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1. Introduction

The classical spatial panel data (SPD) model takes the following vector form:

Y = MWiY: + X810 + War XotBao + Zv0 + (2:C0)ln + 10 + ol + Us, (L.1)
Ut:pOMtUt"i_v;fa tzl,...,T,

where Y, is a vector of response values on n spatial units at time ¢, X1; and Xo, (typically
a submatrix of Xj;) are matrices of observations on time-varying regressors, Z a matrix
of observations on time-invariant regressors, Z; a row vector of values of space-invariant
regressors, and U; = (uyg, Uty - - -, Upye) and Vi = (vyg, voy, ..., Up,e)' are m X 1 vectors of
disturbance and idiosyncratic errors, respectively. Wy, Wy, and M, are given n x n spatial
weight matrices, which together with the “spatial coefficients” \g, 820 and py, characterize
the spatial lag or endogenous social effects (Manski, 1993), spatial Durbin or contextual
effects, and spatial error (SE) effects, respectively. (19, 7o and (o are vectors of regression
coefficients. g is an m-vector of unit-specific effects and {«a;} are time-specific effects,
which can be fixed effects (FE), random effects (RE), or correlated random effects (CRE).
I, is an n x 1 vector of ones. Model (1.1) has been extensively studied. See, among others,
Lee and Yu (2010a,b, 2015), Yang et al. (2016), and Liu and Yang (2020).

In many panels, not all (n) spatial units appeared in every time period, or even if they
all appeared in every time period, some spatial units in certain time periods were not fully
observed. Kelejian and Prucha (2010) classify the spatial units in spatial data into three
groups: (1) units with full observations on themselves and on their neighbors, (2) units
with observations on their neighbors missing, and (3) units with their own observations
missing. Meng and Yang (2021) studied SPD models where all units are of Type (1) but
the number of them can change from time to time, referred to as the SPD models with
genuine unbalancedness (GU). In this paper, we study the SPD models where all units are
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of Types (2) and (3) but missing occurs only on responses, referred to as the incomplete
SPD model with missing responses (MR), to emphasize the fact that although the panel
is incomplete, the spatial connectivity or network structure is completely observed.

MR issue has drawn much attention in regular panels, and researchers (e.g., Pacini and
Windmeijer, 2015; Abrevaya, 2019) have found that incorporating covariates information
from periods with missing outcomes can improve estimation efficiency. MR issues can also
frequently occur in spatial panels. In housing price panels, regions with transactions in a
certain period have mean/median prices recorded, but regions without transactions have
response values missing although their characteristics and spatial connectivity are fully
observed. Educational studies often find that some students do not have test scores or
graduation status, but their demographic and initial performance data and their “peers”
are known. Household income data may be missing for certain years, but information
on household characteristics and their neighborhood structure is usually fully recorded.
However, essential methods for analyzing these types of data are lacking.

Let §; be an n; x n selection matriz that selects the observed part of the n x 1 vector of
responses Y;. Define A;(\) = I, — A\W,. If A;'()\g) exists, the SPD model with randomly

missing responses has the following reduced-form representation:

S1Y; = St A7 (o) (X810 + War XotBoo + Z0 + (2:Co)ln + o + ol + Uy),
Ut:poMtUt‘i“/t, t:].,,T

(1.2)

The model exploits the observed responses S;Y; while maintaining the full structure in
the other parts of the model, including regressors, spatial connectivity, and heterogeneity.
Wang and Lee (2013) studied a simpler model (po = 0) under RE and CRE specifications.
They pointed out the difficulty in estimating a general model under FE specification.
Zhou et al. (2022) studied a model with response for each unit following a pure AR(1)

process. Liu et al. (2023) studied a dynamic SPD-MR model without g, ag and py.



In this paper, we focus on the FE specification of Model (1.2) to fill in a major gap
in the SPD-MR literature. We contribute to the literature by introducing a general
M-estimation framework for model estimation and a novel corrected plug-in method for
model inference, both taking into account the estimation of fixed effects. The proposed
methods are then extended to allow for serial correlation. Consistency and asymptotic
normality of the proposed M-estimators are established, and consistency of the proposed
corrected plug-in estimators is proved. Monte Carlo results show that the proposed
methods perform very well in finite samples and that “discarding” the observations with
missing responses can give misleading results. An empirical application of our methods to
US tax competition data points to the existence of tax competition and path dependence
in US state taxes. Our methods apply to matrix exponential spatial specification and
can be extended to include higher-order spatial effects, etc.

Standard approaches in nonlinear panel data with fixed effects bias-correct (i) the
estimator, (i7) the concentrated score, and (7i7) the concentrated likelihood, as elaborated
by Arellano and Hahn (2007). Our approach falls into (i7) but with major differences: it
does not require data to be independent, it provides exact bias corrections, and it does
not impose any conditions on n and 7" (see the end of Sec. 2.1 for more details).

Section 2 presents methods with iid errors. Section 3 extends the methods to allow
for serial correlation. Section 4 presents some Monte Carlo results. Section 5 presents
an empirical application. Section 6 concludes the paper and discusses some important
extensions. Necessary results facilitating statistical inference are given in Appendix A.
Technical lemmas and short proofs of the theories are presented in Appendices B-D.
Detailed proofs and complete Monte Carlo results are given in online Appendix E.

/

Notations and conventions. First, |- |, tr(-), ’ and ||A|| are the usual notations



for determinant, trace, transpose and matrix norm. For a real matrix A of full rank,
Py = A(AA)7TA" and Q4 = I, — P4 are the projection matrices. diagv(-) forms a
column vector by the diagonal elements of a square matrix; bdiag(---) a block diagonal

matrix; [ ,-,... ,-] a row vector; and [ ;- ;... ;-] a column vector.

2. M-Estimation of Fixed Effects SPD-MR Model

Consider Model (1.2) with FE specification. For ease of exposition, assume the (7, Z;)
variables are absent (see the comments below (2.1)). Denote X; = (Xy;, Wy Xs), 5 =
(81, 55), and k = dim(B3). Let Y, X, U, and V be the stacked Y;, X;, U; and Vj,
W = bdiag(Wi,...,Wr), M =bdiag(M,..., Mr), Apr(N) = Ly — AW, and B, r(p) =
L, — pM, where [,,, is an m x m identity matrix. To identify the FE parameters, a zero-
sum constraint is imposed on {a;}. Define D, = Iy ® I,, and D}, = [—1,,l7_; Ir—1 ® 1]
Let D = [D,, D%] and ¢ = (¢, as,...,ar)" be the vector of free FE parameters. Let
S = bdiag(Sy,...,Sr) and N = Zthl nt. Model (1.2) is written in matrix form:

SY = SA ;(Xo)[XBo + Do + B.1(po) V1. (2.1)
Model (2.1) in fact allows the time-invariant and space-invariant covariates effects (Z, Z;),
such as gender and policy. Our view is that they are a part of the FEs and can be
“decomposed” from D by adding further constraints on ¢ (see Appendix E, Sec. E.2).

Let Qy(8) = Var(SY) = SA, 7(\)B,1(p0)B.7 (p0) A+ (A\)S" and Q]%V((So) be its
square root matrix, where &g = (Ao, po)’. To simplify the presentation, denote a paramet-
ric quantity at the true parameter values by dropping its argument(s), e.g., A = A,7(\o),
B =B,r(p), Oy = Qn (). Pre-multiplying Q&é, the Model (2.1) is transformed to:

Y = XBy + Dey + V, (2.2)

where Y = 2,°SY, X =CX,D=CD,V =CB,;V,and C = Q,°SA 1. It is easy to



see that Var(V) = 02, and thus V ~ N(0,02,Ix) if V ~ N(0,02%,L,r).

2.1. The M-estimation

We seek the desired estimating functions for M-estimation by exploiting the concen-
trated quasi scores of = (8',02,8")'. The quasi Gaussian loglikelihood of (6, ¢) in terms

A V)

of the observed SY, given the exogenous (X,S) and as if V ~ N(0,0%,Iy), is:

€N(97 (b) = _%ln 2m — % an'?) - %ln ’QN(é)‘ - Lvl(ﬁvd ¢)V(5757 ¢)7 (23)
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where V(8,6,¢) = Y(5) — X(6)8 — D(8)¢, with Y(5), X(5) and D(8) being Y, X and D
at the general § value. y(6, ) is partially maximized at:
3(8,6) = [D'(5)D(5)] D' (8)[Y () — X(3)], (2.4)
which is simply an OLS estimate of ¢ (given 8 and §) from regressing Y(6) — X(6)3 on

D(0). Therefore, the concentrated quasi Gaussian loglikelihood function of 6 is:
6:0) == In2r — Yno? — LIn|Qn(0)] — 55 V'(8,0)V(5,4), (2.5)

where V(3,0) = Qp(8)[Y(8) — X(6)8] and Qp(d) is the projection matrix based on I)(4).
The quasi maximum likelihood estimator (QMLE) gy of # maximizes €5 (6), which is
inconsistent or asymptotically biased due to ignorance of the effect of estimating ¢.

To rectify these problems, we adjust (recenter) the concentrated quasi score (CQS)

function, S§(0) = &¢5/(0), to remove the effect of estimating ¢. We have,

(

LX(8)V(8.5),

sc(9) | w5 07(6.8) = No), (2.6)

352V (8, 0)HA(O)V(8,0) + 5 V'(8,0)I(0)e(B,0) — rr[HA(0)],

2V (5, 0)H,(9)V(5,0) — 3er[H,(9)]

2
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where HL,(8) = Q3 (0)[2Qx(D)]Q3 (0),w = A p, J(6) = Q32 ()S[Z AN, and
e(53,6) = X5+ D¢(8,6). Under mild conditions, Ogy = arg{ S5 (0) = 0}.
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At the true 6y, V = QpV and & = X, + D¢y + D(I'D)~'D'V. We have E(X'V) = 0,

E(VV) = (N—n—T+1)0%,, E(VJe) = 0, and E(VH,V) = ¢%tr(H,Qp), w = A, p.

Thus, +E[S%(60)] = {0, =22+t —tr(H\Pp), —itr(H,Pp)} # 0, which may not
even converge to 0 when either n or 7' is fixed. This is the root cause of inconsistency
or asymptotic bias of the QMLE fgy.. Therefore, removing the bias in S (6,) due to the
estimation of ¢g may lead to a way for consistent and asymptotically unbiased estimation

of 6. The adjusted quasi score (AQS), or estimating function, takes the general form:

;

=X (0)V(8,9),

v

51.8) = =i [V (8,6)V(8,6) — Niol], 2
52z V'(8,0)HA(5)V (8, 8) + HV'(8,8)J(8)e(8,6) — tr[HA(5)Qu(3)],
52z V' (B, 6)H,(8)V(8,6) — $r[H,(5)Qn(5)],

where Ny = N —n — T + 1. Solving S% () = 0 gives the M-estimator fy of 6.

The root-finding process can be simplified by first solving the equations for 5 and o2

~

Bu(8) = [X'(6)Qo(H)X(9)] "X (5)Q(8)Y(5) and 62,(5) = =V'(5)V(5),  (2.8)

where V(6) = V(34(6),8). Then, plugging u(d) and 7 4(0) back into the d-component

of (2.7) gives the concentrated AQS (estimating) function of §:

V<6(>HA(6>V<6> L V(O)I6)e(39).9) — S0

2V (8)V () /N, V/(8)V(6) /Ny
V/(O)H,(5) V() 1

SN, 2 O]

(2.9)

Solving S3¢(8) = 0 gives us the unconstrained M-estimator dy of &, and the M-estimators
of 8 and 02 By = Bu(dy) and o 637M((§M). The M-estimator of 6 is 6y = (5, 02 o).
As discussed in the Introduction, the standard methods in dealing with the fixed effects

problem in nonlinear panels, or in general the incidental parameters problem of Neyman

and Scott (1948), are (in our context) to bias-correct fgu, or S%(0), or £5(0) (Arellano



and Hahn, 2007). These methods require responses to be independent and 7" to increase
with n as the corrections are derived under large-T approximations. Our method falls
into the second category but it does not impose these conditions and provides an exact
bias correction on S§(6p). In addition, our method allows for the estimation of time-
or unit-invariant covariates effects as indicated below (2.1). With our method, further
bias corrections on S3¢(dp) can be made to correct the effect of estimating 8 and o2 on
the estimation of 4, in light of Yang (2015) and Yang et al. (2016). This is particularly
meaningful when f is of a large dimension and spatial dependence is heavy. Finally, our
methods can be extended to a GMM framework by adding extra moments.

Lee and Yu (2010a) bias-correct the QMLE of # for a complete spatial panel with FE,
which requires 73 — 0 and % — 0 for valid inference (see Lee, 2023, p.326). The second
method can be traced back to Neyman and Scott (1948, Sec. 5) but has the smallest

literature. The third method may not apply to the type of model we consider.

2.2. Asymptotic properties of M-estimator

To study the asymptotic properties of the proposed M-estimator, it is necessary that
the errors, regressors, selection matrix, and spatial weight matrices satisfy certain basic
conditions. Let A be the parameter space for w = A, p and A = Ay x A,. For a real
symmetric matrix, Ymin(+) and Ymax(-) denote its smallest and largest eigenvalues. For a
real matrix A, ||A||; and [|A]|, are the maximum absolute column and row sum norms.

Assumption A. The elements v;; of V are iid for all 7 and ¢ with mean zero, variance
02y, and E|vy|*T < oo for some ¢ > 0.

Assumption B. The space A of § is compact with the true dq in its interior.

Assumption C. X and § are non-stochastic. Elements of X are bounded uniformly
in ¢ and . limy_,0e X' (6)Qp(8)X(8) exists and is non-singular, uniformly in § € A.
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Assumption D. {W;} and {M,;} are known time-varying matrices, and W and M
are such that (i) elements are at most of uniform order ;' such that %2 — 0, as n — oo;
(17) diagonal elements are zero; and (7i¢) column and row sum norms are bounded.

Assumption E. Denoting by A(w) either Ax(\) or By(p), where w = A, p,

(i) both [[A™ ()]s and [[A™!(w)]]; are bounded:;

(i) 0 < ¢y < Infen,, Ymin[A (@) A(@)] < SUPLea . Ymax A (@)A(w)] < 5 < 0.

Assumptions A-E are standard in spatial econometrics or missing-data literature (Lee,
2004; Abrevaya, 2019). For technical convenience, X and S are treated as non-stochastic.
They can instead be stochastic but strictly exogenous (w.r.t. V). The analyses are then
interpreted conditionally on X and & (White, 2001, p.6). The strict exogeneity of S is
in line with Little and Rubin (2019); see Appendix E, Sec. E.2. Assumption E ensures
that Qn(9), its partial derivatives, and its inverse are uniformly bounded in both row
and column sum norms, uniformly in 6 € A (see Lemma B.2(7)).

Some additional technical assumptions are required. Note that A,r()\) and C(0) are
both block diagonal. Denote their tth blocks by A;(\) and Cy(6), respectively.

Assumption F: A;1(\) [ 71, CU(8)Qu(6)Ci(5)] P A7 ¥(N) is bounded in both row
and column sum norms, uniformly in § € A for all s and ¢, where Q1(d) = I, and
Qi(0) = I,, — CL(O)1L[IL.CH8)Cy(O),] M. CL(6), t =2,...,T.

Assumption F ensures that Q&%(é)QD(é)QZ_V% (8) is bounded in both row and column
sum norms uniformly in § € A (see Lemma B.2(i7)), which facilitates our asymptotic
analysis (see Appendix E). Another high-level assumption, the identification uniqueness,
on the population object function S3¢(8) is imposed as in GMM estimation, where S3¢(6)

is the “concentrated” E[S%(0)] with 3 and 2 being concentrated out (see Appendix C).

Assumption G: infézd(5’5o)2€| Sx(0)|| > 0 for every e > 0, where d(8,60) is a measure



of distance between § and &g.

More primitive conditions under which Assumption G is satisfied are given in Ap-
pendix E. Finally, to cater to various asymptotic scenarios, the missingness cannot be
“too heavy”. In the case of a fixed T" or n, the number of observed responses is at least 2
to ensure a complete spatial structure after ¢ is concentrated out. See Appendix E, Sec.

E.2, for details. Let T; be the number of times that the unit-i’s response is observed.

Theorem 2.1. Under Assumptions A-G, as N — oo, if ™ — ¢; and % — d;, where
¢, d; € (0,1], and min(T}) > 2 and min(ny) > 2, then we have Gy —= 6.

The asymptotic distribution of Oy can be derived by applying the mean value theorem:
0 = 5% (6y) = S%(0) + %S}"V(é)(éM — 6), where 0 lies between y and 6 and its value
varies over the rows of -2:S3/(f). The key result is the asymptotic normality of \/;Nﬁsj\’ (6o).
Recall V = QpV, e = XBy+D@py+D(D'D) D'V, and V = T'V, where T = CB;%. Then,

S (6p) can be written in linear-quadratic (LQ) forms in V:

1
730 HlV’
2;4 V,®1V - %L%?
Sn(fo) =4 7 " (2.10)
57 V'OV + 1LV — jtr(H\Qo),

L V/<I>3V — %tr(HPQD),

2
207,

\

where TI; = I'QpX, I, = I'QuJ(XfB + Déy), &, = I'Qul, &y = I'Qu[H,Qp +
2JD(DD)~'D|T, and &3 = I'QpH, Qo

The representation (2.10) allows the application of the central limit theorem (CLT)
for liner-quadratic (LQ) forms of Kelejian and Prucha (2001) and the Wold device to
give \/;Nﬁs}kv(e(ﬁ 2 N(0,limpy 00 I'y(6p)), an important step toward establishing the
asymptotic normality of fy. It also allows for an easy derivation of Var[S% (6,)] as seen

in Appendix A. The consistency of fy leads to N%[%SJ*V(H_) — E[:Z5%(60)]] = 0,(1).
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Theorem 2.2. Under the assumptions of Theorem 2.1, we have, as N — o0,

VN (B — 60) N(o, Jim. z;—l(eo)rjv(eo)zyv—“(eo)),
where Y5 (0y) = —wE[2S%(0)] and T (0y) = N%Var[S]*V(OO)], both assumed to exist

N, —Loe

and 33 (6p) assumed to be positive definite for sufficiently large N.

2.3. Estimation of the VC matrix

Inferences for 6 require a consistent estimator of the asymptotic variance-covariance

(VC) matrix X5 (60)T (60) X " (6o). The analytical expressions of :2; Sy (6) and I'y (6)

are given in Appendix A. First, it is easy to show that S = —N%%S}"V(QHGZGAM consis-
tently estimates % (6p), i.e., % — X% (6) = op(1).

'y (0p) contains the common parameters 6y, the fixed effects ¢y embedded in Ils,
and the skewness k3 and excess kurtosis k4 of the idiosyncratic errors. The common
plug-in method may not be valid due to the involvement of incidental parameters ¢y. A
corrected plug-in method is proposed. Let T'% (6y) = F*Nw)|(G:ém,¢:<£m,m3:f%3,zv,n4:r%4,N) be the
plug-in estimator, where quSM is the M-estimator of ¢ (or a GLS estimator by regressing
S[Y = AL (M) X By] on SAZL(Ay)D with weight Qx(dy)), and s v and &,y are consistent
estimators of k3 and k4. When both n and 7' are large, F}‘V(éM) would be consistent as
¢EM is. However, when either n or T is fixed, ¢EM is not consistent and a bias correction

is necessary after plugging ¢y into I'%(0). We show that the only term that cannot be

consistently estimated is the one quadratic in ¢, embedded in IT511,.
Corollary 2.1. Under the assumptions of Theorem 2.1, we have,
T () = T (6o) + Bias*(6o) + 0,(1),
where Bias® (o) has a single nonzero element on the diagonal corresponding to the A-\

entry, given by N%tr[(]D'D)*lD’J’QDJD].
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See the proof of Corollary 2.1 in Appendix E (Sec. E.3) for details. Corollary 2.1
leads immediately to a general consistent estimator of I}, (6y):
= P7V<9AM) - Bias*((?M),
referred to in this paper as the corrected plug-in estimator.
Finally, we provide consistent estimators for k3 and k4. As V is infeasible for es-
timation due to the incidental parameters problem and incompleteness, we start from
QJ_\,%@' = Q]_V%QDI‘V, which can be “consistently” estimated by QJ_V%(SM)V(BM,&) =

1

2 () Qu (0n) 202 (o) S[Y — A - (M) X Gu]. Let gjx be the (5, k)th element of N xnT ma-

w\»—A

trix Qp = Q;V%QDI‘. Denote the elements of V by v;,l =1,...,nT, and the elements of

QnV by 05,7 =1,..., N, where [ and j are the combined index of cross-sectional and time

dimensions. Then, #; = Y 77, ¢;xvk, and thus E(?Y) = S CRE(v}) = opoks S -

Summing E(0?) over j gives k3 = (Zjvzl E(@?)) (a3 Z] DYy ¢3) " Its sample analog:
Ty

k3N = (2.11)

AvMZg IZk 1 ]k:

1A s
gives a consistent estimator of k3, where 0; is the jth element of €, (m)V(Su, du), and

ik is the (j, k)th element of Qp(dy). Similarly, to estimate x4, we have,

nT nT
E(9 ) Zk 1 q]k:E(Uk:> + 3%0 D ket Qi q]qu]l 3%0 Zk 1 qjk;
nT nT nT .
=2 k=1 q?kmago + 3030 D ket D qukqulv j=1L1...,N,
. . N nT
which gives k4 = (Z] 1E( ;) — 30 Z] 12 =1 q?k‘ﬁ‘l)( 00 Z] 1 Zk 14 jk) , by

summing E(0 ) over j. Hence, a consistent estimator for x4 is

/%4’]\[: Z] 1 ] UMZ] IZ Zl lq]kQﬂ (212)

AUMZJ 1Zk 1 ]k

Corollary 2.2. Under the assumptions of Theorem 2.1, we have, as N — 00,

(i) Ran —= Kso and Ran — kio; (i1) S — 2% (6) == 0 and T —T%(6) — 0;
and therefore f]}‘v_lf"jvi}‘v_l' — 25N (00) T (00) 25 (60) 2 0.
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3. M-Estimation with Serial Correlation

In this section, we show that our M-estimation and inference methods introduced in
Sec. 2 can be extended to allow the errors to be serially correlated.

Assumption A’: The innovations follow an MA process, vy = e; + Te;,—1, for all
and t with |7] < 1, e; ~ iid(0, 02), and E|ey|* ™ < oo for some € > 0.

To conserve space, we use the same set of notations of Sec. 2, with relevant quantities
being redefined to cater to the extra parameter 7. Let now § = (A, p,7), 0 = (8, 02,8
and Qy(0) = SAL(NB. 1 (p)[Y(T)Y (1)@ LB (p) A+ (NS, where T () is T x (T+1)
with rows: (7,1,0,...,0), (0,7,1,...,0), ---, (0,0,...,7,1).

With the redefined d, # and Qn(0), update Y, X, D, and V in (2.2). The transformed
model remains in the same form as (2.2) except that now Var(V) = % Iy. The loglikeli-
hood function of (6, ¢) remains in the same form as (2.3) with o2, being replaced by o2,
The constrained QMLE of ¢ remains in the same form as (2.4). Updating Qp(d) with
the updated D(6) and thus V(3,0), we then see that the concentrated quasi Gaussian
loglikelihood of @ has the same form as (2.5), which leads to the direct QMLE of 6.

The CQS function of 6 is obtained and its expectation at the true 6, is found in a

similar way as that in Sec. 2. The desired AQS function of 6 is obtained:

LX'(8)V(8,9),

2 V(8,0)9(8,6) — Nio?],
SN0 = 2 V(8. HA(G)V(8,0) + ZV(8,0)I(0)e(8,6) — $ex[HA(9)Qu(8)], B
22 V' (8, O)H,(8)V (5, 6) — 5tx[H,(6) Qo (6)],
V' (8,0)HL(9)V(8,6) — Sr[H. (6)Qn(9)),

\ e

where H,(8), H,(6), J(6), V(8,9), and €(8,6) in (2.6) are redefined to accommodate the

extra 7, and H,(0) is defined as H,(6). Solving S () = 0 gives the M-estimator 05 of 6.
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The asymptotic properties of éﬁ can be established in a similar way as for Oy in Sec.
2, based on a similar set of assumptions (A’ given above and B'—G’ in Appendix D).

Theorem 3.1. Under Assumptions A'=G', as N — oo, if ™t — ¢; and % — d;,
where ¢, d; € (0,1], and min(T}) > 2 and min(n,) > 2, then 0 = 6.

To derive the asymptotic distribution of HAP?[, note that the AQS functions at the true 6,
expressed in V, take forms similar to (2.10), with an extra 7-component. In (2.10), replace
V by (T ® I,,)€ and o2, by o2, where & = (£},&],..., &), and & = (e, €, - - - ent);
redefine I as Q]_V%SA;%B;%(T ® I,,) and update II, and & accordingly, r = 1,2,s =

1,2,3; and introduce new @4 (defined as ®3) and H, (defined as H,). We have,

;

L,
05 & 0E = ok

Sy (o) = leogfqbg_i_ ULQOH/ZV_ Lr(H,\Qp), (3.2)
20%()5’@35 — %tr(Hp@D),
20150 g/q>4g — %tr(HTQD),

which is linear-quadratic in £ with iid elements. Again, the importance of this represen-
tation is two-fold: it allows the application of CLT for L.(QQ forms of Kelejian and Prucha
(2001) and Wold device to establish the asymptotic normality of \/LNfleV(QO) (thus the

asymptotic normality 63) and an easy derivation of Var[S%(6)] as seen in Appendix A.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as N — 00,
No D : o—1 o o—17
VL (65— 60) 2 N(o, Tim 257 (60) T (60) 25 (eo)),

where 3%, (0y) = —N%E[%Sj’v(ﬁo)] and T (6y) = N%Var[SX,(QO)], both assumed to exist

and X% (0y) assumed to be positive definite for sufficiently large N.

For statistical inference, ¥%(6p) is estimated by 59, = _N%%S%W)b:ég' The ana-

Iytical expressions of 52;5%,(6) and ' (6,) are given in Appendix A. Similar to I'y (6p) in
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Sec. 2, I'{(0y) contains the common parameters 0, the incidental parameters ¢, and the
skewness k§ and excess kurtosis x§ of idiosyncratic errors {e;}. Again, the usual plug-in

estimator would not lead to a consistent estimate of I'S;(6).

Corollary 3.1. Under the assumptions of Theorem 3.1, we have,
% (65) = T'%(6) + Bias®(d) + 0,(1),
where Bias®(dy) has a single nonzero element on the diagonal corresponding to the A-\
entry, given by —tr[(D’ ) ' D' QpJD].
Thus, a corrected plug-in estimator (corrected in II5115) is developed:
T3, = I%,(63) — Bias®(82).
Finally, we note that Q;V%@’ = Qp(Y ® I,)€ can be “consistently” estimated by

Qy

N[

RPN 1o AR BN . .
(6IV(32,05) = Q532 (05)Qp(63) Q24> (63)S[Y — A 1(A)X35]. We follow the idea of
Corollary 2.2 and develop a pair of consistent estimators for x5 and xj as follows:

N . N T+1 IO
e Z] 1”? e Zg 1 0 y 3024&12] 1271( )Zl 14 ng:q?l

~ (T+1) A s ~ (T+1) »
o S 68 25D DD SN
where g5 is the (j, k)th element of N x n(T + 1) matrix Q32 (83)Qo(862)(T(75) ® L) and

b; the jth element of Q2 (65)V (55, 03).
Corollary 3.2. Under the assumptions of Theorem 3.1, we have, as N — 00,
(i) RS n — Ko and &y — Kor (1) 5% —S%(00) 0 and T —T%(6) 2 0

and therefore if{lffvif{l’ — 2571 (00)T%(00) 2% Y (60) 2 0.

4. Monte Carlo Results

Extensive Monte Carlo experiments are conducted to investigate (i) the finite sam-
ple performance of the proposed M-estimator and the corresponding corrected plug-in
estimator of the VC matrix, (i7) the consequence of discarding observations with miss-

ing responses, (iii) the effect of ignoring the estimation of fixed effects, and (iv) the
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performance of some related estimators. The following data-generating process is used:
SY, =S AT N (X B+ p+ aul, +UY), U= pMU AV, t=1,...,T,

The parameters values are set at (3, \, p,02) = (1,.2,.2,1). The X/s are generated from
N(2,221,) independently, the individual FEs p from +37,X; + e, where e ~ N(0, 1),
and the time FEs o from N(0, I7) with n € (50,100, 200,400) and 7" € (5,10). For each
Monte Carlo experiment, the number of Monte Carlo runs is set to 1000.

The spatial weight matrices can be Group interaction or Queen contiguity. To generate
W, under Queen, randomly permute the indices {1,2,...,n} for n spatial units and
then allocate them into a lattice of & x m squares. Let W, ;; = 1 if square j shares a
common boundary or vertex with square ¢ and 0 otherwise. To generate W; under Group,
let K(n) = Round(n®®) be the number of groups and then generate K(n) group sizes
according to a uniform distribution. The distribution of the idiosyncratic errors can be
(1) normal, (2) standardized normal mixture (10% N(0,4?) and 90% N(0,1)), or (3)
standardized chi-square with 3 degrees of freedom. See Yang (2015) for details. Both
the case of iid errors and the case of serially correlated errors (7 = 0.5) are considered.

The selection matrices S; are generated according to two mechanisms: (i) MAR (miss-
ing at random) or (ii) MCAR (missing completely at random). The former depends on
X; and ¢, but the latter simply on the outcomes of independent Bernoulli trials with the
probability of missing p, for period t. We design a MAR mechanism such that the missing
percentage is about 25% (see Appendix E, Sec. E.5 for detail), and choose p; = 0.1 or
0.3 for MCAR mechanism to see the effect of the degree of missingness.

Our Monte Carlo experiments involve nine estimators, but the main ones are ME-MR
(the proposed M-estimator), ME-GU (M-estimator assuming genuine unbalancedness (GU)

after deleting observations with missingness, considered in Meng and Yang (2021)), and
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QMLE-MR (the QML estimator ignoring the effect of estimating the FEs). With these,
the issues (i)-(iii) are addressed. The remaining six estimators relate to the “existing”
methods, in particular the imputation methods, which address the issue (iv).

Table 1 contains partial Monte Carlo results on the three main estimators for the
case of iid errors and MCAR. The results show an excellent performance of the proposed
M-estimation and inference methods, irrespective of the error distributions, the spatial
layouts, parameter values, as well as the missing percentage. In contrast, the QMLE-MRs
(the closest to ME-MRs) of spatial parameters do not perform as well as the ME-MRs.
This shows the consequence of ignoring the effects of estimating the FE parameters. By
comparing ME-GU with ME-MR, we can see the consequences of treating MR mechanism as
GU mechanism: ME-GUs of the spatial parameters perform poorly even when the sample
size is fairly large. When the missing percentage is higher, ME-GUs become more biased.
This is consistent with our expectation: treating MR as GU ignores spatial effects from
the deleted units and the larger the missing percentage, the more serious the consequence.

Table 2 contains partial results on two estimators QMLE-MRSC and ME-MRSC for the
case of serially correlated errors and MCAR, as GU-type estimators are unavailable. The
proposed ME-MRSCs of all parameters have a very good finite sample performance. Their
corresponding standard error estimates are also close to Monte Carlo standard deviations.
In contrast, the QMLE-MRSCs typically provide much worse estimates for error variance
parameter o2 and serial correlation parameter 7, showing that the incidental parameters
problem is more serious to the estimation of the parameters in the error term.

Due to space constraints, we report the Monte Carlo results under MAR mechanism
in online Appendix E (Table 9). Again, the results show that the proposed M-estimation

and inference methods perform excellently in finite sample, and that their performance
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is not affected by allowing missingness to depend on the regressors and fixed effects.
While strictly speaking there are no existing methods for use in estimating our models,
some may relate to ours. These include the three imputation estimators, one nonlinear
least square estimator (Wang and Lee, 2013), one naive estimator, and a QMLE under
GU. See Appendix E (Sec. E.5) for a detailed definition of these estimators. It is in-
teresting to know how these estimators perform in estimating our model. We therefore
included these six estimators in our Monte Carlo experiments. A much larger set of
Monte Carlo results, including these reported in the main text, is given in Appendix E

(Sec. E.5). The results show that none of these six estimators perform satisfactorily.

5. An Empirical Application

In this section, we present an empirical study to analyze horizontal competition in
excise taxes on beer and gasoline among US states. The theoretical models set up in
Kanbur and Keen (1993) and Nielsen (2001) imply that independent jurisdictions have
incentives to engage in commodity tax competition in order to attract cross-border shop-
pers and thus maximize their tax revenue. Therefore, the tax rates of neighboring states
are likely to play a role in the determination of the state’s own tax policy. Egger et al.
(2005) and Devereux et al. (2007) find empirical evidence for positive spillover effects.
Egger et al. (2005) estimate the SE parameter using GMM and the SL parameter by 2SLS.
Devereux et al. (2007) do not include the SE effect in the model. They deleted the entire
state-year observation with missing response and/or covariates and treated the resulting
data as genuinely unbalanced (GU) panel in the sense of Meng and Yang (2021). Thus,
spillover effects to/from these ignored units with missing tax rates were not captured.

In this section, we reconsider this study under the missing-on-response-only (MR)
mechanism since the explanatory variables can be fully observed over a chosen period.
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We construct two panels based on 48 contiguous US states over 19 years (1978-1996), the
tax rates on beer and the tax rates on gasoline. The numbers of observations for beer
and gasoline tax rates are, respectively, 911 and 888. We define the spatial neighboring
states as those that share a common border. The overall spatial weight matrix W is row-
normalized. The explanatory variables we use are state size (Size, measured by population
density), spatially weighted size ( WSize), dependency ratio (DR), government ideological
orientation (GI0), lagged sales tax rate (LSTR), gross state product (GSP, in trillion),
and public expenditure (PE, in billion). With these, we write the model as

SiTax; = S;A7H()\) (Sz’zetﬁl + W x SizeiSy + DRy 3 + GIO 84 + LST R, 35
+GSP.Ss+ PESr + p+ auly, + Uy), Up=pWU+V,, t=1,...,19.

Among the various model parameters, A\ and 7 are of particular interest as they quantify
the intensity of tax competition and the path dependence in setting state tax rates.

Table 3 gives a descriptive summary of the data. Tables 4 and 5 summarize the
empirical results for the beer tax rates and the gasoline tax rates, respectively. Besides
the five estimators involved in the above Monte Carlo study, two additional M-estimators,
ME-IMR and ME-IMRSC, based on imputed data (Honaker and King, 2010) under iid errors
and serially correlated errors, respectively, are also included.

Our analyses lead to a deeper understanding of the mechanism of tax competition
and offer more insight into the nature of spatial interactions. Both analyses based on
the proposed methods point to the existence of strong and positive endogenous spatial
spillover effects and strong and positive serial correlation. These imply that states mimic
neighbors’ tax moves (tax competition) and competition persists over time (a point not
considered by Egger et al., 2005). They help mitigate revenue erosion and underscore the

importance of multi-year fiscal planning for both temporary and permanent tax reforms.

From Table 4, ME-MR shows that the SL effect is significant and positive at 10% level,
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indicating the presence of beer tax competition. In contrast, none of the remaining four
estimates reveals this, highlighting the limitations of QML, GU-based and imputation-
based methods. QML method ignores the effect of estimating fixed effects; GU method
ignores the spatial effects of the units with missing responses; and imputation methods
do not account for spatial dependence during imputation. Interestingly, although the
beer tax rates data have only one missing response, ignoring the spatial effects from
this observation either through ME-GU or ME-IMR completely changes the conclusion on
tax competition. All estimates show that the SE effect is negative but insignificant,
consistent with findings of Egger et al. (2005). However, our proposed methods are able
to tell that the SE effect is insignificant. Furthermore, the three MRSC-based estimates
reveal that the serial correlation is positive and significant, suggesting the presence of path
dependence in state beer tax rate decisions. ME-MRSC successfully identifies significant tax
competition at 5% level, whereas QULE-MRSC does not. After imputing the single missing
response, ME-IMRSC shows the SL effect becomes less significant compared to ME-MRSC.
From Table 5, ME-IMR, QMLE-MR and ME-MR all provide significant evidence for a pos-
itive SL effect, indicating the existence of gasoline tax competition. However, this effect
is not captured by GU-based estimates. Both QULE-MR and ME-IMR appear to underesti-
mate the competition effects compared to the proposed ME-MR. The underestimation by
QMLE-MR may result from the incidental parameters problem, while that by ME-IMR may
stem from neglecting the spatial dependence during imputation. Most estimates of the
SE coefficient show insignificant SE effect. Furthermore, ME-IMRSC of the SL parameter
is smaller than the proposed ME-MRSC, again showing an underestimation of competition
effects. The QMLE-MRSC shows the SL effect is insignificant, and thus fails to capture

the competition effects. Lastly, all estimates show serial correlation is significant and
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positive, further supporting the presence of path dependence in tax-setting decisions.

6. Conclusions and Discussions

We consider fixed effects estimation of spatial panel data models with missing re-
sponses. It allows for unobserved spatiotemporal heterogeneity, time-varying endogenous
and contextual spatial interactions, time-varying cross-sectional error dependence, and
serial correlation. We propose an M-estimation method for model estimation and a
corrected plug-in method for model inference, both taking into account the effects of
estimating the fixed effects. We study the asymptotic and finite sample properties of the
proposed methods. We apply our methods to US state tax competition data, leading to
a much deeper understanding of the tax competition mechanism. Our methods allow for
the estimation of time or unit invariant covariates effects, such as gender and policy, by
imposing relevant constraints on the FE parameters ¢ and the D matrix in Model (2.1).

The proposed methods apply to matrix exponential spatial specification (MESS) by
replacing, in Model (1.2), I, — AW; by exp(AW;) = Y oo (AW,)!/i! and I, — pM; by
exp(pMy) = Y ooo(pM,;)'/il, and can be easily extended to allow for a high-order MA
process for serial correlation. They can be further extended to allow for high-order spatial
effects by replacing I,, — AW, by I,, — Zle MWy and I, — pM, by I, — Zﬁ’zl peM.;. Details
on these are available from the authors upon request. Extending MESS to high order

runs into a computational issue as the partial derivatives do not possess analytical forms.
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Appendix A: AQS, Hessian, and Variance of AQS

A.1. Derivation for Section 2

AQS function. Write V'(3,8)V(8,6) = V'(3, \)¥(6)V(8, \), where V(3,\) = S[Y —

A, 1(\)X3] and ¥(§) = ( )Qp ()2 2 2(6). Letting D(\) = SA, 7(\)D, then,
T(6) = Q3 (6) — Q' (O)DN)[D'(N)QY (DN~ D' (N2 (9), (A1)
which allows the use of the matrix result: ;2ZQ5'(0) = —Q5' (0)[Z Q)] (), w = A, p.

Denoting ¥, () = ZY(8),w = A, p, we obtain, after some tedious algebra:

Uy(6) = — Q7 (6)Qn(6)HL(6)Qn (6) 257 (0) — UOK(S) — K/(0)B(8),  (A.2)

-

B,(0) = — Q5 (6) Qo (6)H, (6)Qn (5)S2y? (), (A.3)
where K(3) = S[2 AZL(\)]D[D/(8)D(8)]'D¥(86)257 (8). These lead immediately to the
CQS function (2.6) and thus the AQS function (2.7).

The Hessian matrix. To derive Hi(0) = 2, 5%(6), let ©,,(5) and £, (6) be the
1st- and 2nd-order partial derivatives of Q(0), w, @ = A, p; similarly are ¥, (8) and ¥, (0)
defined. Denoting J(6) = 25 (8)S[Z AA(A)], we obtain the components of H7(0):

Hjs(0) = — 2 X'(6)Qn(0)X(9), H;,2(0) = — 55X (0)V(8,8) = H,(6),

Hi\(0) = 5XT(0)V(8,0) + ZX' AL NS TAOV(B,A) — X (0)I(6)X8 = H,(6),

H;,(0) = ZXA 7 (NS TOV(B. ), Hizpo(8) = =35 VI(B,6)V(B,8) + 507 N1,

Hz:,(0) = 552V (B, VWA(0)V(8, ) — V' (8,0)I(6) XS = Hya(6),

H3s (0) = 5V (BN, (0)V(8,0) = Hy(0), Hps(6) = Hg(0),

H;,\(0) = 2V (B, VWA(0)S[E A (NIXB + ZV/(8,6)I(8) War A, (A) X6

—HBXT(0)Qu(8)I(5)XB — 55V (B, VW (§)V(B, A)
—5r[22(0)W(6) + 2 ()T (9)],

H;,(0) = =52V (B, VW, (6)V(B,A) + £V (B, VW,(8)S[& Az (V)X

22



—5t[(8) W, (8) + $21,(8) ¥(3)],
Hi(0) = =55V (B )W) V(B A) + V(8 \)W,(8)S[ 55 A7 (V)] X5
—5tr[S2, () WA (0) + $23,(8) ¥(3)],
H;,(0) = —32V'(8, N, ()V(B,\) — 2tx[,(8)T,(5) + §2,,(5) W ().
The VC matrix. For stochastic terms of the forms in (2.10), we show that, for
r,s = 1,2,3, (i) Cov(ILLV, IILV) = 0% IIl1; (it) Cov(V'®,V, II.V) = o3 k3. 11,;
and (ii1) Cov(V'®,V, V'O, V) = ok k40.¢s + olytr(P, D), where ¢, = diagv(®P,) and

®° = O, + L. Apply these results to (2.10), we obtain,

/ 1 / ! / /
INIL,  =kslli, IT} 115 + ogksll] e, ooksllips
i} 1 ~, 0—13511, Zio, %3513
Var[Sy (6p)] = =
0 = / / = !
~, ~, Hoo + 1511 + 200k3115¢00, Zaz + ogrsllyps
~ ~, ~, 233

where =, = tr(P,P9) + kaplps, 7,5 = 1,2, 3.

A.2. Derivation for Section 3.

The Hessian matrix. With redefined Qy (), the non-7-block of H§ (6) = -3, 5%(6)
has the same form as H3 () in Sec. 2. Extending the notations, Q,,(0), Quw(8), ¥, (6),
and W, (8) of Sec. 2 to w,w = A, p, 7, we obtain the 7-components of H$(6):

1, (0) = SX A (NS (5)V(5,\) = H(0),

12, (6) = 35V (8 )W, (5)V(5, ) = HZ,4(0),

H; (0) = =5V (B, VU (0)V(8, 1) + BV'(8, )W+ (8)S[5 A (NIX5

— 5t [ (0)Ur(8) + 2 (8) T (9)],

HZ\(0) = —

352V (B V)W (0)V(B,A) + 55V (B, NV (8)S[55 A7 (V)]X5
—5Er[€2(0)r(8) + 21 (0)¥(8)], and for (w, @) = (p.7), (7, p), (,7),

H5(0) = =552V (B, )W (0)V(8, A) — 53[0 (0) ¥ (8) + L ()T (9)],

2
20%
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The VC matrix. Applying the results leading to Var[S% ()] on (3.2), we obtain,

>
Var[S%;(6)]
/ 1 ! / / / /
ML, =ksllien, ML + oeorsllipo, oeokisllyps, Oeokisllipa
~ 1= = 1 = 1 =
) UZO —11 —12 030 —13 0.30*—‘14
1
— - / / = / = /
o2, ~, ~, S + 151y + 20.0k3l1502, Za3 + 0eorsllyps, Zasq + oepkallypa
€
~, ~, ~, 233, 234
~, ~, ~, ~, 244

where 2, = tr(®,.9) + kyplps, 8 = 1,2,3,4.

Appendix B: Some Basic Lemmas

The following lemmas are essential to the proofs of the main results in Sections 2 and

3. Lemmas B.2 and B.3 are new and their proofs are given in Appendix E (Sec. E.1).

Lemma B.1. (Kelejian and Prucha, 1999): Let {Anx} and {Bn} be two sequences
of N x N matrices that are bounded in both row and column sum norms. Let Cy be a
sequence of conformable matrices whose elements are uniformly O(h;'). Then,

(i) the sequence {AxBn} are bounded in both row and column sum norms,

(ii) the elements of An are uniformly bounded and tr(Ax) = O(N), and

(iii) the elements of AyCy and Cy Ay are uniformly O(hy').

Lemma B.2. Under the setup of Section 2 and Assumptions C-F, the following ma-
trices are bounded in both row and column sum norms, uniformly in § € A: (i) Qn(9),
2(0) = £, w = A p, Q0), (i1) 27 ()Qo(0)2 (6), and (i) 2 (8)P5(3)2 (0),
where Pg(8) is the projection matriz based on X(6) = Qp(6)X(6).

Lemma B.3. Under Assumptions C-E, tr[ANX[X'(§)Qp(§)X(6)]'X'By] = O(1),

uniformly in 6 € A, for Ay and By bounded in either row or column sum norm.
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Lemma B.4. (Lee, 2004): Let Ay be an N x N matriz bounded in both row and
column sum norms, with elements of uniform order O(h]_\,l), cy be an N x 1 vector with
elements of uniform order O(h 1/2), and V = (vy,...,vy)" with v; ~ iid(0,0?). Then,

() B(V'ANV) = O(), (i) Var(V'AyV) = O(),
(iti) VIANV = Op(£),  (iv) VANV = E(V'AyV) = O,((£)32),

(v) ANV = Op((7)?).

Appendix C: Proofs for Section 2

Population objective function. The population counterpart of Sif(4) is

[ 'O)HA(O)V()] | E[V'(9)I(S)e(Bu(d),0)] 1
Se0) = | EVOVOM T EVOVON 2 FhORe(0)) (1)
E[V'(§)H,(6)V(S)] 1

2E[V'(2)V(5)]/ M ~ g (0)Q(0)]

where V(8) = V(Bu(6), 8), obtained by first solving S%(0) = E[S%(0)] = 0 for 8 and o2

Bu(0) = [X'(9)Qo(0)X(8)] X' (6)Qo(HE[Y()] and &7,(0) = 5 EV'(9)V(9)], (C.2)

and then substituting 3y(0) and 52,(0) back into the d-component of S (6).

Proof of Theorem 2.1: By theorem 5.9 of Van der Vaart (1998), we only need to

SH(8) — Sx(9)]] 25 0 under the assumptions in Theorem 2.1. From

show supses - |
(2.9) and (C.1), the consistency of dy follows from:

(a) infsend?,(6) is bounded away from zero,

(b) supsen |07 u(0) — 53 u(0)] = 0p(1),

() supsea 37| V'(6)Ho(6) V() — E[V/(6)HL(8)V(9)]] = 0p(1), for w = A, p,

(d) supsea 77| V'(9)I(5)e(5u(6), 8) — E[V/(6)I(8)e(Bu(8), 6)]| = 0p(1)-

Proof of (a). From (C.2), V(§) = Qp(6)Y(8) — Qp(8)X(8)Bu(6) = Qz(5)Qn(8)Y(8)+
P (8)Qp (6)[Y(5) — E(Y(6))], where P;(8) and Qz(6) are the projection matrices based on
X(8) = Qu(8)X(8). Let n = SAL(XfFo+Do). As Y(6) = Q52 (8)1+92y" (0)SAIB AV,
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we have by orthogonality between Qx(J) and Pg(6),

0on(0) = 5 EY'()Q)Y(9)] + 5 E{[Y(0) — E(Y(6))IP(9)[Y(5) — E(Y(3))]} (C.3)

=

— L0 (5)Q(0)2? (0 + Ftr(Qn(3)On (3)); (C.4)
where Q(8) = Qu(8)Qx(8)Qp(6), P(8) = Qu(8)Ps(6)Qn(8) and Ox(8) = 2y (8)Q2ny2 (6).
The first term of (C.4) can be written in the form of a’(d)a(d) for an N x 1 vector

function of §, and thus is non-negative, uniformly in § € A. For the second term,
247(Qo(0)On (9)] 2 $29min[On(9)]Ex(Q0(8)] = 2 Ymax(2) ™ omin [ 2 (9)]
> g max (AN AN) ™ Ymax (ByBN) ™ Ymin[AN (V) Ax ()] 7min[Bly () B (p)] > 0,
uniformly in § € A, by Assumption E(iii). It follows that infsead? (9) > 0.

Proof of (b). From (2.8), V(§) = Qu(8)[Y(8) — X(6)5u(5)] = Qz(6)Qn(6)Y(4) and
524(6) = = Y'(5)Q(8)Y(6). From (C.3), 52,4(6) = E[Y/()Q(0)Y(0)]+52tr[P(5) O (9)]
Thus, 52,(6) — 52,(0) = 2= [Y'(5)Q(8)Y(3) — E(Y'()Q(9)Y(6))] — F2+r[P(5)On (6)].

For the second term, 0 < -tr[P(0)On(0)] < 7 Vmax|On(0) 770 [Qo (0) £x [P5 (6)] =
o(1), because tr[Pg(d)] = £, Ymax|Qn(d)] = 1 and, by Assumption E(iii),

Yinax[On ()] < Ynin (AN AN) ™ Vi (BYyBN) ™ max[Al (M) AN (M) 1max[Bly () B (p)] < 0.

Therefore, one has supsea |3 20 2t (P(0)On(0)]| = o(1). For the first term, letting Q) =

1

Q2 (0)Q(8)2y?(6) and using SY =1+ SA 1B, 1V, we have

=

7 [Y'(0)Q(0)Y(0) — E(Y'(9)Q(0)Y(9))] = 5 [Y'S'Q(I)SY — E(Y'S'Q(3)SY)]

= 5 QO)SA B 1V + 1 [VB /A7 SQ(0)SA, 1B, 7V — o5 tr(Q(9) Q).

~
Thus, the pointwise convergence of the first term follows from Lemma B.4(v), and
the pointwise convergence of the second term follows from Lemma B.4(iv). Therefore,
F[Y'(6)Q(8)Y(6) — E(Y'(6)Q(6)Y(8))] — 0, for each § € A,

Next, let 0, and 03 be in A. By the mean value theorem (MVT):

26



Y (00)Q(01)Y(61) — 5 Y'(52)Q(02) Y (0) = 5 Y'S'[55Q()]SY (52 — 1),
where 0 lies between ¢; and &,. It follows that N%Y/ (0)Q(0)Y(9) is stochastically equicon-
tinuous as supsea - ~Y'S[2Q(6)]SY = O,(1), @w = A, p (See Appendix E, Sec. E.3
for details). With the pointwise convergence of N%[Y’(é’)Q(é)Y((S) — EY'(6)Q(0)Y(0))]
to zero for each 9 € A and the stochastic equicontinuity of N%Y’((S)Q((S)Y((S), the uni-
form convergence result, supsea |Ni1[Y’(6)Q(5)Y(5) —E(Y(9)Q(9)Y(5))]| = 0,(1), follows
(Andrews, 1992). Thus, the result (b) is proved.

Proof of (c). We show only sup;c 7 |V'(6)Hx(6)V(8) — E[V'(6)H,(6)V(6)]] = 0,(1),
as he other part is similar. By H, (), V() and V() given below (2.6) and in the proofs
of (a) and (b) above, we can write %V'(é)H,\(é)V(é) - N%E[V'(CS)H,\@)V@)] as

7~ [Y'S'Q0)(552n(0)Q(0)SY — E(Y'S'Q(6) (552w (9))Q(D)SY)]

‘jéftr[P( (N ()P,

~(0)Qp(0)P (5)(@]@(5)9&%(5). The first term is similar in form to

l\J\»—l

where P(0) =
N%[Y/S’Q((S)SY —E(Y'S'Q(0)SY)] from (b) and its uniform convergence is shown in a
similar way. Furthermore, by Lemma B.3, the second term is o(1) uniformly in 6 € A.

Proof of (d). Again, using the expressions of By(6), Bu(8), V(6) and V(§), we have
S V(8)1(8)e(Bu(0), 6) — =E[V'(8)I(5)e(Fu(5), 0)]
= 5 [Y'S'Q(0)(M(9) + K(9))SY — E(Y'S'Q()(M(9) + K(3))SY)]
— Zoer[P(5)K(S)Qy] — Zotr[Q(8)M(5)2],
where M(6) = [S(&AH(A)X — K(8)X(A)][X (AT (8)X(A)] LA (A)T(5), and X(\) =

SA_L(A\)X. Therefore, the uniform convergence of the first term can be shown in a similar
way as we do for — [Y’S’Q(é)SY —E(Y'S'Q(6)SY)] from (b) due to their similar forms.

By Lemma B.3, the remaining two terms are shown to be o(1), uniformly in § € A. =
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Proof of Theorem 2.2: Applying the MVT to each element of va(éM), we have

K00 = 7253 (00) + [ 5558 O] 0, i i von ] VL = 00),  (C.5)
where {6,} are on the line segment between 0y and 6y. The result follows if

(a) —A=S%(00) = N[0, limy 00 T (65)],

(0) 35575V Oss, 1 rin row — 29755 (80)] = 0p(1), and

(€) %o Sk (0o) — E(z Sk (0h))] = 0p(1).

Proof of (a). Asseen from (2.10), the elements of S% () are linear-quadratic forms
in V. Thus, for every non-zero (k + 3) x 1 constant vector a, a’S%(6y) is of the form:

a'Sx(00) = Uy V + V' &NV — o2tr(dy),

for suitably defined non-stochastic vector by and matrix 5. Based on Assumptions
A-F| it is easy to verify (by Lemma B.1 and Lemma B.2) that by and matrix @, satisfy
the conditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence the

asymptotic normality of —=a'S % (6o) follows. By Cramér-Wold device, }Vl S (6o) N

N[0, limy 00 Iy (60)], where elements of I,(6y) are given in Appendix A.

Proof of (b). The Hessian matrix Hy(0) = -2.5%(0) is given in Appendix A.

a0’

Rewrite Wy () in (A.2) as —W(8)Q(8)T(5) — U(§K(5) — K'(5)¥(5) and W,(8) in (A.3)
as —WU(6)2,(0)T(8). Following exactly the same way of proving Lemma B.2(i7), we show
that both K(8) (defined below (A.3)) and 2K (d), w = A, p are uniformly bounded in
both row and column sums, uniformly in § € A. In addition, the proof of Lemma B.2(7)
also implies wa(é), w, @ = A, p is bounded in row and column sum norms, uniformly in
§ € A. Thus, by Lemma B.1, we have ¥, (6) and ¥, (d), w,@ = A, p are all bounded
in row and column sum norms, uniformly in § € A. With these, V(8y,d) = QpI'V

and V(Bo, o) = SA1[D¢y + B, 1 V], Lemma B.4 leads to ]\1, H}(6p) = Op(1). Thus,

- Hy (f) = 0,(1) since § -2 0, due to Oy — 6y, where for simplicity, H% (6) is used to
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denote 2. 5%

~2 P 2 ——r _ T _
50 N(Q)‘eze} o rth ron S Oy = 04, we have 6,7 = 0,4 + 0,(1), for r = 2,4,6.

As o, " appears in H(0) multiplicatively, N%H}{,(é) = N%H}(B, §,02%) + 0p(1). Thus,
the proof of (b) is equivalent to the proof of N%[HE(B,& 02)) — Hi(6p)] -2 0, or the
proofs of N%[H]"{,S(B, 5,02,) — HiE(6y)] = 0 and N%[H}:}“S(g) — H¥(50)] 2 0, where HE
and Hx® denote, respectively, the stochastic and non-stochastic parts of Hy,.

For the stochastic part, we see that all the components of H3*(3,4,0%,) are linear
or quadratic in 8, but nonlinear in d. Hence, with an application of the MVT on
HiE(B,9, 02,) w.r.t §, the result follows. For the non-stochastic part, the results can
also be shown using the MVT (See Appendix E, Sec. E.3, for details).

Proof of (c). Since V(6o,d0) = QpI'V and V(Bo, \o) = SA-L[D¢y + BLV], the
Hessian matrix at true fy are seen to be linear combinations of terms linear or quadratic in
V. We have, e.g.. 5 [H2,(p0) — E(H:,(p0))] = ke [VBLE AL LS 1, (50)SA BV —
E(V'B /A IS'V,,(60)SA,+BLV)] = 0,(1). The other terms follow similarly. n

Proof of Corollary 2.1. See Appendix E, Sec. E.3.

Proof of Corollary 2.2. See Appendix E, Sec. E.3.

Appendix D: Proofs for Section 3

Let now A = Ay x A, x A; be the parameter space for § = (A, p,7)’, where Ay
is the parameter space for w = X, p,7. Let C(d) = Q;%(é)SA;L}(A), X(9) = C(0)X,
D(§) = C(§)D, and Qp(d) be the projection matrix based on D(¢§), where Qy(J) =
SA L (NB 1(0)[Y(7)Y'(7) @ LB, 1 (p) A1/ (A\)S'. The additional assumptions are:

Assumption B’. The space A of § is compact with the true dy in its interior.

Assumption C'. The elements of X are non-stochastic and bounded uniformly in i

and t. limy_,0 +X'(6)Qp(0)X(8) exists and is non-singular, uniformly in § € A,
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Assumption D'. {W;} and {M,} are known time-varying matrices, and W and M
are such that (i) elements are at most of uniform order ' such that %= — 0, as n — oo;
(17) diagonal elements are zero; and (7i¢) column and row sum norms are bounded.

Assumption E’. Denoting by A(w) either Ay () or By(p), where @w = A, p,

(i) both [[A™ ()]s and [[A™!(w)]]; are bounded:;

(i) 0 < ¢y < Infen,, Ymin[A(@)A(@)] < SUPLep . Ymax[ A (@)A(w)] < € < 0.

Assumption F': |52 (8)Qu(8)232 (8)]1 and |52 (6)Qu(8)25 (8)]|ae are bounded
uniformly in 0 € A.

Assumption G': inf5:d(5750)26‘}5’]°f(5)H > 0 for every e > 0, where d(9, dg) is a measure
of distance between & and & and SSE(0) is the concentrated version of S (0) = E[S%(0)].

Assumptions B’-E are either similar to or the same as Assumptions B-E. Assumption
F" extends Assumption F as Qy(0) is no longer block diagonal. Assumption G’ extends
Assumption G, and a more primitive version of it is given in Appendix E (Sec. E.2).

Proofs of the results in Sec. 3 extend those in Sec. 2 (see Appendix E, Sec. E.4).

Appendix E: Online Supplementary Material

The Supplementary Material contains proofs of the two new lemmas in Appendix
B, details on some important issues (literature, time/space invariant effects, computing)
and technical assumptions, detailed proofs of the theories in the main text, a complete

set of Monte Carlo results, and an additional application.
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Table 1: Empirical bias(sd)[se] of estimators, MR model with iid errors.
Missing percentage=10%, (8, A, p, 02) = (1,0.2,0.2,1), and W = Group and M = Queen.

QMLE-MR ME-GU ME-MR QMLE-MR ME-GU ME-MR

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

B .0010(.027)  .0042(.027)[.027]  .0007(.027)[.027] | -.0005(.018)  .0025(.018)[.018]  -.0007(.018)[.018]
A -.0120(.052)  -.0438(.054)[.051]  -.0009(.051)[.051] | -.0122(.033)  -.0221(.034)[.034]  -.0016(.033)[.033]
p  -.0182(.133)  -.0147(.105)[.106]  -.0095(.114)[.103] | -.0271(.071)  -.0018(. 065)[ 066]  -.0044(.064)[.064]
o2 -2408(.058)  .0068(.076)[.076] -.0122(.075)[.075] | -.1238(.043)  .0083(.049)[.051]  -.0050(.049)[.050]
B -.0003(.027)  .0028(.027)[.027]  -.0005(.027)[.027] | .0003(.019)  .0033(.019)[.018]  .0000(.019)[.018]
A -0190(.055)  -.0496(.054)[.051]  -.0077(.054)[.052] | -.0111(.032) -.0206(.034)[.034]  -.0006(.032)[.032]
p  -0200(.131) -.0158(.103)[.106]  -.0121(.108)[.103] | -.0278(.068)  -.0025(.062)[.066]  -.0051(.061)[.064]
o2 -2354(.127)  .0130(.167)[.159]  -.0052(.165)[.158] | -.1205(.105)  .0013(.120)[.113]  -.0115(.119)[.112]
B -0002(.027)  .0030(.027)[.027] -.0004(.027)[.027] | .0007(.018)  .0037(.018)[.018]  .0005(.018)[.018]
A -0181(.053) -.0471(.051)[.051]  -.0068(.052)[.052] | -.0148(.034) -.0241(.035)[.034]  -.0041(.033)[.033]
p  -0125(.133) -.0084(.104)[.105]  -.0049(.114)[.102] | -.0296(.072)  -.0044(.066)[.066]  -.0066(.064)[.064]
02 -2433(.095)  .0023(.125)[.116]  -.0154(.124)[.115] | -.1201(.074)  .0118(.084)[.082]  -.0007(.084)[.082]

n = 400; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

B .0004(.013)  .0008(.013)[.013]  .0003(.013)[.013] | .0000(.009)  -.0005(.009)[.009]  -.0001(.009)[.009]
A -.0083(.036) -.0457(.036)[.035]  -.0033(.036)[.036] | -.0081(.024) -.0487(.022)[.022]  -.0022(.024)[.024]
p  .0426(.064) -.0005(.053)[.053]  -.0025(.052)[.051] | .0111(.035)  .0011(.033)[.032]  -.0006(.032)[.031]
02 -.2286(.030)  .0092(.038)[.039]  -.0005(.038)[.039] | -.1152(.023)  .0067(.025)[.025]  -.0010(.025)[.025]
B -.0002(.013)  .0002(.013)[.013]  -.0002(.013)[.013] | -.0004(.009)  -.0008(.009)[.009]  -.0005(.009)[.009]
A -.0092(.037)  -.0464(.037)[.035]  -.0041(.037)[.036] | -.0064(.025) -.0472(.023)[.022]  -.0005(.025)[.024]
p  .0446(.061)  .0011(.051)[.053]  -.0012(.050)[.051] | .0114(.034)  .0009(.032)[.032]  -.0004(.031)[.031]
o2 -.2308(.063)  .0063(.082)[.083]  -.0034(.082)[.083] | -.1128(.051)  .0096(.058)[.058]  .0017(.058)[.057]
B .0001(.014)  .0005(.014)[.013]  .0001(.014)[.013] | -.0001(.009)  -.0005(. 009)[ 009]  -.0002(.009)[.009]
A -.0081(.035)  -.0460(.035)[.035]  -.0030(.034)[.036] | -.0080(.025) -.0486(.023)[.022]  -.0021(.025)[.024]
p  .0435(.063) -.0003(.052)[.053] -.0021(.051)[.051] | .0120(.034)  .0016(.032)[.032]  .0002(.031)[.031]
o2 -2301(.049)  .0073(.063)[.061] -.0025(.063)[.061] | -.1143(.038)  .0078(.043)[.042]  .0001(.043)[.041]

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 30%

B -.0002(.035)  .0019(.035)[.035] -.0003(.034)[.035] | .0014(.021)  .0045(.020)[.021]  -.0006(.021)[.021]
A -.0182(.064)  -.0994(.055)[.055]  -.0087(.064)[.061] | -.0117(.036) -.0615(.035)[.039]  -.0020(.039)[.039]
p  -0515(.246) -.0098(.158)[.161]  -.0099(.145)[.145] | -.0408(.095)  .0015(.086)[.090]  -.0145(.089)[.087]
02 -3128(.073)  .0227(.098)[.093]  -.0202(.092)[.091] | -.1576(.050)  .0272(.058)[.060]  -.0046(.063)[.059]
B -.0003(.034)  .0015(.034)[.035] -.0008(.036)[.035] | .0014(.020)  .0045(.020)[.021]  -.0004(.021)[.021]
A -.0161(.064) -.1003(.055)[.055]  -.0040(.064)[.061] | -.0156(.039) -.0632(.040)[.039]  -.0042(.039)[.039]
p -0393(.259) -.0011(.163)[.161] -.0170(.144)[.147] | -.0475(.103)  -.0052(.093)[.091]  -.0057(.088)[.086]
02 -3205(.140)  .0153(.184)[.182]  -.0087(.200)[.182] | -.1473(.115)  .0381(.133)[.132]  -.0137(.125)[.128]
B -.0033(.036) -.0013(.035)[.035] -.0017(.035)[.035] | -.0016(.022)  .0015(.022)[.021]  .0016(.020)[.021]
A -.0140(.066) -.0989(.057)[.055]  -.0049(.061)[.062] | -.0159(.039) -.0638(.041)[.039]  -.0018(.041)[.039]
p  -.0683(.246) -.0224(.157)[.162]  -.0082(.144)[.148] | -.0350(.098)  .0060(.090)[.089]  -.0058(.082).086]
02  -3183(.102)  .0161(.138)[.133]  -.0174(.141)[.136] | -.1573(.088)  .0258(.100)[.095]  -.0103(.100)[.092]

n = 400; error = 1, 2, 3, for the three panels below; Missing percentage = 30%

B .0001(.016) -.0014(.016)[.016]  -.0003(.016)[.016] | -.0001(.010)  -.0005(.010)[.010]  -.0002(.010)[.010]
A -0087(.046)  -.0978(.039)[.037]  -.0050(.044)[.042] | -.0066(.030)  -.0989(.028)[.024]  -.0008(.027)[.027]
p  .0631(.091)  .0035(.073)[.072]  -.0009(.064)[.067] | .0127(.046)  .0033(.044)[.044]  -.0041(.041)[.040]
o2 -2990(.036)  .0127(.047)[.045]  -.0037(.044)[.045] | -.1478(.025)  .0189(. 029)[ 030]  -.0016(.030)[.029]
B -0007(.016) -.0022(.016)[.016]  .0001(.016)[.016] | -.0008(.010) -.0012(.010)[.010]  -.0003(.010)[.010]
A -.0100(.049) -.0975(.039)[.037]  -.0020(.041)[.042] | -.0074(.028) -.0974(.025)[.024]  -.0014(.026)[.026]
p 0649(.092)  .0049(.073)[.072]  -.0030(.065)[.067] | .0153(.044)  .0061(.043)[.044]  .0015(.041)[.040]
02 -2967(.071)  .0162(.093)[.095] -.0096(.087)[.092] | -.1535(.059)  .0119(.067)[.065]  -.0027(.067)[.065]
B .0008(.016) -.0007(.016)[.016] -.0012(.016)[.016] | .0007(.011)  .0003(.011)[.010]  .0004(.010)[.010]
A -.0100(.048) -.0984(.040)[.037]  -.0061(.044)[.042] | -.0056(.028) -.0968(.024)[.024]  -.0017(.026)[.026]
p  .0673(.088)  .0051(.071)[.072] -.0045(.066)[.067) | .0116(.047)  .0023(.045)[.044]  .0005(.039).040]
02 -2992(.052)  .0129(.068)[.069] -.0063(.070)[.069] | -.1483(.041)  .0184(.047)[.048]  -.0040(.046)[.047]
)

Note: error = 1(normal), 2(normal mixture), 3(chi-square
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Table 2: Empirical bias(sd)[se] of estimators, MR model with serially correlated errors.
Missing percentage=10%, (5, A, p, 7,02) = (1,0.2,0.2,0.5,1), and W = Group and M = Queen.

T=5 T=10
QMLE-MRSC ME-MRSC QMLE-MRSC ME-MRSC
n = 100; error = 1, 2, 3, for the three panels below
B .0024(.028) .0011(.024)[.024] | -.0002(.015)  -.0004(.015)[.016]
A -.0150(.052)  -.0038(.043)[.044] | -.0089(.030)  -.0001(.029)[.029]
p  -0098(.147)  -.0039(.096)[.094] | -.0142(.065)  -.0051(.057)[.057]
T -.6263(.573)  .0183(.082)[.079] | -.0829(.045)  .0019(.038)[.040]
o2 -.3089(.156)  -.0195(.077)[.077] | -.1159(.044)  -.0080(.049)[.050]
Ié] .0005(.032) .0007(.025)[.024] .0006(.016) .0003(.016)[.016]
A -.0123(.052)  -.0028(.044)[.044] | -.0097(.030)  -.0003(.029)[.029]
p -.0054(.139)  -.0034(.094)[.094] | -.0158(.066)  -.0064(.057)[.057]
T -.6840(.594) 0163(.095)[.096] | -.0785(.049) .0061(.043)[.045]
o2 -3171(.182)  -.0084(.153)[.157] | -.1186(.097)  -.0113(.109)[.108]
Ié] .0002(.029)  -.0008(.023)[.024] .0005(.016) .0001(.016)[.016]
A -.0154(.053)  -.0036(.045)[.044] | -.0117(.032)  -.0021(.032)[.029]
P -.0173(.145)  -.0092(.095)[.095] | -.0145(.066)  -.0055(.058)[.057]
T -.6763(.590) .0140(.080)[.085] | -.0803(.047) .0042(.042)[.042]
02 -3189(.175)  -.0148(.123)[.114] | -.1185(.072)  -.0111(.081)[.079)]
n = 400; error = 1, 2, 3, for the three panels below
Ié] -.0007(.014)  -.0008(.012)[.012] .0000(.008)  -.0001(.008)[.008]
A -.0094(.036)  -.0035(.031)[.032] | -.0068(.024)  -.0005(.024)[.024]
P .0478(.063)  -.0027(.046)[.046] .0209(.031)  -.0001(.028)[.028]
T -4706(.399)  .0029(.036)[.037] | -.0803(.022)  .0028(.020)[.020]
o2 -.2466(.106)  -.0070(.041)[.038] | -.1065(.023)  -.0033(.025)[.025]
Ié] -.0003(.014)  -.0002(.013)[.012] .0000(.008) .0000(.008)[.008]
A -.0070(.036) 0002(.031)[.032] | -.0067(.025)  -.0007(.025)[.024]
p 0469(.061)  -.0030(.045)[.045] | .0204(.031)  -.0002(.028)[.028]
T -.5007(.438) .0052(.042)[.045] | -.0839(.026)  -.0002(.022)[.022]
o2 -.2566(.122)  -.0066(.078)[.080] | -.1087(.050)  -.0056(.056)[.055]
Ié; -.0001(.013)  -.0001(.012)[.012] .0006(.008) .0007(.008)[.008]
A -.0081(.038)  -.0014(.034)[.032] | -.0079(.023)  -.0016(.023)[.024]
P .0505(.063) .0005(.045)[.046] .0172(.030)  -.0036(.026)[.028]
T -.4567(.395) .0063(.041)[.040] | -.0807(.023) .0029(.020)[.021]
o2 -.2429(.107)  -.0043(.059)[.059] | -.1051(.038)  -.0018(.042)[.041]
Note: error = 1(normal), 2(normal mixture), 3(chi-square).
Table 3: Descriptive statistics for the data.
Variables Obs Mean Std Min Max
Beer Tax Rates 911 0.193 0.152 0.017 0.768
Gasoline Tax Rates 888 0.137 0.052 0.040 0.380
Size 912 0.647 0.907 0.017 4.279
DR 912 0.540 0.055 0.430 0.720
GIO 912 0.523 0.108 0.213 0.728
LSTR 912 0.042 0.017 0.000 0.080
GSP 912 0.098 0.123 0.004 0.964
PE 912 9.391 12.756 0.448 109.000

Note. Tax rates and PE are from World Tax Database (https://www.bus.umich.edu/otpr/otpr/default.
asp); GSP from US Bureau of Economic Analysis (https://wuw.bea.gov/data/gdp/gdp-state); other con-
trol variables from Egger et al. (2005); and the missing values on PE are recovered from United States Census
Bureau (https://www.census.gov/programs-surveys/state/data/historical_data.html). Little’s test of
missing completely at random (Little, 1988) has a p-value of 0.9886, and thus is not rejected.
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Table 4: Estimation results for beer tax rates using various methods.

Variables QMLE-GU  ME-GU  ME-IMR  QMLE-MR  ME-MR  ME-IMRSC  QMLE-MRSC  ME-MRSC
Size 0.158* 0.160*  0.156*** 0.158* 0.159* 0.148" 0147 0147
(4.39) (4.45) (2.72) (4.27) (4.30) (3.39) (3.42) (3.42)
WSize —0.107 —0.113*  —0.087 —0.114* —0.124* —0.152* —0.142* —0.155"
(—1.64) (-1.73)  (—0.42) (~1.91) (~2.09) (—2.25) (~2.18) (—2.37)
DR 0.193* 0.194* 0.232 0.185* 0.175* 0.125 0.133* 0.116
(1.89) (1.90) (1.49) (2.10) (1.98) (1.44) (1.66) (1.46)
GIO —0.035*  —0.034*  —0.031 —0.036**  —0.036™*  —0.009 —0.009 —0.008
(—2.29) (-2.24)  (—0.93) (—2.44) (—2.42) (—0.64) (—0.66) (—0.60)
LSTR 0.268 0.273 0.282 0.268 0.270 —0.061 —0.075 —0.085
(1.15) (1.17) (1.22) (1.15) (1.16) (—0.25) (—0.33) (—0.37)
GSP —0.786™*  —0.783%*  —0.762"*  —0.775**  —0.758"™*  —0.603" —0.613*** —0.586*
(—8.95) (-891)  (=2.79) (—7.86) (—7.69) (—5.54) (—6.12) (—5.85)
PE 0.007* 0.007*  0.007*** 0.007= 0.007= 0.005*** 0.006*** 0.005"**
(10.00) (9.84) (3.28) (8.50) (8.14) (6.15) (7.00) (6.48)
SL(N) 0.168 0.197 0.025 0.234 0.316* 0.346* 0.244 0.370**
(0.71) (0.83) (0.02) (1.28) (1.74) (1.68) (1.39) (2.10)
SE(p) —0.036 —0.026 0.150 —0.111 —0.165 —0.222 —0.139 —0.245
(—0.13) (—0.09) (0.11) (—0.49) (—0.72) (—0.89) (—0.63) (-1.12)
SC(7) 0.663"** 0688 0.699**
(8.89) (38.44) (38.96)
Pseudo R? 96.55% 96.56% 96.51% 96.59% 96.64% 98.09% 98.21% 98.26%
States 48 48 48 48 48 48 48 48
Years 19 19 19 19 19 19 19 19
N 911 911 911 911 911 911 911 911
Significance levels: *:10%, **:5%, and ***: 1%; t-statistic values in parentheses.
Table 5: Estimation results for gasoline tax rates using various methods.
Variables QMLE-GU ~ ME-GU  ME-IMR  QMLE-MR  ME-MR  ME-IMRSC ~ QMLE-MRSC  ME-MRSC
Size 0.041 0.038 0.033 0.051* 0.053* 0.029 0.046 0.048
(1.40) (1.31) (1.01) (1.66) (1.73) (0.74) (1.37) (1.41)
WSize —0.134"  —0.129"  —0.131**  —0.127"  —0.119"  —0.133" —0.120 —0.114*
(—2.65) (=255)  (—2.48) (—2.70) (—2.52) (—2.08) (—2.28) (—2.15)
DR 0.012 0.003 0.013 0.016 0.014 0.014 0.036 0.034
(0.16) (0.04) (0.17) (0.25) (0.21) (0.16) (0.54) (0.50)
GIO 0.014 0.014 0.006 0.014 0.014 0.002 0.016 0.016
(1.21) (1.16) (0.48) (1.22) (1.19) (0.13) (1.38) (1.38)
LSTR —0.031 —0.044 0.194 0.005 0.007 0.178 —0.085 —0.086
(-0.17) (—0.24) (0.93) (0.03) (0.04) (0.76) (—0.46) (—0.47)
GSP —0.136 —0.107 —0.195* —0.179* —0.173 —0.206* —0.153 —0.146
(—1.45) (-L15)  (=2.10) (—1.79) (-1.72) (—2.06) (—1.53) (—1.47)
PE 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000
(0.24) (—0.07) (0.98) (0.65) (0.58) (1.03) (0.44) (0.37)
SL(N) 0.100 0.081 0.251 0.267* 0329 0.186" 0.208 0.262*
(0.94) (0.76) (3.67) (2.28) (2.81) (3.86) (1.63) (2.05)
SE(p) 0.197 0.270 0.018 0.026 0.010 0.037 0.045 0.038
(1.55) (2.12) (0.18) (0.16) (0.06) (0.56) (0.28) (0.23)
SC(r) 0415 0.682° 0.691
(18.85) (41.53) (42.11)
Pseudo R? 82.19% 82.31% 77.62% 82.37% 82.52% 81.79% 90.52% 90.59%
States 48 48 48 48 48 48 48 48
Years 19 19 19 19 19 19 19 19
N 888 888 888 888 888 888 888 888

Significance levels: *:10%, **:5%, and ***; t-statistic values in parentheses.
g ; p
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