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Abstract

This paper proposes a transformed random effects model for analyzing non-normal panel

data where both the response and (some of) the covariates are subject to transformations for

inducing flexible functional form, normality, homoscedasticity and simple model structure.

We develop maximum likelihood procedure for model estimation and inference, along with

a computational devise which makes the estimation procedure feasible in cases of large

panels. We give model specification tests which take into account the fact that parameter

values for error components cannot be negative. We illustrate the model and methods with

two applications: state production and wage distribution. The empirical results strongly

favor the new model to the standard ones where either linear or log-linear functional form is

employed. Monte Carlo simulation shows that maximum likelihood inference is quite robust

against mild departure from normality.
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1. Introduction.

With the increasing availability of richer panel data sets, panel data regression

models have become increasingly popular among the applied researchers due to their

capabilities and flexibilities in dealing with complex issues in economic modeling.

However, little has been done on the choices of functional form in panel data set-

up as evidenced by the recent monographs (see, e.g., Baltagi, 2001; Arellano, 2003;

Hsiao, 2003; Frees, 2004). This is in contrast to the cross-sectional or time-series

studies where standard econometrics text books treat the choice of functional form

as a standard topic (see, e.g., Davidson and MacKinnon, 1993; Greene, 2000).

It is well known that the purposes of transforming the economic data in a cross-

sectional or time-series regression is to induce normality, flexible functional form,

homoscedastic errors, and simple model structure. The same ideas can be applied to

panel data. However, panel data has its own unique features such as unobservable

individual and time effects that may not disappear even if transformations are applied

to the data. We thus consider the model,

h(Yit,λ) =
k13
j=1

βjZitj +
k3

j=k1+1

βjh(Xitj,λ) + uit, (1)

where i = 1, 2, · · · , N, t = 1, 2, · · · , T , h(·,λ) is a monotonic transformation (e.g., Box
and Cox, 1964), known except the indexing parameter λ, called the transformation

parameter. The Z variables contain the column of ones, dummy variables, etc., and

the X variables are some of the continuous type of variables that need to be trans-

formed. We assume the transformed observations follow a two-way random effects

model, i.e.,

uit = μi + ηt + vit (2)

where μi
iid∼ N(0, σ2μ) (independent and identically distributed normal random variates

with means zero and variances σ2μ), ηt
iid∼ N(0,σ2η), and vit iid∼ N(0,σ2v). The μi, ηt and

vit characterize, respectively, the unobservable individual effects, unobservable time

effects and the model errors, which are assumed to be independent of each other.

2

Appeared in:  Applied Stochastic Models in Business and Industry, 2011, 27, 222-234.



The model specified by (1) and (2) clearly gives a useful extension of the stan-

dard random effects model by allowing the distribution of Yit to be in a broad family

(transformed normal family) not just normal or lognormal. It also allows easy testing

of the traditional economic theories of lognormality for production function, firm-

size distribution, income distribution, etc., as governed by Cobb-Douglas production

function and Gibrat’s Law. Baltagi (1997) considered a submodel with only individ-

ual random effects and presented a Lagrange multiplier test for testing whether the

functional form is linear or log-linear. Breusch and Pagan (1980), Breusch (1987),

Baltagi and Li (1992), among others, have treated the random effects model (one or

two-way) without transformation.2

Despite of various works in the static panel models with or without parametric

transformations on the model variables, there is a need of simple and easily imple-

mentable procedures for estimating the full transformation model, especially in the

cases of large panels. The results presented in this paper seem to have fulfilled such

a need, making the applied research work much easier. Also, it is desirable to have

tests for functional form (not only linear or log-linear) or error components allowing

for the presence of the other in such a general framework. Furthermore, parame-

ter values for error components cannot be negative, and hence one-sided LM tests

for model specification are desirable. On computing side, estimation of the random

effects model involve the calculation of many NT × NT matrices which can easily
exhaust the computer memory when the panel (NT ) is large. A method is given to

overcome this computational difficulty.

This paper is organized as follows. Section 2 develops the maximum likelihood

estimation procedure for the model. Also in this section, a computational devise is

presented which avoids the calculations of all the NT × NT matrices, allowing for
the estimation procedure to be implementable for large panel data sets. Section 3

2Some related works on the choice of functional form are Abrevaya (1999) who proposed a leapfrog

estimation of a fixed-effects model with an unknown response transformation and Giannakas et al.

(2003) who considered the choice of functional form in stochastic frontier model using panel data.
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presents model specification tests which take into account the one-sided nature for

the error components. Section 4 presents two empirical applications using a state

production data and a wage data. Section 5 presents Monte Carlo results for the

finite sample performance of parameter estimates and inferences. Section 5 concludes

the paper. The empirical results strongly favor the new model to the standard ones

where either linear or log-linear functional form is employed. Monte Carlo simulation

shows that maximum likelihood inference is quite robust against mild departure from

normality.

2. Model Estimation

For the regular error components model, the standard method of estimation for

the regression coefficients may be the feasible GLS, which takes the advantage of the

block diagonality between the estimates of regression coefficients and the estimates of

variance components. This simple method, however, cannot be applied to the trans-

formed panel regression model due to the fact that the estimates of the transformation

parameter and the regression coefficients are highly correlated. Another commonly

used method, the instrumental variable (IV) method (or GMM in general), is also

not applicable to our model as the response involves an unknown parametric trans-

formation (Davidson and MacKinnon, 1993, p. 243). We thus, turn to the maximum

likelihood estimation (MLE) method.

2.1 Maximum likelihood estimation

Stacking the data into columns with i and t being, respectively, the slower and

faster running indices, the above model can be compactly written in matrix form,

h(Y,λ) = X(λ)β + u (3)

u = Zμμ+ Zηη + v (4)

where Zμ = IN ⊗ 1T and Zη = 1N ⊗ IT with In being an n× n identity matrix, 1n an
n-vector of ones, and ⊗ the Kroneker product. Define Jn = 1n1In. The log likelihood

4
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function after dropping the constant term takes the form

f(β,σ2μ,σ
2
η, σ

2
v ,λ) = −

1

2
log |Σ|− 1

2
[h(y,λ)−X(λ)β]IΣ−1[h(y,λ)−X(λ)β]+J(λ), (5)

where J(λ) =
�N
i=1

�T
t=1 log hy(yit,λ) is the log Jacobian of the transformation, and

Σ is the variance-covariance matrix of u which takes the form

Σ = σ2μ(IN ⊗ JT ) + σ2η(JN ⊗ IT ) + σ2v(IN ⊗ IT ).

Model estimation corresponds to the maximization of the log likelihood func-

tion (5). Clearly, the addition of transformation in the model makes parameter

estimation a very challenging problem. Direct maximization of (5) may be im-

practical and method of simplification should be sought after. Following Baltagi

and Li (1992), among others, we consider a reparameterization of the model and

a spectral decomposition of Σ to simplify the model estimation process. Define

Q = INT − 1
T
IN ⊗ JT − 1

N
JN ⊗ IT + 1

NT
JNT , P1 =

1
T
IN ⊗ JT − 1

NT
JNT , P2 =

1
N
JN ⊗ IT − 1

NT
JNT , and P3 =

1
NT
JNT . Let θ1 = σ2v/(Tσ

2
μ+ σ2v), θ2 = σ2v/(Nσ

2
η + σ2v),

and θ3 = σ2v/(Tσ
2
μ +Nσ

2
η + σ2v), where θ3 = θ1θ2/(θ1 + θ2 − θ1θ2). We have

Σ = σ2vΩ, with Ω = Q+
1

θ1
P1 +

1

θ2
P2 +

1

θ3
P3,

Σ−1 = σ−2v Ω
−1, with Ω−1 = Q+ θ1P1 + θ2P2 + θ3P3,

|Σ|−1 = (σ2v)
−NT θN−11 θT−12 θ3.

It should be emphasized that the availability of the analytical inverse and determinant

for the NT × NT matrix Ω greatly simplifies the computational process as direct

calculations of |Ω| and Ω−1 can be extremely time consuming for large NT which is
often the case for economic panel data. With these analytical expressions, the log

likelihood (5) can be rewritten as,

f(β, σ2v , θ1, θ2,λ) = −NT
2
log σ2v +

N

2
log θ1 +

T

2
log θ2 − 1

2
log(θ1 + θ2 − θ1θ2)

− 1

2σ2v
[h(y,λ)−X(λ)β]IΩ−1[h(y,λ)−X(λ)β] + J(λ). (6)

Note that σ2μ > 0, 0 ≤ σ2μ <∞ and 0 ≤ σ2η <∞. Thus, 0 < θ1 ≤ 1 and 0 < θ2 ≤ 1.

5
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Further simplification can be done by concentrating out the parameters β and σ2v in

the log likelihood function, thus considerably reducing the dimension of maximization.

To simplify the notation, we define e = [h(y,λ)−X(λ)β] and eλ = ∂e/∂λ. The score

function S(β,σ2v , θ1, θ2,λ) has the elements,

Sβ =
∂f

∂β
=

1

σ2v
X I(λ)Ω−1e

Sσ2v =
∂f

∂σ2v
=

1

2σ4
eIΩ−1e− NT

2σ2v

Sθ1 =
∂f

∂θ1
=

N

2θ1
− 1− θ2
2(θ1 + θ2 − θ1θ2)

− 1

2σ2v
eI[P1 + (∂θ3/∂θ1)P3]e

Sθ2 =
∂f

∂θ2
=

T

2θ2
− 1− θ1
2(θ1 + θ2 − θ1θ2)

− 1

2σ2v
eI[P2 + (∂θ3/∂θ2)P3]e

Sλ =
∂f

∂λ
= Jλ(λ)− 1

σ2v
eIλΩ

−1e

Given θ1, θ2 and λ, f is maximized at

β̂(θ1, θ2,λ) = [X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ),

σ̂2v(θ1, θ2,λ) =
1

NT
êIΩ−1ê,

where ê is e with β replaced by β̂(θ1, θ2,λ). Similarly, we define êλ. Substituting

β̂(θ1, θ2,λ) and σ̂
2
v(θ1, θ2,λ) into the log likelihood function (6) for β and σ

2
v , respec-

tively, gives the concentrated log likelihood

fmax(θ1, θ2,λ) =
N

2
log θ1 +

T

2
log θ2 − 1

2
log(θ1 + θ2 − θ1θ2)

−NT
2
log êI(Q+ θ1P1 + θ2P2)ê+ J(λ). (7)

Maximizing fmax(θ1, θ2,λ), subject to 0 < θ1 ≤ 1 and 1 < θ2 ≤ 1, gives the

MLEs θ̂1, θ̂2 and λ̂, which upon substitution gives the MLEs β̂ = β̂(θ̂1, θ̂2, λ̂) and

σ̂2v = σ̂2v(θ̂1, θ̂2, λ̂) for β and σ
2
v , respectively. Further, the MLEs of σ

2
μ and σ

2
η can be

obtained through the relations: σ2μ =
1
T
σ2v(

1
θ1
− 1) and σ2η = 1

N
σ2v(

1
θ2
− 1).

Maximization of fmax can be further facilitated by providing the analytical gra-

dients. Substituting β̂(θ1, θ2,λ) and σ̂2v(θ1, θ2,λ) into the last three elements of the

score function and simplifying give the concentrated scores for θ1, θ2 and λ:

Sθ1(θ1, θ2,λ) =
1

2

X
N

θ1
− 1− θ2
θ1 + θ2 − θ1θ2

− NT êIP1ê
êI(Q+ θ1P1 + θ2P2)ê

~
(8)
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Sθ2(θ1, θ2,λ) =
1

2

X
T

θ2
− 1− θ1
θ1 + θ2 − θ1θ2

− NT êIP2ê
êI(Q+ θ1P1 + θ2P2)ê

~
(9)

Sλ(θ1, θ2,λ) = Jλ(λ)− NTê
I
λ(Q+ θ1P1 + θ2P2)ê

êI(Q+ θ1P1 + θ2P2)ê
(10)

Note that in the above derivation, we have used the result P3ê =
1
θ3
P3Ω

−1ê = 0. It can

be shown that these concentrated scores are also the partial derivatives (gradients)

of fmax(θ1, θ2,λ) with respect to θ1, θ2 and λ, respectively. Thus, the maximization of

fmax(θ1, θ2,λ) can be made more efficient with the use of these analytical gradients.

Furthermore, those analytical gradients can be used to derive various LM tests for

model specification, either jointly or individually. More discussions on this issue are

given in the next section.

Under standard regularity conditions, the MLEs given above are consistent and

asymptotically normal under the framework that T is fixed and N goes to infinity.

See Hsiao (2003, p.41) for the case of regular two-way error components model. One

of the regularity condition is that the true parameter values are an interior point of

the parameter space. If these condition holds, one can simply estimate the standard

errors of the parameter estimates using the negative inverse of the estimated Hessian

matrix H(β̂, σ̂2v , θ̂1, θ̂2, λ̂), where the elements of H(β,σ
2
v , θ1, θ2,λ) are given below,

Hββ = − 1
σ2v
X I(λ)Ω−1X(λ)

Hβσ2v
= − 1

σ4v
X I(λ)Ω−1e

Hβθ1 =
1

σ2v
X I(λ)(P1 +

∂θ3
∂θ1

P3)e

Hβθ2 =
1

σ2v
X I(λ)(P2 +

∂θ3
∂θ2

P3)e

Hβλ =
1

σ2v
[X Iλ(λ)Ω

−1e+X I(λ)Ω−1eλ]

Hσ2vσ
2
v
=

NT

2σ4v
− 1

σ6v
eIΩ−1e

Hσ2vθ1 =
1

2σ4v
eI(P1 +

∂θ3
∂θ1

P3)e

Hσ2vθ2
=

1

2σ4v
eI(P2 +

∂θ3
∂θ2

P3)e

7
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Hσ2vλ =
1

σ4v
eIλΩ

−1e

Hθ1θ1 = − N
2θ21

+
(1− θ2)

2

2(θ1 + θ2 − θ1θ2)2
− 1

2σ2v
eIP3e(

∂2θ3
∂θ21

)

Hθ1θ2 =
1

2(θ1 + θ2 − θ2θ2)2
− 1

2σ2v
eIP3e(

∂2θ3
∂θ1∂θ2

)

Hθ1λ = − 1
σ2v
eIλ(P1 +

∂θ3
∂θ1

P3)e

Hθ2θ2 = − T

2θ22
+

(1− θ1)
2

2(θ1 + θ2 − θ1θ2)2
− 1

2σ2v
eIP3e(

∂2θ3
∂θ22

)

Hθ2λ = − 1
σ2v
eIλ(P2 +

∂θ3
∂θ2

P3)e

Hλλ = − 1
σ2v
(eIλλΩ

−1e+ eIλΩ
−1eλ) + Jλλ(λ).

Note that when evaluating the H-quantities above at the MLE of β, constrained given

(θ1, θ2, λ), or unconstrained, all the terms involving P3e vanish. For the Box-Cox

power transformation, Jλλ(λ) = 0.

Often, it is desirable to have the covariance estimate in the original parameteri-

zation. The Hessian under the original parameterization can be calculated using

H(β,σ2v ,σ
2
μ,σ

2
η,λ) = C(β, σ

2
v ,σ

2
μ, σ

2
η,λ)H(β,σ

2
v , θ1, θ2,λ)C

I(β,σ2v , σ
2
μ,σ

2
η,λ), (11)

where

C(β,σ2v ,σ
2
μ,σ

2
η,λ) =

∂(β I, σ2v , θ1, θ2,λ)
∂(β I, σ2v , σ2μ,σ2η,λ)I

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik 0k 0k 0k 0k

0Ik 1
Tσ2μ

(Tσ2μ+σ
2
v)
2

Nσ2η
(Nσ2η+σ

2
v)
2 0

0Ik 0 − Tσ2v
(Tσ2μ+σ

2
v)
2 0 0

0Ik 0 0 − Nσ2v
(Nσ2η+σ

2
v)
2 0

0Ik 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with 0k being a k-vector of zeros. Similarly, the score function in the original para-

meterization can be obtained through the relationship

S(β,σ2v , σ
2
μ,σ

2
η,λ) = C(β,σ

2
v ,σ

2
μ,σ

2
η,λ)S(β,σ

2
v , θ1, θ2,λ). (12)

8
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Some important remarks are in order:

Remark 1: Model (1) and the associated estimation procedures can easily be

extended to allow the λ associated with each X variable to be different from each

other and to be different from that associated with the response Y . See our first

empirical application given in Section 4. However, for the simplicity of exposition,

we use the same λ for all the variables to be transformed.

Remark 2: Our model and estimation method is not restricted to the Box-Cox

transformation. Any monotonic transformation available in literature can be used.

Remark 3: In case of exact normality after transformation is in doubt, the MLE

become quasi-MLE, and under certain regularity conditions they are still consistent

and asymptotically normal, but with a different variance.

Remark 4: In estimating the traditional panel regression models, it is customary

to separate the intercept from the rest of the regression coefficients, and it is popular

to use the iterative MLE method for model estimation (see, e.g., Baltagi and Li,

1992; Baltagi, 2001; Hsiao, 2003). The reason for doing so is perhaps mainly the

computing speed. With the growing power of even a personal computer, speed is no

longer a problem and hence such procedures may no longer be necessary. In fact, it

is algebraically simpler and computationally equivalent when putting the intercept

together with the other regression coefficients, and then running a full MLE procedure

based on (7)-(10). What is problematic for estimating the transformed random effects

model is, however, the computer memory, especially when large panels are involved.

Following sub-section gives a detailed discussion of this problem and a solution of it.

2.2. A computational devise

Many efforts were devoted to developing easier method for finding the parameters

estimates to avoid the numerical optimization. This does not seem to be possible for

the transformed random effects model. However, with the fast growing availability

of the computing software, it is now considered a relative easy matter to maximize

a function of three variables as the one given in (7). We use GAUSS/CO (constrained

9
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optimization) procedure to realize this computing task. GAUSS/CO is a powerful pro-

cedure for minimizing a function of many variables under certain constrains on the

variables. It can perform the minimization using numerical gradients and Hessian,

but with the analytical gradients both efficiency and stability of the process can be

improved.

However, difficulty arises when panels become large, i.e., N and T become large.

Notice that the matricesQ,P1, P2, and P3 are allNT×NT , which can quickly suck out
the computer memory. For example, for a medium-sized panel of 600 cross-sections

(N = 600) and 10 time periods (T = 10), these matrices become 6000 × 6000, each
containing 36 millions of numbers. Estimation of the model based panel data of this

size would require a computer of 2.0 GB memory. Clearly, when the panel become

something like 10, 000 × 50 which is common in micro econometrics, it would be
impossible to use regular computer to estimate the model. This problem applies to

both the transformed random effects models proposed in this paper and the regular

random effects models, in both the processes of model estimation and the standard

error calculation. A solution to this problem does not seem to exist in the literature.

We now present a simple solution to this problem. Notice the special structure of

the four matrices Q,P1, P2, and P3, and the type of memory demanding calculations:

X(λ)IΩ−1X(λ), X(λ)IΩ−1h(Y,λ), êIQê, êIP1ê, êIλP1ê, etc.. In order to avoid direct

calculations of the matrices Q,P1, P2, and P3, all it is necessary is to find an easy way

to compute the vector quadratic forms

AIQB and AIPiB, i = 1, 2, 3,

where A is NT×m and B is NT× l, representing various matrices or vectors involved
in the estimation procedures such as X(λ), ê, êλ, etc.

Recall that all the vectors or matrices are arranged with i being the slower running

index and t being the faster running index. For each column Aj of A, reshape it into

an N × T matrix so that each row is a time series for a given cross section. Let R̄Aj
be the N × 1 vector or row means, and C̄Aj be the T × 1 vector of column means.
Let R̄A = {R̄Aj}N×m, and C̄A = {C̄Aj}T×m. Similarly, we have the N × l matrix of

10
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row means R̄B, and the T × l matrix of column means C̄B for the matrix B. Let ḠA
be m × 1 vector of column means of A, and ḠB be l × 1 vector of column means of
B. It is easy to show that

AIP1B = TR̄IAR̄B −NTḠAḠIB,
AIP2B = NC̄ IAC̄B −NTḠAḠIB,
AIP3B = NTḠAḠ

I
B,

AIQB = AIB − TR̄IAR̄B −NC̄ IAC̄B +NTḠAḠIB.

These calculations can easily be implemented by writing a GAUSS or MATLAB

procedure, which is repeatedly called for by the maximization process and the process

of calculating the Hessian matrix. Observing that Ω−1 = Q+θ1P1+θ2P2+θ3P3, all the

calculations of the NT ×NT matrices can be avoided. The gains in memory saving
and computing speed in particular the former can be tremendous as exemplified in

the numerical examples in Section 4. This method makes the fast calculation of MLEs

for a large panel data possible.

With these computational devises, the largest matrices one needs the computer

to handle is N × k (assuming T < N). Thus, a panel of N = 60, 000 individuals,

T < 60, 000 time periods, and k = 50 exogenous variables, can be comfortably handled

by a regular desk top computer.

2.3. Reduced models

It is some times desirable to fit a transformed model with only individual random

effects, or a model with only time random effects. This can be accomplished by simply

setting (in the above estimation procedure) θ2 = 1 or θ1 = 1. Nevertheless, it may be

helpful to lay out the simplified estimation procedures for the reduced model.

For the model with only individual random effects, one maximizes

fmax(θ1,λ) = −NT
2
log[êI(Q∗ + θ1P

∗)ê] +
N

2
log θ1 + J(λ) (13)

11
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using the analytical gradients

Sθ1 =
N

2θ1
− NT êI(P ∗)ê
2êI(Q∗ + θ1P ∗)ê

(14)

Sλ = Jλ(λ)− NTê
I
λ(Q

∗ + θ1P
∗)ê

êI(Q∗ + θ1P ∗)ê
, (15)

where Q∗ = INT − P ∗ and P ∗ = 1
T
IN ⊗ JT .

For the model with only time random effects, one maximizes

fmax(θ2,λ) = −NT
2
log[êI(Q∗ + θ2P

∗)ê] +
T

2
log θ2 + J(λ) (16)

using the analytical gradients

Sθ2 =
T

2θ2
− NT êI(P ∗)ê
2êI(Q∗ + θ2P ∗)ê

(17)

Sλ = Jλ(λ)− NTê
I
λ(Q

∗ + θ2P
∗)ê

êI(Q∗ + θ2P ∗)ê
, (18)

where Q∗ = INT − P ∗ and P ∗ = 1
N
JN ⊗ IT .

Of course, when λ is known, the model reduces to the regular two-way random

effects model. In this case, one maximizes (7) using the likelihood equations (8) and

(9), at the given value of λ.

3. Tests for Model Specification

Certain specific values of the parameters σ2μ, σ
2
η and λ constitute interesting tests

for model specifications. For example, σ2μ = 0 corresponds to a reduced model of

no individual random effect; σ2η = 0 means that time effect does not exist in the

model, and λ = 0 or 1 corresponds to a model of log-linear or linear functional form.

Standard likelihood ratio (LR) or Lagrange multipliers (LM) tests are two-sided.

However, one-sided tests or a mixture of one-sided and two-sided tests are desirable

as the parameters σ2μ and σ
2
η cannot be negative, but λ has no restriction. We follow

the methods of Silvapulle and Silvapulle (1995) to give LM and LR tests that take

into account of the fact that the radom effects parameters cannot be negative.3

3Other references dealing with the issues of one-sided tests include Rogers (1986), Gourieroux et

al. (1982), Self and Liang (1987) and Wolak (1991) and Verbeke and Molenberghs (2003).

12
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3.1. Joint tests for random effects and functional form

Now, let S andH denote the score function and Hessian matrix in σ-parameterization.

Let ξ = (σ2μ,σ
2
η,λ)

I, Sξ be the subvector of S corresponding to ξ, and Dξξ be the sub-

metrix of (−H)−1 corresponding to ξ. We are interested in testing a general hypothesis
of the form

HJ
0 : ξ = 0 versus HJ

a : ξ ∈ C

where C = {ξ : σ2μ ≥ 0, σ2η ≥ 0, l1 ≤ λ ≤ l2, with ξ W= 0, and −∞ < l1 < l2 < ∞}.
Following Silvapulle and Silvapulle (1995), the LM test for H0 takes the form:

LMJ = S̃
I
ξD̃ξξS̃ − inf

b
{(S̃ξ − b)ID̃ξξ(S̃ξ − b), b ∈ C}, (19)

where S̃ξ and D̃ξξ are Sξ and Dξξ evaluated at the constrained MLEs at H
J
0 .

This joint test is fairly easy to calculate. Its asymptotic p-value for an observed

value t0 of LMJ is shown by Silvapulle and Silvapulle (1995) to be within the following

interval {0.5P (χ21 ≥ t0), 0.5[P (χ22 ≥ t0) + P (χ23 ≥ t0)]}. It may be of interest to
conduct a test involving a nonzero value for λ, e.g., λ = 1 which means a linear

functional form. This test can be converted back to the standard form as above by

simply considering a reparameterization δ = λ− 1.
Following the earlier notation and using the expression of the concentrated log

likelihood (7), the joint LR test for HJ
0 is

LRJ = 2[fmax(θ̂1, θ̂2, λ̂)− fmax(1, 1, 0)], (20)

which is asymptotically equivalent to LMJ and has the same limiting distribution.

3.2. Tests for random effects in the presence of data transformation

Once the joint test of H0 : ξ = 0 is rejected, one would be interested in knowing

the cause of this rejection, simply because ξ ∈ C does not mean that all of its element
are no zeros. There might still be a possibility that some element(s) of ξ are zeors.

A relevant test is then a marginal test, i.e., a test concerning a certain components

of ξ, allowing the presence of the remaining component(s) in the model. We now
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consider the test of random effects in the presence of data transformation. Letting

σ2 = (σ2μ, σ
2
η)
I, we want to test

HR
0 : σ

2 = 0 versus HR
a : σ

2 ∈ C0

where C0 is a subset of C defined in Section 3.1 without the λ component. Let S̃σ2

and D̃σ2σ2 be, respectively, the σ
2 component of S and (−H)−1, evaluated at the

constrained MLEs at H0. We have, similar to the earlier subsection,

LMR = S̃
I
σ2D̃σ2σ2S̃σ2 − infs {(S̃σ2 − s)

ID̃σ2σ2(S̃σ2 − s)}. (21)

If the observed value for LMR is t0, then the asymptotic p-value for this test lies

within the interval {0.5P (χ21 ≥ t0), 0.5[P (χ21 ≥ t0) + P (χ22 ≥ t0)]}
Alternatively, the existing test for random effects in the random effects model

without data transformation (Baltagi et al. 1992) can be extended to allow for the

existence of data transformation. The extended test statistic takes the form,

LM∗R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

NT
2(T−1)U

2
μ(λ̃) +

NT
2(N−1)U

2
η (λ̃), if Uμ(λ̃) > 0, Uη(λ̃) > 0

NT
2(T−1)U

2
μ(λ̃), if Uμ(λ̃) > 0, Uη(λ̃) ≤ 0

NT
2(N−1)U

2
η (λ̃), if Uμ(λ̃) ≤ 0, Uη(λ̃) > 0

0, otherwise

(22)

where Uμ(λ̃) = ẽI(JN ⊗ IT )ẽ/(ẽIẽ) − 1, Uη(λ̃) = ẽI(IN ⊗ JT )ẽ/(ẽIẽ) − 1, ẽ are the
OLS residuals from regressing Y (λ̃) on X(λ̃), and λ̃ is the constrained MLE of λ

at H0. The null asymptotic distribution of LM
∗
R is a mixed chi-squared distribution:

1
4
χ20+

1
2
χ21+

1
4
χ22.

4 The test LM∗R is interesting as it says that the existing test of Baltagi

et al. (1992) can simply be extended by replacing a fixed data scale (λ assumed known

to be, e.g., 1 or 0) by an estimated one without changing the asymptotic distribution

of the test statistic. The proof of this is straightforward and hence omitted. Using

the expression (7), the LR test for random effects is

LRR = 2[fmax(θ̂1, θ̂2, λ̂)− fmax(1, 1, λ̃)], (23)

4The critical values for this mixed chi-squared distribution are 2.952, 4.321 and 7.289, respectively,

for α = 0.1, 0.05 and 0.01. See Baltagi (2001, Ch. 4).
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which has the same asymptotic distribution as LMR.

3.3. Tests for functional form in the presence of random effects

Often, testing for functional form has his own unique important aspects as a

suitable functional form characterizes more correctly the economic relationship. Let

Sλ be the score function corresponding to λ and Dλλ be the element of (−H)−1
corresponding to λ. We are interested in testing

HF
0 : λ = λ0 versus HF

a : λ W= λ0,

assuming the existence of the two-way random effects, i.e., σ2μ > 0 and σ2η > 0 (or

0 < θ1 < 1 and 0 < θ2 < 1). The LM test is simply

LMF = S̃λ{D̃λλ} 12 (24)

which has an asymptotic N(0, 1) distribution under the null hypothesis. The ∼ nota-

tion indicates the quantity is evaluated at the parameter estimates at the null. The λ0

can be any convenient value, including 0, 1/2 and 1, representing the functional form

of interest. When σ2μ = σ2η = 0 (or θ1 = θ2 = 1), the test reduces to the Hessian-based

LM test of functional form in a cross-sectional regression of Yang and Abeysinghe

(2003). The asymptotically equivalent LR test is

LRF = 2[fmax(θ̂1, θ̂2, λ̂)− fmax(θ̃1, θ̃2,λ0)], (25)

where θ̃1 and θ̃2 are the constrained MLEs of θ1 and θ2 at the null.

Besides the LM and LR tests, the Wald test can also be readily carried out as

parameter estimates and their covariance matrix (the Hessian) have already been

obtained. The three tests are asymptotically equivalent. The LM test requires only

the estimation of the constrained model, the Wald test requires only the estimation

of the full model, and the LR test requires both. Hence, computationally, the LM

test is the simplest and this is the main reason for its popularity. However, the

LM tests based on Hessian suffers from a drawback that the estimated variance of

the score function is not guaranteed to be positive definite when the null values of

15

Appeared in:  Applied Stochastic Models in Business and Industry, 2011, 27, 222-234.



the parameters are too far away from their estimates. The LM∗R given in (22) is an

exception as it is essentially derived from the λ-given expected information matrix.

Considering the fact that computing for this proposed model is not an issue, we

recommend the LR test as it arises naturally from the model estimation process.

4. Empirical Applications

We consider two applications in this section to illustrate the models and estima-

tion methods introduced above, concentrating on the functional form specification,

random effects, etc.5 Results strongly favor the use of general functional form instead

of linear of log-linear. Also, the results from the first application reinforce the com-

mon perception that public capital has no significant linkage to the state production

if the state-specific effects are properly controlled for. The results in the second ap-

plication reinforce the early findings that a nonlinear relationship exists between age

and earnings, and between tenure and earnings. We use the Box-Cox (BC) functional

form in both applications

4.1. Public capital in private production

In investigating the productivity of public capital in private production, Baltagi

and Pinnoi (1995), followed Munnell (1990), considered the following Cobb-Douglas

production function:

log Y = β0 + β1 logK1 + β2 logK2 + β3 logL+ β4U + u

where Y is gross state product, K1 is public capital, K2 is private capital, L is labor

input and U is the state unemployment rate. The error term u follows a two-way

error components process. Using a panel consisting of annual observations for 48

5We ignore the endogeneity possibly existed in the regressors, in particular in the second example,

due to (i) technical difficulty for Box-Cox type model in handling the endogeneity issue, and (ii)

dependence between some of the regressors and the errors may cause bias on the parameter estimates,

but the strong evidence for the existence of the general Box-Cox functional form instead of traditional

linear or loglinear form should still be informative.
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contiguous states over 17 time periods (1970-1986), they arrived at conclusions that

the coefficient of the public capital K1 is insignificantly different from zero, i.e., the

public capital is not productive in state private production, if the state-specific effects

are under control, but otherwise highly significant. The same conclusions were arrived

by Holtz-Eakin (1994) based on a similar panel. Thus, the use of panel model which is

able to control the individual effects completely changes the view on the role of public

capital on private production. Further, Holtz-Eakin (1994, p. 18) raised concerns with

the log linear functional form and argued that use of squares and cross-products of

the right-hand-side variables yield essentially the same conclusions.

We consider several generalizations of the log linear functional form based on our

transformed random effects model:

1. all the log functions are replaced by the BC transformation;

2. only the log Y is replaced by (yλ − 1)/λ;
3. the log functions in Y , K1 and K2 are replaced by the BC transformation, and

4. on top of 3., the log function in L is also replaced by a BC transformation but

with a different transformation parameter.

These models are labeled as Model 1 - Model 4. We have also estimated the standard

Box-Cox regression model, i.e., the Model 1 ignoring the random effects (denoted as

Model BC), and the standard Cobb-Douglas production function (denoted as Model

CD) using the MLE method. All the results are summarized in Table 1. Standard

errors are in parentheses. The maximum of fmax(θ1, θ2,λ) under various conditions

is listed in the last row labeled by loglik, based on which the LR tests of model

specifications can be carried out.

First, all four models show that the public capital is insignificant (unproductive) in

the state’s private production when the state-specific effects are controlled for. How-

ever, if these effects are not controlled, the coefficient of the public capital becomes

highly significant even if a generalized production function is used (Model BC). These

are consistent with the results of Baltagi and Pinnoi (1995) and Holtz-Eakin (1994)
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who stress on the importance of controlling the unobserved, state-specific character-

istics when investigating the productivity of public capital in private production.

The estimated transformation parameter is positive in all the four proposed mod-

els. The standard errors of the parameter estimates shows that the transformation

parameter is significantly different from either the log or the linear transformation no

matter which generalized Cobb-Douglas production function is used. This indicates

that it is more appropriate to use the transformed random effects model instead of

the standard one. In all the four models, both individual and time random effects are

significant. This shows that none of the reduced models should be used for this data.

Table 1. Estimation of State Production Function

Model CD Model BC Model 1 Model 2 Model 3 Model 4

β0 2.4705 1.5019 3.8975 1.7481 1.9782 5.4453

(0.1632) (0.1379) (0.6175) (0.3852) (0.3012) (1.1152)

β1 0.0203 0.1906 -0.0051 0.0338 0.0313 -0.0004

(0.0242) (0.0194) (0.0274) (0.0306) (0.0251) (0.0274)

β2 0.2499 0.2993 0.2111 0.3147 0.2547 0.2007

(0.0232) (0.0100) (0.0222) (0.0401) (0.0232) (0.0232)

β3 0.7498 0.9613 1.7207 0.9107 0.9593 1.5328

(0.0251) (0.0836) (0.1553) (0.0751) (0.0980) (0.1679)

β4 -0.0044 -0.0296 -0.0368 -0.0055 -0.0060 -0.0384

(0.0011) (0.0097) (0.0127) (0.0014) (0.0016) (0.0134)

σv 0.0012 0.1306 0.0952 0.0018 0.0020 0.1014

(0.0001) (0.0658) (0.0439) (0.0003) (0.0004) (0.0475)

θ1 0.0085 - - 0.0062 0.0078 0.0078 0.0064

(0.0020) - - (0.0015) (0.0018) (0.0018) (0.0016)

θ2 0.0841 - - 0.0634 0.0808 0.0809 0.0602

(0.0310) - - (0.0234) (0.0297) (0.0297) (0.0225)

λ - - 0.1365 0.2146 0.0202 0.0255 0.2178

- - (0.0238) (0.0219) (0.0078) (0.0101) (0.0223)

λ∗ - - - - - - - - - - 0.2359

- - - - - - - - - - (0.0250)

loglik -8701.93 -9309.32 -8654.98 -8698.58 -8698.70 -8653.19

State production data for 48 states and 17 time periods (1970-86), from Munnell (1990),

and is given as Produc.prn on the Wiley web site associated with Baltagi (2001).

Standard errors are in parentheses. fmax(1, 1, 0) = −9325.79 and fmax(1, 1, 1) = −9892.76.

Model 3 is nested within Model 4. The likelihood ratio test for H0 : λ
∗ = 0 has
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statistic value of 91.02, which is χ21 under H0. Thus, model 3 is rejected in favor

of Model 4. Model 1 is also nested within Model 4, but the likelihood ratio test of

H0 : λ = λ∗ is not significant as the statistic value 3.58 lies below the 95% value of χ21

which is 3.841. This shows that although Model 4 is more general than Model 1, it

is not significantly better. Comparing Model CD and Model BC with Model 1 (both

are nested within Model 1), the likelihood ratio tests strongly reject both. Thus, we

conclude that Model 1 turns out to be the best model and it greatly improves upon

the commonly used model with log linear functional specification.

Finally, joint or conditional one-sided LM tests for model specification/reduction

devised in Section 3 are also carried out against model 1. As discussed at the end of

Section 3, LMJ and LMR failed. LM
∗
R = 1421.10 compared with LRR=1221.48, and

LMF = 98.74 compared with LRF = 93.90 and WaldF = 96.02. Other Wald tests

have similar magnitudes as the corresponding LR tests. All the hypotheses discussed

in Section 3 are soundly rejected. These show that Model 1 cannot be further reduced

within the framework of the Box-Cox functional family.

4.2. Wage distribution of U.S. male workers

This application concerns the wage distribution of the U.S. males workers. We use

the data from the Panel Study of Income Dynamics (PSID), extracted and analyzed

by Polachek and Yoon (1996). The data consist of 13,408 observations from 838

white male workers over 16 years (1969-1984). The endogenous variable is Y = wage

in 1967 constant dollars, and the exogenous variables are X1 = education in years,

X2 = experience in years, X3 = tenure in months, and possibly the quadratic terms

for experience and tenure.

We fit four models to the wage variable, which enters into model in either log

form (Columns 1 & 2 in Table 2) or Box-Cox form (columns 3 & 4). The endogenous

variables enter into the model in either linear form or quadratic form. Our analyses

concentrate on the choice of functional form, wage distribution, existence of unobserv-

able individual and time effects, etc. Our model allows for testing on the conventional

wisdom on wage distribution, firm-size distribution, etc., stemmed from the Gibrat’s
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Law, stating that the distributions of wages, firm sizes, etc. are lognormal.6 The

results are summarized in Table 2. The estimated standard errors are in parentheses.

The values in the last row again denote the maximized fmax(θ1, θ2,λ) under various

model specifications. Further, fmax(1, 1, λ̃) = −71012.23 where λ̃ = −0.1455 is the
constrained MLE of λ under HR

0 , and fmax(1, 1, 0) = −71087.55.
From the results of Table 2, we first note that the two quadratic terms are both

highly significant in both the model with log functional form and the model with

Box-Cox functional form, thus should be included in the model. The likelihood ratio

test for the joint significance of the two quadratic terms gives a value of 390.28 based

on the first two models, and 394.58 based on the last two models. Both values should

be referred to the 95% χ22 cutoff value which is 5.991, showing that the two quadratic

terms are significant. Second, we note that both the individual and time random

effects are significant no matter which functional form we use. It is rather surprising

to note that the estimates of these random effects, in particular that of the individual

random effect, are quite robust against the functional form specification. Third, the

data strongly favor the Box-Cox functional form to the log form. The asymptotic

t-ratio for the λ-estimate is 4.79 based on the BC linear model, and 5.23 based on

the BC quadratic model, both showing that λ is significantly different from zero,

i.e., the log functional form. Further, the likelihood ratio test of H0 : λ = 0 gives a

value of 23.22 based on log linear and BC linear models, and 27.52 based on the log

quadratic and BC quadratic models. Both values should be compared with 3.841, the

95% χ21 cutoff value. Thus, log linear model is rejected in favor of BC linear, and log

quadratic is rejected in favor of BC quadratic. Hence, the final model of our choice

should be the BC quadratic model. Finally, we conclude that log normality for the

wage distribution is soundly rejected based on this panel data.

The various LM, LR and Wald tests of model specification discussed in Section

3 are also carried out, and the (available) results show that the BC quadratic model

cannot be further reduced. For example, LM∗R = 12721, LRR = 9124, and LRJ =

6See Sutton (1997) for a survey of work on Gibrat’s Law
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9275. Once again, the LMJ and LMR failed as the tested parameter values are

too far from their estimates, resulting a negative variance estimate. Polachek and

Yoon (1996) analyzed these data using a two-tiered frontier model with log-quadratic

functional form specification. Our estimates based on the random effects model of log-

quadratic functional form are quite comparable with theirs. However, with the BC-

quadratic functional form, our model shows that the wage-experience and wage-tenure

relationships are generally nonlinear instead of simply log-quadratic as concluded by

Polachek and Yoon (1996).

Table 2. Estimation of Wage Distribution

log linear log quadratic BC linear BC quadratic

Constant 0.28207163 0.01347445 0.31060998 0.06280708

(.07170620) (.06984960) (.06680705) (.06508298)

Education 0.07123583 0.06953602 0.06595067 0.06396318

(.00420110) (.00409380) (.00403634) (.00390758)

Experience 0.00869209 0.03508301 0.00799320 0.03248744

(.00123180) (.00182534) (.00115359) (.00175437)

Tenure -0.00000592 0.00041455 -0.00000331 0.00038785

(.00004009) (.00008824) (.00003730) (.00008178)

Experience2 - - -0.00053445 - - -0.00049707

- - (.00002896) - - (.00002765)

Tenure2 - - -0.00000103 - - -0.00000095

- - (.00000025) - - (.00000023)

σ2v 0.08077117 0.07852969 0.06993177 0.06718576

(.00101947) (.00099117) (.00225966) (.00215992)

θ1 0.04149796 0.04190114 0.04183684 0.04229244

(.00209503) (.00211514) (.00211351) (.00213643)

θ2 0.05568133 0.07624718 0.05479457 0.07484133

(.01994550) (.02744946) (.01962507) (.02693748)

λ - - - - -0.05188155 -0.05611794

- - - - (.01084216) (.01077966)

loglik -66658.9419 -66463.7995 -66647.3309 -66450.0418

PSID data for 838 white male workers over 16 time periods, 1969-84, given in Polachek and

Yoon (1996). Standard errors are in parentheses.

We conclude this section by offering some remarks on computing. The panel used

in our first application is quite small (NT = 48 × 17 = 816), it can be comfortably
handled by a personal computer with or without using the computing technique
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presented in Section 2.2. However, for second application, the panel becomes NT =

838×16 = 13, 408, much larger than the first one. Using a PC with 512 MB memory,
the Gauss program without using the computational device quickly stops, showing

a message of “insufficient memory”. In contrast, with the use of the computational

devise, the Gauss program returns the desired results in just a few seconds (depending

on the initial values). Testing on much larger (simulated) panels (N = 60, 000, T <

N) further prove the value of the proposed computational technique. Gauss programs

(with or without use of the computational devise) for the computations of the two

applications are available from the authors upon request.

5. Monte Carlo Simulations

Monte Carlo experiments are conducted to check the finite sample performance

of the MLEs of model parameters and subsequence statistical inferences. The data

generating process (DGP) used in the Monte Carlo experiments is as follows.

h(Y,λ) = β0 + β1X1 + β2h(X2,λ) + Zμμ+ Zηη + v

where h is the Box-Cox power transformation with λ = 0.1, X1 is generated from

U(0, 5), X2 from exp[N(0, 1)], β = (20, 5, 1)
I, σμ = {0.2, 0.6, 1.2}, ση = {0.2, 0.6, 1.2},

and σv = {0.5, 1.0, 1.5}. 10,000 samples are generated for each Monte Carlo experi-
ment corresponding each parameter configuration.

To generate error components {μi}, {ηt} and {vit}, we consider three distributions:
(i) normal, (ii) normal-mixture, and (iii) normal-gamma mixture, all standardized to

have zero mean and unit variance. The standardized normal-mixture random variates

are generated according to

Wi = ((1− ξi)Zi + ξiτZi)/(1− p+ p ∗ τ 2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion

of mixing the two normal populations. In our experiments, we choose p = 0.05
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or 0.10, meaning that 95% or 90% of the random variates are generated from the

standard normal and the remaining 5% or 10% are from another normal population

with standard deviation τ . We choose τ = 2 to simulate the situations where there

are mild departure from normality in the form of excess kurtosis. Similarly, the

standardized normal-gamma mixture random variates are generated according to

Wi = ((1− ξi)Zi + ξi(Vi − α))/(1− p+ p ∗ α)0.5,

where Vi is a gamma random variable with scale parameter 1 and shape parameter α,

and is independent of Zi and ξi. The other quantities are the same as in the definition

of normal-mixture. We choose p = 0.05 or 0.10, and α = 1. Again, this represents

a situation where there is a mild departure from normality, but in the form of both

excess kurtosis and skewness.

Table 3 presents results for normal-mixture and Table 4 presents results for normal-

gamma mixture, with p = 0.0, 0.05, and 0.1. Note that when p = 0.0, the errors are

exactly normal. The reported results include bias in percentage (% bias) of the

parameter estimates, root mean squared error (rmse), and the empirical coverage

probability for a nominal 95% confidence interval (95% CI) for each of the model

parameters.

From the results, we see that the finite sample performance of the maximum

likelihood estimation and inference is very good. Some general observations are in

order: (i) the bias and rmse decrease quickly as N and T increase; (ii) the empirical

coverage probability gets closer to its nominal level in general as N and T increase;

(iii) as (σμ,ση,σv) increases, the coverage probability decreases, and (iv) the Gaussian

likelihood-based inference is quite robust against mild departure from normality.

Some details are as follows. The estimators θ̂1 and θ̂2 are much more biased

than the others when sample sizes are small. The CI for σ2v has empirical coverage

significantly lower than the nominal level when sample sizes are (10,10), but improves

drastically when sample sizes are (20,20). Monte Carlo experiments are repeated

under some other λ values, and the results (not reported for brevity) are similar.
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Table 3. Bias, RMSE and Empirical Coverage for 95% CI: Normal Mixture, λ = .1

p = 0.0 p = 0.05 p = 0.1

Par % Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (10, 10, 0.2, 0.2, .5)

β0 0.1387 1.0786 0.9407 0.0843 1.0799 0.9384 0.1318 1.1020 0.9374

β1 0.9363 0.6838 0.9398 0.7564 0.6758 0.9359 0.8009 0.6757 0.9356

β2 0.9712 0.1451 0.9366 0.6451 0.1413 0.9353 0.7101 0.1389 0.9353

σ2v 0.1975 0.0791 0.9038 -0.4362 0.0840 0.8853 -0.3082 0.0854 0.8821

θ1 27.5955 0.2580 0.9510 27.6838 0.2611 0.9491 28.5370 0.2646 0.9485

θ2 28.4713 0.2604 0.9546 28.0268 0.2624 0.9494 27.5481 0.2607 0.9517

λ 0.0155 0.0093 0.9401 -0.0897 0.0092 0.9383 -0.0553 0.0093 0.9387

(N,T,σμ,ση,σv) = (10, 10, 0.6, 0.6, 1.0)

β0 0.3914 2.2191 0.9368 0.4597 2.0883 0.9332 0.7083 2.3271 0.9259

β1 3.3761 1.4619 0.9330 2.7383 1.2736 0.9286 4.2572 1.5373 0.9220

β2 3.0534 0.3047 0.9288 2.1200 0.2616 0.9251 4.0519 0.3236 0.9169

σ2v 11.4578 0.7050 0.8805 7.6880 0.5972 0.8783 14.0145 0.7760 0.8700

θ1 30.5338 0.1777 0.9506 30.6975 0.1834 0.9489 32.1472 0.1865 0.9446

θ2 32.1446 0.1814 0.9525 32.6730 0.1870 0.9497 33.5013 0.1907 0.9491

λ -0.3308 0.0190 0.9400 -0.1683 0.0171 0.9362 0.0715 0.0198 0.9266

(N,T,σμ,ση,σv) = (10, 10, 1.2, 1.2, 1.5)

β0 0.6160 2.6908 0.9382 0.5637 2.7076 0.9320 0.7908 2.8557 0.9243

β1 4.2078 1.6677 0.9270 4.1096 1.6729 0.9206 5.5891 1.8700 0.9165

β2 3.9903 0.3654 0.9254 4.7390 0.3901 0.9177 5.1455 0.4082 0.9073

σ2v 15.0132 1.8365 0.8757 15.8959 1.9653 0.8600 20.9714 2.2679 0.8517

θ1 32.4313 0.1224 0.9466 32.1654 0.1228 0.9471 33.2427 0.1281 0.9472

θ2 31.4464 0.1195 0.9515 33.6320 0.1249 0.9486 32.4591 0.1253 0.9451

λ -0.4843 0.0218 0.9463 -0.6000 0.0220 0.9368 -0.2426 0.0237 0.9305

(N,T,σμ,ση,σv) = (20, 20, 0.2, 0.2, .5)

β0 0.0242 0.5047 0.9496 -0.0047 0.5076 0.9463 0.0682 0.5167 0.9469

β1 0.1708 0.3132 0.9486 0.1038 0.3177 0.9479 0.2762 0.3161 0.9451

β2 0.1557 0.0664 0.9476 0.0715 0.0676 0.9455 0.2688 0.0685 0.9489

σ2v -0.0763 0.0362 0.9380 -0.1082 0.0391 0.9260 0.1715 0.0394 0.9194

θ1 14.3707 0.1075 0.9576 14.5408 0.1066 0.9601 14.0182 0.1070 0.9517

θ2 13.9131 0.1044 0.9599 14.5817 0.1064 0.9572 15.4529 0.1094 0.9575

λ -0.0154 0.0043 0.9511 -0.0653 0.0044 0.9473 0.0533 0.0044 0.9444

(N,T,σμ,ση,σv) = (20, 20, 0.6, 0.6, 1.0)

β0 0.0841 0.9646 0.9472 0.0508 1.0184 0.9384 0.1496 1.0176 0.9406

β1 0.5885 0.5802 0.9437 0.5639 0.6193 0.9366 0.8088 0.6231 0.9366

β2 0.7558 0.1287 0.9451 0.5289 0.1357 0.9365 0.8501 0.1323 0.9382

σ2v 1.7311 0.2482 0.9305 1.8025 0.2704 0.9177 2.2933 0.2724 0.9176

θ1 13.4402 0.0533 0.9591 14.7901 0.0556 0.9553 14.1468 0.0547 0.9551

θ2 14.5459 0.0543 0.9622 14.2944 0.0549 0.9559 13.6030 0.0550 0.9519

λ -0.0507 0.0080 0.9476 -0.1289 0.0086 0.9370 0.0313 0.0086 0.9411
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Table 3. Cont’d

p = 0.0 p = 0.05 p = 0.1

% Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (20, 20, 1.2, 1.2, 1.5)

β0 0.1419 1.3197 0.9423 0.2822 1.3729 0.9369 0.1761 1.3418 0.9281

β1 0.9224 0.7744 0.9433 1.3734 0.8229 0.9297 1.1933 0.8043 0.9241

β2 0.8876 0.1744 0.9431 1.3244 0.1828 0.9324 1.2382 0.1824 0.9263

σ2v 3.3825 0.7427 0.9251 4.4983 0.8124 0.9178 4.0706 0.8004 0.9076

θ1 13.5800 0.0317 0.9594 14.0906 0.0329 0.9522 13.5103 0.0323 0.9546

θ2 14.1420 0.0325 0.9549 13.4636 0.0322 0.9508 13.4448 0.0321 0.9546

λ -0.1585 0.0106 0.9467 0.0650 0.0112 0.9333 -0.0318 0.0109 0.9236

(N,T,σμ,ση,σv) = (50, 20, 0.2, 0.2, .5)

β0 -0.0084 0.3335 0.9484 -0.0108 0.3261 0.9463 0.0364 0.3275 0.9488

β1 0.0321 0.2036 0.9468 0.0164 0.1996 0.9464 0.1426 0.2022 0.9495

β2 0.0333 0.0439 0.9475 -0.0066 0.0434 0.9463 0.1657 0.0429 0.9492

σ2v -0.0976 0.0233 0.9471 -0.1865 0.0243 0.9277 0.1461 0.0250 0.9285

θ1 5.0909 0.0550 0.9512 5.0433 0.0552 0.9516 4.8053 0.0560 0.9492

θ2 14.8764 0.0488 0.9644 15.7106 0.0496 0.9598 15.8558 0.0519 0.9563

λ -0.0338 0.0028 0.9493 -0.0455 0.0028 0.9457 0.0423 0.0028 0.9483

(N,T,σμ,ση,σv) = (50, 20, 0.6, 0.6, 1.0)

β0 0.0214 0.6100 0.9469 0.0213 0.6188 0.9387 0.0448 0.6511 0.9355

β1 0.1798 0.3634 0.9472 0.2302 0.3725 0.9430 0.2986 0.3902 0.9344

β2 0.2115 0.0812 0.9474 0.2408 0.0814 0.9468 0.3214 0.0837 0.9373

σ2v 0.5588 0.1518 0.9443 0.7380 0.1592 0.9343 0.8820 0.1692 0.9230

θ1 4.9682 0.0283 0.9577 4.6957 0.0284 0.9489 4.7624 0.0286 0.9494

θ2 15.8645 0.0238 0.9614 16.0105 0.0238 0.9639 15.3871 0.0239 0.9613

λ -0.0543 0.0050 0.9488 -0.0301 0.0051 0.9421 -0.0004 0.0054 0.9365

(N,T,σμ,ση,σv) = (50, 20, 1.2, 1.2, 1.5)

β0 0.0448 0.8144 0.9485 0.1341 0.8702 0.9343 0.1195 0.8796 0.9358

β1 0.3876 0.4598 0.9484 0.6571 0.4965 0.9334 0.5960 0.5081 0.9297

β2 0.4060 0.1032 0.9491 0.6484 0.1082 0.9367 0.5329 0.1113 0.9318

σ2v 1.2218 0.4291 0.9428 1.8830 0.4743 0.9268 1.8882 0.4881 0.9197

θ1 4.8254 0.0168 0.9522 4.1764 0.0167 0.9508 4.6862 0.0169 0.9499

θ2 14.8253 0.0135 0.9627 15.2566 0.0136 0.9578 15.8393 0.0137 0.9587

λ -0.0225 0.0063 0.9493 0.1227 0.0068 0.9312 0.0622 0.0070 0.9309

(N,T,σμ,ση,σv) = (20, 50, 0.2, 0.2, .5)

β0 0.0112 0.3238 0.9516 0.0239 0.3247 0.9452 0.0266 0.3392 0.9485

β1 0.0790 0.1975 0.9513 0.1012 0.1989 0.9456 0.1116 0.2089 0.9484

β2 0.0878 0.0423 0.9495 0.0765 0.0426 0.9451 0.1036 0.0446 0.9463

σ2v -0.0701 0.0229 0.9443 -0.0168 0.0242 0.9314 -0.0104 0.0256 0.9257

θ1 15.8208 0.0503 0.9629 16.0525 0.0520 0.9589 15.7823 0.0500 0.9571

θ2 4.5343 0.0543 0.9547 4.7456 0.0548 0.9557 4.6460 0.0551 0.9526

λ 0.0017 0.0027 0.9505 0.0173 0.0028 0.9460 0.0154 0.0029 0.9468
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Table 3. Cont’d

p = 0.0 p = 0.05 p = 0.1

% Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (20, 50, 0.6, 0.6, 1.0)

β0 -0.0134 0.6142 0.9438 0.0569 0.6270 0.9423 0.0414 0.6486 0.9309

β1 0.1067 0.3616 0.9436 0.2987 0.3770 0.9425 0.3071 0.3924 0.9328

β2 0.1254 0.0781 0.9439 0.3105 0.0810 0.9434 0.3886 0.0853 0.9371

σ2v 0.4081 0.1527 0.9393 0.8606 0.1624 0.9337 0.9318 0.1702 0.9218

θ1 14.8354 0.0229 0.9616 14.6790 0.0231 0.9603 15.8934 0.0235 0.9633

θ2 4.5703 0.0279 0.9547 5.1709 0.0285 0.9520 4.7445 0.0280 0.9543

λ -0.1059 0.0050 0.9442 0.0172 0.0052 0.9419 0.0015 0.0054 0.9318

(N,T,σμ,ση,σv) = (20, 50, 1.2, 1.2, 1.5)

β0 -0.0115 0.8184 0.9486 0.0448 0.8516 0.9387 0.1505 0.8959 0.9336

β1 0.2847 0.4630 0.9495 0.4167 0.4901 0.9351 0.6891 0.5189 0.9297

β2 0.1781 0.1011 0.9483 0.3984 0.1072 0.9406 0.6231 0.1122 0.9315

σ2v 1.0174 0.4334 0.9408 1.4785 0.4664 0.9259 2.1340 0.4961 0.9212

θ1 15.6651 0.0139 0.9563 15.2617 0.0134 0.9598 15.4448 0.0137 0.9579

θ2 4.4971 0.0167 0.9504 5.0520 0.0170 0.9518 4.5319 0.0166 0.9508

λ -0.1023 0.0064 0.9507 -0.0346 0.0067 0.9372 0.1172 0.0071 0.9273

(N,T,σμ,ση,σv) = (50, 50, 0.2, 0.2, .5)

β0 -0.0028 0.1985 0.9512 0.0009 0.2008 0.9479 0.0235 0.2052 0.9445

β1 0.0117 0.1200 0.9511 0.0192 0.1218 0.9459 0.0676 0.1234 0.9437

β2 -0.0069 0.0255 0.9500 0.0140 0.0261 0.9468 0.0647 0.0260 0.9440

σ2v 0.0226 0.0140 0.9483 0.0430 0.0151 0.9296 0.1313 0.0155 0.9202

θ1 5.2749 0.0254 0.9514 5.5840 0.0262 0.9504 5.6152 0.0260 0.9527

θ2 5.2092 0.0255 0.9556 5.3008 0.0255 0.9527 5.4988 0.0254 0.9534

λ -0.0126 0.0017 0.9506 -0.0062 0.0017 0.9469 0.0261 0.0017 0.9427

(N,T,σμ,ση,σv) = (50, 50, 0.6, 0.6, 1.0)

β0 -0.0073 0.3755 0.9509 0.0213 0.3935 0.9436 0.0413 0.3915 0.9387

β1 0.0425 0.2202 0.9489 0.1372 0.2331 0.9428 0.1646 0.2309 0.9382

β2 0.0394 0.0477 0.9490 0.1001 0.0508 0.9418 0.1977 0.0499 0.9405

σ2v 0.1118 0.0928 0.9467 0.3985 0.0995 0.9374 0.4366 0.1002 0.9295

θ1 5.0095 0.0120 0.9527 5.6816 0.0122 0.9526 5.2457 0.0122 0.9501

θ2 5.0367 0.0121 0.9511 5.1018 0.0120 0.9555 4.7491 0.0120 0.9545

λ -0.0351 0.0030 0.9495 0.0211 0.0032 0.9423 0.0407 0.0032 0.9376

(N,T,σμ,ση,σv) = (50, 50, 1.2, 1.2, 1.5)

β0 -0.0193 0.5257 0.9511 0.0364 0.5536 0.9424 0.1483 0.5564 0.9372

β1 0.0610 0.2869 0.9502 0.2051 0.3064 0.9368 0.4187 0.3169 0.9285

β2 0.0243 0.0643 0.9506 0.1661 0.0690 0.9380 0.4209 0.0700 0.9334

σ2v 0.3188 0.2646 0.9478 0.6211 0.2856 0.9324 1.1417 0.3001 0.9230

θ1 5.4190 0.0071 0.9491 5.0763 0.0069 0.9527 5.2458 0.0070 0.9501

θ2 5.0622 0.0069 0.9515 5.2553 0.0070 0.9546 5.0317 0.0070 0.9484

λ -0.0664 0.0040 0.9520 0.0157 0.0043 0.9368 0.1552 0.0044 0.9270
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Table 4. Bias, RMSE and Empirical Coverage for 95% CI: Normal-Gamma Mix., λ = .1

p = 0.0 p = 0.05 p = 0.1

% Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (10, 10, 0.2, 0.2, .5)

β0 0.1387 1.0786 0.9407 0.0559 1.0833 0.9377 0.0954 1.0947 0.9341

β1 0.9363 0.6838 0.9398 0.6970 0.6756 0.9369 0.7096 0.6680 0.9343

β2 0.9712 0.1451 0.9366 0.5765 0.1407 0.9353 0.6100 0.1369 0.9363

σ2v 0.1975 0.0791 0.9038 -0.4202 0.0801 0.8946 -0.4909 0.0805 0.8955

θ1 27.5955 0.2580 0.9510 27.9857 0.2599 0.9528 28.6888 0.2642 0.9544

θ2 28.4713 0.2604 0.9546 28.2862 0.2616 0.9500 27.7482 0.2593 0.9538

λ 0.0155 0.0093 0.9401 -0.1364 0.0092 0.9395 -0.1082 0.0092 0.9358

(N,T,σμ,ση,σv) = (10, 10, 0.6, 0.6, 1.0)

β0 0.3914 2.2191 0.9368 0.3272 2.0506 0.9381 0.4917 2.2470 0.9355

β1 3.3761 1.4619 0.9330 2.3040 1.2406 0.9323 3.4600 1.4611 0.9307

β2 3.0534 0.3047 0.9288 1.8359 0.2581 0.9273 3.2947 0.3087 0.9267

σ2v 11.4578 0.7050 0.8805 7.0317 0.5770 0.8889 11.4402 0.7025 0.8778

θ1 30.5338 0.1777 0.9506 31.5011 0.1836 0.9531 32.7323 0.1879 0.9492

θ2 32.1446 0.1814 0.9525 33.2769 0.1881 0.9514 32.9169 0.1850 0.9551

λ -0.3308 0.0190 0.9400 -0.3787 0.0168 0.9407 -0.2388 0.0190 0.9381

(N,T,σμ,ση,σv) = (10, 10, 1.2, 1.2, 1.5)

β0 0.6160 2.6908 0.9382 0.1624 2.6783 0.9324 -0.0561 2.7250 0.9313

β1 4.2078 1.6677 0.9270 2.9737 1.6182 0.9216 2.9673 1.7171 0.9127

β2 3.9903 0.3654 0.9254 3.3636 0.3745 0.9154 2.4886 0.3759 0.9117

σ2v 15.0132 1.8365 0.8757 12.4124 1.7937 0.8572 13.3607 1.8927 0.8519

θ1 32.4313 0.1224 0.9466 31.8950 0.1219 0.9481 32.9125 0.1235 0.9499

θ2 31.4464 0.1195 0.9515 33.6525 0.1244 0.9536 32.4661 0.1233 0.9515

λ -0.4843 0.0218 0.9463 -1.2666 0.0218 0.9416 -1.6475 0.0229 0.9398

(N,T,σμ,ση,σv) = (20, 20, 0.2, 0.2, .5)

β0 0.0242 0.5047 0.9496 -0.0276 0.5021 0.9474 0.0452 0.5150 0.9451

β1 0.1708 0.3132 0.9486 0.0411 0.3137 0.9473 0.2153 0.3144 0.9441

β2 0.1557 0.0664 0.9476 0.0013 0.0667 0.9454 0.2200 0.0684 0.9456

σ2v -0.0763 0.0362 0.9380 -0.2168 0.0371 0.9337 0.0042 0.0375 0.9335

θ1 14.3707 0.1075 0.9576 14.5538 0.1059 0.9581 13.8887 0.1058 0.9519

θ2 13.9131 0.1044 0.9599 14.8473 0.1065 0.9571 15.4706 0.1082 0.9548

λ -0.0154 0.0043 0.9511 -0.1050 0.0043 0.9476 0.0124 0.0044 0.9450

(N,T,σμ,ση,σv) = (20, 20, 0.6, 0.6, 1.0)

β0 0.0841 0.9646 0.9472 -0.1501 0.9971 0.9419 -0.1839 0.9850 0.9448

β1 0.5885 0.5802 0.9437 0.0402 0.5996 0.9387 -0.0517 0.5930 0.9430

β2 0.7558 0.1287 0.9451 -0.0090 0.1318 0.9416 0.0058 0.1272 0.9402

σ2v 1.7311 0.2482 0.9305 0.5224 0.2541 0.9192 0.3674 0.2498 0.9256

θ1 13.4402 0.0533 0.9591 14.6529 0.0550 0.9565 14.3654 0.0546 0.9599

θ2 14.5459 0.0543 0.9622 14.1006 0.0545 0.9570 13.4086 0.0542 0.9524

λ -0.0507 0.0080 0.9476 -0.4676 0.0084 0.9454 -0.5290 0.0083 0.9475
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Table 4. Cont’d

p = 0.0 p = 0.05 p = 0.1

% Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (20, 20, 1.2, 1.2, 1.5)

β0 0.1419 1.3197 0.9423 -0.1545 1.3293 0.9403 -0.6950 1.2960 0.9300

β1 0.9224 0.7744 0.9433 0.2119 0.7785 0.9360 -0.9928 0.7484 0.9268

β2 0.8876 0.1744 0.9431 0.2289 0.1758 0.9342 -1.0777 0.1710 0.9236

σ2v 3.3825 0.7427 0.9251 1.8803 0.7383 0.9185 -0.7022 0.7012 0.9047

θ1 13.5800 0.0317 0.9594 14.1314 0.0327 0.9541 13.3984 0.0319 0.9559

θ2 14.1420 0.0325 0.9549 13.6103 0.0324 0.9542 13.5376 0.0320 0.9580

λ -0.1585 0.0106 0.9467 -0.6699 0.0108 0.9437 -1.4885 0.0106 0.9360

(N,T,σμ,ση,σv) = (50, 20, 0.2, 0.2, .5)

β0 -0.0084 0.3335 0.9484 -0.0415 0.3234 0.9450 -0.0114 0.3264 0.9491

β1 0.0321 0.2036 0.9468 -0.0592 0.1972 0.9470 0.0223 0.1995 0.9501

β2 0.0333 0.0439 0.9475 -0.0902 0.0431 0.9444 0.0468 0.0425 0.9470

σ2v -0.0976 0.0233 0.9471 -0.3297 0.0230 0.9410 -0.1212 0.0236 0.9379

θ1 5.0909 0.0550 0.9512 5.0823 0.0554 0.9542 4.8888 0.0558 0.9526

θ2 14.8764 0.0488 0.9644 15.7478 0.0497 0.9618 15.7914 0.0514 0.9587

λ -0.0338 0.0028 0.9493 -0.0975 0.0027 0.9471 -0.0405 0.0028 0.9489

(N,T,σμ,ση,σv) = (50, 20, 0.6, 0.6, 1.0)

β0 0.0214 0.6100 0.9469 -0.1485 0.6078 0.9426 -0.3103 0.6340 0.9395

β1 0.1798 0.3634 0.9472 -0.1962 0.3616 0.9451 -0.6008 0.3715 0.9409

β2 0.2115 0.0812 0.9474 -0.2107 0.0792 0.9456 -0.5686 0.0805 0.9425

σ2v 0.5588 0.1518 0.9443 -0.1682 0.1516 0.9357 -1.0510 0.1551 0.9304

θ1 4.9682 0.0283 0.9577 4.5788 0.0281 0.9521 4.6142 0.0281 0.9516

θ2 15.8645 0.0238 0.9614 16.0569 0.0239 0.9620 15.0444 0.0234 0.9631

λ -0.0543 0.0050 0.9488 -0.3187 0.0050 0.9454 -0.6093 0.0052 0.9441

(N,T,σμ,ση,σv) = (50, 20, 1.2, 1.2, 1.5)

β0 0.0448 0.8144 0.9485 -0.3091 0.8365 0.9444 -0.7377 0.8563 0.9306

β1 0.3876 0.4598 0.9484 -0.4622 0.4680 0.9412 -1.5513 0.4748 0.9290

β2 0.4060 0.1032 0.9491 -0.4251 0.1029 0.9426 -1.5859 0.1052 0.9327

σ2v 1.2218 0.4291 0.9428 -0.4216 0.4340 0.9339 -2.5331 0.4352 0.9126

θ1 4.8254 0.0168 0.9522 4.2923 0.0167 0.9524 4.7270 0.0168 0.9531

θ2 14.8253 0.0135 0.9627 15.4184 0.0136 0.9588 15.8453 0.0136 0.9583

λ -0.0225 0.0063 0.9493 -0.6249 0.0066 0.9457 -1.4049 0.0068 0.9361

(N,T,σμ,ση,σv) = (20, 50, 0.2, 0.2, .5)

β0 0.0112 0.3238 0.9516 -0.0009 0.3228 0.9485 -0.0210 0.3398 0.9468

β1 0.0790 0.1975 0.9513 0.0372 0.1971 0.9469 -0.0111 0.2082 0.9455

β2 0.0878 0.0423 0.9495 0.0231 0.0421 0.9505 -0.0216 0.0445 0.9455

σ2v -0.0701 0.0229 0.9443 -0.1689 0.0231 0.9397 -0.2060 0.0247 0.9341

θ1 15.8208 0.0503 0.9629 15.9845 0.0515 0.9593 15.8088 0.0499 0.9610

θ2 4.5343 0.0543 0.9547 4.6887 0.0543 0.9545 4.8332 0.0550 0.9520

λ 0.0017 0.0027 0.9505 -0.0260 0.0027 0.9479 -0.0695 0.0029 0.9446
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Table 4. Cont’d

p = 0.0 p = 0.05 p = 0.1

% Bias RMSE 95% CI % Bias RMSE 95% CI % Bias RMSE 95% CI

(N,T,σμ,ση,σv) = (20, 50, 0.6, 0.6, 1.0)

β0 -0.0134 0.6142 0.9438 -0.1277 0.6176 0.9458 -0.3243 0.6333 0.9383

β1 0.1067 0.3616 0.9436 -0.1674 0.3675 0.9445 -0.6227 0.3767 0.9364

β2 0.1254 0.0781 0.9439 -0.1876 0.0793 0.9449 -0.5389 0.0823 0.9390

σ2v 0.4081 0.1527 0.9393 -0.0376 0.1547 0.9361 -0.9950 0.1582 0.9254

θ1 14.8354 0.0229 0.9616 14.7925 0.0231 0.9606 15.7662 0.0233 0.9647

θ2 4.5703 0.0279 0.9547 5.1820 0.0284 0.9499 4.6815 0.0278 0.9558

λ -0.1059 0.0050 0.9442 -0.2997 0.0051 0.9467 -0.6302 0.0053 0.9401

(N,T,σμ,ση,σv) = (20, 50, 1.2, 1.2, 1.5)

β0 -0.0115 0.8184 0.9486 -0.3627 0.8216 0.9426 -0.7198 0.8681 0.9343

β1 0.2847 0.4630 0.9495 -0.6191 0.4612 0.9405 -1.4844 0.4850 0.9290

β2 0.1781 0.1011 0.9483 -0.5931 0.1016 0.9462 -1.5009 0.1066 0.9296

σ2v 1.0174 0.4334 0.9408 -0.7036 0.4277 0.9296 -2.3781 0.4429 0.9161

θ1 15.6651 0.0139 0.9563 15.3102 0.0133 0.9615 15.4852 0.0136 0.9576

θ2 4.4971 0.0167 0.9504 4.9993 0.0169 0.9526 4.5576 0.0166 0.9522

λ -0.1023 0.0064 0.9507 -0.7247 0.0065 0.9482 -1.3650 0.0069 0.9381

(N,T,σμ,ση,σv) = (50, 50, 0.2, 0.2, .5)

β0 -0.0028 0.1985 0.9512 -0.0207 0.2005 0.9475 -0.0387 0.2030 0.9481

β1 0.0117 0.1200 0.9511 -0.0359 0.1212 0.9469 -0.0851 0.1219 0.9482

β2 -0.0069 0.0255 0.9500 -0.0432 0.0260 0.9483 -0.0774 0.0257 0.9473

σ2v 0.0226 0.0140 0.9483 -0.0643 0.0144 0.9377 -0.2095 0.0145 0.9397

θ1 5.2749 0.0254 0.9514 5.6266 0.0261 0.9500 5.6490 0.0260 0.9518

θ2 5.2092 0.0255 0.9556 5.4026 0.0255 0.9562 5.4178 0.0254 0.9552

λ -0.0126 0.0017 0.9506 -0.0439 0.0017 0.9471 -0.0804 0.0017 0.9472

(N,T,σμ,ση,σv) = (50, 50, 0.6, 0.6, 1.0)

β0 -0.0073 0.3755 0.9509 -0.1349 0.3879 0.9458 -0.2528 0.3866 0.9399

β1 0.0425 0.2202 0.9489 -0.2558 0.2272 0.9476 -0.5692 0.2236 0.9407

β2 0.0394 0.0477 0.9490 -0.2838 0.0498 0.9430 -0.5486 0.0485 0.9422

σ2v 0.1118 0.0928 0.9467 -0.4334 0.0945 0.9436 -1.0840 0.0935 0.9333

θ1 5.0095 0.0120 0.9527 5.6869 0.0121 0.9532 5.2776 0.0122 0.9521

θ2 5.0367 0.0121 0.9511 5.1328 0.0121 0.9541 4.7199 0.0120 0.9543

λ -0.0351 0.0030 0.9495 -0.2486 0.0032 0.9480 -0.4651 0.0031 0.9430

(N,T,σμ,ση,σv) = (50, 50, 1.2, 1.2, 1.5)

β0 -0.0193 0.5257 0.9511 -0.3972 0.5366 0.9436 -0.7238 0.5484 0.9311

β1 0.0610 0.2869 0.9502 -0.8712 0.2912 0.9417 -1.7549 0.3040 0.9226

β2 0.0243 0.0643 0.9506 -0.9005 0.0659 0.9420 -1.7896 0.0672 0.9263

σ2v 0.3188 0.2646 0.9478 -1.5364 0.2650 0.9347 -3.2674 0.2758 0.9070

θ1 5.4190 0.0071 0.9491 5.1391 0.0069 0.9546 5.1740 0.0070 0.9498

θ2 5.0622 0.0069 0.9515 5.2646 0.0070 0.9558 4.9899 0.0070 0.9497

λ -0.0664 0.0040 0.9520 -0.7234 0.0041 0.9471 -1.3479 0.0043 0.9275
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6. Conclusions

A flexible random effects model is developed that is shown to be more suitable in

modeling the private production and workers’ wage than the traditional models with

linear of loglinear functional form. Clearly, this model can also be applied to model

other economic activities such as firm size, health expenditure, consumption, demand,

etc. A simple computational device is given, which makes the handling of large panel

data feasible using a personal computer. More appropriate one-sided LM tests are

given for testing the random effects and functional form jointly or individually.

Further extensions of the model in specification and estimation are both possible

and interesting, such as the inclusion of serial correlation and/or spatial correlation,

use of quasi-maximum likelihood estimation (QMLE) method, etc. The QMLE should

be useful in the context that exact normality cannot be achieved by transformation,

which is typical when using the Box-Cox transformation.
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