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Abstract

This paper first extends the methodology of Yang (2015, J. of Econometrics 185, 33-59) to
allow for non-normality and/or unknown heteroskedasticity in obtaining asymptotically
refined critical values for the LM-type tests through bootstrap. Bootstrap refinements in
critical values require the LM test statistics to be asymptotically pivotal under the null
hypothesis, and for this we provide a set of general methods for constructing LM and
robust LM tests. We then give detailed treatments for two general higher order spatial
linear regression models: namely the SARAR(p, q) model and the MESS(p, q) model, by
providing a complete set of non-normality robust LM and bootstrap LM tests for higher
order spatial effects, and a complete set of LM and bootstrap LM tests robust against
both unknown heteroskedasticity and non-normality. Monte Carlo experiments are run,
and results show an excellent performance of the bootstrap LM-type tests.

Key Words: Asymptotic pivot; Bootstrap; Heteroskedasticity; LM test; Spatial
lag; Spatial error; Matrix exponential; Wild bootstrap; Bootstrap critical values.
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1. Introduction

Since the birth of spatial econometrics in the early 1970s, various forms of spatial inter-
actions have been incorporated into a linear regression model to give what is called in the
paper the spatial linear regression (SLR) model with one or more of the following: spatial
lag dependence (SLD), spatial error dependence (SED), and spatial Durbin effect (SDE). The
SLD effect can be in either the spatial autoregressive (SAR) form or the matrix exponential
spatial specification (MESS), and the SED effect can be in the same form as the SLD effect and,
in addition, it can be in the form of the spatial moving average (SMA) or the spatial error
components (SEC). These give a rich class of SLR model of ‘order’ one.1 Recently, theory and

∗I am grateful to Singapore Management University for financial support under Grant C244/MSS16E003.
I thank Badi Baltagi for the invitation, and Harry Kelejian and two referees for the helpful comments.

1See Anselin (1988b) and Anselin and Bera (1998) for various specifications of the SLR models with SLD,
SED, SEC or SDE; and LeSage and Pace (2007) and Debarsy et al. (2015) for the SLR model with MESS.
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applications have advanced the SLR model to contain various spatial effects of order higher
than one, e.g., the SLR model with a SAR response of order p and a SAR error of order q,
referred to in the literature as SARAR(p, q); the SLR model with a pth order MESS in response
and a qth order MESS in error, referred to in the literature as MESS(p, q).2

Evidently, it is desirable to have simple tools that help practitioners choose an appropriate
SLR model. The LM test has been an important tool for identifying the existence of various
types of spatial effects in a linear regression model as it requires only the estimation of the null
model, often an ordinary linear regression model. However, the usual LM tests may not have a
satisfactory finite sample performance, and various refined LM tests for SLR models involving
SED, SLD, or SEC have been introduced, such as the LM tests based on standardization (Yang,
2010; Baltagi and Yang, 2013a), the LM tests based on Edgeworth correction (Robinson and
Rossi, 2014, 2015a,b), and the LM tests based on bootstrap critical values (Yang, 2015; Jin
and Lee, 2015). Standardization improves the finite sample performance of a two-sided test,
but it may not be able to do so for a one-sided test as the spatial dependence drives the finite
sample null distribution of the test statistic skewed, and more so with a denser spatial weights
matrix (Yang, 2015). Edgeworth correction method is rather limited (Horowitz, 1994; Hall
and Horowitz, 1996), and it may be feasible only when the null model is an ordinary least
square (OLS) regression, due to the complications in deriving the Edgeworth expansion. In
contrast, bootstrap critical values are very easy to obtain, and more importantly they give a
second-order approximation to the finite sample critical values of the LM test statistic if it is
asymptotically pivotal when the null hypothesis is true. The method is rather general as well,
as it works in the same way when the null model contains nonlinear parameters (parameters
need to be estimated through numerical optimization) as when the null model is an OLS
regression, except that it incurs some additional computation. See Section 4 for details.

Furthermore, the usual LM tests are derived under Gaussian likelihoods and the assump-
tion that the errors are independent and identically distributed (iid). Neither assumption can
be realistic, in particular the assumption of homoskedasticity (see Anselin, 1988b). Regular
LM tests for SED (including Moran’s I test given in Moran (1950)) and/or SLD are shown to
be robust against distributional misspecification (Baltagi and Yang, 2013a), but the regular
LM test for SEC is not (Yang, 2010). In general, the regular LM test are not robust against
unknown heteroskedasticity. Born and Breitung (2011) gave a set of heteroskedasticity and
non-normality robust LM tests for the SLR models with SED and/or SLD. Baltagi and Yang
(2013b) followed up with a set of ‘standardized’ heteroskedasticity and non-normality robust
LM tests which are shown to have much improved finite sample property.3 However, these
tests are again very likely to suffer from the problem of finite sample size-distortion for one-
sided tests. The LM tests referring to the ‘one-sided’ bootstrap critical values may offer finite

2The basic motivation for a higher order SLR model is that spatial units may subject to different types of
interactions (e.g., geographical distance, social relationship, peer effects). See Badinger and Egger (2011) and
Elhorst et al. (2012) for SARAR(p, q) and the supplement file to Debarsy et al. (2015) for MESS(p, q).

3See also the generalized Moran I tests given by Kelejian and Prucha (2001) and Liu and Prucha (2016).
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sample refinements, but this issue is not formally examined though it was raised in Yang
(2015). Also, for certain SLR models such as the SLR model with SEC and the SLR model
with MESS, neither LM tests nor bootstrap LM (BLM) tests that are robust to unknown het-
eroskedasticity and non-normality are available. An SLR model specification with both SLD

and SEC does not seem to have appeared in the literature, and so are the corresponding LM
and BLM tests. Finally, most of the LM tests available in the literature test the spatial effects
of ‘order one’, and the LM tests for higher order spatial effects, in particular the BLM tests,
are not available. This paper will fill in some of these gaps. We will focus on the LM-type
tests that are either robust against nonnormality or robust against both non-normality and
unknown heteroskedasticity. It is seen that once the general principles are clear and strictly
followed, the actual implementations of the BLM tests are quite straightforward.

The rest of the paper is organized as follows. Section 2 presents the bootstrap method,
discusses its validity, and presents some simple examples. Section 3 outlines the general
principles for constructing LM and robust LM tests. Section 4 presents LM and BLM tests
and their robust versions for the SARAR(p, q) model, and Section 5 presents the same set of
tests for the MESS(p, q) model. Section 6 presents some Monte Carlo results, showing an
excellent performance of the BLM tests. Section 7 concludes the paper with discussions.

2. Bootstrap LM Tests: General Methods and Validity

2.1. The models

All the SLR models discussed in the introduction, except the models with SEC, fall into
the following general model specification:

An(λ)Yn = Xnβ + un, Bn(ρ)un = εn, (2.1)

where Yn is an n× 1 vector of response values, Xn is an n× k matrix that contain the values
of exogenous regressors and may contain some spatial Durbin terms, An(λ) ≡ An(W`, λ) is
an n × n matrix inducing SLD of order p in SAR or MESS form and Bn(ρ) ≡ Bn(We, ρ) is an
n× n matrix inducing SED of order q in SAR or SMA or MESS form, W` = {W`1 · · · ,W`p} and
We = {We1, · · · ,Weq} with W`j and Wej being the given n × n spatial weights matrices, β
is a k× 1 vector of regression coefficients, λ is a p× 1 vector of spatial lag parameters, ρ is a
q × 1 vector of spatial error parameters, and εn is an n× 1 vector of idiosyncratic errors, iid
with mean 0 and variance σ2

ε , or independent but not identically distributed (inid) with mean
zero and variances hiσ2

ε , i = 1, · · · , n where {hi} represent the unknown heteroskedasticity.
Most of the tests in the literature correspond to the models with p = 1 and q = 1. In this
paper, they are extended for testing the higher-order spatial effects.

For example, for an SLR model with pth order SLD and qth order SED both in the autore-
gressive form, we have An(λ) = In−

∑p
j=1 λjW`j and Bn(ρ) = In−

∑q
j=1 ρjWej where In is an
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n×n identity matrix, leading to the SARAR(p, q) model. For an SLR model with pth order MESS
in response and qth order MESS in error, or the MESS(p,q) model, An(λ) = exp(

∑p
j=1 λjW`j)

and Bn(ρ) = exp(
∑q

j=1 ρjWej) as in the literature, or the proposed forms in Section 5 to over-
come the difficulty in finding the partial derivatives. For an SLR model with SDE, it is typical
that Xn = (Xn,W1nX1n) where X1n is a submatrix of Xn, excluding at least the columns
corresponding to the intercept and dummy variables to avoid multicollinearity problem.

An alternative model specification is to replace Bn(ρ)εn on the right-hand side of (2.1)
by Wevn + εn, to give an SLR model with SLD of order p (in SAR or MESS form) and SEC:

An(λ)Yn = Xnβ +Wevn + εn, (2.2)

where the spatial error component Wevn is independent of εn with the elements of vn being
iid of mean zero and variance σ2

v (see Kelejian and Robinson, 1995). These types of model
specifications have not been considered in the literature and a full study of them is interesting
but beyond the scope of this paper. In this paper, we will concentrate on Model (2.1) with
either SARAR(p, q) or MESS(p, q), and offer discussions relating to Model (2.2).

2.2. Bootstrap methods and their validity

To give a general procedure for bootstrapping the critical values of an LM test, let θ be
the parameter vector that corresponds to the null model, and ϕ be the parameter vector
of which the value is specified by the null hypothesis as zero. As we are mainly interested
in tests for spatial effects, the ϕ vector would include all or some of the spatial parameters,
which are λ and ρ under Model (2.1), and λ and σ2

v under Model (2.2); and the θ vector would
always include β and σ2

ε , and may contain some spatial parameters. The most interesting
tests would be ones of which the null hypotheses specify that all the spatial parameters in
the model are zero, as in these cases, the null models are simply the ordinary least squares
(OLS) regression models. Some tests of model reduction are also interesting, e.g., from
SARAR(p, q) to SARAR(1, 1). The Durbin terms act as some additional regressors and hence are
treated together with the regular regressors although they may create an additional problem
of parameter identification (see Elhorst, 2014, and Lee and Yu, 2016).

Consider the following general hypothesis:

H0 : ϕ = 0,

and let the corresponding LM test be

LMn ≡ LMn(Yn,Xn,Wn),

where Wn = (W`,We). Note that under Model (2.2), we consider the cases where ϕ contains
σ2
v so that under H0 the spatial error component vn vanishes. Thus, the above set-up covers

both models. Clearly, the statistic LMn is an explicit function of (Yn,Xn,Wn) when the
null model is an OLS regression, or an implicit function when the null model contains some
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spatial parameters whose estimates at the null are implicit functions of (Yn,Xn,Wn).
Case I: iid errors. Consider first the case of iid errors and let F be the cumulative

distribution function (CDF) of εni, the ith element of εn. Write the null models as

Yn = h(Xn,Wn; θ; εn). (2.3)

Let θ̂n be an estimate of θ, consistent whether or not the null hypothesis is true. Let ε̂n
be an estimate of εn centered to have mean zero, and F̂n be the corresponding empirical
distribution function (EDF), also ‘consistent’ whether or not the null hypothesis is true.4

For the bootstrap critical values to achieve second-order approximation to the finite sam-
ple critical values of an LM test, Yang (2015) laid out the following fundamental principles:

(i) the bootstrap data generating process (DGP) must be set up so that it is able to mimic
the null model, (ii) the LM statistic must be asymptotically pivotal under the null, (iii) the
estimates of the nuisance parameters, to be used as parameters in the bootstrap DGP, must be
consistent whether or not the null hypothesis is true, (iv) the EDF of the residuals consistently
estimates the error distribution whether or not the null hypothesis is true, and (v) calculation
of the bootstrapped values of the LM statistic is done under the null hypothesis.

Note that the null model is determined by the pair (θ,F), so is the finite sample null
distribution of LMn. We are interested in the finite sample CDF Gn(θ,F) of LMn under H0

(or LMn|H0), in particular the finite sample critical values cn(α; θ,F) of LMn|H0 , 0 < α < 1.
With the fundamental principles given above, the bootstrap DGP must be set up as follows:

Y ∗
n = h(Xn,Wn; θ̂n; ε∗n), {ε∗ni}

iid∼ F̂n, (2.4)

where θ̂n acts as parameters and F̂n acts as error distribution, called, respectively, the boot-
strap parameters and the bootstrap error distribution, so that it is able to mimic the real
world null DGP given in (2.3). With the bootstrap data (Y ∗

n ,Xn,Wn) so generated through
(2.4), the bootstrap analogue of LMn is given as LM∗

n ≡ LMn(Y ∗
n ,Xn,Wn). It follows that

the bootstrap CDF of LM∗
n must have the form Gn(θ̂n, F̂n), identical in structure to Gn(θ,F),

and that the bootstrap critical value must be cn(α; θ̂n, F̂n), identical in form to cn(α; θ,F).
These can be seen more clearly from the following identical structures:

LMn|H0 ≡ LMn(Yn,Xn,Wn) = LMn(h(Xn,Wn; θ; εn),Xn,Wn) ≡ LMn(Xn,Wn; θ; εn),

LM∗
n ≡ LMn(Y ∗

n ,Xn,Wn) = LMn(h(Xn,Wn; θ̂n; ε∗n),Xn,Wn) ≡ LMn(Xn,Wn; θ̂n; ε∗n).

Under certain conditions cn(α; θ̂n, F̂n) gives a second-order approximation to cn(α; θ,F).
However, in real applications, the true bootstrap critical value is infeasible as it is numeri-
cally too demanding to exhaust all the possible bootstrap samples. The following algorithm
summarizes the steps leading to approximate bootstrap critical values.

4A natural choice for the pair (θ̂n, F̂n) in connection with the LM tests would be the quasi maximum
likelihood estimates (QMLEs) of the full model containing θ and ϕ, but it is not restricted to the full QMLEs.
In fact, any pair of

√
n-consistent estimates, such as GMM estimates, of the full model can be used.
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Algorithm 2.1. (iid bootstrap)

(a) Draw a random sample ε∗n from F̂n;
(b) Compute Y ∗

n = h(Xn,Wn; θ̂n; ε∗n), to obtain the bootstrap data {Y ∗
n ,Xn,Wn};

(c) Estimate the null model based on {Y ∗
n ,Xn,Wn}, and then compute a bootstrapped value

LM∗
n of LMn;

(d) Repeat (a)-(c) B times to obtain bootstrap values {LMb
n}Bb=1 of LMn, and the α-quantile

cBn (α; θ̂n, F̂n) of {LMb
n}Bb=1 gives a bootstrap approximation to cn(α; θ,F).

The validity of the above bootstrap procedure needs to be addressed. First, as B can be
made arbitrarily large, the approximation from cBn (α; θ̂n, F̂n) to cn(α; θ̂n, F̂n) can be made
arbitrarily accurate, and hence such an approximation will be ignored in the following dis-
cussions. What is left is to argue that cn(α; θ̂n, F̂n) − cn(α; θ,F) = Op(n−1). The following
assumptions are adapted from Yang (2015).

Assumption A1. The errors {εni} are iid (0, σ2
ε) with CDF F , known or unknown.

Assumption A2. The LM-type statistic LMn is asymptotically pivotal under H0, whether
or not F is correctly specified.

Assumption A3. (θ̂n, F̂n) is
√
n-consistent for (θ,F) whether or not H0 is true, and

whether or not F is correctly specified.

Assumption A4. For (ϑ,F) ∈ Nθ,F , a neighborhood of (θ,F), the null CDF Gn(·, ϑ,F)
converges weakly to a limit null CDF G(·, ϑ,F) as n increases, and admits the following
asymptotic expansion uniformly in t and locally uniformly for (ϑ, F ) ∈ Nθ,F :

Gn(t, ϑ,F) = G(t, ϑ,F) + n−
1
2 g(t, ϑ,F) +O(n−1), (2.5)

where G(·, ϑ,F) is differentiable and strictly monotone over its support, and g(t, ϑ,F) is a
functional of (t, ϑ,F) differentiable in (ϑ,F).

Assumption A1 is standard and the existence of higher-order moments is implied by the
assumptions that follow. Assumption A2 suggests that the limiting CDF of LMn|H0 is G(·),
free from (θ,F). This is generally true if F is known or correctly specified, but may not be
true if F is unknown or misspecified. In the latter case, some modification on the usual LM
statistic is necessary to make it robust against distributional misspecification. Assumption
A3 unifies the different cases considered in Yang (2015). It was stressed in Yang (2015) that
the bootstrap parameters θ̂n must be a consistent estimator of the population parameters θ
in the null model whether or not the null hypothesis is true, as in real applications
one does not know whether or not H0 is true. This is an important point, but did not
seem to have been emphasized in the literature until Yang (2015), and instead, the literature
seemed pointed to a contrary (see, e.g., van Giersbergen and Kiviet, 2002; Godfrey, 2009,
Ch. 3; MacKinnon, 2002). Clearly, from (2.3) and (2.4) one sees that Y ∗

n would not be able
to mimic Yn when H0 is false but the restricted (inconsistent) estimate θ̃n is used in (2.4),
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unless the null distribution of the test statistic does not depend on θ as in certain special
cases such as (2.14) and (2.18). See Yang (2015) for detailed discussions on this. Assumption
A4 is a general technical assumption given in Yang (2015) by adapting a similar condition
given Beran (1988). In an important special case where the test statistic is asymptotically
N(0, 1), the asymptotic expansion (2.5) reduces to the following Edgeworth expansion:

Gn(t, θ,F) = Φ(t) + n−
1
2φ(t)p(t, θ,F) +O(n−1), (2.6)

where Φ and φ are, respectively, the CDF and pdf of N(0, 1), p(t, θ,F) = −k1,2+ 1
6k3,1(1−t2),

and k1,2 and k3,1 are the n-free polynomials defined in the following expansion for the jth
cumulant κj,n ≡ κj,n(θ,F) of LMn|H0 (Hall, 1992, Sec. 2.3):

κj,n = n−
j−2
2 (kj,1 + n−1kj,2 + n−2kj,3 + · · · ). (2.7)

Obviously, k1,1 = 0 and k2,1 = 1 in connection with the facts that κ1,n → 0 and κ2,n → 1, as
n→∞. Developing an asymptotic or Edgeworth expansion for a general LM statistic is by no
means an easy task. Fortunately, the bootstrap method (discussed in this paper) itself does
not require the derivation of asymptotic or Edgeworth expansions. It is just that (quoting
Hall, 1992, p. v): “Methods based on Edgeworth expansion can help explain the performance
of bootstrap methods, and on the other hand, the bootstrap provides strong motivation for
reexamining the theory of Edgeworth expansion.”

Yang (2015) developed Edgeworth expansions specific to the SLR models with SED, or
SLD or SEC, for the purpose of formal justifications on the validity of the iid bootstrap

method given above. Jin and Lee (2015) developed Edgeworth expansion under normality
and Edgeworth expansions for martingales under nonnormal errors for the CDF of a test
statistic that can be approximated by linear quadratic forms. Robinson and Rossi (2014,
2015a,b) derived Edgeworth expansions for the pure SAR model and the SLR model with
SED under normality, for analytically correcting the distributions of the LM statistics.

Proposition 2.1. Under Assumptions A1-A4, the bootstrap critical value given in Algo-
rithm 2.1 is such that cn(α; θ̂n, F̂n) − cn(α; θ,F) = O(n−1); in contrast c(α) − cn(α; θ,F) =
O(n−

1
2 ) where c(α) is the corresponding critical value of the limiting distribution G(·).

Proof. Only a sketch of the proof is given here in the general form. Details corresponding
to some particular models can be found in Yang (2015). Under Assumption A2, the limiting
distribution of LMn|H0 must be such that G(t, θ,F) = G(t), and under Assumptions A3 and
A4, that of LM∗

n must be G(t, θ̂n, F̂n) = G(t) as well based on the triangular-array convergence
(see Beran, 1988). Thus, under Assumptions A1-A4, the CDF of LMn|H0 and the bootstrap
CDF of LM∗

n possess the following stochastic expansions:

Gn(t, θ,F) = G(t) + n−
1
2 g(t, θ,F) +O(n−1), (2.8)

Gn(t, θ̂n, F̂n) = G(t) + n−
1
2 g(t, θ̂n, F̂n) +Op(n−1). (2.9)
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Taking the difference, we have

Gn(t, θ̂n, F̂n)− Gn(t, θ,F) = n−
1
2 [g(t, θ̂n, F̂n)− g(t, θ,F)] +Op(n−1) = Op(n−1),

where the last equality follows from the
√
n consistency of (θ̂n, F̂n) and the differentiability

of g(t, ϑ,F) in (ϑ,F) ∈ Nθ,F . �

Remark 2.1. From the proof of Proposition 2.1, it is clear that without
√
n-consistency

of (θ̂n, F̂n), the term g(t, θ̂n, F̂n) − Gn(t, θ,F) would not be Op(n−
1
2 ), and the second-order

approximation of Gn(t, θ̂n, F̂n) to Gn(t, θ,F) would not be achieved.

Case II: inid errors. Consider again the real world null DGP: Yn = h(Xn,Wn; θ; εn)
defined in (2.3). When {εni} are inid with mean zero and variances hiσ2

ε , Algorithm 2.1 based
on the bootstrap DGP (2.4) is no longer valid, as the iid draws lost the heteroskedasticity
structure. Based on the fundamental principles laid out below (2.3), a valid bootstrap DGP
able to capture the unknown heteroskedasticity must be that (i) θ̂n is a consistent estimator
of θ whether or not H0 is true and is robust against non-normality (NN) and unknown
heteroskedasticity (UH), (ii) the estimated residuals {ε̂ni} are consistent with {εni}, i.e.
ε̂ni = εni + op(1), whether or not H0 is true, and (iii) bootstrap samples based on the
estimated residuals are able to mimic (consistently estimate) εn. Clearly, a valid choice of
θ̂n and ε̂ni is from the NN-UH robust estimation of the full model (see, e.g., Kelejian and
Prucha (2010), Lin and Lee (2010), and Liu and Yang (2015).

The modified bootstrap DGP, the wild bootstrap, takes the form:

Y ∗
n = h(Xn,Wn; θ̂n; ε∗n), ε̂∗ni = ε̂nivi, (2.10)

where {vi}ni=1 are n iid draws from a distribution H(·) with mean 0 and higher-order moments
all 1, independent of εni.5 See, e.g., Wu (1986), Liu (1988), Mammen (1993), Godfrey (2007),
and Davidson and Flachaire (2008), for an account on wild bootstrap.

To facilitate the discussion on the validity of the wild bootstrap procedure, denote the NN-
UH robust LM-type statistic by LMRn, and the bootstrap analogue of LMRn|H0 by LMR∗

n.
Clearly, LMRn|H0 ≡ LMRn(Xn,Wn; θ; εn), and LMR∗

n ≡ LMR∗
n(Xn,Wn; θ̂n; ε∗n). Assume

the CDF of h
− 1

2
i εni is F(·) with higher-order moments µ = {µ3, µ4, . . .}. Thus, εni has CDF

F(·/
√
hi), and the moments µir = h

r/2
i µr, r = 1, 2, . . .. The bootstrap distribution of ε̂∗ni is

H(·/ε̂ni), which is H(·/ε̂ni) if ε̂ni > 0; 1 −H(·/ε̂ni) o.w. Its moments are µ̂∗ir = E∗(ε̂rniv
r
i ) =

ε̂rniE(vri ). Define the product measures Fn =
∏n
i=1F(·/

√
hi) and Ĥn =

∏n
i=1H(·/ε̂ni). Let

Gn(·, θ,Fn) be the finite sample CDF of LMRn|H0 and cn(α; θ,Fn) be its αth quantile; let
Gn(·, θ̂n, Ĥn) be the bootstrap CDF of LMR∗

n and cn(α; θ̂n, Ĥn) be its αth quantile.
5In fact, such a distribution does not exist but, often, being able to match up to 3rd or 4th moments suffices

(see Mammen, 1993, and Remark 2.2 below). The well-known Rademacher distribution (vi = ±1 with equal
probabilities) has all the odd moments being 0, and all the even moments being 1. This is an ideal distribution
when the original errors are symmetrically distributed. Another popular choice is Mammen’s (1993) two-point
distribution: P{vi = −(

√
5 − 1)/2} = (

√
5 + 1)/(2

√
5), and P{vi = (

√
5 + 1)/2} = (

√
5 − 1)/(2

√
5), which

gives E(vi) = 0, E(v2
i ) = 1, and E(v3

i ) = 1, but E(v4
i ) = 2.
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A feasible bootstrap procedure for obtaining cn(α; θ̂n,Hn) is summarized below.

Algorithm 2.2. (wild bootstrap)

(a) Draw a random sample {vi}ni=1 from the chosen H, to give ε∗n = {ε̂nivi}ni=1;

(b) Compute Y ∗
n = h(Xn,Wn; θ̂n; ε∗n), to obtain the bootstrap data {Y ∗

n ,Xn,Wn};
(c) Perform an NN-UH robust estimation of the null model based on {Y ∗

n ,Xn,Wn}, and
then compute a bootstrapped value LMR∗

n of LMRn;

(d) Repeat (a)-(c) B times to obtain bootstrap values {LMRb
n}Bb=1 of LMRn, and the α-

quantile cBn (α; θ̂n, Ĥn) of {LMRb
n}Bb=1 gives a bootstrap approximation to cn(α; θ,Fn).

Assumption B1. The errors {εni} are inid (0, σ2
εhi) where hi > 0 and 1

n

∑n
i=1 hi = 1.

The CDF of h
− 1

2
i εni is F , with necessary higher-order moments µ = {µ3, µ4, · · · } being finite.

Assumption B2. The LM-type statistic, LMRn, is asymptotically pivotal under H0, and
is robust against misspecification in F and unknown heteroskedasticity.

Assumption B3. Whether or not H0 is true, (i) θ̂n is
√
n-consistent for θ and is robust

against misspecification in F and unknown heteroskedasticity, and (ii) ε̂ni = εni+Op(n−1/2).

Assumptions B1-B3 extends Assumptions A1-A3 to cater the unknown heteroskedasticity.
These extensions seem straightforward. Assumption B1 essentially assumes that εni = h

1
2
i eni

and {eni} are iid as in Liu and Prucha (2016). With Assumptions B2 and B3, it is reasonable
to assume that Gn(·, θ̂n, Ĥn) converges to the same limit as does Gn(·, θ,Fn). No doubt,
proving the existence of Edgeworth/asymptotic expansions for the case of inid errors is even
more challenging than the already challenging case of iid errors in spatial models. To simplify
the discussions, we put up the following higher-level assumptions compared with Assumption
A4 for the case of iid errors, and details may be learnt based on, e.g., (2.20) and (2.21).

Assumption B4. The null CDF Gn(·, θ,Fn) and the bootstrap CDF Gn(·, θ̂n, Ĥn) admit
the following asymptotic expansions:

Gn(t, θ,Fn) = G(t) + n−
1
2 g(t, θ,Fn) +O(n−1), (2.11)

Gn(t, θ̂n, Ĥn) = G(t) + n−
1
2 g(t, θ̂n, Ĥn) +O(n−1), (2.12)

where g(t, θ,Fn) is a functional of (t, θ,Fn) differentiable in (θ,Fn).

Proposition 2.2. Under Assumptions B1-B3, the bootstrap critical value given in Algo-
rithm 2.2 is such that cn(α; θ̂n, Ĥn)−cn(α; θ,Fn) = O(n−1); in contrast c(α)−cn(α; θ,Fn) =
O(n−

1
2 ) where c(α) is the corresponding critical value of the limiting distribution G(·).

Proof. Parallel to the proof of Proposition 2.1. �

Remark 2.2. As in the case of iid errors, an Edgeworth expansion similar to (2.6) can
be obtained for a univariate test, from which one sees that g(t, θ,Fn) depends only on the
leading terms in the expansions for the first three cumulants of LMRn|H0 . Furthermore, it
can be shown that in a number of special tests, g(t, θ,Fn) depends on Fn only through the
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first three moments of εni as in Yang (2015) for the case of iid errors. This is important as
it says that as long as the wild bootstrap is able to capture the first three moments of εni, a
full second-order refinement on the critical values can be achieved.

2.3. Examples

To help appreciating the general methods given above, we present several simple tests
concerning the SARAR(1,1) effects, and concerning SEC effect.

Example 2.1. Joint and conditional tests for SARAR(1,1). To test for the existence of
1st order SLD or 1st order SED or both in a linear regression model, the three LM tests due
to Burridge (1980) for the first one and Anselin (1988a,b) are given as follows:

LMSLD =
n√

J̃n +K``
n

ε̃′nW`Yn
ε̃′nε̃n

, (2.13)

LMSED =
n√
Kee
n

ε̃′nWeε̃n
ε̃′nε̃n

, (2.14)

LMSARAR =
(ε̃′nW`Yn)2Kee

n − 2(ε̃′nW`Yn)(ε̃′nWeε̃n)K`e
n + (ε̃′nWeε̃n)2(Jn +K``

n )
σ̃4
n[JnKee

n +K``
n K

ee
n − (K`e

n )2]
, (2.15)

where ε̃n is the vector of OLS residuals from regressing Yn on Xn, J̃n = σ̃−2
n η̃′nMnη̃n, η̃n =

W`Xnβ̃n, β̃n and σ̃2
n are the null estimates of β and σ2, Mn = In −Xn(X′

nXn)−1X′
n, K

``
n =

tr[(W`+W ′
`)W`], Kee

n = tr[(We+W ′
e)We], and K`e

n = tr[(W`+W ′
`)We]. When W` = We ≡Wn

is assumed in (2.15), K``
n = Kee

n = K`e
n ≡ Kn and the test simplifies to

LM0
SARAR =

(ε̃′nWnYn − ε̃′nWnε̃n)2

σ̃2
nη̃

′
nMnη̃n

+
(ε̃′nWnε̃n)2

σ̃4
nKn

. (2.16)

These three tests can easily be shown to be robust against nonnormality by verifying the
(asymptotic) equivalence in variance-covariance matrices; see Section 4 for details under the
general SARAR(p, q) model. However, their finite sample performance when referred to the
asymptotic critical values (ACVs) can be poor. Use of bootstrap critical values (BCVs) can
greatly reduce the size distortion. As the three tests correspond to the same null model,
the bootstrap DGP has the same form: Y ∗

n = Xnβ̂n + ε∗n, where {ε∗ni} are n random draws
from centered unrestricted residuals {ε̂ni}, i.e, the residuals calculated from the estimation of
the ‘full’ model, being respectively SARAR(0,1), SARAR(1,0), and SARAR(1,1), and β̂n is the
unrestricted estimate of β. Clearly, σ̂2

n does not play a role in generating the bootstrap data.
To obtain the BCVs of the LM tests given above, take for example the test LM0

SARAR given
in (2.16). Based on the bootstrap data (Y ∗

n ,Xn,Wn), one estimates the null model and then
calculates the test statistic to obtain its bootstrap value or its bootstrap analogue:

LM0∗
SARAR =

(ε̃∗′nWnY
∗
n − ε̃∗′nWnε̃

∗
n)

2

σ̃∗2n η̃
∗′
nMnη̃∗n

+
(ε̃∗′nWnε̃

∗
n)

2

σ̃∗4n Kn
, (2.17)
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where η̃∗n = σ̃∗−1
n WnXnβ̃

∗
n, β̃

∗
n and σ̃∗2n are the bootstrap estimates of β and σ2, i.e., from

regressing Y ∗
n on Xn, and ε̃∗n = Y ∗

n − Xnβ̃
∗
n = Mnε

∗
n. Repeated draws from {ε̂ni} give

sequences of bootstrap values of LM0∗
SARAR, and their quantiles give the BCVs for LM0

SARAR,
as in Algorithm (2.1). Similarly, one obtains the BCVs for LMSLD, LMSED, and LMSARAR.
The results of Yang (2015) imply that the BCVs for the above tests give a second-order
approximation to the finite sample critical values (FCVs) of these tests. In contrast the
asymptotic critical values (ACVs) only approximate the FCVs to the first order.6

Example 2.2. Testing for the existence of SEC. Consider the SLR-SEC model: Yn =
Xnβ +Wnvn + εn. The test for SEC amounts to test H0 : σ2

ν = 0, or λ = σ2
ν/σ

2 = 0. An LM
test is given in Anselin (2001), and a robust LM test is given in Yang (2010):

LMRSEC =
n√

K†
n + κ̃4na′nan

ε̃′nH
†
nε̃n

ε̃′nε̃n
, (2.18)

where H†
n = WnW

′
n − 1

n−k tr(WnW
′
nMn)In, K

†
n = 2tr(A2

n), an = diagv(An), An = MnH
†
nMn,

κ̃4n is the 4th cumulant of σ̃−1
n ε̃n, and σ̃2

n is the estimate of σ2 under H0. The null model and
the bootstrap DGP are again OLS regressions. The bootstrap analogue of (2.18) is thus:

LMR∗
SEC =

n√
K†
n + κ̃∗4na

′
nan

ε̃∗′nH
†
nε̃∗n

ε̃∗′n ε̃
∗
n

, (2.19)

where ε̃∗n is the vector of residuals from regressing Y ∗
n on Xn, κ̃∗4n is the 4th cumulant of

σ̃∗−1
n ε̃∗n, and σ̃∗2n is the bootstrap estimate of σ2 from the same regression. Yang (2015) show

that the BCVs give second-order approximations to the FCVs.

Example 2.3. Heteroskedasticity and non-normality robust LM tests for SARAR(1,1).
While the LM tests given in (2.13)-(2.15) are robust against non-normality of the error dis-
tribution, they are not robust against unknown heteroskedasticity. Their robust versions
(against both non-normality and heteroskedasticity) are given in Born and Breitung (2011):

LMRSLD =
ε̃′nW`Yn

(ε̃2 ′n ξ̃21n)
1
2

, (2.20)

LMRSED =
ε̃′nWeε̃n

(ε̃2 ′n ξ̃22n)
1
2

, (2.21)

LMRSARAR =

(
ε̃′nW`Yn

ε̃′nWeε̃n

)′(
ε̃2 ′n ξ̃

2
1n, ε̃2 ′n (ξ̃1n � ξ̃2n)

∼, ε̃2 ′n ξ̃
2
2n

)−1(
ε̃′nW`Yn

ε̃′nWeε̃n

)
, (2.22)

6As 1
n

Pn
i=1 ε̂ni = 0, {ε̂ni} are automatically centered. Apparently, LM∗

SED is invariant of β̂n and hence any
estimate of β can be used in the bootstrap DGP. The estimate of the scale parameter σ also does not play a
role and is absorbed in ε̂n and ε∗n. However, the use of the unrestricted residuals is necessary as the ‘finite
sample’ distribution of LMSED|He

0
depends on the third moment of εni and only with the unrestricted residuals

the third moment of F̂n is
√

n-consistent for the third moment of F . See Yang (2015) for details.
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where ξ̃1n = (W u′
` +W l

`)ε̃n + Mnη̃n, ξ̃2n = (W u′
e +W l

e)ε̃n, A
u
n and Aln denote the upper and

lower triangular matrices of a matrix An, ‘�’ denotes the Hadamard product, a2 = a� a for
a vector a, and ε̃n and η̃n are as in (2.13)-(2.15). Baltagi and Yang (2013b) show that these
tests referring ACVs can perform very poorly and present standardized versions of them.

The three tests have the same null DGP: Yn = Xnβ + εn. The wild bootstrap DGP
is Y ∗

n = Xnβ̂n + ε∗n, ε
∗
n = ε̂n � vn, where vn is an n-vector of iid draws from an auxiliary

distribution with mean zero and higher moments 1, completely independent of original data.
With the bootstrap data (Y ∗

n ,Xn,Wn), one computes ε̃∗n, η̃
∗
n, and hence ξ̃∗1n and ξ̃∗2n, giving

bootstrap values of the test statistics and hence the BCVs.

3. Construction of LM and Robust LM Tests

In this section, we outline the general procedures for constructing LM tests, robust LM
tests against nonnormality, and robust LM tests against both nonnormality and unknown
heteroskedasticity. Then, in the subsequent sections, we apply these general procedures to
introduce LM/BLM and robust LM/BLM tests, respectively, for the SARAR(p, q) model and
the MESS(p, q) model. We endeavor to present the results in a practical manner so the applied
researchers can easily apply these BLM tests.

Recall: θ represents parameter vector in the null model, ϕ the additional vector of pa-
rameters appeared in the full model, and the null hypothesis specifies ϕ = 0. Let ψ = (θ′, ϕ′)′

and ψ0 (θ0 and ϕ0) be the true value of ψ (θ and ϕ), Sn(ψ) the score vector based on the
normality assumption on εn, and Σn(ψ0) = −E[ ∂

∂ψ′Sn(ψ0)]. Corresponding to θ and ϕ, de-
note the subvectors of Sn(ψ) by Sn,θ(θ, ϕ) and Sn,ϕ(θ, ϕ), and the submatrices of Σn(ψ) by
Σn,θθ(θ, ϕ), Σn,ϕϕ(θ, ϕ) and Σn,θϕ(θ, ϕ). The LM test of H0 : ϕ = 0 takes the form:

LMn = S̃′n,ϕ
(
Σ̃−1
n

)
ϕϕ
S̃n,ϕ, (3.1)

with its limiting null distribution being χ2
dim(ϕ), where S̃n,ϕ = Sn,ϕ(θ̃n, 0), Σ̃n = Σn(θ̃n, 0), θ̃n

is the MLE of the null model, and ( · )ϕϕ denotes the ϕ-ϕ block of the corresponding matrix.
By the definition of Σn(ψ0), it is clear that Σ̃n can simply be − ∂

∂ψ′Sn(θ̃n, 0).

LM test robust against non-normality (NN). Let Γn(ψ0) = Var[Sn(ψ0)], with sub-
matrices Γn,θθ(θ, ϕ), Γn,ϕϕ(θ, ϕ) and Γn,θϕ(θ, ϕ). By Taylor expansion,

1√
n
Sn,ϕ(θ̃n, 0) = 1√

n
Sn,ϕ(θ0, 0)− 1√

n
Πn(θ0)Sn,θ(θ0, 0) + op(1), (3.2)

where Πn(θ0) = Σn,ϕθ(θ0, 0)Σ−1
n,θθ(θ0, 0). It follows that Var[ 1√

n
Sn,ϕ(θ̃n, 0)] = 1

n

[
Γn,ϕϕ(θ0, 0)−

Γn,ϕθ(θ0, 0)Π′
n(θ0)−Π′

n(θ0)Γn,θϕ(θ0, 0)+Πn(θ0)Γn,θθ(θ0, 0)Π′
n(θ0)

]
+o(1). An NN-robust LM

test, with its limiting null distribution being χ2
dim(ϕ), takes the form:

LMN0
n = S̃′n,ϕ

(
Γ̃n,ϕϕ − 2Γ̃n,ϕθΠ̃′

n + Π̃nΓ̃n,θθΠ̃′
n

)−1
S̃n,ϕ, (3.3)
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where S̃n,ϕ = Sn,ϕ(θ̃n, 0), Γ̃n,ϕϕ, Γ̃n,ϕθ and Γ̃n,θθ are the submatrices of Γn(θ̃n, 0), and Π̃n =
Πn(θ̃n). Clearly, when {εni} are iid normal, Γn(ψ0) = Σn(ψ0) (information matrix equality,
or IME) and LMNn reduces to LMn. When {εni} are iid but non-normal, the IME does not
hold and the explicit expression of Γn(θ0, 0) is required in order to implement LMN0

n. It is
typical that Γn(θ0, 0) involves higher-order moments of the model errors which are estimated
based on the null residuals defined by θ̃n.

An alternative way to estimate Γ(θ0, 0) is via the outer-product-of-martingale-difference
(OPMD) (Baltagi and Yang, 2013b; Yang, 2017). If Sn(θ0, 0) has a martingale difference
(MD) representation: Sn(θ0, 0) =

∑n
i=1 gni(θ0), where {gni(θ0)} form an MD sequence, then

Var[Sn(θ0, 0)] =
∑n

i=1 Var[gni(θ0)] =
∑n

i=1 E[gni(θ0)g′ni(θ0)]. Hence,
∑n

i=1 g̃nig̃
′
ni, the sum of

the estimated OPMDs, thus gives a consistent estimate of Var[Sn(θ0, 0)] in the sense that
1
n [
∑n

i=1 g̃nig̃
′
ni − Var[Sn(θ0, 0)]

p−→ 0, where g̃ni = gni(θ̃n). Replacing Γ̃n,ϕϕ, Γ̃n,ϕθ and Γ̃n,θθ
in (3.3) by the submatrices of

∑n
i=1 g̃nig̃

′
ni, we obtain an OPMD form of NN-robust LM test:

LMNn = S̃′n,ϕ
[∑n

i=1(g̃ni,ϕ − Π̃ng̃ni,θ)(g̃ni,ϕ − Π̃ng̃ni,θ)′
]−1

S̃n,ϕ. (3.4)

Equivalently, (3.4) can be obtained as follows. By (3.2) and the MD representation Sn(θ0, 0) =∑n
i=1 gni(θ0), Sn,θ(θ̃n, 0) has the following asymptotic MD representation:

1√
n
Sn,ϕ(θ̃n, 0) = 1√

n

∑n
i=1[gni,ϕ −Πn(θ0)gni,θ] + op(1), (3.5)

where {gni,ϕ − Πn(θ0)gni,θ} form an MD sequence with (g′ni,θ, g
′
ni,ϕ)′ = gni ≡ gni(θ0). Thus,

Var[ 1√
n
Sn,ϕ(θ̃n, 0)]= 1

n

∑n
i=1 E[(gni,ϕ−Πn(θ0)gni,θ)(gni,ϕ−Πn(θ0)gni,θ)′]+o(1), leading to (3.4).

The advantages of using the OPMD estimate of Γn(θ0, 0) are: (i) it avoids the analyti-
cal expression of Γn(ψ0) containing higher order moments, and (ii) it is also robust against
unknown heteroskedasticity (UH) besides being robust against NN. These are crucial in de-
veloping LM tests that are both NN and UH robust, as seen below. With these, an OPMD
alternative to the LM test (3.1) can be easily developed.

LM test robust against NN and UH. Neither LMn nor LMNn (or LMN0
n) is robust

against UH in model errors. To derive an LM-type test that is UH-robust, adjust Sn(ψ)
so that the adjusted score vector S◦n(ψ) is such that E[S◦n(ψ0)|H0 ] = 0 or 1

nS
◦
n(ψ0)|H0

p→ 0
as n → ∞ under UH. Let θ̃◦n = arg{S◦n,θ(θ, 0) = 0}, the UH-robust estimator of the null
model. Let Σ◦

n(ψ0) = −E[ ∂
∂ψ′S

◦
n(ψ0)] and Γ◦n(ψ0) = Var[S◦n(ψ0)], partitioned similarly as

Σn(ψ0) and Γn(ψ0). If S◦n(θ0, 0) has a martingale difference (MD) representation: S◦n(θ0, 0) =∑n
i=1 g

◦
ni(θ0) where {g◦ni(θ0)} form an MD sequence, then, similar to Sn,θ(θ̃n, 0) in (3.5),

S◦n,θ(θ̃
◦
n, 0) has the following asymptotic MD representation:

1√
n
Sn,ϕ(θ̃◦n, 0) = 1√

n

∑n
i=1[gni,ϕ(θ0)−Π◦

n(θ0)gni,θ(θ0)] + op(1),

where {g◦ni,ϕ−Π◦
n(θ0)g

◦
ni,θ} form an MD sequence, (g◦′ni,θ, g

◦′
ni,ϕ)′ = g◦ni ≡ g◦ni(θ0) and Π◦

n(θ0) =
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Σ◦
n,ϕθ(θ0, 0)Σ

◦−1
n,θθ(θ0, 0). An OPMD-based and NNUH-robust LM test takes a similar form:

LMNHn = S̃◦′n,ϕ
[∑n

i=1(g̃
◦
ni,ϕ − Π̃◦

ng̃
◦
ni,θ)(g̃

◦
ni,ϕ − Π̃◦

ng̃
◦
ni,θ)

′]−1
S̃◦n,ϕ, (3.6)

where the tilde quantities are the estimates at H0 of the corresponding quantities. Clearly,
the key in developing the UH-robust LM tests is to find the adjusted quasi score function
S◦n(θ0, 0) that is UH-robust, and hence the UH-robust estimate θ̃◦n = arg{S◦n,θ(θ0, 0) = 0}.

Notation: To proceed with details for each model, some general notation would be
helpful: (i) for a matrix Cn, Csn = Cn +C ′

n; (ii) for a square matrix Cn, its upper triangular,
lower triangular and diagonal matrices are denoted, respectively, by Cun , C

l
n and Cdn such

that Cn = Cun + C ln + Cdn, and its diagonal elements are denoted by Cn,ii; (iii) {aj} forms
a row vector if a′js are scalars, or a matrix if a′js are column vectors, and {bij} denotes a
matrix formed by the elements bij ; (iv) 0m is an m × 1 vector of zeros; (v) a quantity with
a tilde denotes the restricted (under the null) QMLE of that quantity; and (vi) a parametric
quantity, e.g., Σn(ψ), will be denoted as Σn when ψ = ψ0, shall no confusion arises.

4. BLM and Robust BLM Tests for SARAR(p, q) Model

Consider the SARAR(p, q) model given in Section 2.1: An(λ)Yn = Xnβ+un, Bn(ρ)un = εn,
where An(λ) = In −

∑p
j=1 λjW`j and Bn(ρ) = In −

∑q
j=1 ρjWej , W` = {W`1 · · · ,W`p} and

We = {We1, · · · ,Weq}. The following hypotheses are of primary interest, for p, q ≥ 2:

(a) Ha
0 : λ = 0 and ρ = 0, in SARAR(p, q);

(b) Hb
0: λ2 = · · · = λp = 0 and ρ2 = · · · = ρq = 0, in SARAR(p, q);

(c) Hc
0: λ = 0, in SARAR(p, q);

(d) Hd
0 : ρ = 0, in SARAR(p, q);

(e) He
0 : λ = 0, in SARAR(p, 0);

(f) Hf
0 : ρ = 0, in SARAR(0, q).

The generic set-up given in Section 3, where the null hypothesis is denoted by H0 : ϕ = 0 and
the parameter vector in the reduced model by θ, facilitates the general discussion. These tests
are all tests of model reduction (from a larger SLR model down to a smaller SLR model).
Other tests of model reduction may also be of interest, e.g., tests of SARAR(1, 0) vs SARAR(p, 0),
SARAR(1, 0) vs SARAR(p, q), SARAR(0, 1) vs SARAR(0, q), SARAR(0, 1) vs SARAR(p, q), etc., and
can all be handled by the general method introduced below.

Likelihood, score and information matrix. The Gaussian loglikelihood for the
SARAR(p, q) model is `n(ψ) = −n

2 ln(2πσ2)+ln |An(λ)|+ln |Bn(ρ)|− 1
2σ2 ε

′
n(β, δ)εn(β, δ), where

εn(β, δ) = Bn(ρ)[An(λ)Yn − Xnβ] and δ = (λ′, ρ′)′. Maximizing `n(ψ) gives the maximum
likelihood estimator (MLE) ψ̂n of ψ when the errors are normally distributed, otherwise quasi
MLE (QMLE) if the errors are non-normal. The Gaussian loglikelihood of the reduced model
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can be easily obtained to give the restricted (Q)MLE θ̃n of the parameter vector θ. Both
ψ̂n and θ̃n are robust against non-normality. The θ̂n component of ψ̂n will be used in the
bootstrap procedure as it is

√
n-consistent whether or not the null is true.7

The score function, Sn(ψ) = ∂
∂ψ `n(ψ), has the form:

Sn(ψ) =



1
σ2 X′

nB
′
n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, δ)εn(β, δ)− n

2σ2 ,

1
σ2 ε

′
n(β, δ)Bn(ρ)W`jYn − tr(Cjn(λ)), j = 1, · · · , p,

1
σ2 ε

′
n(β, δ)Djn(ρ)εn(β, δ)− tr(Djn(ρ)), j = 1, · · · , q,

(4.1)

where Cjn(λ) = W`jA
−1
n (λ) and Djn(λ) = WejB

−1
n (ρ). The information matrix has the form:

Σn(ψ0) =


1
σ2
0
X′
nB

′
nBnXn, 0,

{
1
σ2
0
X′
nB

′
nηjn

}
, 0

∼, n
2σ2

0
,
{

1
σ2
0
tr(Cjn)

}
,

{
1
σ2
0
tr(Djn)

}
∼, ∼,

{
1
σ2
0
η′jnηj′n + tr(C̄jnC̄sj′n)

}
,
{
tr(C̄jnDs

j′n)
}

∼, ∼, ∼,
{
tr(DjnD

s
j′n)
}

 , (4.2)

where ηjn ≡ ηjn(β0, δ0) = Bn(ρ0)Cjn(λ0)Xnβ0 and C̄jn ≡ C̄jn(δ0) = BnCjnB
−1
n , j = 1 · · · , p.

Recall the {·} notation is defined before the start of this section. Finally, the concentrated
score of δ after β and σ2 being concentrated out has the form:

S̃n,δ(δ) =

 1
σ̃2

n(δ)
ε̃′n(δ)Bn(ρ)W`jYn − tr(Cjn(λ)), j = 1, · · · , p,

1
σ̃2

n(δ)
ε̃′n(δ)Djn(ρ)ε̃n(δ)− tr(Djn(ρ)), j = 1, · · · , q,

(4.3)

where ε̃′n(δ) = ε′n(β̃n(δ), δ), and β̃n(δ) and σ̃2
n(δ) are the QMLEs of β and σ2 at a given δ.

LM and BLM tests. The tests in (a)-(d) are of the same nature as each corresponds
to a test of model reduction from the full SARAR(p, q), p, q ≥ 2 model down to a model with
fewer spatial terms. Thus, they take the general form given in (3.1), or the following reduced
form given by Liu and Yang (2017):

LMSARAR(δ) = S̃′n,δ(δ)

(
J̃n(δ) +K``

n (δ), K`e
n (δ)

K`e
n
′(δ), Kee

n (δ)

)−1

S̃n,δ(δ), (4.4)

where S̃n,δ(δ) is in (4.3); J̃n(δ) = 1
σ̃2

n(δ)

{
η̃′jn(δ)Mn(ρ)η̃j′n(δ)

}
p×p, η̃jn(δ) = ηjn(β̃n(δ), δ),

7For the asymptotic properties of the QMLEs under homoskedasticity, see Lee (2004) for SARAR(1,0) model,
Jin and Lee (2013) for SARAR(1,1) model, and Liu and Yang (2017) for SARAR(p, q) model. For the asymptotic
properties of the QMLEs under unknown heteroskedasticity, see Liu and Yang (2015) for SARAR(1,0) model, and
Liu and Yang (2017) for SARAR(p, q) model. For GMM estimation of the SARAR(p, q) model under homoskedas-
ticity, see Lee and Liu (2010). For GMM estimation of the SARAR(p, q) model under heteroskedasticity, see Lin
and Lee (2010), Kelejian and Prucha (2010), and Badinger and Egger (2011).
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j = 1, · · · , p, Mn(ρ) = In −Xn(ρ)[X′
n(ρ)Xn(ρ)]−1X′

n(ρ), Xn(ρ) = Bn(ρ)Xn; and

K``
n (δ) =

{
tr(C̄jnC̄sj′n)− 2tr(C̄jn)tr(C̄j′n)

}
p×p,

K`e
n (δ) =

{
tr(C̄jnDs

j′n)− 2tr(C̄jn)tr(Dj′n)
}
p×q,

Kee
n (δ) =

{
tr(DjnD

s
j′n)− 2tr(Djn)tr(Dj′n)

}
q×q.

With the general expression (4.4), the LM test statistics for (a)-(d) are obtained by setting
δ = 0 for (a), (λ̃1n, 0′p−1, ρ̃1n, 0′q−1)

′ for (b), (0′p, ρ̃
′
n) for (c), and (λ̃′n, 0

′
q) for (d), where the

tilded parameters are the constrained QMLEs of the corresponding parameters under the
respective null hypothesis. For easy reference, the resulted statistics are denoted, respectively,
by LM(a)

SARAR, LM(b)
SARAR, LM(c)

SARAR, and LM(d)
SARAR.

Of particular interest is LM(a)
SARAR for testing Ha

0 : λ = 0 and ρ = 0, which takes the form:

LM(a)
SARAR =

1
σ̃4
n

(
ε̃′nW`Yn

ε̃′nWeε̃n

)′(
J̃n +K``

n , K`e
n

K`e
n
′
, Kee

n

)−1(
ε̃′nW`Yn

ε̃′nWeε̃n

)
, (4.5)

where ε̃′nW`Yn denotes (ε̃′nW`1Yn, · · · , ε̃′nW`pYn)′, ε̃′nWeε̃n denotes (ε̃′nWe1ε̃n, · · · , ε̃′nWeq ε̃n)′,
ε̃n, β̃n and σ̃2

n are from OLS regression of Yn on Xn, J̃n =
{

1
σ̃2

n
η̃′jnMnη̃j′n

}
, η̃jn = W`jXnβ̃n,

K``
n =

{
tr(W`jW

s
`j′)
}
, K`e

n =
{
tr(W`jW

s
ej′)
}
, Kee

n =
{
tr(WejW

s
ej′)
}
, and Mn = Mn(0). The

LM test LM(a)
SARAR can easily be simplified to give LM tests for H(e)

0 and Hf
0 :

LM(e)
SLD = σ̃−4

n (ε̃′nW`Yn)′
(
J̃n +K``

n

)−1(ε̃′nW`Yn), (4.6)

LM(f)
SED = σ̃−4

n (ε̃′nWeε̃n)′
(
Kee
n

)−1(ε̃′nWeε̃n). (4.7)

These tests generalize the tests given in Example 2.1, and can be shown to be NN-robust by
verifying that the ‘variance’ in (3.3) is (asymptotically) equivalent to Σ̃n,ϕϕ−Σ̃n,ϕθΣ̃−1

n,θθΣ̃n,θϕ.
Liu and Yang (2017) show that the asymptotic null distributions of the tests for the

hypotheses in (a)-(f) are chi-square with degrees of freedom being, respectively, p+q, p+q−2,
p, q, p and q. However, the finite sample performance of these tests when referring to the
chi-square critical values can be poor, similar to the tests for SARAR(1,1) model given in
(2.13)-(2.15). They went on to derive the finite sample improved versions of these tests by
re-standardizing the concentrated scores. However, as seen from their work, the method
of re-standardization can be complicated when the concentrated scores involve estimates of
nonlinear spatial parameters such as the cases (b)-(d), besides the issues related to one-sided
tests. In this paper, we demonstrate how the bootstrap provide refined approximation to
the finite sample critical values, leading to tests with a second-order accuracy in size. As
discussed in Section 2, for bootstrap to achieve second-order accuracy, the test statistic has
to be an asymptotic pivotal under the null. In this sense, one can use the simplest form of test
statistic without going through the complicated process of restandardization. Furthermore,
in cases that tests are univariate and one-sided tests can be carried out, bootstrap method
offers an additional advantage of being able to approximate the actual one-side critical values.
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The bootstrap versions of the above tests can be obtained in a similar way as in Example
2.1. Let β̂n be the unrestricted QML estimate of β and ε̂n the unrestricted QMLE residuals.
The bootstrap DGP is Y ∗

n = Xnβ̂n + ε∗n, where ε∗n is an n × 1 vector of iid draws from the
EDF of ε̂ni, taking the same form for all three tests but with β̂n and ε̂n corresponding to
SARAR(p, 0), SARAR(0, q), and SARAR(p, q), respectively. Taking the test LM(e)

SLD given in (4.6)
for example, based on the bootstrap data (Y ∗

n ,Xn,W`), the bootstrap analogue of LMe
SLD is

LM(e)∗
SLD = σ̃∗−4

n (ε̃∗′nW`Y
∗
n )′
(
J̃∗n + K``

n

)−1(ε̃∗,′n W`Y
∗
n ). Repeated samples from the EDF of ε̂n

give a sequence of bootstrap values for LMSLD, and hence the BCVs.
To demonstrate further how flexible the bootstrap method is, we use the test statis-

tic LM(b)
SARAR, obtained from (4.4) by replacing δ by δ̃n = (λ̃1n, 0′p−1, ρ̃1n, 0′q−1)

′, for testing
SARAR(1, 1) vs SARAR(p, q). In this case, θ = (β, σ2, λ1, ρ1)′, and ϕ = (λ2, . . . , λp, ρ2, . . . , ρq)
which is 0p+q−2 under the null. Let θ̂n be the MLE of θ and ε̂n be the ML residuals from the
estimation of the full SARAR(p, q) model, based on the original data. The bootstrap DGP is

Y ∗
n = (In − λ̂1nW`1)−1[Xnβ̂n + (In − ρ̂1nWe1)−1ε∗n], (4.8)

where ε∗n is a vector of n iid draws from the EDF of ε̂n. Based on the bootstrap data from the
above DGP: (Y ∗

n ,Xn,W`1,We1), estimate the null model SARAR(1, 1) to give the bootstrap
estimates β̃∗n,σ̃

∗2
n , and δ̃∗n = (λ̃∗1n, 0

′
p−1, ρ̃

∗
1n, 0

′
q−1)

′, and then compute the bootstrapped value:

LM(b)∗
SARAR = S̃′n,δ(δ̃

∗
n)

(
J̃n(δ̃∗n) +K``

n (δ̃∗n), K`e
n (δ̃∗n)

K`e
n
′(δ̃∗n), Kee

n (δ̃∗n)

)−1

S̃n,δ(δ̃∗n), (4.9)

where S̃n,δ(δ) is given in (4.3) and other quantities are defined below (4.4). Repeat this
process B times to give a sequence of bootstrapped values of LM(b)

SARAR under the null, and
their sample quantiles give the bootstrap critical values.

NN-robust LM and BLM tests. To give LM and BLM tests that are generally robust
against non-normality, we follow the OPMD method introduced in Section 3 as this method
gives an NN-UH robust estimate of the variance of the score without the need of an analytical
expression of it. Also this method is simple and the resulted test statistics are asymptotically
pivotal at the null, which is all it is needed for BLM to achieve second-order accuracy.

Writing the element Bn(ρ)W`jYn in the quasi score function Sn(ψ) given in (4.1) as
C̄jn(δ)Yn(δ) where Yn(δ) = Bn(ρ)An(λ)Yn and noticing that Yn(δ0) = Xn(ρ0)β0 + εn. Then,
at the true parameter value ψ0, we have, for the score vector given in (4.1),

Sn(ψ0) =



1
σ2
0
X′
nB

′
nεn,

1
2σ4

0
ε′nεn − n

2σ2
0
,

1
σ2
0
ε′nC̄jnεn + 1

σ2
0
ε′nηjn − tr(Cjn), j = 1, · · · , p,

1
σ2
0
ε′nDjnεn − tr(Djn), j = 1, · · · , q.

(4.10)
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This leads immediately to an MD representation: Sn(ψ0) =
∑n

i=1 gni(ψ0), where

gni(ψ0) =



1
σ2
0
xbiεni,

1
2σ4

0
(ε2ni − σ2

0),
1
σ2
0
[εniξjn,i + C̄jn,ii(ε2ni − σ2

0) + ηjn,iεni], j = 1, · · · , p,
1
σ2
0
[εniζjn,i +Djn,ii(ε2ni − σ2

0)], j = 1, · · · , q,

(4.11)

where xbi is the ith column of X′
nB

′
n, ξjn = (C̄u′jn + C̄ ljn)εn, and ζjn = (Du′

jn +Dl
jn)εn.

Equipped with (4.2) and (4.11), and following general principles laid out by (3.4) and the
discussions around it, we have the general form of NN-robust LM test:

LMN(m)
SARAR = S̃′n,ϕ

[∑n
i=1(g̃ni,ϕ − Π̃ng̃ni,θ)(g̃ni,ϕ − Π̃ng̃ni,θ)′

]−1
S̃n,ϕ, (4.12)

where m = a, b, c, d, e, f , giving the NN-robust tests for the six hypotheses listed above. The
Π̃n can be either the plug-in estimate of Πn = Σn,ϕθΣ−1

n,θθ based on Σn(ψ0) given in (4.2), or
the estimate based on the Hessian matrix, with θ and ϕ defined accordingly. For example,
for testing Ha

0 : δ = 0, we have θ = (β′, σ2)′ and ϕ = δ, Πn = Σn,ϕθΣ−1
n,θθ has only non-zero

element at the upper-left corner block:
{
η′jnXn(ρ)[X′

n(ρ)Xn(ρ)]−1
}
, and for tests in (e) and

(f), we have θ = (β′, σ2)′, and δ = λ for (e) and ρ for (f). Liu and Yang (2017) show that the
null asymptotic distribution of LMN(m)

SARAR is chi-square with degrees of freedom being dim(ϕ).
Bootstrap critical values for the NN-robust LM tests are obtained in a similar manner. As

discussed above, the parameter estimates maximizing the Gaussian likelihood of the SARAR

models are robust against non-normality, the bootstrap DGPs take the same form as those
for the case of the regular LM tests, e.g., (4.8) for testing SARAR(1, 1) vs SARAR(p, q).

NNUH-robust LM and BLM tests. Under UH, i.e., εni ∼ (0, σ2
0hi). From (4.10), it

is easy to see that the δ-component of E[Sn(ψ0)], involving {hi}, is not zero in general, and
that the probability limit of 1

nSn(ψ0) is not zero in general. Thus, the statistics developed
earlier would not converge to central chi-squares limiting distributions under the null, and
inferences based on them would be misleading. Define

S◦n(ψ) =



1
σ2 X′

nB
′
n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, δ)εn(β, δ)− n

2σ2 ,

1
σ2 ε

′
n(β, δ)C̄

◦
jn(δ)Yn(δ), j = 1, · · · , p,

1
σ2 ε

′
n(β, δ)D

◦
jn(ρ)εn(β, δ), j = 1, · · · , q,

(4.13)

where C̄◦
jn(δ) = C̄jn(δ) − diag(C̄jn(δ)) and D◦

jn(δ) = Djn(δ) − diag(Djn(δ)). It is easy to
verify that, under UH, E[S◦n(ψ0)] = 0 and 1

nS
◦
n(ψ0)

p→ 0. Solving S◦n(ψ) = 0 leads to NNUH-
robust estimator ψ̂◦n for ψ of the full model, and the θ̂◦n component of ψ̂◦n will be used in the
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bootstrap procedure discussed below. Similarly, solving S◦n,θ(ψ) = 0 under H0 : ϕ = 0 gives
the restricted NNUH-robust estimator θ̃◦n of θ. See Liu and Yang (2017) for details.

Similarly, S◦n(ψ0) has an MD representation: S◦n(ψ0) =
∑n

i=1 g
◦
ni(ψ0), where

g◦ni(ψ0) =



1
σ2
0
xbiεni,

1
2σ4

0
(ε2ni − σ2

0),
1
σ2
0
(εniξ◦jn,i + η◦jn,iεni), j = 1, · · · , p,

1
σ2
0
εniζ

◦
jn,i, j = 1, · · · , q,

(4.14)

where xbi is as in (4.11), ξ◦jn = (C̄◦u′
jn + C̄◦l

jn)εn, ζ
◦
jn = (D◦u′

jn +D◦l
jn)εn, and η◦jn = C̄◦

jnBnXnβ0.
With S◦n(ψ0) and its MD representation, letting Π̃◦

n = [ ∂∂θ′S
◦
n,ϕ(θ̃◦n, 0)][ ∂∂θ′S

◦
n,θ(θ̃

◦
n, 0)]−1 be

a feasible estimate of Π◦
n = Σ◦

n,ϕθΣ
◦−1
n,θθ, the LM tests fully robust against NN and UH take

the general form as that given in (3.6):

LMNH(m)
SARAR = S̃◦′n,ϕ

[∑n
i=1(g̃

◦
ni,ϕ − Π̃◦

ng̃
◦
ni,θ)(g̃

◦
ni,ϕ − Π̃◦

ng̃
◦
ni,θ)

′]−1
S̃◦n,ϕ, (4.15)

where S̃◦n,ϕ = S◦n,ϕ(θ̃◦n, 0), g̃◦ni,θ and g̃◦ni,ϕ are the subvectors of g◦ni(θ̃
◦
n, 0), and m = a, b, c, d, e, f

corresponding to the six tests defined at the beginning of this section with relevant choice
of θ and ϕ and the related quantities. Liu and Yang (2017) show that the null asymptotic
distribution of LMNH(m)

SARAR is chi-square with degrees of freedom being dim(ϕ).
We again use the case (b) with the test statistic LMNH(b)

SARAR to provide details on the
bootstrap procedures for obtaining refined approximations to the finite sample critical values
of the test statistics. First, the test statistic LMHN(b)

SARAR is obtained from (4.15) using θ̃◦n =
(β̃◦′n , σ̃

◦2
n , λ̃

◦
1n, ρ̃

◦
1n)

′. Based on the unrestricted estimates θ̂◦n = (β̂◦′n , σ̂
◦2
n , λ̂

◦
1n, ρ̂

◦
1n)

′ and the
unrestricted residuals ε̂◦n obtained from the UH-robust estimation of the full model, the wild
bootstrap DGP is set up as follows:

Y ∗
n = (In − λ̂◦1nW`1)−1[Xnβ̂

◦
n + (In − ρ̂◦1nWe1)−1(ε̂◦n � v∗n)], (4.16)

where v∗n is a vector of n iid draws from a distribution as discussed in Section 2. Based on the
bootstrap data from the above DGP: (Y ∗

n ,Xn,W`1,We1), estimate the null model SARAR(1, 1)
to give the bootstrap estimate θ̃◦∗n , and then compute the bootstrapped value:

LMNH(b)∗
SARAR = S̃◦∗′n,ϕ

[∑n
i=1(g̃

◦∗
ni,ϕ − Π̃◦∗

n g̃
◦∗
ni,θ)(g̃

◦∗
ni,ϕ − Π̃◦∗

n g̃
◦∗
ni,θ)

′]−1
S̃◦∗n,ϕ. (4.17)

Repeat this process B times to give a sequence of bootstrapped values of LMNH(b)
SARAR under

the null, and their sample quantiles give the bootstrap critical values.8

8The usual plug-in estimate may not be feasible as the explicit expression of Σ◦
n contains the unknown

heteroskedasticity {hi} besides the regular parameters. It can easily be verified that the tests LMN
(a)
SARAR,

LMN
(e)
SARAR, and LMN

(f)
SARAR defined in (4.12) are also UH-robust. Assumption B4 may be verified based on
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5. BLM and Robust BLM Tests for MESS(p, q) Model

Consider the SLR model with MESS(p, q) effect: An(λ)Yn = Xnβ + un, Bn(ρ)un = εn,
where An(λ) = exp(

∑p
j=1 λjW`j) and Bn(ρ) = exp(

∑q
j=1 ρjWej). Similar to the SARAR(p, q)

model, the following hypotheses are of primary interest:

(a) Ha
0 : δ = 0, in MESS(p, q);

(b) Hb
0: λ2 = · · · = λp = 0 and ρ2 = · · · = ρq = 0, in MESS(p, q);

(c) Hc
0: λ = 0, in MESS(p, q);

(d) Hd
0 : ρ = 0, in MESS(p, q);

(e) He
0 : λ = 0, in MESS(p, 0);

(f) Hf
0 : ρ = 0, in MESS(0, q).

Again, we use the notation δ to denote (λ′, ρ′)′, θ to denote the parameters in the null model,
and ϕ to denote the additional parameters in the full model which are specified by the null
hypothesis to be zero. Other tests of model reduction concerning δ only can be treated in
the same way, using the general methods introduced below.

We will proceed with the details on the construction of the LM and robust LM tests
without providing detailed proofs of the results as they are largely implied by the asymptotic
results in the supplement file to Debarsy et al. (2015), except the case of NNUH-robust LM
tests, of which proofs require the central limit theorems for linear-quadratic form of Kelijian
and Prucha (2001) and the weak law of large numbers of, e.g., Davidson (1994).

Likelihood, score and information matrix. The loglikelihood function of the MESS(p, q)
model is `n(ψ) = − 2

n ln(2πσ2)− 1
2σ2 ε

′
n(β, δ)εn(β, δ), where εn(β, δ) = Bn(ρ)[An(λ)Yn−Xnβ].

Maximizing `n(ψ) gives the unrestricted MLE or QMLE ψ̂n of ψ in the full model, and
maximizing the loglikelihood of the reduced model under the null gives the restricted MLE
or QMLE θ̃n of θ. Note that, with MESS specifications, ln |An(λ)| = 0 and ln |Bn(ρ)| = 0.
Thus, the QML estimation of the MESS(p, q) model has a computational advantage over that
of a SARAR(p, q) model as it avoids the repeated calculations of the determinants of the two
matrices An(λ) and Bn(ρ) in the optimization process. Another advantage is that the QM-
LEs of the MESS(p, 0) and MESS(0, q) models are robust against unknown heteroskedasticity,
and the QMLEs of the MESS(p, q) model can be robust against unknown heteroskedasticity if
W`jWej′ = Wej′W`j , i.e., the two types of spatial weights matrices are commutative. These
can easily be seen by showing that the expectation of the score (given below) at the true pa-
rameters values under UH are zero.9 To allow for more generality, we do not assume W`j and
Wej′ to be commutative, and propose a UH-robust QML-type estimators for the MESS(p, q)
model and use them in constructing the UH-robust bootstrap LM tests.

univariate tests given in (2.20) and (2.21) alone the lines of Yang (2015) for iid errors.
9A further advantage of the QML estimation of the MESS(p, q) model is that its parameter space is unre-

stricted, whereas the values of the parameters in the SARAR(p, q) must be restricted in a compact space which
can be hard to find (Lee and Liu, 2010; Elhorst et al., 2012). Consistency and asymptotic normality of the
QMLEs of the general MESS(p, q) model are proved in the supplement file to Debarsy et al. (2015).
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The score function of ψ = (β′, σ2, δ′)′ has the forms:

Sn(ψ) =



1
σ2X

′
nB

′
n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, δ)εn(β, δ)− n

2σ2

− 1
σ2 ε

′
n(β, δ)Bn(ρ)Ȧnj(λ)Yn, j = 1, · · · , p,

− 1
σ2 ε

′
n(β, δ)Ḃnj(ρ)[An(λ)Yn −Xnβ], j = 1, · · · , q,

(5.1)

where Ȧnj(λ) = ∂
∂λj

An(λ), j = 1, . . . , p, and Ḃnj(ρ) = ∂
∂ρj

Bn(ρ), j = 1, . . . , q. The informa-
tion matrix has a similar form to that for SARAR(p, q) model given in (4.2).

Σn(ψ0) =


1
σ2
0
X′
nB

′
nBnXn, 0,

{
1
σ2
0
X′
nB

′
nηjn

}
, 0

∼, n
2σ2

0
,
{

1
σ2
0
tr(Cjn)

}
,

{
1
σ2
0
tr(Djn)

}
∼, ∼,

{
1
σ2
0
η′jnηj′n + T ``n,jj′

}
,
{
tr(C̄jnDs

j′n)
}

∼, ∼, ∼,
{
T een,jj′

}

 , (5.2)

where ηjn = BnCjnXnβ0, Cjn = ȦnjA
−1
n , Djn = ḂjnB

−1
n , and C̄jn = BnCjnB

−1
n ; T ``n,jj′ =

tr(CjnCj′n + Än,jj′A
−1
n ), and T een,jj′ = tr(DjnDj′n + B̈n,jj′B

−1
n ); and Än,jj′ = ∂2

∂λj∂λj′
An(λ0),

and B̈n,jj′ = ∂2

∂ρj∂ρj′
An(ρ0). The partial derivatives of An(λ) and Bn(ρ) do not possess closed

form expressions, unless W`j and W`j′ are commutative, and Wej and Wej′ are commutative.
However, the LM type-tests considered in this paper require their expressions only at the null.
When the null model is of order MESS(1,1) or lower, we have Ȧn,j(λ1, 0p−1) = W`jAn(λ1, 0p−1)
and Ȧn,j(0p) = W`j , and Ḃn,j(ρ1, 0q−1) = WejBn(ρ1, 0q−1) and Ḃn,j(0q) = Wej . Hence, LM
tests can be constructed using the OPMD estimate of Γn (as in this case, Γn = Σn) so that
the second-order partial derivatives are avoided. For more general LM tests, robust LM tests,
BLM and robust BLM tests, one may consider to use the following alternative specifications:

An(λ) =
∏p
j=1 exp(λjW`j) and Bn(ρ) =

∏q
j=1 exp(ρjWej), (5.3)

to overcome the difficulties in finding the partial derivatives. It would be interesting to study
in detail this alternative MESS(p, q) model, but it is beyond the scope of this paper.

LM and BLM tests. For the LM tests of the first four hypotheses that correspond to
the tests of model reduction from MESS(p, q), we adopt the general form given in (3.1):

LM(m)
MESS = S̃′n,ϕ

(
Σ̃−1
n

)
ϕϕ
S̃n,ϕ, (5.4)

where m = a, b, c, d, and correspondingly ϕ = δ, (λ2, . . . , λp, ρ2, . . . , ρq)′, λ, and ρ. The tests
(e) and (f) can be obtained from the test (a) by dropping the ρ-components or λ-components.

Of particular interest is LM(a)
MESS for testing Ha

0 : δ = 0 in MESS(p, q), and very interestingly
it can easily be seen that under (5.3) it takes the identical form as LM(a)

SARAR given in (4.5).
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Similarly, the LM test LM(e)
MESS for testing He

0 : λ = 0 in MESS(p, 0q) has the identical form
as LM(e)

SLD given in (4.6), and the LM test LM(f)
MESS for testing Hf

0 : ρ = 0 in MESS(0p, q) has
the identical form as LM(f)

SED given in (4.7). This means that the tests given in (4.5)-(4.7)
derived under SARAR(p, q) specification not only have power against the departure from the
linear regression in the form of SARAR but also have power against the MESS. It can also be
easily seen that these tests have power against the SAR in response and spatial moving average
(SMA) in the error. Similar properties may hold for the robust versions of these tests.

The tests LM(b)
MESS, LM(c)

MESS, and LM(d)
MESS are similar to LM(b)

SARAR, LM(c)
SARAR, and LM(d)

SARAR for
the SARAR(p, q) model but not identical. This is because the elements related to the spatial
effects remained in the null model are different for different specifications on spatial effects.
It is easy to see that when λ is a scalar, or {W`j} are commutative, or the alternative MESS

form given in (5.3) is used, tr(Cjn) = 0; similarly for tr(Cjn). Hence, the derivation of the
LM tests can be done without the σ2-components of the score and the information matrix.
In general, this property may not hold, and thus the σ2-components are kept.

Bootstrap proceeds in a similar manner. Let θ̂n be the MLE of θ and ε̂n be the ML
residuals from the estimation of the full MESS(p, q) model, based on the original data. Taking
for example the test LM(b)

MESS for testing Hb
0 : ϕ = 0, where ϕ = (λ2, . . . , λp, ρ2, . . . , ρq)′ = 0,

the bootstrap DGP is

Y ∗
n = exp(−λ̂1nW`1)[Xnβ̂n + exp(−ρ̂1nWe1)ε∗n], (5.5)

where ε∗n is a vector of n iid draws from the EDF of ε̂n. Based on the bootstrap data from
the above DGP: (Y ∗

n ,Xn,W`1,We1), estimate the null model MESS(1, 1) to give the bootstrap
estimates θ̃∗n = (β̃∗′n , σ̃

∗2
n , λ̃

∗
1n, ρ̃

∗
1n)

′, and then compute the bootstrapped value:

LM(b)∗
MESS = S̃∗′n,ϕ(Σ̃∗−1

n )ϕϕS̃∗n,ϕ, (5.6)

at θ̃∗n, ε
∗
n, and ϕ = 0. Repeat this process B times to give a sequence of bootstrapped values

of LM(b)
MESS under the null, and their sample quantiles give the bootstrap critical values.

NN-robust LM and BLM tests. We again use the OPMD form of the LM test given
in Section 3. The score at ψ0 has an identical form as that in (4.10) for the SARAR model:

Sn(ψ0) =



1
σ2
0
X′
nB

′
nεn,

1
2σ4

0
ε′nεn − 1

2σ2
0
,

1
σ2
0
ε′nC̄jnεn + 1

σ2
0
ε′nηjn − tr(Cjn), j = 1, · · · , p,

1
σ2
0
ε′nDjnεn − tr(Djn), j = 1, · · · , q,

(5.7)

which leads to an identical MD representation for Sn(ψ0) as that given in (4.11) for the SARAR
model, i.e., Sn(ψ0) =

∑n
i=1 gni(ψ0), where gni(ψ0) is given in (4.11), but replacing the C̄jn
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and Djn by those defined below (5.2). Thus, the NN-robust test for testing Hm
0 is

LMN(m)
MESS = S̃′n,ϕ

[∑n
i=1(g̃ni,ϕ − Π̃ng̃ni,θ)(g̃ni,ϕ − Π̃ng̃ni,θ)′

]−1
S̃n,ϕ, (5.8)

where m = a, b, c, d, e, f , which is identical in form to the general test LMN(m)
SARAR given in

(4.12). The bootstrap critical values for the NN-robust LM tests are obtained in a similar
manner as those for the NN-robust LM tests for the SARAR(p, q) model.

NNUH-robust LM and BLM tests. Modify the score function so that it is robust
against UH, besides being robust against NN:

S◦n(ψ) =



1
σ2X

′
nB

′
nεn(β, δ),

1
2σ4 ε

′
n(β, δ)εn(β, δ)− 1

2σ2
0
,

1
σ2 ε

′
n(β, δ)C̄

◦
jn(δ)Bn(ρ)An(λ)Yn, j = 1, · · · , p,

1
σ2 ε

′
n(β, δ)D

◦
jn(ρ)εn(β, δ), j = 1, · · · , q,

(5.9)

where C̄◦
jn(δ) = C̄jn(δ)−diag(C̄jn(δ)) and D◦

jn(ρ) = Djn(ρ)−diag(Djn(ρ)). The unrestricted
NNUH-robust QMLE of ψ is thus

ψ̂◦n = arg{S◦n(ψ) = 0},

and its component θ̂◦n is used as the ‘parameters’ in the bootstrap DGP. The restricted
NNUH-robust QMLE for θ under the null hypothesis H0 : ϕ = 0, is thus

θ̃◦n = arg{S◦n,θ(θ, ϕ)|ϕ=0 = 0}.

Based on θ̃◦n and the MD representation for S◦n(ψ0), one easily obtains the NNUH-robust
LM test LMNH(m)

MESS, which has an identical form as LMNH(m)
SARAR given in (4.15), for m =

a, b, c, d, e, f . The bootstrap critical values for the NNUH-robust LM tests are obtained in a
similar manner as those for the NNUH-robust LM tests for the SARAR(p, q) model.

Take for example the test LMNH(b)
MESS. We have θ = (β′, σ2, λ1, ρ1)′. Using the unrestricted

estimate θ̂◦n and the unrestricted residuals ε̂◦n from the UH-robust estimation of the full model
discussed above, the wild bootstrap DGP is

Y ∗
n = exp(−λ̂◦1nW`1)[Xnβ̂

◦
n + exp(−ρ̂◦1nWe1)(ε̂◦n � v∗n)], (5.10)

where v∗n is a vector of n iid draws from a distribution as discussed in Section 2. Based on the
bootstrap data from the above DGP: (Y ∗

n ,Xn,W`1,We1), estimate the null model MESS(1, 1)
to give the bootstrap estimate θ̃◦∗n , and then compute the bootstrapped value:

LMNH(b)∗
MESS = S̃◦∗′n,ϕ

[∑n
i=1(g̃

◦∗
ni,ϕ − Π̃◦∗

n g̃
◦∗
ni,θ)(g̃

◦∗
ni,ϕ − Π̃◦∗

n g̃
◦∗
ni,θ)

′]−1
S̃◦∗n,ϕ. (5.11)

Repeat this process B times to give a sequence of bootstrapped values of LMNH(b)
MESS under
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the null, and their sample quantiles give the bootstrap critical values.
Some final remarks for the UH-robust QML estimation of the MESS(p, q) model are as

follows. It can be proved along the lines of Liu and Yang (2017) that the unrestricted
estimator ψ̂◦n is

√
n-consistent under unknown heteroskedasticity, so is the restricted estimator

θ̃◦n when the restrictions are true. As in Liu and Yang (2017) for the SARAR(p, q) model, one
could also pursue the finite sample improved estimators and LM tests robust against UH
through re-standardization. However, as discussed in the introduction, in order to obtain
the asymptotically refined critical values through bootstrapping, it is sufficient that the test
statistic is asymptotic pivotal under the null.

6. Monte Carlo Results

Monte Carlo experiments are run to assess the finite sample performance of the proposed
tests, based on a SARAR(2, 2) model and a MESS(2, 2) model, both having two regressors and
a constant term with coefficients β = (5, 1, 1)′. W`1 = We1, which are generated from the
Queen contiguity scheme, and W`2 = We2, which are generated from a group interaction

scheme with an average group size of 10, and the sizes of the groups are generated uniformly
from 2 to 18. The errors {εni} are iid copies of Z ∼ N(0, 1), or lognormal (standardized
exp(Z)), or normal mixture (mixing Z and 4Z with probabilities 0.9 and 0.1, and then
standardizing). The regressors’ values are generated in a non-iid manner as in Yang (2015).
To conserve space, only a portion of the Monte Carlo results are presented here in Tables 1
and 2 for tests of Ha

0 corresponding to SARAR(2, 2) and MESS(2, 2), respectively.10 Each set
of results (under a given combination of λ, ρ and n values, and error distribution) are based
on 2000 Monte Carlo samples and 699 bootstrap samples within each Monte Carlo sample.

The results (reported and unreported) show that (i) the LM tests are generally undersized,
and their bootstrap versions (under iid bootstrap) have a significantly better size property
under homoskedastic errors (normal or nonnormal) but not under heteroskedasticity; (ii) the
NNUH-robust LM tests can be severely oversized in general, and their bootstrap versions
(under wild bootstrap with first distribution as in Footnote 5) have empirical sizes very close
to their nominal levels, whether the errors are normal or nonnormal, and homoskedastic
or heteroskedastic; and (iii) the NN-robust LM tests (the OPMD versions) can also be
severely oversized, and by referring to the bootstrap critical values with wild bootstrap the size
distortions can effectively be removed under both homoskedasticity and heteroskedasticity.

7. Conclusions and Discussions

Methods for bootstrapping the critical values of LM-type tests under non-normality
and/or unknown heteroskedasticity are introduced and their validity are justified. Meth-

10A more comprehensive set of Monte Carlo results is available from the author upon request.
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ods for constructing LM and robust LM tests, in particular the latter, are also introduced,
to facilitate the bootstrap methods. The outer-product-of-martingale-difference (OPMD) for
estimating the variance of the score function is seen to be a crucial step in achieving ro-
bustness against unknown heteroskedasticity. Three versions of the LM-type tests and their
bootstrap analogues are given for each of the two general higher order models, namely the
SARAR(p, q) and the MESS(p, q). These tests are easy to implement. Monte Carlo results show
that the LM-type tests referring to the bootstrap critical values effectively remove the size
distortions resulted from referring to the asymptotic critical values.

The same methodology can be applied to give LM and robust LM tests and their bootstrap
analogues for the other types of higher order SLR models such as the SLR model with a pth
order SAR response and SEC, and the SLR model with a pth order MESS in response and SEC.
However, before formal studies on these tests, a detailed and formal study on the SEC model
(2.2) with added attributes such as SAR or MESS in response and unknown heteroskedasticity
in errors, would be more interesting. Similarly, it would also be more interesting to conduct
a detailed study on the higher-order SLR model with the alternative MESS(p, q) form (5.3).
Monte Carlo evidence provided by Yang (2015) and in this paper has shown a much improved
performance of the LM-type tests referring to the bootstrap critical values over referring
to the asymptotic critical values. Thus, it would be interesting to provide some empirical
illustrations on these tests to guide the practitioners in their applications, and to provide
computer software for the full implementation of these tests.

In studying the asymptotic properties of Moran I test, Kelejian and Prucha (2001) intro-
duced a central limit theorem for linear-quadratic forms, which has over the years become a
standard tool in studying the asymptotic properties of various spatial estimators and tests,
including the LM-type tests introduced in this paper. Liu and Prucha (2016) generalized
Moran I test, allowing for higher-order spatial dependence in the disturbance as well as in
the response, heteroskedastic errors and endogenous regressors. One nice feature of the Moran
I-type tests is that the exact form of the alternative model is not required. Our tests share
many of these features except that endogenous regressors are not allowed. In cases that the
null model is an OLS regression or spatial model with spherical errors (as are the cases for the
Moran I-type tests), it can be shown that our LM-type tests have the same form under the
SAR, MESS and SME (in error) alternatives. Or null model can be more general, e.g., SARAR(1, 1)
and MESS(1, 1), corresponding to tests of spatial model reduction from a high-order one. The
main focuses of our paper are to introduce the OPMD forms of the LM-type statistics that are
NN- or NNUH-robust, and to introduce their bootstrap versions that achieve second-order
size approximations. It would be highly interesting, as future research works, to extend our
tests to allow for endogenous regressors, or to develop bootstrap versions of the Moran I type
of tests given in Liu and Prucha (2016) that may have better size property when the sample
size n is not so large, e.g., 50 and 100 instead of 400 as in the paper.
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Table 1 Empirical rejection rates of LM and BLM tests of Ha
0 : λ = 0 and ρ = 0 in SARAR(2, 2)

Homoscedastic Errors Heteroskedastic Errors
Normal Errors Lognormal Normal Errors Lognormal

λ1 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
LM(a)

SARAR 0.2 .487 .392 .248 .476 .390 .220 .432 .342 .189 .455 .356 .211
0.1 .197 .131 .058 .169 .108 .042 .155 .093 .036 .159 .101 .036
0.0 .082 .042 .005 .059 .024 .005 .059 .029 .007 .058 .026 .007

-0.1 .083 .035 .007 .070 .022 .003 .046 .019 .001 .051 .014 .002
-0.2 .151 .055 .008 .162 .060 .005 .102 .041 .002 .128 .056 .005

LM(a)∗
SARAR 0.2 .523 .430 .269 .539 .438 .264 .459 .360 .198 .496 .392 .216

0.1 .229 .153 .064 .219 .141 .050 .172 .109 .041 .183 .124 .041
0.0 .103 .051 .009 .089 .041 .008 .075 .037 .009 .079 .033 .008

-0.1 .109 .054 .010 .104 .045 .006 .059 .024 .001 .072 .025 .002
-0.2 .197 .085 .014 .247 .108 .013 .132 .059 .003 .179 .081 .006

LMNH(a)
SARAR 0.2 .371 .207 .038 .438 .258 .054 .364 .215 .038 .437 .272 .059

0.1 .222 .114 .020 .200 .102 .018 .210 .106 .015 .203 .102 .018
0.0 .210 .099 .017 .155 .075 .014 .204 .101 .015 .147 .069 .007

-0.1 .320 .175 .031 .224 .098 .011 .290 .146 .028 .216 .115 .018
-0.2 .452 .264 .046 .359 .193 .030 .426 .240 .040 .369 .199 .035

LMNH(a)∗
SARAR 0.2 .198 .110 .028 .361 .253 .102 .216 .123 .037 .368 .260 .112

0.1 .112 .057 .013 .146 .086 .028 .103 .058 .011 .150 .086 .028
0.0 .096 .052 .010 .097 .056 .015 .102 .055 .016 .101 .053 .011

-0.1 .169 .090 .022 .149 .073 .017 .145 .081 .024 .158 .084 .028
-0.2 .260 .136 .035 .264 .163 .046 .237 .139 .033 .283 .167 .056

Upper Panel: n = 50; Lower Panel: n = 200

LM(a)
SARAR 0.2 .984 .964 .925 .988 .979 .930 .972 .946 .872 .980 .963 .903

0.1 .512 .405 .219 .471 .367 .221 .463 .351 .171 .449 .331 .181
0.0 .098 .043 .013 .077 .038 .009 .081 .038 .008 .065 .035 .007

-0.1 .421 .262 .076 .430 .253 .080 .333 .184 .047 .330 .182 .050
-0.2 .935 .860 .586 .934 .861 .605 .870 .760 .461 .881 .781 .480

LM(a)∗
SARAR 0.2 .983 .968 .927 .988 .982 .921 .975 .948 .881 .983 .970 .898

0.1 .518 .417 .231 .504 .383 .215 .473 .368 .179 .481 .355 .176
0.0 .103 .053 .012 .090 .044 .010 .086 .044 .009 .078 .038 .007

-0.1 .430 .275 .084 .466 .275 .073 .337 .200 .051 .380 .213 .048
-0.2 .937 .870 .602 .943 .869 .585 .877 .772 .482 .903 .804 .460

LMNH(a)
SARAR 0.2 .970 .940 .821 .984 .961 .879 .967 .932 .790 .981 .961 .855

0.1 .466 .317 .111 .517 .358 .135 .430 .292 .110 .492 .337 .122
0.0 .160 .085 .021 .133 .062 .009 .152 .083 .020 .141 .070 .011

-0.1 .608 .462 .187 .595 .427 .163 .586 .421 .176 .582 .432 .157
-0.2 .977 .943 .775 .925 .843 .596 .963 .919 .723 .916 .838 .585

LMNH(a)∗
SARAR 0.2 .947 .909 .754 .981 .958 .893 .951 .900 .731 .979 .956 .873

0.1 .363 .234 .077 .482 .359 .160 .340 .222 .074 .468 .334 .153
0.0 .105 .050 .012 .105 .054 .009 .104 .055 .011 .119 .063 .015

-0.1 .515 .355 .125 .557 .415 .173 .476 .331 .128 .563 .422 .189
-0.2 .954 .897 .665 .918 .842 .632 .935 .870 .630 .915 .842 .628

Note: λ1 = λ2 = ρ1 = ρ2; Heteroskedasticity ∝ group size.

29



Table 2 Empirical rejection rates of LM and BLM tests of Ha
0 : λ = 0 and ρ = 0 in MESS(2, 2)

Homoscedasticity Heteroskedasticity
Normal Errors Normal Mixture Normal Errors Normal Mixture

λ1 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
LM(a)

MESS 0.2 .199 .095 .011 .185 .081 .013 .187 .090 .010 .184 .080 .013
0.1 .097 .039 .004 .091 .037 .004 .090 .039 .003 .086 .033 .005
0.0 .077 .033 .004 .075 .038 .009 .070 .029 .003 .073 .036 .009

-0.1 .190 .108 .040 .173 .106 .028 .167 .098 .035 .167 .097 .034
-0.2 .419 .321 .176 .427 .319 .161 .410 .312 .168 .421 .317 .156

LM(a)∗
MESS 0.2 .237 .132 .020 .231 .116 .021 .221 .122 .019 .226 .115 .019

0.1 .126 .056 .005 .118 .060 .008 .117 .053 .005 .112 .049 .009
0.0 .096 .045 .007 .096 .050 .013 .091 .039 .004 .095 .048 .012

-0.1 .210 .137 .049 .206 .133 .042 .192 .118 .043 .196 .115 .043
-0.2 .446 .349 .198 .479 .360 .192 .440 .350 .193 .460 .365 .190

LMNH(a)
MESS 0.2 .479 .280 .056 .396 .217 .034 .482 .284 .050 .375 .210 .024

0.1 .327 .180 .025 .223 .109 .014 .327 .171 .027 .258 .120 .015
0.0 .212 .095 .014 .158 .072 .007 .206 .100 .012 .163 .078 .010

-0.1 .226 .118 .019 .195 .089 .013 .217 .119 .021 .186 .087 .009
-0.2 .339 .190 .033 .365 .214 .029 .340 .197 .034 .374 .210 .038

LMNH(a)∗
MESS 0.2 .260 .148 .038 .270 .160 .046 .261 .150 .039 .244 .139 .038

0.1 .169 .085 .024 .133 .072 .018 .161 .085 .022 .150 .078 .018
0.0 .090 .045 .008 .088 .045 .010 .093 .045 .009 .101 .046 .012

-0.1 .106 .056 .015 .117 .064 .020 .107 .060 .015 .112 .061 .012
-0.2 .178 .098 .029 .262 .165 .054 .187 .106 .025 .262 .166 .056

Upper Panel: n = 50; Lower Panel: n = 200

LM(a)
MESS 0.2 .955 .877 .634 .952 .888 .654 .928 .840 .538 .939 .849 .572

0.1 .448 .299 .091 .421 .276 .091 .371 .224 .052 .342 .197 .047
0.0 .106 .050 .009 .085 .043 .011 .064 .028 .004 .057 .024 .008

-0.1 .499 .389 .213 .507 .397 .234 .451 .344 .187 .444 .334 .158
-0.2 .978 .958 .892 .968 .949 .880 .967 .940 .857 .962 .936 .853

LM(a)∗
MESS 0.2 .955 .883 .640 .957 .890 .581 .927 .848 .557 .948 .849 .481

0.1 .456 .315 .095 .447 .275 .071 .384 .234 .061 .360 .201 .029
0.0 .110 .055 .013 .095 .045 .008 .065 .031 .003 .061 .026 .006

-0.1 .505 .400 .217 .522 .400 .207 .459 .352 .197 .457 .341 .143
-0.2 .979 .958 .891 .968 .947 .847 .968 .939 .862 .965 .938 .819

LMNH(a)
MESS 0.2 .979 .952 .768 .977 .928 .729 .981 .949 .803 .977 .930 .737

0.1 .611 .467 .189 .610 .436 .178 .635 .489 .225 .615 .447 .177
0.0 .164 .087 .021 .132 .064 .009 .163 .086 .019 .135 .069 .012

-0.1 .425 .281 .096 .475 .332 .117 .438 .314 .120 .479 .333 .129
-0.2 .950 .898 .742 .957 .918 .757 .953 .906 .733 .953 .915 .751

LMNH(a)∗
MESS 0.2 .964 .909 .671 .960 .911 .718 .963 .906 .692 .961 .914 .725

0.1 .511 .354 .130 .539 .388 .167 .523 .379 .146 .544 .393 .159
0.0 .106 .049 .010 .096 .046 .007 .104 .051 .010 .105 .055 .012

-0.1 .327 .198 .061 .413 .287 .118 .342 .223 .071 .411 .292 .115
-0.2 .920 .860 .646 .944 .901 .756 .919 .845 .632 .939 .898 .739

Note: λ1 = λ2 = ρ1 = ρ2; Heteroskedasticity ∝ group size.
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