k.

These give the orthogonal parameters:

λi = αi exp

X
1− γ

β

~
, i = 1, · · · , k.
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Cox and Reid (1989) indicated that if λ is orthogonal to β, so is any smooth function of

λ. They suggested a basis for choosing the function so that the dependence between the

parameter estimators is in the least informative fashion. Following their method, it is shown

that the optimal orthogonal parameterization takes the log form, i.e.,

λoi ∝ log λi = logαi + (1− γ)/β, i = 1, · · · , k. (3)

The proportionality constant depends on β, a phenomenon similar to the Example 3 of Cox

and Reid (1989). This implies that taking λoi = log λi may not lead to the optimal function.

Further improvement is possible by multiplying a β-dependent constant to log λ. More on

this issue is discussed next.

3 The Modified MLE

With the orthogonal parameters derived earlier, we are now ready to derive the mod-

ification to the likelihood equation (1). However, there is one difficult question: how is the

orthogonal parameter setting for the censored data connected to that for the complete data?

While the orthogonality condition depends on the expected Fisher information that is de-

pendent on the type of data, a parameterization relates to only the intrinsic feature of the

populations, hence should not be changed by the type of data. This leads us to the consid-

erations of adopting the orthogonal parameters defined in (3) for general censored situation

and making necessary adjustments based on numerical evidence. For the arbitrary censored

data described in Section 1, the log likelihood is

f(β,α) = m log β + (β − 1)
k3
i=1

3
j∈Di

log tij − β
k3
i=1

ri logαi −
k3
i=1

ni3
j=1

w
tij
αi

Wβ
(4)

where m =
�k
i=1 ri. For a given β, the restricted MLEs of α

Is are

α̂i(β) =

⎛⎝ 1
ri

ni3
j=1

tβij

⎞⎠1/β , i = 1, · · · , k.
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Substituting these back into (4) gives the profile likelihood for β,

fp(β) = f(β, α̂1(β), · · · , α̂k(β))

= m[log β − 1] + (β − 1)
k3
i=1

ni3
j=1

log tij − β
k3
i=1

ni log α̂i(β)

and taking the derivative of fp(β) gives the profile likelihood equation (1). Under the orthog-

onal parameter setting λoi = log λi, the modified profile likelihood of Cox and Reid (1987) is

defined as

fm(β) = fp(β)− 1
2
log det

+
Jλoλo [β, λ̂

o(β)]
�

(5)

where Jλoλo [β, λ̂
o(β)] is the element of the observed information matrix of the new parame-

terization (β,λo) evaluated at the restricted MLE λ̂o(β) for a given β. A simpler way for

calculating this quantity is through the original parameterization:

Jλoλo[β, λ̂
o(β)] =

X
∂α

∂λo

~
Jαα(β,α)

X
∂α

∂λo

~T eeeeee
α=α̂(β)

where Jαα(β,α) is the element of the observed information matrix of (β,α), which is diagonal

with the ith diagonal element being β(β + 1)
�ni
j=1 t

β
ij/α

β+2
i − riβ/α2i . This along with the

expression (3) give the modification term:

−1
2
log det

+
Jλoλo[β, λ̂

o(β)]
�
∝ −k log β.

Taking the derivative of fm(β) gives the modified likelihood equation:

k3
i=1

ri

⎛⎝�ni
j=1 t

β̃
ij log tij�ni

j=1 t
β̃
ij

⎞⎠− �k
i=1 ri − k
β̃

−
k3
i=1

3
j∈Di

log tij = 0. (6)

where β̃, the solution of (6), is the modified MLE (MMLE). Some explanations on the

adjusting factor k are as follows. In (6),
�k
i=1 ri represents the total amount of information

available and k represents the total number of nuisance parameters to be estimated. When

only the estimation of β is concerned, its estimating equation should be penalized by the

number of additional parameters estimated other than the parameters of interest. This
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explanation is consistent with the degrees of freedom reduction in the cases of t and chi-

squared tests.

There is a certain arbitrariness in choosing the constant in (3). It is possible that

the modifier k in (6) may not be the optimal choice. Also, the orthogonal parameters were

derived from the complete samples and it is not clear how well it will work for censored data.

Most importantly, the Cox-Reid method leads to the identification that it is necessary to

modify
�
ri term in the likelihood equation by subtracting a constant from it. Empirical

evidence provided in next section, however, reveals that in case of complete or Type II

censored data, a modifier k+1 (instead of k) provides a dramatic improvement. The case of

Type I censored data is more complicated than the case of Type II censored data, since
�
ri

is no longer a fixed quantity. Monte Carlo simulation show that the modifier k
�
ri/
�
ni

works quite well.

In summary, the final modified likelihood equation takes the general form:

k3
i=1

ri

⎛⎝�ni
j=1 t

β̃
ij log tij�ni

j=1 t
β̃
ij

⎞⎠− �k
i=1 ri − c(k)

β̃
−

k3
i=1

3
j∈Di

log tij = 0. (7)

where c(k) = k + 1 for complete or Type II censored data and c(k) = k
�
ri/
�
ni for Type

I censored data.

4 Simulation Studies

A simulation study is carried out to assess the finite sample properties of the MLE and

MMLE. Various values of n, β, k and p (proportion of non-censoring) are considered, allowing

us to see the impact of sample size, population skewness, number of populations as well as

the degree of censorship on the performance of the MLE and MMLE. For a given parameter

setting, k random samples are generated, one from each population, using IMSL subroutines

RNWIB and SSCAL, and then censored. The MLE and MMLE of β are computed and

recorded. This procedure is repeated 10,000 times. The average and variance of the 10,000
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MLEs (or MMLEs) lead to Monte Carlo estimates of bias and mean-squared-error (MSE) of

the two estimators. In Tables 1-2, RB0 and RB1 represent the relative bias (in percentage)

of the MLE and MMLE, respectively, i.e., RB0 = 100× (β̂ − β)/β, and REF represents the
relative efficiency of MMLE over MLE, that is, REF = MSE(β̂)/MSE(β̃).

Complete and Type II censored data. Comparing two Weibull populations of

the same shape is of particular interest. From the simulation results reported in the upper

portion of Table 1, we see that the MMLE is superior to the MLE. For all the cases simulated,

the MMLE is nearly unbiased with the relative bias always less than 1%, but the relative

bias of the MLE can be more than 30%; the MMLE can be as much as 151% (REF=2.51)

more efficient than the MLE.

We next consider a more general case of estimating the common shape parameter

for eight Weibull populations with different scale parameters. The simulation results are

summarized in the lower portion of Table 1. The conclusions drawn from the two populations

case still hold. Some further conclusions are as follows. First, with more populations involved

(nIis unchanged), both estimators improved but the MMLE has a larger improvement over

the MLE as reflected by the relative efficiency. For example, when ni = 20, i = 1, · · · , k,
the REFs for the k = 2 case are smaller than the corresponding REFs for the k = 8 case.

Second, when nIis decrease but k increases (such that
�
ni increases), the performance of the

MLE may get worse if the increase in
�
ni (the total number of observations) is not large

enough to offset the increase in k (the number of scale parameters). For example, from the

case with k = 2 and ni = 20 to the case with k = 8 and ni = 10, the bias for the MLE at

each censoring level becomes larger, despite of the fact that the total number of observations

is increased by 40 (doubled) and the number of nuisance parameters is increased only by six.

Table 1 here

Furthermore, other parameter configurations have also been considered, including dif-

ferent values of αIs, more values for k, n and β, different degrees of censorship for each
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sample, etc., and the results (not reported for brevity) are consistent with the patterns in

Table 1. The simulation results further show that the performance of both estimators does

not depend on the values of the scale parameters and depends very little on the true value

of β. This is because both (β̂ − β)/β and (β̃ − β)/β are invariant with respect to α and

are asymptotically invariant with respect to β. The bias of MLE remains noticeable even

when the sample sizes are large and it increases quickly as the degree of censorship increases.

Moreover, the computation of the MMLE is as simple as that of the MLE.

Type I censored data. Type I censored data are more common in practice, but

appear technically difficult for inferences (Nelson, 1982, p248). A similar phenomenon ap-

pears in the modification of the profile likelihood equation for the common Weibull shape.

Monte Carlo simulation shows that using the modifier c(k) = k
�
ri/
�
ni is far better than

k. Table 2 presents some simulation results for k = 2 and 5 using the modifier k
�
ri/
�
ni.

Unlike the cases of complete and Type II censored data where the MMLE offers a uniform

and dramatic improvement over the MLE, the improvement is mild in the cases of Type I

censored data. However, the biasness problem for the MLE based on Type I censored data

is not as severe as the case of Type II censored data. In particular, the bias increases in

a rather small magnitude with the increase of the degree of censorship, as compared with

the case of Type II censored data. As a check on the stability of the simulation results with

respect to the change in β value, we report in Table 2 the results under three different values

of β. Indeed, the results are quite stable.

Table 2 here

Other parameter configurations are simulated. All the results (not reported for brevity)

are consistent with those reported in Table 2. It is generally concluded that the MMLE

based on Type I censored data works well for light to moderate censored data in terms of

bias reduction. But in terms of efficiency enhancement, it works well also for the heavy

censoring case.
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5 Numerical Examples

We now present two numerical examples to illustrate the use of the MLE and MMLE

of the common shape parameter and their impact on the subsequent inferences such as

estimating the scale parameters, the population means, the reliability, the percentile life,

etc. In the discussions below, a quantity with a ˆ represents an estimator based on β̂, and

a quantity with a ˜ represents an estimator based on β̃.

Example 1. The data given below, analyzed by Lawless (1982, p189), are the failure

voltages (in kilovolts per millimeter) of 40 specimens (20 each type) of electrical cable insu-

lation: Type I Insulation: 32.0, 35.4, 36.2, 39.8, 41.2, 43.3, 45.5, 46.0, 46.2, 46.4, 46.5, 46.8,

47.3, 47.6, 49.2, 50.4, 50.9, 52.4, 56.3; Type II Insulation: 39.4, 45.3, 49.2, 49.4, 51.3, 52.0,

53.2, 53.2, 54.9, 55.5, 57.1, 57.2, 57.5, 59.2, 61.0, 62.4, 63.8, 64.3, 67.3, 67.7.

The MLEs and MMLEs based on individual sample assuming different shapes are:

β̂1 = 9.3833, β̃1 = 8.8116, β̂2 = 9.1411, β̃2 = 8.5783, both supporting the assumption of equal

shape. The MLE and MMLE for the assumed common shape parameter are β̂ = 9.2611 and

β̃ = 8.8371, with β̂ being 4.8% larger than β̃, indicating that MLE might over-estimate the

shape parameter. Calculations are also made by artificially censoring the data (e.g., taking

the first 12 observations from each ordered sample), the results (available from the authors

upon request) show a wider gap between MLE and MMLE, meaning that the bias of the

MLE increases as the degree of censorship increases. This is consistent with the simulation

results reported in the last section.

The MLEs and MMLEs of the two scale parameters are α̂ = (48.05, 59.54) and α̃ =

(47.79, 59.22), and of the two population means are µ̂ = (45.81, 56.78) and µ̃ = (45.36,

56.20). Two methods give similar estimates of the scale parameters and the population

means. However, as seen from Table 3, the MLEs and MMLEs of reliabilities and percentile

lives are different, especially at the two tails of the distribution. In particular, the MLEs are

larger than the MMLEs at left tail of the distribution, but smaller at the right tail.

10

Appeared in: Applied Stochastic Models in Business and Industry, 2007, 23, 373-383. 



Table 3 here

Example 2. The data given in McCool (1979) and displayed in Table 4 are the times

of fatigue failure (in millions of cycles) of high-speed turbine engine bearings made out of

five different compounds. The individual estimates of the shape parameters (see Table 4) do

not show a wild difference among the estimated shape parameters of five compounds. Thus,

one can assume a common shape parameter for different compounds, which is estimated to

be 3.78 by MLE and 3.13 by MMLE. The gaps between MLE and MMLE are wider, as

compared with the results in Example 1. The combined β̂ is 20.8% larger than the combined

β̃. Censoring the data artificially (i.e., taking first few observations in each ordered sample)

further widens the gap. This may have a significant impact on the subsequent inferences.

The use of β̂ leads to α̂ = (12.74, 7.80, 9.92, 14.38, 16.4) and µ̂ = (11.51, 7.05, 8.97,

12.99, 14.83), while the use of β̃ gives α̃ = (12.40, 7.39, 9.69, 13.25, 16.08) and µ̃ =(11.09,

6.61, 8.67, 11.86, 14.39). Thus, as a result of a larger gap between β̂ and β̃ the gap between

α̂ and α̃ and the gap between µ̂ and µ̃ become larger as compared with the corresponding

results in Example 1.

Table 5 presents the estimates of reliabilities and percentile lives for the Type I bearings.

Similar to Example 1, the two methods give quite different estimates on reliability and

percentile life, especially at the two tails of the distribution.

Tables 4 and 5 here

6 Discussion

Accurate estimation of the Weibull shape parameter is a crucial engineering issue since

the shape parameter determines the failure pattern. The usual MLE may over-estimate the

shape by as much as 50%. This is especially true when sample size is small or the data is

heavily (Type II) censored. Such a bias is clearly undesirable. In this paper, we proposed a

new estimator of common Weibull shape, called the modified MLE or MMLE. It is seen that
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the MMLE is almost unbiased and is more efficient than the MLE. It is computationally as

simple as the MLE, thus is highly recommended for the practical use. Our results generalize

the results of Yang and Xie (2003) for the special case of a single Weibull population.

The large difference between the MLE and MMLE can give completely different conclu-

sions about the failure mechanism. For example, if the true shape parameter is 0.9, meaning

the failure rate is decreasing, its MLE could easily be 1.08 (20% over estimation), which

indicates that failure rate is increasing. This is not likely to happen if the MMLE is used.

Using the MLE or the MMLE of the common shape parameter can also give quite different

estimates of reliabilities and percentile lives, especially at the two tails of the distribution as

seen from the two examples given in the last section.

There are various related approaches available in the literature for the type of problems

studied in this paper, including the modified profile likelihood approach (Barndorff-Nielson,

1983), the marginal or conditional likelihood approach (Fraser, 1968; Kalbfleisch and Sprott,

1970; Lawless and Mann, 1976). See also Barndorff-Nielsen (1994). It would be interesting,

as a possible future work, to compare various available approaches when applied to the

problem considered in this paper. In the special case of one population, Ferrari et al. (2007)

show that the MMLE proposed by Yang and Xie (2003) outperforms the estimators based

on the competing adjusted profile likelihoods.

Another commonly used method for estimating the Weibul shape parameter is the

least squares estimation (LSE) method. The LSE is also biased and a bias-corrected LSE is

proposed by Zhang et al. (2006). It would be interesting to first extend their bias-corrected

LSE to the case of k populations of the same shape, and then compare with our MMLE

proposed in this paper.
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Table 1: Simulation results based on Type II censored data

β = 0.5 β = 1.0 β = 2.0
p RB0 RB1 REF RB0 RB1 REF RB0 RB1 REF

k = 2
n1 = n2 = 20 n1 = 30, n2 = 20 n1 = 50, n2 = 30

1.0 5.231 0.258 1.26 4.029 0.124 1.20 2.622 0.237 1.13
0.9 6.456 0.228 1.32 5.227 0.318 1.27 3.380 0.382 1.17
0.8 7.699 0.098 1.39 5.992 0.026 1.30 3.899 0.258 1.19
0.7 9.576 0.243 1.48 7.569 0.256 1.37 4.648 0.215 1.24
0.6 12.098 0.424 1.60 9.027 -0.034 1.45 5.672 0.202 1.28
0.5 15.089 0.122 1.75 11.547 -0.034 1.56 6.918 0.000 1.35
0.4 19.937 -0.276 2.00 15.527 -0.016 1.76 9.595 0.408 1.46
0.3 30.678 0.347 2.51 22.939 0.158 2.14 13.474 0.367 1.67

k = 8
ni = 10 ni = 20 ni = 50

1.0 8.041 0.173 1.88 3.830 0.164 1.42 1.463 0.057 1.17
0.9 9.918 0.102 2.09 4.660 0.073 1.50 1.819 0.051 1.20
0.8 12.456 0.361 2.38 5.836 0.231 1.66 2.189 0.044 1.25
0.7 14.982 0.073 2.65 7.026 0.181 1.78 2.547 -0.056 1.28
0.6 18.885 0.058 3.06 8.585 0.099 1.96 3.234 0.030 1.36
0.5 25.064 0.338 3.69 10.836 0.014 2.18 4.026 -0.009 1.44
0.4 34.622 0.142 4.78 14.464 -0.018 2.61 5.337 0.042 1.60
0.3 54.609 0.068 7.00 21.292 0.153 3.29 7.294 -0.137 1.79
0.2 — — — 36.840 -0.021 5.12 11.977 -0.010 2.29
RB0: Relative bias of MLE (in %)
RB1: Relative bias of MMLE (in %)
REF: Relative efficiency of MMLE over MLE
αi = i(i = 1, · · · , k)
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Table 2: Simulation results based on Type I censored data

β = 0.5 β = 1.0 β = 2.0
p RB0 RB1 REF RB0 RB1 REF RB0 RB1 REF

k = 2, n1 = n2 = 10, α1 = 1,α2 = 2
0.9 9.537 1.942 1.32 9.457 1.870 1.318 9.505 1.911 1.317
0.8 8.926 0.913 1.29 9.290 1.247 1.301 8.991 0.974 1.297
0.7 9.860 1.353 1.30 9.825 1.331 1.304 9.621 1.134 1.299
0.6 11.955 2.892 1.33 10.596 1.635 1.303 10.650 1.686 1.302
0.5 12.499 3.020 1.31 12.550 3.073 1.304 12.564 3.076 1.318
k = 2, n1 = 20, n2 = 25,α1 = 1,α2 = 2
0.9 3.760 0.579 1.13 3.760 0.579 1.131 3.723 0.543 1.128
0.8 3.492 0.093 1.13 3.491 0.092 1.119 3.765 0.356 1.127
0.7 3.759 0.162 1.13 3.758 0.162 1.122 3.976 0.372 1.128
0.6 4.452 0.655 1.14 4.452 0.655 1.130 4.438 0.645 1.130
0.5 5.134 1.158 1.14 5.134 1.158 1.136 5.295 1.310 1.138
0.4 6.725 2.537 1.15 6.725 2.537 1.144 6.501 2.324 1.145
0.3 9.221 4.794 1.14 9.221 4.793 1.149 9.275 4.845 1.149

k = 5, ni = 6, αi = 10, 20, 30, 40, 50
0.9 13.108 -0.236 1.79 13.218 -0.147 1.79 13.261 -0.099 1.78
0.8 12.280 -1.599 1.68 12.011 -1.836 1.66 12.186 -1.676 1.67
0.7 11.483 -2.891 1.57 11.380 -2.966 1.57 11.344 -3.021 1.57
0.6 11.616 -3.342 1.55 11.550 -3.390 1.54 11.483 -3.443 1.55
0.5 12.475 -3.126 1.54 12.573 -3.048 1.55 12.816 -2.849 1.58
0.4 14.659 -1.788 1.58 13.732 -2.562 1.54 13.902 -2.437 1.56
k = 5, ni = 10, αi = 10, 20, 30, 40, 50
0.9 7.038 -0.417 1.43 6.735 -0.703 1.40 7.001 -0.449 1.42
0.8 6.342 -1.519 1.33 6.427 -1.431 1.34 6.158 -1.688 1.32
0.7 6.062 -2.175 1.29 6.561 -1.706 1.33 6.409 -1.849 1.32
0.6 6.459 -2.169 1.30 6.319 -2.297 1.29 6.289 -2.332 1.29
0.5 6.790 -2.206 1.30 7.311 -1.728 1.32 6.843 -2.163 1.30
0.4 7.654 -1.733 1.31 7.460 -1.915 1.30 7.609 -1.775 1.31
0.3 10.066 0.160 1.34 9.493 -0.360 1.33 9.639 -0.232 1.34
RB0: Relative bias of MLE (in %)
RB1: Relative bias of MMLE (in %)
REF: Relative efficiency of MMLE over MLE
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Table 3: Estimated reliabilities and percentile lives of Type I insulation

Est. Reliab. at Time t Est. pth %tile Life
t MLE MMLE p MLE MMLE
25 0.9990 0.9978 0.005 29.10 27.28
30 0.9931 0.9878 0.01 31.08 29.36
35 0.9654 0.9486 0.05 36.27 34.89
38 0.9195 0.8916 0.10 38.83 37.66
42 0.7854 0.7444 0.25 42.70 41.89
45 0.6061 0.5677 0.50 46.41 45.97
48 0.3716 0.3530 0.75 49.56 49.48
51 0.1529 0.1579 0.90 51.99 52.21
54 0.0323 0.0422 0.95 53.31 53.68
56 0.0065 0.0115 0.99 55.52 56.19

Table 4: Failure times of bearing specimens

Type β̂ β̃
I 3.03 5.53 5.60 9.30 9.92 2.59 2.22
12.51 12.95 15.21 16.04 16.84

II 3.19 4.26 4.47 4.53 4.67 2.32 2.07
4.69 5.78 6.79 9.37 12.75

III 3.46 5.22 5.69 6.54 9.16 3.13 2.70
9.40 10.19 10.71 12.58 13.41

IV 5.88 6.74 6.90 6.98 7.21 1.94 1.75
8.14 8.59 9.80 12.28 25.46

V 6.43 9.97 10.39 13.55 14.45 3.65 3.16
14.72 16.81 18.39 20.84 21.51

Combined 3.78 3.13
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Table 5: Estimated reliabilities and percentile lives of Type I bearings

Est. Reliab. at Time t Est. pth %tile Life
t MLE MMLE p MLE MMLE
2 0.9991 0.9967 0.005 3.14 2.29
5 0.9713 0.9436 0.01 3.77 2.86
8 0.8418 0.7764 0.05 5.81 4.81
10 0.6700 0.6008 0.10 7.02 6.05
12 0.4503 0.4056 0.25 9.16 8.33
15 0.1565 0.1626 0.50 11.56 11.03
17 0.0509 0.0679 0.75 13.89 13.76
19 0.0107 0.0221 0.90 15.88 16.18
21 0.0013 0.0054 0.95 17.03 17.60
22 0.0004 0.0024 0.99 19.08 20.18
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