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Abstract

Statistical inference methods for the Weibull parameters and their functions

usually depend on extensive tables, hence are rather inconvenient for the practical

applications. In this paper, we propose a general method for constructing confi-

dence intervals for the Weibull parameters and their functions, which eliminates

the need for the extensive tables. The method is applied to obtain confidence in-

tervals for the scale parameter, the mean-time-to-failure, the percentile function,

and the reliability function. Monte Carlo simulation shows that these intervals

possess excellent finite sample properties, having coverage probabilities very close

to their nominal levels, irrespective of the sample size and the degree of censorship.

Keywords: Analytical adjustment; Confidence interval; Mean-time-to-failure; Percentile;

Reliability; Type II censoring; Weibull-to-exponential transformation.
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1. Introduction

The Weibull distribution has been shown to be very useful in reliability and survival

analyses. There are numerous papers and books dealing with various aspects of Weibull

modeling, inference, as well as application. Some recent ones include Chen (1997), Heo et

al. (2001), Jeng (2003), Murthy et al. (2003), and Yang and Xie (2003). It is well known

that the existing statistical methods for inferences on the Weibull parameters and their

functions usually depend on extensive tables obtained from Monte Carlo simulations

(Bain and Engelhardt, 1991, Ch. 4), hence are rather inconvenient for the practical

applications. Efforts on developing simple methods have been put in by, for example,

Bain and Engelhardt (1981, 1986), and Chen (1997, 1998).

In this paper, we propose a general, nearly table-free method for constructing con-

fidence intervals for the Weibull parameters and their functions, such as the scale para-

meter (α), the mean-time-to-failure (MTTF), the percentile function, and the reliability

function. The method stems from the fact that a Weibull random variable raised to the

power β (the shape parameter) is an exponential random variable with mean αβ. This

transformation is often referred to as the Weibull-to-exponential (WTE) transformation

(Keats et al., 2000; Xie et al., 2000). Exact inference methods exist for the exponential

distribution. Therefore, when β is known, an exact confidence interval (CI) for αβ can

be obtained, which upon an inverse transformation gives an exact CI for α. To construct

an exact CI for a general monotonic function of α (indexed by β) such as the ones men-

tioned above, one simply applies this function to the lower and upper confidence limits

for α. Difficulty arises when β is unknown. A common practice is to replace β in the

confidence limits by its estimator and treat the estimated β as the true parameter value.

The resulted CI is referred to in this article as the naive CI.

We show that the naive CI does not have a correct coverage, even when sample

size is large. We derive a simple analytical adjustment to the naive CI, which gives

an analytically adjusted naive (AAN) CI for the general function. The new AAN CI is

simple, requiring only the conventional chi-squared table, and is asymptotically valid

under mild conditions. However, its finite sample performance depends on the type of
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estimator used for β. Through a series of Monte Carlo experiments conducted on the

CIs for α, MTTF, percentile and reliability, we find that the AAN CIs based on the

nearly unbiased and efficient estimator of β in Yang and Xie (2003) possess excellent

finite sample properties, having coverage probabilities very close to their nominal levels,

irrespective of the sample size and the degree of censorship. In contrast, the AAN CIs

based on the (biased) maximum likelihood estimator may have coverage probabilities

noticeably below their nominal levels. The Monte Carlo experiments further reveal that

the naive CI often performs too poorly to be of any practical value, and that the AAN CI

for α performs better than the corresponding CI given in Bain and Engelhardt (1986).

Section 2 introduces the new AAN method. Section 3 applies this method to obtain

confidence intervals for various reliability-related Weibull quantities including the scale

parameter, the MTTF, the percentile function and the reliability function. Section 4

presents Monte Carlo simulation results for the small sample performance of the intervals

based on the AAN method. Also, the confidence interval for the Weibull scale parameter

based on the AAN method is compared with that given in Bain and Engelhardt (1986)

in terms of both the coverage probability and the average length of the intervals. Section

5 presents a real data example to compare the confidence intervals obtained by various

methods. Section 6 provides some general discussions.

2. The General Method

A random variable t is said to follow a two-parameter Weibull distribution if its

probability density function has the form

f(t;α,β) =
β

α

w
t

α

Wβ−1
exp

X
−
w
t

α

Wβ~
, t > 0, (1)

where α > 0 is the scale parameter and β > 0 is the shape parameter. This distribution

is very useful in reliability and survival analyses because of its flexibility: the failure

rate function can be either increasing or decreasing depending on the value of the shape

parameter β. The MTTF is µ = αΓ(1 + 1/β), the 100pth percentile is tp = α[− log(1−
p)]1/β, the mission reliability is R(t) = exp{−(t/α)β}, and the failure rate is h(t) =
βtβ−1/αβ. These quantities are of particular importance in reliability analysis.
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2.1. The Weibull-to-exponential transformation

It is well known that if t ∼ f(t;α,β), then the transformation tβ follows an ex-

ponential distribution with mean αβ. This transformation is generally referred to as

the Weibull-to-exponential (WTE) transformation. Since statistical methods for ana-

lyzing the exponential distribution are simple and well developed (Nelson, 1982, p294),

it makes the WTE transformation a potential approach for developing simple, general

and yet accurate statistical inference methods for the Weibull distribution.

Consider a Type II censored life testing experiment where the test terminates at

the rth failure. Let t1, t2, . . . , tr be the times at which the first r failures occur and n be

the total number of items put on test. Define

T (β) = 2
r3
i=1

w
ti
α

Wβ
+ 2(n− r)

w
tr
α

Wβ
=
2S(β)

αβ
(2)

where S(β) =
�r
i=1 t

β
i + (n − r)tβr is the total WTE-transformed testing time. Lawless

(1982, p.103) showed that T (β) ∼ χ22r, a chi-squared distribution with 2r degrees of

freedom. When β is known, the pivotal quantity T (β) leads immediately to an exact

100(1− δ)% confidence interval (CI) for αβ, which upon an inverse transformation gives
an exact 100(1− δ)% CI for α:⎧⎪⎨⎪⎩

⎛⎝2S(β)
χ22r,δ/2

⎞⎠1/β ,
⎛⎝ 2S(β)

χ22r,1−δ/2

⎞⎠1/β
⎫⎪⎬⎪⎭ = {Lα(β), Uα(β)} . (3)

where χ2ν,δ denotes the upper δ-quantile of a χ
2
ν random variable.

2.2. The naive CI for a function of the Weibull parameters

The distributional result for T (β) and the interval (3) form the key to the new de-

velopments in this article. Now, consider a general function of the Weibull parameters,

f(α, β), assumed to be strictly monotonic in α, representing reliability-related quanti-

ties of interest such as the MTTF, the percentile function, and the reliability function.

Without loss of generality, we assume that f(α, β) is strictly increasing in α.

When β is known, all the statistical inferences for f(α, β) can be carried out based

on (2) and (3). Substituting the lower and upper confidence limits for α into the f
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function, we have an exact 100(1− δ)% CI for f(α,β),

{f (Lα(β),β) , f (Uα(β), β)} . (4)

When β is unknown, as it is often the case in the practical applications, a common

practice is to replace β in (4) by β̂, an estimate of β, to give a CI for f(α,β),+
f
p
Lα(β̂), β̂

Q
, f

p
Uα(β̂), β̂

Q�
. (5)

The interval given in (5) is referred to, in this article, as the naive CI for the function

f(α, β). This procedure is very simple and hence should be attractive to the practitioners

if it works well. Intuitively, this cannot possibly be true since the procedure ignores

the variability in β̂, an important quantity appearing on the exponent of almost every

component in the lower and upper confidence limits. An intriguing question is that if

(5) is not correct, can it be easily adjusted to give an interval that is correct at least

when n is large and approximates well when n is small?

2.3. The analytically adjusted naive CI for f(α,β)

Let f−1(·, β) be the inverse of f(α,β) inverted in α. Define

W (β̂) =
2S(β̂)

{f−1[f(α, β), β̂]}β̂ .

Clearly, W (β̂) leads to (5) when treated as a χ22r random variable. Thus, for the naive

CI to be (asymptotically) valid, it is necessary that W (β̂) is (asymptotically) equivalent

to T (β). The following arguments show that this is not true even when n is large and

hence an adjustment onW (β̂) is necessary in order to use χ22r as a reference distribution.

Assume that r/n → p0 as n → ∞ and that β̂ is root-n consistent. Write W (β̂) =

T (β̂)H(β̂), where T (β̂) is defined by (2) with β replaced by β̂, and

H(β̂) =

X
α

f−1[f(α,β), β̂]

~β̂
. (6)

By a first-order Taylor expansion of W (β̂) at β̂ = β and using the fact that H(β) = 1

and W (β) = T (β), we have

W (β̂) = T (β) + (β̂ − β)[T I(β) + T (β)H I(β)] +Op(1),
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where T I(β) and H I(β) are, respectively, the first-order derivatives of T (β̂) and H(β̂)

evaluated at β̂ = β. This immediately leads to

W (β̂) = T (β) + 2
√
nQ(β)[k + p0βH

I(β)] +Op(1), (7)

where Q(β) =
√
n[(β̂ − β)/β], and k = limn→∞ 1

n
E [
�r
i=1 yi log yi + (n− r)yr log yr] with

yi = (ti/α)
β. Clearly, k is a pure number depending only on the degree of censorship

represented by p0. If β̂ is unbiased or the bias is of order O(n
−1) or smaller, we have

E[W (β̂)] = E(T (β)] +O(1) = 2r +O(1). (8)

This means that the first moment ofW (β̂) agrees with that of T (β) up to at least second

order, and hence for a fixed n, the means of the two quantities do not differ much.

Further, if T (β) and Q(β) are uncorrelated or weakly correlated in the sense that

the correlation coefficient between the two quantities is of order O(n−
1
2 ), we have

Var[W (β̂)] = 4r
+
1 + τ 2[k + p0βH

I(β)]2/p0
�
+O(1), (9)

where τ 2 = limn→∞Var[Q(β)], another pure number depending only on p0. As Var[T (β)]

= 4r, the result in (9) says that there exists a first-order difference between the second

moments of W (β̂) and T (β). Hence the naive CI given in (5) is incorrect even when n

is large. For (5) to have desirable properties, one has to adjust W (β̂) so that at least

the first two moments of W (β̂) agree with those of T (β). This can be done by first

adjusting the variance of W (β̂) using (9) and then recovering the changes on the mean.

The adjusted pivotal quantity thus takes the following form:

W ∗(β̂) =
W (β̂) + 2r[c(α̂, β̂)− 1]

c(α̂, β̂)
, (10)

where the analytical adjustment factor c(α, β) has the following expression:

c(α,β) =
+
1 + τ 2[k + p0βH

I(β)]2/p0
�1/2

,

which depends on p0(≈ r/n) but may or may not depend on α and/or β. For certain
f(α, β) functions that inference concern, βH I(β) vanishes or becomes a constant free of
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parameters (see Sections 3.1 and 3.3), and for other f(α,β) functions, βH I(β) becomes

a function of β or α or both (see Sections 3.2, 3.4 and 3.5).

Now, it is clear that the adjusted pivotal quantity W ∗(β̂) agrees with T (β) in the

first two moments when n is large. It can further be shown that it is asymptotically

equivalent to T (β) by showing that the standardized statistics [W ∗(β̂)− 2r]/(2√r) and
[T (β)− 2r]/(2√r) both converge in distribution to the standard normal. This allows us
to approximate the distribution ofW ∗(β̂) by χ22r, which leads to an analytically adjusted

naive (AAN) CI for f(α, β) as:+
f[L∗α(β̂), β̂], f[U∗α(β̂), β̂]

�
, (11)

where L∗α(β̂) = 2S(β̂)/χ2∗2r,δ/2 and U
∗
α(β̂) = 2S(β̂)/χ2∗2r,1−δ/2, with χ

2∗
2r,δ = c(α̂, β̂)χ

2
2r,δ −

2r[c(α̂, β̂) − 1]. Thus, adjusting the naive CI boils down to simply adjusting the chi-
squared cutoff values using the estimated analytical adjustment factor c(α̂, β̂).

Now, we are left with the values of τ and k, and the question on degree of depen-

dence between T (β) and Q(β). If β̂ is the maximum likelihood estimator (MLE) or is

asymptotically equivalent to the MLE, then τ is given in Bain and Engelhardt (1991,

p.219). It is difficult to find the analytical expression for k. However, as it is a pure

number, Monte Carlo simulation can be used to approximate its values.

Table 1 lists some values of k, each based on 10,000 samples of size 10,000. The

values of τ 2 given in Bain and Engelhardt (1991, p.219) are also incorporated into the

table for the convenience of confidence interval construction. Other k values for different

p0 can be well approximated by linear interpolations. When p0 = 1, the true value for k

is (1−EulerIs constant) = 0.422784, indicating the simulated k value is very accurate.
Table 1 also gives simulated values of the correlation coefficient ρ between T (β) andQ(β),

each based on 10,000 samples of size 10,000. The results indicate that the correlation

between the two quantities are indeed weak when n is large, confirming the validity of

the variance calculation in (9). To check the stability of simulated k values with respect

to the sample size n, we have simulated the value of k using various other sample sizes

such as n = 20,000. The simulated k values change only in their 4th decimal places

when n increases from 10,000 to 20,000.
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Table 1 here

2.4. Estimation of Weibull shape parameter

One of the key factors affecting the finite sample performance of the AAN method

is the estimation of the Weibull shape parameter β. There are several methods available

in the literature for obtaining β̂. Among them, the simplest ones may be the MLE

(Lawless, 1982) and the modified MLE (MMLE) (Yang and Xie, 2003). From the general

development given earlier, we see that it is important that β̂ is unbiased. The MLE is

known to be biased, especially when n is small or censoring is heavy. The MMLE,

however, is shown to be nearly unbiased and much more efficient than MLE when n is

small or censorship is heavy. The MMLE is asymptotically equivalent to MLE, thus the

results in Table 1 are also applicable to the MMLE. The MLE solves β from

Sp(β) =
r

β
−
X
r

r3
i=1

∗tβi log ti

~X
r3
i=1

∗tβi

~−1
+

r3
i=1

log ti = 0, (12)

whereas the MMLE solves β from

Sp(β) =
r − 2
β
−
X
r

r3
i=1

∗tβi log ti

~X
r3
i=1

∗tβi

~−1
+

r3
i=1

log ti = 0, (13)

where
�r
i=1
∗wi =

�r
i=1wi + (n − r)wr. Comparing (12) and (13), we see that the

modification is extremely simple. When needed, the corresponding estimator for α, for

a given β̂, can be written as α̂ = (1
r

�r
i=1
∗tβ̂i )

1/β̂.

3. Applications of the AAN Method

We now apply the general AAN method presented in Section 2 to obtain confidence

intervals for the Weibull scale parameter, the MTTF, the percentile function and relia-

bility function. We also highlight some other interesting cases where AAN method can

be applied to show the generality of the method.

3.1. CI for the scale parameter α

For inference concerning α, f(α,β) = α, H(β̂) = 1, H I(β) = 0, and c(α,β) ≡ c =
{1+ τ 2k2/p0}1/2 which depends only on the degree of censorship. Thus, an approximate
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100(1− δ)% AAN CI for α based on W ∗(β̂) is given by⎧⎪⎨⎪⎩
⎛⎝ 2S(β̂)

cχ22r,δ/2 − 2r(c− 1)

⎞⎠1/β̂ ,
⎛⎝ 2S(β̂)

cχ22r,1−δ/2 − 2r(c− 1)

⎞⎠1/β̂
⎫⎪⎬⎪⎭ . (14)

3.2. CI for the MTTF

One of the aims of life testing is to determine the MTTF or to demonstrate that

a certain MTTF is achieved with high confidence. In this case, we have f(α,β) =

αΓ(1 + 1/β), H(β̂) =
�
Γ(1 + 1/β̂)/Γ(1 + 1/β)

=β̂
, and H I(β) = −β−1ψ(1 + 1/β), where

Γ(·) and ψ(·) are the gamma and digamma functions, respectively. Hence the AAN CI
for the MTTF takes the form⎧⎪⎨⎪⎩Γ

X
1 +

1

β̂

~⎛⎝2S(β̂)
χ2∗2r,δ/2

⎞⎠1/β̂ , Γ

X
1 +

1

β̂

~⎛⎝ 2S(β̂)

χ2∗2r,1−δ/2

⎞⎠1/β̂
⎫⎪⎬⎪⎭ , (15)

where χ2∗2r,δ = c(β̂)χ
2
2r,δ − 2r[c(β̂)− 1] and c(β̂) =

+
1 + τ 2[k − p0ψ(1 + 1/β̂)]2/p0

�1/2
. In

this case, the analytical adjustment factor depends on the shape parameter.

3.3. CI for the percentile function

The 100pth percentile of the Weibull distribution is tp = α[− log(1− p)]1/β. In this
case, we have f(α,β) = α[− log(1 − p)]1/β, H(β̂) = [− log(1 − p)]1−β̂/β, and H I(β) =
−β−1 log[− log(1− p)]. The AAN CI for tp is⎧⎪⎨⎪⎩

⎛⎝−2S(β̂)
χ2∗2r,δ/2

log(1− p)
⎞⎠1/β̂ ,

⎛⎝− 2S(β̂)

χ2∗2r,1−δ/2
log(1− p)

⎞⎠1/β̂
⎫⎪⎬⎪⎭ (16)

where χ2∗2r,δ = cχ22r,δ − 2r(c − 1) and c2 = 1 + τ 2{k − p0 log[− log(1 − p)]}2/p0. Like
the case of confidence interval for α, the analytical adjustment factor c is again a scalar

depending only on the degree of censorship.

3.4. CI for the reliability function

For the reliability functionR(t), we have f(α,β) = exp
+
−(t/α)β

�
, H(β̂) = (t/α)β−β̂,

and H I(β) = − log(t/α). The AAN CI for R(t) is⎧⎨⎩exp
⎛⎝−tβ̂χ2∗2r,δ/2

2S(β̂)

⎞⎠ , exp
⎛⎝−tβ̂χ2∗2r,1−δ/2

2S(β̂)

⎞⎠⎫⎬⎭ , (17)
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where χ2∗2r,δ = c(α̂, β̂)χ
2
2r,δ−2r[c(α̂, β̂)−1] and c2(α̂, β̂) = 1+τ 2[k−p0β̂ log(t/α̂)]2/p0. The

analytical adjustment factor depends on both the scale and shape parameters which need

to be estimated. MLE, MMLE or other consistent estimators can be used. However,

MMLE is seen to be preferred from Monte Carlo simulation.

3.5. CIs for other reliability-related quantities

Confidence intervals for other reliability-related quantities can be constructed in a

similar way. It is just a matter of specifying the function f(α,β) and finding the re-

lated quantities. For example, if the quantity of interest is the hazard rate, we have

f(α, β) = βtβ−1/αβ; if the quantity of interest is the standard deviation, we have

f(α, β) = α [Γ(1 + 2/β)− Γ2(1 + 1/β)]1/2; and if the quantity of interest is the jth mo-
ment, we have f(α,β) = αjΓ(1 + j/β).

4. Monte Carlo Simulation

The simplicity and the flexibility of the new AAN method is clearly demonstrated

in the earlier section. It is, however, necessary to investigate its properties when the

sample size is not large or when the censorship is heavy. In this section, we conduct

simulation studies to compare the three confidence intervals discussed in this article:

(a) the naive confidence interval,

(b) the AAN confidence interval using MLE of β, and

(c) the AAN confidence interval using MMLE of β.

The comparisons are based on the coverage probabilities of the three CIs. Also in this

section, a comparison is made on the average lengths of the proposed CI for α and the

corresponding CI given in Bain and Engelhardt (1986). All simulations are carried out

using FORTRAN 90. The IMSL/RNWIB subroutine is used for generating the Weibull

random numbers. Each simulated coverage probability is based on 10,000 samples. Since

the coverage is independent on the choice of α value, without loss of generality, α is set

to be 1 in all simulation. Further, as the behavior of the intervals depends very little

on the value of β, we only report the results that correspond to β = 2. More detailed

simulation results are available from the first author upon request.

10
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Table 2 summarizes the simulated coverage probabilities of the CIs for α. From the

table, we observe that (i) the AAN CI using the MMLE of β performs exceptionally well,

even when the sample size n is small and the censorship is heavy (represented by a small

value p0); (ii) the AAN CI using the MLE of β can perform poorly when n and/or p0 is

small, showing that it is important to use a less biased and more efficient estimator of β,

such as the MMLE of Yang and Xie (2003), when constructing CIs for the Weibull scale

parameter; and (iii) the naive CI has a rather poor coverage, which deteriorates with

the increase of the degree of censorship. Simulation results (not reported for brevity)

show that the performance of the CIs depends very little on the actual value of β.

Table 2 here

Table 3 records the simulated coverage probabilities of the three CIs for the per-

centile function. Various percentile points are considered. Again the simulation results

show that the AAN CI using the MMLE of β is the best, followed by the AAN CI using

the MLE of β, and the naive CI. Using the MMLE of β instead of the MLE improves

the coverage of the AAN CI noticeably, particularly in the cases of small percentiles

with heavy censorship. The naive CI for percentile often performs too poorly to be of

any practical value. The 95% and 99% AAN CIs using the MMLE of β for the low

percentiles, such as the 10th percentile, are slightly liberal, but still far better than

the other two CIs. Simulation for other percentiles, as well as under different β values

and sample sizes, has also been carried out. The results (not reported for brevity) are

consistent with those in Table 3.

Table 3 here

Table 4 summaries the simulation results for the MTTF. In this case, the analytical

adjustment factor depends on the parameter β that has to be estimated. Simulation

results show that this estimation does not affect much on the relative performance of

the three CIs. Once again, the AAN CI using the MMLE of β outperforms the other

two CIs, especially when n is small. It is interesting to note that, when the censorship is

light (p0 > 0.6, say), the AAN CI using the MLE of β perform no better than the naive

11
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CI. Once again, simulation results (not reported for brevity) show that the coverage

probabilities of the CIs depend very little on the actual value of β.

Table 4 here

Table 5 presents the simulated coverage probabilities of the confidence bounds for

the reliability function R(t). In this case, the analytical adjustment factor depends

on both α and β. From Table 5 we see that the AAN CI using the MMLE of β still

outperforms the AAN CI using the MLE of β in general. The coverage of the AAN CI

using the MLE of β varies a lot with the value of R(t), especially in the case of the 90%

CI where the reported the coverage probability changes from 0.8401 to 0.9474 as R(t)

changes from 0.05 to 0.95. Finally, the naive CI can give an extremely poor coverage of

R(t), much below its nominal level.

Table 5 here

Table 6 compares the coverage probabilities and the average lengths of the CIs for α,

based on the proposed AAN method and the method presented in Bain and Engelhardt

(1986). The results show that our method provides a better interval in terms of both

the coverage probability and the average length of the confidence interval. The interval

given by Bain and Engelhardt (1986) can perform poorly when sample size is small or the

data are heavily censored. In contrast, our intervals perform well in all the situations,

especially the interval using the MMLE of β.

Table 6 here

5. An Illustrative Example

We now consider a real data example to illustrate the use of theWTE transformation-

based AAN CIs developed in this paper and to compare them with the CI obtained using

the third-order approximation method proposed by Wong and Wu (2000). We use the

data reported in Lawless (1975, p.258). The data contain 40 observations, but only the

first 28 are actually observed, which are in log scale:
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−2.982 −2.849 −2.546 −2.350 −1.983 −1.492 −1.443
−1.394 −1.386 −1.269 −1.195 −1.174 −0.845 −0.620
−0.576 −0.548 −0.247 −0.195 −0.056 −0.013 0.006
0.033 0.037 0.046 0.084 0.221 0.245 0.296

We compute CIs for the following five quantities: the scale parameter, the MTTF,

the 10th percentile, the median, and the 90th percentile. The MLEs for the shape

parameter and the five quantities of interest are, respectively, 1.0984, 1.1692, 1.1287,

0.1507, 0.8375, and 2.4984. The corresponding MMLEs are, respectively, 1.0363, 1.1775,

1.1606, 0.1342, 0.8267, and 2.6332. We note that the MLE and MMLE of β do differ

noticeably, thus causing the noticeable differences between the MLEs and MMLEs of

the other quantities of interest.

Table 7 summarizes the computed confidence intervals. From the table, we observe

that among the three CIs discussed in this paper, the naive CI is always the shortest

and often significantly shorter than the other two, followed by the AAN CI using the

MLE of β and the AAN CI using the MMLE of β. In line with the simulation results

reported in the previous section, we conclude that the AAN CI using the MMLE of β is

the most reliable one. Also from Table 7, we see that the MMLE-based AAN CIs for the

scale parameter, the MTTF and the median are comparable with those based on Wong

and Wu’s method, though slightly shorter. However, when inference concerns the 10th

and 90th percentiles (or low and high percentiles in general), our method and Wong and

Wu’s method produce quite different confidence intervals.

Table 7 here

6. Discussion

A general method, called analytically adjusted naive (AAN) method, is proposed

for constructing confidence intervals for the reliability-related Weibull quantities. The

AAN method is rather general and is exemplified in this paper for the cases of the scale

parameter, MTTF, percentile and reliability. Excellent performance of the AAN CI is

observed, in particular the one based on the MMLE of β.

The AAN method has potential extensions to more complicated inference problems

often occured in, for example, the two-sample comparisons and the Weibull regressions.
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It also has potential extensions to the more complicated censoring schemes such as the

Type II progressive censoring (Balakrishnan and Basu, 1995, p.25). Generally speaking,

the AAN method is applicable whenever exact methods of inference are available for the

WTE-transformed observations.

The main attractiveness of the proposed method lies in its simplicity and accuracy

as compared with the methods available in the literature. Computing the estimate of

the shape parameter is the only part that involves numerical iteration.

The proposed method does not have a straightforward generalization to Type I

censored data. However, as Nelson (1982, p.249) commented, many people analyze

Type I data as if it were Type II data and this is often satisfactory in practice. Also,

recently, Jeng and Meeker (2000) studied procedures for computing confidence intervals

for parameters or quantiles based on Type I censored data from a location-scale family.

Wong andWu’s (2000) procedure is applicable to Type I data from a location-scale family

as well. Doganaksoy and Schmee (2000) gave a general discussion on the papers of Jeng

and Meeker and Wong and Wu, where the simplicity of a methodology seems to have

been stressed on. The proposed method can be implemented into popular commercial

software without any technical difficulty.
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Table 1. A Summary of the Constant Values

p0 τ 2 k ρ
1.0 0.607927 0.422642 -0.021417
0.9 0.767044 0.206893 -0.007954
0.8 0.928191 0.042456 -0.012622
0.7 1.122447 -0.090239 -0.012683
0.6 1.372781 -0.195195 -0.030083
0.5 1.716182 -0.272584 -0.008047
0.4 2.224740 -0.320973 -0.014092
0.3 3.065515 -0.336481 -0.011844
0.2 4.738764 -0.311191 -0.001159
0.1 9.744662 -0.227626 0.000345

Table 2. Simulated Coverage Probabilities for Confidence Intervals for α:
(a) Naive CI using MLE of β; (b) AAN CI using MLE; (c) AAN CI using MMLE.

90% CI 95% CI 99% CI
n p0 (a) (b) (c) (a) (b) (c) (a) (b) (c)
20 1.0 0.8544 0.8748 0.9005 0.9133 0.9278 0.9443 0.9684 0.9751 0.9840

0.9 0.8581 0.8638 0.8939 0.9141 0.9199 0.9422 0.9704 0.9727 0.9817
0.8 0.8567 0.8567 0.8921 0.9149 0.9149 0.9412 0.9703 0.9704 0.9819
0.7 0.8491 0.8512 0.8904 0.9039 0.9058 0.9348 0.9627 0.9636 0.9787
0.6 0.8321 0.8491 0.8939 0.8881 0.9022 0.9368 0.9504 0.9597 0.9783
0.5 0.7900 0.8402 0.8955 0.8568 0.8959 0.9421 0.9266 0.9574 0.9801
0.4 0.7235 0.8353 0.9016 0.7957 0.8987 0.9513 0.8842 0.9637 0.9880

50 1.0 0.8672 0.8866 0.8972 0.9259 0.9387 0.9465 0.9806 0.9862 0.9894
0.9 0.8790 0.8859 0.8973 0.9335 0.9386 0.9471 0.9809 0.9827 0.9858
0.8 0.8862 0.8863 0.8996 0.9381 0.9382 0.9477 0.9847 0.9847 0.9883
0.7 0.8774 0.8793 0.8933 0.9287 0.9299 0.9412 0.9795 0.9801 0.9841
0.6 0.8697 0.8834 0.8999 0.9216 0.9321 0.9469 0.9776 0.9816 0.9873
0.5 0.8333 0.8780 0.9017 0.8945 0.9315 0.9484 0.9612 0.9776 0.9862
0.4 0.7795 0.8783 0.9043 0.8521 0.9330 0.9529 0.9366 0.9809 0.9896
0.3 0.6969 0.8744 0.8965 0.7731 0.9306 0.9516 0.8741 0.9826 0.9917
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Table 3. Simulated Coverage Probabilities for Percentile Limits: n = 50,
(a) Naive CI using MLE of β; (b) AAN CI using MLE; (c) AAN CI using MMLE.

90% CI 95% CI 99% CI
p0 (a) (b) (c) (a) (b) (c) (a) (b) (c)

t0.10 1.0 0.5146 0.8615 0.8941 0.5900 0.8999 0.9308 0.7205 0.9482 0.9660
0.9 0.5279 0.8645 0.9032 0.6029 0.9021 0.9337 0.7302 0.9453 0.9675
0.8 0.5420 0.8609 0.9034 0.6177 0.8962 0.9313 0.7476 0.9412 0.9641
0.7 0.5524 0.8553 0.9032 0.6329 0.8917 0.9334 0.7564 0.9385 0.9610
0.6 0.5660 0.8416 0.8994 0.6520 0.8793 0.9301 0.7713 0.9315 0.9595
0.5 0.6051 0.8423 0.9060 0.6828 0.8828 0.9327 0.7978 0.9293 0.9620
0.4 0.6445 0.8296 0.8992 0.7178 0.8666 0.9253 0.8183 0.9158 0.9553
0.3 0.6998 0.8283 0.9051 0.7681 0.8662 0.9326 0.8519 0.9158 0.9594
0.2 0.7484 0.8144 0.9025 0.8123 0.8602 0.9347 0.8836 0.9140 0.9627

t0.25 1.0 0.6755 0.8771 0.8976 0.7615 0.9189 0.9383 0.8659 0.9623 0.9748
0.9 0.6849 0.8750 0.9022 0.7681 0.9204 0.9413 0.8755 0.9616 0.9748
0.8 0.7100 0.8772 0.9031 0.7920 0.9192 0.9458 0.8917 0.9626 0.9764
0.7 0.7411 0.8726 0.9062 0.8142 0.9195 0.9466 0.9091 0.9630 0.9776
0.6 0.7778 0.8745 0.9086 0.8494 0.9210 0.9473 0.9257 0.9645 0.9798
0.5 0.8055 0.8703 0.9024 0.8704 0.9175 0.9436 0.9376 0.9622 0.9778
0.4 0.8264 0.8545 0.8947 0.8874 0.9104 0.9390 0.9519 0.9615 0.9790
0.3 0.8502 0.8528 0.8954 0.9042 0.9062 0.9377 0.9596 0.9603 0.9777
0.2 0.8190 0.8359 0.9010 0.8780 0.8949 0.9428 0.9453 0.9544 0.9785

t0.5 1.0 0.8275 0.8890 0.9044 0.8953 0.9405 0.9518 0.9650 0.9815 0.9855
0.9 0.8483 0.8859 0.9030 0.9075 0.9371 0.9497 0.9692 0.9810 0.9870
0.8 0.8583 0.8814 0.8995 0.9193 0.9339 0.9452 0.9730 0.9794 0.9848
0.7 0.8720 0.8803 0.8997 0.9289 0.9341 0.9464 0.9765 0.9791 0.9845
0.6 0.8772 0.8773 0.8951 0.9303 0.9307 0.9442 0.9803 0.9806 0.9863
0.5 0.8716 0.8763 0.8983 0.9249 0.9292 0.9454 0.9778 0.9791 0.9857
0.4 0.8407 0.8718 0.8973 0.8996 0.9235 0.9454 0.9585 0.9736 0.9830
0.3 0.7696 0.8627 0.8995 0.8418 0.9176 0.9476 0.9215 0.9710 0.9855

t0.75 1.0 0.8895 0.8909 0.8990 0.9417 0.9421 0.9475 0.9847 0.9850 0.9868
0.9 0.8868 0.8882 0.8980 0.9380 0.9387 0.9453 0.9820 0.9828 0.9854
0.8 0.8724 0.8818 0.8937 0.9237 0.9323 0.9412 0.9783 0.9817 0.9863
0.7 0.8537 0.8849 0.8978 0.9130 0.9340 0.9455 0.9689 0.9802 0.9857
0.6 0.8231 0.8812 0.8979 0.8875 0.9324 0.9460 0.9548 0.9797 0.9870
0.5 0.7730 0.8789 0.8978 0.8453 0.9326 0.9502 0.9287 0.9811 0.9884
0.4 0.7089 0.8873 0.9017 0.7899 0.9384 0.9547 0.8933 0.9839 0.9919
0.3 0.6262 0.8940 0.9000 0.7057 0.9502 0.9584 0.8235 0.9962 0.9968

t0.95 1.0 0.8399 0.8868 0.8936 0.9039 0.9399 0.9484 0.9690 0.9858 0.9891
0.9 0.7999 0.8861 0.8962 0.8706 0.9395 0.9482 0.9499 0.9849 0.9892
0.8 0.7665 0.8950 0.9030 0.8442 0.9429 0.9517 0.9307 0.9835 0.9884
0.7 0.7170 0.8926 0.9025 0.8002 0.9456 0.9513 0.9027 0.9878 0.9921
0.6 0.6652 0.8928 0.8974 0.7479 0.9456 0.9509 0.8679 0.9893 0.9926
0.5 0.6172 0.9036 0.9026 0.6964 0.9579 0.9573 0.8231 0.9947 0.9945
0.4 0.5535 0.9098 0.8983 0.6344 0.9654 0.9539 0.7610 0.9983 0.9930
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Table 4. Simulated Coverage Probabilities for Confidence Intervals for MTTF:
(a) Naive CI using MLE of β; (b) AAN CI using MLE; (c) AAN CI using MMLE.

90% CI 95% CI 99% CI
n p0 (a) (b) (c) (a) (b) (c) (a) (b) (c)
10 1.0 0.8274 0.8526 0.9002 0.8881 0.9059 0.9404 0.9473 0.9586 0.9813

0.9 0.8258 0.8371 0.8906 0.8794 0.8895 0.9325 0.9436 0.9510 0.9761
0.8 0.8196 0.8242 0.8900 0.8776 0.8823 0.9317 0.9401 0.9440 0.9737
0.7 0.8039 0.8067 0.8878 0.8639 0.8659 0.9279 0.9311 0.9323 0.9712

20 1.0 0.8570 0.8752 0.8979 0.9111 0.9257 0.9458 0.9690 0.9772 0.9854
0.9 0.8521 0.8595 0.8881 0.9074 0.9150 0.9375 0.9658 0.9698 0.9809
0.8 0.8590 0.8619 0.8944 0.9164 0.9177 0.9394 0.9686 0.9696 0.9796
0.7 0.8507 0.8528 0.8890 0.9059 0.9080 0.9366 0.9668 0.9672 0.9793
0.6 0.8415 0.8532 0.8988 0.8981 0.9066 0.9435 0.9593 0.9643 0.9795
0.5 0.7930 0.8340 0.8962 0.8607 0.8934 0.9412 0.9346 0.9534 0.9786

50 1.0 0.8726 0.8880 0.8986 0.9267 0.9385 0.9461 0.9778 0.9822 0.9861
0.9 0.8818 0.8884 0.8993 0.9321 0.9351 0.9432 0.9784 0.9816 0.9866
0.8 0.8809 0.8820 0.8957 0.9364 0.9371 0.9455 0.9834 0.9836 0.9866
0.7 0.8744 0.8768 0.8918 0.9271 0.9291 0.9395 0.9799 0.9806 0.9867
0.6 0.8617 0.8776 0.8966 0.9196 0.9314 0.9456 0.9761 0.9803 0.9876
0.5 0.8309 0.8748 0.8969 0.8919 0.9275 0.9463 0.9614 0.9763 0.9858
0.4 0.7801 0.8734 0.8999 0.8526 0.9222 0.9497 0.9322 0.9730 0.9862
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Table 5. Simulated Coverage Probabilities for Reliability Bounds: n = 50,
(a) Naive CI using MLE of β; (b) AAN CI using MLE; (c) AAN CI using MMLE.

90% CI 95% CI 99% CI
R(t) p0 (a) (b) (c) (a) (b) (c) (a) (b) (c)
0.05 1.0 0.4325 0.8690 0.8936 0.5023 0.9166 0.9389 0.6277 0.9623 0.9739

0.9 0.4310 0.8592 0.8876 0.5012 0.9054 0.9343 0.6228 0.9546 0.9714
0.8 0.4405 0.8571 0.8897 0.5122 0.9066 0.9331 0.6380 0.9531 0.9716
0.7 0.4427 0.8523 0.8857 0.5203 0.8994 0.9313 0.6415 0.9519 0.9730
0.6 0.4629 0.8488 0.8891 0.5366 0.8995 0.9338 0.6613 0.9486 0.9709
0.5 0.4815 0.8401 0.8798 0.5564 0.8873 0.9271 0.6799 0.9409 0.9673

0.25 1.0 0.6726 0.8793 0.8929 0.7542 0.9351 0.9433 0.8612 0.9810 0.9864
0.9 0.6947 0.8772 0.8909 0.7700 0.9322 0.9424 0.8743 0.9801 0.9859
0.8 0.7177 0.8774 0.8896 0.7912 0.9298 0.9411 0.8884 0.9784 0.9857
0.7 0.7407 0.8776 0.8894 0.8149 0.9327 0.9442 0.9055 0.9800 0.9863
0.6 0.7733 0.8843 0.8968 0.8447 0.9351 0.9479 0.9241 0.9793 0.9856
0.5 0.8006 0.8748 0.8980 0.8651 0.9303 0.9430 0.9381 0.9772 0.9853

0.50 1.0 0.8361 0.8928 0.9016 0.8949 0.9412 0.9459 0.9603 0.9851 0.9881
0.9 0.8491 0.8913 0.8998 0.9107 0.9409 0.9489 0.9670 0.9863 0.9886
0.8 0.8579 0.8852 0.8977 0.9162 0.9386 0.9468 0.9724 0.9850 0.9874
0.7 0.8727 0.8884 0.9031 0.9276 0.9428 0.9525 0.9781 0.9865 0.9893
0.6 0.8776 0.8915 0.9086 0.9342 0.9478 0.9584 0.9811 0.9879 0.9917
0.5 0.8675 0.8980 0.9167 0.9254 0.9538 0.9646 0.9749 0.9928 0.9944

0.75 1.0 0.8907 0.8959 0.9049 0.9444 0.9508 0.9565 0.9873 0.9908 0.9927
0.9 0.8853 0.8955 0.9050 0.9389 0.9492 0.9553 0.9861 0.9919 0.9940
0.8 0.8762 0.8999 0.9103 0.9304 0.9518 0.9573 0.9806 0.9925 0.9937
0.7 0.8544 0.9095 0.9163 0.9149 0.9604 0.9634 0.9718 0.9952 0.9951
0.6 0.8240 0.9176 0.9162 0.8867 0.9666 0.9629 0.9565 0.9949 0.9941
0.5 0.7700 0.9362 0.9216 0.8429 0.9761 0.9636 0.9283 0.9951 0.9923

0.95 1.0 0.8407 0.9034 0.9085 0.9018 0.9539 0.9551 0.9684 0.9919 0.9913
0.9 0.8097 0.9165 0.9118 0.8788 0.9662 0.9608 0.9556 0.9950 0.9933
0.8 0.7625 0.9184 0.9090 0.8375 0.9698 0.9596 0.9284 0.9949 0.9920
0.7 0.7187 0.9382 0.9189 0.8000 0.9766 0.9613 0.8998 0.9954 0.9909
0.6 0.6675 0.9501 0.9150 0.7521 0.9726 0.9489 0.8637 0.9923 0.9850
0.5 0.6173 0.9474 0.9032 0.6970 0.9702 0.9370 0.8169 0.9904 0.9781
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Table 6. A Comparison of AAN CI for α with that from Bain & Engelhardt (BE) (1986)
Coverage Probability Average Length
AAN CI BE CI AAN CI BE CI

n p0 CP0 MLE MMLE MLE MMLE MLE MMLE MLE MMLE
20 1.0 0.90 0.8748 0.9005 0.8569 0.8879 0.3848 0.4063 0.3938 0.4166

0.9 0.8647 0.8957 0.8523 0.8847 0.4006 0.4373 0.4121 0.4510
0.8 0.8567 0.8921 0.8421 0.8772 0.4046 0.4476 0.4168 0.4626
0.7 0.8392 0.8814 0.8268 0.8632 0.4488 0.5260 0.4670 0.5506
0.6 0.8491 0.8939 0.8360 0.8691 0.4866 0.5867 0.5117 0.6218
0.5 0.8402 0.8955 0.8282 0.8539 0.5827 0.7638 0.6290 0.8366
0.4 0.8353 0.9016 0.8145 0.8114 0.7945 1.2268 0.8933 1.4274

50 1.0 0.8887 0.8991 0.8790 0.8940 0.2444 0.2494 0.2466 0.2517
0.9 0.8892 0.9003 0.8816 0.8951 0.2509 0.2586 0.2535 0.2614
0.8 0.8809 0.8936 0.8757 0.8885 0.2591 0.2690 0.2620 0.2722
0.7 0.8778 0.8918 0.8723 0.8862 0.2815 0.2968 0.2855 0.3013
0.6 0.8815 0.9008 0.8778 0.8903 0.3112 0.3330 0.3169 0.3395
0.5 0.8747 0.8988 0.8757 0.8869 0.3687 0.4053 0.3787 0.4169
0.4 0.8766 0.8977 0.8719 0.8777 0.4750 0.5462 0.4939 0.5699

20 1.0 0.95 0.9278 0.9443 0.9051 0.9314 0.4638 0.4901 0.4717 0.4995
0.9 0.9203 0.9426 0.9002 0.9277 0.4829 0.5278 0.4921 0.5395
0.8 0.9149 0.9412 0.8932 0.9234 0.4875 0.5401 0.4964 0.5520
0.7 0.8954 0.9311 0.8800 0.9120 0.5426 0.6375 0.5556 0.6572
0.6 0.9022 0.9368 0.8854 0.9125 0.5911 0.7151 0.6113 0.7463
0.5 0.8959 0.9421 0.8786 0.8999 0.7187 0.9491 0.7624 1.0237
0.4 0.8987 0.9513 0.8687 0.8626 1.0296 1.6294 1.1275 1.8513

50 1.0 0.9417 0.9505 0.9318 0.9425 0.2926 0.2986 0.2945 0.3006
0.9 0.9427 0.9496 0.9331 0.9450 0.3004 0.3096 0.3024 0.3118
0.8 0.9344 0.9435 0.9252 0.9357 0.3101 0.3221 0.3123 0.3245
0.7 0.9297 0.9405 0.9233 0.9349 0.3373 0.3558 0.3402 0.3592
0.6 0.9348 0.9472 0.9305 0.9389 0.3735 0.3999 0.3782 0.4054
0.5 0.9290 0.9455 0.9289 0.9390 0.4448 0.4893 0.4540 0.5004
0.4 0.9294 0.9513 0.9258 0.9310 0.5805 0.6690 0.5985 0.6923

20 1.0 0.99 0.9751 0.9840 0.9553 0.9702 0.6272 0.6641 0.6203 0.6582
0.9 0.9721 0.9830 0.9479 0.9649 0.6531 0.7159 0.6385 0.7023
0.8 0.9704 0.9819 0.9423 0.9601 0.6588 0.7323 0.6369 0.7109
0.7 0.9595 0.9767 0.9276 0.9466 0.7395 0.8741 0.7018 0.8358
0.6 0.9597 0.9783 0.9310 0.9489 0.8156 0.9952 0.7756 0.9556
0.5 0.9574 0.9801 0.9204 0.9329 1.0353 1.3945 0.9908 1.3562
0.4 0.9637 0.9880 0.9019 0.8779 1.7702 3.0366 1.6014 2.7878

50 1.0 0.9851 0.9893 0.9791 0.9838 0.3890 0.3971 0.3874 0.3956
0.9 0.9857 0.9890 0.9792 0.9847 0.3993 0.4117 0.3964 0.4089
0.8 0.9821 0.9858 0.9742 0.9795 0.4124 0.4285 0.4081 0.4243
0.7 0.9819 0.9863 0.9756 0.9804 0.4496 0.4747 0.4436 0.4688
0.6 0.9805 0.9861 0.9765 0.9809 0.4999 0.5357 0.4941 0.5302
0.5 0.9770 0.9856 0.9751 0.9809 0.6029 0.6647 0.5981 0.6606
0.4 0.9784 0.9893 0.9750 0.9823 0.8155 0.9452 0.8061 0.9373

Note: CP0 denotes the nominal coverage level.
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Table 7. A Summary of CIs for the Real Data Example
90% CI 95% CI 99% CI

CIs for α
Naive CI using MLE: (0.9020, 1.5955) (0.8590, 1.6963) (0.7830, 1.9193)
AAN CI using MLE: (0.9007 ,1.5994) (0.8576, 1.7014) (0.7813, 1.9276)
AAN CI using MMLE: (0.8929, 1.6412) (0.8477, 1.7523) (0.7680, 2.0002)
Wong-Wu Method: (0.8958, 1.6653) (0.8512, 1.8000) (0.7637, 2.1325)

CIs for 10th percentile
Naive CI using MLE: (0.1163, 0.2057) (0.1107, 0.2187) (0.1009, 0.2474)
AAN CI using MLE: (0.0929, 0.3603) (0.0857, 0.4719) (0.0742, 1.1642)
AAN CI using MMLE: (0.0803, 0.3381) (0.0738, 0.4501) (0.0633, 1.1721)
Wong-Wu Method: (0.0663, 0.2446) (0.0553, 0.2666) (0.0370, 0.3116)

CIs for 50th percentile
Naive CI using MLE: (0.6461, 1.1428) (0.6153, 1.2150) (0.5608, 1.3748)
AAN CI using MLE: (0.6429, 1.1522) (0.6118, 1.2274) (0.5569, 1.3950)
AAN CI using MMLE: (0.6246, 1.1593) (0.5927, 1.2397) (0.5364, 1.4197)
Wong-Wu Method: (0.6176, 1.1516) (0.5782, 1.2302) (0.5036, 1.4157)

CIs for 90th percentile
Naive CI using MLE: (1.9273, 3.4092) (1.8356, 3.6246) (1.6730, 4.1011)
AAN CI using MLE: (1.7999, 3.8624) (1.6965, 4.2431) (1.5187, 5.1891)
AAN CI using MMLE: (1.8600, 4.1784) (1.7470, 4.6162) (1.5536, 5.7139)
Wong-Wu Method: (1.8801, 4.2581) (1.7855, 4.8006) (1.6267, 6.2717)

CIs for MTTF
Naive CI using MLE: (0.8735, 1.5451) (0.8319, 1.6427) (0.7582, 1.8587)
AAN CI using MLE: (0.8559, 1.5992) (0.8126, 1.7146) (0.7365, 1.9777)
AAN CI using MMLE: (0.8605, 1.6834) (0.8140, 1.8151) (0.7328, 2.1183)
Wong-Wu Method: (0.9011, 1.9186) (0.8631, 2.1157) (0.7941, 2.6430)
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