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Abstract 

The control chart based on geometric distribution (geometric chart) has been shown to be 

competitive to p- or np- charts for monitoring proportion nonconforming, especially for 

applications in high quality manufacturing environment. However, implementing a geometric 

chart often assumes the process parameter to be known or accurately estimated. For a high 

quality process, an accurate parameter estimate may require a very large sample size that is 

seldom available. In this paper we investigate the sample size effect when the process 

parameter needs to be estimated. It is shown that the estimated control limits create 

dependence among the monitoring events.  Analytical approximation is derived to compute 

shift detection probabilities and run length distributions. It is found that, when there is no 

shift in proportion nonconforming, the false alarm probability increases as the sample size 

decreases and the effect can be significant even with sample size as large as 10,000.  

However, the in-control average run length is only affected mildly. On the other hand, when 

there is a process shift, the out-of-control average run length can be significantly affected by 

the estimated control limits, even with very large sample sizes. In practice, the quantitative 

results of the paper can be used to determine the minimum number of items required for 

estimating the control limits of a geometric chart so that certain average run length 

requirements are met. 
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1. Introduction 

Statistical process control has been shown to be very effective in monitoring and improving 

manufacturing and service processes. In practice, implementing a control chart often assumes 

the process parameters to be known or accurately estimated so that the control limits can be 

computed. For high quality processes, an accurate parameter estimate may require a very 

large sample size that is seldom available.  It is important to understand the impact of the 

estimated control limits when the process parameters have to be estimated so that the size of 

the inspected sample can be determined.  

For monitoring normal data, Hillier (1969) pioneered the research on the estimated control 

limits for the X  and R charts.  Quesenberry (1993) further studied the effects of the sample 

size on estimated limits for X  and X charts.  Other related studies can be found in Proschan 

and Savage (1960), Nelson (1984), Quesenberry (1991), Montgomery (1996), Chen (1997, 

1998) and Braun (1999). 

This paper investigates the effect of estimating control limits on the geometric chart, a 

statistical control chart that is shown to be particularly useful for high quality processes 

(Kaminsky et al., 1992, Glushkovsky, 1994, Nelson, 1994, Woodall, 1997, Xie and Goh, 

1992, 1997). By monitoring cumulative count of conforming items between two 

nonconforming ones, we could detect further process improvement (Goh and Xie, 1994), 

avoid the problem of fixing the rational sample size, and reduce the amount of plotting. 

However, it is especially important to study the effect of estimated control limit in this case 

as for high quality processes, nonconforming items are rare and a very large sample size is 

needed to obtain a reasonably accurate estimate of the parameters. The error in the estimated 

fraction nonconforming p could possibly lead the estimated control limits to be far from the 

true limits. Under such circumstances, the misleading results as indicated by the geometric 

chart may result in wrong management decisions. In fact, the study of estimated control limits 

is a general research issue of importance (Woodall and Montgomery, 1999). 

The paper is organized as follows. First the geometric chart with a known or estimated 

process parameter is described and the problem of estimation error is discussed.  The effect of 
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estimating control limits is then investigated and compared with the case of known limits for 

geometric chart. Explicit equations for false alarm probability and run length distribution are 

derived. The minimum sample size that provides the geometric chart the protection against 

giving misleading results is then discussed.   

 

 

2. The Geometric Charts with Known or Estimated Model Parameter 

Let Yi be the cumulative count of conforming items between the (i-1)th and ith 

nonconforming items, from a stable process running in an automated manufacturing 

environment with the probability of having a nonconforming item p0.  As a stable process is 

just a sequence of independent Bernoulli trials with the same probability of success p0, Yi + 1 

is distributed as geometric with parameter p0.  Hence the probability mass function of Yi is 

)( iyg  = 00 )1( pp iy− ,  yi = 0, 1, … , 

with )( ii yYP ≥  = iyp )1( 0− . 

Let LCL and UCL be, respectively, the lower and upper probability control limits for Yi.  
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which are equivalent to 

1 − LCLp )1( 0−  = 
2
α   and   1

0 )1( +− UCLp  = 
2
α . 

Thus, the control limits for the geometric chart have the form: 

  LCL = 
)1ln(
)21ln(

0p−
−α ,  and (1)  

 UCL = 
)1ln(

)2ln(

0p−
α  − 1. (2)  
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It should be noted that these limits produce roughly the desired α for sufficient small p0, but 

not exact due to the discrete nature of the geometric distribution.  In this sense, α may be 

understood as the overall desired false alarm rate.  The true false alarm rate may deviate a bit 

from it, but our calculations (Table 1) show that this deviation is negligible.  

These formulas assume that the fraction nonconforming p0 is known. If it is not known, a 

common practice is to inspect an initial number of nonconforming items and estimate the 

fraction nonconforming value. An accurate estimate requires a large sample size, and usually 

because of the estimation error due to small sample size, the estimated control limits could be 

far from the exact values. 

When p0 is unknown but an initial sample is taken, the traditional estimate is 

0p̂  = 
m
N , 

where N is the number of nonconforming items among a total of m items sampled.  Clearly, N 

~ Binomial(m, 0p ). 

Using 0p̂  as an estimate of 0p , we obtain estimated control limits for the geometric chart: 

  )(ˆ NLCL  = 
)/1ln(

)21ln(
mN−

−α , and (3)  

 )(ˆ NLCU  = 
)/1ln(

)2ln(
mN−

α  − 1. (4)  

The aim in this paper is to investigate the performance of (3) and (4). 

 

 

3. The Alarm Rate When the Parameters are Estimated 

Let Yi be a future observation (number of conforming items between two adjacent 

nonconforming items) from a process (possibly shifted from p0 to p).  Define the event, 

iB  = { Yi > )(ˆ NLCU  or  Yi <  )(ˆ NLCL }. 
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Then, P( iB ) is the actual alarm rate (AR), which becomes the actual false alarm rate (FAR) 

when  p = 0p .  Following a conditional argument, we obtain 

 nmn
m

n
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where 

   )|( nNBP i =  = P{ Yi > )(ˆ NLCU | N = n} +  P{Yi <  )(ˆ NLCL | N = n} 

 = )1ln()2ln()1( mnp −− α  − )1ln()21ln()1( mnp −−− α  + 1. (6)  

Notice that the events iB ’s are dependent of each other, as they all depend on the same 

estimated control limits. Lai et al. (1998) considered the effects of data correlation on the 

geometric chart procedure, but did not consider the effect of estimation. 

So, the actual AR or FAR can be calculated using (5).  To simplify the computation, a 

truncation procedure is given in the Appendix and it has been shown to be accurate and 

efficient.  Table1 provides FAR values for different combinations of 0p  and m, and Table 2 

provides AR values when the process parameter is shifted from 0p  = 0.0005.  

It is apparent from Table 1 that the actual FAR can deviate a lot from its desired value of 

0.0027 when the true process fraction nonconforming 0p  is estimated from m sampled items, 

especially when 0p  is very small.  For a fixed 0p  value, increasing m will significantly 

reduce the amount of deviation.  This is because the variability in the estimated 0p  gets 

smaller as m increases.  When sample size m is large enough (a smaller 0p  requires a larger 

m), the FAR can be very close to 0.0027, and hence the estimation effects on the false alarm 

probability of the geometric chart can be neglected.  For example, when 0p  = 0.0001 and m = 

800,000, we have FAR = 0.00297 and when 0p  = 0.001 and m = 100,000, we have FAR = 

0.00292.  Thus, for a high quality manufacturing process, i.e., when it is known that 0p  is 

small, Table 1 may be used for deciding an appropriate sample size for implementing a G-

chart.  Finally, it should be pointed out that even if the true 0p  value is used in the control 

limits, the FAR is still not exactly 0.0027 as the distribution is discrete. 
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Table 1.  Values of FAR for G-Chart with Estimated Control Limits, α = 0.0027. 

m \  p0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 
10000 0.38651 0.14718 0.05911 0.02623 0.01371 0.00878 0.00671 0.00575 0.00524 0.00492
20000 0.14719 0.02623 0.00878 0.00575 0.00492 0.00452 0.00425 0.00406 0.00391 0.00379
50000 0.01372 0.00492 0.00415 0.00379 0.00357 0.00343 0.00332 0.00325 0.00319 0.00314
100000 0.00492 0.00379 0.00343 0.00325 0.00314 0.00306 0.00301 0.00297 0.00294 0.00292
200000 0.00378 0.00324 0.00306 0.00297 0.00291 0.00288 0.00286 0.00283 0.00282 0.00281
300000 0.00343 0.00306 0.00294 0.00288 0.00284 0.00282 0.00281 0.00279 0.00278 0.00277
400000 0.00324 0.00297 0.00288 0.00283 0.00281 0.00279 0.00278 0.00277 0.00276 0.00276
500000 0.00314 0.00292 0.00285 0.00281 0.00279 0.00277 0.00276 0.00276 0.00275 0.00275
600000 0.00306 0.00288 0.00282 0.00279 0.00279 0.00277 0.00276 0.00275 0.00274 0.00274
700000 0.00301 0.00286 0.0028 0.00278 0.00276 0.00275 0.00275 0.00274 0.00274 0.00273
800000 0.00297 0.00284 0.00279 0.00277 0.00276 0.00275 0.00274 0.00274 0.00273 0.00273
900000 0.00294 0.00282 0.00278 0.00276 0.00274 0.00274 0.00274 0.00273 0.00273 0.00273

1000000 0.00292 0.00281 0.00277 0.00276 0.00274 0.00273 0.00273 0.00273 0.00273 0.00272
2000000 0.00281 0.00276 0.00274 0.00273 0.00272 0.00272 0.00272 0.00272 0.00271 0.00271

∞ 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270 0.00270

 

From Table 2, we see that for a given p ≠ 0p  (i.e., a given shifted process), the AR behaves 

similarly to the FAR as m increases, i.e., converging to its known value.  For a given m, the 

AR increases as p decreases, but as p increases it first decreases and then increases very 

slowly.  This means that G-chart is able to detect a process improvement (p decreases), but is 

unable to detect a process deterioration unless the deterioration amount is large enough.  This 

seems to be a common problem for a probability chart of a quantity having a skewed 

distribution (See Xie and Goh, 1997), irrespective whether the control limits are known or 

estimated.  The explanation is simple for a G-chart of a high yield process. As 0p  is small, 

the LCL is usually very small (e.g., 2.7 for α = 0.0027 and 0p  = 0.0005).  When p is 

decreased, the plotted quantity Y tends to be larger, hence more chance to exceed UCL, 

resulting in an increased AR. When p is increased, the plotted quantity tends to be smaller, 

hence less chance to exceed UCL.  At the same time, the chance for the plotted quantity to go 

below LCL would not increase much as LCL is already very small, unless p is increased by a 

big amount.  This is why AR decreases first and slowly increases when p moves to right of p0.  

Other values of p0 were also examined and the general conclusions reached are consistent. 

 
 
 
 

Appeared in:  Journal of Quality Technology, 2002, 34, 448-458.



 7 

  Table 2.  Values of  AR for G-Chart with Estimated Control Limits:  a. α = 0.0027, p0=0.0005 
   m  \ p 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 

10000 0.25860 0.09028 0.03854 0.02047 0.01371 0.01114 0.01023 0.01000 0.01009 0.01031
20000 0.25751 0.07797 0.02648 0.01027 0.00492 0.00317 0.00270 0.00270 0.00288 0.00313
50000 0.26268 0.07421 0.02264 0.00786 0.00357 0.00241 0.00222 0.00234 0.00257 0.00283
100000 0.26479 0.07296 0.02126 0.00702 0.00314 0.00219 0.00209 0.00226 0.00250 0.00276
200000 0.26592 0.07234 0.02054 0.00658 0.00292 0.00208 0.00203 0.00222 0.00247 0.00273
300000 0.26631 0.07213 0.02029 0.00640 0.00285 0.00205 0.00202 0.00221 0.00246 0.00272
400000 0.26650 0.07203 0.02017 0.00637 0.00281 0.00203 0.00201 0.00220 0.00245 0.00271
500000 0.26662 0.07197 0.02010 0.00632 0.00278 0.00202 0.00200 0.00220 0.00245 0.00271
600000 0.26670 0.07190 0.02005 0.00629 0.00277 0.00201 0.00200 0.00220 0.00245 0.00271
700000 0.26676 0.07190 0.02001 0.00627 0.00276 0.00200 0.00200 0.00219 0.00244 0.00271
800000 0.26680 0.07188 0.01998 0.00626 0.00276 0.00200 0.00200 0.00219 0.00244 0.00271
900000 0.26683 0.07186 0.01996 0.00624 0.00274 0.00200 0.00200 0.00219 0.00244 0.00271

1000000 0.26686 0.07185 0.01995 0.00623 0.00274 0.00200 0.00200 0.00219 0.00244 0.00271
∞ 0.26707 0.07171 0.01979 0.00614 0.00270 0.00198 0.00199 0.00219 0.00244 0.00270

b. α = 0.0027, p0=0.0003 
10000 0.17323 0.07859 0.05911 0.05439 0.05336 0.05339 0.05376 0.05424 0.05477 0.05531
20000 0.11968 0.02467 0.00878 0.00586 0.00559 0.00592 0.00641 0.00695 0.00750 0.00806
50000 0.11317 0.01713 0.00415 0.00244 0.00253 0.00293 0.00340 0.00388 0.00436 0.00484
100000 0.11197 0.01521 0.00342 0.00218 0.00238 0.00280 0.00326 0.00372 0.00419 0.00465
200000 0.11145 0.01419 0.00306 0.00206 0.00232 0.00275 0.00320 0.00366 0.00412 0.00457
300000 0.11129 0.01384 0.00294 0.00202 0.00230 0.00273 0.00318 0.00364 0.00409 0.00454
400000 0.11121 0.01366 0.00288 0.00200 0.00229 0.00272 0.00317 0.00363 0.00408 0.00453
500000 0.11117 0.01355 0.00285 0.00199 0.00229 0.00272 0.00317 0.00362 0.00407 0.00452
600000 0.11111 0.01347 0.00282 0.00198 0.00228 0.00271 0.00317 0.00362 0.00407 0.00452
700000 0.11111 0.01343 0.00280 0.00197 0.00228 0.00271 0.00316 0.00361 0.00407 0.00452
800000 0.11110 0.01339 0.00279 0.00196 0.00228 0.00271 0.00316 0.00361 0.00406 0.00451
900000 0.11109 0.01336 0.00278 0.00197 0.00227 0.00271 0.00316 0.00361 0.00406 0.00451

1000000 0.11108 0.01333 0.00277 0.00197 0.00228 0.00271 0.00316 0.00361 0.00406 0.00451
∞ 0.11100 0.01312 0.00270 0.00195 0.00227 0.00270 0.00315 0.00360 0.00405 0.00449

c. α = 0.0027, p0=0.0007 
10000 0.36599 0.15356 0.06989 0.03408 0.01790 0.01033 0.00671 0.00499 0.00421 0.00390
20000 0.37621 0.15164 0.06444 0.02881 0.01369 0.00712 0.00425 0.00302 0.00255 0.00243
50000 0.38394 0.15156 0.06152 0.02585 0.01149 0.00566 0.00332 0.00244 0.00216 0.00216
100000 0.38664 0.15166 0.06051 0.02479 0.01070 0.00515 0.00301 0.00225 0.00205 0.00208
200000 0.38801 0.15175 0.06002 0.02425 0.01030 0.00489 0.00286 0.00216 0.00199 0.00204
300000 0.38847 0.15178 0.05984 0.02408 0.01016 0.00480 0.00280 0.00213 0.00197 0.00203
400000 0.38870 0.15179 0.05977 0.02398 0.01009 0.00476 0.00278 0.00211 0.00197 0.00202
500000 0.38884 0.15180 0.05972 0.02392 0.01005 0.00473 0.00276 0.00210 0.00196 0.00202
600000 0.38893 0.15181 0.05968 0.02389 0.01002 0.00472 0.00275 0.00210 0.00196 0.00202
700000 0.38900 0.15182 0.05966 0.02386 0.01000 0.00470 0.00274 0.00209 0.00195 0.00201
800000 0.38905 0.15182 0.05964 0.02384 0.00999 0.00469 0.00274 0.00209 0.00195 0.00201
900000 0.38908 0.15182 0.05963 0.02383 0.00998 0.00469 0.00274 0.00209 0.00195 0.00201

1000000 0.38912 0.15183 0.05962 0.02381 0.00997 0.00468 0.00273 0.00209 0.00195 0.00201
∞ 0.38939 0.15185 0.05952 0.02370 0.00989 0.00463 0.00270 0.00207 0.00194 0.00201
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4. Run Length Distribution with Estimated Limits 

Let R be the number of points plotted on the chart until an out-of-control signal is given.  The 

R is called the run length and the distribution of R is called the run length distribution.  The 

study of run length distribution for a given control chart is of a great interest to quality 

professionals, especially when the events are correlated and/or the control limits are 

estimated.  Denote )|( NBP i  defined in (6) by )(Nα .  It is easy to see that the conditional 

distribution of R given N is geometric with parameter )(Nα .  Hence, the unconditional 

distribution of R is:  

 ),;( 0 pprf R  = [ ] )()()(1
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1 nNPnn
m

n
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The run length distribution given in (7) can be easily evaluated and plotted, for any 0p  and p, 

using Mathematica or some other statistical software.   

Figure 1 shows the run length distribution with p= p0 = 0.0005 and three different sample 

sizes.  It is seen that the three run length distributions differ mainly in the left tail, a smaller m 

results in a taller curve in the left tail.  This means that more short runs are to be expected.  
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Fig.1: Run length Distribution for three different sample sizes, p= p0 = 0.0005. 
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Following the similar conditional arguments, the average run length (ARL) and the standard 

deviation of the run length (SDRL) can be seen to have the forms: 

    ),( 0 ppARL  = ])(1[ NEN α , and (8) 

  ),( 0 ppSDRL  = ])())(1([])(1[ 2 NNENVar NN ααα −+ . (9) 

Thus, using the distribution of N, the quantities involved in (8) and (9) can be calculated as: 
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The corresponding ARL and SDRL with known control limits are of the forms 

 ),( 00 ppARL    = )(/1 iAP , and (10) 

 ),( 00 ppSDRL  = )1()(/)(1 −=− ARLARLAPAP ii , (11) 

where the events Ai are defined similarly as Bi, but correspond to the known control limits. 

Thus, a reasonable way to decide when the sample size m is large enough for LCU  and LCL  

to be essentially the same as UCL and LCL is to determine when the ARL and SDRL with 

estimated control limits are essentially the same as those given in (10) and (11).  For instance, 

for α = 0.0027 and p = p0, one should have ARL ≅ SDRL ≅ 370.  

To study the effect of the sample size m on the mean and standard deviation (ARL and SDRL) 

of the run length distribution, values of ARL and SDRL are computed from Equations (8) and 

(9) for a range of values of m and p and for a fixed p0 0 0005= . .  For each value of p and m, 

the first value given is the ARL and the second is the SDRL.  For comparison purpose, the 

exact values for the known p case are given in the last row ( m = ∞ ). 

 

Comparing the values in Table 3 with their nominal values, certain observations can be noted.  

First, estimating control limits can cause both ARL and SDRL larger or smaller than their 
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nominal levels, depending on whether p is smaller or larger than p0.  This is due to the 

reduced or enlarged probabilities of events { }Bi  and the dependence among them.  Also, for 

large values of m, SDRL can exceed ARL, which is in contrast of the case of known control 

limits where SDRL ARL ARL ARL= − <( )1 . 

Considering the nature of the run length distribution, it can be seen that when SDRL exceeds 

ARL, a large number of short runs that are balanced by a few long runs would be expected, 

when compared with the standard geometric distribution.  This is because when two 

probability distributions have the same mean, the one with larger standard deviation will have 

higher probability in its tails.  Since the run length takes only the values that are positive 

integers, which cannot be less than 1, this means that the probability on the lower integers of 

the distribution with large standard deviation has to be increased and be balanced by an 

increase in the probability on large integers in the right tail of the distribution.  The net effect 

of the dependence caused by using the estimated control limits LCU ˆ  and LCL ˆ  is that the run 

length distribution will, for a particular value of ARL, have an increased rate of very short 

runs between alarm signals.  There will also be an increased number of long runs between 

alarm signals.  However, the ratio of the number of short runs to the number of long ones also 

increases and is very large itself.  This is an undesirable phenomenon one should be 

constantly aware of. 

Similar to the behavior of AR function with respect to a change in p, the ARL and SDRL both 

decrease as p decreases, but when p increases, ARL and SDRL both increase first and then 

decrease.  The latter phenomenon is undesirable and can be explained in the same way as for 

AR function.   

By comparing Tables 2 and 3, it is interesting to note that the impact of estimated control 

limits are very different on the FAR and the in-control ARL (i.e., p0=0.0005). While the FAR 

in Table 2 significantly increases as the sample size decreases, the in-control ARL's are only 

affected mildly by the sample size.  On the other hand, the out-of-control ARL's in Table 3 are 

very significantly affected as the sample size decreases, even with very large sample sizes.  
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Table 3.  Values of ARL (upper entry) and SDRL (lower entry) for the G-Chart  
with Estimated Control Limits, p0 = 0.0005 

 M  \   p 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 
10000 95.05 173.62 262.73 331.3 374.1 397.5 406.9 406.0 397.1 382.7

 18.55 64.10 138.51 221.4 291.8 339.1 362.3 366.0 356.7 340.1
20000 29.42 108.72 221.54 323.8 391.6 426.2 436.4 429.0 410.1 385.4

 6.56 37.08 114.24 224.1 326.2 391.0 414.4 408.4 386.7 359.5
50000 4.50 34.67 134.84 281.3 398.8 457.4 467.6 447.9 415.1 380.2

 4.18 19.38 78.43 206.8 353.0 442.0 460.8 439.0 403.6 367.9
100000 3.61 19.18 87.26 239.5 394.8 474.9 483.4 454.0 414.0 375.8

 3.93 16.02 63.25 190.4 362.9 467.8 480.9 449.1 407.8 369.4
200000 3.38 15.65 65.55 205.6 387.6 487.1 492.8 456.2 412.4 373.0

 3.83 14.87 56.33 178.1 367.5 484.3 492.0 453.7 409.3 370.0
300000 3.32 14.81 59.63 191.9 383.4 492.2 496.2 456.7 411.7 372.0

 3.80 14.54 54.26 173.3 368.7 490.7 495.8 455.1 409.8 370.1
400000 3.29 14.43 56.96 184.7 380.8 494.9 497.9 456.9 411.3 371.4

 3.79 14.38 53.27 170.8 369.2 494.0 497.8 455.8 410.0 370.1
500000 3.27 14.22 55.45 180.3 379.0 496.7 498.9 457.0 411.1 371.3

 3.78 14.29 52.70 169.2 369.5 496.1 498.9 456.2 410.1 370.2
600000 3.26 14.08 54.47 177.3 377.7 497.9 499.6 457.0 410.9 370.9

 3.77 14.23 52.32 168.2 369.7 497.5 499.7 456.4 410.2 370.2
700000 3.25 13.98 53.79 175.1 376.7 498.8 500.1 457.1 410.8 370.7

 3.77 14.19 52.05 167.4 369.8 498.6 500.3 456.6 410.2 370.2
800000 3.25 13.91 53.29 173.5 376.0 499.5 500.5 457.1 410.7 370.6

 3.77 14.16 51.85 166.8 369.9 499.3 500.7 456.7 410.3 370.2
900000 3.24 13.86 52.91 172.3 375.4 500.0 500.8 457.1 410.6 370.5

 3.76 14.13 51.70 166.4 369.9 500.0 501.00 456.9 410.3 370.2
1000000 3.24 13.81 52.61 171.3 374.9 500.4 501.0 457.1 410.6 370.5

 3.76 14.11 51.58 166.0 370.0 500.4 501.3 456.9 410.3 370.2
2000000 3.75 14.03 51.04 164.4 370.2 502.7 502.4 457.3 410.4 370.3

 3.22 13.62 51.28 166.8 372.5 502.4 502.1 457.1 410.3 370.1
∞ 3.74 13.95 50.52 162.8 370.4 505.1 503.1 457.7 410.5 370.3
 3.21 13.44 50.02 162.3 369.9 504.6 503.1 457.2 410.0 369.8

 

5. Alternative Measures of Run Length 

Tables 2 and 3 exhibit some undesirable behavior: the G-chart is unable to detect the process 

deterioration.  It should be pointed out that this is not induced by estimating the control 

limits, but rather an artifact of the geometric chart.  This point can clearly be seen by 

comparing the results in the last rows of Tables 2 and 3 with results in the other rows.   

The run length is defined as the number of plotted points until an out-of-control signal.  In 

other words, it is the number of consecutive nonconforming items until an out-of-control 

signal. However, what really matters is the total number of checked items Rt until an out-of-

control signal.  Using the earlier notation, the ith plotted point corresponds to Wi = Yi+1 

checked items and Wi tends to be larger when p is smaller and smaller when p is larger. 

Clearly, iR
i

t WR 1=∑=  and 
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The last equation follows Wald’s Identity.  As Wi is independent of N, we have 

ARLt = pARLpNREERE t == ])([)( . 

As Rt is defined in terms of number of inspected items,  the ARLt  is referred to as the average 

run length per item.  Using above relation, one can easily convert the results in Table 3 into 

the values of ARLt.  The converted results are given in Table 4. 

From the results in Table 4, we see that for smaller values of m (i.e., less than 100000) 

average run lengths per item ARLt decrease after the .0005 entry.  For larger values of m, the 

ARLt begin to decrease after the .0006 entry.   This means that using ARLt one is able to 

detect the process deterioration.  On the other hand, the ARLt to the left of the .0005 entry 

increases when m =10000.  This is clearly a consequence of estimation.  For larger values of 

m, the ARLt to the left of the .0005 entry usually decrease, which is what one would expect.  

Similar results can be obtained for alarm rates per item.  (Multiply the original alarm rates by 

p.)  The SDRL can also be dealt with but the transformation is a bit more complicated.  In 

summary, G-chart is able to detect both decrease and increase in fraction nonconforming if 

one uses the run length measures introduced above.  Recently, Wu and Spedding (2001) 

introduced a synthetic control chart for detecting fraction nonconforming increase.  

 
Table 4.  The Average Run Length Per Item 

  M \  p 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

10000 950520 868100 875780 828120 748170 662470 581346 507470 441244 382655

20000 294150 543580 738470 809412 783106 710407 623360 536193 455714 385411

50000 44960 173355 449473 703335 797504 762323 668023 559826 461208 380216

100000 36050 95880 290877 598635 789590 791467 690497 567451 460019 375816

200000 33820 78255 218497 513890 775134 811902 703981 570228 458262 372987

300000 33190 74055 198777 479703 766788 820272 708804 570849 457470 371956

400000 32890 72165 189867 461670 761558 824870 711263 571085 457033 371426

500000 32710 71090 184820 450622 757998 827787 712749 571201 456759 371103

600000 32600 70395 181573 443182 755422 829802 713741 571266 456571 370886

700000 32520 69905 179311 437840 753476 831280 714453 571308 456433 370730

800000 32460 69550 177645 433820 751954 832410 714986 571335 456330 370612

900000 32410 69275 176367 430690 750732 833302 715400 571354 456248 370521

1000000 32380 69055 175356 428180 749728 834025 715733 571369 456181 370447

2000000 37520 70130 170122 410958 740318 837847 717760 571623 456013 370253

∞ 37440 69725 168406 406983 740740 841835 719454 572076 456123 370279
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6. Conclusions 

Geometric control chart is useful in different context (Kaminsky et al., 1992, Nelson, 1994, 

Glushkovsky, 1994, Benneyan and Kaminsky, 1994, and Benneyan, 2001).  However, it is 

particularly useful when the cumulative count of conforming items between two 

nonconforming ones is monitored for high quality process.  This poses a great challenge, as 

the estimation error could be significant when the sample size is not large enough. 

In this paper we show that the estimated control limits create dependence among the 

monitoring events.  When there is no shift in proportion nonconforming, the false alarm 

probability increases as the sample size decreases and the effect can be significant even with 

very large sample sizes, but the in-control average run length is only affected mildly.  

However, when there is a process shift, the out-of-control average run length can be 

significantly affected by the estimated control limits even with very large sample sizes. 

It is important to use a right sample size in order to achieve desired performance on the chart.  

A too small initial sample size will lead to wrong control limits and hence wrong decision to 

be made.  On the other hand, a large sample size can be costly and delays the implementation. 

To choose the reasonable sample numbers, the exact false alarm probability equation derived 

in this paper can be used.  In practice, Tables 1 to 3 in the paper can be used to determine the 

minimum number of items required for estimating the control limits so that certain average 

run length requirements are met. 

Alternatively, for a given amount of data, one may consider to adjust the control limits to 

yield the desired performance such as the in-control ARL.  This can be done for the X  chart 

with estimated control limits as in this case a known F-distribution is involved in the 

derivation of AR, ARL, etc.  There seems, however, no simple ways to do so for the 

geometric chart.  Nevertheless, some further research along this direction should be 

interesting and worth of pursuing. 

Finally, there are other ways of estimating p0.  For example, instead of using N/m, one may 

consider to add the continuity correction factor to give a possibly better estimate (N+0.5)/m.  

But, the charting performance under this estimate has to be investigated. 
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Appendix - Computing the Alarm Rate and Other Related Measures 

All the calculations are performed using Mathematica by taking the advantages of its 

symbolic manipulation capability and build-in Binomial function.  The computation of alarm 

rate involves not only a summation of m terms, but also a combinatorial term related to m. 

When m is large, exact calculation becomes very slow. We present here a method based on 

truncation, which is shown to be accurate and efficient even when m is of order of several 

millions.  We have that, 

 nmn
m

n
i

m

n
ii pp

n
m

nNBPnNPnNBPBP −

==
−⎟

⎠
⎞

⎜
⎝
⎛===== ∑∑ )1()|()()|()( 00

00
 

Since p0 is a small number as we are considering a high-quality manufacturing process with a 

very low fraction nonconforming level, both the conditional probability and the binomial 

probability for large value of n are negligible.  In fact, )( nNP =  is only of interest for n ≤ 

cmp0 for some value of c.  This idea was motivated by the Markov’s Inequality (total 

probability from cmp0 to m is bounded by 1/c).  In fact, the true truncated probability in the 

binominal case is much less than this upper bound as demonstrated in many elementary 

probability books.  In the examples above the values of c were chosen to be 5 to 20 and the 

truncated probability was always less than 10−8.  This gives that 

 nmn
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n
ii pp

n
m

nNBPBP −

=

−⎟
⎠
⎞

⎜
⎝
⎛=≈ ∑ )1()|()( 00

0

0

. 

The computation reduction can be quite substantial.  For example, for m = 1000000, p0 = 

0.0005 and c = 20, we have cmp0 = 10000.  In other words, we only have to sum up to 10000 

instead of 1000000. 
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