
www.elsevier.com/locate/econbase

Economics Letters 84 (2004) 391–398
Tests of transformation in nonlinear regression

Zhenlin Yanga,*, Gamai Chenb

aSchool of Economics and Social Sciences, Singapore Management University, Federal Building,

469 Bukit Timah Rd, Singapore 259756, Singapore
bDepartment of Mathematics and Statistics, University of Calgary, Canada T2N 1N4

Received 13 June 2003; received in revised form 4 January 2004; accepted 9 March 2004
Available online 8 June 2004

Abstract

This paper presents three versions of the Lagrange multiplier (LM) tests of transformation in nonlinear

regression: (i) LM test based on expected information, (ii) LM test based on Hessian, and (iii) the LM test based on

gradient. All three tests can be easily implemented through a nonlinear least squares procedure. Simulation results

show that, in terms of finite sample performance, the LM test based on expected information is the best, followed

by the LM test based on Hessian and then the LM test based on gradient. The LM test based on gradient can

perform rather poorly. An example is given for illustration.
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1. Introduction

In many econometric applications, a theoretical relationship between the endogenous and exogenous

variables exists, but the form in which the error enters the model is not clear. In testing the form of error

specification in nonlinear regression, Leech (1975) incorporated the Box–Cox transformation (Box and

Cox, 1964): h( y,k)=( yk� 1)/k if k p 0; log y if k= 0, to both the response and the systematic part of the

model to give a transformed nonlinear model:

hðyi; kÞ ¼ h½ f ðxi;bÞ; k� þ rei; i ¼ 1; . . . ; n ð1Þ

where f is a known nonlinear function characterizing the economic relationship between the endogenous
0165-1765/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.econlet.2004.03.010

* Corresponding author. Tel.: +65-6822-0852; fax: +65-6822-0833.

E-mail address: zlyang@smu.edu.sg (Z. Yang).



Z. Yang, G. Chen / Economics Letters 84 (2004) 391–398392
variable yi and the exogenous variables xi (m� 1), b is a p� 1 model parameter vector, r is the error

standard deviation and rei are the independent N(0,r2) errors.1

Model (1) includes the model with additive normal errors (k= 1) and the model with multiplicative

lognormal errors (k= 0) as special cases. In identifying the plausible transformations, Leech used the

likelihood ratio test. The likelihood ratio test requires calculations of both restricted and unrestricted

maximum likelihood estimates (MLE). A closely related test, the Wald test, also needs the unrestricted

MLEs. Clearly, for the type of models defined in Eq. (1), calculation of unrestricted MLEs can be

difficult and inconvenient. However, when k is given, model (1) reduces to a regular nonlinear model

and standard software can be used. This motivates us to consider the Lagrange multiplier (LM) test.

This paper presents three versions of the LM test, namely, the LM test based on expected information,

the LM test based on Hessian, and the LM test based on gradient. Finite sample properties of these three

tests are investigated and compared through extensive Monte Carlo simulation. The results show that the

LM test based on the expected information performs the best in the sense that it has the empirical size the

closest to the nominal level, and hence is recommended. Section 2 presents the three LM tests. Section 3

presents Monte Carlo results. Section 4 presents an example, and Section 5 concludes.
2. Lagrange multiplier tests

Denote the original data by { yi, xi, i = 1, 2, . . ., n}, and let w=(k,bT,r)T. The log likelihood ‘(w) is
proportional to

�nlogðrÞ � 1

2r2

Xn
i¼1

½hðyi; kÞ � hðf ðxi; bÞ; kÞ�2 þ ðk � 1Þ
Xn
i¼1

log yi: ð2Þ

Maximizing ‘(w) gives the MLE ŵand maximizing ‘(w) under certain constraints on w gives the restricted

MLE ŵ0. Let S(w),G(w),H(w), and I(w) be, respectively, the score vector, gradient matrix, Hessian matrix

and expected information matrix. The three versions of the LM test for testing H0: k = k0 are defined as

LME ¼ S2kðŵ0ÞIkkðŵ0Þ; ð3Þ

LMH ¼ �S2kðŵ0ÞHkkðŵ0Þ; ð4Þ

LMG ¼ S2kðŵ0ÞDkkðŵ0Þ; ð5Þ

where ŵ 0=(k0,b̂ 0
T,r̂ 0)

T, Sk(ŵ 0) is the first element of S(ŵ 0), and Ikk(ŵ 0), H
kk(ŵ 0) and Dkk(ŵ 0) are,

respectively, the first diagonal element of I� 1(ŵ0), H
� 1(ŵ0) and [GT(ŵ0)G(ŵ0)]

� 1. All these tests are

referred to the chi-squared distribution with 1 degree of freedom.2
1 The model is called the transform-both-side model in the statistical literature. Its theoretical properties can be found in

Carroll and Ruppert (1988). Most of the econometric literature on Box–Cox regressions has concerned models in which the

endogenous variable and some of the exogenous variables are each subject to a Box–Cox transformation. A test of

transformation for this model is given in Yang and Abeysinghe (2003).
2 Godfrey (1988, p. 15) pointed out that the LM test can be sensitive to the way in which the expected information is

estimated. Davidson and MacKinnon (1983) and Bera and MacKenzie (1986) argued that the estimated information matrix

should be as non-stochastic as possible and preferably depends on the data only through the parameter estimators. See Davidson

and MacKinnon (1993) for other versions of LM test.
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We now present expressions for the various quantities needed for implementing the three LM tests,

among which the expression for Ikk(w) is the most difficult one to derive. It requires certain

approximations in order to obtain explicit expressions for the information matrix. Appendix A gives

the detail. Let fi = f(xi,b), fbi =Bf(xi,b)/Bb, and hk and hkk be the first- and second-order partial derivatives of

of h with respect to k. We have,

SkðŵÞ0 ¼
Xn
i¼1

log yi �
n
Xn
i¼1

riðk0; b̂0Þsiðk0; b̂0Þ

Xn
i¼1

r2i ðk0; b̂0Þ
ð6Þ

where ri(k,b) = h( yi,k)� h( fi,k), si(k,b) = hk( yi,k)� hk( fi,k). Using the explicit expressions for the

expected information sub-matrices given in Appendix A, we obtain, after some algebra,

IkkðwÞ ¼ 2D1 �
r2

4
D2 þ

7

4
nr2

� ��1

; k ¼ 0; ð7Þ

c 2D1 �
r2

4
D2 þ

2

k2
D3 �

4

k
D4 þ

7

4k2
nh2

� ��1

; kp0; ð8Þ

where /i = logfi, /̄=(S/i)/n, hi = kr/[1 + kh( fi,k)] = krfi
� k, D1 =S(/i� /̄)2, D2=[S(1 + hi

2)fi
� 1fbi

T]

[Sfi
2(k � 1)fbifbi

T]� 1 [S(1 + hi
2)fi

� 1fbi], which reduces to (Sfi
� 1fbi

T)(S fi
� 2fbifbi

T)� 1(Sfi
� 1fbi) when k ¼ 0;

D3 ¼
P

ðh2i � h2Þ2 with h2 ¼ ð
P

h2i Þ=n; and D4 ¼
P

ðh2i � h2Þð/i � /̄Þ.
Direct calculation of the Hessian is complicated. Following an approximation procedure suggested by

Carroll and Ruppert (1988, p. 129), we have

HkkðwÞ ¼ B
2‘pðkÞ
Bk2

� ��1

c
‘pðk þ eÞ þ ‘pðk � eÞ � 2‘pðkÞ

e2

� ��1

; ð9Þ

where ‘p(k) is the profile likelihood of k, and e is a small number usually taken to be 0.013. Finally, the

G(w) matrix has the expression,

GðwÞ ¼ logy � 1
r ðk; bÞs ðk; bÞ; 1 r ðk;bÞf k�1f T ;

1
r2ðk; bÞ � 1

� �
: ð10Þ
i r2 i i r2 i i bi r3 i r n�ðpþ2Þ
3. A performance study

In this section, we carry out some Monte Carlo experiments to investigate the finite sample properties

of the three LM tests. We focus on the sizes, the null distributions, and the powers of the tests. The

following model is used to generate simulation data:

hðyi; kÞ ¼ hðb1 þ b2xi; kÞ þ rei; i ¼ 1; 2;: : :; n;
3 This estimate is easy to calculate. However, there is a major drawback of this method: positivity of the estimate is not

guaranteed, especially when the null value k0 is far from k̂, the MLE of k (Lawrance, 1987).



Z. Yang, G. Chen / Economics Letters 84 (2004) 391–398394
where the log xi values are chosen uniformly from (0,6). The simulation process is as below. For a given

parameter configuration {b1,b2,k,r}, generate data { yi, i = 1, . . ., n} from

yi ¼ f1þ k½hðb1 þ b2xi; kÞ þ rei�g1=k ¼ ½ðb1 þ b2xiÞk þ krei�1=k;

if k p 0, and from yi=(b1 + b2 xi)exp(rei) if k = 0, where {ei, i = 1, . . ., n} is a simple random sample

from the standard normal population. Under a given H0: k= k0, run a nonlinear least square with h( yi,k0)
Table 1

Empirical size (%) for the tests of transformation

n r k a = 10% a = 5%

LME LMH LMG LME LMH LMG

25 0.01 � 0.50 9.73 14.26 25.19 4.89 8.08 16.73

0.01 � 0.25 9.47 13.66 25.61 4.85 8.36 16.46

0.01 � 0.10 9.73 14.29 25.59 4.66 8.44 16.86

0.01 0.00 9.82 14.60 26.57 4.73 8.80 17.63

0.01 0.10 9.32 13.99 25.62 4.38 8.60 17.29

0.01 0.25 9.44 14.61 26.94 4.57 8.77 17.89

0.01 0.50 9.06 14.20 26.66 4.11 8.54 17.77

0.10 � 0.25 9.10 13.34 25.03 4.54 7.60 16.13

0.10 0.00 9.24 14.11 25.86 4.24 8.36 16.92

0.10 0.25 9.27 13.93 26.52 4.25 8.45 17.42

0.30 0.00 9.25 13.97 25.85 4.59 8.36 17.13

0.30 0.25 9.39 14.60 27.15 4.14 8.61 18.10

50 0.01 � 0.50 10.13 12.05 18.69 5.30 6.59 12.07

0.01 � 0.25 10.41 12.07 19.49 4.79 6.64 12.02

0.01 � 0.10 9.98 12.34 19.51 4.73 6.68 12.45

0.01 0.00 10.07 12.08 19.88 4.84 6.67 12.49

0.01 0.10 9.89 12.24 19.82 4.49 6.47 12.33

0.01 0.25 9.56 12.12 19.85 4.79 6.86 12.80

0.01 0.50 9.41 11.66 19.28 4.76 6.63 12.36

0.10 � 0.25 9.61 11.81 19.52 4.82 6.31 12.04

0.10 0.000 9.80 11.89 19.34 4.85 6.43 12.18

0.10 0.25 9.99 12.35 20.58 4.64 6.89 12.79

0.30 0.00 9.47 11.82 19.75 4.80 6.36 12.13

0.30 0.25 9.78 12.02 19.92 4.57 6.70 12.51

100 0.01 � 0.50 10.02 10.96 14.81 4.97 5.65 8.54

0.01 � 0.25 10.14 11.06 15.05 5.18 5.90 8.73

0.01 � 0.10 10.08 10.86 15.55 4.91 5.67 8.85

0.01 0.00 9.87 11.14 14.96 4.97 5.83 9.05

0.01 0.10 10.08 11.26 16.07 4.92 5.83 9.60

0.01 0.25 9.97 11.29 15.72 4.74 5.76 9.38

0.01 0.50 9.41 10.91 15.31 5.06 5.74 9.31

0.10 � 0.25 9.80 10.79 15.23 4.98 5.72 8.99

0.10 0.00 9.99 10.93 14.96 4.83 5.84 9.07

0.10 0.25 10.08 11.22 15.45 5.22 5.95 9.38

0.30 0.00 9.95 11.06 15.89 5.00 5.86 9.18

0.30 0.25 9.80 10.74 15.33 4.78 5.74 9.02
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as the response and h(b1 + b2xi,k0) as the model to get the restricted MLE’s b̂10, b̂20, and r̂0. Then,
calculate LME, LMH and LMG. Repeat this process 10,000 times to obtain the sizes, the simulated null

distributions, and the powers of the tests. Several combinations of the values of r and k are considered,

and three different sample sizes are used. The values of b1 and b2 are fixed at 8.0 and 2.0. For brevity, we

only report a part of the simulation results.

3.1. The sizes of the tests

First, we check the sizes of the three LM tests given in Eqs. (3)–(5). A part of simulation

results are summarized in Table 1. The size of the LME test is always much closer to the nominal

level than the other two tests. The LMH test performs reasonably when n is not small, whereas the

LMG test performs rather poorly; its size is usually a few times higher than the nominal

level.

3.2. The null distributions of the tests

We compare the means, the standard deviations and the quantiles Q0.5, Q0.90, Q0.95 and Q0.99 of

the simulated distributions for LME, LMH and LMG with those of v1
2, the chi-squared distribution

with 1 degree of freedom. Table 2 contains some representative results. It is seen from Table 2

that the null distribution of the LME test is much closer to that of v1
2 than the other two tests. The

null distribution of the LMG test can be far from that of v1
2 even when sample size is as large as

100.

3.3. The powers of the tests

To make a fair comparison, the powers of the tests are simulated using the simulated percentage points

given in Table 2 to set up the tests, i.e., the tests are adjusted to have the same size. The data are

generated from the model with w=(0, 8, 2, 0.01), and the tests of H0: k= k0, for k0 =� 0.5, to 0.5 with an

increment of 0.1, are simulated. Our results (not reported for brevity) show that the three size-adjusted

tests have comparable powers in general.
Table 2

Summary of simulated null distributions: w=(0, 8, 2, 0.01)

n Test Mean S.D. Q0.50 Q0.90 Q0.95 Q0.99

Nominal 1.0000 1.4142 0.4549 2.7055 3.8415 6.6349

25 LME 0.9719 1.3596 0.4450 2.6478 3.6111 6.4024

LMH 1.3075 2.0428 0.5398 3.4976 5.3514 9.7045

LMG 1.9395 2.3676 1.0026 5.3222 6.9796 10.1678

50 LME 0.9899 1.4027 0.4536 2.6380 3.7636 6.6621

LMH 1.1402 1.7394 0.4979 2.9791 4.4483 8.3776

LMG 1.5955 2.2184 0.7303 4.3522 6.2300 10.4329

100 LME 0.9948 1.4033 0.4473 2.6968 3.8604 6.5122

LMH 1.0620 1.5399 0.4668 2.8744 4.2222 7.2959

LMG 1.3335 1.9415 0.5746 3.6500 5.2565 9.3912
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4. An example

In formulating the functional form of a production function, one often assumes the constant return

to scale and the constant elasticity of substitution (CES). Weitzman (1970) proposed a production

function based on these two assumptions and incorporated Hicks neutral technical change over time to

give

f ð�Þ ¼ celt½dK�q
t þ ð1� dÞL�q

t ��1=q; ð11Þ

where Kt is the aggregate capital and Lt the aggregate labor at time t. Weitzman fitted this model

assuming a multiplicative and serially independent error term. Leech (1975) relaxed the specification

of Eq. (11) to a general Box–Cox form and used the likelihood ratio (LR) test to test whether the

error is indeed multiplicative lognormal or additive normal. We now apply the LM tests to the same

data set. The results are summarized in Table 3.

From Table 3, we see that at 5% level, all the tests except the LME test reject k0 = 0.5. All the tests

reject k0 =� 1.0, the reciprocal transformation, and all do not reject k0 =� 0.5. The LR and LME tests do

not reject the logarithmic transformation, but the LMH and LMG tests do. The huge values of LMH at

k0 = 0.5 and � 1.5 are clear indications for the failure of the LMH test, resulted from the fact that the null

value is too far from the MLE. Therefore, the final decision would be that transformation with k0 =� 0.5

gives an appropriate functional form.
5. Discussions

Three versions of the Lagrange multiplier tests have been developed for the purpose of testing a

transformation in nonlinear regression. These tests are all very easy to implement: standard nonlinear

least squares plus some simple arithmetic calculations. Monte Carlo simulation shows that for finite

samples, the LM test based on expected information is the most reliable one. The LM test using Hessian

can fail when the null value is too far from the MLE, and the distribution of the LM test based on

gradient tends to be too far away from the limiting v1
2 distribution, rendering it the least useful test. The

three tests are implemented using SAS/NLIN and SAS/IML procedures. A Fortran code is also available

from the authors.
Table 3

LM tests for Leech’s example

k0 LR LME LMH LMG

0.5 9.1074 3.4195 857.2100 8.7726

0.0 2.9040 2.2146 4.5315 7.7870

� 0.5 0.0082 0.0103 0.0081 0.0254

� 1.0 4.5798 5.8256 5.2785 12.4024

� 1.5 15.2220 12.9249 39.9593 14.5788

n = 20, k̂ =� 0.4773, ‘(ŵ)~� 10.9621.
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Appendix A. The expected information

The components of the expected Fisher information matrix are:

Ikk ¼
1

r2

Xn
i¼1

E½s2i ðk;bÞ� þ
1

r

Xn
i¼1

E½eihkkðyi; kÞ�;

Ibk ¼ � 1

r2

Xn
i¼1

fE½siðk; bÞ�f k�1
i fbig;

Ibb ¼ 1

r2

Xn
i¼1

½f 2ðk�1Þ
i fbif

T
bi �;

Ibr ¼ 0; ITrb ¼ 0; Irk ¼ � 2

r2

Xn
i¼1

E½eihkðyi; kÞ�; Irr ¼ 2n

r2
:

Clearly, explicit expressions for the expected information are obtainable only when hk and hkk can be

expressed explicitly in terms of the error elements eis. We have

hkðy; kÞ ¼
1

k
½1þ khðy; kÞ�log y� 1

k
hðy; kÞ;

and

hkkðy; kÞ ¼ hkðy; kÞ log y� 1

k

� �
� 1

k2
½log y� hðy; kÞ�;

which converge, as k! 0, to (1/2)(log y)2 and (1/3)(log y)3, respectively. Thus, the problem reduces to

expressing log yi explicitly in terms of eis. When k= 0, log yi = log fi+re, and some simple algebra leads

immediately to

Ikk ¼
7

4
nr2 þ 2

Xn
i¼1

/2
i ; Ibk ¼ � 1

2

Xn
i¼1

f �1
i fbi; Irk ¼ � 2

r

Xn
i¼1

/i;

where /i = log fi. When k p 0, log yi=(1/k)log[1 + k(h( fi,k) + rei)], which is a nonlinear function of ei.

Thus, an approximation is necessary. Let hi = kr/[1 + kh( fi,k)] = krfi
� k. A Taylor series expansion gives

log yi ¼ /i þ
1

k
hiei �

1

2
ðhieiÞ2 þ : : : þ 1

k!
ð�1Þk�1ðhieiÞk þ : : :

� �
:

Since yis are nonnegative, it has to be that P( fi
k+ krei < 0) be negligible, which is equivalent to hi

b1. Hence, it is sufficient to keep the terms in the above expansion up to the third-order. Some tedious

but straightforward algebra leads to

Ikkc
Xn 7

4k2
h2i �

4

k
h2i /i þ 2/2

i

� �
; Ibkc� 1

2

Xn
ð1þ hiÞ

fbi

fi
; Irkc

2

kr

Xn
ðh2i � k/iÞ:
i¼1 i¼1 i¼1
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