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New estimators of the inverse Gaussian failure rate are proposed based on the maximum

likelihood predictive densities derived by Yang (1999). These estimators are compared,

via Monte Carlo simulation, with the usual maximum likelihood estimators of the failure

rate and found to be superior in terms of bias and mean squared error. Sensitivity of the

estimators against the departure from the inverse Gaussian distribution is studied.
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1. INTRODUCTION

The inverse Gaussian (IG) distribution arises as the first passage time distrib-

ution of a Brownian motion, hence it is suitable for describing physical phenomena

such as the time to fatigue of a metal specimen and the time to failure of a compo-

nent, etc.. Its probability density function (pdf), denoted by IG(μ, λ), usually takes

the following form:

f(y; μ, λ) = (λ/2πy3)1/2 exp[−λ(y − μ)2/2μ2y], y > 0; μ > 0, λ > 0, (1)

with the mean, variance, skewness and kurtosis of the distribution given by, respec-

tively, μ, μ3/λ, 3
√

μ/λ and 15μ/λ. From this we see that the parameter φ = λ/μ
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determines the shape of the IG distribution and the density is highly skewed for small

to moderate values of φ. As φ increases, the IG tends to normal. The reliability and

failure rate functions for (1) have the forms:

R(t; μ, λ) = Φ
[
(λ/t)1/2(1 − t/μ)

]
− e2λ/μΦ

[
−(λ/t)1/2(1 + t/μ)

]
, (2)

r(t; μ, λ) =
(λ/2πt3)1/2 exp[−λ(t− μ)2/2μ2t]

Φ [(λ/t)1/2(1 − t/μ)] − e2λ/μΦ [−(λ/t)1/2(1 + t/μ)]
, (3)

where Φ denotes the cumulative density function (CDF) of the standard normal.

The usual estimator of r(t; μ, λ) is the maximum likelihood estimator (MLE)

where the unknown parameter(s) in the function are replaced by their MLEs. Chang

(1994) obtained confidence bounds for r(t; μ, λ) with the ′center curve′ (point esti-

mator) being the MLE. The bounds are obtained by converting the confidence inter-

vals for parameters by means of Bonferroni inequality, hence are conservative. The

MLE method is known to be simple and easy to implement, but can give rise to

estimators with large bias and mean squared error (MSE) when sample size is not

large. Yang (1999) derived the maximum likelihood predictive densities (MLPDs)

for the inverse Gaussian distribution and found successful applications in reliability

and lifetime predictions. In this article, we consider applying these MLPDs to give

estimators of r(t; μ, λ) for the cases of one or both parameters unknown, and using

Monte Carlo simulation to evaluate the performance of these estimators. In the case

of lack of information on the relevant distribution, a nonparametric method described

in Modarres (1993, p82) can be used, but again this method does not usually have a

satisfactory performance when sample size is not large. For a complete account of the

IG distribution, see the specialized monographs of Chhikara and Folks (1989), and

Seshadri (1993, 1998).

Section 2 describes the MLPDs for the inverse Gaussian distribution and dis-

cusses briefly their large sample properties. Section 3 proposes the MLPD estimators

(MLPDE) of r(t; μ, λ), evaluates their small sample properties using Monte Carlo

simulation, and compares them with the usual MLEs. Section 4 conducts a sensitiv-
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ity analysis of the two estimators. Section 5 presents some numerical examples for

illustration and further comparison. The results obtained indicate that the MLPDE

generally outperforms the usual MLE in terms of bias and MSE. When data has a

certain departure from the IG distribution, it is shown that the MLPDE is not very

sensitive to this departure and it still generally performs better than the MLE.

2. MLPDs FOR THE IG DISTRIBUTION

Let Y = (Y1, Y2, ..., Yn) be a sample of past observations from an IG distribution

with pdf f(y; μ, λ) and Yn+1 or T be a future observation from the same population.

The MLPD for T = Yn+1 based on Y = y is defined by Lejeune and Faulkenberry

(1982) as follows:

f̂(t | y) ∝ max
θ

f(t; θ)f(y; θ), (4)

where θ = μ or λ or θ = (μ, λ), depending on the parameter situation. Let Ȳ and Ỹ

be, respectively, the arithmetic and harmonic means of the past sample, and ȳ and

ỹ be their observed values. The MLPDs for the inverse Gaussian distribution (Yang,

1999) have the forms:

f̃(t | y) = k(y)t−
3
2

{
n

ỹ
+

1

t
− (n + 1)2

t + nȳ

}−n+1
2

(5)

f̃(t | y; μ) = k(y, μ)t−
3
2

{
1 +

(t − μ)2

nt(ȳ + ỹ − 2μ)

}−n+1
2

, (6)

f̃(t | y; λ) = k(y, λ)t−
3
2 exp

[
−λ

2

{
1

t
+

n

ỹ
− (n + 1)2

t + nȳ

}]
, (7)

respectively, for the cases of both μ and λ unknown, only λ unknown, and only μ

unknown. The quantities k(y), k(y, μ) and k(y, λ) are the normalizing constants

which depend only on the past sample. In (6), write q = n(ȳ + ỹ − 2μ) and define

w =
(t − μ)2

qt + (t − μ)2
.

As w is monotonically decreasing for t ∈ [0, μ] and monotonically increasing for

t ∈ [μ,∞), integrating f̃(t | y; μ) over [0, μ] and [μ,∞), respectively, by applying
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the transformation and then combining the two integrals for cancelation, one obtains

k(y, μ) = μ/
√

qβ(1/2, n/2). The MLPD (6) is seen to be the same as the Bayesian

predictive density given in Chhikara and Guttman (1982). There are no closed form

expressions for the other two constants and hence they have to be found through

numerical integrations.

Lejeune and Faulkenberry presented a general theory regarding the consistency

of a MLPD. They indicated that the conditions of their theory are satisfied by distri-

butions in the exponential family. Thus, the MLPDs given above are consistent for

estimating the IG pdf as the inverse Gaussian distribution belongs to the exponen-

tial family. In fact, it is not difficult to verify directly that the MLPDs (5)-(7) are

consistent estimators of f(y; μ, λ). We omit this verification for brevity.

3. THE MLPDEs OF FAILURE RATE

The IG failure rate function given in (3) looks very complicated, hence the

related inference methods should be also complicated. However, when only point

estimation is of concern, one is still able to find simple ways to do so, which may

be sufficient for most of the practical purposes if the estimator is ′accurate′ enough.

The simplest method of estimating r(t; μ, λ) may be the maximum likelihood method

where the unknown parameter(s) in r(t; μ, λ) are simply replaced by their MLEs.

Thus, the resulted MLEs of r(t; μ, λ) become r̂(t; μ) = r(t; μ, λ̂(μ)) when λ is unknown,

r̂(t; λ) = r(t; μ̂(λ), λ) when μ is unknown, and r̂(t) = r(t; μ̂, λ̂) when both μ and λ

are unknown, where μ̂ = Ȳ and λ̂ = 1/(Ỹ −1 − Ȳ −1) are the MLEs and μ̂(λ) = Ȳ and

λ̂(μ) = μ2/(Ȳ + Ỹ − 2μ) are the restricted MLEs, given the other parameter.

As mentioned in the introduction, the MLE method is simple, but can give rise to

estimators with large bias and MSE. Thus, a better method is desirable. We propose

the so-called MLPD estimator (MLPDE) of r(t; μ, λ) by considering the MLPD as an

estimator of the unknown pdf. Thus, the MLPDEs of the IG failure rate are defined
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as

r̃(t; θ) =
f̃(t | y; θ)

1 − ∫ t
0 f̃(x | y; θ)dx

, (8)

where the components of θ = (μ, λ) may not be known all at once. Unlike the MLE,

the MLPDE incorporates both the past and future observations in the maximization

process, hence should be (at least intuitively) less variable than MLE because of the

involvement of more information. It may be of interest to see the behavior of the

MLPDE of the IG failure rate relative to the existing estimators. As the MLPDE has

close analogy to the MLE, we restrict our comparison between these two estimators.

First, it is obvious that the MLEs of r(t) = r(t; μ, λ) are consistent as the MLEs

of μ and λ are consistent. The MLPDEs are also consistent since the MLPDs are

consistent estimators of the true density function. Thus, when sample size is large,

the two estimators should behave similarly.

Although consistency is an important feature of an estimator, it is much more

important for an estimator to possess good small sample properties. The complicated

expressions for the MLE and MLPDEs, especially the latter, may prohibit any ana-

lytical study regarding the small sample properties of these estimators. We thus turn

to Monte Carlo simulation. The case of both parameters unknown is clearly the most

practical case. We will concentrate our study on this situation.

We choose four different sample sizes (small to moderate), three combinations of

the parameter values that give a population skewness from moderate to large, and six

different time points for each combination of sample size and parameter values, which

cover more than 80% of the population values. Each row of the simulation results

is based on 10,000 random samples. Simulation results, such as the relative bias

and relative efficiency (REF) of MLPDE over MLE, etc., are summarized in Table

1. To give an idea about the standing of each time point in the population, we also

calculated the reliabilities at the given time points and listed them in the table under

R(t). From the simulation results, we see that the MLPDE can have much smaller
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bias and MSE than the MLE. For example, when (n, μ, λ, t) = (20, 1.0, 0.3, 1.5), we

have a 24.2% relative bias for the MLE compared to a 2.4% for the MLPDE. The

relative efficiency for this case is 2.85, indicating that the MLPDE is much more

efficient than the MLE. Increasing the sample size reduces the discrepancy between

the two methods. Notice that when n is very small, the MLE can be very unstable.

Its MSE can go up to 73.19 (recovered for the values of REF and MSE(MLPDE)),

whereas all values for the MSE of the MLPDE are below 1.06. The MLE significantly

overestimates the failure rate at the tail part. Both MLE and MLPD agree well

with the true value at the early time points. Simulation is also carried out for the

case of only one unknown parameter, the results (not reported but available from the

authors) show similar features.

Simulation results show that the MLPDE is definitely preferable to the usual

MLE. Although the calculation of the MLPDE of the failure rate requires numerical

integration, this is not at all a problem as powerful and yet user-friendly statistical

softwares, such as Mathematica and Maple, are available. It should be noted that

the MLE tends to overestimate the IG failure rate and its relative bias increases with

time. It is not clear why this happens. Thus, a general investigation on the analytical

behavior of the MLE of failure rate may be of interest.

Although we believe that the behavior of the IG failure rate estimators depends

mainly on the shape (φ = λ/μ) of the distribution, it is important to investigate

whether the behavior of the estimators depend on the magnitude of the parameter

values. To this end, for n = 30, we explore the effect of multiplying (μ, λ) = (.25, 1.0)

by 10 and 100, so that the ratio of μ and λ is kept the same. The simulation results

are summarized in Table 2. The results show that the behavior of the estimators does

not depend much on the magnitude of the parameters. However, as the parameter

values increase, the population becomes more spread out and the values of r(t) thus

tend to be smaller. The absolute bias and MSE depend on the magnitude of r(t).
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Table 1: Simulated Biases and MSEs of the Estimators of r(t), μ = 1.0.

Rel. Bias* MSE Rel. Bias MSE
λ t R(t) r(t) r̂(t) r̃(t) REF* r̃(t) r̂(t) r̃(t) REF r̃(t)

n = 10 n = 20
.25 0.1 .86 2.68 -4.6 -7.0 1.31 1.0551 -2.7 -4.4 1.17 0.5185

0.3 .54 1.82 18.7 7.1 1.60 0.6158 7.5 2.1 1.24 0.1628
0.5 .40 1.32 30.3 11.2 2.57 0.4430 12.7 5.1 1.41 0.1344
1.0 .24 0.84 48.6 8.8 11.77 0.1687 19.7 5.3 2.04 0.0785
1.5 .17 0.64 63.5 0.3 47.21 0.0676 24.2 2.4 2.85 0.0504
2.5 .10 0.47 101.0 -15.3 2793.4 0.0262 31.0 -5.5 5.18 0.0254

1.0 0.3 .83 1.29 -2.7 -5.5 1.26 0.2714 -1.5 -3.0 1.13 0.1249
0.6 .55 1.36 16.4 6.4 1.47 0.3541 6.8 2.5 1.18 0.1120
0.9 .38 1.24 27.3 9.4 2.23 0.3626 11.3 4.6 1.38 0.1282
1.2 .26 1.14 35.2 7.1 3.77 0.2910 13.4 3.5 1.62 0.1165
1.5 .19 1.06 39.3 1.9 4.77 0.2028 15.5 1.7 1.96 0.1051
2.0 .11 0.96 51.6 -8.1 337.4 0.1251 16.8 -3.3 2.59 0.0801

4.0 0.5 .89 0.93 -5.8 -4.4 1.26 0.1843 -2.3 -1.8 1.14 0.0941
0.7 .69 1.52 8.0 2.2 1.33 0.4846 3.4 0.5 1.11 0.1541
1.0 .41 1.97 22.5 8.8 1.79 0.8894 9.7 4.1 1.30 0.3053
1.3 .23 2.15 31.0 4.1 3.45 0.8177 13.0 2.5 1.69 0.3876
1.6 .11 2.23 36.4 -5.1 6.34 0.6093 14.2 -2.3 2.22 0.3749
2.0 .05 2.27 37.3 -19.0 9.30 0.5398 16.4 -8.8 2.86 0.3424

n = 30 n = 50
.25 0.1 .86 2.68 -1.68 -2.86 1.11 0.3289 -1.10 -1.81 1.07 0.2045

0.3 .54 1.82 4.59 1.13 1.15 0.0887 2.81 0.85 1.09 0.0436
0.5 .40 1.32 7.81 3.14 1.25 0.0730 4.40 1.83 1.14 0.0347
1.0 .24 0.84 11.98 3.56 1.54 0.0443 6.86 2.40 1.28 0.0241
1.5 .17 0.64 15.33 2.68 1.88 0.0339 8.23 1.70 1.41 0.0179
2.5 .10 0.47 19.32 -1.97 2.87 0.0200 10.35 -0.58 1.72 0.0121

1.0 0.3 .83 1.29 -1.24 -2.32 1.09 0.0805 -0.76 -1.45 1.05 0.0451
0.6 .55 1.36 4.10 1.39 1.11 0.0670 2.54 0.95 1.07 0.0369
0.9 .38 1.24 7.20 3.07 1.23 0.0744 4.05 1.71 1.13 0.0415
1.2 .26 1.14 8.72 2.64 1.37 0.0722 5.39 1.98 1.21 0.0408
1.5 .19 1.06 9.91 1.54 1.54 0.0683 5.65 1.00 1.28 0.0401
2.0 .11 0.96 11.01 -1.37 1.81 0.0577 6.65 -0.33 1.42 0.0360

4.0 0.5 .89 0.93 -2.29 -1.94 1.10 0.0640 -1.39 -1.22 1.06 0.0377
0.7 .69 1.52 2.55 0.66 1.07 0.0965 1.59 0.46 1.04 0.0541
1.0 .41 1.97 6.05 2.58 1.18 0.1850 3.58 1.57 1.11 0.1012
1.3 .22 2.15 8.25 1.79 1.40 0.2473 4.73 1.08 1.22 0.1418
1.6 .11 2.23 8.74 -1.47 1.64 0.2523 5.12 -0.73 1.34 0.1580
2.0 .05 2.27 10.07 -5.93 1.98 0.2606 5.95 -3.33 1.51 0.1699

*Rel. Bias = 100(Bias/r(t)); REF = MSE(MLE)/MSE(MLPD).
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Thus, as parameter values increase, we see that the absolute bias and MSE decrease,

but their relative values are not changed much.

Table 2: Simulation Results for the Cases of Larger Parameter Values

Rel. Bias MSE
μ λ t R(t) r(t) r̂(t) r̃(t) REF r̃(t)

10 2.5 0.8 0.9017 0.2605 -2.91 -2.71 1.14 0.004707
2.0 0.6663 0.2244 2.27 -0.63 1.09 0.001161
3.0 0.5446 0.1817 4.74 1.26 1.15 0.000908
6.0 0.3532 0.1175 8.88 3.52 1.30 0.000645

12.0 0.2037 0.0742 13.86 3.71 1.67 0.000423
25.0 0.0964 0.0468 19.15 -2.08 2.72 0.000206

10.0 2.5 0.8873 0.1168 -2.39 -2.34 1.11 0.000906
6.0 0.5536 0.1357 4.47 1.74 1.12 0.000688
9.0 0.3750 0.1239 7.54 3.37 1.24 0.000771

12.0 0.2628 0.1136 8.92 2.82 1.37 0.000745
15.0 0.1892 0.1056 10.13 1.75 1.53 0.000689
20.0 0.1145 0.0959 11.83 -0.75 1.86 0.000597

100 25.0 8.0 0.9017 0.0261 -3.29 -3.08 1.14 0.000047
20.0 0.6663 0.0224 2.59 -0.32 1.10 0.000011
30.0 0.5446 0.0182 4.59 1.13 1.15 0.000009
60.0 0.3532 0.0118 8.66 3.30 1.30 0.000006

120.0 0.2037 0.0074 12.92 2.93 1.66 0.000004
250.0 0.0964 0.0047 18.73 -2.20 2.63 0.000002

100.0 25.0 0.8873 0.0117 -2.35 -2.30 1.11 0.000009
60.0 0.5536 0.0136 4.34 1.61 1.12 0.000007
90.0 0.3750 0.0124 7.43 3.26 1.23 0.000008

120.0 0.2628 0.0114 8.85 2.76 1.37 0.000007
150.0 0.1892 0.0106 10.54 2.12 1.54 0.000007
200.0 0.1145 0.0096 11.30 -1.15 1.83 0.000006

4. SENSITIVITY ANALYSIS

Having studied the properties of the MLPDE when data come exactly from an

IG distribution, a natural question to be asked is what will happen if the data does

not follow an IG distribution, i.e., how sensitive is the estimator with respect to a

departure from the IG assumption. There are many forms of departure from the IG

assumption. We consider two popular forms and investigate the sensitivity of the

MLPDE under each form of departure: a) the data is contaminated in the sense that

a few observations arise from an IG distribution with a smaller or a larger mean while
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the majority follow the designated IG distribution, and b) the data is from another

distribution. There are many other distributions that can be used to describe fatigue

and lifetime data, such as lognormal, gamma, Weibull, etc.. However, in terms of

failure pattern, the lognormal may be the one that is closest to the IG distribution in

that both distributions are monotonic, increasing and then decreasing. The difference

is that the lognormal failure rate converges to zero while that of IG converges to a

constant as the ′time′ approaches infinity.

The results given in Table 3 represent the case that the data is contaminated

by either 5% or 10% on each side. The results show that the estimators are quite

robust with respect to the contamination. They are less sensitive to contamination

when the population is more skewed (the upper part of the table).

In practice, given a real data set, there may be more than one choice of dis-

tribution to fit. A goodness of fit test may help, but it usually fails to differentiate

distributions of similar shape. We now investigate the sensitivity issue when data

is from some other life distribution. Three popular life distributions, the lognormal,

gamma and Weibull, are considered. Their pdfs are, 1√
2πτy

exp[− 1
2τ2 (log y − η)2],

( τ
η
)(y

η
)τ−1 exp[−(y

η
)τ ], and 1

Γ(τ )ητ yτ−1 exp(− y
η
), respectively, η > 0, τ > 0 and y > 0.

Some results are given in Table 4. From the results we see that when data

is generated from a lognormal distribution, the two estimators perform quite well,

especially when data is not too skewed. The MLPDE again outperforms the MLE in

terms of relative efficiency. However, when the data is generated from a distribution

that has a different failure pattern, such as gamma and Weibull, the performance of

the two estimators are poor, especially at the early stages. More simulation has been

performed for both cases, including the one-sided contamination case. It is found the

performance of the two estimators are worse in the one-sided contamination case.

5. NUMERICAL EXAMPLES

Appeared in:  Journal of Statistical Computation and Simulation, 2001, 71, 201-213.



10

Table 3: Sensitivity under Contamination, n = 40, μ = 10.

Rel. Bias MSE
λ t R(t) r(t) r̂(t) r̃(t) REF r̃(t)

10% Contamination, 5% each side*
2.5 0.8 0.9017 0.2605 -1.73 -1.61 1.11 0.003760

2.0 0.6663 0.2244 1.59 -0.55 1.06 0.000830
3.0 0.5446 0.1817 3.17 0.64 1.10 0.000628
6.0 0.3532 0.1175 5.64 1.86 1.19 0.000439

12.0 0.2037 0.0742 9.03 2.07 1.42 0.000305
25.0 0.0964 0.0468 13.00 -1.55 1.98 0.000171

10.0 2.5 0.8873 0.1168 -0.01 -0.12 1.09 0.000641
6.0 0.5536 0.1357 1.35 -0.64 1.06 0.000499
9.0 0.3750 0.1239 2.30 -0.61 1.11 0.000547

12.0 0.2628 0.1136 3.02 -1.19 1.19 0.000576
15.0 0.1892 0.1056 3.14 -2.52 1.25 0.000529
20.0 0.1145 0.0959 4.24 -4.24 1.39 0.000483

20% Contamination, 10% each side*
2.5 0.8 0.9017 0.2605 -0.82 -0.75 1.11 0.003500

2.0 0.6663 0.2244 1.68 -0.47 1.06 0.000851
3.0 0.5446 0.1817 2.91 0.38 1.09 0.000633
6.0 0.3532 0.1175 4.88 1.12 1.17 0.000472

12.0 0.2037 0.0742 7.91 1.03 1.39 0.000310
25.0 0.0964 0.0468 11.49 -2.77 1.91 0.000170

10.0 2.5 0.8873 0.1168 1.74 1.50 1.09 0.000611
6.0 0.5536 0.1357 -0.46 -2.44 1.03 0.000518
9.0 0.3750 0.1239 -0.62 -3.46 1.07 0.000603

12.0 0.2628 0.1136 -0.68 -4.68 1.11 0.000586
15.0 0.1892 0.1056 -1.03 -6.36 1.14 0.000557
20.0 0.1145 0.0959 -0.68 -8.57 1.23 0.000538

*The contaminated observations are generated either from
IG(μ/2, λ) or from IG(2μ, λ)

The numerical examples considered in Yang (1999) are considered again here

to illustrate the failure rate estimation. The first two examples correspond to real

data sets and the last corresponds a simulated data for the purpose of comparing the

estimated failure rate with the true one. All three data sets are reproduced here for

completeness. Again, our illustration concentrates on the most realistic case: both

parameters unknown. The plots of the estimated failure rates in Figure 1 show that

the MLE and MLPD agree well at the early stage, but start to move apart as the

time increases. They can be significantly different at the tail area, especially when n

is small. The plot for the simulated data shows that the MLPD failure rate curve is
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Table 4: Sensitivity under Misspecification of Distribution, n = 30

Rel. Bias MSE
η τ t R(t) r(t) r̂(t) r̃(t) REF r̃(t)

Data are generated from lognormal Distribution
1.0 0.5 1.4 0.9078 0.2603 2.58 3.64 1.10 0.006805

2.4 0.5983 0.5387 3.13 0.84 1.09 0.011750
3.2 0.3721 0.6353 3.58 -0.18 1.17 0.019350
4.2 0.1921 0.6772 5.23 -1.63 1.35 0.023755
5.2 0.0973 0.6800 8.40 -2.66 1.65 0.025281
6.0 0.0567 0.6700 11.19 -3.66 1.97 0.024926

1.0 0.8 0.8894 0.2654 20.98 20.82 1.10 0.012384
2.6 0.5177 0.2961 4.05 0.77 1.13 0.002836
5.0 0.2711 0.2444 -1.86 -7.58 1.10 0.003170
7.0 0.1721 0.2117 -1.73 -10.22 1.16 0.002844
9.5 0.1054 0.1821 1.11 -11.36 1.35 0.002451

12.0 0.0688 0.1605 5.44 -11.50 1.64 0.001973
Data are generated from gamma Distribution

10.0 1.5 3.0 0.8964 0.0511 78.75 77.94 1.08 0.003006
7.0 0.7055 0.0664 40.34 36.50 1.20 0.000728

11.0 0.5319 0.0741 12.01 7.95 1.26 0.000186
16.0 0.3618 0.0796 -8.82 -13.50 0.84 0.000315
22.0 0.2214 0.0838 -23.17 -28.84 0.79 0.000807
28.0 0.1328 0.0865 -32.27 -38.91 0.78 0.001340

3.0 12.0 0.8795 0.0247 32.44 32.24 1.08 0.000170
17.0 0.7572 0.0349 26.82 24.51 1.14 0.000136
23.0 0.5960 0.0445 14.27 11.41 1.21 0.000089
32.0 0.3799 0.0549 -1.24 -5.15 1.05 0.000111
42.0 0.2102 0.0629 -13.20 -18.72 0.85 0.000269
55.0 0.0884 0.0699 -22.99 -30.80 0.76 0.000600

Data are generated from Weibull Distribution
100.0 1.5 25.0 0.8825 0.0075 78.14 76.76 1.08 0.000057

45.0 0.7394 0.0101 48.90 45.26 1.15 0.000025
70.0 0.5567 0.0125 14.70 10.89 1.25 0.000007

100.0 0.3679 0.0150 -11.28 -15.56 0.84 0.000013
130.0 0.2271 0.0171 -27.78 -32.66 0.81 0.000040
165.0 0.1201 0.0193 -39.61 -45.27 0.82 0.000085

2.5 40.0 0.9038 0.0063 45.72 47.14 1.05 0.000024
55.0 0.7990 0.0102 44.54 42.37 1.10 0.000028
75.0 0.6144 0.0162 20.89 17.90 1.21 0.000017
95.0 0.4149 0.0231 -3.20 -6.71 0.91 0.000022

115.0 0.2421 0.0308 -22.57 -26.87 0.84 0.000097
140.0 0.0984 0.0414 -40.41 -45.36 0.79 0.000415
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closer to the true curve than the MLE. The plots are obtained using MATHEMATICA

3.0 and a Pentium II 300 MHz machine. It takes less than half a minute to finish this

multiplot where each point of the plot involves numerical integrations.

Example 1. Fatigue lives (in hours) for 10 bearings tested on a certain tester:

152.7, 172.0, 172.5, 173.3, 193.3, 204.7, 216.5, 234.9, 262.6, 422.6. The MLEs are μ̂

= 220.48 and λ̂ = 2708.86. The data is slightly skewed to the right.

Example 2. 46 repair times (in hours) for an airborne communication trans-

ceiver: .2, .3, .5, .5, .5, .5, .6, .6, .7, .7, .7, .8, .8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5,

1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5,

8.8, 9.0, 10.3, 22.0, 24.5. The MLEs for the parameters are μ̂ = 3.61 and λ̂ = 1.66.

The data is skewed to the right.

Example 3. Simulated Data. Fifteen observations are generated from an

IG(1,1) population: 0.9144, 0.2517, 0.6506, 0.9421, 0.9112, 0.2515, 0.5057, 0.9760,

1.5257, 0.5819, 0.4591, 0.6711, 0.3103, 0.3733, 0.3696. The resulted arithmetic and

harmonic means are, respectively, ȳ = 0.6463, and ỹ = 0.4936.

Insert Figure 1 near here

To conclude the article, we give a brief discussion. The method of applying

MLPD to estimate reliability and failure rate seems promising and deserves further

studies. There are other forms of predictive densities, such as the fiducial predictive

density and the Bayesian predictive density, that can be used to serve the same

purpose when the MLPD does not have a tractable mathematical form for a certain

distribution.

Although the MLPD method outperforms the standard ML method in reliability

and failure rate estimations, it is relatively straightforward to derive interval estimates

for the reliability and failure rate functions using the latter approach. Alternatively,

one may use the profile likelihood method (Kalbfleisch and Sprott, 1970) for these

reliability studies, which has a further advantage of being Bartlett correctable.
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