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Abstract9

Two methods of transforming the Weibull data to near normality, namely the Box–Cox method
and Kullback–Leibler (KL) information method, are discussed and contrasted. A simple predic-11
tion interval (PI) based on the better KL information method is proposed. The asymptotic prop-
erty of this interval is established. Its small sample behavior is investigated using Monte Carlo13
simulation. Simulation results show that this simple interval is close to the existing complicated
PI where the percentage points of the reference distribution have to be either simulated or ap-15
proximated. The proposed interval can also be easily adjusted to have the correct asymptotic
coverage.17
c© 2002 Published by Elsevier Science B.V.
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1. Introduction21

Weibull distribution has been shown to be useful for modelling and analysis of life-
time data in medical and biological sciences, engineering, etc. Many statistical methods23
have been developed for this distribution. However, simple inference methods without
requiring further approximation or simulation as those of normal distribution for simple25
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problems such as predicting a single future observation do not seem to exist. In this1
article, we explore the transformation approach for this prediction problem.
A continuous random variable X is said to follow a Weibull distribution and denoted3

by X ∼WB(�; �), if its probability density function (pdf) takes the form:

f(x; �; �) = (�=��)x�−1 exp[− (x=�)�]; �¿ 0 and �¿ 0: (1.1)

The parameter � is called the scale parameter and � is the shape parameter. It is well5
known that log(X ) follows an extreme value distribution, a member of the location-scale
family.7
Let X = (X1; X2; : : : ; Xn) be a sample of past observations from a WB(�; �) popu-

lation, and X 0 be a single future observation from the same population. The present9
article concerns with the problem of constructing a prediction interval (PI) for X 0

based on the observed value of X. Engelhardt and Bain (1979) developed a piv-11
otal quantity from which a one- or two-sided PI can be constructed. However, the
process of constructing this PI is rather complicated as the true distribution of the13
pivotal quantity is unknown. Hence, its percentage points have to be either sim-
ulated (Fertig et al., 1980; Mee and Kushary, 1994) or approximated (Engelhardt15
and Bain, 1982). Dellaportas and Wright (1991) studied Weibull prediction problem
based on the Bayesian approach. Yang (1999b) employed the Box–Cox transforma-17
tion (Box and Cox, 1964) and developed a uniKed PI for all the lifetime distribu-
tions, including the Weibull. It is shown that this uniKed PI often meets or outper-19
forms the corresponding frequentist PIs for speciKed distributions. When compared with
the Weibull PI with approximated percentage points, his simulation results showed21
that the uniKed PI has slightly higher coverage (closer to the nominal level), but
with slightly longer length than the frequentist PI. Hence, the two PIs are about the23
same.
When it is known that the data are from the Weibull distribution, a simpler and more25

stable method than that of Box and Cox for determining the transformation parameter
is available. Hence, the resulted PI should behave better than the uniKed PI of Yang27
(1999b). Also, for a known family of distribution, it is possible to derive the exact
asymptotic coverage and to adjust the interval for a correct asymptotic coverage. These29
ideas are realized in this paper for the Weibull distribution, using the method based on
the Kullback–Leiber (KL) information number (see Kullback, 1968). The resulted PI31
is shown to be about equivalent to the existing one, but is much easier to implement:
once the maximum-likelihood estimate (MLE) of � is obtained, the interval can simply33
be calculated by a calculator.
This paper is organized as follows. Section 2 outlines and compares the two meth-35

ods of transforming the Weibull data. Section 3 presents the transformation-based PI
and studies its large sample property upon which a method of adjusting the interval37
to give correct asymptotic coverage is discussed. Furthermore, results of Monte Carlo
simulation are presented for the evaluation of the small sample properties. A numer-39
ical example is given in Section 4 for illustration and further comparison. A general
discussion is given in Section 5.41
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2. Methods for transforming the Weibull data1

If it is known that the observations are positive and continuous, such as the lifetime
observations, the Box–Cox procedure (Box and Cox, 1964) can be applied to trans-3
form a nonnormal distribution to near normality, so that further analysis can easily
be carried out based on normality assumption. When the exact distribution is known,5
the KL information can be used to obtain the relationship between the transformation
parameter and the parameter(s) of the distribution (at least this is the case for the7
Weibull distribution). The former procedure is uniKed, but should be less precise as
more parameters need to be estimated. These two methods are outlined and compared9
in this section.

2.1. The Box–Cox method11

For a nonnegative random variable X , the Box–Cox power transformation is deKned
as13

X (�) =

{
(X � − 1)=�; � �= 0;
logX; �= 0:

(2.1)

Let X(�) = {X1(�); X2(�); : : : ; Xn(�)}T denote the vector of transformed past obser-
vations and X 0(�) denote the transformed future observation. Box and Cox (1964)15
assumed the existence of � such that Xi(�) ∼ N (�; �2) for some � and �. This as-
sumptions leads to the Box–Cox estimate �̂BC of � being the solution of S(�) = 0,17
where

S(�) =−n
∑n

i=1 [Xi(�)− MX (�)][X ′
i (�)− MX

′
(�)]∑n

i=1 [Xi(�)− MX (�)]2
+

n∑
i=1

logXi; (2.2)

where X ′
i (�) is the derivative of Xi(�) and MX

′
(�) is the corresponding average. The19

reason that �̂BC is called the Box–Cox estimator instead of MLE is that Xi(�) cannot
be exact normal unless � = 0. More about the Box–Cox transformation can be found21
in Sakia (1992).

2.2. The method based on Kullback–Leibler information23

Knowing which population that the observations come from, an optimal transforma-
tion can be found based on a measure of “closeness” between two pdfs, called the KL25
information

I(f;�) =
∫
f(y; �; �; �) log

{
f(y; �; �; �)
�(y; �; �)

}
dy;

where f(y; �; �; �) denotes the pdf of Xi(�) and �(y; �; �) the pdf of a normal dis-27
tribution with mean � and standard deviation �. By minimizing I(f;�) with respect
to �; � and �, we get an optimal f(y; �; �; �) which oPers the best approximation to29
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Fig. 1. Plot of the normal (solidline) and transformed Weibull pdfs.

�(y; �; �) within the power family. Hernandez and Johnson (1980) showed that the1
best normalizing transformation for the Weibull is

�= 0:2654�:

The corresponding mean and standard deviation for a transformed observation can3
easily be seen to be �= (0:9034�� − 1)=� and �= 0:2675��=�. The minimum value of
I(f;�) is 0.00278, a very small number that is independent of the parameters � and5
�. This means that the Weibull distribution can be transformed very closely to normal,
but cannot be further improved by changing the � and � values.7
This result says that the Weibull is closest to normal when the shape parameter

� = 1
0:2654 , regardless of values of the scale parameter �. In fact, Weibull distribution9

can be considered as a power transformation of an exponential distribution and an
exponential variable can be transformed to near normality by a power of 0.2654. To11
illustrate the closeness between the two distributions, we give a plot in Fig. 1.
The Box–Cox transformation by Hernandez and Johnson (1980) can only be used13

when the shape parameter is known, which is normally not the case. However, using
the above relationship, one can easily obtain the MLE of the transformation parameter15

�̂ML = 0:2654�̂;

where �̂ is the MLE of � deKned as the solution of

1

�̂
=

(
n∑
i=1

X �̂
i logXi

)(
n∑
i=1

X �̂
i

)−1
− 1
n

n∑
i=1

logXi: (2.3)
17
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Table 1
Simulation results for the bias and MSE of �̂BC and �̂ML

Bias MSE

�; � n �̂BC �̂ML �̂BC �̂ML

1, 2 20 −0.04937 0.042316 0.113826 0.014040
30 −0.03318 0.024965 0.064531 0.007592
50 −0.02171 0.014489 0.033722 0.004080
100 −0.00971 0.007797 0.014709 0.001885

1, 0.5 20 −0.01269 0.010224 0.007209 0.000836
30 −0.00869 0.006503 0.004099 0.000484
50 −0.00523 0.003749 0.002172 0.000258
100 −0.00248 0.001844 0.000915 0.000118

Hence, the problem of estimating the transformation parameter reduces to Knding the1
MLE of the shape parameter, which is often a very simple task.

2.3. A comparison of the two transformation estimates3

Obviously, when � is known, one would use the KL information method to determine
the transformation. When � is unknown, one could choose between �̂ML and �̂BC.5
Because the process of obtaining �̂ML involves estimating only one parameter, whereas
the process of obtaining �̂BC involves estimation of three parameters, �̂ML is expected7
to have a smaller variance than �̂BC. Using a result of Yang (1999a, p. 175) and
the asymptotic variance formula for �̂ (Johnson et al., 1994, p. 657), the diPerence9
between the two estimators in terms of variability is as follows: nVar(�̂ML) ≈ 0:0428�2
and nVar(�̂BC) ≈ 0:5429�2. This clearly shows that �̂BC is much more variable than11
�̂ML. Although the conditions of Yang’s (1999a) formula are not exactly satisKed by
the Weibull variable, this approximation should still be very informative in seeing the13
larger variability of �̂BC than �̂ML. To conKrm this conclusion and to see the diPerence
when sample size is not large, a Monte Carlo comparison between these two estimators15
is carried out and the results are summarized in Table 1. The results in each row are
based on 10 000 random samples.17
The results are clearly in favor of the �̂ML as it has consistently lower bias and MSE

than �̂BC, hence should be recommended for use for developing the PI. The simulation19
results are consistent with the large sample results. The results of this section are
useful as it gives a clear indication on which method to choose when one considers21
transforming a Weibull data set for statistical analysis.

3. The transformation-based prediction interval23

In this section, we propose the transformation-based PI for the Weibull distribution
and investigate its asymptotic as well as small sample properties.25
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Table 2
A summary of the limiting coverage probabilities of PI (3.1)

Nominal Level 1− � 0.9000 0.9250 0.9500 0.9750 0.9800 0.9900
Actual Coverage 0.8986 0.9256 0.9526 0.9792 0.9843 0.9939

Adjusted Level 1− �∗ 0.9013 0.9244 0.9475 0.9710 0.9758 0.9858
Actual Coverage 0.9000 0.9250 0.9500 0.9750 0.9800 0.9900

3.1. The prediction interval and its large sample property1

The close approximation to normality of Xi(�) allows the PI for X 0(�) be constructed
in the usual manner. Since3

T (�) =
X 0(�)− MX (�)

s(�)
√
1 + n−1

(3.1)

is approximately distributed as tn−1, where MX (�) and s(�) are the sample mean and
standard deviation of the Xi(�)’s, an inverse transformation of the resulted PI for X 0(�)5
gives an approximate 100(1− �)% PI for X 0

{1 + �[ MX (�)± tn−1(�=2)s(�)
√
1 + n−1]}1=�; (3.2)

which becomes exp{ MX (0) ± tn−1(�=2)s(0)
√
1 + n−1} when � = 0, where tn−1(�=2) is7

the upper 100(�=2) percentage point of tn−1. In the case of unknown �, it is replaced
by its estimator �̂ and the resulted transformation-based PI takes the Knal form:9

{1 + �̂[ MX (�̂)± tn−1(�=2)s(�̂)
√
1 + n−1]}1=�̂: (3.3)

Denote the upper 100(�=2)% point of the standard normal by Z�=2. The theoretical
property of interval (3.3) is summarized in the following theorem:11

Theorem 3.1. Let �̂ be the MLE or any consistent estimator of �; L�(X) and U�(X)
be, respectively, the lower and upper bound of PI (3.3) with the nominal level 1− �,13
and X 0 be the future observation. Then as n → ∞, we have,

P{L�(X)6X 06U�(X)} → 1− �∗ = e−‘� − e−u� ;

where ‘� = (0:9034− 0:2675Z�=2)1=0:2654 and u� = (0:9034 + 0:2675Z�=2)1=0:2654.15

The proof of the Theorem 3.1 is lengthy and is put in Appendix A. To have some
idea on how close the limiting coverage probability is to the nominal level, we list a17
few values in the following table (the upper part of Table 2).
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Sometimes one may wish to have a PI that is at least asymptotically correct. This1
can easily be achieved, based on the result of Theorem 3.1, by adjusting the � value
in (3.3). For example, for a 95% PI, let e−‘� − e−u� = 0:95, solve for Z�=2 and hence3
the corresponding �. This can easily be accomplished by a MATHEMATICA function
called RootFind. In this case, the value � = 0:05 should be adjusted to �∗ = 0:05255
and the tn−1(�=2) value in (3.3) should be replaced by tn−1(�∗=2). The value of �∗ for
common levels are listed in the lower part of Table 2. From the results (upper part)7
of Table 2 we see that the limiting coverage probabilities are all quite close to the
corresponding nominal levels, especially around the 90–95% levels. The discrepancy9
between the limiting coverage and the nominal level reUects the ePect of nonnormality
of the transformed Weibull random variable. The results in Table 2 show that it may11
only be necessary to adjust the 99% PI. We will further examine this point in the next
subsection.13

3.2. Small sample property of the interval

Theorem 3.1 summarizes the large sample property of the PI (3.1). In this Sec-15
tion, we investigate the small sample property of this interval using Monte Carlo
simulation. The performance of the interval is also compared with the one17
reported in Engelhardt and Bain (1982). The results are reported in
Table 2.19
First, the simulation results for the new interval closely agree with the conclusion

of Theorem 3.1: the interval is a bit conservative at high coverage levels. For the 90%21
and 95% levels, simulation results indicate that the two intervals are almost equiva-
lent in the overall sense with the new interval being slightly longer but with a higher23
coverage that is closer to the nominal level. For the 99% PIs, the new interval is
a bit conservative whereas the existing one is liberal especially when n is not large25
(e.g., 0.9793 vs. 0.99). This results in the new interval being longer than the exist-
ing one. However, this is signiKcant only when population is very skewed, and when27
this happens one may consider to adjust the interval for having a correct coverage
and hence a shorter length. The simulation results for the adjusted interval that corre-29
sponds to the last row of Table 3 are: 49.8513 0.9904, 40.2908 0.9905, 34.7752 0.9901,
31.2983 0.9899, and that corresponds to the last column of the 99% PI: 1.0733 0.9897,31
2.2799 0.9903, 5.5259 0.9902, 11.6466 0.9901, 31.2983 0.9899. This indicates that if
we adjust coverage level of the new interval to be the same as that of the existing33
interval, the lengths of the two intervals would be about the same. The simulation
results corresponding to each combination of �; � and n values are based on 10 00035
samples.
From the simulation results, we see that the new PI can be signiKcantly longer than37

the existing one when 99% conKdence level is used. The more skewed the population
is, the longer it is the new PI relative to the existing one. As the skewness of a Weibull39
population depends only on the value of the shape parameter �, following rule of thumb
can be followed: apply the adjusted PI only when (estimated) �¡ 1 and a 99% PI is41
desired.
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Table 3
A summary of simulation results: upper entries for new PI

n= 20 30 50 100

(�; �) !a A.L. C.prob. A.L. C.prob. A.L. C.prob. A.L. C.prob.

90% Prediction intervals
(1,5) −0.25 0.7361 0.8976 0.7181 0.8949 0.7067 0.8998 0.6985 0.9032

0.7030 0.8816 0.6984 0.8843 0.6974 0.8951 0.6900 0.8976
(1,2) 0.63 1.5653 0.8938 1.5479 0.8943 1.5321 0.8999 1.5195 0.8952

1.5060 0.8789 1.5073 0.8898 1.5054 0.8972 1.4887 0.8925
(1,1) 2.0 3.2116 0.8938 3.1323 0.8905 3.0649 0.8913 3.0286 0.8971

2.9693 0.8863 2.9579 0.8851 2.9442 0.8888 2.9006 0.8927
(1,0.7) 3.5 5.8023 0.8944 5.4291 0.8984 5.2085 0.9018 5.0442 0.9032

4.9593 0.8776 4.8559 0.8870 4.8368 0.8955 4.7057 0.8976
(1,0.5) 6.6 11.4222 0.8930 10.5220 0.8917 10.0063 0.8925 9.6121 0.9002

9.7602 0.8845 9.4158 0.8865 9.2472 0.8912 8.8245 0.8953

95% Prediction intervals
(1,5) −0.25 0.9007 0.9548 0.8718 0.9521 0.8550 0.9542 0.8406 0.9546

0.8315 0.9337 0.8268 0.9367 0.8254 0.9442 0.8153 0.9472
(1,2) 0.63 1.8931 0.9512 1.8610 0.9520 1.8338 0.9528 1.8128 0.9528

1.7613 0.9329 1.7632 0.9419 1.7614 0.9467 1.7422 0.9441
(1,1) 2.0 4.2241 0.9491 4.0720 0.9483 3.9453 0.9500 3.8762 0.9520

3.7013 0.9355 3.6847 0.9387 3.6630 0.9429 3.6042 0.9452
(1,0.7) 3.5 8.4843 0.9559 7.8801 0.9511 7.3934 0.9513 7.0692 0.9494

6.6615 0.9363 6.5965 0.9362 6.5143 0.9426 6.3125 0.9395
(1,0.5) 6.6 19.5860 0.9511 17.5046 0.9490 16.3039 0.9500 15.4300 0.9516

15.0230 0.9358 14.3997 0.9373 14.0955 0.9431 13.3677 0.9463

99% Prediction intervals
(1,5) −0.25 1.2888 0.9935 1.2160 0.9937 1.1699 0.9934 1.1355 0.9937

1.0708 0.9798 1.0604 0.9853 1.0578 0.9870 1.0523 0.9878
(1,2) 0.63 2.5793 0.9927 2.4989 0.9939 2.4352 0.9924 2.3884 0.9933

2.2242 0.9793 2.2280 0.9840 2.2274 0.9863 2.2078 0.9885
(1,1) 2.0 7.0463 0.9922 6.5645 0.9931 6.1901 0.9931 5.9829 0.9940

5.3682 0.9796 5.3363 0.9841 5.2925 0.9857 5.1944 0.9888
(1,0.7) 3.5 18.0705 0.9933 15.5408 0.9934 14.1481 0.9937 13.1202 0.9940

11.3955 0.9811 11.0975 0.9823 11.0236 0.9850 10.6166 0.9863
(1,0.5) 6.6 56.0809 0.9929 45.8804 0.9942 40.2587 0.9951 36.5485 0.9932

32.0789 0.9805 30.2839 0.9843 29.4231 0.9885 27.5576 0.9870

aThe skewness ! is deKned as (third central moment)=(second central moment)3=2.

4. A numerical example1

In this section, we consider a real life example to illustrate the interval and further
compare it with the existing one. The data considered are the test results (millions of3
revolutions before failure) on the endurance of deep-groove ball bearings:

17:88; 28:92; 33:00; 41:52; 42:12; 45:60; 48:48; 51:84; 51:96; 54:12; 55:56;
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Table 4
Prediction limits for the ball bearings data

The PI with �̂BC The new PI The existing PI

90% (23.55, 152.6) (19.07, 142.91) (17.96, 143.06)
95% (18.55, 179.26) (12.33, 161.38) (12.23, 158.20)
99% (10.85, 247.07) (2.67, 203.09) (4.90, 188.22)

67:80; 68:64; 68:64; 68:88; 84:12; 93:12; 98:64; 105:12; 105:84; 127:92;

128:04; 173:40:

The data set was originally given by Lieblein and Zelen (1956) and has been used1
by numerous authors for illustrating the applications of the Weibull distribution. The
sample skewness is 0.9206, indicating that the data is moderately skewed to the right.3
The transformation estimators are �̂BC=0:1905 and �̂ML=0:5579, showing that the two
estimators can diPer substantially. The 90%, 95% and 99% PIs are calculated using5
the existing method as well as the new method based on �̂ML or �̂BC. The results are
summarized in Table 4.7
The new 90% PI is shorter, 95% PI is about the same as the existing one and

the 99% PI is longer than the existing one. However, after the adjustment the new9
99% PI becomes (4.16, 194.03), very close to the existing one in interval length. The
new PI after adjustment has a conKdence level about 99%, but the existing one has11
a conKdence level lower than 99%. It is also interesting to compare the new PI with
the PI using �̂BC. The results show that the latter is much wider, showing the gains by13
using a better transformation estimator. The observations from this real data example
closely agree with the theory and simulation results given in the earlier sections.15

5. Discussion

A simple prediction interval for the Weibull distribution is given in this paper. It is17
obtained by Krst transforming the Weibull observations to near normality, constructing a
prediction interval (PI) for a transformed future observation in the usual way, and then19
inverting this interval to give a PI for the original future observation. The normalizing
transformation is a simple power transformation with the estimated ‘power’ parameter21
being simply a constant times the MLE of the shape parameter. The interval is seen to
meet the existing one in terms of combined consideration of the coverage probability23
and interval length, but its simplicity makes it attractive.
It should be noted that the idea of constructing PI based on normalizing transfor-25

mation can be extended to work for any other distribution with domain being positive
half-real line. This is speciKcally meaningful for distributions where no exact methods27
are available, such as the popular gamma distribution (see Yang, 1999b).
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When PIs of high conKdence levels (such as 99%) are of interest, use of the Box–1
Cox estimate �̂BC may give the quantity inside the curling brackets of (3.3) being
negative due to the large variability of �̂BC. As a result, the PI becomes undeKned (see3
Yang, 1999b, p. 274). This problem does not show up when �̂ML, the MLE of the
transformation parameter, is used.5
When it is known which distribution the data came from, the PI can be adjusted to

have an asymptotically correct coverage. This is not possible with the general Box–Cox7
procedure under no distributional assumption. However, when it is not clear which
lifetime distribution that the data come from, the more robust Box–Cox procedure9
should be used.
Although it makes it possible to use the simple normal method to predict the future11

Weibull lifetime, the transformation approach has a limitation: no straightforward gen-
eralization of the above result to censored data while keeping its simplicity. However,13
it is in practice not uncommon to have complete life data and in this case the above
result greatly simpliKes the predictive inference for the Weibull distribution.15
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Appendix A. Proof of Theorem 3.1.17

First we show MX (�̂)
p→ � and s2(�̂)

p→ �2. A Taylor series expansion gives

MX (�̂) = MX (�) + (�̂− �)[ MX
′
(�) + Rn];

where19

MX
′
(�) =

1
n

n∑
i=1

dXi(�)
d�

=
1
n�

n∑
i=1

[X �
i log(Xi)− Xi(�)]:

Now, EXi(�) is Knite. Letting Yi = (Xi=�)� gives

E(X �
i logXi) =

∫ ∞

0
�0:2654�(log �+ �−1 log yi)y0:2654i e−yi dyi;

which is Knite as well since it is a weighted sum of gamma and digamma functions.21
The law of large number thus ensures that MX

′
(�) converges in probability, hence Rn

p→ 0
as �̂

p→ �, so is the second term. Also, MX (�)
p→ �, which gives MX (�̂)

p→�. Now,23

s2(�̂) =
1

n− 1
1∑
i=1

[Xi(�̂)− MX (�̂)]2 =
1

n− 1
n∑
i=1

X 2i (�̂)−
n

n− 1
MX 2(�̂):
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The last term converges in probability to �2 and the Krst term becomes by a Taylor1
expansion

1
n− 1

n∑
i=1

X 2i (�̂) =
1

n− 1
n∑
i=1

X 2i (�) + (�̂− �)

[
2

n− 1
n∑
i=1

Xi(�)X ′
i (�) + R

∗
n

]
:

Again letting Yi = (Xi=�)�, we have3

E(X 2�i logXi) =
∫ ∞

0
�0:5308�(log �+ �−1 log yi)y0:5308i e−yi dyi;

which is Knite as it is a weighted sum of gamma and digamma functions. This shows
the Kniteness of E[Xi(�)X ′

i (�)]. Hence, the second term in the above Taylor expansion5
converges in probability to zero and

1
n− 1

n∑
i=1

X 2i (�̂) ∼
1

n− 1
n∑
i=1

X 2i (�)
p→ �2 + �2;

which gives s2(�̂)
p→ �2.7

Second, we show that X 0(�̂) D→X 0(�), which is trivial by the Taylor expansion

X 0(�̂) = X 0(�) + (�̂− �)[dX 0(�)=d�+ R]:

Finally, an application of Slutsky’s theorem gives9

T (�̂) = [X 0(�̂)− MX (�̂)]=s(�̂) D→[X 0(�)− �]=�;

which implies that

P{L�(X)6X 06U�(X)} = P{−tn−1(�=2)6 T (�̂)6 tn−1(�=2)}
→ P{� − Z�=2�6X 0(�)6 � + Z�=2�}:

The relations �= (0:9034�� − 1)=� and �= 0:2675��=� give the result of the theorem.11
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