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Abstract: The authors consider a simple but general method of inference for a parametric function of the

Box-Cox-type transformation model, which is built upon the normal inference theories when the transfor-

mation parameter is known and takes the estimation of this parameter into account. This method quickly

leads to test statistics and confidence intervals for i) a linear combination of the regression coefficients, ii)

a linear combination of the scaled regression coefficients, iii) marginal effects on the median of an original

response, iv) a general percentile function of an original response, and v) the survivor function. They

show, through Monte Carlo simulations, that the finite sample performance of the new method is often

superior to the commonly used delta method, and that the new method is robust to mild departures from

normality of error distributions. They illustrate the new method with a numerical example.

Résumé : The authors consider a simple but general method of inference for a parametric function of the

Box-Cox-type transformation model, which is built upon the normal inference theories when the transfor-

mation parameter is known and takes the estimation of this parameter into account. This method quickly

leads to test statistics and confidence intervals for i) a linear combination of the regression coefficients, ii)

a linear combination of the scaled regression coefficients, iii) marginal effects on the median of an original

response, iv) a general percentile function of an original response, and v) the survivor function. They

show, through Monte Carlo simulations, that the finite sample performance of the new method is often

superior to the commonly used delta method, and that the new method is robust to mild departures from

normality of error distributions. They illustrate the new method with a numerical example.

1. INTRODUCTION

The standard Box-Cox transformation model (Box & Cox, 1964) takes the form

h(Y,λ) = Xβ + ε, (1)

where h(Y,λ) is an n×1 vector of transformed responses h(Yi,λ) with h being a general monotonic
function, λ denotes the transformation parameter(s), X is an n × k matrix containing the values
of k regressors, β is a k × 1 vector of parameters, and ε is an n × 1 vector of independent and
identically distributed (iid) normal random variables with mean zero and variance σ2.
There are many transformation functions available in the literature. The most popular one is

the Box-Cox power transformation which takes the form

h(y,λ) =
(yλ − 1)/λ, λ W= 0,
log y, λ = 0.

(2)
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However, this transformation is incompatible with the normality assumption due to the well-
known truncation problem, unless the transformation parameter λ equals zero. If exact normality
is crucial, such as in the proofs of certain theorems, one must seek alternative transformations. A
closely related transformation, called the dual power transformation, that also works for positive
variables is given in Yang (2006) which takes the form

h(y,λ) =
(yλ − y−λ)/(2λ), λ W= 0,
log y, λ = 0.

(3)

This transformation is shown to possess properties similar to those of the Box-Cox power trans-
formation, but does not suffer from the truncation problem.
When observations can be both positive and negative, neither the Box-Cox power transforma-

tion nor the dual power transformation is appropriate. In this case, several alternative transfor-
mations are available. See, for example, Manly (1976), John & Draper (1980), Bickel & Doksum
(1981), Burbidge, Magee & Robb (1988), MacKinnon & Magee (1990), and Yeo & Johnson (2000).
Since the seminal work of Box & Cox (1964), there have been many developments (including

debates) and applications of the Box-Cox transformation methodology, in a wide variety of fields
including, other than statistics, economics, engineering, medicine and biological sciences. However,
a simple but general and reliable method of inference for the Box-Cox transformation model seems
still lacking. In this case, one typically relies on the delta method for inference which is known to
possibly suffer from a poor finite sample performance.
In this paper, we develop a general inference method for model (1) that works for all trans-

formations with which the normality assumption is possible. In particular, we develop general
methods for testing hypotheses about, and constructing confidence intervals for, ψ = g(λ,β,σ2),
a general smooth function of the model parameters. In some important special cases, we also
give an alternative method, aiming for better finite sample properties. The key factors that may
contribute to the improved finite sample performance are: a) the alternative method is able to
take advantage of the exact λ-known distribution of the underlying statistic if it exists, and b) the
alternative method is able to alleviate the effect of nonlinearity of the function g.
As applications of the general theory, we develop tests and confidence intervals for i) a linear

combination of the regression coefficients, ii) a linear combination of the scaled regression coeffi-
cients, iii) marginal effects on the median of an original response, iv) a general percentile function
of an original response, and v) the survivor function. All results are simple and computationally
they involve little more than the calculations of the full MLEs of the model parameters.
The reliability (or finite sample performance) of the new methods is assessed through Monte

Carlo simulation, based on two transformation functions: the Box-Cox power transformation given
in (2) and the dual power transformation given in (3), with errors being normal, truncated normal,
or normal-gamma mixture. We find that the finite sample performance of the new method is often
superior to the commonly used delta method, in particular in the cases of (iv) and (v), and is
robust against mild departures from normality of error distributions.
The rest of the paper is organized as follows. Section 2 presents the general results. Section 3

presents five applications. Section 4 presents Monte Carlo results for the finite sample performance
of the new methods. Section 5 provides a numerical illustration. Section 6 concludes the paper.

2. THE GENERAL METHODS

The log likelihood function in relation to the original observations Y is, ignoring the constant,

f(λ,β,σ2) = −n
2
log(σ2)− 1

2σ2
[h(Y,λ)−Xβ)]I[h(Y,λ)−Xβ)] +

n

i=1

log hy(Yi,λ), (4)

where hy(Yi,λ) = ∂h(Yi,λ)/∂Yi. Maximization of the log likelihood is usually carried out in two
steps. First, for a given λ, f(λ,β,σ2) is maximized by
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β̂(λ) = (XIX)−1XIh(Y,λ) and σ̂2(λ) = n−1,Mh(Y,λ),2, (5)

where , · , is the Euclidean norm and M = In −X(XIX)−1XI with In being the n × n identity
matrix. Then, substituting β̂(λ) and σ̂2(λ) into (4) gives the concentrated log likelihood for λ as,

fc(λ) = −n
2
log(,Mh(Y,λ),2) +

n

i=1

log hy(Yi,λ).

The unconstrained MLE λ̂ of λ thus maximizes fc(λ). Finally, substituting λ̂ back into β̂(λ) and

σ̂2(λ) for λ gives the MLEs of β and λ denoted as β̂(λ̂) and σ̂2(λ̂).
Suppose in general our inference concerns ψ = g(λ,β,σ2), where g is a general smooth function

of the model parameters. Examples of such functions include linear combinations of regression
coefficients β, linear combinations of the scaled regression coefficients β/σ, percentile functions of
a response y0 at regressor values x0, marginal effects on the median of a response y0, survivor
functions, etc. We denote by gβ and gσ2 the partial derivatives of g with respect to β and σ2,
respectively
When λ is known, β and σ2 are estimated, respectively, by the constrained MLEs β̂(λ) and

σ̂2(λ) given in (5), which gives the constrained MLE for ψ as ψ̂(λ) ≡ g(λ, β̂(λ), σ̂2(λ)). If λ is
unknown and is estimated by its MLE λ̂, then β and σ2 are estimated, respectively, by β̂(λ̂) and

σ̂2(λ̂), which gives an unconstrained MLE of ψ as ψ̂(λ̂) ≡ g(λ̂, β̂(λ̂), σ̂2(λ̂)). Denote the derivative
of ψ̂(λ) with respect to λ by ψ̂λ(λ). We now present our general theory. The proofs of the theorems
are sketched in the Appendix.

Theorem 1. Assume i) the function g is differentiable in all its three arguments; ii) ψ̂λ(λ) is
bounded in probability, and iii) consistency and asymptotic normality hold for the MLEs of Model
(1) parameters. We have √

n[ψ̂(λ)− ψ] D−→ N(0, v2), and

√
n[ψ̂(λ̂)− ψ] D−→ N(0, v2 + κ2τ2),

where v2 = limn→∞[nσ2gIβ(X
IX)−1gβ ] + 2σ4g2σ2 , κ = limn→∞ E[ψ̂λ(λ)], and τ

2 is the asymptotic

variance of
√
n(λ̂− λ).

Theorem 1 says that estimation of λ inflates the variance of the estimator for ψ by a factor
κ2τ2, where the derivative ψ̂λ(λ) plays a key role in the magnitude of this variance inflation. The
situations where this derivative is small, so that the variance inflation is small, are of particular
interest (see Chen, Lockhart & Stephens, 2002). The results of Theorem 1 rely on the consistency
and asymptotic normality of the MLEs of the model parameters, which are not addressed in this
paper as the focus of the paper is on the inference for a parametric function. Interested readers may
refer to Hernandez & Johnson (1980), Bickel & Doksum (1981), Carroll (1982), Carroll & Ruppert
(1984), Foster, Tian & Wei (2001) and Chen, Lockhart & Stephens (2002) for similar large sample
frameworks in which the estimates of model parameters are consistent and asymptotically normal.
Theorem 1 suggests two methods of inference for ψ. Method 1 follows directly from the second

part of the theorem, i.e., inference for ψ proceeds with

T1(λ̂,ψ) =

√
n[ψ̂(λ̂)− ψ]√
v̂2 + κ̂2τ̂2

, (6)

where the estimates v̂2 and κ̂2 are obtained by evaluating the finite sample expressions for v2

and κ2 (dropping the limits) at the full MLEs of all the parameters. The variance estimate τ̂2 is
obtained according to the method described later. An asymptotic two-sided level α test for testing
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H0 : ψ = ψ0 rejects the null hypothesis when |T1(λ̂,ψ0)| > Zα/2, and an asymptotic 100(1− α)%
confidence interval (CI) for ψ is

ψ̂(λ̂)± Zα/2 (v̂2 + κ̂2τ̂2)/n, (7)

where Zα/2 is the upper α/2 quantile of the standard normal distribution.
Though the inference method described above is easier to apply than the commonly used delta

method (described in the Appendix), its finite sample performance may not be better, as, similar
to the delta method, it also works directly on the function g, i.e., estimating g (by plugging-in the
parameter estimates) and finding the asymptotic variance of the estimate. Hence, Method 1 may
suffer from the same problem of poor finite sample performance as does the delta method.
In many applications in engineering, medicine, biological sciences, etc., where only a small

data set is available, it is highly desirable to have inference procedures with good small sample
properties. One way to do this is to take advantage of the exact finite sample distribution (if it
exists) of the λ-known statistic

T0(λ,ψ) =

√
n[ψ̂(λ)− ψ]
v̂(λ)

,

where v̂(λ) is the MLE of v at the known value of λ. The idea is to find simple modifications of

T0(λ̂,ψ) so that the modified statistic has a good match in distribution with T0(λ,ψ). We call
this Method 2, which is developed by the following arguments. Denote the mean, variance and
the distribution of T0(λ,ψ) by μT , σ

2
T and FT , respectively. Following the proof of Theorem 1, we

have
T0(λ̂,ψ) = T0(λ,ψ) +

κ

v

√
n(λ̂− λ) + op(1),

which leads to E[T0(λ̂,ψ)] = μT + o(1) and Var[T0(λ̂,ψ)] = σ2T + v
−2κ2τ2 + o(1). Thus, the two

statistics match in means (with an error of o(1)) but not in variances. In order to be able to refer

to the finite sample distribution when making inference about ψ, it is necessary to modify T0(λ̂,ψ)
so that its first two moments match those of T0(λ,ψ). As normally μT W= 0, a change in variance
causes a shift in mean. The modified statistic thus takes the form

T2(λ̂,ψ) =
T0(λ̂,ψ)− μT (1− v̂f )

v̂f
, (8)

where v̂f = {1 + ( κ̂ τ̂v̂σT
)2}1/2. Thus, inference for ψ can be based on T2(λ̂,ψ) which refers to

the distribution FT instead of N(0, 1) in Method 1. An approximate two-sided level α test of

H0 : ψ = ψ0 rejects the null hypothesis when T2(λ̂,ψ) < F
1−α/2
T or T2(λ̂,ψ) > F

α/2
T , and an

approximate 100(1− α)% CI for ψ is

ψ̂(λ̂)− v̂√
n

μT (1− v̂f ) + v̂fFα/2T , ψ̂(λ̂)− v̂√
n

μT (1− v̂f ) + v̂fF 1−α/2T , (9)

where F
1−α/2
T and F

α/2
T are the lower and upper 100(α/2)% points of FT .

A simple method for computing τ̂2. By a theorem of Patefield (1977), the inverse con-
centrated information matrix is equal to the covariance matrix obtained by inverting the full
information matrix and taking the appropriate submatrix. A simple estimate of τ2 is given by

τ̂2 = −n ∂2

∂λ2
fc(λ̂)

−1
, (10)

which can be handled numerically by many statistical software. Carroll & Ruppert (1988, p129)
recommended that the above second derivative can be approximated by

∂2

∂λ2
fc(λ̂) ≈ 1

62
fc(λ̂+ 6) + fc(λ̂− 6)− 2fc(λ̂) ,
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where 6 is a small positive number, say 6 = 0.01.
This simple way of estimating the variance τ2 makes the application of Theorem 1 more conve-

nient. Once the full MLEs of model parameters are available, the rest are just simple substitutions.
The same type of inference using other methods usually is much more computationally involved.
For example, the delta method involves the calculation of the full information matrix, and the
likelihood ratio method involves a nonlinear maximization subject to a nonlinear constraint.

Special cases. There are interesting special cases of the g function that merit further study.
We formally treat one case here and more can be seen from the applications. The idea here is
to make use of the special form of the function g to reduce the effect of nonlinearity of it, thus
improving the finite sample performance of the inference procedures. Consider g(λ,β,σ) = g(λ, cIξ)
where c is a vector of constants and ξ = {βI,σ}I. If g, now considered as a function of cIξ only, is
invertible with

cIξ = g−1(λ,ψ) ≡ f(λ,ψ)
then inference for ψ is made much easier and perhaps better in its finite sample performance (see
the applications in the next section and the discussions therein). This is because the asymptotic
distribution of the statistic is much less dependent on the nonlinearity of the function g in β and
σ2. Specifically, the two derivatives: gβ and gσ2 , disappear as seen in the following theorem.

Theorem 2. Assume the conditions of Theorem 1 hold. Assume further i) g(λ,β,σ2) = g(λ, cIξ),
ii) cIξ = g−1(λ,ψ) ≡ f(λ,ψ) exists, iii) fλ(λ,ψ) = (∂/∂λ)f(λ,ψ) exists, and iv) β̂λ(λ) and σ̂λ(λ)
are bounded in probability. Then, we have,

√
n[cIξ̂(λ)− f(λ,ψ)] D−→ N(0, v20), and

√
n[cIξ̂(λ̂)− f(λ̂,ψ)] D−→ N(0, v20 + κ20τ

2), (11)

where v20 = limn→∞[nσ2cI1(XIX)−1c1+
1
2c
2
2σ
2] with (cI1, c2) = cI, κ0 = limn→∞ E[cIξ̂λ(λ)]−fλ(λ,ψ),

and τ2 is given in Theorem 1.

Again, Theorem 2 shows that there is a variance inflation in the estimation of ψ caused by the
estimation of the transformation parameter. From the result (11) of Theorem 2, it is clear that
inferences for ψ (Method 1) can be carried out based on

T1(λ̂,ψ) =

√
n[cIξ̂(λ̂)− f(λ̂,ψ)]

v̂20 + κ̂20τ̂
2

,

where v̂20 = nσ̂
2(λ̂)cI1(XIX)−1c1 +

1
2c
2
2σ̂
2(λ̂) and κ̂0 = c

Iξ̂λ(λ̂)− fλ(λ̂, ψ̂). A two-sided level α test
for testing H0: ψ = ψ0 rejects the null hypothesis when |T1(λ̂,ψ0)| > Zα/2, and an asymptotic
100(1− α)% CI for ψ is

g[λ̂, L(λ̂)], g[λ̂, U(λ̂)]

where L(λ̂) = cIξ̂(λ̂)− Zα/2{(v̂20 + κ̂20τ̂
2)/n} 12 and U(λ̂) = cIξ̂(λ̂) + Zα/2{(v̂20 + κ̂20τ̂

2)/n} 12 .
Parallel to the developments that lead to the statistic (8) and the CI (9), if the finite sample

distribution FT of the λ-known statistic

T0(λ,ψ) =

√
n[cIξ̂(λ)− f(λ,ψ)]

σ̂(λ) ncI1(XIX)−1c1 +
1
2c
2
2

,

is completely known, with mean μT and variance σ
2
T , one can easily develop a similar method

(Method 2) for this case by modifying T0(λ̂,ψ). The modified statistic is

T2(λ̂,ψ) =
T0(λ̂,ψ)− μT (1− v̂f0)

v̂f0
, (12)
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where v̂f0 = {1 + ( κ̂0 τ̂v̂0σT
)2}1/2. The modified CI for ψ is

g[λ̂, L0(λ̂)], g[λ̂, U0(λ̂)] , (13)

where L0(λ̂) = cIξ̂(λ̂) − v̂0√
n
[μT (1 − v̂f0) + v̂f0Fα/2T ], and U0(λ̂) = cIξ̂(λ̂) − v̂0√

n
[μT (1 − v̂f0) +

v̂f0F
1−α/2
T ].

3. APPLICATIONS OF THE GENERAL METHODS

We now present some interesting applications of the general inference methodology for the Box-Cox
transformation model presented above. We note that τ2 is the asymptotic variance of

√
n(λ̂− λ)

where λ̂ is the full MLE of λ, and that τ̂2 is the estimate of τ2 given by (10). Hence, these
quantities take the same form no matter which theorem is applied and what application is being
considered. We also note that, in order to apply Theorems 1 or 2, it is only necessary to derive
finite sample expressions for v2 and κ2 for a given g so that their MLEs can be obtained.

3.1 Regression coefficients

There has been some debate on which regression coefficients should be of inferential focus after
a transformation has been applied to the response. Bickel & Doksum (1981) argued inference
should be made on β with λ being treated as another genuine parameter like β and σ. Box &
Cox (1982), and Hinkley & Runger (1984) argued that λ is just a scale of data analysis and once
it is chosen, the subsequent analysis should be carried out and the effects be interpreted based
on this scale. Thus, the regression coefficients concerned should be β(λ̂) defined and interpreted

based on the chosen scale λ̂. For example, if λ̂ is found to be 0.5, then one should fit the model
Y (0.5) = Xβ(0.5) + σ(0.5)e and interpret all the effects based on λ = 0.5, i.e., the square-root
transformation. Results reported in the literature show that if inferences concern β, the usual
normal-theory inference methods are not valid. However, if inferences concern β(λ̂), the usual
inference methods remain asymptotically valid. See, for example, Bickel & Doksum (1981), Hinkley
& Runger (1984), Hooper & Yang (1997) and Yang (1999).
We now apply the theorems presented in the earlier section and outline arguments supporting

the asymptotic validity of the usual inference method when inference concerns β(λ̂), and present a
simple way for correcting the usual method when inference concerns β. Consider a general linear
function ψ = aIβ, for a fixed vector a. First, when λ is known, we have the following statistic

T0(λ,ψ) =
aIβ̂(λ)− aIβ

σ̂(λ) aI(XIX)−1a
,

which is exactly n
n−k tn−k, where tn−k denotes a t random variable with n−k degrees of freedom.

Tests and confidence intervals for aIβ can easily be constructed. An exact 100(1− α)% CI for aIβ
is: aIβ̂(λ)± tα/2n−k{naI(XIX)−1a/(n−k)}

1
2 σ̂(λ), where t

α/2
n−k denotes the upper α/2 quantile of tn−k.

When λ is unknown and is estimated by λ̂, Method 1 of Theorem 1 leads to the asymptotic
N(0, 1) statistic: T1(λ̂,ψ) =

√
n[aIβ̂(λ̂)− aIβ]/√v̂2 + κ̂2τ̂2, where v̂2 = nσ̂2(λ̂)aI(XIX)−1a and

κ̂ = aI(XIX)−1XIhλ(Y; λ̂); an approximate two-sided level α test of H0 : ψ = ψ0 that rejects the

null hypothesis when |T1(λ̂,ψ0)| > Zα/2; and an approximate 100(1− α)% CI for aIβ as:

aIβ̂(λ̂)± Zα/2{(v̂2 + κ̂2τ̂2)/n} 12 .

Similarly, Method 2 of Theorem 1 leads to the following statistic T2(λ̂,ψ) = T0(λ̂,ψ)/v̂f , where
v̂f = {1 + ( κ̂ τ̂v̂σT

)2}1/2 and σ2T = n
n−k−2 ; an approximate two-sided level α test of H0 : ψ = ψ0 that
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rejects the null hypothesis when |T2(λ̂,ψ0)| > ( n
n−k )

1/2t
α/2
n−k; and an approximate 100(1− α)% CI

for aIβ as:
aIβ̂(λ̂)± tα/2n−k (v̂2σ2T + κ̂2τ̂2)/(σ2T (n− k))

1
2 .

Finally, if inference concerns aIβ(λ̂), where β(λ̂) = E[β̂(λ̂)|λ̂] as in Hinkley & Runger (1984),
then it can be easily proved, along the line of proof for Theorem 1, that the following statistic

T ∗(λ̂,ψ) =
aIβ̂(λ̂)− aIβ(λ̂)

σ̂(λ̂) aI(XIX)−1a
,

has an asymptoticN(0, 1) distribution, provided that (XIX)−1XI{hλ(Y,λ)−E[hλ(Y,λ)|λ̂]} p−→ 0.

A similar result holds for the definition of β(λ̂) given in Hooper & Yang (1997) (see also Yang,
1999). Thus, it follows that when inference concerns regression parameters that are defined on the

scale determined by the chosen transformation λ̂, the usual inference is asymptotically valid.

3.2 Scaled regression coefficients

Continuing the debate (discussed in Section 3.1) over the parameter of interests following a response
transformation, Chen, Lockhart & Stephens (2002) argue that inference should be carried out on
the scaled regression coefficients. They provide some large sample arguments showing that these
scaled regression coefficients are much more stable with respect to the change in the transformation
scale than the original regression coefficients. Theorem 1 of this paper quickly leads to some similar
results as those given by Chen, Lockhart & Stephens (2002). Suppose now inferences concern the
scaled regression coefficients: ψ = g(λ,β,σ2) = aIβ/σ. We have, gβ = aσ−1, gσ2 = −12aIβσ−3 and
ψ̂(λ) = aIβ̂(λ)/σ̂(λ), which give, v2 ≈ naI(XIX)−1a + 1

2σ2 (a
Iβ)2, and ψ̂λ(λ) = aIβ̂λ(λ)σ̂−1(λ) −

aIβ̂(λ)σ̂λ(λ)σ̂−2(λ), where β̂λ(λ) = (XIX)−1XIhλ(Y,λ) and σ̂λ(λ) =
1

nσ̂(λ)h
I(Y,λ)Mhλ(Y,λ).

With the above expressions, Theorem 1 can be easily implemented for making inference about
aIβ/σ. In particular, the following asymptotic N(0, 1) pivotal quantity can be used,

T1(λ̂,ψ) =

√
n[aI(β̂(λ̂)/σ̂(λ̂))− aI(β/σ)]√

v̂2 + κ̂2τ̂2
,

where v̂2 is v2 given above evaluated at the full MLEs of β and σ2, and κ̂2 = ψ̂λ(λ̂). It is interesting

to further investigate the key quantity in the variance inflation factor, ψ̂λ(λ̂). Simulation results
given in Yang (2002a) show that this variance inflation is small. CIs for ψ can be constructed as
in (7) and (9).

3.3 Marginal effects

In usual linear regressions, β itself represents the marginal effect of X on E(Y ). In the Box-
Cox-type regression model, however, β no longer has such a meaning. A similar measure is the
marginal effect on the median of the response Y . We have, Med[h(Y,λ)] = xIβ, which, following
monotonicity of h in Y , gives h(Med(Y ),λ) = xIβ, and Med(Y ) = h−1(xIβ,λ) ≡ f(xIβ,λ). The f
notation, here, is the same as that used before. The marginal effect of an individual explanatory
variable xj on Y can be generally expressed as follows

ψ = g(λ,β,σ2) = aI∂f(xIβ,λ)/∂x = aIβfη(η,λ),

where η = xIβ, and a is now a vector of elements with 1 in the jth position and zeros otherwise.
This gives ψ̂(λ) = aIβ̂(λ)fη(η̂(λ),λ), ψ̂(λ̂) = aIβ̂(λ̂)fη(η̂(λ̂), λ̂), and ψ̂λ(λ) = aIβ̂λ(λ)fη(η̂(λ),λ) +
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aIβ̂(λ)[fηη(η̂(λ),λ)xIβ̂λ(λ)+fηλ(η̂(λ),λ)], where fηλ(η̂(λ),λ) = ∂2f(η,λ)/∂η∂λ|η=η̂(λ). Now, gβ =
afη(x

Iβ,λ) + aIβfηη(xIβ,λ)x, and gσ2 = 0 as g is free of σ2. We have v2 ≈ nσ2gIβ(XIX)−1gβ .
Thus, with all the expressions given above, Theorem 1 leads to the following asymptotic N(0, 1)

statistic for ψ,

T1(λ̂,ψ) =

√
n[aIβ̂(λ̂)fη(η̂(λ̂), λ̂)− ψ]√

v̂ + κ̂2τ̂2
.

Tests and confidence intervals for ψ can be constructed in a similar way as in the above applications.
The case of known λ is simple and hence is not discussed.

3.4 Percentile function

From Sections 3.1 to 3.3, we have seen some applications of Theorem 1. We now present a case
where Theorem 2 can be applied, from which the importance of the results in Theorem 2 can be
seen, in particular, the alternative procedure. Consider inferences for ψ: the 100pth percentile of a
future observation y0 at x0. As h is a monotonic function, it follows that h(ψ,λ) = x

I
0β+σzp, where

zp is the 100pth percentile of N(0, 1) (note the difference between zp and Zα/2 introduced earlier).
One immediately notices that this case falls into the framework of Theorem 2 with c1 = x0 and c2 =

zp. Thus,
√
n[xI0β̂(λ̂)+σ̂(λ̂)zp−h(ψ, λ̂)] D−→ N(0, v20+κ

2
0τ
2), where v20 ≈ nσ2xI0(XIX)−1x0+ 1

2z
2
pσ

2

and κ0 ≈ xI0β̂λ(λ) + σ̂λ(λ)zp − hλ(ψ,λ). The statistic for inference for ψ becomes,

T1(λ̂,ψ) =

√
n[xI0β̂(λ̂) + σ̂(λ̂)zp − h(ψ, λ̂)]

v̂20 + κ̂20τ̂
2

.

An asymptotic 100(1− α)% CI for ψ is

h−1(L(λ̂), λ̂), h−1(U(λ̂), λ̂) ,

where L(λ̂) and U(λ̂) take on the minus and plus parts of xI0β̂(λ̂)+ σ̂(λ̂)zp±Zα/2{(v̂2+ κ̂2τ̂2)/n}
1
2 ,

respectively. Inferences for the case of λ-known proceed in a similar fashion by dropping the
variance inflation factor and replacing everywhere λ̂ by λ.
We now apply the results of (12) and (13) to provide a possibly improved inference procedure.

Letting a0 = [x
I
0(X

IX)−1x0]1/2, c0 = (na20 +
1
2z
2
p)
1/2, we have when λ is given,

T0(λ,ψ) =

√
n[xI0β̂(λ) + σ̂(λ)zp − h(ψ,λ)]

σ̂(λ)c0
.

It is easy to show that T0(λ,ψ) ∼ a0n
c0
√
n−k tn−k(−zp/a0)+

√
nzp
c0
, where tn−k(δ) denotes a noncentral

t random variable with noncentrality parameter δ and ‘∼’ denotes ‘is distributed as’. Thus, the
finite sample distribution FT of T0(λ,ψ) is completed specified, and the results of (12) and (13)
are applicable. From the first two moments of a noncentral t distribution, we obtain

μT =

√
nzp
c0

1−
√
nΓ[(n− k − 1)/2]√
2Γ[(n− k)/2] , and

σ2T =
n2(a20 + z

2
p)

(n− k − 2)c20
− n

2z2p
2c20

Γ[(n− k − 1)/2]
Γ[(n− k)/2]

2

,

which give the variance factor v̂f0, and the modified statistic T2(λ̂,ψ) = [T0(λ̂,ψ)−μT (1−v̂f0)]/v̂f0.
Thus, the modified 100(1− α)% CI for ψ is

g[λ̂, L0(λ̂)], g[λ̂, U0(λ̂)] , (14)
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with all the necessary quantities specified as follows

L0(λ̂) = xI0β̂(λ̂) + σ̂(λ̂)zp − v̂0√
n
[μT (1− v̂f0) + v̂f0Fα/2T ],

U0(λ̂) = xI0β̂(λ̂) + σ̂(λ̂)zp − v̂0√
n
[μT (1− v̂f0) + v̂f0F 1−α/2T ],

F
1−α/2
T = a0n

c0
√
n−k t

1−α/2
n−k (−zp/a0) +

√
nzp
c0
, and F

α/2
T = a0n

c0
√
n−k t

α/2
n−k(−zp/a0) +

√
nzp
c0
.

We note that the CIs given above are very easy to compute as compared with the other ap-
proaches such as the likelihood ratio and delta method. More interestingly, the CI given by (14)
has a better finite sample performance as shown in the following section. See the discussions in
the introductory section and the end of the next subsection for theoretical reasons why this is so.
When p = 0.5, zp = 0 and the results reduces to those for the median. Yang (2002b) provides
an alternative result for the case which works specifically for the Box-Cox power transformation.
We also note that confidence intervals for percentile curves is an important topic in the context of
medical studies where they are often referred to as reference curves.

3.5 Survivor function

The survivor function for a response Y0 (say) with the corresponding regressor values x0 is the
probability for Y0 to exceed a given value y0. Let z0(λ,β,σ) = [h(y0,λ) − xI0β]/σ. We have the
parameter of interest, i.e., the survivor function,

ψ = g(λ,β,σ2) = 1− Φ[z0(λ,β,σ)],
where Φ denotes the cumulative distribution function of the standard normal random variable. Let
φ be the probability density function corresponding to Φ. We have, gβ =

1
σφ[z0(λ,β,σ)]x0 and

gσ2 =
1
2σ2 z0(λ,β,σ)φ[z0(λ,β,σ)], which gives, v

2 ≈ φ[z0(λ,β,σ)]
2 nxI0(XIX)−1x0 +

1
2z
2
0(λ,β,σ) .

Furthermore, let ẑ0(λ) = z0[λ, β̂(λ), σ̂(λ)], then ψ̂(λ) = 1 − Φ[ẑ0(λ)], which gives ψ̂λ(λ) =
−φ[ẑ0(λ)]ẑ0λ(λ), where ẑ0λ(λ) = 1

σ̂(λ) [hλ(y0,λ)− xI0β̂λ(λ)− ẑ0(λ)σ̂λ(λ)]. Evaluating v2 and ψ̂λ(λ)
at the full MLEs of model parameters leads to an asymptotic N(0, 1) statistic as that given by (6),
which in turn gives a confidence interval as that given by (7).
Alternatively, a simpler and perhaps better method can be obtained by starting with inferences

for Φ−1(1−ψ), where ψ is the survivor function defined above and Φ−1 denotes the inverse of the
Φ function. Theorem 1 leads immediately to the following asymptotic N(0, 1) pivotal quantity

T (λ̂,ψ) =

√
n[ẑ0(λ̂)− Φ−1(1− ψ)]√

v2 + κ2τ2

where v2 = limn→∞[nxI0(XIX)−1x0] +
1
2z
2
0(λ,β,σ), and κ = limn→∞E[ẑ0λ(λ)]. Thus, an asymp-

totic 100(1− α)% CI for ψ is given by

{1− Φ[U(λ̂)], 1− Φ[L(λ̂)]}, (15)

where L(λ̂) = ẑ0(λ̂) − Zα/2 (v̂2 + κ̂2τ̂2)/n, U(λ̂) = ẑ0(λ̂) + Zα/2 (v̂2 + κ̂2τ̂2)/n, v̂2 =

nxI0(X
IX)−1x0 + 1

2 ẑ
2
0(λ̂), and κ̂ = ẑ0λ(λ̂).

Although this result does not exactly follow Theorem 2, it falls into the spirit of discussions
regarding the effect of nonlinearity of the function g. Thus, it is expected that the CI (15) perform
well. This point is confirmed by the simulation results given in the next section. It is well known
that the performance of the large-sample normal-theory method can be improved by considering
a proper transformation. For example, if ψ is a quantity that must be positive (e.g., a quantile

duration or event time), then it is better to assume log ψ̂, rather than ψ̂, follows an asymptotic
normal distribution; if ψ is restricted to be between 0 and 1 (e.g., a survivor function), confidence
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intervals based on log[ψ̂/(1 − ψ̂)] usually perform better than those based on ψ̂. The survivor
function takes values between 0 and 1. The delta method works directly on this function, as does
our first method. Thus, the second method should have a better finite sample performance. See
Hahn & Meeker (1991, p239) for more discussions.
Another important point as illustrated by the case of the percentile function discussed in

Section 3.4 is whether the method is able to take advantage of the exact distribution of the λ-
known statistic. If it does, the finite sample performance of the λ-unknown inference procedures
can be improved.

4. MONTE CARLO SIMULATION

In this section, we report some results of a Monte Carlo experiment to i) show the finite sample
properties of the confidence intervals described in Section 3, ii) compare the confidence intervals
based on our method with those based on the delta method, and iii) investigate the truncation
effects or more generally the robustness of the methods against departures from normality of the
error distribution. The data is generated from the following model

h(Yi,λ) = β0 + β1Xi + εi, i = 1, · · · , n,
where εi are iid with mean zero and variance σ

2, h is either the Box-Cox power transformation or
the dual power transformation, and the Xi values are generated uniformly from the interval [0,5].
The simulation process is as follows. First, we generate a sample of n observations from the

N(0,σ2) or some other non-normal population with mean zero and variance σ2, then convert these
observations into Yi through the above model relationship, then estimate the model and calculate
the confidence interval. Repeating this process 10,000 times, the proportion of the intervals in
10,000 that contain ψ gives a simulated coverage probability of the confidence interval.
One point to observe is that all the transformation functions mentioned in the introduction are

compatible with the exact normality assumption made on εi, except the Box-Cox power transfor-
mation where εi must be bounded from below (left truncated) if λ > 0 or bounded from above
(right truncated) if λ < 0 to guarantee the positivity of Yi. The truncation effect for the Box-Cox
power transformation is negligible when this bound is large which occurs when σ is small, or model
means are large, or λ is small. Nevertheless, this raises an interesting question: what happens
to our methods if truncation is necessary, or more generally εi are not exactly normal. It is well
known that if the errors εi are not normal, but still iid with zero mean, and finite four-plus mo-
ments, the parameter estimates based on the normal likelihood can still be consistent (see White,
1994), giving the so-called quasi-MLEs. Thus, the effect of truncation or non-normality is on the
standard error estimates, and hence on the inferences for the model parameters.
We investigate these issues by generating εi/σ values from (i) the standard normal distribution,

(ii) a (standardized) truncated normal distribution with 10% truncation on the left tail or on the
right tail, or 5% truncation on each side, and (iii) a normal-gamma mixture with 90% of εi/σ from
N(0, 1) and the remaining 10% from a (standardized) gamma distribution with both parameters
equal to one. The following parameter values are chosen: (β0,β1) = (3.5, 1) if λ > 0 and (−3.5,−1)
if λ < 0, λ = (.5, .25, 0,−.25,−.5), σ = (.01, .1, .5), n = (25, 50, 100), and p = (.05, .25, .5, .75, .95).
When the dual power transformation is used, the cases of negative λ are dropped due to symmetry.
For the cases of percentile and survivor functions, the value for x0 is set to (1, 2.5)

I.
Selected simulation results are presented in Figures 1-3, where New1 refers to CI based on our

Method 1, New2 refers to CI based on our Method 2, and Delta refers to CI based on the delta
method. More complete results are available from the authors upon request. In each plot of
each figure, the vertical scale is the simulated coverage probability and the horizontal scale is the
index of parameter configurations which will be explained for each case below. For the effects
of truncation or non-normality in general, we concentrate on the cases of percentile and survivor
functions as these two cases provide the most interesting and important applications of our results.
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CIs for ψ = aIβ, ψ = cIβ/σ, and the marginal effect. To conserve space, we only report
in Figure 1 the results corresponding to the Box-Cox power transformation with normal errors,
where the horizontal index (1− 15) represents the 15 possible combinations of the λ and σ values
arranged by first increasing the λ value for a given σ value, and then increasing the σ value. The
plots in the first row of Figure 1 summarize the coverage probabilities of the CIs for aIβ, based
on the new methods and the delta method. The results show that the method referring to the
standard normal distributions (New1) gives a CI that is comparable with the CI based on the delta
method. However, the new method referring to t distribution (New2) has a better finite sample
performance. The coverage probabilities do not change much with the parameter values (except
when n is small), and quickly converge to their nominal levels when n increases. The plots in the
second row of Figure 1 summarize the coverage probabilities of the CIs for a linear combination
of the scaled regression coefficients, and the plots in the third row of Figure 1 give the coverage
probabilities for the CIs for the marginal effects. The results for the latter two cases show that
our Method 1 gives confidence intervals that possess comparable finite sample properties as those
given by the delta method. However, the new method is easier to implement.
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Figure 1: Coverage Probabilities of 95% CIs for Regression Coefficients, Scaled Regression Coeffi-
cients, and Marginal Effects, under Normal Errors

CI for percentile function. The CIs developed in Section 3.4 provide the most interesting
applications of Theorem 2. However, it is not yet clear whether the reality conforms with the
theoretical prediction. The Monte Carlo simulation results given in Figure 2 ((a)-(e)) for Box-Cox
power transformation and Figure 3 ((a)-(d)) for dual power transformation confirm the theoretical
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prediction. In Figure 2, the horizontal index (1− 75) represents the 75 combinations of the values
for λ, σ, and p (the probability value corresponding to the percentile considered), arranged with λ
increasing first, followed by σ, and then by p, whereas in Figure 3 it reduces to 1− 45 as the two
negative values for λ are dropped.
In the case of normal errors, the results show that our Method 2 based on Theorem 2 has led

to a CI with much better small sample performance than the CIs based on Method 1 and the delta
method. This is especially true when p is either small or large (two ends of the plots). In these
cases, the difference in coverage probabilities of the CIs can be substantial when n is not large,
with those from Method 2 much closer to their nominal level 0.95. In all situations, the coverage
probability converges to its nominal level when sample size increases. In the case of truncated
normal errors, the results (not fully reported for brevity) show that left truncation results in a
higher coverage for a low percentile and a lower coverage for a high percentile. Right truncation
results in the opposite patterns, and a symmetric truncation does not affect the coverage probability
much. Very interestingly, in all cases increasing sample size seems to improve the coverage. In the
case of a normal-gamma mixture, the results (not fully reported for brevity) show that the effects
of non-normality is more severe for the delta method and our Method 1 than for our Method 2.
The effect is very small for our Method 2 except for the upper extreme percentiles. In general,
the results show that our method is quite robust against mild departures from normality of error
distributions.
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(i) n=100, 10% right truncated normal

Figure 2: Coverage Probabilities of 95% CIs for Percentile Function ((a)-(e)), and Survivor Function
((f)-(i)), under Box-Cox Power Transformation
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CI for survivor function. Simulation results presented in Figure 2 ((f)-(i)) and Figure
3(((e)-(i))) clearly demonstrate the point discussed in Section 3: the nonlinearity of the function g
can have a large effect on the finite sample performance of the confidence intervals when applying
the delta or equivalent methods. The results show that, when errors are normal, the finite sample
performance of the CI (15) is much better than the other two CIs with all the coverage probabilities
very close to 0.95, even when n is as small as 25. In contrast, the coverage probabilities of the other
two CIs can be as low as 0.7238, and as n gets large they converge very slowly to 0.95, especially
when p is small or large. It is well known that an accurate estimation of the tail probabilities is
very important in the fields of reliability, medical research, actuarial science, insurance, etc. Thus,
the CI (15) given in Section 3.5 should be recommended for the applications in these fields.
In the cases of truncated normal and normal-gamma mixture errors, similar patterns as for

the percentile function are observed for the survivor function, except that the contrast between
our Method 2 and the other two methods are much sharper for the case of the survivor function.
Method 2 leads to CIs for the survivor function with reasonable finite sample performance in almost
all situations studied, except when extreme tail probabilities are involved.
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(i) n=50, 10% normal-gamma mixture

Figure 3: Coverage Probabilities of 95% CIs for Percentile Function ((a)-(d)), and Survivor Func-
tion ((e)-(i)), under Dual Power Transformation

In general, λ affects the coverage probability, but in a much smaller magnitude compared to
the effects of p. The value of σ does not have much effect on the coverage probability. Finally, we
have also recorded the average lengths of the CIs in the above simulations. As expected, the CIs
based on our Method 2 are slightly longer than the CIs based on the other two methods.
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5. AN EXAMPLE

The salary survey data of Chatterjee and Hadi (2006, p122), reproduced here in Table 1 for conve-
nience, is used to illustrate our methods, in particular the CIs for percentile and survivor functions.
The response variable is Salary and the predictors are years of experience (Exp), education (Edu)
(1=high school diploma, 2=bachelor degree, 3=advanced degree), and management responsibility
(Man) taking value 1 if a person bears management responsibility and 0 otherwise. The MLEs of the
transformation parameter from the two transformations are, respectively, 0.183606 (Box-Cox) and
0.190988. The MLEs of the intercept, the coefficient of Exp, and the coefficients of three dummy
variables (high school diploma, bachelor degree and Man) are (24.8645, 0.1913, -0.9647, 0.0367,
2.3575) from the Box-Cox power transformation, and (15.1719, 0.1053, -0.5308, 0.0202, 1.2974)
from the dual power transformation. The MLEs of the error standard deviation are 0.3052 and
0.1679, respectively, from the Box-Cox power transformation and the dual power transformation.

Table 1: Salary Survey Data

Row Salary Exp Edu Man Row Salary Exp Edu Man

1 13876 1 1 1 24 22884 6 2 1
2 11608 1 3 0 25 16978 7 1 1
3 18701 1 3 1 26 14803 8 2 0
4 11283 1 2 0 27 17404 8 1 1
5 11767 1 3 0 28 22184 8 3 1
6 20872 2 2 1 29 13548 8 1 0
7 11772 2 2 0 30 14467 10 1 0
8 10535 2 1 0 31 15942 10 2 0
9 12195 2 3 0 32 23174 10 3 1
10 12313 3 2 0 33 23780 10 2 1
11 14975 3 1 1 34 25410 11 2 1
12 21371 3 2 1 35 14861 11 1 0
13 19800 3 3 1 36 16882 12 2 0
14 11417 4 1 0 37 24170 12 3 1
15 20263 4 3 1 38 15990 13 1 0
16 13231 4 3 0 39 26330 13 2 1
17 12884 4 2 0 40 17949 14 2 0
18 13245 5 2 0 41 25685 15 3 1
19 13677 5 3 0 42 27837 16 2 1
20 15965 5 1 1 43 18838 16 2 0
21 12336 6 1 0 44 17483 16 1 0
22 21352 6 3 1 45 19207 17 2 0
23 13839 6 2 0 46 19346 20 1 0

Table 2 summarizes the CIs for percentile functions with p = 0.05, 0.25, 0.5, 0.75 and 0.95,
and the CIs for survivor functions at y0 chosen such that the values for the survivor function are
estimated to be 0.95, 0.75, 0.5, 0.25, and 0.05, respectively. We choose xI0 = (1, 10, 0, 0, 1), i.e.
Exp=10, Edu = 3, and Man=1. The results show that the CIs based on Method 1 and the delta
method are very similar. The CIs based on Method 2 are longest. These results are consistent
with the Monte Carlo results — CIs based on Method 1 and the delta method often undercover the
true quantity and as a result they are shorter. The results also show that the two transformations
produce very similar sets of confidence intervals. Furthermore, a drawback of Method 1 and the
delta method is clearly reflected in the CIs for the survivor function: the CIs based on these two
methods can have an upper bound larger than 1 when y0 is small, and a negative lower bound
when y0 is large. These problems do not occur with the corresponding CIs based on Method 2.
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Table 2: CIs for percentile and survivor functions based on salary survey data

p or y0 New Method 1 New Method 2 Delta Method

Percentile Function, Box-Cox Power Transformation
0.05 20981 22540 20705 22417 20970 22529
0.25 22081 23535 21929 23516 22072 23526
0.50 22819 24304 22755 24372 22810 24295
0.75 23524 25149 23548 25317 23513 25138
0.95 24484 26499 24634 26834 24468 26482

Percentile Function, Dual Power Transformation
0.05 20981 22541 20705 22417 20969 22529
0.25 22081 23536 21929 23517 22072 23526
0.50 22819 24305 22755 24373 22810 24296
0.75 23525 25151 23549 25318 23514 25139
0.95 24486 26500 24636 26836 24469 26484

Survivor Function, Box-Cox Power Transformation
21749 0.8742 1.0258 0.8186 0.9913 0.8742 1.0258
22799 0.5402 0.9595 0.5058 0.9088 0.5402 0.9595
23552 0.2383 0.7617 0.2559 0.7441 0.2383 0.7617
24325 0.0280 0.4723 0.0849 0.5099 0.0280 0.4723
25475 -0.0361 0.1360 0.0066 0.2088 -0.0361 0.1360

Survivor Function, Dual Power Transformation
21749 0.8742 1.0258 0.8186 0.9913 0.8742 1.0258
22799 0.5402 0.9595 0.5058 0.9088 0.5402 0.9595
23553 0.2383 0.7617 0.2559 0.7441 0.2383 0.7617
24326 0.0280 0.4723 0.0849 0.5099 0.0280 0.4723
25477 -0.0360 0.1360 0.0066 0.2087 -0.0360 0.1360

6. CONCLUSIONS

We have provided general theories for conducting inferences, in a simple way, for the Box-Cox-type
transformation model. More importantly, in the situations where the distribution of the λ-known
statistic is completely known, we have introduced alternative procedures that lead to inference
methods with better finite sample performance. Another important point as illustrated by the
result (15) is that when the parametric function of interest is of limited range, a proper trans-
formation of it may lead to a much better inference. Robustness of the methods are investigated
by Monte Carlo simulation and the results show that our methods are quite robust against mild
departures from normality of error distributions. No doubt, simplicity, good finite sample
performance, and robustness are three important criteria for the applicability of a statistical
inferential procedure. Our general results shed light in this direction and they may be extendable
to the more complicated Box-Cox type of models.

APPENDIX

The detailed proofs of the theorems require the following set up and calculations. Let θI =
(λ,βI,σ2). Denote the partial derivatives of h(Yi,λ) with respect to Yi and λ by adding rele-
vant subscripts on h, i.e. hyλ(Yi,λ) = ∂2h(Yi,λ)/∂Yi∂λ. The score function U(θ) = ∂f(θ)/∂θ,
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partitioned according to λ, β, and σ2, has elements,

U1(θ) = − 1
σ2
[h(Y,λ)−Xβ]Ihλ(Y,λ) +

n

i=1

hyλ(Yi,λ)

hy(Yi,λ)
,

U2(θ) =
1

σ2
XI[h(Y,λ)−Xβ],

U3(θ) = − n

2σ2
+

1

2σ4
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ].

The Hessian matrix H = ∂f2(θ)/∂θ∂θI has elements according to λ, β and σ2,

H11 = − 1
σ2
{[h(Y,λ)−Xβ]Ihλλ(Y,λ) + hλ(Y,λ)Ihλ(Y,λ)}

+
n

i=1

hyλλ(Yi,λ)hy(Yi,λ)− h2yλ(Yi,λ)
h2y(Yi,λ)

,

H22 = − 1
σ2
XIX,

H33 =
n

2σ4
− 1

σ6
[h(Y,λ)−Xβ]I[h(Y,λ)−Xβ],

H12 =
1

σ2
hλ(Y,λ)

IX,

H13 =
1

σ4
[h(Y,λ)−Xβ]Ihλ(Y,λ),

H23 = − 1
σ4
XI[h(Y,λ)−Xβ].

The expected information matrix (−E[H(θ)]), denoted by I(θ) and partitioned as Iij , i, j = 1, 2, 3,
does not have explicit expressions for the elements involving subscript 1. For the other elements,
we have I22 = σ−2XIX, I33 = n

2σ4 , and I23 = 0. These expressions do not depend on which trans-
formation function h the model employs. All the partial derivatives used in the theorems involving
the Box-Cox power transformation, the dual power transformation, and the other transformations
have analytical expressions and can all be derived easily.

Proof of Theorem 1. First, under regularity conditions for the ML estimation, we have

√
n

β̂(λ)− β
σ̂2(λ)− σ2

D−→ N 0,
nσ2(XIX)−1, 0
0, 2σ4

.

This leads immediately to
√
n[ψ̂(λ) − ψ]

D−→ N(0, v2). Next, the condition ii) and the first-order
Taylor series expansion give

√
n[ψ̂(λ̂)− ψ] =

√
n[ψ̂(λ)− ψ] + ψ̂λ(λ)

√
n(λ̂− λ) + op(1)

=
√
n[ψ̂(λ)− ψ] + κ

√
n(λ̂− λ) + op(1).

Thus, the second result of the theorem follows by showing that the asymptotic covariance of√
n(ψ̂(λ) − ψ) and

√
n(λ̂ − λ) is zero, which can be done by i) expressing ψ̂ linearly in β̂(λ) and

σ̂(λ); ii) expressing β̂(λ) and σ̂(λ) asymptotically in terms of U2, U3 and Iij, i, j = 2, 3; and iii)

expressing λ̂ in terms of all elements of the score vector and the information matrix. Details of
these calculations are tedious but available from the authors upon request.
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Proof of Theorem 2. The first part is obvious. For the second part, condition iv) and a Taylor
series expansion leads to

√
n[cIξ̂(λ̂)− f(λ̂,ψ)] =

√
n[cIξ̂(λ)− f(λ,ψ)] + [cIξ̂λ(λ)− fλ(λ,ψ)]

√
n(λ̂− λ) + op(1)

=
√
n[cIξ̂(λ)− f(λ,ψ)] + κ

√
n(λ̂− λ) + op(1).

The second result of the theorem follows from similar calculations as in the proof of Theorem 1,
considering the fact that cIξ̂(λ) is a special case of ψ̂(λ).

The Delta Method. The delta method is simply a consequence of the following well-known result
of ML estimation: if the MLE θ̂ is asymptotically normal with mean θ and variance-covariance
matrix I−1(θ), then a smooth function of θ̂, g(θ̂) say, is the MLE of g(θ) and is asymptotically
normal with mean g(θ) and variance gIθ(θ)I

−1(θ)gθ(θ). The variance can be consistently estimated
by gIθ(θ̂)J

−1(θ̂)gθ(θ̂), where J = −H is the observed information matrix. Based on this result, one
quickly obtains the statistic for making inference about ψ

T (λ̂,ψ) =
ψ̂(λ̂)− ψ

gIθ(θ̂)J−1(θ̂)gθ(θ̂)

with an asymptotic 100(1− α)% CI for ψ as

ψ̂(λ̂)± Zα/2 gIθ(θ̂)J−1(θ̂)gθ(θ̂).
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