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Abstract

We propose quasi maximum likelihood (QML) estimation of dynamic panel models with spatial

errors when the cross-sectional dimension n is large and the time dimension T is fixed. We consider

both the random effects and fixed effects models, and prove consistency and derive the limiting

distributions of the QML estimators under different assumptions on the initial observations. We

propose a residual-based bootstrap method for estimating the standard errors of the QML estimators.

Monte Carlo simulation shows that both the QML estimators and the bootstrap standard errors

perform well in finite samples under a correct assumption on initial observations, but may perform

poorly when this assumption is not met.
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1 Introduction

Recently, there has been a growing interest in the estimation of panel data models with cross-
sectional or spatial dependence after Anselin (1988). See, among others, Elhorst (2003), Baltagi et al.
(2003), Baltagi and Li (2004), Chen and Conley (2001), Pesaran (2004), Kapoor et al. (2007), Baltagi et
al. (2007), Lee and Yu (2010a), Mutl and Pfaffermayr (2011), Parent and LeSage (2011), and Baltagi et
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al. (2013) for an overview on the static spatial panel data (SPD) models.1 Adding a dynamic element
into a SPD model further increases its flexibility, which has, since Anselin (2001), attracted the attention
of many econometricians. The spatial dynamic panel data (SDPD) models can be broadly classified into
two categories (Anselin, 2001, Anselin et al., 2008): one is that the dynamic and spatial effects both
appear in the model in the forms of lags (in time and in space) of the response variable, and the other
allows the dynamic effect in the same manner but builds the spatial effects into the disturbance term.
The former has been studied by Yu et al. (2008), Yu and Lee (2010), Lee and Yu (2010b), and Elhorst
(2010), and the latter by Elhorst (2005), Yang et al. (2006), Mutl (2006), and Su and Yang (2007). Lee
and Yu (2010c) provide an excellent survey on the spatial panel data models (static and dynamic) and
report some recent developments.

In this paper, we consider the latter type of SDPD model, in particular, the dynamic panel data model
with spatial error. We focus on the more traditional panel data where the cross-sectional dimension n is
allowed to grow but the time dimension T is held fixed (usually small), and follow the quasi-maximum
likelihood (QML) approach for model estimation.2 Elhorst (2005) studies the maximum likelihood es-
timation (MLE) of this model with fixed effects, but the asymptotic properties of the estimators are
not given. Mutl (2006) investigates this model using the method of three-step generalized method of
moments (GMM). Yang et al. (2006) consider a more general model where the response is subject to an
unknown transformation and estimate the model by MLE. There are two well-known problems inherent
from short panel and QML estimation, namely the assumptions on the initial values and the incidental
parameters, and these problems remain for the SDPD model that we consider.3 In the early version of
this paper (Su and Yang, 2007), we derived the asymptotic properties of the QML estimators (QMLEs)
of this model under both the random and fixed effects specifications with initial observations treated
as either exogenous or endogenous, but methods for estimating the standard errors of the QMLEs were
not provided. The main difficulty lies in the estimation of the variance-covariance (VC) matrix of the
score function, where the traditional methods based on sample analogues, outer product of gradients, or
analytical expressions fail due to the presence of error components in the original model and in the model
for the initial observations. This difficulty is now overcome by a residual-based bootstrap method.

For over thirty years of spatial econometrics history, the asymptotic theory for the (Q)ML estimation
of spatial models has been taken for granted until the influential paper by Lee (2004), which establishes
systematically the desirable consistency and asymptotic normality results for the Gaussian QML estimates
of a spatial autoregressive model. More recently, Yu et al. (2008) extend the work of Lee (2004) to spatial
dynamic panel data models with fixed effects by allowing both T and n to be large. While our work
is closely related to theirs, there are clear distinctions. First, unlike Yu et al. (2008) who consider
only fixed effects model, we shall consider both random and fixed effects specifications of the individual

1For alternative approaches to model cross-sectional dependence, see Phillips and Sul (2003), Andrews (2005), Pesaran

(2006), Bai (2009), Pesaran and Tosetti (2011), Su and Jin (2012), Moon and Weidner (2013), among others.
2A panel with large n and small T , called a short panel, remains the prevalent setting in the majority of empirical

research involving many geographical regions or many economic agents, and evidence from the standard dynamic panel

data models (Hsiao et al., 2002; Hsiao, 2003; Binder et al., 2005) and SDPD model with spatial lag (Elhorst, 2010) shows

that QML estimators are more efficient than GMM estimators.
3See, for regular dynamic models, Balestra and Nerlove (1966), Nerlove (1971), Maddala (1971), Anderson and Hsiao

(1981, 1982), Bhargava and Sargan (1983); Hsiao et al. 2002, Hsiao (2003), and Binder et al. (2005); and for spatial models,

Su and Yang (2007), Elhorst (2010), and Parent and LeSage (2011).
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effects. Second, we shall focus on the case of small T , and deal with the problems of initial conditions
and incidental parameters. In contrast, neither problem arises under the large-n and large-T setting as
considered in Yu et al. (2008). Third, spatial dependence is present only in the error term in our model
whereas Yu et al. (2008) consider spatial lag model. It would be interesting to extend our work to the
SDPD model with both spatial lag and spatial error.

To summarize, our paper provides a complete set of statistical inferences methodology to the small-
T SDPD model with spatial errors, accommodating different types of space-specific effects (random or
fixed) and different ways that initial observations being generated (exogenously or endogenously). The
proposed methods, including the bootstrap method for robust standard error estimation, are relatively
easy to apply and thus greatly facilitates the empirical researchers. Yet, the main ideas are quite general
and can be generalized to other types of SDPD models.

The rest of the paper is organized as follows. Section 2 introduces the basic model and discusses
its extensions. Section 3 presents the QML estimation of the models with random or fixed effects, and
exogenous or endogenous initial observations. The cases of endogenous initial observations are paid a
specific attention where ‘predictive’ models are developed to ensure the information conveyed from the
past are captured. Section 4 derives the asymptotic properties of the QMLEs. Section 5 introduces the
bootstrap method for robust standard error estimation. Section 6 presents Monte Carlo results for the
finite sample performance of the QMLEs and their estimated standard errors. Section 7 concludes the
paper. All the proofs are relegated to the appendix.

Notation. For a positive integer k, let Ik denote a k × k identity matrix, ιk a k × 1 vector of ones,
0k a k × 1 vector of zeros, and Jk = ιkι

′
k, where ′ denotes transpose. Let A1 ⊗ A2 denote the Kronecker

product of two matrices A1 and A2. Let | · |, ‖ · ‖, and tr(·) denote, respectively, the determinant, the
Frobenius norm, and the trace of a matrix. We use λmax(A) and λmin(A) to denote the largest and
smallest eigenvalues of a real symmetric matrix A.

2 Model Specification

We consider the SDPD model of the form

yit = ρyi,t−1 + x′itβ + z′iγ + uit, i = 1, · · · , n, t = 1, · · · , T, (2.1)

where the scalar parameter ρ (|ρ| < 1) characterizes the dynamic effect, xit is a p × 1 vector of time-
varying exogenous variables, zi is a q × 1 vector of time-invariant exogenous variables that may include
the constant term, dummy variables representing individuals’ gender, race, etc., and β and γ are the
usual regression coefficients. The disturbance vector ut = (u1t, · · · , unt)′ is assumed to exhibit both
non-observable individual effects and a spatially autocorrelated structure, i.e.,

ut = μ+ εt, (2.2)

εt = λWnεt + vt, (2.3)

where μ = (μ1, · · · , μn)′, εt = (ε1t, · · · , εnt)′, and vt = (v1t, · · · , vnt)′, with μ representing the unobserv-
able individual or space-specific effects, εt representing the spatially correlated errors, and vt representing
the random innovations that are assumed to be independent and identically distributed (iid) with mean
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zero and variance σ2
v. The parameter λ is a spatial autoregressive coefficient and Wn is a known n × n

spatial weight matrix whose diagonal elements are zero.
Denoting yt = (y1t, · · · , ynt)′, xt = (x1t, · · · , xnt)′, and z = (z1, · · · , zn)′, the model has the following

reduced-form representation,

yt = ρyt−1 + xtβ + zγ + ut, with ut = μ+ B−1
n vt, t = 1, · · · , T, (2.4)

where Bn = In − λWn. The following specifications are essential for the subsequent developments.
We focus on short panels where n → ∞ but T is fixed and typically small. Throughout the paper,

the initial observations designated by y0 are considered to be available, which can be either exogenous
or endogenous; the individual or space-specific effects μ can be either ‘random’ or ‘fixed’, giving the
so-called random effects and fixed effects models. To clarify, we adopt the view that the fundamental
distinction between random effects and fixed effects models is not whether μ is random or fixed, but
rather whether μ is uncorrelated or correlated with the observed regressors.

To give a unified presentation, we adopt a similar framework as Hsiao et al. (2002): (i) data collection
starts from the 0th period; the process starts from the −mth period, i.e., m periods before the start of
data collection, m = 0, 1, · · · , and then evolves according to the model specified by (2.4); (ii) the starting
position of the process y−m is treated as exogenous; hence the exogenous variables (xt, z) and the errors
ut start to have impact on the response from period −m + 1 onwards; (iii) all exogenous quantities
(y−m, xt, z) are considered as random and inferences proceed by conditioning on them, and (iv) variances
of elements of y−m are constant. Thus, when m = 0, y0 = y−m is exogenous, when m ≥ 1, y0 becomes
endogenous, and when m = ∞, the process has reached stationarity.

It is worth mentioning, in passing to model estimation, that although our model specified by (2.1)-
(2.3) with random effects allows spatial dependence to be present only in the random disturbance term
εt as in the static models considered by, e.g., Anselin (1988), Baltagi and Li (2004), and Baltagi et al.
(2007), it can be easily extended to allow μ to be spatially correlated in the same manner as εt (Kapoor
et al., 2007), or to allow μ to follow a different spatial process (Baltagi et al., 2013). See Section 3.1 for
details. For ease of exposition we focus on the model specified by (2.1)-(2.3). When μ represents fixed
effects, as a referee kindly points out, these extensions do not make a difference in model estimation as
fixed effects are wiped out by first differences.

3 The QML Estimators

In this section we develop quasi maximum likelihood estimates (QMLE) based on Gaussian likelihood
for the SDPD model with random effects as well as the SDPD model with fixed effects. For the former,
we start with the case of exogenous y0, and then generalize it to give a unified treatment on the initial
values. For the latter, a unified treatment is given directly.

3.1 QMLEs for the random effects model

As indicated above, the main feature of the random effects SDPD model is that the state-specific
effect μ is assumed to be uncorrelated with the observed regressors. Furthermore, it is assumed that μ
contains iid elements of mean zero and variance σ2

μ, and is independent of vt.
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Case I: y0 is exogenous (m = 0). In case when y0 is exogenous, it essentially contains no information
with respect to the structural parameters in the system, and thus can be treated as fixed constants. In
this case, x0 is not needed, and the estimation of the system makes use of T periods of data (t = 1, · · · , T ).

Conditional on the observed (exogenous) y0, the distribution of y1 can be easily derived, and hence the
Gaussian quasi-likelihood function based on the observations y1, y2, · · · , yT . Define Y = (y′1, · · · , y′T )′,
Y−1 = (y′0, · · · , y′T−1)

′, X = (x′1, · · · , x′T )′, Z = ιT ⊗z, and v = (v′1, · · · , v′T )′. The SDPD model specified
by (2.1)-(2.3) can be written in matrix form:

Y = ρY−1 +Xβ + Zγ + u, with u = (ιT ⊗ In)μ+ (IT ⊗ B−1)v. (3.1)

Assuming μ and v follow normal distributions leads to u ∼ N(0, σ2
vΩ), where

Ω ≡ Ω(λ, φμ) = φμ(JT ⊗ In) + IT ⊗ (B′B)−1
, (3.2)

φμ = σ2
μ/σ

2
v, JT = ιT ι

′
T , and B = Bn = In − λWn. Note that the dependence of B on n and λ is

suppressed. The same notational convention is applied to other quantities such as Y , X, Ω, etc., unless
confusion arises.

The distribution of u leads to the distribution of Y − ρY−1, and hence the distribution of Y as the
Jacobian of the transformation is one. Let θ = (β′, γ′, ρ)′, δ = (λ, φμ)′, and ψ = (θ′, σ2

v, δ
′)′. Denoting

u(θ) = Y − ρY−1 −Xβ − Zγ, the quasi-log-likelihood function of ψ is

Lr(ψ) = −nT
2

log(2π) − nT

2
log(σ2

v) −
1
2

log |Ω| − 1
2σ2

v

u(θ)′Ω−1u(θ). (3.3)

If the errors {μi} and {vit} are normally distributed, maximizing (3.3) gives the maximum likelihood
estimator (MLE) of ψ. If they are not, but iid with mean zero, constant variances and, more importantly,
finite fourth moments, maximizing (3.3) gives the QMLE of ψ. See Sections 4.1 and 4.2 for detailed
regularity conditions. Given δ, (3.3) is partially maximized at the concentrated QMLEs of θ and σ2

v,

θ̂(δ) = (X̃′Ω−1X̃)−1X̃′Ω−1Y and σ̂2
v(δ) = 1

nT ũ(δ)′Ω−1ũ(δ), (3.4)

respectively, where X̃ = (X,Z, Y−1) and ũ(δ) = Y − X̃θ̂(δ). Substituting θ̂(δ) and σ̂2
v(δ) given in (3.4)

back into (3.3) for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lrc(δ) = −nT
2

[log(2π) + 1] − nT

2
log[σ̂2

v(δ)] −
1
2

log |Ω|. (3.5)

The QMLE δ̂ = (λ̂, φ̂μ)′ of δ maximizes Lrc(δ) given in (3.5). The QMLEs of θ and σ2
v are given by θ̂ ≡ θ̂(δ̂)

and σ̂2
v ≡ σ̂2

v(δ̂), respectively. Further, the QMLE of σ2
μ is given by σ̂2

μ = φ̂μσ̂
2
v.

4 Let ψ̂ = (θ̂′, σ̂2
v, δ̂

′)′.
The QML estimation of the random effects SDPD model is seen to be very simple under exogenous

y0. The numerical maximization involves only two parameters, namely, the spatial parameter λ and
the variance ratio φμ. The dynamic parameter ρ is estimated in the same way as the usual regression
coefficients and its QMLE has an explicit expression given λ and φμ.

4As discussed at the end of Section 2, our results can easily be extended to allow μ to be spatially correlated. For

example, for Kapoor et al. (2007) model where ut = ρWut + εt and εt = μ+ vt, all results go through with Ω = φμ(JT ⊗
(B′B)−1) + IT ⊗ (B′B)−1; for Baltagi et al. (2013) model where ut = u1 + u2t , u1 = ρ1W1 + μ, and u2t = ρ2W2u2t + vt,

one simply replaces Ω above by Ω = φμ(JT ⊗ (B′
1B1)−1) + IT ⊗ (B′

2B2)−1 where B1 = In − ρ1W1 and B2 = In − ρ2W2.
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Case II: y0 is endogenous (m ≥ 1). The log-likelihood function (3.3) is derived under the assump-
tion that the initial observation y0 is exogenously given. If this assumption is not satisfied, maximizing
(3.3) generally produces biased or inconsistent estimators (see Bhargava and Sargan, 1983, and Section
4.2 of this paper for details). On the other hand, if the initial observation y0 is taken as endogenous in
the sense that it is generated from the process specified by (2.4), which starts m periods before the 0th
period, then y0 contains useful information about the model parameters and hence should be utilized in
the model estimation. In this case, x0 is needed, and the estimation makes use of T + 1 periods of data.
We now present a unified set-up for a general m and then argue (see Remark II below) that by letting
m = 0 it reduces to the case of exogenous y0. By successive backward substitutions using (2.4), we have

y0 = ρmy−m +
m−1∑
j=0

ρjx−jβ + zγ
1 − ρm

1− ρ
+ μ

1 − ρm

1 − ρ
+
m−1∑
j=0

ρjB−1v−j . (3.6)

Letting η0 and ζ0 be, respectively, the exogenous and endogenous components of y0, we have

η0 = ρmy−m +
m−1∑
j=0

ρjx−jβ + zγ
1 − ρm

1 − ρ
= ηm + x0β + zm(ρ)γ, (3.7)

where ηm = ρmy−m +
∑m−1

j=1 ρjx−jβ and zm(ρ) = z 1−ρm

1−ρ ; and

ζ0 = μ
1 − ρm

1 − ρ
+
m−1∑
j=0

ρjB−1v−j , (3.8)

where E(ζ0) = 0 and Var(ζ0) = σ2
μ

(
1−ρm

1−ρ
)2

In + σ2
v

1−ρ2m

1−ρ2 (B′B)−1 . Clearly, both the mean and variance
of y0 are functions of the model parameters and hence y0 is informative to model estimation. Treating
y0 as exogenous will lose such information and causes bias or inconsistency in model estimation.

However, both {x−j, j = 1, · · · , m−1} for m ≥ 2 and y−m for m ≥ 1 in ηm are unobserved, rendering
that (3.7) cannot be used as a model for η0. Some approximations are necessary. In this paper, we follow
Bhargava and Sargan (1983) (see also Hsiao, 2003, p.76) and propose a model for the initial observations
based on the following fundamental assumptions. Let x ≡ (x0, x1, · · · , xT ).

Assumption R0: (i) Conditional on the observables x and z, the optimal predictors for x−j, j ≥ 1,
are x and the optimal predictors for E(y−m), m ≥ 1, are x and z; and (ii) The error resulted from
predicting ηm using x and z is ζ such that ζ ∼ (0, σ2

ζIn) and is independent of u, x and z.5

These assumptions lead immediately to the following model for ηm:

ηm = ιnπ1 + xπ2 + zπ3 + ζ ≡ x̃π + ζ, (3.9)

where x̃ = (ιn,x, z) and π = (π1, π
′
2, π

′
3)′. Clearly, the variability of ζ comes from two sources: the

variability of y−m and the variability of the prediction error from predicting E(y−m) and
∑m−1

j=1 ρjx−jβ

by x and z. Hence, we have the following model for y0 based on (3.6)-(3.9):

y0 = x̃π + x0β + zm(ρ)γ + u0, u0 = ζ + ζ0. (3.10)
5As a referee thoughtfully points out, it is possible to allow for additional spatial structure to characterize the initial

observations. But this will surely complicate the asymptotic analysis and will add in more parameters to be estimated; we

leave it for future work. Similarly remark holds for Assumption F0 in Section 3.2.

6



The ‘initial’ error vector u0 is seen to contain three components: ζ, μ 1−ρm

1−ρ , and
∑m−1

j=0 ρjB−1v−j , being,
respectively, the prediction error from predicting the unobservables, the cumulative random effects up to
the 0th period, and the ‘cumulative’ spatial effects and random shocks up to the 0th period. The term
zm(ρ)γ = z 1−ρm

1−ρ γ represents the cumulative impact of the time-invariant variables z up to period 0 and
needs not be predicted. However, the predictors for ηm still include z, indicating that (i) the mean of
y−m is allowed to be linearly related to z and (ii) ρm may not be small such that the effect of y−m on
ηm is not negligible. If ρm is small which occurs when either m is large or ρ is small, the impact of y−m
to ηm can be ignored, and the term zπ3 involved in (3.10) should be omitted. Some details about the
cases with small ρm are given latter. For the cases where ρm is not negligible, one can easily show that,
under strict exogeneity of x and z, E(u0) = 0,

E(u0u
′
0) = σ2

ζIn + σ2
μa

2
mIn + σ2

vbm(B′B)−1 , and E(u0u
′) = σ2

μam(ι′T ⊗ In),

where am ≡ am(ρ) = 1−ρm

1−ρ and bm ≡ bm(ρ) = 1−ρ2m

1−ρ2 . Let u∗ = (u′0, u
′)′. Under the normality assumption

for the original error components μ and v, and the ‘new’ prediction error ζ, we have u∗ ∼ N(0, σ2
vΩ∗),

where Ω∗ is n(T + 1) × n(T + 1) and has the form:

Ω∗ ≡ Ω∗(ρ, λ, φμ, φζ) =

(
φζIn + φμa

2
mIn + bm(B′B)−1 φμam(ι′T ⊗ In)

φμam(ιT ⊗ In) Ω

)
, (3.11)

φζ = σ2
ζ/σ

2
v, and Ω is given by (3.2). This leads to the joint distribution of (y′0, (Y − ρY−1)′)′, and hence

the joint distribution of (y′0, Y
′)′ or the likelihood function. Again, the arguments of Ω∗ are frequently

suppressed should no confusion arise.
Now let θ = (β′, γ′, π′)′, δ = (ρ, λ, φμ, φζ)′, and ψ = (θ′, σ2

v, δ
′)′. Based on (2.4) and (3.10), the

Gaussian quasi-log-likelihood function of ψ has the form:

Lrr(ψ) = −n(T + 1)
2

log(2π) − n(T + 1)
2

log(σ2
v) −

1
2

log |Ω∗| − 1
2σ2

v

u∗(θ, ρ)′Ω∗−1u∗(θ, ρ), (3.12)

where u∗(θ, ρ) = {(y0 − x0β − zm(ρ)γ − x̃π)′, (Y − ρY−1 −Xβ − Zγ)′}′ ≡ Y ∗ −X∗θ,

Y ∗ = Y ∗(ρ) =

(
y0

Y − ρY−1

)
and X∗ = X∗(ρ) =

(
x0 zm(ρ) x̃

X Z 0nT×k

)
.

Maximizing (3.12) gives MLE of ψ if the error components are truly Gaussian and the QMLE otherwise.
Similar to Case I, we work with the concentrated quasi-log-likelihoodby concentrating out the parameters
θ and σ2

v. The constrained QMLEs of θ and σ2
v, given δ, are

θ̂(δ) = (X∗′Ω∗−1X∗)−1X∗′Ω∗−1Y ∗ and σ̂2
v(δ) = 1

n(T+1) ũ
∗(δ)′Ω∗−1ũ∗(δ), (3.13)

where ũ∗(δ) = u∗(θ̂(δ), ρ) = Y ∗ −X∗ θ̂(δ), and θ̂(δ) = (β̂(δ)′, γ̂(δ)′, π̂(δ)′)′. Substituting θ̂(δ) and σ̂2
v(δ)

back into (3.12) for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lrrc (δ) = −n(T + 1)
2

[log(2π) + 1] − n(T + 1)
2

log σ̂2
v(δ) −

1
2

log |Ω∗|. (3.14)

Maximizing Lrrc (δ given in (3.14) gives the QMLE of δ, denoted by δ̂ = (ρ̂, λ̂, φ̂μ, φ̂ζ)′. The QMLEs of
θ and σ2

v are thus given by θ̂ ≡ θ̂(δ̂) and σ̂2
v ≡ σ̂2

v(δ̂), respectively, and these of σ2
μ and σ2

ζ are given by

7



σ̂2
μ = φ̂μσ̂

2
v and σ̂2

ζ = φ̂ζ σ̂
2
v, respectively.6 Let ψ̂ = (θ̂′, σ2

v, δ̂
′)′.

Remark I: To utilize the information contained in the n initial observations y0, we have introduced
k = p(T + 1) + q + 1 additional parameters (π, σ2

ζ ) in the model (3.9). Besides the bias issue, efficiency
gain by utilizing additional n observations is reflected by n − k. Apparently, the condition n > k has to
be satisfied in order for π and σ2

ζ to be identified. If both T and p are not so small (T = 9 and p = 10,
say), one may consider replacing the regressors x in (3.9) by the most relevant ones (to the past), x0 and
x1, say, or simply by x = (T + 1)−1

∑T
t=0 xt. In this case k = 2p+ q+ 1, and p+ q + 1, respectively. See

Elhorst (2010) for similar remarks for an SDPD model with a spatial lag.

Remark II: When y0 is exogenous, model (3.10) becomes y0 = x̃π+ u0, where u0 ∼ (0, σ2
0In) and is

independent of u. In this case, we have Ω∗ = diag(σ2
0In,Ω). Model estimation may proceed by letting

m = 0 in (3.14), and the results are almost identical to those from maximizing (3.5). A special case
of this is the one considered in Hsiao (2003, p.76, Case IIa) where y′i0s are simply assumed to be iid
independent of μi. If y′i0s are allowed to be correlated with μ′

i (Case IIb, Hsiao, 2003, p.76), the model
becomes a special case of endogenous y0 as considered above.

Remark III: In general, m is unknown. In dealing with a dynamic panel model with fixed effects
but without spatial dependence, Hsiao et al. (2002) recommend treating m or a function of it as a free
parameter, which is estimated jointly with the other model parameters. However, we note that their
approach requires ρ 
= 0, as when ρ = 0, m disappears from the model and hence cannot be identified.
Elhorst (2005) recommends that an appropriate value of m should be chosen in advance. We concur with
his view for two reasons: (i) an empirical study often tells roughly what the m value is (see, e.g., the
application considered by Elhorst), and (ii) the estimation is often not sensitive to the choice of m unless
it is very small (m ≤ 2), and |ρ| is close to 1, as evidenced by the Monte Carlo results given in Section 6.

While the results given above are under a rather general set-up, some special cases deserve detailed
discussions, which are (a) m = 1, (b) m = ∞, and (c) ρ = 0.

(a) m=1. When the process starts just one period before the start of data collection, the model
(3.10) becomes y0 = ρy−1 + x0β + zγ + μ+ B−1v0, zm(ρ) = z, and

Ω∗ =

(
(φζ + φμ)In + (B′B)−1, φμ(ι′T ⊗ In)
φμ(ι′T ⊗ In), Ω

)
.

In this case, ρ becomes a linear parameter again and the estimation can be simplified by putting ρ

together with β, γ and π which can be concentrated out from the likelihood function. Now, denoting the
response vector and the regressor matrix by:

Ỹ =

(
y0

Y

)
and X̃ =

(
x0 z 0n×1 x̃
X Z Y−1 0nT×k

)
,

the estimation proceeds with θ = (β′, γ′, ρ, π)′ and δ = (λ, φμ, φζ)′.

(b) m=∞. When the process has reached stationarity (m→ ∞ and |ρ| < 1), the model for the initial
observations becomes y0 =

∑∞
j=0 ρ

jx−jβ+ zγ
1−ρ + μ

1−ρ +
∑∞

j=0 ρ
jB−1v−j . As η∞ =

∑∞
j=0 ρ

jx−jβ involves

6Unlike the case of exogenous y0, the dynamic parameter ρ now becomes a nonlinear parameter that has to be estimated,

together with λ, φμ and φζ , through a nonlinear optimization process. Similar to the case of exogenous y0, our model and

estimation can easily be extended to allow μ to be spatially correlated as in Kapoor et al. (2007), or Baltagi et al. (2013).
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only the time-varying regressors, its optimal predictors should be (ιn,x). The estimation proceeds by
letting zm(ρ) = z∞(ρ) = z

1−ρ , am = a∞ = 1
1−ρ , bm = b∞ = 1

1−ρ2 , x̃ = (ι,x), and π = (π1, π
′
2)

′.

(c) ρ = 0. When the true value of the dynamic parameter is zero, the model becomes static with
yt = xtβ + zγ + μ +B−1vt, t = 0, 1, · · · , T . At this point, the true values for all the added parameters,
π and σζ, are automatically zero.

3.2 QMLEs for the fixed effects model

In this section, we consider the QML estimation of the SDPD model with fixed effects, i.e., the vector
of unobserved individual-specific effects μ in model (2.4) is allowed to correlate with the time-varying
regressors xt. Due to this unknown correlation, μ acts as if they are n free parameters, and with T

fixed the model cannot be consistently estimated due to the incident parameter problem. Following the
standard practice, we eliminate μ by first-differencing (2.4) to give

Δyt = ρΔyt−1 + Δxtβ + Δut, Δut = B−1Δvt, t = 2, 3, · · · , T. (3.15)

Clearly, (3.15) is not defined for t = 1 as Δy1 depends on Δy0 and the latter is not observed. Thus, even
if y0 (hence Δy0) is exogenous, one cannot formulate the likelihood function by conditioning on Δy0 as
in the early case. To obtain the joint distribution of Δy1,Δy2, · · · ,ΔyT or the transformed likelihood
function for the remaining parameters based on (3.15), a proper approximation for Δy1 needs to be made
so that its marginal distribution can be obtained, whether y0 is exogenous or endogenous. We present a
unified treatment for the fixed effects model where the initial observations y0 can be exogenous (m = 0)
as well as endogenous (m ≥ 1).

Under the general specifications given at the end of Section 2, continuous backward substitutions to
the previous m(≥ 1) periods leads to

Δy1 = ρmΔy−m+1 +
m−1∑
j=0

ρjΔx1−jβ +
m−1∑
j=0

ρjB−1Δv1−j. (3.16)

Note that (i) Δy−m+1 represents the changes after the process has made its first move, called the initial
endowment ; (ii) while the starting position y−m is assumed exogenous, the initial endowment Δy−m+1

is endogenous, and (iii) when m = 0, Δy−m+1 = Δy1, i.e., the initial endowment becomes the observed
initial difference. The effect of the initial endowment decays as m increases. However, when m is small,
their effect can be significant, and hence a proper approximation to it is important. In general, write
Δy1 = Δη1 + Δζ1, where Δη1 and Δζ1, the exogenous and endogenous components of Δy1, are given as

Δη1 = ρmE(Δy−m+1) +
m−1∑
j=0

ρjΔx1−jβ ≡ ηm + Δx1β, (3.17)

Δζ1 = ρm[Δy−m+1 −E(Δy−m+1)] +
m−1∑
j=0

ρjB−1Δv1−j, (3.18)

where ηm = ρmE(Δy−m+1) +
∑m−1

j=1 ρjΔx1−jβ. Note that when m = 0, the summation terms in (3.17)
and (3.18) should vanish, and as a result Δη1 = E(Δy1) and Δζ1 = Δy1 − E(Δy1).

Clearly, the observations Δx1−j, j = 1, · · · , m − 1, m ≥ 2, are not available, and the structure
of E(Δy−m+1), m ≥ 1, is unknown. Hence ηm is completely unknown. Furthermore, as ηm is an
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n × 1 vector, it cannot be treated as a free parameter vector to be estimated; otherwise the incidental
parameters problem will be confronted again.7 Hsiao et al. (2002) remark that to get around this problem,
the expected value of Δη1, conditional on the observables, has to be a function of a finite number of
parameters, and that such a condition can hold provided that {xit} are trend-stationary (with a common
deterministic linear trend) or first-difference stationary processes. Letting Δx = (Δx1, · · · ,ΔxT ), we
have the following fundamental assumptions.

Assumption F0: (i) The optimal predictors for Δx1−j, j = 1, 2, · · · and E(Δy−m+1), m = 0, 1, · · · ,
conditional on the observables, are Δx; (ii) Collectively, the errors from using Δx to predict ηm is
ε ∼ (0, σ2

εIn), and (iii) y−m = E(y−m) + e, where e ∼ (0, σ2
eIn) independent of ε.

Assumption F0(i) and Assumption F0(ii) lead immediately to a ‘predictive’ model for ηm:

ηm = π1ιn + Δx π2 + ε ≡ Δ̃x π + ε, m = 0, 1, · · · ,
where Δ̃x = (ιn,Δx) and π = (π1, π

′
2)′. Thus, Δη1 defined in (3.17) can be predicted by: Δη1 =

Δ̃x π + Δx1β + ε. The original theoretical model (2.4) and Assumption F0(iii) lead to

Δy−m+1 − E(Δy−m+1) = B−1v−m+1 − (1 − ρ)e, m = 0, 1, · · · ,
which gives Δζ1 = −ρm(1−ρ)e+ρmB−1v−m+1 +

∑m−1
j=0 ρjB−1Δv1−j when m ≥ 1, and −(1−ρ)e+B−1v1

when m = 0. We thus have the following model for the observed initial difference,

Δy1 = Δ̃xπ + Δx1β + ε+ Δζ1 ≡ Δ̃xπ + Δx1β + Δũ1, (3.19)

where Δũ1 = ε + Δζ1 = ε− ρm(1 − ρ)e + ρmB−1v−m+1 +
∑m−1

j=0 ρjB−1Δv1−j. Let ζ = ε− ρm(1 − ρ)e.
By assumption, the elements of ζ are iid with mean zero and variance σ2

ζ = σ2
ε + σ2

eρ
2m(1 − ρ)2.8

By construction, we can verify that under strict exogeneity of xit, i.e., E(ζi|Δxi,1, · · · ,Δxi,T) = 0,
and independence between ζ and {Δv1−j, j = 0, 1, · · · , m− 1},

E(Δũ1Δũ′1) = σ2
ζIn + σ2

vcm(B′B)−1 = σ2
vB

−1(φζBB′ + cmIn)B′−1, and (3.20)

E(Δũ1Δu′t) = −σ2
v(B

′B)−1 for t = 2, and 0 for t = 3, 4, · · · , T, (3.21)

where cm ≡ cm(ρ) = 2
1+ρ − ρ2m(1−ρ)

1+ρ and φζ = σ2
ζ/σ

2
v. Note that c0 = 1, c∞ = 2

1+ρ and cm(0) = 2.
Letting Δu = (Δũ′1,Δu′2, · · · ,Δu′T ), we have Var(Δu) = σ2

vΩ†, where

Ω† ≡ Ω†(ρ, λ, φζ) = (IT ⊗ B−1)HE(IT ⊗ B′−1), (3.22)

E = φζBB
′ + cmIn, and HE is an nT × nT matrix defined as

HE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E −In 0 · · · 0 0 0
−In 2In −In · · · 0 0 0
0 −In 2In · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2In −In 0
0 0 0 · · · −In 2In −In
0 0 0 · · · 0 −In 2In

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)

7An exception occurs when Model (2.4) does not contain time-varying variables as in Anderson and Hsiao (1981).
8Note that when m = 0, Δũ1 = ε − (1 − ρ)e + B−1v1. The approximation (3.19) is associated with Bhargava and

Sargan’s (1983) approximation for the standard dynamic random effects model with endogenous initial observations. See

Ridder and Wansbeek (1990) and Blundell and Smith (1991) for a similar approach.
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The expression for Ω† given in (3.22) greatly facilitates the calculation of the determinant and inverse of
Ω† as seen in the subsequent subsection. Derivations of score and Hessian matrix requires the derivatives
of Ω†, which can be made much easier based on the following alternative expression

Ω† = φζ(�1 ⊗ In) + hcm ⊗ (B′B)−1, (3.24)

where �1 is a T × T matrix with 1 in its top-left corner and zero elsewhere, and hcm is hs defined at the
end of Section 3.3 with s replaced by cm.

In the following, we simply refer to the dimension of π to be k. Now let θ = (β′, π′)′, δ = (ρ, λ, φζ)′,
and ψ = (θ′, σ2

v, δ
′)′. Note that ψ is a (p+ k+4)× 1 vector of unknown parameters. Based on (3.15) and

(3.19), the Gaussian quasi-log-likelihood of ψ has the form:

Lf (ψ) = −nT
2

log(2π) − nT

2
log(σ2

v) −
1
2

log
∣∣Ω†∣∣− 1

2σ2
v

Δu(θ, ρ)′Ω†−1Δu(θ, ρ), (3.25)

where Δu(θ, ρ) = ΔY †(ρ) − ΔX†θ,

ΔY †(ρ) =

⎛⎜⎜⎜⎜⎝
Δy1
Δy2 − ρΔy1
...
ΔyT − ρΔyT−1

⎞⎟⎟⎟⎟⎠ , and ΔX† =

⎛⎜⎜⎜⎜⎝
Δx1 Δ̃x
Δx2 0n×k
...

...
ΔxT 0n×k

⎞⎟⎟⎟⎟⎠ .

Maximizing (3.25) gives the Gaussian MLE or QMLE of ψ. First, given δ = (ρ, λ, φζ)′, the constrained
MLEs or QMLEs of θ and σ2

v are, respectively,

θ̂(δ) = (ΔX†′Ω†−1ΔX†)−1ΔX†′Ω†−1ΔY †(ρ) and σ̂2
v(δ) = 1

nT
Δ̃u(δ)′Ω†−1Δ̃u(δ), (3.26)

where Δ̃u(δ) equals Δu(θ, ρ) with θ being replaced by θ̂(δ). Substituting θ̂(δ) and σ̂2
v(δ) back into (3.25)

for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lfc (δ) = −nT
2

[log(2π) + 1]− nT

2
log σ̂2

v(δ) −
1
2

log |Ω†|. (3.27)

The QMLE δ̂ = (ρ̂, λ̂, φ̂ζ)′ of δ maximizes Lfc (δ) given in (3.27). The QMLEs of θ and σ2
v are given

by θ̂ ≡ θ̂(δ̂) and σ̂2
v ≡ σ̂2

v(δ̂), respectively. Further, the QMLE of σ2
ζ are given by σ̂2

ζ = φ̂ζ σ̂
2
v.

9 Let
ψ̂ = (θ̂′, σ̂2

v, δ̂
′)′.

Remark IV: We require that n > pT +1 for the identification of the parameters in (3.19). When this
is too demanding, it can be addressed in the same manner as in the random effects model by choosing
variables Δx̃ with a smaller dimension. For example, replacing Δx in (3.19) by Δx = T−1

∑T
t=1 Δxt

gives Δx̃ = (ιn,Δx), and dropping Δx in (3.19) gives Δ̃x = ιn. In each case, the variance-covariance
structure of Δu remains the same.

Remark V: Hsiao et al. (2002, p.110), in dealing with a dynamic panel data model without spatial
effect, recommend treating cm(ρ) as a free parameter to be estimated together with other model param-
eters. This essentially requires that ρ 
= 0 and m be an unknown finite number. Note that cm(0) = 2

9Model (3.15) can be estimated by a simpler three-step IV-GMM type procedure suggested by Mutl (2006). When T

is small the QMLE may be more efficient as it uses an extra period data, but the three-step procedure is free of initial

conditions. Nevertheless, it should be interesting, as a future research, to conduct a formal comparison of the two models.
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and c∞(ρ) = 2/(1 + ρ), which become either a constant or a pure function of ρ. Our set-up allows ρ = 0
or m = ∞ so that a test for the existence of dynamics can be carried out or a stationary model can be
fit. As in the case of the random effects model, we again treat m as known, chosen in advance based on
the given data (see Remark III given in section 3.2).

3.3 Some computational notes

Maximization of Lrc(δ), Lrrc (δ) and Lfc (δ) involves repeated evaluations of the inverse and determinants
of the nT × nT matrices Ω and Ω†, and the n(T + 1) × n(T + 1) matrix Ω∗. This can be a great burden
when n or T or both are large. By Magnus (1982, p.242), the following identities can be used to simplify
the calculation involving Ω defined in (3.2):

|Ω| = |(B′B)−1 + φμTIn| · |B|−2(T−1), (3.28)

Ω−1 = T−1JT ⊗ (
(B′B)−1 + φμTIn

)−1
+ (IT − T−1JT ) ⊗ (B′B). (3.29)

The above formulae reduce the calculations of the inverse and determinant of an nT × nT matrix to the
calculations of those of several n× n matrices, where the key element is the n× n matrix B. By Griffith
(1988), calculations of the determinants can be further simplified as:

|B| =
n∏
i=1

(1 − λwi), and |(B′B)−1 + φμTIn| =
n∏
i=1

[(1 − λwi)−2 + φμT ], (3.30)

where w′
is are the eigenvalues of W . The above simplifications are also used in Yang et al. (2006).

For the determinant and inverse of Ω∗ defined in (3.11), let ω11 = φζIn + φμa
2
mIn + bm(B′B)−1,

ω21 = ω′
12 = φμam(ιT ⊗ In), and D = ω11 −ω12Ω−1ω21. We have by using the formulas for a partitioned

matrix (e.g., Magnus and Neudecker, 2002, p.106), |Ω∗| = |Ω| · |D|, and

Ω∗−1 =

(
D−1 −D−1ω12Ω−1

−Ω−1ω21D
−1 Ω−1 + Ω−1ω21D

−1ω12Ω−1

)
. (3.31)

Thus, the calculations of the determinant and inverse of the n(T + 1)× n(T + 1) matrix Ω∗ are reduced
to the calculations of those of the n× n matrix D, and those of Ω given in (3.28) and (3.29).

For the determinant and inverse of Ω† defined in (3.22), by the properties of matrix operation,

|Ω†| = |(IT ⊗ B−1)| · |HE| · |(IT ⊗ B′−1)| = |B|−2T |HE|,
Ω†−1 = (IT ⊗B′−1)−1H−1

E (IT ⊗B−1)−1 = (IT ⊗ B′)H−1
E (IT ⊗ B),

where |HE| = |TE − (T − 1)In| =
∏n
i=1[Tφζ(1 − λwi)2 + Tcm − T + 1] as in (3.30), and

H−1
E = (1 − T )(h−1

0 ⊗ E∗−1) + (h−1
1 − (1 − T )h−1

0 ) ⊗ (E∗−1E), (3.32)

where E∗ = TE − (T − 1)In, and the T × T matrices hs, s = 0, 1, are

hs =

⎛⎜⎜⎜⎜⎜⎝
s −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎠ ,

as in Hsiao et al. (2002, Appendix B), who also give |hs| = 1 + T (s− 1) and the expression for h−1
s .

12



4 Asymptotic Properties of the QMLEs

In this section we study the consistency and asymptotic normality of the proposed QML estimators for
the dynamic panel data models with spatial errors. We first state and discuss a set of generic assumptions
applicable to all three scenarios discussed in Section 3. Then we proceed with each specific scenario
where, under some additional assumptions, the key asymptotic results are presented. To facilitate the
presentation, some general notation (old and new) is given.

General notation: (i) recall ψ = (θ′, σ2
v, δ

′)′, where θ and σ2
v are the linear and scale parameters

and can be concentrated out from the likelihood function, and δ is the vector of nonlinear parameters
left in the concentrated likelihood function. Let ψ0 = (θ′0 , σ

2
v0, δ

′
0)

′ be the true parameter vector. Let Ψ

be the parameter space of ψ, and Δ the space of δ. (ii) A parametric function, or vector, or matrix,
evaluated at ψ0, is denoted by adding a subscript 0, e.g., B0 = B|λ=λ0 , and similarly for Ω0, Ω∗

0, Ω†
0, etc.

(iii) The common expectation and variance operators ‘E’ and ‘Var’ correspond to ψ0.

4.1 Generic assumptions

To provide a rigorous analysis of the QMLEs, we need to assume different sets of conditions based
on different model specifications. Nevertheless, for both the random and fixed effects specifications we
first make the following generic assumptions.

Assumption G1: (i) The available observations are: (yit, xit, zi), i = 1, · · · , n, t = 0, 1, · · · , T ,
with T ≥ 2 fixed and n → ∞; (ii) The disturbance vector ut = (u1t, · · · , unt)′ exhibits both individual
effects and spatially autocorrelated structure defined in (2.2) and (2.3) and vit are iid for all i and t with
E(vit) = 0, Var(vit) = σ2

v, and E|vit|4+ε0 <∞ for some ε0 > 0; (iii) {xit, t = · · · ,−1, 0, 1, · · ·} and {zi}
are strictly exogenous and independent across i; (iv) |ρ| < 1 in (2.1); and (v) The true parameter δ0 lies
in the interior of Δ, a convex compact set.

Assumption G1(i) corresponds to traditional panel data models with large n and small T . One can
consider extending the QMLE procedure to panels with large n and large T ; see, for example, Phillips
and Sul (2003). Assumption G1(ii) is standard in the literature. Assumption G1(iii) is not as strong
as it appears in the spatial econometrics literature, since in most spatial analysis regressors are treated
as being nonstochastic (e.g., Anselin, 1988; Kelejian and Prucha, 1998, 1999, 2010; Lee, 2004; Lin and
Lee, 2010; Robinson, 2010; Su and Jin, 2010; Su, 2012). One can relax the strict exogeneity condition
in Assumption G1(iii) like Hsiao et al. (2002) but this will complicate our analysis in case of spatially
correlated errors. Assumption G1(iv) can be relaxed for the case of random effects with exogenous initial
observations without any change of the derivation. It can also be relaxed for the fixed effects model with
some modification of the derivation as in Hsiao et al. (2002). Assumption G1(v) is commonly assumed
in the literature but deserves some further discussion.

For QML estimation, it is required that λ lies within a certain space to guarantee the non-singularity
of In− λW . If the eigenvalues of W are all real, then such a space is (w−1

min, w
−1
max) where wmin and wmax

are, respectively, the smallest and the largest eigenvalues of W ; if, further, W is row normalized, then
wmax = 1 and w−1

min < −1, and the parameter space of λ becomes (w−1
min, 1) (Anselin, 1988). In general,

the eigenvalues of W may not be all real as W can be asymmetric. LeSage and Pace (2009, p. 88-89)
argue that only the purely real eigenvalues can affect the singularity of In − λW . Consequently, for W
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with complex eigenvalues, the interval of λ that guarantees non-singular In − λW is (w−1
s , 1) where ws

is the most negative real eigenvalue of W . Kelejian and Prucha (2010) suggest the parameter space be
(−τ−1

n , τ−1
n ) where τn is the spectral radius of W , which is normalized to (−1, 1) by a single factor τ−1

n .

For the spatial weight matrix, we make the following assumptions.

Assumption G2: (i) The elements wij of W are at most of order h−1
n , denoted by O(h−1

n ), uniformly
in all i and j. As a normalization, wii = 0 for all i; (ii) The ratio hn/n → 0 as n goes to infinity; (iii)
The matrix B0 is nonsingular; (iv) The sequences of matrices {W} and {B−1

0 } are uniformly bounded in
both row and column sums; (v) {B−1} are uniformly bounded in either row or column sums, uniformly
in λ in a compact parameter space Λ, and cλ ≤ infλ∈Λλmax(B′B) ≤ supλ∈Λ λmax(B′B) ≤ c̄λ <∞.

Assumptions G2(i)-(iv) parallel Assumptions 2-4 of Lee (2004). Like Lee (2004), Assumptions G2(i)-
(iv) provide the essential features of the weight matrix for the model. Assumption G2(ii) is always satisfied
if {hn} is a bounded sequence. We allow {hn} to be divergent but at a rate smaller than n as in Lee
(2004). Assumption G2(iii) guarantees that the disturbance term is well defined. Kelejian and Prucha
(1998, 1999, 2001) and Lee (2004) also assume Assumption G2(iv) which limits the spatial correlation to
some degree but facilitates the study of the asymptotic properties of the spatial parameter estimators. By
Horn and Johnson (1985, p. 301), that limsupn‖λ0W‖ < 1 guarantees that B−1

0 is uniformly bounded in
both row and column sums. By Lee (2002, Lemma A.3), Assumption G2(iv) implies {B−1} are uniformly
bounded in both row and column sums uniformly in a neighborhood of λ0. Assumption G2(v) is stronger
than Assumption G2(iv) and is required in establishing the consistency results.

4.2 Random effects model

We now present detailed asymptotic results for the SDPD model with random effects. Beside the
generic assumptions given earlier, some additional assumptions specific for this model are necessary.

Assumption R: (i) μi’s are iid with E(μi) = 0, Var(μi) = σ2
μ, and E|μi|4+ε0 <∞ for some ε0 > 0;

(ii) μi and vjt are mutually independent, and they are independent of xks and zk for all i, j, k, t, s; (iii)
All elements in (xit, zi) have 4 + ε0 moments for some ε0 > 0.

Assumption R(i) and the first part of Assumption R(ii) are standard in the random effects panel
data literature. The second part of Assumption R(ii) is for convenience. Alternatively we can treat the
regressors as being nonstochastic.

Case I: y0 is exogenous. To derive the consistency of the QML estimators, we need to ensure that
δ = (λ, φμ)′ is identifiable. Then, the identifiability of other parameters follows. Following White (1994)
and Lee (2004), define Lr∗c (δ) = maxθ,σ2

v
E[Lr(θ, σ2

v, δ)], where we suppress the dependence of Lr∗c (δ) on
n. The optimal solution to maxθ,σ2

v
E[Lr(θ, σ2

v, δ)] is given by

θ̃(δ) = [E(X̃′Ω−1X̃)]−1E(X̃′Ω−1Y ) and (4.1)

σ̃2
v(δ) = 1

nTE[u(θ̃(δ))′Ω−1u(θ̃(δ))]. (4.2)

Consequently, we have

Lr∗c (δ) = −nT
2

[log(2π) + 1] − nT

2
log[σ̃2

v(δ)] −
1
2

log |Ω|. (4.3)
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Noting that θ̃ (δ0) = θ0 + [E(X̃′Ω−1
0 X̃)]−1E(X̃′Ω−1

0 u) = θ0 by Lemma B.6, we can readily show that
σ̃2
v (δ0) = σ2

v0. We impose the following identification condition.

Assumption R: (iv) limn→∞ 1
nT

{
log |σ2

v0Ω0| − log |σ̃2
v (δ) Ω (δ) |} 
= 0 for any δ 
= δ0, and 1

nT X̃
′X̃

is positive definite almost surely for sufficiently large n.

The first part of Assumption R(iv) parallels Assumption 9 in Lee (2004). It is a global identification
condition related to the uniqueness of the variance-covariance matrix of u. With this and the uniform
convergence of 1

nT [Lrc(δ) − Lr∗c (δ)] to zero on Δ proved in the Appendix C, the consistency of δ̂ follows.
The consistency of θ̂ and σ̂2

v follows from that of δ̂ and the second part of Assumption R(iv).

Theorem 4.1 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations yi0 are exogenously
given, then ψ̂

p−→ ψ0.

To derive the asymptotic distribution of ψ̂, we need to make a Taylor expansion of ∂
∂ψLr(ψ̂) = 0

at ψ0, and then to check that the score function and Hessian matrix have proper asymptotic behavior.
First, the score function Sr(ψ) = ∂

∂ψ
Lr(ψ) has the elements

∂Lr(ψ)
∂θ

= 1
σ2

v
X̃′Ω−1u(θ),

∂Lr(ψ)
∂σ2

v
= 1

2σ4
v
u(θ)′Ω−1u(θ) − nT

2σ2
v
,

∂Lr(ψ)
∂ω = 1

2σ2
v
u(θ)′Pωu(θ) − 1

2 tr (PωΩ) , ω = λ, φμ,

where Pω = Ω−1ΩωΩ−1 and Ωω = ∂
∂ωΩ (δ) for ω = λ, φμ. One can easily verify that Ωλ = IT ⊗ A and

Ωφμ = JT ⊗ In where A = ∂
∂λ(B′B)−1 = (B′B)−1(W ′B + B′W )(B′B)−1 . At ψ = ψ0, the last three

components of the score function are linear and quadratic functions of u ≡ u(θ0) and one can readily
verify that their expectations are zero. The first score component contains 1

σ2
v
Y ′
−1Ω

−1u(θ), and some
additional algebra is needed to prove E[Y ′−1Ω

−1
0 u(θ0)] = 0, which is given in Lemma B.6.

Asymptotic normality of the score, proved in Lemma B.8, is essential for the asymptotic normality of
the QMLEs. Note that the elements in u are not independent and that X̃ contains the lagged dependent
variable Y−1, thus the standard results, such as the central limit theorem (CLT) for linear and quadratic
forms in Kelejian and Prucha (2001) cannot be directly applied. For the last three components, we need
to plug u = (ιT ⊗ In)μ+ (IT ⊗B−1

0 )v into Sr(ψ0) and apply the CLT to linear and quadratic functions
of μ and v separately. For the first component, a special care has to be given to Y−1 (see Lemma B.8).

Let Hr,n(ψ) ≡ ∂2

∂ψ∂ψ′Lr(ψ) be the Hessian matrix, and Γr,n(ψ) = E[ ∂
∂ψ

Lr(ψ) ∂
∂ψ′Lr(ψ)] be the

VC matrix of the score vector, both are given in Appendix A. Lemma B.7 shows that 1
nT [Hr,n(ψ0) −

EHr,n(ψ0)] = op(1). The asymptotic normality of the QMLE thus follows from the mean value theorem:
0 = 1√

nT
Sr(ψ̂) = 1√

nT
Sr(ψ0)+ 1

nT
Hr,n(ψ̄) · √nT (ψ̂−ψ0), provided that 1

nT
[Hr,n(ψ̄)−Hr,n(ψ0)] = op(1)

where ψ̄ lies between ψ̂ and ψ0 (see Appendix C for details). We have the following theorem.

Theorem 4.2 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations y0 are exogenously
given, then √

nT (ψ̂ − ψ0)
d−→ N(0, H−1

r ΓrH−1
r ),

where Hr = limn→∞ 1
nT
E[Hr,n(ψ0)] and Γr = limn→∞ 1

nT
Γr,n(ψ0), both assumed to exist, and (−Hr) is

assumed to be positive definite. When errors are normally distributed,
√
nT (ψ̂ − ψ0)

d−→ N(0, H−1
r ).
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As in Lee (2004), the asymptotic results in Theorem 4.2 is valid regardless of whether the sequence
{hn} is bounded or divergent. The matrices Γr and Hr can be simplified if hn → ∞ as n→ ∞.10

Case II: y0 is endogenous. In this case, define Lrr∗c (δ) = maxθ,σ2
v
E[Lrr(θ, σ2

v, δ)], where we suppress
the dependence of Lrr∗c (δ) on n. The optimal solution to maxθ,σ2

v
E[Lrr(θ, σ2

v, δ)] is now given by

θ̃(δ) = [E(X∗′Ω∗−1(δ)X∗)]−1E[X∗′Ω∗−1(δ)Y ∗(ρ)], and (4.4)

σ̃2
v(δ) = 1

n(T+1)
E[u∗(θ̃(δ), ρ)′Ω∗−1(δ)u∗(θ̃(δ), ρ)]. (4.5)

Consequently, we have

Lrr∗c (δ) = −n(T + 1)
2

[log(2π) + 1]− n(T + 1)
2

log σ̃2
v(δ) −

1
2

log |Ω∗|. (4.6)

We make the following identification assumption.

Assumption R: (iv∗) limn→∞ 1
n(T+1)

{
log |σ2

v0Ω∗
0| − log |σ̃2

v (δ)Ω∗(δ)|} 
= 0 for any δ 
= δ0. Both
1
n
x̃′x̃ and 1

nT
(X,Z)′(X,Z) are positive definite almost surely for sufficiently large n.

The following theorem establishes the consistency of QMLE for the random effects model with en-
dogenous initial observations. Similarly, the key result is to show that 1

n(T+1)
[Lrrc (δ)−Lrr∗c (δ)] converges

to zero uniformly in δ ∈ Δ, which is given in Appendix C.

Theorem 4.3 Under Assumptions G1, G2, R0, R(i)-(iii) and R(iv∗), if the initial observations y0 are
endogenously given, then ψ̂

p−→ ψ0.

Again, to derive the asymptotic distribution of ψ̂, one starts with a Taylor expansion of the score
function, Srr(ψ) = ∂

∂ψLrr(ψ), of which the elements are given below:

∂Lrr(ψ)
∂θ

= 1
σ2

v
X∗′Ω∗−1u∗(θ, ρ),

∂Lrr(ψ)
∂σ2

v
= 1

2σ4
v
u∗(θ, ρ)′Ω∗−1u∗(θ, ρ) − n(T+1)

2σ2
v
,

∂Lrr(ψ)
∂ρ = − 1

σ2
v
u∗ρ(θ, ρ)′Ω∗−1u∗(θ, ρ) + 1

2σ2
v
u∗(θ, ρ)′P ∗

ρ u
∗(θ, ρ) − 1

2 tr(P ∗
ρΩ∗),

∂Lrr(ψ)
∂ω = 1

2σ2
v
u∗(θ, ρ)′P ∗

ωu
∗(θ, ρ) − 1

2 tr(P ∗
ωΩ∗), for ω = λ, φμ, and φζ ,

where u∗ρ(θ, ρ) = ∂
∂ρu

∗(θ, ρ), P ∗
ω = Ω∗−1Ω∗

ωΩ∗−1, and Ω∗
ω = ∂

∂ωΩ∗(δ) for ω = ρ, λ, φμ, and φζ , given as

u∗ρ(θ, ρ) = −
(
ȧmZγ

Y−1

)
, Ω∗

ρ =

(
2φμamȧmIn + ḃm(B′B)−1 φμȧm(ι′ ⊗ In)
φμȧm(ι⊗ In) 0nT×nT

)
,

Ω∗
λ =

(
bm 0′T
0T IT

)
⊗A, Ω∗

φμ
=

(
a2
m amι

′
T

amιT JT

)
⊗ In, and Ω∗

φζ
=

(
1 0′T
0T 0T×T

)
⊗ In,

where ȧm = d
dρam(ρ) and ḃm = d

dρ bm(ρ), and their expressions can easily be obtained. One can readily
verify that E[ ∂

∂ψ
Lrr(ψ0)] = 0. The asymptotic normality of the score is given in Lemma B.13. The

10It can be shown, by some algebra similar to these for proving Lemma B.6 but using (B.2) instead of (B.3), that when

T is also large the results of Theorems 4.1 and 4.2 remain valid under an endogenous y0, although issues such as the exact

rate of convergence and the magnitude of bias remain. Nevertheless, it shows that when T is also large one can indeed

ignore the endogeneity of y0, as it was done in Yu et al. (2008) for a fixed effects spatial lag SDPD model with both large

n and large T . However, a detailed study along this line is clearly beyond the scope of the paper.
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asymptotic normality of the QMLE thus follows if the Hessian matrix, Hrr,n(ψ) ≡ ∂2

∂ψ∂ψ′Lrr(ψ), given in
Appendix A, possesses the desired stochastic convergence property as those for the case of exogenous y0.

Let Γrr,n(ψ) = E[ ∂
∂ψ

Lrr(ψ) ∂
∂ψ′Lrr(ψ)] be the variance-covariance matrix of the score vector with its

detail given in Appendix A. We now state the asymptotic normality result.

Theorem 4.4 Under Assumptions G1, G2, R0, R(i)-(iii) and R(iv∗), if the initial observations are
endogenously given, then √

nT (ψ̂ − ψ0)
d−→ N(0, H−1

rr ΓrrH−1
rr ),

where Hrr = limn→∞ 1
n(T+1)E [Hrr,n(ψ0)] and Γrr = limn→∞ 1

n(T+1)Γrr,n(ψ0), both assumed to exist,

and (−Hrr) is assumed to be positive definite. When errors are normal,
√
nT (ψ̂ − ψ0)

d−→ N(0, H−1
rr ).

4.3 Fixed effects model

For the fixed effects model, we need to supplement the generic assumptions, Assumptions G1 and
G2, made above with the following assumption on the regressors.

Assumption F: (i) The processes {xit, t = · · · ,−1, 0, 1, · · ·} are trend-stationary or first-differencing
stationary for all i = 1, · · · , n; (ii) All elements in Δxit have 4 + ε0 moments for some ε0 > 0; (iii)
1
nT ΔX†′ΔX† is positive definite almost surely for sufficiently large n.

Define Lf∗c (δ) = maxθ,σ2
v
E[Lf(θ, σ2

v, δ)], where we suppress the dependence of Lf∗c (δ) on n. The
optimal solution to maxθ,σ2

v
E[Lf(θ, σ2

v, δ)] is now given by

θ̃(δ) =
{
E[(ΔX†)′Ω†−1ΔX†]

}−1
E[(ΔX†)′Ω†−1ΔY †(ρ)] and (4.7)

σ̃2
v(δ) = 1

nT
E[Δu(θ̃(δ), ρ)′Ω†−1Δu(θ̃(δ), ρ)]. (4.8)

Consequently, we have

Lf∗c (δ) = −nT
2

[log(2π) + 1]− nT

2
log[σ̃2

v(δ)] −
1
2

log |Ω†|. (4.9)

The following identification condition is needed for our consistency result.

Assumption F: (iv) limn→∞ 1
nT

{
log |σ2

v0Ω
†
0| − log |σ̃2

v(δ)Ω†(δ)|} 
= 0 for any δ 
= δ0.

With this identification condition, the consistency of δ̂ follows if 1
nT [Lfc (δ)−Lf∗c (δ)] converges to zero

uniformly on Δ. The consistency of θ̂ and σ̂2
v then follows from the consistency of δ̂ and the identification

condition given in Assumption F(iii). We have the following theorem.

Theorem 4.5 Under Assumptions G1, G2, F0, and F, we have for either exogenous or endogenous y0,
ψ̂

p−→ ψ0.

To derive the asymptotic distribution of ψ̂, one needs the score function Sf (ψ) = ∂
∂ψLf(ψ):

∂Lf(ψ)
∂θ = 1

σ2
v
ΔX†′Ω†−1Δu(θ, ρ),

∂Lf(ψ)
∂σ2

v
= 1

2σ4
v
Δu(θ, ρ)′Ω†−1Δu(θ, ρ) − nT

2σ2
v
,

∂Lf(ψ)
∂ρ = − 1

σ2
v
Δuρ(θ, ρ)′Ω†−1Δu(θ, ρ) + 1

2σ2
v
Δu(θ, ρ)′P †

ρΔu(θ, ρ) − 1
2 tr(Ω†−1Ω†

ρ),
∂Lf(ψ)
∂ω

= 1
2σ2

v
Δu(θ, ρ)′P †

ωΔu(θ, ρ) − 1
2
tr(Ω†−1Ω†

ω) for ω = λ, φζ,
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where Δuρ(θ, ρ) = ∂
∂ρΔu(θ, ρ) = −(0′n×1,Δy′1, · · · ,Δy′T−1)

′, and Ω†
ω = ∂

∂ωΩ† (δ) and P †
ω = Ω†−1Ω†

ωΩ†−1

for ω = ρ, λ, and φζ. From (3.24), it is easy to see that Ω†
ρ = hċm ⊗ (B′B)−1, Ω†

λ = hcm ⊗ A, and
Ω†
φζ

= �1 ⊗ In, where ċm = ∂
∂ρcm(ρ). Again, one can readily verify that E[ ∂∂ψLf(ψ0)] = 0. The

asymptotic normality of the score is given in Lemma B.15. The asymptotic normality of ψ̂ thus follows
if the Hessian matrix, Hf,n(ψ) ≡ ∂2

∂ψ∂ψ′Lf(ψ), given in Appendix A, possesses the desired stochastic
convergence properties as those for random effects model. Let Γf,n(ψ) = E[ ∂

∂ψ
Lf(ψ) ∂

∂ψ′Lf(ψ)] be the
VC matrix of the score vector, given in Appendix A. We now state the asymptotic normality result.

Theorem 4.6 Under Assumptions G1, G2, F0 and F, we have for either exogenous or endogenous y0,

√
nT(ψ̂ − ψ0)

d−→ N(0, H−1
f ΓfH−1

f ),

where Hf = limn→∞ 1
nT E [Hf,n(ψ0)] and Γr = limn→∞ 1

nT Γf,n(ψ0), both assumed to exist, and (−Hf )
is assumed to be positive definite. When errors are normally distributed,

√
nT (ψ̂ − ψ0)

d−→ N(0, H−1
f ).

5 Bootstrap Estimate of the Variance-Covariance Matrix

From Theorems 4.2, 4.4 and 4.6, we see that the asymptotic variance-covariance (VC) matrices of the
QMLEs of the three models considered are, respectively, H−1

r ΓrH−1
r , H−1

rr ΓrrH−1
rr , and H−1

f ΓfH−1
f .

Practical applications of the asymptotic normality theory depend upon the availability of a consis-
tent estimator of the asymptotic VC matrix. Obviously, the Hessian matrices evaluated at the QMLEs
provide consistent estimators for Hr, Hrr, and Hf , i.e., Ĥr ≡ 1

nTHr,n(ψ̂), Ĥrr ≡ 1
n(T+1)Hrr,n(ψ̂), and

Ĥf ≡ 1
nTHf,n(ψ̂). The formal proofs of the consistency of these estimators can be found in the proofs

of Theorems 4.2, 4.4, and 4.6, respectively. However, consistent estimators for Γr,Γrr, and Γf , the
asymptotic VC matrices of the scores (normalized), are not readily available due to the presence of error
components in the original model and in the model for the initial observations.11

As indicated in the introduction, the traditional methods based on sample-analogues, outer product of
gradients (OPG), or closed form expressions, do not provide an easy solution. First, from the expressions
of the score functions, Sr(ψ), Srr(ψ) and Sf (ψ), given in Section 4, we see that it is very difficult, if
possible at all, to find sample analogues of E[Sr(ψ0)Sr(ψ0)′], E[Srr(ψ0)Srr(ψ0)′] and E[Sf (ψ0)Sf (ψ0)′],
bearing in mind that Sr(ψ̂), Srr(ψ̂) and Sf (ψ̂) are all zero by the definition of the QMLEs. Second, OPG
method typically requires that the score function be written as a single summation of n uncorrelated
terms. This cannot be done in our framework as our score function has the form of a second order V
statistic instead. Third, although the closed form expressions for the VC matrices can be derived (see
Appendix D), these expressions typically contain the third and fourth moments of the error components
in models (3.1), (3.10), (3.15) and (3.19). Some elements of the VC matrices cannot be consistently
estimated due to the complicated interaction of the error terms with the lagged dependent variable and
the fact that only a short panel data is available. Thus, an alternative method is desired.

In this section, we introduce a residual-based bootstrap method for estimating the VC matrices of
the scores, with the bootstrap draws made on the joint empirical distribution function (EDF) of n

11This is not a problem for the exact likelihood inference (Elhorst, 2005, Yang et al., 2006) as in this case the VC matrix

of the score function equals the negative expected Hessian. Hence, the asymptotic VC matrices of the MLEs in the three

models considered reduce to −H−1
r ,−H−1

rr and −H−1
f , respectively, of which sample analogues exist.
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transformed vectors of residuals. While the general principle for our bootstrap method is the same for
all the three models considered above, different structures of the residuals and the score functions render
them a separate consideration.

5.1 Random effects model with exogenous initial values

Write the model as: yt = ρ0yt−1 + xtβ0 + zγ0 + ut, ut = μ+B−1
0 vt, t = 1, 2, · · · , T , now viewed as a

real-world data generating process (DGP). We have, Var(ut) = σ2
v0(φμ0In + (B′

0B0)−1) ≡ σ2
v0Σ(λ0, φμ0).

Define the transformed residuals (t-residuals):

rt = Σ− 1
2 (λ0, φμ0)ut, t = 1, · · · , T,

where Σ
1
2 (λ, φμ) is a square-root matrix of Σ(λ, φμ). Then, E(rt) = 0 and Var(rt) = σ2

v0In. Thus,
the elements of rt are uncorrelated, which are iid if μ and vt are normal satisfying the conditions given
in Assumptions G1 and R. As our asymptotics depend only on n, these uncorrelated errors lay out the
theoretical foundation for a residual-based bootstrap method. Let r̂t be the QML estimate of rt, and F̂n,t
be the empirical distribution function (EDF) of the centered r̂t, for t = 1, 2, · · · , T . Let Sr(Y−1, u, ψ0)
be the score function given below Theorem 4.1, now written in terms of the lagged response Y−1, the
disturbance vector u and the true parameter vector ψ0. The bootstrap procedure for estimating Γn,r(ψ0)
is as follows.

1. Compute the QMLE ψ̂, the QML residuals ût = yt − ρ̂yt−1 − xtβ̂ − zγ̂, and the transformed QML
residuals r̂t = Σ− 1

2 (λ̂, φ̂μ)ût, for t = 1, 2, . . . , T . For each t, center r̂t by its mean.

2. Make n random draws from the rows of (r̂1, . . . , r̂T ) to give T matched bootstrap samples, {r̂b1, . . . , r̂bT },
of the transformed residuals.

3. Conditional on y0,x, z, and the QMLE ψ̂, generate the bootstrap data according to

ŷb1 = ρ̂y0 + x1β̂ + zγ̂ + Σ
1
2 (λ̂, φ̂μ)r̂b1,

ŷbt = ρ̂ŷbt−1 + xtβ̂ + zγ̂ + Σ
1
2 (λ̂, φ̂μ)r̂bt , t = 2, 3, . . . , T.

The bootstrapped values of u and Y−1 are given by ûb = vec[Σ
1
2 (λ̂, φ̂μ)(r̂b1, · · · , r̂bT )] and Ŷ b−1 =

vec(y0 , ŷb1, . . . , ŷbt−1), respectively.

4. Compute Sr(Ŷ b−1, û
b, ψ̂), the score function in the bootstrap world.

5. Repeat steps 2-4 B times, and the bootstrap estimate of Γn,r(ψ0) is given by

Γ̂bn,r =
1
B

B∑
b=1

Sr(Ŷ b−1, û
b, ψ̂)Sr(Ŷ b−1, û

b, ψ̂)′ − 1
B

B∑
b=1

Sr(Ŷ b−1, û
b, ψ̂) · 1

B

B∑
b=1

Sr(Ŷ b−1, û
b, ψ̂)′. (5.1)

An intuitive justification for the validity of the above bootstrap procedure goes as follows. First, note
that the score function can be written as Sr(Y−1, u, ψ0), viewed as a function of random components and
parameters. Note that ut = μ + B−1

0 vt, t = 1, . . . , T . If ψ0 and the distributions of μi and vit were all
known, then to compute the value of Γn,r(ψ0), one can simply use the Monte Carlo method: (i) generate
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Monte Carlo samples μm and vmt , t = 1, · · · , T , to give a Monte Carlo value um, (ii) compute the Monte
Carlo value Y m−1 based on um, {x1, . . . , xT}, and z, through the real-world DGP, (iii) compute a Monte
Carlo value Sr,m(ψ0) = Sr(Y m−1, u

m, ψ0) for the score function, and (iv) repeat (i)-(iii) M times to give
a Monte Carlo approximation to the value of Γn,r(ψ0) as

Γmn,r(ψ0) ≈ 1
M

B∑
m=1

Sr,m(ψ0)Sr,m(ψ0)′ − 1
M

M∑
m=1

Sr,m(ψ0) · 1
M

M∑
m=1

Sr,m(ψ0)′, (5.2)

which can be made to an arbitrary level of accuracy by choosing an arbitrarily large M . Note that
ut = Σ

1
2 (λ0, φμ0)rt. The step (i) above is equivalent to draw random sample rmt from the joint distribution

Ft of rt, and compute umt = Σ
1
2 (λ0, φμ0)rmt .12

However, in the real world, ψ0 is unknown. In this case, it is clear that a Monte Carlo estimate of
Γn,r(ψ0) can be obtained by plugging ψ̂ into (5.2),

Γ̂mn,r =
1
M

B∑
m=1

Sr,m(ψ̂)Sr,m(ψ̂)′ − 1
M

M∑
m=1

Sr,m(ψ̂) · 1
M

M∑
m=1

Sr,m(ψ̂)′. (5.3)

In the real world the distributions of μi and vit, and hence Ft, are also unknown. However, we note
that the only difference between Γ̂bn,r given in (5.1) and Γ̂mn,r given in (5.3) is that r̂bt for the former is from
the EDF F̂n,t, but rmt for the latter is drawn from the true joint distribution Ft. The bootstrap DGP that
mimics the real-world DGP must be ŷb1 = ρ̂y0 +x1β̂+zγ̂+ ûb1, and ŷbt = ρ̂ŷbt−1+xtβ̂+zγ̂+ ûbt, t = 2, . . . , T .
Thus, if {F̂n,t} are able to produce {r̂bt} that mimic {rmt } drawn from {Ft} up to the fourth moments,
which is typically the case as ψ̂ is consistent for ψ0 and the spatial weight matrix is typically sparse (see
Appendix D for details), then Γ̂bn,r and Γ̂mn,r are asymptotically equivalent. The extra variability caused
by replacing Ft by F̂n,t is of the same order as that from replacing ψ0 by ψ̂. This justifies the validity of
the proposed bootstrap procedure in a heuristic manner.

Formally, let Varb
(
Sr(Ŷ b−1, û

b, ψ̂)
)

be the true bootstrap variance of Sr(Ŷ b−1, û
b, ψ̂) where the variance

operator Varb corresponds to the EDFs {F̂n,t}Tt=1. Alternatively, we can understand that Varb (·) is the
variance conditional on the observed sample. Note that by choosing an arbitrarily large B, the feasible
bootstrap variance Γ̂bn,r, defined in (5.1), gives an arbitrarily accurate approximation to the true bootstrap
variance Varb[S(Ŷ b−1, û

b, ψ̂)]. We have the following proposition.

Proposition 5.1 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations y0 are exoge-
nously given, then 1

nT

[
Varb

(
Sr(Ŷ b−1, û

b, ψ̂)
)− Γr,n(ψ0)

]
= op(1).

5.2 Random effects model with endogenous initial values

When the initial observations y0 are endogenously given, the disturbance vector now becomes
(u0, u1, u2, . . . , uT ) such that Var(u0) = σ2

v0ω11 and Var(ut) = σ2
v0Σ(λ0, φμ0), t = 1, . . . , T , where ω11 is

defined above (3.31) and Σ(λ, φμ) is defined in Section 5.1. Define the transformed residuals: r0 = ω
− 1

2
11 u0,

and rt = Σ− 1
2 (λ0, φμ0)ut, t = 1, . . . , T , where ω

1
2
11 is a square-root matrix of ω11. Now, denote the

QML estimates of the transformed residuals as {r̂0, r̂1, . . . , r̂T}, and the EDF of the centered r̂t by

12Although the elements {rit} of rt are uncorrelatedwith constantmean and variance, they may not be totally independent

and may not have constant third and fourth moments, unless both μ and vt are normal.
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F̂n,t, t = 0, 1, . . . , T . Draw T + 1 matched samples of size n each from {Fn,t}Tt=0, to give bootstrap
residuals {r̂b0, r̂b1, . . . , r̂bT }. Let ω̂

1
2
11 be the plug-in estimator of ω

1
2
11. The bootstrap values for the response

variables are thus generated according to

ŷb0 = x̃π̂ + ω̂
1
2
11r̂

b
0, and ŷbt = ρ̂ŷbt−1 + xtβ̂ + zγ̂ + Σ

1
2 (λ̂, φ̂μ)r̂bt , t = 1, 2, . . . , T.

The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure. Formally, we have the result for Srr(Y−1, u0, u, ψ0) defined below Theorem 4.3, now
written in terms of the lagged response Y−1, the disturbance vectors u0 and u, and the true parameter
vector ψ0.

Proposition 5.2 Under Assumptions G1, G2, R0, and R(i)-(iv∗), if the initial observations y0 are
endogenously given, then 1

n(T+1)

[
Varb

(
Srr(Ŷ b−1, û

b
0, û

b, ψ̂)
)− Γrr,n(ψ0)

]
= op(1).

5.3 Fixed effects model with endogenous initial values

When the individual effects are treated as fixed, and the initial differences are modelled by (3.19), the
disturbance vector becomes after first-differencing: (Δũ1,Δu2, · · · ,ΔuT ), where Δũ1 is defined in (3.19)
and Δut = B−1

0 vt as in (3.15) such that Var(Δũ1) = σ2
v0(φζ0In + cm(B′

0B0)−1) ≡ σ2
v0ω and Var(Δut) =

2σ2
v0(B′

0B0)−1, t = 2, . . . , T . Define the transformed residuals: r1 = ω− 1
2 Δũ1 and rt = 1√

2
B0Δut,

t = 2, · · · , T , where ω
1
2 is square-root matrix of ω. Denote the QML estimates of the transformed

residuals as {r̂1, r̂2, · · · , r̂T}, and the EDF of the centered r̂t by F̂n,t, t = 1, . . . , T . Draw T matched
samples of size n each from {Fn,t}Tt=1, to give bootstrap residuals {r̂b1, r̂b2, . . . , r̂bT }. Let ω̂

1
2 be the plug-in

estimator of ω
1
2 . The bootstrap values for the response variables are thus generated according to

Δŷb1 = Δx1β̂ + Δx̃π̂ + ω̂
1
2 r̂b1, and Δŷbt = ρ̂Δŷbt−1 + Δxtβ̂ +

√
2B̂−1r̂bt , t = 2, 3, . . . , T.

The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure. Let Sf (ΔY−1,Δu, ψ0) be the score function given below Theorem 4.5, now written
in terms of ΔY−1 = {Δy′t, . . . ,Δy′T−1}′, Δu = {Δũ′1,Δu′2 . . . ,Δu′T}′, and ψ0. We have the following.

Proposition 5.3 Under Assumptions G1, G2, F0, and F(i)-(iv), for either exogenous or endogenous
initial observations y0, we have 1

nT

[
Varb

(
Sf (ΔŶ b−1,Δûb, ψ̂)

) − Γf,n(ψ0)
]

= op(1).

6 Finite Sample Properties of the QMLEs

Monte Carlo experiments are carried out to investigate the performance of the QMLEs in finite
samples and that of the bootstrapped estimates of the standard errors. In the former case, we investigate
the consequences of treating the initial observations as endogenous when they are in fact exogenous, and
vice versa. In the latter case we study the performance of standard error estimates based on only the
Hessian, or only the bootstrapped variance of the score, or both, when errors are normal or nonnormal.
We use the following data generating process (DGP):

yt = ρyt−1 + β0ιn + xtβ1 + zγ + ut

ut = μ+ εt

εt = λWnεt + vt
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where yt, yt−1, xt, and z are all n × 1 vectors. The elements of xt are generated in a similar fashion as
in Hsiao et al. (2002),13 and the elements of z are randomly generated from Bernoulli(0.5). The spatial
weight matrix is generated according to Rook or Queen contiguity, by randomly allocating the n spatial
units on a lattice of k×m (≥ n) squares, finding the neighbors for each unit, and then row normalizing.
We choose β0 = 5, β1 = 1, γ = 1, σμ = 1, σv = 1, a set of values for ρ ranging from −0.9 to 0.9, a set
of values for λ in a similar range, T = 3 or 7, and n = 50 or 100. Each set of Monte Carlo results
(corresponding to a combination of the ρ and λ values) is based on 1000 samples. For bootstrapping
standard errors, the number of bootstrap samples is chosen to be B = 999 + �n0.75� where �·� denotes
the integer part of ·. Due to space constraints, only a subset of results are reported. The error (vt)
distributions can be (i) normal, (ii) normal mixture (10% N(0, 4) and 90% N(0, 1)), or (iii) centered
χ2(5) or χ2(3). For the case of random effects model, μ and vt are generated from the same distribution.

Random effects model. Table 1 reports the Monte Carlo mean and rmse for the random effects
model when the data are generated according to either m = 0 or m = 6, but the model is estimated
under m = 0, 6, and 200. The results show clearly that a correct treatment on the initial values leads to
excellent estimation results in general, but a wrong treatment may give totally misleading results.

Some details are as follows. When the true m value is 0, i.e., y0 is exogenous, estimating the model
as if m = 6 or 200 can give very poor results when ρ is large. When ρ is not large or when ρ is negative
(not reported for brevity), the estimates under a wrong m value improve but are still far from being
satisfactory. In contrast, when the true m value is 6 but are treated as either 0 or 200, the resulted
estimates are in general quite close to the true estimates except for the case of m = 0 under a large
and positive ρ. This shows that the model estimates are not sensitive to the exact choice of m when
y0 is endogenous and is treated as endogenous. Comparing the results of Table 1a and 1b, we see that
non-normality does not deteriorate the results of a wrong treatment of the initial values in terms of mean,
but it does in terms of rmse. We note that, when the true m value is 0 but is treated as 6 or 200, the
poor performance of the estimates when ρ is large and positive may be attributed to the fact that the
quantities zm(ρ) and am(ρ), given below (3.7) and above (3.11), have 1 − ρ as their denominators.

Table 2 reports the standard errors of the estimates based on (1) only the bootstrapped variance of the
score (seSCb), (2) only the Hessian matrix (seHS), and (3) both the bootstrapped variance of the score
and the Hessian (seHSb). The results show that when errors are normal, all three methods give averaged
standard errors very close to the corresponding Monte Carlo SDs; but when errors are non-normal, only
the seHSb method gives standard errors close to the corresponding Monte Carlo SDs; see in particular the
standard errors of φμ and σ2

v. More results corresponding to other choices of the spatial weight matrices,
and other values of ρ and λ are available from the authors upon request.

Fixed effects model. The fixed effects μ are generated according to either 1
T

∑T
t=1 xt+e or e, where

e is generated in the same way as μ in the random effects model. The reported results correspond to
the former. Table 3 reports the Monte Carlo mean and rmse for the fixed effects model when the data
are generated according to either m = 0 or m = 6, but the model is estimated under m = 0, 6, and 200.
The results show again that a correct treatment on the initial values leads to excellent estimation results
in general, and that a wrong treatment on the initial values may lead to misleading results though to
a much lesser degree as compared with the case of random effects model. The results corresponding to

13The detail is: xt = μx + gt1n + ζt, (1 − φ1L)ζt = εt + φ2εt−1, εt ∼ N(0, σ2
1In), μx = e + 1

T+m+1

PT
t=−m εt, and

e ∼ N(0, σ2
2). Let θx = (g, φ1, φ2, σ1, σ2). Alternatively, the elements of xt can be randomly generated from N(0,4).
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uncorrelated fixed effects (unreported for brevity) further reveal that whether the individual effects are
correlated with the regressors or not does not affect the performance of the fixed-effects QMLEs.

Some details are as follows. When the true m value is 0, i.e., y0 is exogenous, estimates of the model
parameters as if m = 6 or 200 can be poor when ρ is negative and large. When ρ is not large or when ρ
is positive (not reported for brevity), the estimates under a wrong m are quite satisfactory. This shows
that the model estimates are less sensitive to the treatment on y0 when it is endogenous. Comparing
the results of Table 3a and 3b, we see that non-normality does not deteriorate the results of a wrong
treatment of the initial values in terms of mean, but it does in terms of rmse.

Contrary to the case of random effects model, when the true m value is 0 but is treated as 6 or 200
the estimates of the fixed effects model are poor when ρ is large but negative. This may be attributed to
the quantity cm(ρ) defined below (3.21) which has 1 + ρ as its denominator. Comparing the results for
the fixed effects model with those for the random effects model, it seems that the fixed effects model is
less sensitive to the treatment of the initial values.

Table 4 reports seSCb, seHS, and seHSb along with the Monte Carlo SDs for comparison. The results
show that when errors are normal, all three methods give averaged standard errors very close to the
corresponding Monte Carlo SDs; but when errors are non-normal, the standard errors of σ̂2

v from the
seHSb method are much closer to the corresponding Monte Carlo SDs than those from the other two
methods. More results corresponding to other choices of the spatial weight matrices, and other values of
ρ and λ are available from the authors upon request.

7 Concluding Remarks

The asymptotic properties of the quasi maximum likelihood estimators of dynamic panel models with
spatial errors are studied in detail under the framework that the cross-sectional dimension n is large and
the time dimension T is fixed, a typical framework for microeconomics data. Both the random effects
and fixed effects models are considered, and the assumptions on the initial values and their impact on the
subsequent analyses are investigated. The difficulty in implementing the robust standard error estimates,
due to the existence of higher order moments of error components in the variance of the score function,
is overcome by a simple residual-based bootstrap method. Monte Carlo simulation shows that both
the QML estimators and the bootstrap standard errors perform well in finite samples under a correct
assumption on initial observations, but the QMLEs can perform poorly when this assumption is not met.

A referee raised a concern that the current paper did not consider the SDPD model with spatial lag
dependence, and another referee raised similar concerns on the possible existence of additional spatial
structure in the model and on the assumptions made on the processes starting positions. We are fully
aware of those intriguing issues. In particular, we recognize that the presence of a spatial lagged dependent
variable will complicate the study to a great extent, which certainly demands separate future research.
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Appendix A: Hessian and VC Matrix of Score

Random effects model with exogenous y0. The Hessian matrix Hrn(ψ) has the elements:

∂2Lr(ψ)
∂θ∂θ′ = − 1

σ2
v
X̃′Ω−1X̃, ∂2Lr(ψ)

∂θ∂σ2
v

= − 1
σ4

v
X̃′Ω−1u(θ),

∂2Lr(ψ)
∂θ∂ω = − 1

σ2
v
X̃′Pωu(θ), ω = λ, φμ,

∂2Lr(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
u(θ)′Ω−1u(θ)+ nT

2σ4
v
,

∂2Lr(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
u(θ)′Pωu(θ), ω = λ, φμ,

∂2Lr(ψ)
∂ω∂

= qω[u(θ)], for ω,� = λ, φμ,

where qω(u) ≡ 1
2
tr(PΩω −Ω−1Ωω) − 1

2σ2
v
u′(2PΩω − Ω−1Ωω)Ω−1u for ω,� = λ, φμ; Pω is defined

below Theorem 4.1; and Ωω = ∂2

∂ω∂
Ω (δ) for ω,� = λ, φμ. It is easy to see that Ωλλ = IT ⊗ Ȧ where

Ȧ = ∂
∂λA = 2(B′B)−1 [(W ′B +B′W )A−W ′W ], and all other Ωω matrices are 0nT×nT .

The VC matrix of the score, Γr,n(ψ0) ≡ E[ ∂∂ψLr(ψ0) ∂
∂ψ′Lr(ψ0)], has the elements, for ω,� = λ, φμ:

Γr,θθ = 1
σ2

v0
E(X̃′Ω−1

0 X̃), Γr,θσ2
v

= 1
2σ6

v0
E(X̃′Ω−1

0 uu′Ω−1
0 u),

Γr,θω = 1
2σ4

v0
E(X̃′Ω−1

0 uu′Pω0u), Γr,σ2
vσ

2
v

= 1
σ4

v0
g(Ω−1

0 ,Ω−1
0 ),

Γr,σ2
vω

= 1
σ2

v0
g(Ω−1

0 , Pω0), Γr,ω = g(Pω0, P0),

where g(C1, C2) ≡ 1
4σ4

v0
E(u′C1uu

′C2u) − 1
4
tr(C1Ω0)tr(C2Ω0). The explicit form of g can be obtained

from Lemma B.4(1). The other elements can be evaluated using Y−1 = η−1 +(J ′
ρ0 ⊗ In)u detail of which

can be found in the proof of Proposition 5.1 in Appendix D.

Random effects model with endogenous y0. The Hessian matrix Hrr,n(ψ) has the elements:

∂2Lrr(ψ)
∂θ∂θ′ = − 1

σ2
v
X∗′Ω∗−1X∗,

∂2Lrr(ψ)
∂θ∂σ2

v
= − 1

σ4
v
X∗′Ω∗−1u∗(θ, ρ),

∂2Lrr(ψ)
∂θ∂ρ

= 1
σ2

v
X∗′
ρ Ω∗−1u∗(θ, ρ) + 1

σ2
v
X∗′Ω∗−1u∗ρ(θ, ρ) − 1

σ2
v
X∗′P ∗

ρ u
∗(θ, ρ),

∂2Lrr(ψ)
∂θ∂ω = − 1

σ2
v
X∗′P ∗

ωu
∗(θ, ρ), for ω = λ, φμ, and φζ ,

∂2Lrr(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
u∗(θ, ρ)′Ω∗−1u∗(θ, ρ) + n(T+1)

2σ4
v
,

∂2Lrr(ψ)
∂σ2

v∂ρ
= 1

σ4
v
u∗ρ(θ, ρ)′Ω∗−1u∗(θ, ρ) − 1

2σ4
v
u∗(θ)′P ∗

ρu
∗(θ, ρ),

∂2Lrr(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
u∗(θ, ρ)′P ∗

ωu
∗(θ, ρ), for ω = λ, φμ, and φζ,

∂2Lrr(ψ)
∂ρ∂ρ

= − 1
σ2

v
u∗ρρ(θ, ρ)

′Ω∗−1u∗(θ, ρ) − 1
σ2

v
u∗ρ(θ, ρ)

′Ω∗−1u∗ρ(θ, ρ) + 2
σ2

v
u∗ρ(θ, ρ)

′P ∗
ρ u

∗(θ, ρ) + q∗ρρ[u
∗(θ, ρ)],

∂2Lrr(ψ)
∂ρ∂ω = 1

σ2
v
u∗ρ(θ, ρ)′P ∗

ωu
∗(θ, ρ) + q∗ρω[u∗(θ, ρ)], for ω = λ, φμ, and φζ ,

∂2Lrr(ψ)
∂ω∂ = q∗ω[u∗(θ, ρ)], for ω,� = λ, φμ, and φζ.

where q∗ω(u∗) ≡ 1
2tr(P ∗

Ω∗
ω − Ω∗−1Ω∗

ω) − 1
2σ2

v
u∗′(2P ∗

Ω∗
ω − Ω∗−1Ω∗

ω)Ω∗−1u∗ for ω,� = ρ, λ, φμ, and

φζ , X∗
ρ = ∂

∂ρX
∗, u∗ρρ(θ, ρ) = ∂2

∂ρ2u
∗(θ, ρ), and Ω∗

ρω = ∂2

∂ρ∂ωΩ∗ for ω = ρ, λ, φμ, and φζ . The second-order
partial derivatives of Ω∗ are

Ω∗
ρρ =

(
2φμ(ȧ2

m + äm)In + b̈m(B′B)−1 , φμäm(ι′ ⊗ In)
φμäm(ι⊗ In) 0nT×nT

)
, Ω∗

ρλ =
(
ḃmA, 0n×nT
0nT×n 0nT×nT

)
,

Ω∗
ρφμ

=
(

2amȧmIn, ȧm(ι′ ⊗ In)
ȧm(ι⊗ In) 0nT×nT

)
, Ω∗

λλ =
(
bm 0
0 IT

)
⊗ Ȧ,

and all other Ω∗
ω matrices are 0n(T+1)×n(T+1), where äm = ∂

∂ρ
ȧm and b̈ = ∂

∂ρ
ḃm and their ex-

act expressions can be easily derived. Finally, X∗
ρ has a sole non-zero element ȧmz, and u∗ρρ(θ, ρ) =

(−ämγ′z′, 01×nT )′.
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The VC matrix of the score, Γrr,n(ψ0) ≡ E[ ∂∂ψLrr(ψ0) ∂
∂ψ′Lrr(ψ0)], has the elements, for ω and

� = λ, φμ, or φζ :

Γrr,θθ = 1
σ2

v0
E(X∗′Ω∗−1

0 X∗), Γrr,θσ2
v

= 1
σ2

v0
f∗1 (Ω∗−1

0 ),
Γrr,θρ = f∗1 (P ∗

ρ0) − f∗2 (Ω∗−1
0 ), Γrr,θω = g∗1(P ∗

ω0),
Γrr,σ2

vσ
2
v

= 1
σ4

v0
g∗1(Ω∗−1

0 ,Ω∗−1
0 ), Γrr,σ2

vρ
= 1

σ2
v0

[g∗1(P ∗
ρ0,Ω

∗−1
0 ) − g∗2(Ω

∗−1
0 ,Ω∗−1

0 )],
Γrr,σ2

vω
= 1

σ2
v0
g∗1(Ω

∗−1
0 , P ∗

ω0), Γrr,ρρ = 1
σ4

v0
E[(u∗′ρ Ω∗−1

0 u∗)2] + g∗1(P ∗
ρ0, P

∗
ρ0) − 2g∗2(Ω

∗−1
0 , P ∗

ρ0),
Γrr,ρω = g∗1(P ∗

ρ0, P
∗
ω0) − g∗2(Ω

∗−1
0 , P ∗

ω0), Γrr,ω = g∗1(P ∗
ω0, P

∗
0),

where f∗1 (A) ≡ 1
2σ4

v0
E(X∗′Ω∗−1

0 u∗u∗′Au∗), f∗2 (A) ≡ 1
σ4

v0
E(X∗′Ω∗−1

0 u∗u∗′ρ Au
∗), P ∗

ω is defined below The-
orem 4.3, g∗1(A,B) ≡ 1

4σ4
v
E(u∗′Au∗u∗′Bu∗) − 1

4 tr(AΩ∗
0)tr(BΩ∗

0), and g∗2(A,B) ≡ 1
4σ4

v0
E(u∗′ρ Au∗u∗′Bu∗).

As X∗ is exogenous, the explicit forms of f∗1 and g∗1 can be obtained from Lemma B.4. The functions
f∗2 and g∗2 can be evaluated using u∗ρ = −(ȧmγ′Z′, Y ′−1)′ = −η∗−1 − (J ∗′

ρ ⊗ In)u∗ given in the proof of
Proposition 5.2 in Appendix D.

Fixed effects model with exogenous or endogenous y0. The Hessian matrix Hf,n(ψ) has the
elements:

∂2Lf(ψ)
∂θ∂θ′ = − 1

σ2
v
ΔX†′Ω†−1ΔX†,

∂2Lf(ψ)
∂θ∂σ2

v
= − 1

σ4
v
ΔX†′Ω†−1Δu(θ, ρ),

∂2Lf(ψ)
∂θ∂ρ

= 1
σ2

v
ΔX†′Ω†−1Δuρ(θ, ρ) − 1

σ2
v
ΔX†′P †

ρΔu(θ, ρ),
∂2Lf(ψ)
∂θ∂ω = − 1

σ2
v
ΔX†′P †

ωΔu(θ, ρ), for ω = λ, φζ ,
∂2Lf(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
Δu(θ, ρ)′Ω†−1Δu(θ, ρ) + nT

2σ4
v
,

∂2Lf(ψ)
∂σ2

v∂ρ
= 1

σ4
v
Δuρ(θ, ρ)′Ω†−1Δu(θ, ρ) − 1

2σ4
v
Δu(θ, ρ)′P †

ρΔu(θ, ρ),
∂2Lf(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
Δu(θ, ρ)′P †

ωΔu(θ, ρ), for ω = λ, φζ ,
∂2Lf(ψ)
∂ρ∂ρ = − 1

σ2
v
Δuρ(θ, ρ)′Ω†−1Δuρ(θ, ρ) + 2

σ2
v
Δuρ(θ, ρ)′P †

ρΔu(θ, ρ) + q†ρρ[Δu(θ, ρ)],
∂2Lf(ψ)
∂ρ∂ω = 1

σ2
v
Δuρ(θ, ρ)′P †

ωΔu(θ, ρ) + q†ρω[Δu(θ, ρ)], for ω = λ, φζ ,
∂2Lf(ψ)
∂ω∂

= q†ω[Δu(θ, ρ)], for ω,� = λ, φζ ,

where q†ω(Δu) ≡ 1
2
tr(P †

Ω†
ω − Ω†−1Ω†

ω) − 1
2σ2

v
Δu′(2P †

Ω†
ω − Ω†−1Ω†

ω)Ω†−1Δu for ω, � = ρ, λ, and
φζ . The second derivatives Ωω of Ω are: Ωρρ = hc̈m ⊗ (B′B)−1 where c̈m = ∂

∂ρ ċm, Ωρλ = hċm ⊗ A,
Ωλλ = hcm ⊗ Ȧ, and the remaining are all zero matrices.

The VC matrix of the score, Γf,n(ψ0) = E[ ∂
∂ψ

Lf(ψ0) ∂
∂ψ′Lf(ψ0)], has the elements, for ω,� = λ, φζ:

Γf,θθ = 1
σ2

v0
E(ΔX†′Ω†−1

0 ΔX†), Γf,θσ2
v

= 1
σ2

v0
f†1 (Ω†−1

0 ),

Γf,θρ = f†1 (P †
ρ0) − f†2 (Ω†−1

0 ), Γf,θω = f†1 (P †
ω0),

Γf,σ2
vσ

2
v

= 1
σ4

v0
g†1(Ω

†−1
0 ,Ω†−1

0 ), Γf,σ2
vρ

= 1
σ2

v0
[g†1(P

†
ρ0,Ω

†−1
0 ) − g†2(Ω

†−1
0 ,Ω†−1

0 )],

Γf,σ2
vω

= 1
σ2

v0
g†1(Ω

†−1
0 , P †

ω0), Γf,ρρ = 1
σ4

v0
E[(Δu†′ρΩ†−1

0 Δu†)2] + g†1(P
†
ρ0, P

†
ρ0) − 2g†2(Ω

†−1
0 , P †

ρ0),

Γf,ρω = g†1(P
†
ρ0, P

†
ω0) − g†2(Ω

†−1
0 , P †

ω0), Γf,ω = g†1(P
†
ω0, P

†
0),

where f†1 (A) ≡ 1
2σ4

v0
E(ΔX†′Ω†−1

0 ΔuΔu′AΔu), f†2 (A) ≡ 1
σ4

v0
E(ΔX†′Ω†−1

0 ΔuΔu′ρAΔu), g†1(A,B) ≡
1

4σ4
v
E(Δu′AΔuΔu′BΔu) − 1

4 tr(AΩ†
0)tr(BΩ†

0), g†2(A,B) ≡ 1
4σ4

v0
E(Δu′ρAΔuΔu′BΔu), and P †

ω is defined

below Theorem 4.5. As ΔX† is exogenous, the explicit forms of f†1 and g†1 can be obtained from
Lemma B.4. The functions f†2 and g†2 can be evaluated using Δuρ = −(0′n×1,Δy′1, · · · ,Δy′T−1)

′ =
−Δη−1 − (J ′

ρ ⊗ In)Δu given in the proof of Proposition 5.3 in Appendix D.
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Appendix B: Some Useful Lemmas

We introduce some technical lemmas that are used in the proofs of the main results. The proofs of
all lemmas are provided in a supplementary material that is made available online at
http://www.mysmu.edu/faculty/ljsu/Publications/Panel qmle supp.pdf.

We first state five lemmas that greatly facilitate the proof of subsequent lemmas and some results in
the main theorems.

Lemma B.1 Let Pn and Qn be two n× n matrices that are uniformly bounded in both row and column
sums. Let Rn be a conformable matrix whose elements are uniformly O(on) for a certain sequence on.
Then we have:

(1) PnQn is also uniformly bounded in both row and column sums;
(2) any (i, j) elements Pn,ij of Pn are uniformly bounded in i and j and tr(Pn) = O(n);
(3) the elements of PnRn and RnPn are uniformly O(on).

Lemma B.2 Suppose that Assumption G2 holds.
(1) B′B, (B′B)−1,Ω,Ω∗,Ω†, A, and Ȧ are all uniformly bounded in both row and column sums.
(2) 1

ntr(D1ΩD2) = O(1) for D1, D2 = Ω−1,Ω−1(IT ⊗ A)Ω−1,Ω−1(JT ⊗ In)Ω−1, and Ω−1(IT ⊗ Ȧ).
The same conclusion holds when Ω is replaced by Ω∗ or Ω†, and D1 and D2 are replaced by their analogs
corresponding to the case of Ω∗ or Ω†.

(3) 1
n
tr(B′−1RB−1) = O(1) where R is an n × n nonstochastic matrix that is uniformly bounded in

both row and column sums.

Lemma B.3 Let {ai}ni=1 and {bi}ni=1 be two independent iid sequences with zero means and fourth mo-
ments. Let σ2

a = E(a2
1), σ2

b = E(b21). Let qn and pn be n× n nonstochastic matrices. Then
(1) E[(a′qna)(a′pna)] = κa

∑n
i=1 qn,iipn,ii + σ4

a[tr(qn)tr(pn) + tr(qn(pn + p′n))],
(2) E[(a′qna)(b′pnb)] = σ2

aσ
2
btr(qn)tr(pn),

(3) E[(a′qnb)(a′pnb)] = σ2
aσ

2
btr(qnp

′
n),

where κa ≡ E(a4) − 3[E(a2)]2, and, e.g., qn,ij denotes the (i, j)th element of qn.

Lemma B.4 Recall u = (ιT ⊗ In)μ+ (IT ⊗B−1
0 )v. Let a = ζ + μ(1− ρm0 )/(1 − ρ0) +

∑m−1
j=0 ρj0B

−1
0 v−j ,

where ζ, μ, and v are defined in the text. In particular, ζ′is are iid and independent of μ and v. Let
qn, pn, rn, sn, tn be nT × nT , nT × nT , n× n, n × nT and n× nT nonstochastic matrices, respectively.
Further, qn, pn, and rn are symmetric. Then

(1) E[(u′qnu)(u′pnu)] = κμ
∑n

i=1Gqn,1iiGpn,1ii + κv
∑nT

i=1Gqn,2iiGpn,2ii

+σ4
v[tr(qnΩ0)tr(pnΩ0) + 2tr(qnΩ0pnΩ0)],

(2) E[(u′qnu)(a′rna)] = κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1Gqn,1iirn,ii + σ4
v[tr(rnω11)tr(qnΩ0) + 2tr(ω12qnω21pn)],

(3) E[(a′snu)(a′tnu)] = κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1(sn(ιT ⊗ In))ii(tn(ιT ⊗ In))ii
+σ4

v[tr(snω21)tr(tnω21) + tr(snω21tnω21) + tr(snΩ0t
′
nω11)],

(4) E[(u′qnu)(u′s′na)] = κμ(1−ρm
0 )

1−ρ0
∑n

i=1Gqn,1ii((ι′T ⊗ In)s′n)ii + σ4
v[tr(qnΩ0)tr(s′nω12) + 2tr(Ω0s

′
nω12qn)],

(5) E[(a′rna)(a′snu)] = κμ(1−ρm
0 )3

(1−ρ0)3
∑n

i=1 rn,ii(sn(ιT ⊗ In))ii + σ4
v[(rnω11)tr(snω21) + 2tr(rnω11snω21)],

where Gqn,1 ≡ (ι′T ⊗ In)qn(ιT ⊗ In), Gqn,2 ≡ (IT ⊗ B′−1
0 )qn(IT ⊗ B−1

0 ), and, e.g., Gqn,1ij denotes the
(i, j)th element of Gqn,1.
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Lemma B.5 Suppose that {P1n} and {P2n} are sequences of matrices with row and column sums uni-
formly bounded. Let a = (a1, · · · , an)′, where ai’s are independent random variables such that supiE|ai|2+ε0

<∞ for some ε0 > 0. Let b = (b1, · · · , bn)′, where b
′
is are iid with mean zero and (4 + 2ε0)th finite mo-

ments, and {bi} is independent of {ai}. Let σ2
Qn

be the variance of Qn = a′P1nb + b′P2nb − σ2
vtr(P2n).

Assume that the elements of P1n, P2n are of uniform order O(1/
√
hn) and O(1/hn), respectively. If

limn→∞h
1+2/ε0
n /n = 0, then Qn/σQn

d−→ N(0, 1).

Now, for ease of exposition we assume that both xit and zi are scalar random variables (p = 1, q = 1)
in this Appendix. For the proofs of Theorems 2 and 4 for the SDPD model with random effects, the
following presentations are essential. By continuous backward substitutions, we have for t = 0, 1, 2, · · · ,

yt = Xtβ0 + cρ0,tzγ0 + cρ0,tμ+ Vt + Y0,t, (B.1)

where for fixed y0, Xt =
∑t−1
j=0 ρ

j
0xt−j, Vt =

∑t−1
j=0 ρ

j
0B

−1
0 vt−j, Y0,t = ρt0y0 and cρ,t = (1 − ρt)/(1 − ρ);

and for endogenous y0, Xt =
∑t+m−1

j=0 ρj0xt−j, Vt =
∑t+m−1

j=0 ρj0B
−1
0 vt−j, Y0,t = ρt+m0 y−m, and cρ,t =

(1 − ρt+m) /(1 − ρ). Now, define Y0 = (Y′
0,0,Y

′
0,1, · · · ,Y′

0,T−1)
′. Then

Y−1 = X(−1)β0 + (lρ0 ⊗ In)zγ0 + (lρ0 ⊗ In)μ+ V(−1) + Y0, (B.2)

where X(−1) = (0,X′
1, · · · ,X′

T−1)
′, V(−1) = (0,V′

1, · · · ,V′
T−1)

′, and lρ = (0, cρ,1, · · · , cρ,T−1)′ when y0 is
fixed, and X(−1) = (X′

0,X
′
1, · · · ,X′

T−1)
′, V(−1) = (V′

0,V
′
1, · · · ,V′

T−1)
′), and lρ = (cρ,0, cρ,1, · · · , cρ,T−1)′

when y0 is endogenous. Notice that when y0 is exogenous, Y−1 can also be expressed as

Y−1 = AxXβ0 + (lρ0 ⊗ In)zγ0 + (lρ0 ⊗ In)μ +Avv + Y0, (B.3)

where Ax = J ′
ρ0

⊗ In and Av = J ′
ρ0

⊗ B−1
0 with

Jρ =

⎛⎜⎜⎜⎜⎜⎝
0 1 ρ · · · ρT−2

0 0 1 · · · ρT−3

...
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ . (B.4)

Lemmas B.6-B.8 given below are used in the proof of Theorem 4.2.

Lemma B.6 Under the assumptions of Theorem 4.2, E(X̃′Ω−1
0 u) = 0.

Lemma B.7 Under the assumptions of Theorem 4.2, 1
nT

{
∂Lr(ψ0)
∂ψ∂ψ′ −E

[
∂Lr(ψ0)
∂ψ∂ψ′

]}
= op(1).

Lemma B.8 Under the assumptions of Theorem of 4.2, 1√
nT

∂Lr(ψ0)
∂ψ

d−→ N(0,Γr).

Lemmas B.9-B.13 are used in the proof of Theorem 4.4, for the SDPD model with random effects and
endogenous y0. Let Rts be an n × n symmetric and positive semidefinite (p.s.d.) nonstochastic square
matrix for t, s = 0, 1, · · · , T − 1. Assume that Rts are uniformly bounded in both row and column sums.
Recall for this case, Xt =

∑t+m−1
j=0 ρj0xt−j and Vt =

∑t+m−1
j=0 ρj0B

−1
0 vt−j.
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Lemma B.9 Suppose that the conditions in Theorem 4.4 are satisfied. Then
(1) E(V′

tRtsVs) = σ2
vtr(B

′−1
0 RtsB

−1
0 )

∑t+m−1
i=max(0,t−s) ρ

s−t+2i
0 ,

(2) E(X′
tRtsXs) = tr(

∑s+m−1
j=0

∑t+m−1
k=0 ρj+k0 RtsE(xs−jx′t−k)),

(3) E(X′
tRtsVs) = 0.

Lemma B.10 Suppose that the conditions in Theorem 4.4 are satisfied. Then

(1) Cov(V′
tRtsVs,V

′
gRghVh) = ρtsgh,1{κv

∑n
i=1 Bts,iiBgh,ii + 2σ4

v0tr[Bts(Bgh + B
′
gh)]}

+ρtsgh,2σ4
v0tr[B

′−1
0 Rts(B′

0B0)−1RghB
−1
0 ]

+ρtsgh,3σ4
v0tr[B

′−1
0 Rts(B′

0B0)−1R′
ghB

−1
0 ],

(2) Cov(X′
tRtsVs,X

′
gRghVh) = σ2

v0tr[
∑t+m−1

i=0

∑g+m−1
k=0

∑s+m−1
j=max(0,s−h) ρ

i+k+h−s+2j
0 Rts

×(B′
0B0)−1R′

ghE(x′g−kxt−i)],
(3) Cov(X′

tRtsXs,X
′
gRghXh) = O(n),

where Bts,ii denotes the (i, i)th element of Bts ≡ B′−1
0 RtsB

−1
0 , ρtsgh,1 =

∑t+m−1
j=max(0,t−s,t−g,t−h) ρ

(s+g+h−3t+4j)
0 ,

ρtsgh,2 =
∑t+m−1

i=max(0,t−g) ρ
g−t+2i
0

∑s+m−1
j=max(0,s−h) ρ

h−s+2j
0 1(j 
= i+s−t), and ρtsgh,3 =

∑t+m−1
i=max(0,t−h) ρ

h−t+2i
0∑s+m−1

j=max(0,s−g) ρ
g−s+2j
0 1(j 
= i+ s− t).

Lemma B.11 Suppose that the conditions in Theorem 4.4 are satisfied. Then

(1) 1
nT

∑T−1
t=0

∑T−1
s=0 [V′

tRtsVs − E(V′
tRtsVs)]

p−→ 0,

(2) 1
nT

∑T−1
t=0

∑T−1
s=0 X

′
tRtsVs

p−→ 0,

(3) 1
nT

∑T−1
t=0

∑T−1
s=0 [X′

tRtsXs − E(X′
tRtsXs)]

p−→ 0.

Lemma B.12 Under the assumptions of Theorem 4.4, 1
n(T+1)

{
∂Lrr(ψ0)
∂ψ∂ψ′ − E

[
∂Lrr(ψ0)
∂ψ∂ψ′

]}
= op(1).

Lemma B.13 Under the assumptions of Theorem 4.4, 1√
n(T+1)

∂Lrr(ψ0)
∂ψ

d−→ N(0,Γrr).

Lemmas B.14-B.15 are used in the proof of Theorem 4.6 for the fixed effects model.

Lemma B.14 Under the assumptions of Theorem 4.6, 1
nT

{
∂Lf(ψ0)
∂ψ∂ψ′ − E

[
∂Lf(ψ0)
∂ψ∂ψ′

]}
= op(1).

Lemma B.15 Suppose that the conditions in Theorem 4.6 are satisfied. Then 1√
nT

∂Lf(ψ0)
∂ψ

d−→ N(0,Γf).

Appendix C: Proofs of the Theorems in Section 4

Proof of Theorem 4.1. By Theorem 3.4 of White (1994), it suffices to show that: (i) 1
nT

[Lr∗c (δ) −
Lrc(δ)] p−→ 0 uniformly in δ ∈ Δ, and (ii) limsupn→∞ maxδ∈Nc

ε (δ0)
1
nT [Lr∗c (δ) − Lr∗c (δ0)] < 0 for any

ε > 0, where N c
ε (δ0) is the complement of an open neighborhood of δ0 on Δ of radius ε. By (3.5) and

(4.3), 2
nT

[Lr∗c (δ) − Lrc(δ)] = − ln σ̃2
v(δ) + ln σ̂2

v(δ). To show (i), it is sufficient to show

σ̂2
v(δ) − σ̃2

v(δ) = op(1) uniformly in δ ∈ Δ (C.1)

and σ̃2
v(δ) is uniformly bounded away from zero on Δ. The latter will be checked in the proof of

(ii). So we focus on the proof of (C.1) here. By the definition of ũ(δ) below (3.4), we have ũ(δ) =
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Y − X̃(X̃′Ω−1X̃)−1X̃′Ω−1Y = Ω1/2MΩ−1/2Y where M = InT − Ω−1/2X̃(X̃′Ω−1X̃)−1X̃′Ω−1/2 is a
projection matrix. This, in conjunction with the fact that MΩ−1/2X̃ = 0, implies that

σ̂2
v(δ) = 1

nT
ũ(δ)′Ω−1ũ(δ) = 1

nT
Y ′Ω−1/2MΩ−1/2Y = 1

nT
u′Ω−1/2MΩ−1/2u. (C.2)

By (4.1) and the fact that Y = X̃θ0 + u, θ̃(δ) = θ0 + θ∗(δ) where θ∗(δ) = [E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u).
Then u(θ̃(δ)) = Y − X̃θ̃(δ) = u− X̃θ∗(δ). By (4.2) and using the expression for θ∗(δ), we have

σ̃2
v(δ) = 1

nT E{[u− X̃θ∗(δ)]′Ω−1[u− X̃θ∗(δ)]}
= 1

nT E(u′Ω−1u) + 1
nT θ

∗(δ)′E(X̃′Ω−1X̃)θ∗(δ) − 2
nT θ

∗(δ)′E(X̃′Ω−1u)

= 1
nT σ

2
v0tr(Ω

−1Ω0) − 1
nT [E(X̃′Ω−1u)]′[E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u), (C.3)

where recall Ω0 ≡ Ω(δ0) and Ω(δ) is defined in (3.2). Combining (C.2)-(C.3) yields

σ̂2
v(δ) − σ̃2

v(δ) = 1
nT [u′Ω−1u− σ2

v0tr
(
Ω−1Ω0

)
] − 1

nT u
′Ω−1/2PΩ−1/2u

+ 1
nT [E(X̃′Ω−1u)]′[E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u)

= 1
nT

tr[Ω−1(uu′ − σ2
v0Ω0)]

−{Qxu(δ)′Qxx(δ)−1Qxu(δ) − E[Qxu(δ)′]{E[Qxx(δ)]}−1E[Qxu(δ)]
}

≡ Πn1(δ) − Πn2(δ), say,

where P = InT −M , Qxx(δ) = 1
nT X̃

′Ω−1X̃ , and Qxu(δ) = 1
nT X̃

′Ω−1u.
For Πn1(δ), we can show that E[Πn1(δ)] = 0 and E[Πn1(δ)]2 = O(n−1) as in the proof of Lemma B.5.

So the pointwise convergence of Πn1(δ) to 0 follows by Chebyshev inequality. The uniform convergence
of Πn1(δ) to 0 holds if we can show that Πn1(δ) is stochastic equicontinuous. To achieve this, we first
show that infδ∈Δ λmin(Ω(δ)) is bounded away from 0:

inf
δ∈Δ

λmin(Ω(δ)) ≥ inf
δ∈Δ

λmin{φμ(JT ⊗ In) + IT ⊗ [B(λ)′B(λ)]−1}
≥ inf

λ∈Λ
λmin(IT ⊗ [B(λ)′B(λ)]−1) ≥ inf

λ∈Λ
λmin([B(λ)′B(λ)]−1)

≥ {
sup
λ∈Λ

λmax[B(λ)′B(λ)]
}−1 ≥ c̄−1

λ > 0 (C.4)

by Facts 8.16.20 and B.14.20 in Bernstein (2005) and Assumption G2(v). Now, let δ, δ̄ ∈ Δ. By
Cauchy-Schwarz inequality,

|Πn1(δ) − Πn1(δ̄)| =
∣∣ 1
nT

tr{Ω(δ)−1[Ω(δ) − Ω(δ̄)]Ω(δ̄)−1(uu′ − σ2
v0Ω0)}

∣∣
≤ 1

nT [tr{Ω(δ)−1[Ω(δ) − Ω(δ̄)]Ω(δ̄)−2[Ω(δ) − Ω(δ̄)]Ω(δ)−1}]1/2 ∥∥uu′ − σ2
v0Ω0

∥∥
≤ [λmin(Ω(δ̄))]−2 1√

nT

∥∥Ω(δ) − Ω(δ̄)
∥∥ 1√

nT

∥∥uu′ − σ2
v0Ω0

∥∥ .
Straightforward moment calculations and Chebyshev inequality lead to 1√

nT

∥∥uu′ − σ2
v0Ω0

∥∥ = Op(1). In
addition, 1√

nT

∥∥Ω(δ) − Ω(δ̄)
∥∥ → 0 as

∥∥δ − δ̄
∥∥ → 0. Thus, {Πn1(δ)} is stochastically equicontinuous by

Theorem 21.10 in Davidson (1994).
For Πn2(δ), we decompose it as follows

Πn2(δ) = {Qxu(δ) −E [Qxu(δ)]}′Qxx (δ)−1
Qxu(δ)

+ {E [Qxu(δ)]}′Qxx(δ)−1 {E [Qxx (δ)] −Qxx(δ)} {E [Qxx(δ)]}−1
Qxu (δ)

+ {E [Qxu(δ)]}′ {E [Qxx(δ)]}−1 {Qxu(δ) −E [Qxu(δ)]}
≡ Πn2,1(δ) + Πn2,2(δ) + Πn2,3(δ), say.
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By Assumption G1(v), sup |φμ| ≤ cφ for some cφ <∞. Noting that by G2(v)

sup
δ∈Δ

λmax(Ω(δ)) ≤ sup
δ∈Δ

λmax{φμ(JT ⊗ In) + IT ⊗ [B(λ)′B(λ)]−1}

≤ sup
φμ

{
φμλmax(JT ⊗ In) + λmax{[B(λ)′B(λ)]−1}}

≤ cφT + { inf
λ∈Λ

λmin[B(λ)′B(λ)]}−1 ≤ cφT + c−1
λ <∞, (C.5)

we have infδ∈Δ λmin(Qxx(δ)) ≥ [supδ∈Δ λmax (Ω(δ))]−1
λmin( 1

nT X̃
′X̃) ≥ (

cφT + c−1
λ

)−1
λmin( 1

nT X̃
′X̃).

This implies that supδ∈Δ ‖Qxx(δ)−1‖ = Op(1) by Assumption R(iv). It is straightforward to show that
Qxu(δ) − E[Qxu(δ)] = op(1) uniformly in δ by Chebyshev inequality and the arguments for stochastic
equicontinuity. In addition, E[Qxu(δ)] = O(1) and Qxu(δ) = Op(1) uniformly in δ. Consequently,

|Πn2,1(δ)| ≤ ‖Qxu(δ) − E [Qxu(δ)]‖
∥∥Qxx(δ)−1

∥∥‖Qxu(δ)‖
= op(1)Op(1)Op(1) = op(1) uniformly in δ.

By the same token, we can show that Πn2,s(δ) = op(1) uniformly in δ for s = 2, 3. It follows that
Πn2(δ) = op(1) uniformly in δ. Hence supδ∈Δ |σ̂2

v(δ) − σ̃2
v(δ)| = op(1) as desired.

To show (ii), we follow Lee (2002) and Yu et al. (2008) and first define an auxiliary process

Y a = ρY a−1 +Xβ + Zγ + Ua, (C.6)

where Ua ∼ N(0, σ2
vΩ) with Ω = Ω(δ) and is independent of (X,Z), Y a−1 and Y a are analogously defined

as Y−1 and Y , and the superscript a signifies that the process is an auxiliary one. Apparently, if u were
normally distributed in (3.1), then one could simply set Ua as u, in which case

(
Y a−1, Y

a
)

would reduce to
(Y−1, Y ). As before, the true value of (θ, σ2

v, δ) is given by (θ0, σ2
v0, δ0). The exact log-likelihood function

of the above auxiliary process is given by

logLr,an
(
θ, σ2

v, δ
)

= −nT
2

log(2π) − nT

2
log(σ2

v) −
1
2

log |Ω| − 1
2σ2

v

Ua(θ)′Ω−1Ua(θ) (C.7)

where Ua(θ) = Y a−ρY a−1−Xβ−Zγ. Let Ea denote expectation under this auxiliary process. By Jensen
inequality,

0 = logEa
(

Lr,an
(
θ, σ2

v, δ
)

Lr,an (θ0, σ2
v0, δ0)

)
≥ Ea

[
log

(
Lr,an

(
θ, σ2

v, δ
)

Lr,an (θ0, σ2
v0, δ0)

)]
.

That is, Ea
[
logLr,an

(
θ, σ2

v, δ
)] ≤ Ea

[
logLr,an

(
θ0, σ

2
v0, δ0

)]
. Observe that Lr∗c (δ) = maxθ,σ2

v
Ea[logLr,an (θ,

σ2
v, δ)] and

Ea
[
logLr,an

(
θ0, σ

2
v0, δ0

)]
= −nT

2
log(2π) − nT

2
log(σ2

v0) −
1
2

log |Ω0| − 1
2σ2

v0

tr
(
Ω−1

0 E [Ua(θ0)Ua(θ0)′]
)

= −nT
2

[log(2π) + 1] − nT

2
log(σ2

v0) −
1
2

log |Ω0| = Lr∗c (δ0)

where we have used the fact that σ̃2
v (δ0) = σ2

v0
nT

tr
(
Ω−1

0 Ω0

)
= σ2

v0 by (C.3) and Lemma B.6 (see also the
remark after (4.3)). It follows that

Lr∗c (δ) ≤ Ea
[
logLr,an

(
θ0 , σ

2
v0, δ0

)]
= Lr∗c (δ0) for any δ ∈ Δ. (C.8)
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Next we show that 1
nTLr∗c (δ) is uniformly equicontinuous on Δ by showing the uniform equicontinuity

of 1
nT

log |Ω(δ)| and log[σ̃2
v(δ)] on Δ. Let δ1 and δ2 be in Δ. By the mean value theorem, log |Ω(δ1)| −

log |Ω(δ2)| =
(
∂
∂δ′ log |Ω(δ̄)|) (δ1 − δ2), where δ̄ =

(
λ̄, φ̄μ

)′ lies elementwise between δ1 and δ2. Note that

1
nT

∂
∂λ log |Ω(δ̄)| = 1

nT tr
[
Ω(δ̄)−1(IT ⊗ A(λ̄))

]
where A

(
λ̄
)

is A = A (λ) evaluated at λ̄. By (C.4) and the fact that tr(C1C2) ≤ λmax(C1)tr(C2) for any
symmetric matrix C1 and positive semidefinite matrix C2,

1
nT

∣∣tr (Ω−1 (IT ⊗A)
)∣∣ ≤ 1

nT
[λmin (Ω)]−1 tr (IT ⊗ A) ≤ c̄λ

1
n
tr (A) = O(1) uniformly on Δ.

It follows that 1
nT

∂
∂λ log |Ω(δ̄)| = O(1). Similarly, and 1

nT
∂
∂φμ

log |Ω(δ̄)| =tr(Ω(δ̄)−1(JT ⊗ In)) ≤ c̄λ =
O(1). Thus log |Ω(δ)| is uniformly equicontinuous in δ on Δ.

To show that log[σ̃2
v(δ)] is uniformly equicontinuous on Δ, it suffices to show that σ̃2

v(δ) is uniformly
equicontinuous and uniformly bounded away from zero on Δ. Observing that

σ̃2
v(δ) = 1

nT
E
[
u(θ̃(δ))′Ω−1u(θ̃(δ))

]
= 1

nTE(u′Ω−1u) + 1
nT [θ̃(δ) − θ0]′E(X̃′Ω−1X̃)[θ̃(δ) − θ0] + 2

nT [θ̃(δ) − θ0]′E(X̃′Ω−1u)

≡ σ̃2
v1(δ) + σ̃2

v2(δ) + σ̃2
v3(δ), say,

the uniform equicontinuity of σ̃2
v(δ) follows from that of the three terms on the right hand side of the last

equation. Note that∣∣ ∂
∂λ σ̃

2
v1(δ)

∣∣ = 1
nT E

[
u′Ω−1 (IT ⊗ A)Ω−1u

]
= σ2

v0
nT tr

[
(IT ⊗A)Ω−1Ω0Ω−1

]
≤ σ2

v0λmax

(
Ω−1Ω0Ω−1

)
1
nT tr (IT ⊗A)

≤ σ2
v0 [λmin(Ω)]−2

λmax(Ω0) 1
n tr(A) = O(1) uniformly in δ

by (C.4), (C.5), and the fact that 1
n tr(A) = O(1) uniformly in λ under Assumption G2. Similarly,∣∣∣ ∂

∂φμ
σ̃2
v1(δ)

∣∣∣ = 1
nT E

[
u′Ω−1 (JT ⊗ In)Ω−1u

]
= σ2

v0
nT tr

[
(JT ⊗ In)Ω−1Ω0Ω−1

]
≤ σ2

v0λmax

(
Ω−1Ω0Ω−1

)
1
nT tr(JT ⊗ In)

= σ2
v0 [λmin(Ω)]−2

λmax(Ω0) = O(1) uniformly in δ.

Then by the mean value argument, we can show that σ̃2
v1(δ) is uniformly equicontinuous in δ on Δ.

Analogously, we can show that θ̃(δ) and E(X̃′Ω−1X̃) are uniformly equicontinuous on Δ, which implies
that σ̃2

v2(δ) and σ̃2
v3(δ) are uniformly equicontinuous on Δ. Thus we can conclude that σ̃2

v(δ) is uniformly
equicontinuous on Δ. To show that σ̃2

v(δ) is uniformly bounded away from zero, we make its dependence
on n explicit and write it as σ̃2

v,n(δ). We establish the claim by a counter argument. Suppose that σ̃2
v,n(δ)

is not uniformly bounded away from zero on Δ. Then there exists a sequence {δn} in Δ such that
limn→∞ σ̃2

v,n(δn) = 0. By (C.8), we have 1
nT

[Lr∗c (δ) − Lr∗c (δ0)] ≤ 0 for all δ, i.e.,

− log[σ̃2
v(δ)] ≤ − log[σ̃2

v(δ0)] + 1
nT {log |Ω(δ)| − log |Ω0|} .

By (C.4) and (C.5) and the mean value theorem, we can readily show that 1
nT

{log |Ω(δ)| − log |Ω0|} =
O(1) uniformly on Δ. This implies that − log

[
σ̃2
v(δ)

]
is bounded above, a contradiction. Therefore we

can conclude that σ̃2
v,n(δ) is uniformly bounded away from zero on Δ.
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Now, the identification uniqueness follows by contradiction. Using σ̃2
v(δ0) = σ2

v0 again we have

1
nT [Lr∗c (δ) − Lr∗c (δ0)] = 1

2nT {log |Ω0| − log |Ω(δ)|} + 1
2

{
log

[
σ̃2
v (δ0)

]− log
[
σ̃2
v(δ)

]}
= 1

2nT

{
log |σ2

v0Ω0| − log |σ̃2
v(δ)Ω(δ)|} . (C.9)

Suppose that the identification uniqueness condition does not hold. Then there exists an ε > 0 and a
sequence {δn} in N c

ε (δ0) such that

lim
n→∞

1
nT

[Lr∗c,n(δn) −Lr∗c,n(δ0)] = 0

where we write Lr∗c,n(·) for Lr∗c (·) to make its dependence on n explicit. By the compactness of N c
ε (δ0),

there exists a convergent subsequence {δnk} of {δn} with the limit δ+ of δnk being inN c
ε (δ0). This implies

that δ+ 
= δ0. Furthermore, limn→∞ 1
nkT

[Lr∗c,nk
(δ+) − Lr∗c,nk

(δ0)] = 0 by the uniform equicontinuity of
1
nT Lr∗c,n(δ). But this contradicts to Assumption R(iv) as it is equivalent to that limn→∞ 1

nT [Lr∗c,n(δ) −
Lr∗c,n(δ0)] 
= 0 for any δ 
= δ0. This completes the proof of the theorem. �

Proof of Theorem 4.2. By Taylor series expansion,

0 =
1√
nT

∂Lr(ψ̂)
∂ψ

=
1√
nT

∂Lr(ψ0)
∂ψ

+
1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′

√
nT (ψ̂ − ψ0),

where elements of ψ̄ = (θ̄′, σ̄2
v, δ̄)′ lie in the segment joining the corresponding elements of ψ̂ and ψ0 and

δ̄ = (λ̄, φ̄μ)′. Thus
√
nT (ψ̂ − ψ0) = −

[
1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′

]−1 1√
nT

∂Lr(ψ0)
∂ψ

.

By Theorem 4.1, ψ̂
p−→ ψ0, and thus ψ̄

p−→ ψ0. It suffices to show that: (i) 1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′ − 1

nT
∂2Lr(ψ0)
∂ψ∂ψ′ =

op(1), (ii) 1
nT

∂2Lr(ψ0)
∂ψ∂ψ′

p−→ Hr, and (iii) 1√
nT

∂Lr(ψ0)
∂ψ

d−→ N(0,Γr). (ii) and (iii) follow from Lemmas
B.7 and B.8, respectively. We are left to show (i).

With the expression of ∂
2Lr(ψ)
∂ψ∂ψ′ given in Appendix A, it suffices to show that 1

nT
∂2Lr(ψ̄)
∂ω∂′ − 1

nT
∂2Lr(ψ0)
∂ω∂′

= op(1) for ω, � = θ, σ2
v, λ, and φμ. We do this only for the cases of (ω,�) = (θ, θ), (θ, σ2

v), and (σ2
v, σ

2
v)

as the other cases can be shown analogously. First, write

− 1
nT

[
∂2Lr(ψ̄)
∂θ∂θ′

− ∂2Lr(ψ0)
∂θ∂θ′

]
=
(

1
σ̄2
v

− 1
σ2
v0

)
X̃′Ω(δ̄)−1X̃

nT
+

1
nTσ2

v0

X̃′[Ω(δ̄)−1 − Ω−1
0 ]X̃. (C.10)

Noting that σ̄2
v − σ2

v0 = op(1) by Theorem 4.1 and (nT )−1X̃′Ω(δ̄)−1X̃ = Op(1), the first term on the
right hand side of the last expression is op(1). For the second term, we first show that

λmax[Ω0 − Ω(δ̄)] = Op(
∥∥δ̄ − δ0

∥∥). (C.11)

To see this, write Ω0 − Ω(δ̄) = (φμ0 − φ̄μ)(JT ⊗ In) + rn(λ̄), where rn(λ) = IT ⊗ {[B(λ0)′B(λ0)]−1 −
[B(λ)′B(λ)]−1} is a symmetric matrix. By the repeated use of the fact that

λmax(A⊗ C) ≤ λmax(A)λmax(C) (C.12)

for any two real symmetric matrices [see, e.g., Fact 8.16.20 of Bernstein (2005)], we have

λmax[rn(λ̄)] ≤ λmax{[B(λ0)′B(λ0)]−1 − [B(λ̄)′B(λ̄)]−1}
= λmax([B(λ0)′B(λ0)]−1[B(λ̄)′B(λ̄) −B(λ0)′B(λ0)][B(λ̄)′B(λ̄)]−1)

≤ { inf
λ∈Λ

λmin[B(λ)′B(λ)]}−2λmax[B(λ̄)′B(λ̄) − B(λ0)′B(λ0)] = Op(λ̄− λ0)
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where the last equality follows from Assumption G2 and the fact that

λmax[B(λ̄)′B(λ̄) − B(λ0)′B(λ0)] = λmax[(λ0 − λ̄)(W ′ +W ) + (λ̄2 − λ2
0)W

′W ]

≤ |λ̄− λ0|λmax(W ′ +W ) + (λ̄2 − λ2
0)λmax(W ′W )

= Op(λ̄− λ0)

under Assumption G2. Noting that λmax(JT ⊗ In) = T , we can apply the fact that

λmax(A + C) ≤ λmax(A) + λmax(C) (C.13)

to obtain λmax[Ω0 − Ω(δ̄)] ≤ T |φμ0 − φ̄μ| + λmax(rn(λ̄)) = Op(
∥∥δ̄ − δ0

∥∥). Thus (C.11) follows. Let c be
an arbitrary column vector in R

p+q+1 . Then by Cauchy-Schwarz inequality, (C.4), and (C.11)

1
n |c′X̃′[Ω(δ̄)−1 − Ω−1

0 ]X̃c|
= 1

n
|c′X̃′Ω(δ̄)−1[Ω0 − Ω(δ̄)]Ω−1

0 X̃c|
≤ 1

n{c′X̃′Ω(δ̄)−1[Ω0 − Ω(δ̄)][Ω0 − Ω(δ̄)]Ω(δ̄)−1X̃c}1/2[c′X̃′Ω−1
0 Ω−1

0 X̃c]1/2

≤ λmax[Ω0 − Ω(δ̄)][λmin(Ω(δ̄))]−1[λmin(Ω0)]−1 1
n‖X̃c‖2 = Op(‖δ̄ − δ0‖) = op(1). (C.14)

It follows that the second term on the right hand side of (C.10) is op(1). Consequently, 1
nT

∂2Lr(ψ̄)
∂θ∂θ′ −

1
nT

∂2Lr(ψ0)
∂θ∂θ′ = op(1).

Next we consider − 1
nT

∂2Lr(ψ̄)
∂θ∂σ2

v
+ 1

nT
∂2Lr(ψ0)
∂θ∂σ2

v
. This term is equal to

1
nT σ̃4

v

X̃′Ω(δ̄)−1u(θ̄) − 1
nTσ4

v0

X̃′Ω−1
0 u

=
(

1
σ̄4
v

− 1
σ4
v0

)
X̃′Ω(δ̄)−1u(θ̄)

nT
+

1
σ4
v0

X̃′[Ω(δ̄)−1 − Ω−1
0 ]u(θ̄)

nT
+

1
σ4
v0

X̃′Ω−1
0 [u(θ̄) − u]
nT

.

Using u(θ̄) = Y −X̃θ̄ = u+X̃(θ0− θ̄), we can readily show that 1
nT X̃

′Ω(δ̄)−1u(θ̄) = Op(1), which implies
that the first term in the last expression is op(1) by Theorem 4.1. The second term is op(1) by arguments
analogous to those used above. The third term is σ−4

v0 (nT )−1X̃′Ω(δ̄)−1X̃(θ0−θ̄) = Op(1)||θ0−θ̄|| = op(1).
It follows that 1

nT
∂2Lr(ψ̄)
∂θ∂σ2

v
− 1

nT
∂2Lr(ψ0)
∂θ∂σ2

v
= op(1). Now, write

− 1
nT

[
∂2Lr(ψ̄)
∂σ2

v∂σ
2
v

− ∂2Lr(ψ0)
∂σ2

v∂σ
2
v

]
=
(

1
σ̄6
v

u(θ̄)′Ω(δ̄)−1u(θ̄)− 1
σ2
v

u′Ω−1
0 u

)
+

1
2

(
1
σ4
v0

− 1
σ̄4
v

)
.

Clearly, the second term is op(1) by Theorem 4.1. We can use the decomposition u(θ̄) = u+ X̃(θ0 − θ̄)
and the consistency of ψ̄ to show the first term is also op(1). This completes the proof. �

Proof of Theorem 4.3. As in the proof of Theorem 4.1, we prove the theorem by showing that
(i) 1

nT1
[Lrr∗c (δ) − Lrrc (δ)] p−→ 0 uniformly in δ ∈ Δ, and (ii) lim supn→∞ maxδ∈Nc

ε (δ0)
1
nT1

[Lrr∗c (δ) −
Lrr∗c (δ0)] < 0 for any ε > 0, where T1 = T + 1.

By (3.14) and (4.6), 2
nT1

[Lrr∗c (δ) − Lrrc (δ)] = ln σ̂2
v(δ) − ln σ̃2

v(δ). To show (i), it suffices to show

σ̂2
v(δ) − σ̃2

v(δ) = op(1) uniformly on Δ (C.15)

provided that σ̃2
v(δ) is uniformly bounded away from zero. By the definition of ũ∗(δ) below (3.13), we

have ũ∗(δ) = Y ∗(ρ) − X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1Y ∗(ρ) = Ω∗1/2M∗Ω∗−1/2Y ∗(ρ) where M∗ = InT1 −
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Ω∗−1/2X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1/2 is a projection matrix. Observe that Y ∗(ρ) = Y ∗(ρ0) + [Y ∗(ρ) −
Y ∗(ρ0)] = X∗θ0 + u∗ + (ρ0 − ρ)Y ∗

−1 where Y ∗
−1 = (01×n, Y ′

−1)
′. This, in conjunction with the fact that

M∗Ω∗−1/2X∗ = 0, implies that

σ̂2
v(δ) = 1

nT1
ũ∗(δ)′Ω∗−1ũ∗(δ) = 1

nT1
Y ∗(ρ)′Ω∗−1/2M∗Ω∗−1/2Y ∗(ρ)

= 1
nT1

[u∗ + (ρ0 − ρ)Y ∗−1 ]′Ω∗−1/2M∗Ω∗−1/2[u∗ + (ρ0 − ρ)Y ∗−1]. (C.16)

By (4.4) and the above expression for Y ∗(ρ), we have

θ̃(δ) =
[
E
(
X∗′Ω∗−1X∗)]−1

E
[
X∗′Ω∗−1Y ∗(ρ)

]
= θ0 − θ∗(δ),

where θ∗(δ) = (ρ − ρ0)
[
E
(
X∗′Ω∗−1X∗)]−1

E
(
X∗′Ω∗−1Y ∗−1

)
. Then by the definition of u∗(θ, ρ) after

(3.12),
u∗(θ̃(δ), ρ) = Y ∗(ρ) −X∗θ̃(δ) = X∗θ∗ (δ) + u∗ + (ρ0 − ρ)Y ∗

−1.

By (4.5),

σ̃2
v(δ) = 1

nT1
E
{
[X∗θ∗(δ) + u∗ + (ρ0 − ρ)Y ∗

−1]
′Ω∗−1[X∗θ∗(δ) + u∗ + (ρ0 − ρ)Y ∗

−1]
}

= 1
nT1

E[v∗(δ)] + 1
nT1

θ∗(δ)′E(X∗′Ω∗−1X∗)θ∗(δ) + 2(ρ0−ρ)
nT1

θ∗(δ)′E(X∗′Ω∗−1Y ∗−1)

= 1
nT1

E[v∗(δ)] + (ρ0−ρ)
nT1

θ∗(δ)′E(X∗′Ω∗−1Y ∗−1), (C.17)

where v∗(δ) = [u∗ + (ρ0 − ρ)Y ∗
−1]

′Ω∗−1[u∗ + (ρ0 − ρ)Y ∗
−1]. Using (C.16)-(C.17), and Ω∗−1/2M∗Ω∗−1/2 =

Ω∗−1 − Ω∗−1X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1, we have

σ̂2
v(δ) − σ̃2

v(δ)

= 1
nT1

{v∗(δ) − E [v∗(δ)]} +Q∗
xu(δ)′Q∗

xx(δ)−1Q∗
xu(δ)′ + 2 (ρ0 − ρ)Q∗

xu(δ)′Q∗
xx(δ)−1Q∗

xy−1
(δ)

+ (ρ0 − ρ)2
{
Q∗
xy−1

(δ)′Q∗
xx(δ)

−1Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)′] {E [Q∗
xx (δ)]}−1

E[Q∗
xy−1

(δ)]
}

≡ Π∗
n1(δ) + Π∗

n2(δ) + 2(ρ0 − ρ)Π∗
n3(δ) + (ρ0 − ρ)2Π∗

n4(δ), say,

where Q∗
xx(δ) = 1

nT1
X∗′Ω∗−1X∗, Q∗

xu(δ) = 1
nT1

X∗′Ω∗−1u∗, and Q∗
xy−1

(δ) = 1
nT1

X∗′Ω∗−1Y ∗−1. We prove
(C.15) by showing that Π∗

ns(δ) = op(1) uniformly in δ for s = 1, 2, 3, and 4.
We can decompose Π∗

n1(δ) as follows

Π∗
n1(δ) = 1

nT1

[
u∗′Ω∗−1u∗ − E

(
u∗′Ω∗−1u∗

)]
+ (ρ0−ρ)2

nT1

[
Y ∗′
−1Ω

∗−1Y ∗
−1 −E

(
Y ∗′
−1Ω

∗−1Y ∗
−1

)]
+2(ρ0−ρ)

nT1

[
u∗′Ω∗−1Y ∗−1 − E

(
u∗′Ω∗−1Y ∗−1

)]
≡ Π∗

n1,1(δ) + Π∗
n1,2(δ) + Π∗

n1,3(δ), say.

For Π∗
n1,1(δ), we can show that E[Π∗

n1,1(δ)] = 0 and E[Π∗
n1,1(δ)]

2 = O(n−1) as in the proof of Lemma B.5.
So the pointwise convergence of Π∗

n1,1(δ) to 0 follows by Chebyshev inequality. The uniform convergence
holds if we can show that Π∗

n1,1(δ) is stochastic equicontinuous. Let δ, δ̄ ∈ Δ. By Cauchy-Schwarz
inequality,

|Π∗
n1,1(δ) − Π∗

n1,1(δ̄)|
=

∣∣∣ 1
nT1

tr
{
Ω∗(δ)−1[Ω∗(δ̄) − Ω∗(δ)]Ω∗(δ̄)−1 [u∗u∗′ −E(u∗u∗′)]

}∣∣∣
≤ 1

nT1

{
tr
[
Ω∗(δ)−1

(
Ω∗(δ̄) − Ω∗(δ)

)
Ω∗(δ̄)−2

(
Ω∗(δ̄) − Ω∗(δ)

)
Ω∗(δ)−1

]}1/2 ‖u∗u∗′ − E (u∗u∗′)‖
≤ [λmin(Ω∗(δ̄))]−2 1√

nT1

∥∥Ω∗ (δ̄)− Ω∗(δ)
∥∥ 1√

nT1
‖u∗u∗′ −E (u∗u∗′)‖ .
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Straightforward moment calculations and Chebyshev inequality lead to 1√
nT1

‖u∗u∗′ −E (u∗u∗′)‖ =
Op(1). In addition, 1√

nT1

∥∥Ω∗ (δ̄)− Ω∗ (δ)
∥∥ → 0 as

∥∥δ − δ̄
∥∥ → 0. Thus, {Π∗

n1,1(δ)} is stochastically
equicontinuous by Theorem 21.10 in Davidson (1994). Consequently, Π∗

n1,1(δ) = op(1) uniformly in δ.
Similarly, Π∗

n1,s(δ) = op(1) uniformly in δ for s = 2, 3. It follows that Π∗
n1(δ) = op(1) uniformly in δ.

To show Π∗
n2(δ) = op(1) uniformly in δ, we first argue that Ω∗(δ) is positive definite uniformly in δ,

i.e., infδ∈Δ λmin(Ω∗(δ)) ≥ c∗ for some c∗ > 0. Let ū∗ = (amμ′, u′)′. We have,

Ω̄∗(δ) = E(ū∗ū∗′) =
(
φμa

2
mIn φμam(ι′T ⊗ In)

φμam(ιT ⊗ In) Ω

)
,

which is positive semidefinite uniformly in δ. By Theorem 8.4.11 in Bernstein (2005) and (C.4), λmin(φζIn+
bm(B′B)−1) ≥ φζ + bmλmin((B′B)−1) ≥ φζ + bmc̄

−2
λ > 0 uniformly in δ as φζ is positive and bounded

away from 0 and bm > 0, implying that φζIn + bm(B′B)−1 is positive definite uniformly in δ. Noting
Ω∗(δ) is equal to Ω̄∗(δ) with its upper-left (n, n)-submatrix added by a uniformly positive definite matrix
φζIn+bm(B′B)−1 , we can apply Fact 8.9.19 in Bernstein (2005) to conclude that Ω∗(δ) is positive definite
uniformly in δ. Similarly, we can readily show that

sup
δ∈Δ

λmax(Ω∗(δ)) ≤ sup
δ∈Δ

λmax(Ω̄∗(δ)) + sup
δ∈Δ

λmax(φζIn + bm(B′B)−1))

≤ sup
δ∈Δ

λmax(Ω̄∗(δ)) + sup
δ∈Δ

φζ + bm(λmin(B′B))−1 ≤ c̄∗, say.

Next, write

1
nT1

X∗′X∗ =
1
nT1

⎛⎝ X′X X′Z 0p×k
Z′X Z′Z 0q×k
x̃′x0 x̃′zm (ρ) x̃′x̃

⎞⎠ +
1
nT1

⎛⎝ x′0x0 x′0zm(ρ) x′0x̃
zm(ρ)′x0 zm(ρ)′zm(ρ) zm(ρ)x̃

0k×p 0k×q 0k×k

⎞⎠
≡ A1(ρ) +A2(ρ), say.

Noting that A1(ρ) is a block triangular matrix, its eigenvalues are those of the square matrices on the
diagonal direction. By Assumption R∗(iv), the minimum of these eigenvalues are bounded away from 0,
say by cxx, uniformly in ρ. Similarly, the minimum eigenvalues of A2(ρ) is 0 uniformly in ρ. It follows
that infρ λmin( 1

nT1
X∗′X∗) ≥ infρ[λmin(A1(ρ)) + λmin(A2(ρ))] ≥ cxx > 0. Consequently,

inf
δ∈Δ

λmin (Q∗
xx(δ)) = inf

δ∈Δ
λmin

(
1
nT1

X∗′Ω∗−1X∗
)
≥ c̄∗−1 infρ λmin

(
1
nT1

X∗′X∗
)
≥ c̄∗−1cxx > 0. (C.18)

Next, noting that E[Q∗
xu(δ)] = 0 and Var(Q∗

xu(δ)) = O(n−1), we have Q∗
xu(δ) = op(1) by Chebyshev in-

equality. In addition, it is straightforward to show that Q∗
xu(δ) is stochastic equicontinuous. So Q∗

xu(δ) =
op(1) uniformly in δ. We have, |Π∗

n2(δ)| ≤ [infδ∈Δ λmin(Q∗
xx(δ))]−1‖Q∗

xu(δ)‖2 = o1(1) uniformly in δ.

For Π∗
n3(δ), we have Π∗

n3(δ) ≤ ‖Q∗
xu(δ)‖‖Q∗

xx(δ)−1‖‖Q∗
xy−1

(δ)‖ = op(1) uniformly in δ as one can
readily show that Q∗

xy−1
(δ) = Op(1) uniformly in δ.

For Π∗
n4(δ), we have

Π∗
n4(δ) =

{
Q∗
xy−1

(δ) −E[Q∗
xy−1

(δ)]
}′
Q∗
xx(δ)

−1Q∗
xy−1

(δ)

+E[Q∗
xy−1

(δ)]′Q∗
xx(δ)

−1 {E[Q∗
xx(δ)] −Q∗

xx(δ)} {E[Q∗
xx(δ)]}−1

Q∗
xy−1

(δ)

+E[Q∗
xy−1

(δ)]′E [Q∗
xx(δ)]

{
Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)]
}

≡ Π∗
n4,1(δ) + Π∗

n4,2(δ) + Π∗
n4,3(δ), say.
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We can readily show that Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)] = op(1) uniformly in δ by Chebyshev inequality
and the arguments of stochastic equicontinuity. This, in conjunction with (C.18) and the fact that
Q∗
xy−1

(δ) = Op(1) uniformly in δ, implies that Π∗
n4,1(δ) = op(1) uniformly in δ. Similarly, we can show

that Π∗
n4,s(δ) = op(1) uniformly in δ for s = 2, 3. Thus Π∗

n4(δ) = op(1) uniformly in δ. This completes
the proof of (i).

The proof of (ii) is analogous to that of part (ii) in the proof of Theorem 4.1 and we only sketch
the major differences. First, by the use of an auxiliary process Y a that has the error term Ua being
N(0, σ2

vΩ∗(δ)) and independent of (X,Z), we can apply Jensen inequality and the fact that σ̃2
v(δ0) =

1
nT1

E[u∗′Ω∗−1
0 u∗] = σ2

v0
nT tr

(
Ω∗−1

0 Ω∗
0

)
= σ2

v0 by (C.17) to show that

Lrr∗c (δ) ≤ Lrr∗c (δ0) for any δ ∈ Δ. (C.19)

As before, we show that 1
nT1

Lrr∗c (δ) is uniformly equicontinuous on Δ by showing the uniform equicon-
tinuity of 1

nT log |Ω∗(δ)| and log
[
σ̃2
v(δ)

]
on Δ. Let δ1 and δ2 be in Δ. By the mean value theorem,

log |Ω∗ (δ1) | − log |Ω∗ (δ2) | =
(
∂ log |Ω∗ (δ̄) |/∂δ)′ (δ1 − δ2), where δ̄ lies elementwise between δ1 and δ2.

Note that
1
nT1

∂ log |Ω∗(δ)|
∂δ(j)

=
1
nT1

tr
(

Ω∗(δ)−1 ∂Ω∗(δ)
∂δ(j)

)
where δ(j) denotes the jth element of δ, j = 1, 2, 3, 4. We can use the explicit expression of Ω∗(δ) in (3.11)
and show that 1

nT1

∂ log |Ω∗(δ)|
∂δ(j)

= O(1) uniformly in δ for each j. This implies that log |Ω∗(δ)| is uniformly
equicontinuous in δ on Δ. As in the proof of Theorem 4.1, we can readily verify by contradiction that
σ̃2
v(δ) is uniformly bounded away from zero on Δ, and prove that log[σ̃2

v(δ)] is uniformly equicontinuous
on Δ by showing that σ̃2

v(δ) is uniformly equicontinuous on Δ. By (C.17), we have

σ̃2
v(δ) = 1

nT1
E(u∗′Ω∗−1u∗) + 1

nT1
θ∗(δ)′E(X∗′Ω∗−1X∗)θ∗(δ) + (ρ0−ρ)2

nT1
E(Y ∗′−1Ω∗−1Y ∗−1)

+ 2
nT1

θ∗(δ)′E(X∗′Ω∗−1u∗) + 2(ρ0−ρ)
nT1

E(Y ∗′−1Ω∗−1u∗) + 2
nT1

θ∗(δ)′E(X∗′Ω∗−1Y ∗−1).

We can show the uniform equicontinuity of σ̃2
v(δ) by showing that of each of the six terms on the right

hand side of the last equation. Using σ̃2
v(δ0) = σ2

v0 again, we have

1
nT1

[Lrr∗c (δ) − Lrr∗c (δ0)] = 1
2nT1

{log |Ω∗
0| − log |Ω∗(δ)|} + 1

2

{
log[σ̃2

v(δ0)] − log[σ̃2
v(δ)]

}
= 1

2nT1

{
log |σ2

v0Ω
∗
0 | − log |σ̃2

v(δ)Ω
∗(δ)|} .

We can show that the identification uniqueness condition holds by using the uniform equicontinuity of
Lrr∗c (δ) and a counter argument under Assumption R(iv∗). �

Proof of Theorem 4.4. The proof is analogous to that of Theorem 4.2, but follows mainly from
Lemmas B.12-B.13. �

Proof of Theorem 4.5. As in the proof of Theorem 4.1, we prove the theorem by showing that (i)
1
nT1

[Lf∗c (δ)−Lfc (δ)] p−→ 0 uniformly in δ ∈ Δ, and (ii) lim supn→∞ maxδ∈Nc
ε (δ0)

1
nT

[Lf∗c (δ)−Lf∗c (δ0)] < 0
for any ε > 0.

By (3.26) and (4.9), 2
nT1

[Lf∗c (δ) − Lfc (δ)] = log σ̂2
v(δ) − log σ̃2

v(δ). To show (i), it suffices to show

σ̂2
v(δ) − σ̃2

v(δ) = op(1) uniformly on Δ (C.20)
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provided σ̃2
v(δ) is uniformly bounded away from 0. By the definition of Δ̃u(δ) below (3.25), we have

Δ̃u(δ) = ΔY †(ρ) − ΔX†(ΔX†′Ω†−1ΔX†)−1ΔX†′Ω†−1ΔY †(ρ) = Ω†1/2M †Ω†−1/2ΔY †(ρ) where M † =
InT−Ω†−1/2ΔX†(ΔX†′Ω†−1ΔX†)−1ΔX†′Ω†−1/2 is a projection matrix. Observe that ΔY †(ρ) = ΔY †(ρ0)+
[ΔY †(ρ) − ΔY †(ρ0)] = ΔX†θ0 + Δu + (ρ0 − ρ)ΔY †

−1 where ΔY †
−1 = (01×n,Δy′1, ...,Δy′T−1)

′. This, in
conjunction with the fact that M †Ω†−1/2ΔX† = 0, implies that

σ̂2
v(δ) = 1

nT1
Δ̃u(δ)′Ω†−1Δ̃u(δ) = 1

nT1
ΔY †(ρ)′Ω†−1/2M †Ω†−1/2ΔY †(ρ)

= 1
nT1

[Δu+ (ρ0 − ρ)ΔY †
−1]

′Ω†−1/2M †Ω†−1/2[Δu+ (ρ0 − ρ)ΔY †
−1]. (C.21)

By (4.7) and the above expression for ΔY †(ρ), we have θ̃(δ) = [E(ΔX†′Ω†−1ΔX†)]−1E[ΔX†′Ω†−1ΔY †(ρ)]
= θ0 − θ†(δ), where θ†(δ) = (ρ − ρ0)[E(ΔX†′Ω†−1ΔX†)]−1E(ΔX†′Ω†−1ΔY †

−1). Then by the definition
of Δu(θ, ρ) after (3.24), Δu(θ̃(δ), ρ) = ΔY †(ρ) − ΔX†θ̃(δ) = ΔX†θ†(δ) + Δu+ (ρ0 − ρ)ΔY †

−1. By (4.8),

σ̃2
v(δ) = 1

nTE[v†(δ)] + (ρ0−ρ)
nT θ†(δ)′E(ΔX†′Ω†−1ΔY †

−1). (C.22)

where v†(δ) = [Δu+(ρ0−ρ)ΔY †
−1]

′Ω†−1[Δu+(ρ0−ρ)ΔY †
−1]. Using (C.21), (C.22), and Ω†−1/2M †Ω†−1/2

= Ω†−1 − Ω†−1ΔX†(ΔX†′Ω†−1ΔX†)−1ΔX†′Ω†−1, we have

σ̂2
v(δ) − σ̃2

v(δ)

= 1
nT

{
v†(δ) −E[v†(δ)]

}
+Q†

xu(δ)′Q†
xx(δ)−1Q†

xu(δ)′ + 2(ρ0 − ρ)Q†
xu(δ)′Q†

xx(δ)−1Q†
xy−1

(δ)

+(ρ0 − ρ)2
{
Q†
xy−1

(δ)′Q†
xx(δ)−1Q†

xy−1
(δ) − E[Q†

xy−1
(δ)′]{E[Q†

xx(δ)]}−1E[Q†
xy−1

(δ)]
}

≡ Π†
n1(δ) + Π†

n2(δ) + 2(ρ0 − ρ)Π†
n3(δ) + (ρ0 − ρ)2Π†

n4(δ), say,

where Q†
xx(δ) = 1

nT
ΔX†′Ω†−1ΔX†, Q†

xu(δ) = 1
nT

ΔX†′Ω†−1Δu, and Q†
xy−1

(δ) = 1
nT

ΔX†′Ω†−1ΔY †
−1. We

prove (C.20) by showing that Π†
ns(δ) = op(1) uniformly in δ for s = 1, 2, 3, and 4. Analogously to the

analysis of Π∗
n1(δ) in the proof of Theorem 4.3, we can show that Π†

n1(δ) = op(1) uniformly in δ. By
Assumptions G2 and F(iii),∣∣∣Π†

n2(δ)
∣∣∣ ≤ [

infδ∈Δ λmin(Q†
xx(δ))

]−1 ∥∥Q†
xu(δ)

∥∥2 ≤ [
λmax(Ω†)

]−1
λmin

(
1
nT ΔX†′ΔX†) ∥∥Q†

xu(δ)
∥∥2

= O(1)Op(1)op(1) = op(1) uniformly in δ

as we can readily show that Q†
xu(δ) = op(1) uniformly in δ. For Π†

n3(δ), we have

Π†
n3(δ) ≤ ‖Q†

xu(δ)‖‖Q†
xx(δ)

−1‖‖Q†
xy−1

(δ)‖ = op(1) uniformly in δ

as one can readily show that Q†
xy−1

(δ) = Op(1) uniformly in δ. The analysis of Π†
n4(δ) is analogous to

that of Π∗
n4(δ). This completes the proof of (i).

The proof of (ii) is analogous to that of part (ii) in the proofs of Theorem 4.1 and 4.3 and we only
sketch the major differences. First, by the use of an auxiliary process, Jensen inequality, and the fact
that σ̃2

v(δ0) = 1
nT E[Δu′Ω†−1Δu] = σ2

v0 by (C.22), we can show that

Lf∗c (δ) ≤ Lf∗c (δ0) for any δ = (λ, ρ, φζ)′ ∈ Δ.

As before, we show that 1
nT

Lf∗c (δ) is uniformly equicontinuous on Δ by showing the uniform equicon-
tinuity of 1

nT log |Ω†(δ)| and log[σ̃2
v(δ)] on Δ. Noting that 1

nT
∂ log |Ω†(δ)|

∂δ(j)
= 1

nT tr(Ω†(δ)−1 ∂Ω†(δ)
∂δ(j)

) where
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δ(j) denotes the jth element of δ, j = 1, 2, 3, we can use the explicit expression of Ω†(δ) in (3.23) and
show that 1

nT
∂ log |Ω†(δ)|

∂δ(j)
= O(1) uniformly in δ for each j. This implies that log |Ω†(δ)| is uniformly

equicontinuous in δ on Δ. As in the proof of Theorem 4.1, we can readily verify by contradiction that
σ̃2
v(δ) is uniformly bounded away from zero on Δ, and prove that log[σ̃2

v(δ)] is uniformly equicontinuous
on Δ by showing that σ̃2

v(δ) is uniformly equicontinuous on Δ. Now, by (4.8) and (C.22) we have

σ̃2
v(δ) = 1

nTE(ΔuΩ†−1Δu) + 1
nT θ

†(δ)′E(ΔX†′Ω†−1ΔX†)θ†(δ) + (ρ0−ρ)2
nT E(ΔY †′

−1Ω
†−1ΔY †

−1)

+ 2
nT
θ†(δ)′E(ΔX†′Ω†−1Δu) + 2(ρ0−ρ)

nT
E(ΔY †′

−1Ω
†−1Δu) + 2

nT
θ†(δ)′E(ΔX†′Ω†−1ΔY †

−1).

We can show the uniform equicontinuity of σ̃2
v(δ) by showing that of each of the six terms on the right

hand side of the last equation. Using σ̃2
v(δ0) = σ2

v0 again, we have

1
nT [Lf∗c (δ) −Lf∗c (δ0)] = 1

2nT

{
log |Ω†

0| − log |Ω†(δ)|}+ 1
2

{
log[σ̃2

v(δ0)]− log[σ̃2
v(δ)]

}
= 1

2nT

{
log |σ2

v0Ω
†
0| − log |σ̃2

v(δ)Ω†(δ)|}.
Then we can show the identification uniqueness condition by using the uniform equicontinuity of Lf∗c (δ)
and a counter argument under Assumption F. �

Proof of Theorem 4.6. The proof is analogous to that of Theorem 4.2, but follows mainly from
Lemmas B.14-B.15. �

Appendix D: Proofs of the Propositions in Section 5

Proof of Proposition 5.1

Decompose the score component for θ0 according to (β′
0, γ

′
0)

′ and ρ0: σ−2
v0 XΩ−1

0 u and σ−2
vo Y

′
−1Ω

−1
0 u,

where X = (X,Z). Write (B.3) as Y−1 = η−1 +(J ′
ρ0 ⊗ In)u, where η−1 is the exogenous part of Y−1 and

Jρ0 is given in (B.4). The score vector Sr(ψ0) is thus expressed in terms of ψ0 and u,

Sr(ψ0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
σ2

v0
X′Ω−1

0 u

1
σ2

v0
η′
−1Ω

−1
0 u+ 1

σ2
v0
u′(Jρ0 ⊗ In)Ω−1

0 u

1
2σ2

v0
u′Pωu− 1

2
tr(PωΩ0), for ω = σ2

v, λ0, φμ0,

where Pω = 1
σ2

v0
Ω−1

0 , Ω−1
0 (IT ⊗ A0)Ω−1

0 , and Ω−1
0 (JT ⊗ In)Ω−1

0 , or in terms of ψ0 and r through r ≡
(r′1, . . . , r

′
T )′ = (IT ⊗ Σ−1

2
0 )u where Σ0 = Σ(λ0, φμ0). The score vector is seen to contain three types of

terms: quadratic r′Qr, linearR′r and constant C. The result follows if 1
nT [Varb(R̂′r̂b)−Var(R′r)] = op(1),

1
nT [Varb(r̂b

′
Q̂r̂b) − Var(r′Qr)] = op(1), and 1

nT [Covb(R̂′r̂b, r̂b
′
Q̂r̂b) − Cov(R′r, r′Qr)] = op(1), where R̂

and Q̂ are the QMLEs of R and Q. Similarly, Σ̂ and Ŝ used latter are the QMLEs of Σ0 and S.
Without loss of generality, let T = 2. Thus, r = (r′1, r

′
2)

′ and r̂ = (r̂′1, r̂
′
2)

′. Note that r̂b1 and r̂b2

are two matched bootstrap samples, corresponding to n random draws from the rows of {r̂1, r̂2}. Note
also that rt = Σ− 1

2
0 ut = Σ− 1

2
0 μ + Σ− 1

2
0 B−1

0 vt and the matrices Σ0 and B0 depend mainly on the spatial
weight matrix W . Let ωij and ω∗

ij be, respectively, the elements of Σ− 1
2

0 and Σ− 1
2

0 B−1
0 , and let �ii be the

diagonal elements of Σ−1
0 . We consider standard W matrices so that the following results maintain: (i)

for k ≥ 3,
∑

i,j ω
k
ij ∼

∑
i ω

k
ii and

∑
i,j ω

k
ij ∼

∑
i ω

∗k
ii , and (ii) for k ≥ 3, s2(ωkii) = o(1) and s2(ω∗k

ii ) = o(1),
and (iii) s2(�ii) = o(1), where, e.g., s2(ωkii) denotes the sample variance of {ωkii}.
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Letting R = (R′
1, R

′
2)′, we have for the linear terms, Var(R′r) = σ2

v0(R′
1R1 +R′

2R2) + 2σ2
μ0R

′
1Σ

−1
0 R2,

and Varb(R̂′r̂b) = σ̂2
v(R̂

′
1R̂1 + R̂′

2R̂2) + 2
n
σ̂2
μtr(Σ̂

−1)R̂′
1R̂2. It follows that

1
nT [Varb(R̂′r̂b) − Var(R′r)] = − 2

nT σ
2
μ0R

′
1[Σ

−1
0 − 1

n tr(Σ−1
0 )In]R2 + op(1) = op(1),

for R′ = 1
σ2

v0
X′Ω−1

0 (IT ⊗Σ
1
2
0 ), or 1

σ2
v0

η′−1Ω
−1
0 (IT ⊗Σ

1
2
0 ), by Assumption G1(iii) and the result (iii) above.

For the quadratic terms, partitioning Q as {Qts} according to t, s = 1, 2, we have, Var(r′Qr) =
Var(r′1Q11r1 + r′2Q22r2 + r′1Q12r2 + r′2Q21r1) = Var(r′1Q11r1) + · · ·+ 2Cov(r′1Q11r1, r

′
2Q22r2) + · · · , and

similarly, Varb(r̂b
′
Q̂r̂b) = Varb(r̂b

′
1 Q̂11r̂

b
1)+· · ·+2Covb(r̂b

′
1 Q̂11r̂

b
1, r̂

b′
2 Q̂22r̂

b
2)+· · · . It boils down to show that

1
n [Varb(r̂b

′
1 Q̂11r̂

b
1)−Var(r′1Q11r1)] = op(1), 1

n [Covb(r̂b
′

1 Q̂11r̂
b
1, r̂

b′
2 Q̂22r̂

b
2)−Cov(r′1Q11r1, r

′
2Q22r2)] = op(1),

etc. We formally prove these two terms, and others follow in a similar fashion. It is easy to show that

Varb(r̂b
′

1 Q̂11r̂
b
1) = κ̂r1 q̂

′
11q̂11 + σ̂4

v1tr[Σ̂Ŝ11Σ̂(Ŝ11 + Ŝ′
11)], and

Var(r′1Q11r1) = κμs
′
11s11 + κvs

∗′
11s

∗
11 + σ4

v0tr[Σ0S11Σ0(S11 + S′
11)],

where S11 = Σ− 1
2

0 Q11Σ
− 1

2
0 , s11 = diagv(S11), s∗11 = diagv(B′−1

0 S11B
−1
0 ), q̂11 = diagv(Q̂11), and σ̂2

v1 and
κ̂r1 are the 2nd and 4th sample cumulants of r̂1. It follows that

1
n
[Varb(r̂b

′
1 Q̂11r̂

b
1) − Var(u′1S11u1)] = 1

n
[κ̂rq̂′11q̂11 − κμs

′
11s11 − κvs

∗′
11s

∗
11] + op(1)

Furthermore, 1
n q̂

′
11q̂11 = 1

nq
′
11q11 + op(1), and the results (i)-(iii) above lead to the following:

κ̂r = 1
n

∑n
i=1 r̂

4
1i − 3σ̂4

v1 = κμ

n

∑
i,j ω

4
ij + κv

n

∑
i,j ω

∗4
ij + op(1),

1
n2 q

′
11q11

∑
i,j ω

4
ij − 1

ns
′
11s11 = 1

n2 q
′
11q11

∑
i ω

4
ii − 1

n

∑
i q

2
11,iiω

4
ii + o(1) = o(1), and

1
n2 q

′
11q11

∑
i,j ω

∗4
ij − 1

ns
∗′
11s

∗
11 = 1

n2 q
′
11q11

∑
i ω

∗4
ii − 1

n

∑
i q

2
11,iiω

∗4
ii + o(1) = o(1).

It follows that 1
n [Varb(r̂b

′
1 Q̂11r̂

b
1) − Var(u′1S11u1)] = op(1).

Now, Cov(r′1Q11r1, r
′
2Q22r2) = κμs

′
11s22 + σ4

μ0tr[S11(S22 + S′
22)], and Covb(r̂b

′
1 Q̂11r̂

b
1, r̂

b′
2 Q̂22r̂

b
2) =

(ρ̂2 − σ̂4
v − 2ρ̂2

1)q̂
′
11q̂22 + ρ̂2

1tr[Q̂11(Q̂22 + Q̂′
22)], where ρ̂1 = Eb(r̂b1ir̂

b
2i) = σ2

μ0(
1
n

∑
i�ii) + op(1), and

ρ̂2 = Eb((r̂b1ir̂
b
2i)

2) = κμ( 1
n

∑
i,j ω

4
ij) + σ4

v0 + 2σ4
μ0(

1
n

∑
i�

2
ii) + op(1). Thus, by the results (i)-(iii) above,

1
n [Covb(r̂b

′
1 Q̂11r̂

b
1, r̂

b′
2 Q̂22r̂

b
2) − Cov(u′1S11u1, u

′
2S22u2)]

= κμ

n (q′11q22
1
n

∑
i,j ω

4
ij − s′11s22) + σ4

μ0
n tr[(�̄2Q11 − Σ−1

0 Q11Σ−1
0 )(Q22 +Q′

22)] + op(1) = op(1),

where �̄ = 1
n

∑
i�ii.

Finally, the proof of 1
nT [Covb(R̂

′
r̂b, r̂b′Q̂r̂b) − Cov(R′r, r′Qr)] = op(1) can be carried out in the same

manner but is simpler. We give detail below for the most complicate term, and others follow.

Covb(R̂′
1r̂
b
1, r̂

b′
1 Q̂11r̂

b
1) − Cov(R′

1r1, r
′
1Q11r1) = γ̂r1 R̂

′
1q̂11 − R′

1Σ
− 1

2
0 (γμs11 + γvB

−1
0 s∗11),

where γ̂r1 is the 3rd sample cumulant of r̂1, and γμ and γv are the 3rd cumulants of μi and vit, respectively.
It is easy to show that γ̂r1 = 1

n

∑
i r̂

3
i1 = 1

n

∑
i r

3
i1 + op(1) = γμ( 1

n

∑
i,j ω

3
i,j) + γv( 1

n

∑
i,j ω

∗3
i,j), and that,

1
n
[R̂′

1q̂11( 1
n

∑
i,j ω

3
i,j) − R′

1Σ
− 1

2
0 s11] = op(1), and 1

n
[R̂′

1q̂11( 1
n

∑
i,j ω

∗3
i,j) −R′

1Σ
− 1

2
0 B−1

0 s∗11] = op(1).

The result thus follows. �
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Proof of Proposition 5.2. From (3.10), y0 = η0 + u0 where η0 denotes the exogenous part of y0. The
key element u∗ρ = −(ȧmγ′Z′, Y ′

−1)
′ in the score function Srr(ψ0) can be expressed as −η∗

−1−(J ∗′
ρ ⊗In)u∗,

where J ∗
ρ extends Jρ by adding a column (ρT−1, ρT−2, . . . , 1, 0)′ on its right and a row of zeros at its

bottom, and −η∗−1 is the exogenous part of u∗ρ(θ0, ρ0). Thus, Srr(ψ) is expressed in terms of ψ0, and
linear and quadratic forms of u∗. The proof proceeds as that of Proposition 5.1. �

Proof of Proposition 5.3. From (3.19), Δy1 = Δη1 + Δũ1 where Δη1 denotes the exogenous part of
Δy1. The key element Δuρ = −(0′n×1,Δy′1, · · · ,Δy′T−1)

′ in the score function Sf (ψ0) can be expressed
as −Δη−1 − (J ′

ρ ⊗ In)Δu, where −Δη−1 denotes the exogenous part of Δuρ. Subsequently, Sf (ψ0) is
expressed in terms of ψ0, and linear and quadratic forms of Δu. The proof proceeds as that of Proposition
5.1. �
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Table 1a. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Errors

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

5.0 5.0266[0.334] 4.9604[0.338] 5.0030[0.328] 4.5591[0.378] 4.9940[0.411] 5.0988[0.411]

1.0 1.0011[0.040] 0.9917[0.045] 0.9981[0.045] 0.9626[0.041] 0.9980[0.040] 1.0057[0.039]

1.0 0.9951[0.345] 0.9852[0.350] 0.9927[0.352] 0.7418[0.365] 0.9384[0.391] 0.9790[0.395]

0.8 0.7991[0.023] 0.8071[0.024] 0.8018[0.022] 0.8238[0.015] 0.8015[0.017] 0.7963[0.016]

0.5 0.4827[0.099] 0.3023[0.115] 0.2868[0.114] 0.4732[0.101] 0.4886[0.098] 0.4868[0.098]

1.0 0.9681[0.147] 0.1469[0.116] 0.0214[0.055] 0.8648[0.145] 0.9528[0.158] 0.9280[0.161]

1.0 0.9834[0.072] 1.2563[0.087] 1.2805[0.088] 1.0056[0.076] 0.9880[0.073] 1.0019[0.076]

5.0 4.9785[0.357] 4.9683[0.400] 4.9719[0.400] 4.7922[0.353] 5.0164[0.352] 5.0162[0.352]

1.0 1.0003[0.040] 0.9964[0.045] 0.9967[0.045] 0.9780[0.041] 0.9981[0.039] 0.9981[0.039]

1.0 0.9937[0.323] 1.0022[0.328] 1.0028[0.328] 0.8910[0.352] 0.9374[0.360] 0.9370[0.361]

0.4 0.4015[0.034] 0.4025[0.044] 0.4019[0.044] 0.4271[0.032] 0.4009[0.030] 0.4009[0.030]

0.5 0.4799[0.103] 0.3694[0.141] 0.3690[0.142] 0.4765[0.104] 0.4912[0.093] 0.4911[0.093]

1.0 0.9609[0.146] 0.6380[0.229] 0.6364[0.231] 0.9141[0.155] 0.9725[0.148] 0.9712[0.149]

1.0 0.9838[0.074] 1.1272[0.137] 1.1280[0.138] 1.0056[0.080] 0.9960[0.074] 0.9964[0.074]

5.0 5.0096[0.337] 4.9719[0.352] 4.9719[0.352] 4.9061[0.328] 5.0103[0.328] 5.0103[0.328]

1.0 0.9987[0.040] 0.9947[0.042] 0.9947[0.042] 0.9872[0.040] 0.9991[0.039] 0.9991[0.039]

1.0 0.9944[0.336] 0.9805[0.337] 0.9805[0.337] 0.9481[0.356] 0.9897[0.361] 0.9897[0.361]

0.0 -0.0014[0.041] 0.0069[0.047] 0.0069[0.047] 0.0199[0.043] -0.0021[0.042] -0.0021[0.042]

0.5 0.4783[0.106] 0.3977[0.114] 0.3977[0.114] 0.4815[0.102] 0.4929[0.091] 0.4929[0.091]

1.0 0.9659[0.151] 0.7313[0.178] 0.7313[0.178] 0.9342[0.157] 0.9691[0.148] 0.9691[0.148]

1.0 0.9808[0.076] 1.0741[0.102] 1.0741[0.102] 0.9945[0.079] 0.9624[0.066] 0.9624[0.066]

n = 100, T = 3

5.0 4.9921[0.252] 4.9129[0.258] 4.9423[0.248] 4.5604[0.270] 5.0174[0.299] 5.1460[0.300]

1.0 0.9995[0.029] 0.9892[0.034] 0.9932[0.033] 0.9655[0.029] 0.9997[0.029] 1.0090[0.029]

1.0 1.0019[0.243] 0.9822[0.242] 0.9916[0.242] 0.9112[0.227] 1.0126[0.240] 1.0414[0.244]

0.8 0.8003[0.017] 0.8092[0.018] 0.8058[0.016] 0.8200[0.009] 0.7993[0.010] 0.7935[0.010]

0.5 0.4852[0.074] 0.2674[0.086] 0.2500[0.085] 0.4857[0.068] 0.4872[0.067] 0.4865[0.067]

1.0 0.9788[0.101] 0.1828[0.094] 0.0279[0.056] 0.9083[0.101] 0.9806[0.115] 0.9719[0.120]

1.0 0.9941[0.052] 1.2885[0.062] 1.3150[0.060] 1.0075[0.053] 0.9940[0.052] 1.0025[0.053]

5.0 4.9941[0.247] 4.9271[0.305] 4.9318[0.306] 4.7258[0.277] 4.9982[0.273] 4.9982[0.273]

1.0 0.9991[0.031] 0.9899[0.040] 0.9904[0.040] 0.9730[0.031] 1.0012[0.030] 1.0012[0.030]

1.0 1.0055[0.242] 0.9888[0.245] 0.9897[0.245] 0.9384[0.240] 1.0127[0.250] 1.0128[0.250]

0.4 0.4004[0.025] 0.4104[0.037] 0.4098[0.037] 0.4316[0.023] 0.3996[0.022] 0.3996[0.022]

0.5 0.4916[0.069] 0.3706[0.099] 0.3701[0.100] 0.4885[0.074] 0.4859[0.069] 0.4858[0.069]

1.0 0.9885[0.103] 0.6050[0.175] 0.6033[0.177] 0.9141[0.104] 0.9808[0.101] 0.9798[0.101]

1.0 0.9926[0.053] 1.1742[0.118] 1.1752[0.118] 1.0120[0.054] 0.9948[0.051] 0.9951[0.051]

5.0 5.0098[0.265] 5.0200[0.271] 5.0200[0.271] 4.8775[0.257] 5.0054[0.254] 5.0054[0.254]

1.0 1.0011[0.032] 1.0023[0.033] 1.0023[0.033] 0.9845[0.032] 0.9997[0.030] 0.9997[0.030]

1.0 0.9923[0.232] 0.9930[0.233] 0.9930[0.233] 0.9819[0.240] 1.0086[0.244] 1.0086[0.244]

0.0 0.0000[0.031] -0.0021[0.033] -0.0021[0.033] 0.0236[0.033] -0.0010[0.031] -0.0010[0.031]

0.5 0.4860[0.069] 0.4257[0.073] 0.4258[0.073] 0.4866[0.072] 0.4942[0.063] 0.4942[0.063]

1.0 0.9771[0.107] 0.8260[0.117] 0.8261[0.117] 0.9505[0.109] 0.9851[0.101] 0.9851[0.101]

1.0 0.9957[0.054] 1.0535[0.068] 1.0535[0.068] 1.0015[0.054] 0.9778[0.045] 0.9778[0.045]

Note: ψ = (γ0, β, γ1, ρ, λ, σμ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5,2, 1) (see Footnote 13).
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Table 1b. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Mixture

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

5.0 5.0194[0.342] 4.9734[0.350] 5.0140[0.340] 4.5754[0.416] 4.9935[0.429] 5.0941[0.430]

1.0 1.0005[0.039] 0.9948[0.047] 1.0006[0.047] 0.9656[0.041] 0.9984[0.039] 1.0057[0.039]

1.0 0.9874[0.335] 0.9778[0.339] 0.9858[0.340] 0.7650[0.383] 0.9558[0.405] 0.9981[0.410]

0.8 0.7992[0.022] 0.8047[0.024] 0.7998[0.022] 0.8225[0.017] 0.8011[0.016] 0.7960[0.016]

0.5 0.4788[0.100] 0.2652[0.130] 0.2489[0.129] 0.4766[0.099] 0.4916[0.097] 0.4902[0.096]

1.0 0.9544[0.249] 0.1551[0.120] 0.0283[0.061] 0.8470[0.228] 0.9330[0.259] 0.9101[0.260]

1.0 0.9792[0.145] 1.2519[0.163] 1.2776[0.167] 0.9984[0.147] 0.9821[0.143] 0.9954[0.147]

5.0 4.9914[0.340] 4.9151[0.373] 4.9190[0.374] 4.8085[0.368] 5.0216[0.361] 5.0215[0.361]

1.0 0.9990[0.042] 0.9887[0.047] 0.9891[0.047] 0.9814[0.040] 1.0002[0.038] 1.0002[0.038]

1.0 1.0152[0.332] 1.0061[0.333] 1.0067[0.333] 0.8921[0.357] 0.9384[0.361] 0.9381[0.361]

0.4 0.4003[0.033] 0.4120[0.041] 0.4114[0.041] 0.4265[0.033] 0.4016[0.030] 0.4016[0.030]

0.5 0.4784[0.099] 0.3775[0.115] 0.3770[0.116] 0.4804[0.097] 0.4914[0.090] 0.4913[0.090]

1.0 0.9488[0.256] 0.5328[0.299] 0.5307[0.302] 0.8779[0.250] 0.9387[0.249] 0.9375[0.249]

1.0 0.9799[0.144] 1.1476[0.183] 1.1485[0.184] 0.9895[0.148] 0.9770[0.138] 0.9774[0.138]

5.0 5.0179[0.343] 5.0602[0.344] 5.0602[0.344] 4.9083[0.343] 5.0085[0.339] 5.0085[0.339]

1.0 0.9990[0.044] 1.0016[0.044] 1.0016[0.044] 0.9884[0.040] 1.0000[0.038] 1.0000[0.038]

1.0 0.9981[0.343] 1.0043[0.344] 1.0043[0.344] 0.9497[0.346] 0.9928[0.349] 0.9929[0.349]

0.0 -0.0009[0.043] -0.0094[0.043] -0.0094[0.043] 0.0197[0.045] -0.0017[0.042] -0.0017[0.042]

0.5 0.4822[0.097] 0.4484[0.096] 0.4484[0.096] 0.4808[0.100] 0.4926[0.089] 0.4926[0.089]

1.0 0.9469[0.259] 0.8501[0.259] 0.8500[0.259] 0.9081[0.247] 0.9435[0.246] 0.9434[0.246]

1.0 0.9784[0.144] 1.0170[0.162] 1.0170[0.162] 0.9871[0.145] 0.9475[0.124] 0.9475[0.124]

n = 100, T = 3

5.0 4.9975[0.265] 4.9224[0.276] 4.9695[0.262] 4.6100[0.278] 5.0438[0.335] 5.1446[0.290]

1.0 1.0003[0.029] 0.9916[0.034] 0.9974[0.033] 0.9662[0.029] 1.0024[0.029] 1.0118[0.029]

1.0 1.0089[0.239] 0.9960[0.239] 1.0040[0.240] 0.9023[0.226] 0.9941[0.242] 1.0155[0.245]

0.8 0.8005[0.017] 0.8086[0.019] 0.8035[0.016] 0.8197[0.010] 0.7981[0.013] 0.7931[0.010]

0.5 0.4880[0.072] 0.2826[0.083] 0.2658[0.084] 0.4787[0.072] 0.4749[0.072] 0.4735[0.072]

1.0 0.9621[0.180] 0.1625[0.098] 0.0201[0.048] 0.8933[0.157] 0.9873[0.248] 0.9648[0.190]

1.0 0.9945[0.107] 1.2741[0.115] 1.2990[0.118] 1.0052[0.107] 0.9896[0.104] 0.9969[0.105]

5.0 4.9962[0.258] 4.8481[0.297] 4.8535[0.298] 4.7778[0.262] 5.0177[0.259] 5.0181[0.259]

1.0 1.0009[0.031] 0.9813[0.038] 0.9820[0.038] 0.9755[0.032] 1.0003[0.030] 1.0003[0.030]

1.0 1.0026[0.239] 0.9616[0.240] 0.9630[0.240] 0.9453[0.225] 0.9933[0.231] 0.9934[0.231]

0.4 0.4002[0.026] 0.4229[0.034] 0.4221[0.035] 0.4277[0.023] 0.3989[0.022] 0.3989[0.022]

0.5 0.4878[0.073] 0.3309[0.089] 0.3308[0.090] 0.4867[0.072] 0.4825[0.069] 0.4824[0.069]

1.0 0.9746[0.183] 0.4723[0.195] 0.4706[0.197] 0.9108[0.178] 0.9695[0.188] 0.9687[0.188]

1.0 0.9943[0.103] 1.1997[0.125] 1.2001[0.126] 1.0052[0.100] 0.9887[0.096] 0.9890[0.096]

5.0 4.9946[0.270] 5.0102[0.279] 5.0103[0.279] 4.9119[0.266] 5.0339[0.264] 5.0339[0.264]

1.0 0.9998[0.032] 0.9996[0.034] 0.9996[0.034] 0.9865[0.032] 1.0016[0.031] 1.0016[0.031]

1.0 1.0004[0.249] 0.9802[0.249] 0.9802[0.249] 0.9565[0.238] 0.9816[0.242] 0.9816[0.242]

0.0 0.0001[0.033] -0.0008[0.036] -0.0008[0.036] 0.0208[0.033] -0.0032[0.031] -0.0032[0.031]

0.5 0.4877[0.071] 0.4050[0.090] 0.4050[0.090] 0.4912[0.072] 0.5024[0.062] 0.5024[0.062]

1.0 0.9638[0.186] 0.8049[0.194] 0.8050[0.194] 0.9518[0.182] 0.9871[0.182] 0.9872[0.182]

1.0 0.9864[0.105] 1.0428[0.128] 1.0427[0.128] 0.9942[0.108] 0.9641[0.092] 0.9641[0.092]

Note: ψ = (γ0, β, γ1, ρ, λ, σμ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5,2, 1) (see Footnote 13).
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Table 2a. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 0

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0155 0.3595 0.3257 0.3428 0.3759 5.0040 0.2736 0.2436 0.2695 0.3149

1.0 1.0003 0.0422 0.0373 0.0403 0.0443 0.9999 0.0229 0.0203 0.0222 0.0246

1.0 0.9949 0.3462 0.3321 0.3291 0.3288 0.9996 0.3017 0.2981 0.2978 0.2988

0.5 0.4987 0.0332 0.0312 0.0321 0.0342 0.4995 0.0150 0.0140 0.0149 0.0162

0.5 0.4775 0.1035 0.1037 0.1003 0.1104 0.4973 0.0608 0.0632 0.0588 0.0631

1.0 0.9998 0.3622 0.3885 0.3543 0.3692 0.9734 0.2657 0.2727 0.2543 0.2621

1.0 0.9775 0.1441 0.1416 0.1455 0.1686 0.9883 0.0822 0.0821 0.0837 0.0981

100 5.0 5.0021 0.2634 0.2421 0.2571 0.2797 5.0014 0.1860 0.1591 0.1806 0.2145

1.0 1.0000 0.0287 0.0270 0.0285 0.0305 1.0000 0.0155 0.0148 0.0160 0.0175

1.0 0.9949 0.2412 0.2360 0.2350 0.2351 1.0109 0.2168 0.2141 0.2161 0.2190

0.5 0.5000 0.0223 0.0211 0.0216 0.0226 0.4999 0.0105 0.0098 0.0105 0.0113

0.5 0.4896 0.0726 0.0750 0.0715 0.0766 0.4976 0.0398 0.0466 0.0425 0.0444

1.0 1.0040 0.2540 0.2636 0.2495 0.2589 0.9866 0.1889 0.1871 0.1815 0.1885

1.0 0.9899 0.1027 0.0964 0.1038 0.1227 0.9966 0.0602 0.0560 0.0596 0.0710

Normal Mixture Errors

50 5.0 5.0105 0.3450 0.3340 0.3389 0.3735 4.9986 0.2828 0.2555 0.2685 0.3100

1.0 1.0005 0.0394 0.0368 0.0398 0.0441 1.0001 0.0208 0.0190 0.0205 0.0224

1.0 0.9972 0.3300 0.3244 0.3215 0.3220 1.0029 0.3045 0.2977 0.2945 0.2928

0.5 0.4997 0.0331 0.0308 0.0316 0.0345 0.4998 0.0159 0.0143 0.0149 0.0161

0.5 0.4887 0.1011 0.0984 0.0985 0.1178 0.4928 0.0575 0.0584 0.0590 0.0719

1.0 1.0376 0.6779 0.3104 0.3636 0.5621 1.0135 0.5932 0.1917 0.2625 0.4643

1.0 0.9813 0.2916 0.0897 0.1464 0.2867 0.9964 0.1770 0.0413 0.0844 0.1923

100 5.0 5.0098 0.2541 0.2313 0.2420 0.2676 4.9899 0.1900 0.1671 0.1842 0.2175

1.0 1.0002 0.0293 0.0272 0.0290 0.0316 0.9997 0.0154 0.0139 0.0151 0.0164

1.0 0.9842 0.2397 0.2344 0.2310 0.2290 1.0070 0.2189 0.2115 0.2151 0.2197

0.5 0.5004 0.0240 0.0208 0.0218 0.0236 0.5002 0.0106 0.0101 0.0106 0.0114

0.5 0.4900 0.0696 0.0730 0.0713 0.0834 0.4972 0.0421 0.0440 0.0425 0.0502

1.0 1.0239 0.4462 0.1898 0.2532 0.4188 1.0078 0.3683 0.1162 0.1850 0.3578

1.0 0.9927 0.2081 0.0569 0.1042 0.2177 0.9901 0.1289 0.0265 0.0592 0.1416

Chi-Square Errors, df=5

50 5.0 4.9959 0.3544 0.3414 0.3420 0.3756 5.0178 0.3216 0.3135 0.3190 0.3535

1.0 0.9994 0.0408 0.0373 0.0403 0.0443 1.0006 0.0236 0.0220 0.0231 0.0246

1.0 0.9942 0.3366 0.3318 0.3287 0.3285 0.9943 0.3363 0.3330 0.3286 0.3258

0.5 0.5017 0.0334 0.0307 0.0320 0.0350 0.4982 0.0154 0.0148 0.0153 0.0163

0.5 0.4758 0.1012 0.1026 0.1005 0.1133 0.4959 0.0582 0.0615 0.0588 0.0651

1.0 1.0195 0.4533 0.3659 0.3601 0.4293 0.9649 0.3417 0.2488 0.2527 0.3186

1.0 0.9806 0.1876 0.1208 0.1460 0.2072 0.9895 0.1166 0.0631 0.0838 0.1273

100 5.0 4.9997 0.2478 0.2430 0.2455 0.2691 4.9919 0.1903 0.1788 0.1885 0.2209

1.0 0.9997 0.0286 0.0262 0.0282 0.0308 0.9993 0.0156 0.0143 0.0155 0.0169

1.0 0.9981 0.2343 0.2359 0.2352 0.2357 1.0062 0.2157 0.2116 0.2126 0.2143

0.5 0.5002 0.0216 0.0204 0.0214 0.0229 0.5002 0.0110 0.0104 0.0110 0.0118

0.5 0.4889 0.0673 0.0744 0.0716 0.0787 0.4974 0.0426 0.0455 0.0425 0.0458

1.0 1.0103 0.3043 0.2381 0.2501 0.3066 0.9824 0.2466 0.1653 0.1810 0.2397

1.0 0.9917 0.1391 0.0799 0.1040 0.1536 0.9946 0.0838 0.0421 0.0595 0.0934

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 13).
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Table 2b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0006 0.3692 0.3683 0.3677 0.3947 5.0104 0.2857 0.2931 0.2770 0.3033

1.0 0.9989 0.0371 0.0364 0.0378 0.0408 1.0014 0.0247 0.0253 0.0251 0.0264

1.0 0.9489 0.3510 0.3637 0.3626 0.3732 0.9917 0.3106 0.3047 0.2986 0.3001

0.5 0.5014 0.0275 0.0289 0.0277 0.0281 0.4990 0.0151 0.0206 0.0153 0.0121

0.5 0.4972 0.0907 0.0953 0.0906 0.1004 0.4832 0.0601 0.0616 0.0583 0.0637

1.0 0.9905 0.3505 0.3737 0.3424 0.3635 0.9678 0.2583 0.2832 0.2534 0.2584

1.0 0.9805 0.1439 0.1381 0.1425 0.1687 0.9900 0.0872 0.0828 0.0835 0.0989

100 5.0 5.0276 0.2902 0.2687 0.2739 0.2910 5.0036 0.2046 0.2037 0.1966 0.2126

1.0 1.0017 0.0297 0.0285 0.0296 0.0314 1.0005 0.0163 0.0163 0.0163 0.0170

1.0 1.0203 0.2406 0.2402 0.2351 0.2331 0.9996 0.2197 0.2158 0.2128 0.2130

0.5 0.4973 0.0212 0.0209 0.0203 0.0203 0.4997 0.0109 0.0140 0.0112 0.0094

0.5 0.4898 0.0681 0.0714 0.0676 0.0718 0.4966 0.0412 0.0451 0.0414 0.0436

1.0 1.0103 0.2643 0.2666 0.2537 0.2649 0.9836 0.1796 0.1915 0.1816 0.1877

1.0 0.9879 0.1020 0.0946 0.1015 0.1203 0.9948 0.0579 0.0559 0.0594 0.0710

Normal Mixture Errors

50 5.0 5.0188 0.3582 0.3763 0.3684 0.4236 5.0123 0.2804 0.3036 0.2777 0.3024

1.0 1.0003 0.0383 0.0364 0.0378 0.0434 1.0013 0.0259 0.0252 0.0250 0.0263

1.0 0.9170 0.3839 0.3591 0.3579 0.3835 0.9963 0.2960 0.3064 0.2996 0.3004

0.5 0.5010 0.0282 0.0287 0.0281 0.0324 0.4991 0.0155 0.0205 0.0152 0.0121

0.5 0.4941 0.0903 0.0922 0.0907 0.1096 0.4856 0.0567 0.0571 0.0581 0.0732

1.0 1.0256 0.6788 0.3003 0.3543 0.5729 1.0370 0.5664 0.2124 0.2691 0.4816

1.0 0.9938 0.2765 0.0843 0.1461 0.3087 0.9911 0.1791 0.0416 0.0836 0.1925

100 5.0 5.0199 0.2863 0.2722 0.2734 0.2941 4.9971 0.1975 0.2075 0.1960 0.2116

1.0 1.0014 0.0295 0.0283 0.0294 0.0316 1.0003 0.0161 0.0163 0.0162 0.0170

1.0 1.0066 0.2531 0.2387 0.2336 0.2319 1.0082 0.2109 0.2147 0.2116 0.2116

0.5 0.4983 0.0206 0.0207 0.0202 0.0208 0.4997 0.0113 0.0139 0.0111 0.0094

0.5 0.4905 0.0672 0.0695 0.0675 0.0795 0.4969 0.0397 0.0428 0.0415 0.0496

1.0 1.0475 0.4597 0.2037 0.2626 0.4341 1.0091 0.4092 0.1281 0.1855 0.3568

1.0 0.9837 0.2014 0.0537 0.1014 0.2178 0.9943 0.1302 0.0270 0.0593 0.1416

Chi-Square Errors, df=5

50 5.0 5.0165 0.3750 0.3859 0.3697 0.3991 5.0351 0.2870 0.3065 0.2770 0.3015

1.0 0.9984 0.0383 0.0365 0.0378 0.0411 1.0013 0.0255 0.0251 0.0250 0.0263

1.0 0.9227 0.3595 0.3633 0.3621 0.3754 0.9583 0.3014 0.3049 0.2985 0.2996

0.5 0.5008 0.0277 0.0289 0.0278 0.0288 0.4992 0.0148 0.0205 0.0152 0.0120

0.5 0.5031 0.0877 0.0938 0.0900 0.1028 0.4849 0.0584 0.0601 0.0582 0.0662

1.0 0.9992 0.4431 0.3510 0.3446 0.4179 0.9925 0.3520 0.2700 0.2590 0.3251

1.0 0.9906 0.1940 0.1202 0.1441 0.2107 0.9833 0.1181 0.0638 0.0829 0.1281

100 5.0 5.0307 0.2801 0.2807 0.2744 0.2908 5.0081 0.1999 0.2133 0.1967 0.2119

1.0 1.0016 0.0296 0.0285 0.0296 0.0315 1.0004 0.0169 0.0163 0.0163 0.0170

1.0 1.0172 0.2419 0.2405 0.2358 0.2343 0.9989 0.2137 0.2157 0.2128 0.2130

0.5 0.4969 0.0203 0.0208 0.0203 0.0205 0.4996 0.0112 0.0140 0.0112 0.0094

0.5 0.4888 0.0689 0.0709 0.0677 0.0741 0.4960 0.0426 0.0443 0.0415 0.0452

1.0 1.0304 0.3157 0.2479 0.2584 0.3169 0.9949 0.2548 0.1757 0.1833 0.2396

1.0 0.9867 0.1323 0.0791 0.1015 0.1512 0.9932 0.0810 0.0430 0.0593 0.0931

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 13).
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Table 2c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0283 0.3738 0.3745 0.3731 0.3958 5.0117 0.2852 0.2966 0.2834 0.3117

1.0 1.0012 0.0392 0.0387 0.0397 0.0423 1.0003 0.0250 0.0248 0.0237 0.0243

1.0 0.9720 0.3411 0.3339 0.3321 0.3369 1.0028 0.3041 0.3033 0.3046 0.3130

0.5 0.4970 0.0275 0.0280 0.0265 0.0263 0.4993 0.0157 0.0217 0.0162 0.0129

0.5 0.4778 0.0907 0.0981 0.0934 0.1017 0.4922 0.0599 0.0611 0.0575 0.0627

1.0 1.0255 0.3967 0.3912 0.3602 0.3833 0.9842 0.2643 0.2863 0.2576 0.2646

1.0 0.9742 0.1484 0.1380 0.1424 0.1685 0.9898 0.0817 0.0825 0.0835 0.0991

100 5.0 5.0121 0.2733 0.2740 0.2727 0.2849 5.0113 0.2131 0.2116 0.2059 0.2254

1.0 1.0001 0.0305 0.0287 0.0298 0.0316 1.0006 0.0177 0.0176 0.0176 0.0185

1.0 1.0020 0.2423 0.2421 0.2418 0.2448 0.9853 0.2247 0.2155 0.2137 0.2149

0.5 0.4988 0.0213 0.0218 0.0205 0.0199 0.5000 0.0120 0.0150 0.0117 0.0095

0.5 0.4963 0.0663 0.0707 0.0667 0.0707 0.4989 0.0408 0.0452 0.0417 0.0438

1.0 1.0026 0.2702 0.2679 0.2535 0.2638 0.9747 0.1845 0.1934 0.1813 0.1854

1.0 0.9865 0.1024 0.0938 0.1015 0.1212 0.9985 0.0605 0.0564 0.0597 0.0711

Normal Mixture Errors

50 5.0 5.0122 0.3683 0.3803 0.3677 0.4082 5.0039 0.2902 0.3019 0.2799 0.3079

1.0 0.9986 0.0412 0.0385 0.0395 0.0437 1.0001 0.0238 0.0247 0.0235 0.0241

1.0 0.9767 0.3368 0.3274 0.3248 0.3312 1.0178 0.3164 0.2979 0.2987 0.3066

0.5 0.4993 0.0263 0.0275 0.0263 0.0285 0.4995 0.0161 0.0214 0.0160 0.0130

0.5 0.4707 0.0960 0.0948 0.0938 0.1130 0.4945 0.0585 0.0566 0.0573 0.0711

1.0 1.0508 0.7028 0.3138 0.3660 0.5834 1.0052 0.5478 0.2101 0.2621 0.4621

1.0 0.9808 0.2897 0.0855 0.1438 0.2965 0.9855 0.1855 0.0417 0.0832 0.1900

100 5.0 4.9976 0.2751 0.2757 0.2705 0.2861 5.0239 0.2076 0.2165 0.2058 0.2248

1.0 1.0018 0.0304 0.0286 0.0296 0.0316 1.0000 0.0178 0.0176 0.0176 0.0185

1.0 0.9985 0.2392 0.2392 0.2390 0.2422 0.9823 0.2159 0.2151 0.2127 0.2136

0.5 0.5004 0.0208 0.0216 0.0204 0.0203 0.4992 0.0118 0.0150 0.0117 0.0096

0.5 0.4933 0.0670 0.0690 0.0669 0.0781 0.5003 0.0408 0.0429 0.0416 0.0495

1.0 1.0146 0.4514 0.2034 0.2555 0.4149 0.9902 0.3572 0.1302 0.1840 0.3490

1.0 0.9863 0.1955 0.0547 0.1017 0.2159 1.0014 0.1294 0.0272 0.0599 0.1440

Chi-Square Errors, df=5

50 5.0 5.0403 0.3978 0.3932 0.3732 0.3927 5.0213 0.2890 0.3071 0.2811 0.3075

1.0 0.9996 0.0405 0.0386 0.0396 0.0423 1.0007 0.0238 0.0247 0.0236 0.0242

1.0 0.9744 0.3420 0.3345 0.3317 0.3358 1.0090 0.3283 0.2997 0.3014 0.3098

0.5 0.4972 0.0264 0.0280 0.0264 0.0263 0.4983 0.0162 0.0216 0.0161 0.0128

0.5 0.4766 0.0912 0.0976 0.0935 0.1041 0.4931 0.0586 0.0595 0.0574 0.0648

1.0 1.0448 0.4633 0.3701 0.3627 0.4375 0.9824 0.3657 0.2678 0.2568 0.3208

1.0 0.9703 0.1867 0.1194 0.1414 0.2023 0.9853 0.1162 0.0651 0.0831 0.1257

100 5.0 4.9983 0.2807 0.2860 0.2728 0.2836 5.0051 0.2098 0.2210 0.2059 0.2244

1.0 1.0023 0.0299 0.0287 0.0298 0.0316 1.0001 0.0178 0.0176 0.0176 0.0185

1.0 1.0055 0.2416 0.2425 0.2418 0.2443 0.9941 0.2150 0.2161 0.2139 0.2147

0.5 0.4996 0.0212 0.0218 0.0205 0.0200 0.4998 0.0119 0.0150 0.0117 0.0095

0.5 0.4995 0.0647 0.0700 0.0666 0.0725 0.4989 0.0400 0.0444 0.0417 0.0454

1.0 1.0081 0.3351 0.2480 0.2542 0.3083 0.9862 0.2441 0.1769 0.1835 0.2393

1.0 0.9921 0.1389 0.0798 0.1021 0.1514 0.9965 0.0805 0.0429 0.0596 0.0942

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 13).
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Table 3a. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Errors

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

1.0 0.9957[.090] 0.9702[.088] 0.9589[.087] 1.0006[.127] 0.9983[.126] 0.9891[.125]

-0.9 -0.8966[.045] -0.8390[.038] -0.8139[.029] -0.8976[.037] -0.8934[.034] -0.8744[.026]

0.5 0.4764[.105] 0.4471[.100] 0.4584[.100] 0.4912[.104] 0.4889[.088] 0.4837[.088]

1.0 0.9775[.141] 0.8568[.113] 0.8747[.116] 0.9934[.132] 0.9632[.131] 0.9521[.131]

1.0 0.9989[.089] 0.9969[.089] 0.9969[.089] 0.9934[.135] 0.9926[.133] 0.9926[.133]

-0.5 -0.4996[.048] -0.4926[.048] -0.4925[.048] -0.4943[.074] -0.4924[.068] -0.4923[.068]

0.5 0.4852[.102] 0.4092[.117] 0.4091[.117] 0.5149[.114] 0.4893[.095] 0.4893[.095]

1.0 0.9662[.142] 0.9493[.142] 0.9493[.142] 0.9734[.153] 0.9410[.136] 0.9410[.136]

1.0 0.9991[.090] 0.9990[.090] 0.9990[.090] 0.9904[.139] 1.0012[.136] 1.0012[.136]

0.0 0.0004[.055] -0.0004[.055] -0.0004[.055] 0.0280[.103] -0.0059[.087] -0.0059[.087]

0.5 0.4925[.100] 0.4780[.097] 0.4780[.097] 0.5281[.101] 0.4903[.089] 0.4903[.089]

1.0 0.9673[.149] 0.9619[.147] 0.9619[.147] 1.0134[.176] 0.9340[.130] 0.9340[.130]

1.0 0.9988[.095] 0.9989[.095] 0.9988[.095] 1.0031[.135] 1.0049[.134] 1.0050[.134]

0.5 0.4976[.040] 0.4977[.040] 0.4977[.040] 0.5155[.096] 0.4983[.089] 0.4982[.089]

0.5 0.4772[.108] 0.4675[.107] 0.4675[.107] 0.5081[.102] 0.4826[.098] 0.4826[.098]

1.0 0.9610[.144] 0.9586[.144] 0.9586[.144] 0.9973[.174] 0.9703[.156] 0.9702[.156]

1.0 1.0035[.089] 1.0037[.089] 1.0037[.089] 0.9977[.133] 0.9976[.133] 0.9976[.133]

0.9 0.8991[.025] 0.8993[.025] 0.8993[.025] 0.9004[.044] 0.9002[.044] 0.9002[.044]

0.5 0.4704[.112] 0.4695[.112] 0.4692[.112] 0.4862[.104] 0.4859[.103] 0.4858[.103]

1.0 0.9682[.149] 0.9682[.149] 0.9681[.149] 0.9803[.151] 0.9803[.151] 0.9803[.151]

n = 100, T = 3

1.0 1.0025[.074] 0.9882[.074] 0.9750[.073] 0.9986[.071] 0.9985[.071] 0.9935[.071]

-0.9 -0.8996[.026] -0.8753[.023] -0.8528[.017] -0.8996[.026] -0.8994[.024] -0.8858[.019]

0.5 0.4937[.077] 0.3917[.075] 0.4014[.073] 0.5001[.076] 0.4876[.068] 0.4753[.068]

1.0 0.9848[.104] 0.9411[.089] 0.9410[.091] 1.0177[.093] 0.9847[.102] 0.9765[.098]

1.0 0.9972[.075] 0.9951[.075] 0.9950[.075] 0.9994[.071] 1.0007[.070] 1.0006[.070]

-0.5 -0.5026[.038] -0.4977[.037] -0.4976[.037] -0.4951[.050] -0.4983[.047] -0.4983[.047]

0.5 0.4892[.076] 0.4289[.078] 0.4289[.078] 0.5302[.081] 0.4977[.065] 0.4977[.065]

1.0 0.9790[.107] 0.9696[.106] 0.9696[.106] 0.9984[.107] 0.9792[.098] 0.9792[.098]

1.0 0.9992[.076] 0.9997[.075] 0.9997[.075] 0.9941[.072] 1.0022[.071] 1.0022[.071]

0.0 0.0022[.041] 0.0011[.041] 0.0011[.041] 0.0223[.064] -0.0072[.056] -0.0072[.056]

0.5 0.4989[.073] 0.4848[.068] 0.4848[.068] 0.5472[.075] 0.4977[.063] 0.4977[.063]

1.0 0.9944[.106] 0.9916[.105] 0.9916[.105] 1.0225[.119] 0.9584[.091] 0.9584[.091]

1.0 0.9989[.075] 0.9989[.075] 0.9989[.075] 0.9997[.069] 1.0001[.069] 1.0001[.069]

0.5 0.5014[.031] 0.5012[.030] 0.5012[.030] 0.5188[.062] 0.5036[.057] 0.5036[.057]

0.5 0.5001[.077] 0.4969[.076] 0.4969[.076] 0.5193[.070] 0.4957[.067] 0.4957[.067]

1.0 0.9829[.106] 0.9827[.106] 0.9827[.106] 1.0224[.122] 1.0056[.113] 1.0056[.113]

1.0 0.9952[.071] 0.9952[.071] 0.9952[.071] 0.9990[.068] 0.9991[.068] 0.9991[.068]

0.9 0.9003[.021] 0.9001[.021] 0.9002[.021] 0.9018[.028] 0.9020[.028] 0.9020[.028]

0.5 0.4952[.077] 0.4954[.077] 0.4954[.077] 0.4864[.076] 0.4857[.075] 0.4855[.075]

1.0 0.9844[.108] 0.9843[.108] 0.9843[.108] 0.9834[.104] 0.9836[.104] 0.9835[.104]

Note: ψ = (β, ρ, λ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5, 1, .5) (see Footnote 13).
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Table 3b. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Mixture

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

1.0 1.0021[.092] 0.9906[.091] 0.9826[.090] 0.9981[.126] 0.9980[.125] 0.9954[.125]

-0.9 -0.8987[.041] -0.8648[.040] -0.8416[.033] -0.8956[.038] -0.8924[.038] -0.8770[.033]

0.5 0.4862[.103] 0.4035[.098] 0.4113[.097] 0.4829[.105] 0.4850[.092] 0.4770[.091]

1.0 0.9822[.300] 0.9147[.252] 0.9238[.262] 1.0121[.264] 0.9540[.268] 0.9473[.271]

1.0 1.0026[.091] 1.0013[.091] 1.0013[.091] 0.9923[.128] 0.9905[.127] 0.9905[.127]

-0.5 -0.5009[.050] -0.4969[.049] -0.4969[.049] -0.4926[.079] -0.4881[.072] -0.4880[.072]

0.5 0.4894[.103] 0.4415[.103] 0.4415[.103] 0.5164[.103] 0.4934[.089] 0.4934[.089]

1.0 0.9802[.285] 0.9687[.278] 0.9687[.278] 0.9807[.291] 0.9301[.247] 0.9301[.247]

1.0 0.9986[.089] 0.9986[.089] 0.9986[.089] 0.9936[.139] 1.0045[.134] 1.0045[.134]

0.0 0.0017[.062] 0.0005[.062] 0.0005[.062] 0.0254[.106] -0.0110[.091] -0.0110[.091]

0.5 0.4917[.102] 0.4733[.098] 0.4733[.098] 0.5371[.099] 0.5045[.088] 0.5045[.088]

1.0 0.9761[.305] 0.9731[.302] 0.9731[.302] 1.0100[.309] 0.9057[.235] 0.9057[.235]

1.0 1.0004[.090] 1.0004[.090] 1.0004[.090] 1.0033[.129] 1.0051[.128] 1.0051[.128]

0.5 0.5001[.041] 0.5000[.041] 0.5000[.041] 0.5068[.100] 0.4911[.094] 0.4911[.094]

0.5 0.4826[.105] 0.4761[.104] 0.4761[.104] 0.5054[.097] 0.4809[.094] 0.4808[.094]

1.0 0.9865[.303] 0.9844[.301] 0.9844[.301] 0.9824[.313] 0.9551[.287] 0.9550[.286]

1.0 0.9968[.094] 0.9970[.094] 0.9970[.094] 0.9971[.128] 0.9970[.128] 0.9970[.128]

0.9 0.8991[.026] 0.8993[.026] 0.8993[.026] 0.9006[.049] 0.9004[.049] 0.9004[.049]

0.5 0.4797[.107] 0.4789[.107] 0.4786[.107] 0.4884[.106] 0.4881[.105] 0.4880[.105]

1.0 0.9760[.279] 0.9760[.279] 0.9759[.279] 0.9649[.285] 0.9648[.284] 0.9649[.284]

n = 100, T = 3

1.0 0.9986[.076] 0.9712[.075] 0.9564[.074] 1.0022[.072] 1.0028[.072] 0.9979[.072]

-0.9 -0.9005[.030] -0.8549[.029] -0.8303[.023] -0.8964[.026] -0.8972[.025] -0.8853[.021]

0.5 0.4909[.078] 0.4299[.071] 0.4398[.072] 0.4938[.074] 0.4864[.068] 0.4744[.068]

1.0 0.9833[.205] 0.8850[.164] 0.8978[.173] 1.0367[.177] 0.9845[.200] 0.9779[.198]

1.0 0.9976[.074] 0.9964[.074] 0.9964[.074] 0.9971[.073] 0.9971[.072] 0.9971[.072]

-0.5 -0.4987[.039] -0.4963[.039] -0.4963[.039] -0.4922[.055] -0.4926[.052] -0.4925[.052]

0.5 0.5002[.080] 0.4672[.074] 0.4672[.074] 0.5262[.076] 0.4967[.062] 0.4967[.062]

1.0 0.9862[.204] 0.9742[.200] 0.9742[.200] 0.9994[.219] 0.9641[.188] 0.9641[.188]

1.0 1.0016[.077] 1.0017[.077] 1.0017[.077] 0.9930[.073] 1.0011[.072] 1.0011[.072]

0.0 -0.0014[.038] -0.0015[.038] -0.0015[.038] 0.0229[.067] -0.0072[.059] -0.0072[.059]

0.5 0.4921[.073] 0.4694[.071] 0.4694[.071] 0.5428[.074] 0.4998[.064] 0.4998[.064]

1.0 0.9892[.208] 0.9864[.207] 0.9864[.207] 1.0143[.224] 0.9344[.175] 0.9344[.175]

1.0 1.0003[.074] 1.0005[.074] 1.0005[.074] 1.0005[.070] 1.0010[.069] 1.0010[.069]

0.5 0.5012[.033] 0.5005[.032] 0.5005[.032] 0.5201[.067] 0.5050[.062] 0.5050[.062]

0.5 0.5131[.076] 0.5162[.073] 0.5162[.073] 0.5174[.067] 0.4941[.063] 0.4941[.063]

1.0 0.9912[.218] 0.9912[.218] 0.9912[.218] 1.0245[.222] 1.0047[.204] 1.0047[.204]

1.0 1.0019[.073] 1.0019[.073] 1.0019[.073] 0.9976[.076] 0.9977[.076] 0.9977[.076]

0.9 0.9005[.021] 0.9003[.021] 0.9003[.021] 0.9011[.028] 0.9013[.028] 0.9013[.028]

0.5 0.4976[.079] 0.4979[.079] 0.4980[.079] 0.4853[.076] 0.4846[.075] 0.4843[.075]

1.0 0.9816[.205] 0.9814[.204] 0.9815[.204] 0.9801[.202] 0.9803[.202] 0.9802[.202]

Note: ψ = (β, ρ, λ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5, 1, .5) (see Footnote 13).
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Table 4a. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 0

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 0.9986 0.0971 0.1001 0.0981 0.0982 1.0003 0.0559 0.0545 0.0532 0.0549

0.5 0.4988 0.0348 0.0380 0.0326 0.0437 0.4995 0.0241 0.0259 0.0241 0.0363

0.5 0.4888 0.1055 0.1016 0.1044 0.1127 0.4917 0.0612 0.0571 0.0597 0.0639

1.0 0.9650 0.1489 0.1713 0.1411 0.1339 0.9861 0.0806 0.0990 0.0841 0.0794

100 1.0 1.0024 0.0720 0.0744 0.0737 0.0790 1.0005 0.0340 0.0343 0.0337 0.0342

0.5 0.5012 0.0266 0.0288 0.0273 0.0417 0.5005 0.0167 0.0173 0.0170 0.0266

0.5 0.4922 0.0759 0.0742 0.0749 0.0782 0.4986 0.0408 0.0419 0.0428 0.0443

1.0 0.9889 0.1044 0.1219 0.1022 0.0980 0.9948 0.0592 0.0673 0.0600 0.0576

Normal Mixture Errors

50 1.0 0.9979 0.0967 0.0996 0.0971 0.0973 1.0016 0.0530 0.0550 0.0533 0.0563

0.5 0.4976 0.0338 0.0385 0.0320 0.0461 0.4994 0.0252 0.0278 0.0249 0.0408

0.5 0.4847 0.1017 0.1001 0.1046 0.1153 0.4953 0.0585 0.0542 0.0595 0.0671

1.0 0.9586 0.2841 0.1207 0.1401 0.2372 0.9881 0.1855 0.0637 0.0844 0.1610

100 1.0 1.0027 0.0733 0.0742 0.0733 0.0791 0.9971 0.0328 0.0342 0.0336 0.0341

0.5 0.5000 0.0269 0.0287 0.0262 0.0431 0.4994 0.0168 0.0173 0.0169 0.0275

0.5 0.4933 0.0718 0.0731 0.0748 0.0794 0.4995 0.0435 0.0406 0.0428 0.0457

1.0 0.9860 0.2121 0.0833 0.1019 0.1860 0.9894 0.1291 0.0408 0.0596 0.1198

Chi-Square, df=3

50 1.0 0.9942 0.1022 0.1001 0.0983 0.0995 1.0034 0.0544 0.0549 0.0534 0.0557

0.5 0.4999 0.0361 0.0376 0.0333 0.0471 0.4991 0.0251 0.0265 0.0242 0.0369

0.5 0.4785 0.1046 0.1015 0.1060 0.1171 0.4966 0.0588 0.0554 0.0595 0.0654

1.0 0.9646 0.2141 0.1377 0.1409 0.1860 0.9908 0.1365 0.0741 0.0845 0.1218

100 1.0 1.0012 0.0734 0.0744 0.0737 0.0792 1.0010 0.0328 0.0344 0.0338 0.0345

0.5 0.4999 0.0312 0.0290 0.0284 0.0487 0.5003 0.0175 0.0168 0.0169 0.0263

0.5 0.4935 0.0771 0.0735 0.0755 0.0804 0.4976 0.0441 0.0414 0.0428 0.0449

1.0 0.9918 0.1604 0.0971 0.1024 0.1425 0.9962 0.0971 0.0486 0.0600 0.0897

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5, 5,1) (see Footnote 13).
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Table 4b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 1.0000 0.0182 0.0189 0.0184 0.0183 1.0004 0.0095 0.0098 0.0096 0.0117

0.5 0.5010 0.0198 0.0188 0.0190 0.0229 0.5001 0.0070 0.0073 0.0070 0.0089

0.5 0.5000 0.1037 0.0999 0.1016 0.1058 0.4956 0.0603 0.0565 0.0594 0.0633

1.0 0.9744 0.1450 0.1602 0.1427 0.1358 0.9914 0.0814 0.0907 0.0836 0.0809

100 1.0 0.9998 0.0150 0.0151 0.0149 0.0148 0.9999 0.0064 0.0068 0.0066 0.0075

0.5 0.4992 0.0108 0.0117 0.0112 0.0121 0.5000 0.0052 0.0051 0.0051 0.0060

0.5 0.4954 0.0701 0.0735 0.0728 0.0730 0.4991 0.0433 0.0418 0.0425 0.0437

1.0 0.9805 0.1040 0.1082 0.1013 0.0990 0.9916 0.0638 0.0619 0.0591 0.0581

Normal Mixture Errors

50 1.0 1.0004 0.0186 0.0187 0.0180 0.0179 0.9996 0.0093 0.0098 0.0095 0.0117

0.5 0.4999 0.0196 0.0185 0.0187 0.0235 0.4999 0.0067 0.0073 0.0069 0.0089

0.5 0.4993 0.1029 0.0978 0.1019 0.1090 0.4977 0.0572 0.0537 0.0592 0.0662

1.0 0.9558 0.2840 0.0986 0.1400 0.2405 0.9857 0.1872 0.0471 0.0832 0.1677

100 1.0 0.9993 0.0156 0.0151 0.0149 0.0149 1.0000 0.0067 0.0067 0.0066 0.0074

0.5 0.4997 0.0119 0.0117 0.0112 0.0128 0.4998 0.0049 0.0051 0.0051 0.0060

0.5 0.4948 0.0719 0.0726 0.0729 0.0741 0.4976 0.0438 0.0407 0.0426 0.0451

1.0 0.9906 0.2015 0.0647 0.1024 0.1908 0.9897 0.1301 0.0317 0.0590 0.1243

Chi-Square, df=3

50 1.0 0.9991 0.0187 0.0189 0.0183 0.0182 1.0001 0.0100 0.0099 0.0096 0.0118

0.5 0.4994 0.0195 0.0186 0.0189 0.0232 0.4998 0.0072 0.0074 0.0070 0.0089

0.5 0.4958 0.0998 0.0997 0.1022 0.1071 0.4981 0.0569 0.0552 0.0593 0.0646

1.0 0.9691 0.2161 0.1221 0.1418 0.1884 0.9995 0.1353 0.0615 0.0844 0.1269

100 1.0 1.0007 0.0146 0.0151 0.0149 0.0148 1.0000 0.0067 0.0068 0.0066 0.0075

0.5 0.4999 0.0115 0.0117 0.0112 0.0124 0.4998 0.0049 0.0051 0.0051 0.0060

0.5 0.4919 0.0704 0.0734 0.0732 0.0740 0.4977 0.0425 0.0414 0.0426 0.0443

1.0 0.9811 0.1476 0.0803 0.1014 0.1418 0.9959 0.0955 0.0415 0.0594 0.0912

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5, 5,1) (see Footnote 13)
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Table 4c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 1.0004 0.0210 0.0213 0.0208 0.0210 1.0000 0.0097 0.0096 0.0093 0.0100

0.5 0.4999 0.0197 0.0199 0.0197 0.0231 0.5000 0.0070 0.0072 0.0069 0.0081

0.5 0.4866 0.0974 0.1011 0.1009 0.1027 0.4991 0.0626 0.0562 0.0588 0.0622

1.0 0.9624 0.1422 0.1573 0.1406 0.1349 0.9909 0.0881 0.0914 0.0837 0.0800

100 1.0 1.0001 0.0139 0.0140 0.0138 0.0154 0.9990 0.0337 0.0339 0.0333 0.0358

0.5 0.5001 0.0117 0.0117 0.0116 0.0144 0.4986 0.0201 0.0195 0.0206 0.0370

0.5 0.4977 0.0736 0.0726 0.0745 0.0775 0.4991 0.0409 0.0397 0.0409 0.0430

1.0 0.9886 0.1064 0.1091 0.1019 0.0993 0.9938 0.0585 0.0673 0.0601 0.0582

Normal Mixture Errors

50 1.0 1.0005 0.0208 0.0213 0.0207 0.0210 0.9996 0.0092 0.0095 0.0092 0.0100

0.5 0.4999 0.0204 0.0200 0.0196 0.0244 0.4997 0.0069 0.0072 0.0069 0.0082

0.5 0.4796 0.1010 0.0994 0.1017 0.1064 0.5014 0.0566 0.0534 0.0586 0.0653

1.0 0.9685 0.2847 0.1000 0.1414 0.2444 0.9937 0.1837 0.0474 0.0840 0.1685

100 1.0 1.0001 0.0138 0.0139 0.0137 0.0153 0.9994 0.0328 0.0339 0.0333 0.0360

0.5 0.5000 0.0117 0.0117 0.0115 0.0148 0.5006 0.0209 0.0194 0.0205 0.0403

0.5 0.4988 0.0743 0.0714 0.0743 0.0785 0.4967 0.0408 0.0387 0.0410 0.0445

1.0 0.9835 0.2065 0.0642 0.1013 0.1879 0.9933 0.1339 0.0430 0.0600 0.1200

Chi-Square, df=3

50 1.0 1.0002 0.0214 0.0213 0.0208 0.0211 1.0000 0.0094 0.0096 0.0093 0.0099

0.5 0.4995 0.0203 0.0199 0.0197 0.0238 0.5001 0.0069 0.0072 0.0070 0.0081

0.5 0.4835 0.1009 0.1003 0.1014 0.1048 0.4990 0.0549 0.0550 0.0587 0.0634

1.0 0.9662 0.2116 0.1220 0.1411 0.1879 0.9944 0.1367 0.0614 0.0840 0.1255

100 1.0 1.0002 0.0144 0.0139 0.0137 0.0153 1.0009 0.0335 0.0338 0.0333 0.0359

0.5 0.5005 0.0113 0.0117 0.0115 0.0145 0.4999 0.0207 0.0193 0.0205 0.0375

0.5 0.4987 0.0732 0.0721 0.0744 0.0780 0.5004 0.0407 0.0392 0.0408 0.0435

1.0 0.9807 0.1505 0.0796 0.1011 0.1432 0.9922 0.0961 0.0508 0.0600 0.0894

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5, 5,1) (see Footnote 13)
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