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This supplemental material provides proofs for the technical lemmas in the above paper.

Proof of Lemma B.1. For the proof of the first part, see footnote 20 in Kelejian and Prucha (1999).
The second and third parts follow from Lemmas A.7 and A.8 in Lee (2002), respectively. �

Proof of Lemma B.2. (1) Recall that B = Bn = In − λWn, A = (B′B)−1(W ′B + B′W )(B′B)−1 , and
Ȧ = 2(B′B)−1[(W ′B+B′W )A −W ′W ]. Noting that both W and B−1 are all uniformly bounded in both
row and column sums under our assumptions, by Lemma B.1(1) B′B, (B′B)−1, A, and Ȧ are uniformly
bounded in both row and column sums. Observing that JT ⊗ In has T ones and (n− 1)T zeros on each
row and each column and thus uniformly bounded in both row and column sums when T is fixed and
that IT ⊗ (B′B)−1 is a block diagonal matrix uniformly bounded in both row and column sums, by (3.2)
Ω = φμ(JT ⊗ In) + IT ⊗ (B′B)−1 is uniformly bounded in both row and column sums. Analogously, we
can show that Ω∗ and Ω† are uniformly bounded in both row and column sums.

(2) As we argue in the proof of Theorem 4.1, Ω = Ω (δ) has minimum eigenvalue bounded away
from zero and maximum eigenvalue bounded away from infinity uniformly in δ ∈ Δ. With this, we
can readily show that the eigenvalues of Ω−1,Ω−1(IT ⊗ A)Ω−1,and Ω−1(JT ⊗ In)Ω−1 are also bounded
away from zero and infinity and all these matrices have trace of order O (n). By the Cauchy-Schwarz
inequality, 1

n
tr(D1ΩD2) ≤ { 1

n
tr(D1ΩD′

1)}1/2{ 1
n
tr(D′

2ΩD2)}1/2. For each D = Ω−1,Ω−1(IT ⊗A)Ω−1, or
Ω−1(JT ⊗ In)Ω−1, we have 1

ntr(DΩD′) ≤ λmax(Ω) 1
n tr(DD) ≤ λmax(Ω)λmax (D) 1

n tr(D) = O(1) as D is
symmetric here. In case D = Ω−1(IT ⊗ Ȧ), we have

1
n

tr(DΩD′) =
1
n

tr
(
Ω−1(IT ⊗ Ȧ)Ω(IT ⊗ Ȧ′)Ω−1

)
≤ λmax(Ω)

1
n

tr
(
Ω−1(IT ⊗ ȦȦ′)Ω−1

)
≤ λmax(Ω) [λmin (Ω)]−2 T

n
tr(ȦȦ′) = O(1),

and similarly 1
n
tr(D′ΩD) = O (1). Consequently, 1

n
tr(D1ΩD2) = O(1) for D1, D2 = Ω−1,Ω−1(IT ⊗

A)Ω−1,Ω−1(JT ⊗ In)Ω−1, and Ω−1(IT ⊗ Ȧ). Noting that Ω∗ and Ω† also have eigenvalues that are
bounded away from zero and infinity, the same conclusion holds when Ω is replaced by Ω∗ or Ω†, and D1

and D2 are replaced by their analogs corresponding to the case of Ω∗ or Ω†.
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(3) By the Cauchy-Schwarz inequality,

1
n

tr(B′−1RB−1) ≤
{

1
n

tr(B′−1RR′B−1)
}1/2{ 1

n
tr((B′B)−1)

}1/2

=
{

1
n

tr(RR′(B′B)−1)
}1/2{ 1

n
tr((B′B)−1)

}1/2

≤ [λmin (B′B)]−1
{

1
n

tr(RR′)
}1/2

= O (1) ,

where we use the fact that ‖R‖2 ≤ ‖R‖1 ‖R‖∞, where ‖·‖1 and ‖·‖∞ are maximum column and row sum
matrix norms, respectively. �

Proof of Lemma B.3. To show (1), writeE[(a′qna)(a′pna)] = E(
∑n

i=1

∑n
j=1

∑n
k=1

∑n
l=1 aiajqn,ijakalpn,kl).

Noting that E(aiajakal) will not vanish only when i = j = k = l, (i = j) �= (k = l), (i = k) �= (j = l),
and (i = l) �= (j = k), we have

E[(a′qna)(a′pna)] = E(a4
1)
∑n

i=1 qn,iipn,ii + σ4
a

∑n
i=1

∑n
j �=i(qn,iipn,jj + qn,ijpn,ij + qn,ijpn,ji)

= κa
∑n

i=1 qn,iipn,ii + σ4
a

∑n
i=1

∑n
j=1(qn,iipn,jj + qn,ijpn,ij + qn,ijpn,ji)

= κa
∑n

i=1 qn,iipn,ii + σ4
a[tr(qn)tr(pn) + tr(qn(pn + p′n))].

The result (2) follows from the independence between a′qna and b′pnb. For (3), E[(a′qnb)(a′pnb)] =
E(

∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1 aibjqn,ijakblpn,kl) = E(

∑n
i=1

∑n
j=1 a

2
i b

2
jqn,ijpn,ij) = σ2

aσ
2
b tr(qnp

′
n). �

Proof of Lemma B.4. We only sketch the proof of (1) and (2) since it mainly follows from Lemma
B.3 and the proof of other claims is similar. First, let Gqn,3 ≡ (ι′T ⊗ In)qn(IT ⊗ B−1

0 ). Then by the
independence of μ and v and Lemma B.3, we have

E[(u′qnu)(u′pnu)] = E(μ′Gqn,1μμ
′Gpn,1μ+ v′Gqn,2vv

′Gpn,2v + μ′Gqn,1μv
′Gpn,2v

+v′Gqn,2vμ
′Gpn,1μ+ 2μ′Gqn,3vμ

′Gpn,3v + 2v′G′
qn,3

μv′Gpn,3μ)
= κμ

∑n
i=1Gqn,1iiGpn,1ii + κv

∑nT
i=1Gqn,2iiGpn,2ii

+σ4
v[tr(qnΩ0)tr(pnΩ0)+2tr(qnΩ0pnΩ0)].

Next, write a = b+B−1
0 c, where b = ζ + μ(1 − ρm0 )/(1 − ρ0) and c =

∑m−1
j=0 ρj0v−j. Then b and c are iid

and mutually independent. It follows that

E[(u′qnu)(a′rna)] = E(μ′Gqn,1μb
′rnb+ v′Gqn,2vc

′B′−1
0 rnB

−1
0 c+ μ′Gqn,1μc

′B′−1
0 rnB

−1
0 c

+v′Gqn,2vb
′rnb)

= κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1Gqn,1iirn,ii + σ4
v[tr(rnω11)tr(qnΩ0) + 2tr(ω12qnω21pn)].

Similarly, we can prove the other claims. �

Proof of Lemma B.5. Note that Qn is a linear-quadratic form of b as in Theorem 1 of Kelejian and
Prucha (2001). The difference is that the coefficient a′P1n of the linear term is random. The proof
proceeds by modifying that of Theorem 1 in Kelejian and Prucha (2001) or Lemma A.13 of Lee (2002).
�
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Proof of Lemma B.6. Note that X̃ = (X,Z, Y−1). By the strict exogeneity of X and Z, we can readily
show that both X′Ω−1

0 u and Z′Ω−1
0 u have expectations zero. We are left to show E(Y ′

−1Ω
−1
0 u) = 0. By

(B.3), E(Y ′−1Ω
−1
0 u) = E

[
μ′(l′ρ0 ⊗ In)Ω−1

0 u
]
+ E

[
v′A′

vΩ
−1
0 u

]
. Using u = (ιT ⊗ In)μ + (IT ⊗ B−1

0 ) and
(3.29), we have

E
[
μ′(l′ρ0 ⊗ In)Ω−1

0 u
]

= E[μ′(l′ρ0 ⊗ In)Ω−1
0 (ιT ⊗ In)μ] = φμ0σ

2
υ0tr[Ω

−1
0 ((ιT l′ρ0 ) ⊗ In)]

= φμ0σ
2
υ0tr

{
(JTJρ0 ) ⊗ [(B′

0B0)−1 + φμ0TIn]−1
}
,

and

E
[
v′A′

vΩ
−1
0 u

]
= E[v′A′

vΩ
−1
0 (IT ⊗ B−1

0 )v]

= σ2
υ0tr[Ω

−1
0 (IT ⊗ B−1

0 )(Jρ0 ⊗ B′−1
0 )] = σ2

υ0tr[Ω
−1
0 (Jρ0 ⊗ (B′

0B0)−1)]

= σ2
υ0tr

{
(T−1JTJρ0 ) ⊗ [(B′

0B0)−1 + φμ0TIn]−1(B′
0B0)−1

}
+ σ2

υ0tr
[
(Jρ0 − T−1JTJρ0) ⊗ In

]
,

where we have used the fact that E(vv′A′
v) = Jρ0⊗B′−1

0 . It follows that E(Y ′−1Ω
−1
0 u) = σ2

v0tr(Jρ0⊗In) =
σ2
v0tr(Jρ0 )tr(In) = 0. �

Proof of Lemma B.7. By the expressions of the Hessian matrix ∂Lr(ψ0)
∂ψ∂ψ′ in Section 4.2, it suffices to

prove (i) n−1[X̃′Ω−1
0 X̃ − E(X̃′Ω−1

0 X̃)] = op(1); (ii) n−1[X̃′Ru − E(X̃′Ru)] = op(1) for R = Ω−1
0 and

Pω0 with ω = λ and φμ; (iii) n−1[u′Ru− σ2
v0tr(RΩ0)] = op(1) for R = Ω−1

0 and Pω0 with ω = λ and φμ;
and (iv) n−1[qωω̄(u) −E(qωω̄(u))] = op(1) for ω, ω̄ = λ and φμ.

Let Ωωω̄0 = ∂2

∂ω∂ω̄Ω (δ0) for ω, ω̄ = λ and φμ. Noting that Ω0, Ωω0, Pω0, and Ωωω̄0 with ω, ω̄ = λ and
φμ are well behaved by Lemmas B.1-B.2 and Assumption G2 and qωω̄(u) is quadratic in u, we can readily
show that (iii)-(iv) hold by straightforward moment calculations, Chebyshev inequality, and Lemma B.4.
For example, to show (iii), first note that E(u′Ru) = σ2

v0tr(RΩ0). By Lemma B.4,

Var(n−1u′Ru) = n−2{E(u′Ruu′Ru) − [E(u′Ru)]2}

= n−2κμ

n∑
i=1

G2
R,1ii + n−2κv

n∑
i=1

G2
R,2ii + 2n−2σ4

v0tr(RΩ0RΩ0),

where GR,1 and GR,2 are as defined in Lemma B.4. Using the fact that R = Ω−1
0 or Pω0 is symmetric and

positive definite, we can readily show that
∑n

i=1G
2
R,jii = O (n) for j = 1, 2. In addition, tr(RΩ0RΩ0) ≤

λmax(Ω0)tr(RΩ0R) ≤ [λmax(Ω0)]
2
λmax (R)tr(R) = O (n). It follows that Var(n−1u′Ru) = O

(
n−1

)
.

Then (iii) follows by Chebyshev inequality.
To prove (i), let R = Ω−1

0 . Noticing that X̃ = (X,Z, Y−1), it is easy to show that the terms not
involving Y−1, such as n−1X′RX, n−1X′RZ, and n−1Z′RZ converge in probability to their expectations.
For the terms involving Y−1, we first have by (B.3),

n−1Y ′
−1RY−1 = n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′R[AxX′β0 + (lρ0 ⊗ In)zγ0]

+n−1[(lρ0 ⊗ In)μ +Avv]′R[(lρ0 ⊗ In)μ+ Avv]
+n−1

Y
′
0RY0 + 2n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′R[(lρ0 ⊗ In)μ+ Avv]

+2n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′RY0 + 2n−1[(lρ0 ⊗ In)μ +Avv]′RY0

≡ ∑6
i=1 Ani, say.
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It suffices to show that each Ani (i = 1, · · · , 6) converges in probability to its expectations. Take An6 as
an example. E(An6) = 0 because Y0 is kept fixed here. For the second moment,

Var(An6) = 4n−2{E[μ′(l′ρ0 ⊗ In)RY0Y
′
0R

′(lρ0 ⊗ In)μ] +E(v′AvRY0Y
′
0R

′Avv)}
= 4n−2{σ2

μ0tr[RY0Y
′
0R

′(lρ0 l
′
ρ0 ⊗ In)] + σ2

v0tr(AvRY0Y
′
0R

′Av)} = O(n−1),

where the last equality follows from the fact that both matrices in the two trace operators are uniformly
bounded in both row and column sums. Similarly, we can show that n−1X′RY−1 and n−1Z′RY−1

converge to their expectations in probability, and thus (i) follows. Analogously, we can show (ii). �

Proof of Lemma B.8. The key step of the proof is to show that 1√
nT
X̃′Ω−1

0 u
d−→ N(0,Γr,11)

where Γr,11 = plimn→∞(nT )−1X̃′ Ω−1
0 X̃ . By Cramér-Wold device, it suffices to show that for any

c = (c′1, c
′
2, c3)

′ ∈ R
p × R

q × R with ‖c‖ = 1, (nT )−1/2c′X̃′Ω−1
0 u

d−→ N(0, c′Γr,11c). Using (B.3) and
u = (ιT ⊗ In)μ +(IT ⊗ B−1

0 )v, we have c′X̃′Ω−1
0 u = c′1XΩ−1

0 u + c′2ZΩ−1
0 u + c3Y−1Ω−1

0 u =
∑3

i=1 Tni,
where

Tn1 = [c′1X + c′2Z + c3β
′
0XA

′
x + c3γ

′
0z(l

′
ρ0 ⊗ In) + c3Y

′
0]Ω

−1
0 (ιT ⊗ In)μ+ c3μ

′(l′ρ0 ⊗ In)Ω−1
0 (ιT ⊗ In)μ,

Tn2 = [c′1X + c′2Z + c3β
′
0XA

′
x + c3γ

′
0z(l

′
ρ0

⊗ In) + c3Y
′
0]Ω

−1(IT ⊗ B−1
0 )v + c3v

′A′
vΩ

−1
0 (IT ⊗ B−1

0 )v,

Tn3 = c3μ
′[(l′ρ0 ⊗ In)Ω−1

0 (IT ⊗B−1
0 ) + (ι′T ⊗ In)Ω−1

0 Av]v.

It is easy to verify that E(Tn3) = 0, E(Tn1) = c3φμ0σ
2
v0tr[Ω

−1
0 (ιT l′ρ0 ⊗ In)], and thus E(Tn2) = −E(Tn1)

by Lemma B.6. Also, we can verify that Cov(Tni, Tnj) = 0 for i �= j. It suffices to show that each Tni

(after appropriately centered for Tn1 and Tn2) is asymptotically normal with mean zero.
Note that Tn1 and Tn2 are linear and quadratic functions of μ and v, respectively. For Tn3, it is a

special case of Lemma B.5 since it can be regarded as a linear function of either μ or υ, with μ and υ

independent of each other. So we can apply Lemma B.5 to Tni to obtain

{Tni − E(Tni)}/
√

Var(Tni)
d−→ N(0, 1) for i = 1, 2, 3.

Now by the independence of Tn1 and Tn2, and the asymptotic independence of Tn3 with Tn1 and Tn2, we
have

1√
nT

c′X̃′Ω−1
0 u =

1√
nT

3∑
i=1

Tni
d−→ N(0, lim

n→∞(nT )−1
3∑
i=1

Var(Tni)),

implying that (nT )−1/2X̃′Ω−1
0 u

d−→ N(0,Γr,11) because we can readily show that (nT )−1[X̃′Ω−1
0 X̃

−Var(X̃′Ω−1
0 u)] = op(1).

Noticing that each component of ∂Lr(ψ0)/∂ψ can be written as linear and quadratic functions of μ
or v, the rest of the proof proceeds by following the above steps closely. �

Proof of Lemma B.9. Let Pj ≡ ρj0B
−1
0 . Then Vt =

∑t+m−1
j=0 Pjvt−j. Noting that E(v′tDvs) = σ2

v0tr(D)
for any nonstochastic conformable matrix D if t = s and 0 otherwise, we have

E(V′
tRtsVs) =

∑t+m−1
i=0

∑s+m−1
j=0 E(v′t−iP

′
iRtsPjvs−j) =

∑t+m−1
i=max(0,t−s)E(v′t−iP

′
iRtsPs−t+ivt−i)

= σ2
v0tr(

∑t+m−1
i=max(0,t−s)P

′
iRtsPs−t+i) = σ2

v0tr(B
′−1
0 RtsB

−1
0 )

∑t+m−1
i=max(0,t−s) ρ

s−t+2i
0 .
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Next, noting that Xt =
∑t+m−1

j=0 ρj0xt−j, we have

E(X′
tRtsXs) =

∑s+m−1

j=0

∑t+m−1

k=0
ρj+k0 E(x′t−kRtsxs−j) = tr(

∑s+m−1

j=0

∑t+m−1

k=0
ρj+k0 RtsE(xs−jx′t−k)).

Lastly, E(X′
tRtsVs) =

∑s+m−1
j=0

∑t+m−1
k=0 ρj+k0 E(x′t−kRtsB

−1
0 vs−j) = 0. �

Proof of Lemma B.10. Let R1 and R2 be arbitrary n× n nonstochastic matrices. We can show that

E[(v′tR1vs)(v′gR2vh)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κv
∑n

i=1 R1,iiR2,ii + σ4
v0{tr(R1)tr(R2) + tr[R1(R2 + R′

2)]} if t = s = g = h

σ4
v0tr(R1)tr(R2) if t = s �= g = h

σ4
v0tr(R1R2) if t = g �= s = h

σ4
v0tr(R1R

′
2) if t = h �= s = g

0 otherwise

.

Consequently,

E(V′
tRtsVsV

′
gRghVh)

= E(
∑t+m−1

i=0

∑s+m−1
j=0

∑g+m−1
k=0

∑h+m−1
l=0 ρi+j+k+l0 v′t−iB

′−1
0 RtsB

−1
0 vs−jv′g−kB

′−1
0 RghB

−1
0 vh−l)

=
∑t+m−1

j=max(0,t−s,t−g,t−h) ρ
(s+g+h−3t+4j)
0 {κv

∑n
i=1(B

′−1
0 RtsB

−1
0 )ii(B′−1

0 RghB
−1
0 )ii

+σ4
v0[tr(B

′−1
0 RtsB

−1
0 )tr(B′−1

0 RghB
−1
0 ) + 2tr(B′−1

0 RtsB
−1
0 (B′−1

0 RghB
−1
0 + B′−1

0 R′
ghB

−1
0 ))]}

+σ4
v0

∑t+m−1
i=max(0,t−s) ρ

s−t+2i
0 tr(B′−1

0 RtsB
−1
0 )

∑g+m−1
j=max(0,g−h) ρ

h−g+2j
0 tr(B′−1

0 RghB
−1
0 )1(j �= i+ g − t)

+
∑t+m−1

i=max(0,t−g) ρ
g−t+2i
0

∑s+m−1
j=max(0,s−h) ρ

h−s+2j
0 σ4

v0tr(B
′−1
0 Rts(B′

0B0)−1RghB
−1
0 )1(j �= i+ s− t)

+
∑t+m−1

i=max(0,t−h) ρ
h−t+2i
0

∑s+m−1
j=max(0,s−g) ρ

g−s+2j
0 σ4

v0tr(B
′−1
0 Rts(B′

0B0)−1R′
ghB

−1
0 )1(j �= i+ s− t).

Then (1) follows by Lemma B.9. For (2), we have

Cov(X′
tRtsVs,X

′
gRghVh) = E(X′

tRtsVs(X
′
tRghVs)

′)

=
t+m−1∑
i=0

s+m−1∑
j=0

g+m−1∑
k=0

h+m−1∑
l=0

ρi+j+k+l0 E[x′t−iRtsB
−1
0 vs−j(x′g−kRghB

−1
0 vh−l)′]

= σ2
v0tr

⎡⎣t+m−1∑
i=0

g+m−1∑
k=0

s+m−1∑
j=max(0,s−h)

ρi+k+h−s+2j
0 Rts(B′

0B0)−1R′
ghE(x′g−kxt−i)

⎤⎦ .
The expression for Cov(X′

tRtsXt,X
′
gRghXh) is quite complicated, but we can use Lemmas B.1-B.2 to

show it is of order O(n), which suffices for our purpose. �

Proof of Lemma B.11. By Lemmas B.1, B.2, B.9, and B.10, we can show that (nT )−1
∑T−1
t=0

∑T−1
s=0 E(V′

tRtsVs) =
O(1), and Var(n−1

∑T−1
t=0

∑T−1
s=0 V

′
tRtsVs) = n−2

∑T−1
t=0

∑T−1
s=0

∑T−1
g=0

∑T−1
h=0 Cov(V′

tRtsVs,V
′
gRghVh) =

O(n−1). Then (1) follows from Chebyshev inequality. For (2), we have E[ 1
nT

∑T−1
t=0

∑T−1
s=0 X

′
tRtsVs] = 0,

and

Var

(
n−1

T−1∑
t=0

T−1∑
s=0

X
′
tRtsVs

)
= n−2

T−1∑
t=0

T−1∑
s=0

T−1∑
g=0

T−1∑
h=0

Cov(X′
tRtsVs,X

′
gRtsVh)

= n−2
T−1∑
t=0

T−1∑
s=0

T−1∑
g=0

T−1∑
h=0

σ2
v0

t+m−1∑
i=0

g+m−1∑
k=0

s+m−1∑
j=max(0,s−h)

tr[ρi+k+h−s+2j
0 Rts

×(B′
0B0)−1R′

ghE(xg−kx′t−i)]

= O(n−1),
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where the last equality follows because (i) xit are independent across i with second moments uniformly
bounded in i, (ii) Rts(B′

0B0)−1R′
gh are uniformly bounded in both row and column sums by Lemma

B.1(1) and Lemma B.2(1), and (iii) elements of Rts(B′
0B0)−1R′

ghE(xg−kx′t−i) are uniformly bounded
by the same lemmas. Hence the conclusion follows from Chebyshev inequality. (3) follows from Lemma
B.10 and Chebyshev inequality. �

Proof of Lemma B.12. Let u∗ = u∗(θ0, ρ0) and u∗ρ = u∗ρ(θ0, ρ0) = ∂
∂ρu

∗(θ0, ρ0). Noting that
E (X∗′Ru∗) = 0 for any n(T + 1) × n(T + 1) nonstochastic matrix R and X∗

ρ is free of ρ, by the
expressions of the Hessian matrix ∂Lrr(ψ0)

∂ψ∂ψ′ in Section 4.2, it suffices to prove
(i) n−1

[
X∗′Ω∗−1

0 X∗ − E
(
X∗′Ω∗−1

0 X∗)] = op(1);
(ii) n−1X∗′Ru∗ = op(1) for R = Ω∗−1

0 and P ∗
ω0 with ω = ρ, λ, φμ, and φζ;

(iii) n−1 [u∗′Ru∗ −E (u∗′Ru∗)] = op(1) for R = Ω∗−1
0 and P ∗

ω0 with ω = ρ, λ, φμ, and φζ ;
(iv) n−1

[
X∗′
ρ Ω∗−1

0 u∗ −E
(
X∗′
ρ Ω∗−1

0 u∗
)]

= op(1);
(v) n−1

[
X∗′Ω∗−1

0 u∗ρ −E
(
X∗′Ω∗−1

0 u∗ρ
)]

= op(1);
(vi) n−1

[
u∗′ρ Ru∗ − E

(
u∗′ρ Ru∗

)]
= op(1) for R = Ω∗−1

0 and P ∗
ω0 with ω = ρ, λ, φμ, and φζ ;

(vii) n−1
[
u∗′ρρΩ

∗−1
0 u∗ − E

(
u∗′ρρΩ

∗−1
0 u∗

)]
= op(1);

(viii) n−1
[
u∗′ρ Ω∗−1

0 u∗ρ −E
(
u∗′ρ Ω∗−1

0 u∗ρ
)]

= op(1);
(ix) n−1 [q∗ωω̄(u∗) − E (q∗ωω̄(u∗))] = op(1) for ω, ω̄ = ρ, λ, φμ, and φζ .

Let Ω∗
ωω̄0 = ∂2

∂ω∂ω̄Ω∗ (δ0) for ρ, λ, φμ, and φζ . Noting that Ω∗−1
0 , Ω∗

ω0, P ∗
ω0 and Ω∗

ωω̄0 with ω, ω̄ = ρ,
λ, φμ, and φζ are uniformly bounded in both row and column sums and q∗ωω̄(u∗) is quadratic in u∗,
we can readily show that (i)-(iv) and (ix) hold by straightforward moment calculations and Chebyshev

inequality. Noting that u∗ρ = −
(
ȧm0zγ0

Y−1

)
and u∗ρρ = −

(
äm0zγ0

0nT×1

)
with ȧm0 = d

dρ
am (ρ0) and

äm0 = d2

dρ2 am (ρ0), we can readily prove (v)-(vii) by Chebyshev inequality. In fact, E
(
u∗′ρρΩ

∗−1
0 u∗

)
= 0

in (vii).

We are left to prove (viii). Write Ω∗−1
0 =

(
ω11∗ ω12∗
ω12′∗ ω22∗

)
where ω11∗ , ω12∗ , and ω22∗ are n× n, n×nT ,

and nT × nT matrices, respectively.

n−1u∗′ρ Ω∗−1
0 u∗ρ = n−1

(
ȧm0zγ0

Y−1

)′ (
ω11∗ ω12∗
ω12′∗ ω22∗

)(
ȧm0zγ0

Y−1

)
= n−1

(
(ȧm0)

2
γ′

0
z′ω11

∗ zγ0 + 2ȧm0γ
′
0
z′ω12

∗ Y−1 + Y ′
−1ω

22
∗ Y−1

)
.

To show the convergence of n−1u∗′ρ Ω∗−1
0 u∗ρ to its expectation, it suffices show each term in the last

expression converges to its expectation. We only show n−1[Y ′−1ω
22∗ Y−1 − E

(
Y ′−1ω

22∗ Y−1

)
] = op(1) since

the proof that n−1[(ȧm0)2γ′0z
′ω11∗ zγ0 −E (

(ȧm0)2γ′0z
′ω11∗ zγ0

)
] = op(1) and that n−1[ȧm0γ

′
0
z′ω12∗ Y−1 −(

ȧm0γ
′
0
z′ω12

∗ Y−1

)
] = op(1) is similar and simpler. By (B.2)

n−1Y ′
−1ω

22
∗ Y−1 = n−1

(
X(−1)β0 + (lρ0 ⊗ In) zγ0 + (lρ0 ⊗ In)μ + V(−1) + Y0

)′
ω22
∗

× (
X(−1)β0 + (lρ0 ⊗ In) zγ0 + (lρ0 ⊗ In)μ+ V(−1) + Y0

)
.

After expressing out the right hand side of the last expression, it has 25 terms, most of which can
easily be shown to converge to their respective expectations. The exceptions are terms involving X(−1)
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and V(−1), namely: n−1β′
0X

′
(−1)ω

22∗ X(−1)β0, n−1β′
0V

′
(−1)ω

22∗ V(−1), n−1β′
0X

′
(−1)ω

22∗ V(−1), n−1β′
0X

′
(−1)ω

22∗
(lρ0 ⊗ In) zγ0, n−1β′

0X
′
(−1)ω

22
∗ (lρ0 ⊗ In)μ, n−1

V
′
(−1)ω

22
∗ (lρ0 ⊗ In) zγ0 , n−1

V
′
(−1) ω

22
∗ (lρ0 ⊗ In)μ, n−1β′

0

X
′
(−1)ω

22∗ Y0, and n−1
V

′
(−1)ω

22∗ Y0. The first three terms converge in probability to their expectations by
Lemma B.11. We can show the other terms converge in probability to their expectations by similar
arguments to those used in proving Lemmas B.9-B.11. �

Proof of Lemma B.13. By Cramér-Wold device, it suffices to show that for any c = (c′1, c2, c3, c4, c5, c6)′ ∈
R
p+q+k × R × R × R × R × R with ‖c‖ = 1, S∗

n ≡ 1√
nT
c′ ∂L

rr(ψ0)
∂ψ

d−→ N(0, c′Γrrc). Using the expression

for elements of ∂Lrr(ψ)
∂ψ defined in Section 4.2, we can readily obtain

S∗
n =

1√
nT

[
c′1
∂Lrr(ψ0)
∂θ′

+ c2
∂Lrr(ψ0)
∂σ2

v

+ c3
∂Lrr(ψ0)

∂ρ
+ c4

∂Lrr(ψ0)
∂λ

+ c5
∂Lrr(ψ0)
∂φμ

+ c6
∂Lrr(ψ0)
∂φφζ

]
=

1√
nT

{
1
σ2
v0

c′1X
∗′Ω∗−1

0 u∗ − c3
σ2
v0

u∗′ρ Ω∗−1
0 u∗ +

c2
2σ2

v0

[
σ−2
v0 u

∗′Ω∗−1
0 u∗ − n(T + 1)

]
+

c3
2σ2

v0

[
u∗′P ∗

ρ0u
∗ − σ2

v0tr(P
∗
ρ0Ω

∗
0)
]
+

c4
2σ2

v0

[
u∗′P ∗

λ0u
∗ − σ2

v0tr(P
∗
λ0Ω

∗
0)
]

+
c5

2σ2
v0

[
u∗′P ∗

φμ0u
∗ − σ2

v0tr(P
∗
φμ0Ω

∗
0)
]

+
c6

2σ2
v0

[
u∗′P ∗

φζ0u
∗ − σ2

v0tr(Ω
∗
φζ0Ω

∗
0)
]}

= S∗
n1 + S∗

n2 + [S∗
n3 − E (S∗

n3)]

where S∗
n1 = 1√

nT
1
σ2

v0
c′1X∗′Ω∗−1

0 u∗, S∗
n2 = −1√

nT

c3
σ2

v0
u∗′ρ Ω∗−1

0 u∗, S∗
n3 = 1√

nT
1

2σ2
v0
u∗′Ω̄∗

0u
∗ and Ω̄∗

0 = c2
σ2

v0
Ω∗−1

0

+c3P ∗
ρ0 + c4P

∗
λ0 + c5P

∗
φμ0 + c6P

∗
φζ0. Note that

S∗
n1 =

1√
nT

1
σ2
v0

c′1X
∗′
(
ω11∗ ω12∗
ω21∗ ω22∗

)(
ζ + am0μ+

∑m−1
j=0 ρj0B

−1
0 v−j

(ιT ⊗ In)μ+ (IT ⊗B−1
0 )v

)

=
1√
nT

1
σ2
v0

c′1X
∗′
(
ω11∗
ω21
∗

)
ζ +

1√
nT

1
σ2
v0

c′1X
∗′
(
ω11∗ am0 + ω12∗ (ιT ⊗ In)
ω21
∗ am0 + ω22

∗ (ιT ⊗ In)

)
μ

+
1√
nT

1
σ2
v0

c′1X
∗′
(
ω12
∗
ω22
∗

)
(IT ⊗ B−1

0 )v +
1√
nT

1
σ2
v0

c′1X
∗′
(
ω11
∗
ω21
∗

)
m−1∑
j=0

ρj0B
−1
0 v−j

≡ S∗
n1,1 + S∗

n1,2 + S∗
n1,3 + S∗

n1,4, say,

where S∗
n1,1, S

∗
n1,2, S∗

n1,3, and S∗
n1,4 are linear in ζ, μ, v and v−j ’s, respectively. Similarly

S∗
n3 =

1√
nT

1
2σ2

v0

{
ζ′ω̄11

∗ ζ + μ′ [am0ω̄
11
∗ + (ι′T ⊗ In)ω̄22

∗ (ιT ⊗ In) + 2am0(ι′T ⊗ In)ω̄21
∗
]
μ

+v′(IT ⊗ B′−1)ω̄22
∗ (IT ⊗B−1

0 )v +
(∑m−1

j=0
ρj0B

−1
0 v−j

)′
ω̄11
∗

(∑m−1

j=0
ρj0B

−1
0 v−j

)
+2

[(
a2
m0μ +

∑m−1

j=0
ρj0B

−1
0 v−j

)
+ (ιT ⊗ In)μ+ (IT ⊗ B−1

0 )v
]′
ω̄21
∗ ζ

+2am0μ
′ω̄11

∗
∑m−1

j=0
ρj0B

−1
0 v−j + 2μ′(ι′T ⊗ In)ω̄22

∗ (IT ⊗B−1
0 )v

+2v′(IT ⊗B′−1
0 )ω̄21

∗

(
am0μ +

∑m−1

j=0
ρj0B

−1
0 v−j

)
+ 2μ′(ι′T ⊗ In)ω̄21

∗
∑m−1

j=0
ρj0B

−1
0 v−j

}
.

where Ω̄∗−1
0 =

(
ω̄11∗ ω̄21′∗
ω̄21∗ ω̄22∗

)
with ω̄11∗ , ω̄12∗ , and ω̄22∗ being n × n, nT × n, and nT × nT matrices.

Apparently, S∗
n3 can be written as the summation of five asymptotically independent terms, i.e., S∗

n3 =
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∑5
j=1 S

∗
n3,j, where S∗

n3,1, S∗
n3,2, S

∗
n3,3, and S∗

n3,4 are quadratic functions of ζ, μ, v, and v−j’s, respectively,
and S∗

n3,5 is the summation of terms that are bilinear in any two of ζ, μ, v, and v−j ’s. Analogous to the
proof of Lemma B.8, we can use u∗ρ = − (

ȧm0 (zγ0)
′
, Y ′−1

)
and the expression of Y−1 in (B.2) to write

S∗
n2 =

∑5
j=1 S

∗
n2,j, where S∗

n2,1, S∗
n2,2, and S∗

n2,3 are quadratic functions of μ, v, and v−j’s, respectively,
S∗
n2,4 is a bilinear function that contains summation of terms which are linear in any two of ζ, μ, v, and
v−j ’s, and S∗

n2,5 is the summation of terms that are linear in one of ς, μ, v, and v−j ’s. Consequently,
we can write S∗

n =
∑6

j=1 s
∗
nj, where s∗n1, ..., s

∗
n4 are quadratic functions of ζ, μ, v, and v−j ’s, respectively,

s∗n5 is a summation of terms tat are bilinear in any two of ζ, μ, v, and v−j’s, and s∗n6 is summation of
terms that are linear in ζ, μ, v, and v−j’s. By the mutual independence of ζ, μ, v, and v−j ’s and their
zero mean property, these six terms are either independent or asymptotically independent. By Lemma
B.5,

{s∗nj − E(s∗nj)}/
√

Var(s∗nj)
d−→ N(0, 1).

It follows that S∗
n

d−→ N(0, limn→∞
∑6

j=1Var(s∗nj)), implying that S∗
n

d−→ N(0, c′Γrrc). �

Proof of Lemma B.14. Noting that E
(
ΔX†′RΔu

)
= 0 for any nT × nT nonstochastic matrix R, by

the expressions of the Hessian matrix ∂Lf(ψ0)
∂ψ∂ψ′ in Section 4.3, it suffices to prove

(i) n−1[ΔX†′Ω†−1
0 ΔX† − E(ΔX†′Ω†−1

0 ΔX†)] = op(1);
(ii) n−1ΔX†′RΔu = op(1) for R = Ω†−1

0 and P †
ω0 with ω = ρ, λ,and φζ ;

(iii) n−1[Δu′RΔu− σ2
v0tr(RΩ†

0)] = op(1) for R = Ω†−1
0 and P †

ω0 with ω = ρ, λ, and φζ ;
(iv) n−1[ΔX†′Ω†−1

0 Δuρ − E(ΔX†′Ω†−1
0 Δuρ)] = op(1);

(v) n−1
[
Δu′ρRΔu−E

(
Δu′ρRΔu

)]
= op(1) for R = Ω†−1

0 and P †
ω0 with ω = ρ, λ, and φζ ;

(vi) n−1[Δu′ρΩ
†−1
0 Δuρ −E

(
Δu′ρΩ

†−1
0 Δuρ

)
] = op(1);

(vii) n−1[q†ωω̄(Δu) − E(q†ωω̄(Δu))] = op(1) for ω, ω̄ = ρ, λ, and φζ .

Let Ω†
ωω̄0 = ∂2

∂ω∂ω̄Ω† (δ0) for ρ, λ, and φζ. Noting that Ω†−1
0 , Ω†

ω0, P
†
ω0 and Ω†

ωω̄0 with ω, ω̄ = ρ, λ,
and φζ are uniformly bounded in both row and column sums and q†ωω̄(Δu) is quadratic in Δu, we can
show that (i)-(vii) hold by straightforward moment calculations and Chebyshev inequality. Below we
only demonstrate the proof of (iii) and (vi) since the proof of the other claims is similar or simpler.

Since E(Δu′RΔu) = σ2
v0tr(RΩ†

0), by Chebyshev inequality (iii) follows provided Var(n−1Δu′RΔu) =
o(1). Let Δv(0) = B0ζ + ρm0 v−m+1 +

∑m−1
j=0 ρj0Δv1−j, Δv(1) = (Δv′2, ....Δv′T)′, and Δv = (Δv′(0),Δv

′
(1))

′.

Then Δu = (In ⊗ B−1
0 )Δv and Δu′RΔu = Δv′(In ⊗ B

′−1
0 )R(In ⊗ B−1

0 )Δv = Δv′R̃Δv, where R̃ ≡
(In ⊗ B

′−1
0 )R(In ⊗ B−1

0 ). Now, write

R =

⎛⎜⎝ R00
n×n

R01
n×n(T−1)

R10
n(T−1)×n

R11
n(T−1)×n(T−1)

⎞⎟⎠
and partition R̃ similarly. Let C be a (T − 1) × T matrix with Cij = −1 if i = j, Cij = 1 if j = i+ 1,
and Cij = 0 otherwise. Then Δv(1) = (C ⊗ In)v, where v = (v′1, · · · , v′T )′. So

Δv′R̃Δv = Δv′(0)R̃00Δv(0) + Δv′(1)R̃11Δv(1) + Δv′(0)(R01 + R′
10)Δv(1)

= Δv′(0)R̃00Δv(0) + v′(C ′ ⊗ In)R̃11(C ⊗ In)v + Δv′(0)(R01 + R′
10)(C ⊗ In)v
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Then by Cauchy-Schwarz inequality

Var(Δu′RΔu) ≤ 3Var(Δv′(0)R̃00Δv(0))+3Var(v′(C ′⊗In)R̃11(C⊗In)v)+3Var(Δv′(0)(R01+R′
10)(C⊗In)v).

Write Δv(0) = B0ζ + v1 + ρm−1
0 (ρ0 − 1) v−m+1 +

∑m−2
j=0 ρj0 (ρ0 − 1) v−j. Since B′

0R̃00B0 is uniformly
bounded in both row and column sums, by Lemma B.3(1)

Var(ζ′B′
0R̃00B0ζ) = κζ

n∑
i=1

[(B′
0R̃00B0)ii]2 + σ4

ζ0tr(B
′
0R̃00B0B

′
0(R̃00 + R̃′

00)B0) = O(n).

Similarly, we can show that Var(v′1R̃00v1) = O(n), Var(v′−m+1R̃00v−m+1) = O(n), and Var(
∑m−2
j=0 ρj0v

′
−jR̃00

×∑m−2
j=0 ρj0v−j) = O(n). It follows from Cauchy-Schwarz inequality that Var(Δv′(0)R̃00Δv(0)) = O(n).

By the same token, we can show that Var(v′(C ′⊗In)R̃11(C⊗In)v) = O(n), and Var(Δv′(0)(R01+R′
10)(C⊗

In)v) = O(n). This completes the proof of (iii).
Now, we show (vi). Let ΔY ∗ = (01×n,Δy′1, · · · ,Δy′T−1)

′. Then Δuρ = −ΔY ∗. Let kρ = (0, 1, ρ, · · · ,
ρT−2)′, X =(01×n, 01×n, (Δx2β0)′, · · · ,

∑T−3
j=0 ρ

j
0(ΔxT−1−jβ0)′), and V = (01×n, 01×n, (Δv2)′, · · · ,

∑T−3
j=0

ρj0(ΔvT−1−j)′). Since Δy1 = Δ̃xπ0 + Δx1β0 + Δ̃u1 and

Δyt = ρt−1
0 Δy1 +

t−2∑
j=0

ρj0Δxt−jβ0 +
t−2∑
j=0

ρj0B
−1
0 Δvt−j for t = 2, 3, · · · ,

we have ΔY ∗ = kρ0 ⊗ Δy1 + X + (IT ⊗B−1
0 )V. It follows that

Var
(
Δu′ρΩ

†−1
0 Δuρ

)
≤ 3Var

((
k′ρ0 ⊗ Δy1

)
Ω†−1

0 (kρ0 ⊗ Δy1)
)

+ 3Var
(
X ′Ω†−1

0 X
)

+3Var
(
V′(IT ⊗B′−1

0 )Ω†−1
0 (IT ⊗B−1

0 )V
)

We can show that each term on the right hand side of the last expression is O (n). Then (vi) follows by
Chebyshev inequality. �

Proof of Lemma B.15. By Cramér-Wold device, it suffices to show that for any c = (c′1, c2, c3, c4, c5)′ ∈
R
p+k × R × R × R × R with ‖c‖ = 1, S†

n ≡ 1√
nT
c′ ∂L

f(ψ0)
∂ψ

d−→ N(0, c′Γfc). Recall Δu = Δu(θ0, ρ0). Let

Δuρ = −(0′n×1,Δy
′
1, · · · ,Δy′T−1)

′, and P †
ω0 = P †

ω (δ0) for ω = ρ, λ, and φζ . Using the expression for
elements of ∂Lf(ψ)

∂ψ defined in Section 4.3, we can readily obtain

S†
n =

1√
nT

[
c′1
∂Lf (ψ0)
∂θ′

+ c2
∂Lf (ψ0)
∂σ2

v

+ c3
∂Lf(ψ0)
∂ρ

+ c4
∂Lf(ψ0)
∂λ

+ c5
∂Lf (ψ0)
∂φφζ

]
=

1√
nT

{
1
σ2
v0

c′1ΔX
†′Ω†−1

0 Δu− c3
σ2
v0

Δu′ρΩ
†−1
0 Δu

+
c2

2σ2
v0

[
1

2σ2
v0

Δu′Ω†−1
0 Δu− nT

]
+

c3
2σ2

v0

[
Δu′P †

ρ0Δu− σ2
v0tr(P

†
ρ0Ω

†
0)
]

+
c4

2σ2
v0

[
Δu′P †

λ0Δu− σ2
v0tr(P

†
λ0Ω

†
0)
]

+
c5

2σ2
v0

[
Δu′P †

φζ0
Δu− σ2

v0tr(P
†
φζ0

Ω†
0)
]}

= S†
n1 + S†

n2 +
[
S†
n3 − E

(
S†
n3

)]
where S†

n1 = 1√
nT

1
σ2

v0
c′1ΔX

†′Ω†−1
0 Δu, S†

n2 = −1√
nT

c3
σ2

v0
Δu′ρΩ

†−1
0 Δu, S†

n3 = 1√
nT

1
2σ2

v0
Δu′Ω̄†

0Δu and Ω̄†
0 =

c2
σ2

v0
Ω†−1

0 + c3P
†
ρ0 + c4P

†
λ0 + c5P

†
φζ0. Analogous to the proof of Lemma B.13, one can write S†

n =
∑5
j=1 s

†
nj,
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where s†n1, ..., s
†
n3 are quadratic functions of ζ, v, and v−j’s, respectively, s†n4 is a summation of terms

tat are bilinear in any two of ζ, v, and v−j’s, and s†n5 is summation of terms that are linear in ς, v, and
v−j ’s. By the mutual independence of ζ, v, and v−j’s and their zero mean property, these five terms are
either independent or asymptotically independent. By Lemma B.5,

{s†nj − E(s†nj)}/
√

Var(s†nj)
d−→ N(0, 1).

It follows that S†
n

d−→ N(0, limn→∞
∑5

j=1Var(s†nj)), implying that S†
n

d−→ N(0, c′Γrrc). �
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