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Abstract

Although the Box-Cox transformation provides a flexible functional form for regression models,

its applicability is often hampered by the difficulty of choosing an appropriate value for the Box-Cox

parameter. This paper presents an explicit variance formula for the Box-Cox estimator of the

functional form, from which the analytical behavior of the estimator and its precision can be

assessed.
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1 Introduction

Economic variables typically have skewed distributions with heteroscedastic errors

and require instantaneous transformations before they are used in linear regression models.

Applied econometricians are so attuned to the logarithamic transformation that they hardly

bother to look for other possible transformations. Obviously one could make a strong case

for the log transformation on the ground that it is simple, it provides constant elasticities

and log first differences approximate growth rates. It is often the case, however, that

regressions based on two cross sections of data, ten or twenty years apart, provide different

elasticity estimates, which indicates that a functional form that allows for changing

elasticity over time is more plausible than a constant elasticity formulation. The Box-Cox

transformation provides non-constant elasticities over time when the Box-Cox parameter

(λ) is not zero. Furthermore, recent publications by Franses and McAleer (1997) and

Franses and Koop (1998) on unit roots under general transformations is likely to heighten

the interest again in the Box-Cox family of transformations (Box and Cox, 1964).

The Box-Cox transformation provides a flexible functional form given by

h(Yt) = β0 + β1Xt1(λ1) + · · ·+ βkXtk(λk) + εt, t = 1, · · · , T. (1)

where X(λ) is defined by the power transformation

X(λ) =

⎧⎪⎨
⎪⎩

(Xλ − 1)/λ, λ �= 0,

logX, λ = 0,
(2)

and h(Y ) is a general transformation that renders normal or near normal responses.1 An

important special case of model (1) is that all transformations are the same:

Yt(λ) = β0 + β1Xt1(λ) + · · ·+ βkXtk(λ) + εt, t = 1, · · · , T, (3)

with the standard linear form given by (λ = 1) and the log-linear form by (λ = 0). The

general form given in (1) is often considered too cumbersome than necessary (Green, 2000,
1Zarembka (1968) seems to be the first one to apply this transformation in an econometric model. In

Zarembka’s model for money demand, both endogenous (response) and exogenous variables are transformed,

whereas in the original Box-Cox model only the response is transformed. For some review articles and for

more references see, Collins (1991), Sakia (1992), Kim and Hill (1995), and Kemp (1996).
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Section 10.5). Our study concentrates only on model (3) where some exogenous variables

such as time trend and dummies may enter the model untransformed.

Despite the long history of the Box-Cox transformation, having to use an estimated

value for λ remains an unattractive feature of the procedure for many econometricians.

This is because, at least partially, the analytical behavior of the transformation estimator

remains unclear. As a result it is not clear with what precision a given data set can be

transformed. For example, it is certainly more reliable to use a transformation estimate of

0.25 with a standard error of 0.01 than an estimate of 0.25 with a standard error of 0.2.

The objective of this study is to provide an explicit expression for the variance of the

transformation estimator so that the properties of this estomator can be examined and its

precision can easily be assessed for a given data set. Moreover, the expression allows the

easy construction of tests and confidence intervals for λ. The accuracy of the explicit

expression is assessed through a Monte Carlo simulation. The final section provides an

illustrative example by modeling demand for Singapore’s exports.

2 Variance of the Transformation Estimator

Assume that there exists some λ value such that the error process of model (3) is iid

N (0, σ2). Then, the log likelihood function is:

�(β, σ2, λ) ∝ −T

2
log(σ2) − 1

2σ2

T∑
t=1

⎧⎨
⎩Yt(λ)−

k∑
j=0

βjXtj(λ)

⎫⎬
⎭

2

+
T∑
t=1

logJt(λ) (4)

where Xt0(λ) = 1, and Jt(λ) = |∂Yt(λ)/∂Yt| is the Jacobian of the transformation from Yt

to Yt(λ). Writing model (3) in matrix form: Y(λ) = X(λ)β + ε, and denoting the geometric

mean of the Y s by Ỹ , the maximum likelihood estimators (MLE) can be written as:

β̂(λ̂) = [X(λ̂)′X(λ̂)]−1X(λ̂)′Y(λ̂),

σ̂2(λ̂) =
1
T
‖M(λ̂)Y(λ̂)‖2, (5)

λ̂ = arg min
�

Ỹ −�‖M(�)Y(�)‖,

where M(λ) = IT −X(λ)[X(λ)′X(λ)]−1X(λ)′, and IT is a T × T identity matrix.
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As stated earlier, it is important to find an explicit expression for the variance of λ̂

(Box and Cox, 1982; Yang, 1999). Let this variance be denoted by τ2(β, σ2, λ). The

following conventions are followed. For a sequence {at, t = 1, · · ·T}, a is the corresponding

column vector, ā is the average, a2 = {a2
t }T×1, a#b = {atbt}T×1 for another vector b of the

same length, and a + c = {at + c}T×1 where c is a scalar.

Theorem. Let θt = σλ/(1 + λμt(λ)) and θ0 = max|θt|. For small θ0 and large T ,

τ2(β, σ2, 0) ≈ 1
1
σ2‖M(0)δ‖2 + 2‖μ(0)− μ̄(0)‖2 + 3

2Tσ2
, (6)

τ2(β, σ2, λ) ≈ 1
1
σ2‖M(λ)δ‖2 + 1

λ2

[
2‖φ− φ̄‖2 − 4(φ− φ̄)′(θ2 − θ̄2) + 3

2‖θ‖2
] , (7)

where μ(λ) = X(λ)β, φ = log(1 + λμ(λ)), δ = 1
2 [μ2(0) + σ2]− Ẋ(0)β for λ = 0,

δ = 1
λ2 (1 + λμ(λ))#φ + σ

2λθ − Ẋ(λ)β for λ �= 0, and Ẋ(λ) = dX(λ)/dλ.

The error of approximation to the variance τ2(β, σ2, λ) is of order Op(T−3/2) for

λ = 0, and Op(T−3/2) + Op(θ3
0) for λ �= 0. The proof of the theorem is given in the

Appendix.

The expressions (6) and (7) readily reveal the analytical behavior of the

transformation estimator. It can easily be seen that the variability of λ̂ is governed by the

interplay of three factors. First, the model structure as captured by the Mδ terms in (6)

and (7) determines the magnitude of the variance. The larger is this term, the smaller is the

variability of λ̂ and more precisely can λ be estimated. Second, the variability of

explanatory variables as captured by the second terms in the denominators of (6) and (7)

help reduce the variance of λ̂. Again, the larger the variability the smaller is the variance of

λ̂. Third, the magnitude of error variance affects the variance of λ̂ in a non-uniform way.

Smaller σ enlarges the Mδ term in (6) and (7) and reduces the variability of λ̂. When σ

increases, V ar(λ̂) first increases and then start to decrease because the last terms in the

denominators of (6) and (7) become dominant.

In addition to understanding the analytical behavior of λ̂, the expressions (6) and (7)

provide ready estimates of the variance of λ̂, allowing us to assess the precision of the
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transformation estimator for a given data set. Once the MLEs β̂, σ̂2 and λ̂ are obtained,

they can be substituted into τ(β, σ2, λ) to give an estimated standard error of λ̂ that can

then be used to construct tests and confidence intervals for λ.

3 Monte Carlo Evaluation

The variance formula given in the above theorem is an asymptotic expression. In this

section we examine the small sample accuracy of this formula through a Monte Carlo

exercise. We compare the value of τ(β, σ2, λ) with the corresponding simulated standard

deviation of λ̂. For this we use the simple model:

Yt(λ) = β0 + β1Xt(λ) + εt, t = 1, · · · , T. (8)

We consider several sets of parameter values, two sample sizes, and select logX values

uniformly from the interval (0, 5). The simulation process basically involves generating a

sample of T values from N (0, σ2), converting them to Yt(λ) through model (8), inverting

Yt(λ) to obtain Yt, and finally calculating λ̂ by minimizing Ỹ −λ‖M(λ)Y(λ)‖. For each

parameter setting, 10,000 replicates of λ̂ are obtained and the standard deviation of these

10,000 values gives a Monte Carlo estimate of sd(λ̂). Table 1 summarizes the results.

Table 1 here

For many economic applications the λ required to render normal errors is likely to be

small and a small λ usually comes with a small σ. Therefore, the results in Table 1, though

somewhat limited, are informative for many practical cases. A comparison of simulated and

formula-based standard deviations shows that our variance formula is very accurate even in

small samples, hence the variance estimator it provides should also be very accurate. As σ

increases the formula seems to underestimate V ar(λ̂) slightly. The table also shows that the

magnitude of the slope coefficients also affects the standard deviation of λ̂. We also

computed (not reported for brevity) the standard deviations by increasing the range of X

and observed that V ar(λ̂) drops substantially as the range of X increases.
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4 An Application

This section presents very briefly an illustrative application by modeling the demand

for Singapore’s exports. Here the demand for Singapore’s non-oil domestic real exports (X)

is assumed to depend on exogenously determined export price level (Px), and price (Pw)

and real income (Yw) levels of the importing countries.2

We estimated the model with a lag dependent variable as an additional explanatory

variable. The resulting estimate for λ is 0.1523 with a standard error of 0.0712. These

estimates reject the hypothesis λ = 0 at the 5 percent level. The likelihood ratio test leads

to the same conclusion. We estimated the model for both λ = 0 (log-linear) and λ = 0.15.

Both specifications fit the data very well, the coefficient estimates are statistically

significant and have the expected signs, the models pass the diagnostics (except for

normality) available in PCGIVE and provide similar elasticities at the average values of the

variables. Both specifications fail the normality test due to excess kurtosis. The coefficient

of the lagged-dependent variable is around 0.8 for both cases.

Although it is difficult to choose between the two specifications based on standard

diagnostics, the (short-run) elasticity estimates from the non-log model given in Figure 1

show the importance of obtaining a good estimate for λ. Unlike the log-linear model which

provides constant elaticities, the non-log specification shows highly plausible trends in

income and price elaticities. Figure 1 shows that elasticity with respect to the key

determinant of Singapore’s exports (Yw) has dropped by about 26 percent over the last two

decades. This is to be expected for economies that move from a fast-growing stage to a

more mature stage.

Figure 1 here.
2X is in millions of Sin dollars in 1995 prices, and Px, Pw, and Yw are indices with 1995 as the base. Yw is

an export-weighted (geometric) average of real GDP of ASEAN4 (Indonesia, Malaysia, Phillipines, Thailand),

NIE3 (Hong Kong, South Korea, Taiwan), China, Japan, USA, and the rest of OECD as a group. Pw is

similarly constructed from WPI or PPI depending on the data availability. Both Px and Pw are in Sin dollars.

The data series are over the period 1978Q1-1999Q4. The data set can be obtained from the authors.
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5 Conclusion

The derived variance estimator shows that the precision of the Box-Cox

functional-form determination depends on the model structure, the variability of the

explanatory variables and the error variance. Monte Carlo results show that the variance

estimator provides reliable estimates in small samples. The illustrative example shows why

it is important to pay attention to the functional form though the log-linear model may

appear to fit the data well.

Appendix: Proof of the Theorem

Let φ = (β′, σ2)′. For large T , τ2(β, σ2, λ) ≈ (Iλλ − IλφI
−1
φφ Iφλ)−1. The elements of the

expected information matrix are:

Iββ = 1
σ2 X′(λ)X(λ), Iσ2σ2 = T

2σ4 , Iλλ = 1
σ2 E[ė′(λ, β)ė(λ, β) + e′(λ, β)ë(λ, β)],

Iβλ = − 1
σ2 [X′(λ)E[ė(λ, β)], Iβσ2 = 0, Iσ2λ = − 1

σ4 E[e′(λ, β)ė(λ, β)],

where e(λ, β) = Y(λ)− X(λ)β ≡ ε, ė = ∂e/∂λ, and ë = ∂2e/∂λ2. Using the expected

information given above, one obtains, after some alegbra,

τ−2(β, σ2, λ) = Iλλ − IλψI−1
ψψIψλ = Iλλ − IλβI

−1
ββ Iβλ − Iλσ2I−1

σ2σ2Iσ2λ

=
1
σ2

{
E[ε′Ÿ(λ)] +

T∑
t=1

V ar[Ẏt(λ)]− 2
Tσ2

[E(ε′Ẏ(λ))]2 + E[ė′(λ, β)]M(λ)E[ė(λ, β)]

}

where Ẏ(λ) and Ÿ(λ) are, respectively, the first and second order partial derivatives of

Y(λ) with respect to λ and are given by:

Ẏt(λ) =

⎧⎪⎨
⎪⎩

1
λ [1 + λYt(λ)] logYt − 1

λYt(λ), λ �= 0,

1
2 (logYt)2, λ = 0,

Ÿt(λ) =

⎧⎪⎨
⎪⎩

Ẏt(λ)(logYt − 1
λ) − 1

λ2 [logYt − Yt(λ)], λ �= 0,

1
3 (logYt)3, λ = 0.

When λ = 0, we have

E[εtẎt(0)] = σ2μt(0), E[εtŸt(0)] = σ4 + σ2μ2
t (0)

V ar[Ẏt(0)] = σ2μ2
t (0) + 1

2σ4; E[ėt(0, β)] = 1
2 [μ2

t (0) + σ2]− Ẋ ′
t(0)β.
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Putting everything together and simplifying gives (6). When λ �= 0, an approximation to

logYt is necessary. The following approximation

logYt ≈ 1
λ

(φt + θtzt − 1
2
θ2
t z

2
t +

1
6
θ3
t z

3
t ), zt ∼ N (0, 1)

is developed based on a third-order Taylor expansion and the consideration the θt is small

so that its accuracy is guaranteed. Using this approximation, we have,

Ẏt(λ) =
1
λ2

(1 + λμt)φt − 1
λ

μt +
σ

λ
φtzt +

σ

2λ
θtz

2
t −

σ

3λ
θ2
t z

3
t + O(θ3

t )

V ar[Ẏt(λ)] =
σ2

λ2
(
θ2
t

2
+ φ2

t − 2φtθ
2
t ) + O(θ3

t )

E[εtẎt(λ)] =
σ2

λ
(φt − θ2

t ) + O(θ3
t )

E[εtŸt(λ)] =
σ2

λ2
(φ2
t − 2φtθ

2
t + θ2

t ) + O(θ3
t )

Putting everything together and simplifying gives (7). Note that direct derivation of

E[εtŸt(λ)] gives the last term as 2θ2
t . This is due to the approximation and checking with

the case of λ = 0 (the case of exact expression) allows us to conclude that this term should

be θ2
t instead. Monte Carlo simulation results given in Table 1 confirm this point.
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Table 1: Standard Deviations of λ̂: Simulated (Col. 1) and Formula-based (Col. 2)

T = 25 T = 50
λ σ β = (−5,−0.5) β = (−5,−2) β = (−5,−0.5) β = (−5,−2)

-0.25 .01 .0073 .0073 .0015 .0015 .0051 .0051 .0010 .0010
0.1 .0731 .0726 .0148 .0147 .0507 .0504 .0101 .0102
0.5 .3480 .3099 .0718 .0708 .2259 .2159 .0493 .0491
1.0 .3714 .3258 .1275 .1246 .2415 .2288 .0866 .0863

λ σ β = (5, 0.5) β = (5, 2) β = (5, 0.5) β = (5, 2)
0.0 .01 .0086 .0087 .0011 .0011 .0061 .0061 .0008 .0008

0.1 .0814 .0788 .0107 .0105 .0566 .0556 .0074 .0074
0.5 .1914 .1566 .0394 .0361 .1224 .1107 .0267 .0254
1.0 .1493 .1242 .0498 .0431 .0962 .0878 .0325 .0304
10. .0187 .0163 .0177 .0155 .0124 .0115 .0118 .0110

λ σ β = (5, 0.5) β = (5, 2) β = (5, 0.5) β = (5, 2)
0.25 .01 .0035 .0035 .0094 .0093 .0025 .0025 .0066 .0066

0.1 .0350 .0349 .0755 .0698 .0248 .0248 .0511 .0493
0.5 .1643 .1460 .1185 .1017 .1096 .1038 .0768 .0719
1.0 .2371 .1928 .1194 .1017 .1507 .1369 .0776 .0719
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