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This supplemental material provides proofs for the technical lemmas in the above paper.

Proof of Lemma B.1. For the proof of the first part, see footnote 20 in Kelejian and Prucha (1999).
The second and third parts follow from Lemmas A.7 and A.8 in Lee (2002), respectively. W

Proof of Lemma B.2. (1) Recall that B = B, = I, — A\W,,, A= (B'B)"'(W'B + B'W)(B'B)~!, and
A =2(B'B)"'[(W'B+B'W)A —W'W]. Noting that both W and B~! are all uniformly bounded in both
row and column sums under our assumptions, by Lemma B.1(1) B'B, (B’'B)~!, A, and A are uniformly
bounded in both row and column sums. Observing that Jr ® I, has T ones and (n — 1) T zeros on each
row and each column and thus uniformly bounded in both row and column sums when T is fixed and
that Iy © (B'B) ™"
V=0¢,(Jr1I,)+Ir® (B’B)_1 is uniformly bounded in both row and column sums. Analogously, we

is a block diagonal matrix uniformly bounded in both row and column sums, by (3.2)

can show that Q* and QF are uniformly bounded in both row and column sums.

(2) As we argue in the proof of Theorem 4.1, @ = Q(4) has minimum eigenvalue bounded away
from zero and maximum eigenvalue bounded away from infinity uniformly in § € A. With this, we
can readily show that the eigenvalues of Q=1 Q=1 (I @ A)Q~ ! and Q~(Jr ® )21 are also bounded
away from zero and infinity and all these matrices have trace of order O (n). By the Cauchy-Schwarz
inequality, %tr(DlﬂDg) < {%tr(DlﬂD’l)}1/2{%tr(DéQD2)}1/2. For each D = Q=1 Q~Y(Ir @ A)Q~1, or
Q1 (Jr ® 1,)Q7!, we have %tr(DQD’) < )\max(ﬂ)%tr(DD) < Amax () Amax (D) %tr(D) =0(1)as D is

symmetric here. In case D = Q' (Ir ® A), we have

%tr(DQD’) _ %tr (@ (I @ A © 4907 < )\max(Q)%tr (7 (fr @ A2 )
< Anan(@) P ()] Lx(AAY) = 0(1),
and similarly %tr(D’QD) = O(1). Consequently, %tr(DlﬂDg) = O(1) for D1,Dy = Q7L Q7 YIr ®
AQ 1 Q  (Jr @ 1,)Q7 Y, and Q' (Ir ® A). Noting that Q* and Qf also have eigenvalues that are
bounded away from zero and infinity, the same conclusion holds when € is replaced by Q* or Qf, and D,

and D, are replaced by their analogs corresponding to the case of Q* or QF.



(3) By the Cauchy-Schwarz inequality,
1 1 1/2 1/2
—tr(B'RB™') < <{—tr(B"'RR'B™!) —tr((B'B)™)
n n n

_ {%tr(RR’(B’B)_l)}l/Q{%tr((B’B)_l)}l/Q
1/2

< D BB SurR) ) —00),

where we use the fact that ||R]* < |R||; IR| ., where [|-][; and []-]|, are maximum column and row sum

matrix norms, respectively. l

Proof of Lemma B.3. To show (1), write E[(a’qna)(a'pna)] = E(3 7711 D751 Y pmy 2oim1 @i0jGn,ij0k0Pn ki)-
Noting that E(a;ajara;) will not vanish only when i = j =k =1, (i=j) # (k=1), (i=k) # (j =1),
and (i =1) # (j = k), we have

E[(a/(bza> (a/pnaﬂ = E(a%> Z:L:l Adn,iiPn,ii + 0'3 Z:L:l ;‘L;gi (qn,iipn,jj + Adn,ijPn,ij + Qn,ijpn,ji)
Ka i1 Qn.iiPnii + Og 2 iy i1 (@niiDn,gj + QnijPnig + Gn,iiPn,gi)
= Ka Z:L:l qn,iipn,ii + 0-;1 [tT(Qn)tT(pn) + tr(qn(pn + p;))]

The result (2) follows from the independence between a'g,a and V'p,b. For (3), E[(a'qnb)(a’psbd)] =
B30 321 2t i @ibjnijarbipn ) = EQZI_, 305 afbiqn ijpn.ij) = oaoitr(gap),). ®

Proof of Lemma B.4. We only sketch the proof of (1) and (2) since it mainly follows from Lemma
B.3 and the proof of other claims is similar. First, let Gq, 3 = (¢ @ In)gn(Ir ® Bo_l). Then by the

independence of u and v and Lemma B.3, we have

El(W'gou)(u'pru)] = EWGq, 1pp'Gp, 1p0 + V' Gy, 200Gy, 20+ 1/ Gy, 1p0' G, 20
+0' Gy, 20 Gp, b+ 21/ Gy, s’ Gp,, 30 + QU’G;m?),uU’Gpmg,u)
= Ku iy Ggn1iiGp, 1ii + Ko Z:fl Gq...2iiGp, 2ii
+0’3 [tr(anO)tr(pnQO)+2tr(Q7LQOP7LQO>]'

Next, write a = b+ By *¢c, where b= ¢ + u(1 — pg*)/(1 — po) and ¢ = Z;":_Ol p%v_j. Then b and c are iid
and mutually independent. It follows that

E[(Wquu)(a'rna)] = EWGq, 1pbrab+0'Gy, ovd By troBy e+ WGy, 1ud By 'rnBy e
+0' Gy, 200’ Tpb)

_,m2
%7#‘;32) Z:L:l an,liirn,ii + 0-3 [tr(rnwll)tr(QHQO) + 2tr(w12qnw21pn)]-

Similarly, we can prove the other claims. l

Proof of Lemma B.5. Note that @, is a linear-quadratic form of b as in Theorem 1 of Kelejian and
Prucha (2001). The difference is that the coefficient a’ Py, of the linear term is random. The proof
proceeds by modifying that of Theorem 1 in Kelejian and Prucha (2001) or Lemma A.13 of Lee (2002).
|



Proof of Lemma B.6. Note that X = (X, Z,Y_1). By the strict exogeneity of X and Z, we can readily
show that both X’Qu and Z'Qy 'u have expectations zero. We are left to show E(Y”’,Q;'u) = 0. By
(B.3), E(Y/,Qy'u) = FE [,u’(l;m ® In)Qalu] +F [U’A;}Qalu]. Using u = (10 @ L)+ (Ir ® By'') and
(3.29), we have

E[W (1, ®L,)% ] = B/, ® L)% (tr @ I)u = duooeotr[Q ((trll,) © L))
= Guooiotr {(J2Tp) @ [(ByBo) ™" + ¢uoTln] '},

and

E [U/A;}Qalu] = E[U/A;}Qal(lfr ® Bo_l)v]
= oootr[Q (I @ By 1) (T, @ By )] = onotr[Q (T, ® (ByBo) ™)
= ontr {(T7"JrTp,) @ [(ByBo) ™ + ¢uoTL) 1 (ByBo) '} + argtr [(Tpy — T~ 1 Tpe) @ In]

where we have used the fact that E(vv'A)) = J,, @By '. Tt follows that E(Y” Qg 'u) = o2ptr(T,, @1,) =
020tr(Tpo ) tr(L,) = 0. W

Proof of Lemma B.7. By the expressions of the Hessian matrix %ﬁ—‘i) in Section 4.2, it suffices to
prove (i) n ' [X'Qy'X — E(X'Qy' X)] = 0,(1); (i) n~'[X'Ru — E(X'Ru)] = 0,(1) for R = Q;* and
P with w = X and ¢,; (i17) = [/ Ru — o2tr(RQ)] = 0,(1) for R = Qal and P,y with w = A and ¢,;
and (iv) ™ gus(v) — E(qus(u))] = 0p(1) for w, @ = X and ¢,,.

Let Queo = %Q (0p) for w, @ = X and ¢,,. Noting that Qo, Quo, Puo, and Q50 with w, @ = A and
¢, are well behaved by Lemmas B.1-B.2 and Assumption G2 and . () is quadratic in u, we can readily
show that (i44)-(iv) hold by straightforward moment calculations, Chebyshev inequality, and Lemma B.4.
For example, to show (4ii), first note that E(u'Ru) = o2,tr(RQ). By Lemma B.4,

Var(n™'v/Ru) = n *{E(u'Ruv'Ru) — [E(u/Ru)])*}

n n
n_QKM Z G?%,lii +n "2k, Z G%Q“ + 2n_2030tr(RQORQO),
i=1 i=1

where G 1 and GR s are as defined in Lemma B.4. Using the fact that R = Lor Py is symmetric and
positive definite, we can readily show that > -, G%jii = O (n) for j = 1,2. In addition, tr(RQyRQ) <
Amax (Qr(RQ0R) < Pmax(Q20)] Amax (R)tr(R) = O (n). It follows that Var(n ‘u/Ru) = O (n=1).
Then (ii7) follows by Chebyshev inequality.

To prove (i), let R = Qy*. Noticing that X = (X, Z,Y_1), it is easy to show that the terms not
involving Y_1, such as n ! X'RX, n"'X'RZ, and n~'Z' RZ converge in probability to their expectations.
For the terms involving Y_1, we first have by (B.3),

n 'Y RY., = n A X'Bo+ (L, ® I)zv0) R[Az X' Bo + (Ipe @ In)27%0)

+n_1[(lpo ® In)p + AUU]/R[(ZPO ® In)p + Ayv]

+n YY) RYo + 2n A X' Bo + (lpe @ In)2v0) R(Lpy ® L) + Ayv]
+2n"1[A, X' B + (lpo @ I))z70)'RYo + 2n_1[(lpo ® In)p + Ayv)' RY
Z?:l Anpi, say.



It suffices to show that each A,; (i =1,---,6) converges in probability to its expectations. Take A, as

an example. F(A,s) = 0 because Yy is kept fixed here. For the second moment,

Var(4,6) = 4n_2{E[,u/(l;0 ® I,)RY YR (Lpy ® In)p] + E(v"A,RY YR Ayv)}
= 4An"H{otr[RY0Y R Lyl ® 1)) + opgtr(AyRYYGR'Ay)} = O(n™h),

where the last equality follows from the fact that both matrices in the two trace operators are uniformly
bounded in both row and column sums. Similarly, we can show that n ' X'RY_; and n~'Z'RY_;

converge to their expectations in probability, and thus (i) follows. Analogously, we can show (i7). W

Proof of Lemma B.8. The key step of the proof is to show that \/%X’Qalu 4, N(0,T}11)
where I'; 11 = plimnﬁoo(nT)_lf( " Qy 1X. By Cramér-Wold device, it suffices to show that for any
¢ = (c),che3) € RP x RT x R with ]| = 1, (nT)"1/2¢X'Q5 ' % N(0,¢Ty11¢). Using (B.3) and
u= (17 @ I,)p +(Ir ® By v, we have ¢ X'Qptu = ¢| X u + chZQ u + e3YV_ 1905 u = Z?zl Thi,

where

T = [AX 42+ esBXA, + esypz(l, @ In) + esY()Q0 (vr @ In)p+ espt! (1, @ 1) (or @ L),
Tho = [AX +BZ+ 3B XA, + 0370,2([ @ I,) +c3Y))Q 7 (Ir @ By ' v + esv’ AL Qg H(Ir @ By '),
Tos = e[l © 1)Q (Ir @ By'') + (U © 1,)Q5 ' Ay v.

It is easy to verify that E(T,3) = 0, E(Th1) = c3¢u0020tr[Qqy (LTl’ ® I,)], and thus E(Ty2) = —E(Th1)
by Lemma B.6. Also, we can verify that Cov(T,;, T,;) = 0 for i # j. It suffices to show that each T,
(after appropriately centered for T,,; and T},3) is asymptotically normal with mean zero.

Note that T,; and T;,2 are linear and quadratic functions of u and v, respectively. For T3, it is a
special case of Lemma B.5 since it can be regarded as a linear function of either p or v, with p and v

independent of each other. So we can apply Lemma B.5 to T),; to obtain
{Tni — E(Thi)}/\/Var(Ty;) 4, N(0,1) fori=1,2,3.

Now by the independence of T,,; and T}, 2, and the asymptotic independence of T,,3 with T,,; and T},2, we

have

1 ' yvo—1 1
cX'Qyu= T»—>N0hm (nT)~ Var(T,
Yo I/ 2} wi — N0, Jir Z )
implying that (nT)~'/2X'Q;'u <, N(0,T,11) because we can readily show that (nT)~'[X'Q'X
—Var(X'Qy u)] = o,(1).
Noticing that each component of dL" (1y)/0vY can be written as linear and quadratic functions of p
or v, the rest of the proof proceeds by following the above steps closely. B

Proof of Lemma B.9. Let P; = p}, By'. Then V, = Z;Z)n_l Pjv;_j. Noting that E(v,Dvs) = o2,tr(D)

for any nonstochastic conformable matrix D if ¢ = s and 0 otherwise, we have

E(V,R;V,) = ziig”‘lt;jigﬁ”‘lE(ug_ip;Rtstus_j) = o &)E(?+ ZletsPS Vi)
m— 1 2%
= Ugotr(zizmax(o,t_s)Pz'/RtsPs—t—H) = ootr(By  ResB )Zz ::ax(()t é)pg e



Next, noting that X; = Z;Z)n_l p%xt_j, we have

s+m—1 t+m—1 s+m—1 t+m—1 j
E(X|R:sXy) Z Z p0+kE () Rists_j —trz Z +thsE(xs_jxé_k)).

Lastly, E(X}R..V,) = 3550 S0 pf "M B ReuBy 'vs—;) = 0. B

Proof of Lemma B.10. Let Ry and Ry be arbitrary n X n nonstochastic matrices. We can show that

Ky Z?:l Rl,iiRQ,ii + Oﬁo{tl‘(Rl)tI‘(Rg) + tI‘[Rl(RQ + R/Q)]} ift=s= qg= h

olotr(Ry)tr(Rs) ift=s#g=nh
E[(viR1vs) (v, Rovp)] = { ootr(R1R2) ift=g#s=nh
oltr(R1RY) ift=h#s=gyg
0 otherwise
Consequently,
E(ViRisV,V! RgnV5)

= E(Zf+(7)n_1 ZHm 1Zg+m ! lh+om_1 pz+]+k+lvé zB/ 'Ri.B By . JU kB/ lehBo Vp—1)

= Y moimsimgamn 2o T e ST (B Res By i (By R By Vi
+od[tr(By R By )tr(B’ 'RonByt) + 2tr(By Ris By (B’_lehB_ + By 'R, By 1))}
+0350 Zf+r7rr:ax1(0t )P0 “e(By T Res By )Z§]+r7rrfax1(0,g h) o (B 1RghB ) (J#i+g—1)
+Zf+r7:ax1(0t 0P e Zfﬁaxl(os h) P g T gt otr(By Rs(BGBo) ' Rgn By )1(j # i+ s — t)
+Zf+r7rr:a:((0t h) pp Z;+z;x(05 —) P . 4 sotr(By ' Res(ByBo) MRy, By 1(j # i+ s —t).

Then (1) follows by Lemma B.9. For (2), we have
Cov(X,RysVy, X, Roa Vi) =  E(X)RisVo(X\RgnV,))
m—

t+m—1s+m—1g+m—1 h+ 1

Z Z Z Z pirithH gt RtsBo_lvs—j(x;_kRghBo_lvh—l)/]
k=0 =0

=0 7=0

t+m—1g+m—1 s+m—1

— giotr Z Z Z p6+k+h—s+2j Rts(B(/)BO)_IR;hE(-T;_k-Tt_i)

i=0 k=0 j=max(0,s—h)

The expression for Cov(X} Ry Xy, X| Ry Xp) is quite complicated, but we can use Lemmas B.1-B.2 to

show it is of order O(n), which suffices for our purpose. B

Proof of Lemma B.11. By Lemmas B.1,B.2,B.9, and B.10, we can show that (nT)~* th_Ol Zé o E(ViR V) =

O(1), and Var(n™' Y, )' SSIZ ViRV, = n =2 Y0 ) iy S0y Sonse Cov(ViR Vs, Vi Ry, V) =
O(n~1). Then (1) follows from Chebyshev inequality. For (2 )7 we have El% th_Ol ZZ 01 XiR:s V] =0,
and

T—1T-1 T—-1T-1T-1T-1
ar <n—1 SN X;RtSVs> Y NN Cov(X RV, X Ry Vi)

t=0 s=0 t=0 s=0 g=0 h=0
T-1T-1T-1T-1 t+m—1g+m—1 s+m—1

SFED 353D 3D 31D SH SRS SRR RS

t=0 s=0 g=0 h=0 =0 k=0 j=max(0,s—h)
X(B(/)BO)_lR;hE(xg—er/t—i)]
= O(n™Y,



where the last equality follows because (i) x;+ are independent across ¢ with second moments uniformly
bounded in i, (i) Rts(B{)Bo)_lR’gh are uniformly bounded in both row and column sums by Lemma
B.1(1) and Lemma B.2(1), and (iii) elements of Rys(ByBo) 'Ry, E(ry_xx};_;) are uniformly bounded
by the same lemmas. Hence the conclusion follows from Chebyshev inequality. (3) follows from Lemma
B.10 and Chebyshev inequality. B

Proof of Lemma B.12. Let u* = u*(6p, po) and uy = u:(eo,po) = a%u*(eo,po). Noting that
E(X*Ru*) = 0 for any n(T' + 1) x n(T + 1) nonstochastic matrix R and X is free of p, by the

in Section 4.2, it suffices to prove

expressions of the Hessian matrix

(i) n=! [XMQTIXT — B (X5 X)) = 0,(1);

(ii) n~1X* Ru* = op(l) for R = Q™" and P, with w = p, \, ¢, and ¢c;

(iii) n~1 [u* Ru* (u*’Ru*)] = 0,(1) for R= Q4" and P}, with w = p, \, ¢, and ¢¢;
(iv) n™t (X35 ur — E (X' )] = op(l)'

(U) n—l [X*/Qg_l (X*/Q*—l *)]

(vi) n=" [u} Ru* — ( u} Ru*)] = op(1) for Q*_ and P}y with w = p, A, ¢, and ¢¢;
(vii) =t [uZ;QS_lu* — B (u} *’Q*_l ] =

(vidi) n=t [uy/' Qe usy — E (u) *’Q*_ )] =

(iz) n7 [gle (u*) — B (¢}e(u®))] = 0p(1) for w, W =p, A, ¢, and ¢¢.

Let QO = afan (do) for p, A, ¢, and ¢.. Noting that Q5 ~', QF, Py and QF oo with w, 0 = p,
A, ¢, and ¢¢ are uniformly bounded in both row and column sums and ¢ (u*) is quadratic in u*,
we can readily show that (i)-(év) and (iz) hold by straightforward moment calculations and Chebyshev

inequality. Noting that u} = — 4mo=Yo ) and uy, = —( Amo=Ty ) with a9 = d%am (po) and

Y 4 OnTx1

(mo = %am (po), we can readily prove (v)-(vii) by Chebyshev inequality. In fact, E (u:;Qa‘_lu*) =0
11,12

n (vit).

. _ w
We are left to prove (viii). Write € - ( To) 59 ) where wl!, w!? and w?? are n x n, n x nT,
w w

* *

and nT x nT matrices, respectively.

/
: 11 12 :
—1, xryx—1, x __ —1 Am0oZ7, Wy Wy Am0 27,
nu, QT u, = n 1o, 99
Y_l Wy Wy Y_l

= n! ((dmo)2 oA Zwltay, + 20m07Y, 2 "Wy + YilwaY_l) )
To show the convergence of n_lu:j’ Qg_lu: to its expectation, it suffices show each term in the last
expression converges to its expectation. We only show n=!'[Y ,w??Y_ — E (Y/w??Y_;)] = 0,(1) since
the proof that n™[(amo)*v, 2wl 2y, —E ((amo)?7.2'wi'z7y,)] = op(1) and that n='amey, z/wi?Y_1 —

(@m0, z'wi?Y_1)] = 0p(1) is similar and simpler. By (B.2)

YWYy = 0T (XC)Bo A+ (py © In) 20 + (lpy @ In) p+ V1) + YO)’w§2
X (X<)Bo + (Lpy ® L) 270 + (lpo ® In) p+ V(_1y + Yo) .

After expressing out the right hand side of the last expression, it has 25 terms, most of which can

easily be shown to converge to their respective expectations. The exceptions are terms involving X(_y)



and V(_y), namely: n_lﬁ(’) X/ l)wQQX( 1050, n_lﬁéVz_l)wEQV(_l), n 13X 2 l)wQQV( 1) n_lﬁ(’) 1)w22
(Lpy ® I,) 270, n 1 BHX] (—1yws 22 (1, @ Iy) s _1VE 1)w32 (lpo @ I,) 270, 1 1VE ) W w2 (L, @ I, ),u, n=13)
Xz_l)wEQYo, and n 1V£ l)wEQYo. The first three terms converge in probability to their expectations by
Lemma B.11. We can show the other terms converge in probability to their expectations by similar

arguments to those used in proving Lemmas B.9-B.11. l

Proof of Lemma B.13. By Cramér-Wold device, it suffices to show that for any ¢ = (¢, ¢z, €3, 4, ¢5,¢6) €
RPHOHE X R X R x R x R x R with [lc]| = 1, S} = SLze/ 2500 —%, N(0,cT,c). Using the expression

for elements of %;}(w) defined in Section 4.2, we can readlly obtain
oo 1 [0 (o) | 0L (o) | OL™ (o) | OL™(¢o) | OLT(Yo) | OL™ (o)
S, = — [61 90 + co 902 +c3 ap +ca N +¢s 99, +¢s Do,

1 1
_ c X*/Q*—l * &u*/Q*—lu* + C2 O—ZU*/Q*—lu* —n(T+1
2 1 0.2 p °f0 P v0 0

vnT 00 v0 2 30
T2 [u* Poou* — o5otr(PrS)] + 992 [u Plou” — a7otr(Po)]
90 90

C5 C6

27 | Py 0w = o25tr(Pg,0%)| + 2ot | Py gu” = o2tr(2)09%)] }
v v
= Sp1+ Sna + [Sns — E(Sp3)]

+

where S, = ﬁ%—C&X*/QS_lu*, = \/_LT;:;u:’Q*_ o \/—ﬁ—u*’ﬁ*u* and Qf = ‘%20 Q5!
+03P + ey Py + C5P*M0 + cﬁP(;‘CO. Note that
f 1 Lc/ bed wy' w? ¢+ amop + Z;nz_ol pro_lv—j
m VnT o2, " w w22 (tr @ L)p+ (Ir ® By M)

= LLC/X*/ wil ¢+ 1 LC/X*/ wslﬁlamo “l‘wiZ(LT@In) 1
VnT 0%, " w?2! nT 02, ! w2 4o + w2 (ur ® I,)

11 w!? 1 1 wi ) =
+ c/ X*/ * I ® B—l v + X*/ * ]B_lv_‘
nl o 30 ! ( w?? ) Ur o) nT 02 “a w2 jzz:opo o

_ * * * *
= Spi1tSni2t Snaz+ Shias say,

* * * * . . 5 . .
where S7q 1,501 25 Snl 3, and Sy, 4 are linear in ¢, p, v and v_;’s, respectively. Similarly

* 1 —
= ¢—2 7 {CO i famods + (1 @ )02 (r @ In) 4 2amo (i @ 1)@ ]

m—1 ! m—1
+o'(Ir ® B M2 (Ir @ By ' )v + <Zj PoBo_lv—j> oyt <Z PoBo_lv—j>
/
m—1
2[<afnou+z_ I alv-j> +(LT®In>u+(IT®Bal>v] ©2'¢

+2amop w“Z] L "By vy + 2ty @ L) (Ir @ By Yo

—1\-21 T -1 21 jp—1
+20'(Ir ® By~ )2 <am0,u + ijo o B; U_j> +2u' (Vp @ 1,) Z B, U_j} .
~ ol g2u
where Qg_l = "5 oo with @, @12, and @22 being n x n, nT x n, and nT x nT matrices.
wit W

Apparently, S}, can be written as the summation of five asymptotically independent terms, i.e., S}s =



, where , , , an are quadratic functions of ¢, u, v, and v_,’s, respectively,
—1 503, where S35 1, 503 5,555 5, and Sig 4 dratic functi f dv_j’s, tivel
and S 13,5 18 the summation of terms that are bilinear in any two of ¢, y, v, and v_;’s. Analogous to the

proof of Lemma B.8, we can use uj = (amo (z70)’ ,Yil) and the expression of Y_; in (B.2) to write

NS Z?zl Spa > where S5, 1, Sho o, and Sy, 5 are quadratic functions of y, v, and v_;’s, respectively,
Sh2.4 is a bilinear function that contains summation of terms which are linear in any two of ¢, u, v, and
v_;’s, and Sy, 5 is the summation of terms that are linear in one of <, p, v, and v_;’s. Consequently,
6
j=1
555 is a summation of terms tat are bilinear in any two of (, u, v, and v_;’s, and s},¢ is summation of

we can write S} = >"__, s, where s}, ..., sk, are quadratic functions of ¢, u, v, and v_;’s, respectively,

nj’
terms that are linear in ¢, u, v, and v_;’s. By the mutual independence of ¢, u, v, and v_;’s and their
zero mean property, these six terms are either independent or asymptotically independent. By Lemma
B.5,

{s5; — E(s5;)}/4/Var(sy,) —4, N(0,1).

It follows that S}, 4, N(0,limy, 00 Z?=1Var(s;j)), implying that S} 4, N(0,cTypc). B

Proof of Lemma B.14. Noting that E (AXT’RAU) = 0 for any nT x nT nonstochastic matrix R, by

AL (1ho)

the expressions of the Hessian matrix D500’

in Section 4.3, it suffices to prove

(i) n HAXTQITAXT — B(AXVQITTAXT] = 0,(1);

(i1) n'AXY RAu = 0,(1) for R = Q! and P!, with w = p, Xand ¢;

(iii) n L [AWRAu — 02tr(RQ))] = 0,(1) for R= Q™! and P!, with w = p, X, and ¢¢;
(iv) n  [AXVQI ! Au, — E(AXTQI Au,)] = 0,(1);
(
(
(

vi) nH Au 0l Au, — B (A, 0f 7 Au, )] = 0,(1);
[qu(Au) E(ql 5 (Au))] = 0,(1) for w, @ = p, A, and ¢c.

Let O _ = Bwaw QF (60) for p, A, and ¢.. Noting that QT Lo

ww0 wO?

(A

v) n~t [Au RAu — (Au;RAu)] = o0p(1) for R = Q(T)_l and PJO with w = p, A, and @¢;
[
-1

vii) n
0 and wao with w, @ = p, A,
and ¢, are uniformly bounded in both row and column sums and qw@ (Au) is quadratic in Au, we can
show that (i)-(vii) hold by straightforward moment calculations and Chebyshev inequality. Below we
only demonstrate the proof of (#ii) and (vi) since the proof of the other claims is similar or simpler.

Since E(Auw RAu) = o2,tr(RQ), by Chebyshev inequality (iii) follows provided Var(n=!Au/RAu) =
o(1). Let Avy = BoC + pg'v—m+1 + Z;n:_ol p%Avl_j, Av(ry = (Avy, ....Avy)', and Av = (AU(O), Av(l))
Then Au = (I, ® By')Av and Au/'RAu = AV (I, ® By )R(I, ® By ')Av = Av'RAv, where R =
(I, ® By YR(I,, ® By'). Now, write

Roo R(01 :
R — nXxn nxn(T—1
R R

n(T—1)xn n(T—-1)xn(T-1)

and partition R similarly. Let C be a (T'—1) x T matrix with C;; = =1ifi=j, C;; =1if j =i+ 1,
and Cj; = 0 otherwise. Then Av(;) = (C ® I,,)v, where v = (vf,---,v7)". So

AVRAv = Avg RooAv(g) + Avjy)Ri1 Avyy + Avjgy (Ror + Rig)Avg)
Ay RooAv(o) + ' (C' @ I,)R11(C' ® I)v + Avfg) (Ro1 + Ri)(C' @ I)v



Then by Cauchy-Schwarz inequality
Var(Au' RAu) < 3Var(AUEO)]§00AU(O))+3Var(v/(c/®]n)Eu(C®In)v)+3Var(AUEO)(R01+R’10)(C®In)v).

Write Avigy = BoC + v1 + pf" " (po — 1) v—ms1 + Z;n:_OQ P} (po —1)v_j. Since BéEOOBO is uniformly

bounded in both row and column sums, by Lemma B.3(1)

n
Var(¢'ByRooBo¢) = k¢ 3 _[(ByRooBo)ii)” + otr(ByRoo Bo By (Roo + Riyo)Bo) = O(n).

i=1
Similarly, we can show that Var(v} Roov1) = O(n), Var(v',, 1 Roov—m+1) = O(n), and Var(X:;":_o2 p%v’_j Roo
X Z;"Z_OQ phv_;) = O(n). It follows from Cauchy—Sc~hwarz inequality that Var(AUEO)EOOAU(O)) = O(n).
By the same token, we can show that Var(v'(C"®In) R11(C®1n)v) = O(n), and Var(Av(,) (Ror+R1)(C®
I,)v) = O(n). This completes the proof of (iii).

Now, we show (vi). Let AY™* = (01xn, Ayy, -+, Ayp_,). Then Au, = —AY™*. Let k, = (0,1,p,- - -,

pT2), X =(01xn, 01xn, (Az23), - - ,Z]T:_og Py (Azp_1_jf0)"), and V = (01xn, 01xn, (Ava)’, -+ ,erz_og
pb(Avp_1-;)"). Since Ay; = Azmo+ Az18y + Auy and

t—2 t—2
Ay, = pé_lAyl + Zp%Axt_jﬁo + Zp%Bo_lAvt_j fort=2,3,---,
§=0 §=0

we have AY* =k, @ Ay + X + (I7 ® Bo_l)V. It follows that
Var (Au;Qg_lAup) < 3Var ((kz;o ® Ayl) Qg_l (kpy ® Ayl)) + 3Var (X/Q(T)—lX)
+3var (V(Ir @ By (Ir @ By )V)
We can show that each term on the right hand side of the last expression is O (n). Then (vi) follows by

Chebyshev inequality.

Proof of Lemma B.15. By Cramér-Wold device, it suffices to show that for any ¢ = (¢}, ce, ¢3, s, ¢5)" €
RPH* x R x R x R x R with [|c]| = 1, ST = —A=¢'2500) L, N(0, ¢/Tjc). Recall Au= Au(fo, po). Let

NC
Au, = —(00, 1, Ayy, -+, Ayl ), and P!, = PI(8) for w = p, A, and ¢. Using the expression for
elements of %ﬁ) defined in Section 4.3, we can readily obtain
1 oLt oLt oLt oLt oLt
sto— [ & (}%) e (;ﬁO) 4 28 W) | 0L W) | (%)]
VnT 06 0o Op O 09y,
1 L, -1 C3 -1
= — 5 AAXTO T A - AW QT A
o e ol e ol
c2 (1 it €3 [ 't 2 t ot }
— AU'Q)TAu—nT Au'PlyAu — oot (P2
+2‘730 [2‘730 i e ] " 207, YR T 0w x 70 o)
Ca t t of Cs t t ot
—1—2030 [Au/P)\OAu — aiotr(P)\OQO)} + 202 [Au/P(bgOAu — a%otr(P(bgOQO)} }
= Shi+5l+ [523 —E (523)}
where ST, = \/%%%C&AXT/QE_lAU, sty = \/_TLT%AULQ(T)_lAu, Sty = \/%QJQOAU’QEAU and Qf =
%Qg_l + 03P;0 + C4P)T0 + C5P£CO. Analogous to the proof of Lemma B.13, one can write S} = Z?zl slj,



"

s 513 are quadratic functions of ¢, v, and v_j;’s, respectively, s,,

where s/

nls , is a summation of terms

tat are bilinear in any two of ¢, v, and v_;’s, and 515 is summation of terms that are linear in ¢, v, and
v_;’s. By the mutual independence of ¢, v, and v_;’s and their zero mean property, these five terms are

either independent or asymptotically independent. By Lemma B.5,

(s, —E(s! )}/ /Var(st ) -5 N(0,1).

nj
It follows that SJ <, N(0,limy, 00 Z?=1Var(slj)), implying that SJ <, N(0,cTypc). B
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