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Abstract

We consider estimation and inferences for general spatial panel data models with

randomly missing observations on responses. It allows for unobserved spatiotem-

poral heterogeneity, time-varying endogenous and contextual spatial interactions,

time-varying cross-sectional error dependence, and serial correlation. A general M-

estimation method is proposed for model estimation and a novel corrected plug-in

method is proposed for model inference. Both take into account the estimation of

fixed effects. Asymptotic properties of the proposed methods are studied, and finite

sample properties are investigated. An empirical application is given using US state

tax competition data. The proposed methods apply to matrix exponential spatial

specification and can be further extended to include higher-order spatial effects.
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1. Introduction

The classical spatial panel data (SPD) model takes the following vector form:

Yt = λ0WtYt +X1tβ10 +WdtX2tβ20 + Zγ0 + (Ztζ0)ln + µ0 + αt0ln + Ut,

Ut = ρ0MtUt + Vt, t = 1, . . . , T,

(1.1)

where Yt is a vector of response values on n spatial units at time t, X1t and X2t (typically

a submatrix of X1t) are matrices of observations on time-varying regressors, Z a matrix

of observations on time-invariant regressors, Zt a row vector of values of space-invariant

regressors, and Ut = (u1t, u2t, . . . , untt)
′ and Vt = (v1t, v2t, . . . , vntt)

′ are n × 1 vectors of

disturbance and idiosyncratic errors, respectively. Wt, Wdt, and Mt are given n×n spatial

weight matrices, which together with the “spatial coefficients” λ0, β20 and ρ0, characterize

the spatial lag or endogenous social effects (Manski, 1993), spatial Durbin or contextual

effects, and spatial error (SE) effects, respectively. β10, γ0 and ζ0 are vectors of regression

coefficients. µ0 is an n-vector of unit-specific effects and {αt} are time-specific effects,

which can be fixed effects (FE), random effects (RE), or correlated random effects (CRE).

ln is an n×1 vector of ones. Model (1.1) has been extensively studied. See, among others,

Lee and Yu (2010a,b, 2015), Yang et al. (2016), and Liu and Yang (2020).

In many panels, not all (n) spatial units appeared in every time period, or even if they

all appeared in every time period, some spatial units in certain time periods were not fully

observed. Kelejian and Prucha (2010) classify the spatial units in spatial data into three

groups: (1) units with full observations on themselves and on their neighbors, (2) units

with observations on their neighbors missing, and (3) units with their own observations

missing. Meng and Yang (2021) studied SPD models where all units are of Type (1) but

the number of them can change from time to time, referred to as the SPD models with

genuine unbalancedness (GU). In this paper, we study the SPD models where all units are
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of Types (2) and (3) but missing occurs only on responses, referred to as the incomplete

SPD model with missing responses (MR), to emphasize the fact that although the panel

is incomplete, the spatial connectivity or network structure is completely observed.

MR issue has drawn much attention in regular panels, and researchers (e.g., Pacini and

Windmeijer, 2015; Abrevaya, 2019) have found that incorporating covariates information

from periods with missing outcomes can improve estimation efficiency. MR issues can also

frequently occur in spatial panels. In housing price panels, regions with transactions in a

certain period have mean/median prices recorded, but regions without transactions have

response values missing although their characteristics and spatial connectivity are fully

observed. Educational studies often find that some students do not have test scores or

graduation status, but their demographic and initial performance data and their “peers”

are known. Household income data may be missing for certain years, but information

on household characteristics and their neighborhood structure is usually fully recorded.

However, essential methods for analyzing these types of data are lacking.

Let St be an nt×n selection matrix that selects the observed part of the n×1 vector of

responses Yt. Define At(λ) = In − λWt. If A
−1
t (λ0) exists, the SPD model with randomly

missing responses has the following reduced-form representation:

StYt = StA
−1
t (λ0)(X1tβ10 +WdtX2tβ20 + Zγ0 + (Ztζ0)ln + µ0 + αt0ln + Ut),

Ut = ρ0MtUt + Vt, t = 1, . . . , T.
(1.2)

The model exploits the observed responses StYt while maintaining the full structure in

the other parts of the model, including regressors, spatial connectivity, and heterogeneity.

Wang and Lee (2013) studied a simpler model (ρ0 = 0) under RE and CRE specifications.

They pointed out the difficulty in estimating a general model under FE specification.

Zhou et al. (2022) studied a model with response for each unit following a pure AR(1)

process. Liu et al. (2023) studied a dynamic SPD-MR model without µ0, α0 and ρ0.
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In this paper, we focus on the FE specification of Model (1.2) to fill in a major gap

in the SPD-MR literature. We contribute to the literature by introducing a general

M-estimation framework for model estimation and a novel corrected plug-in method for

model inference, both taking into account the estimation of fixed effects. The proposed

methods are then extended to allow for serial correlation. Consistency and asymptotic

normality of the proposed M-estimators are established, and consistency of the proposed

corrected plug-in estimators is proved. Monte Carlo results show that the proposed

methods perform very well in finite samples and that “discarding” the observations with

missing responses can give misleading results. An empirical application of our methods to

US tax competition data points to the existence of tax competition and path dependence

in US state taxes. Our methods apply to matrix exponential spatial specification and

can be extended to include higher-order spatial effects, etc.

Standard approaches in nonlinear panel data with fixed effects bias-correct (i) the

estimator, (ii) the concentrated score, and (iii) the concentrated likelihood, as elaborated

by Arellano and Hahn (2007). Our approach falls into (ii) but with major differences: it

does not require data to be independent, it provides exact bias corrections, and it does

not impose any conditions on n and T (see the end of Sec. 2.1 for more details).

Section 2 presents methods with iid errors. Section 3 extends the methods to allow

for serial correlation. Section 4 presents some Monte Carlo results. Section 5 presents

an empirical application. Section 6 concludes the paper and discusses some important

extensions. Necessary results facilitating statistical inference are given in Appendix A.

Technical lemmas and short proofs of the theories are presented in Appendices B-D.

Detailed proofs and complete Monte Carlo results are given in online Appendix E.

Notations and conventions. First, | · |, tr(·), ′ and ∥A∥ are the usual notations
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for determinant, trace, transpose and matrix norm. For a real matrix A of full rank,

PA = A(A′A)−1A′ and QA = In − PA are the projection matrices. diagv(·) forms a

column vector by the diagonal elements of a square matrix; bdiag(· · · ) a block diagonal

matrix; [· , · , . . . , ·] a row vector; and [· ; · ; . . . ; ·] a column vector.

2. M-Estimation of Fixed Effects SPD-MR Model

Consider Model (1.2) with FE specification. For ease of exposition, assume the (Z,Zt)

variables are absent (see the comments below (2.1)). Denote Xt = (X1t,WdtX2), β =

(β′
1, β

′
2)

′, and k = dim(β). Let Y, X, U, and V be the stacked Yt, Xt, Ut and Vt,

W = bdiag(W1, . . . ,WT ), M = bdiag(M1, . . . ,MT ), AnT (λ) = InT −λW, and BnT (ρ) =

InT − ρM, where Im is an m×m identity matrix. To identify the FE parameters, a zero-

sum constraint is imposed on {αt}. Define Dµ = lT ⊗ In and D⋆
α = [−lnl

′
T−1; IT−1 ⊗ ln].

Let D = [Dµ, D⋆
α] and ϕ = (µ′, α2, . . . , αT )

′ be the vector of free FE parameters. Let

S = bdiag(S1, . . . ,ST ) and N =
∑T

t=1 nt. Model (1.2) is written in matrix form:

SY = SA−1
nT (λ0)[Xβ0 +Dϕ0 +B−1

nT (ρ0)V]. (2.1)

Model (2.1) in fact allows the time-invariant and space-invariant covariates effects (Z,Zt),

such as gender and policy. Our view is that they are a part of the FEs and can be

“decomposed” from D by adding further constraints on ϕ (see Appendix E, Sec. E.2).

Let ΩN(δ0) = Var(SY) = SA−1
nT (λ0)B

−1
nT (ρ0)B

−1′
nT (ρ0)A

−1′
nT (λ0)S ′ and Ω

1
2
N(δ0) be its

square root matrix, where δ0 = (λ0, ρ0)
′. To simplify the presentation, denote a paramet-

ric quantity at the true parameter values by dropping its argument(s), e.g., A ≡ AnT (λ0),

B ≡ BnT (ρ0), ΩN ≡ ΩN(δ0). Pre-multiplying Ω
− 1

2
N , the Model (2.1) is transformed to:

Y = Xβ0 + Dϕ0 + V, (2.2)

where Y = Ω
− 1

2
N SY, X = CX, D = CD, V = CB−1

nTV, and C = Ω
− 1

2
N SA−1

nT . It is easy to
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see that Var(V) = σ2
v0IN , and thus V ∼ N(0, σ2

v0IN) if V ∼ N(0, σ2
v0InT ).

2.1. The M-estimation

We seek the desired estimating functions for M-estimation by exploiting the concen-

trated quasi scores of θ = (β′, σ2
v , δ

′)′. The quasi Gaussian loglikelihood of (θ, ϕ) in terms

of the observed SY, given the exogenous (X,S) and as if V ∼ N(0, σ2
v0IN), is:

ℓN(θ, ϕ) = −N
2
ln 2π − N

2
lnσ2

v − 1
2
ln |ΩN(δ)| − 1

2σ2
v
V′(β, δ, ϕ)V(β, δ, ϕ), (2.3)

where V(β, δ, ϕ) = Y(δ) − X(δ)β − D(δ)ϕ, with Y(δ), X(δ) and D(δ) being Y, X and D

at the general δ value. ℓN(θ, ϕ) is partially maximized at:

ϕ̂(β, δ) = [D′(δ)D(δ)]−1D′(δ)[Y(δ)− X(δ)β], (2.4)

which is simply an OLS estimate of ϕ (given β and δ) from regressing Y(δ) − X(δ)β on

D(δ). Therefore, the concentrated quasi Gaussian loglikelihood function of θ is:

ℓcN(θ) =− N
2
ln 2π − N

2
lnσ2

v − 1
2
ln |ΩN(δ)| − 1

2σ2
v
Ṽ′(β, δ)Ṽ(β, δ), (2.5)

where Ṽ(β, δ) = QD(δ)[Y(δ)−X(δ)β] and QD(δ) is the projection matrix based on D(δ).

The quasi maximum likelihood estimator (QMLE) θ̂QML of θ maximizes ℓcN(θ), which is

inconsistent or asymptotically biased due to ignorance of the effect of estimating ϕ.

To rectify these problems, we adjust (recenter) the concentrated quasi score (CQS)

function, Sc
N(θ) =

∂
∂θ
ℓcN(θ), to remove the effect of estimating ϕ. We have,

Sc
N(θ) =



1
σ2
v
X′(δ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

v ],

1
2σ2

v
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
v
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)],

1
2σ2

v
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)],

(2.6)

where Hω(δ) = Ω
− 1

2
N (δ)[ ∂

∂ω
ΩN(δ)]Ω

− 1
2

N (δ), ω = λ, ρ, J(δ) = Ω
− 1

2
N (δ)S[ ∂

∂λ
A−1

nT (λ)], and

ε(β, δ) = Xβ +Dϕ̂(β, δ). Under mild conditions, θ̂QML = arg{Sc
N(θ) = 0}.
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At the true θ0, Ṽ = QDV and ε = Xβ0 +Dϕ0 +D(D′D)−1D′V. We have E(X′Ṽ) = 0,

E(Ṽ′Ṽ) = (N−n−T +1)σ2
v0, E(Ṽ′Jε) = 0, and E(Ṽ′HωṼ) = σ2

v0tr(HωQD), ω = λ, ρ.

Thus, 1
N
E[Sc

N(θ0)] = 1
N
{0′k, −n−T+1

2σ2
v0

,−1
2
tr(HλPD),−1

2
tr(HρPD)}′ ̸= 0, which may not

even converge to 0 when either n or T is fixed. This is the root cause of inconsistency

or asymptotic bias of the QMLE θ̂QML. Therefore, removing the bias in Sc
N(θ0) due to the

estimation of ϕ0 may lead to a way for consistent and asymptotically unbiased estimation

of θ. The adjusted quasi score (AQS), or estimating function, takes the general form:

S∗
N(θ) =



1
σ2
v
X′(δ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
v ],

1
2σ2

v
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
v
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)QD(δ)],

1
2σ2

v
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)QD(δ)],

(2.7)

where N1 = N − n− T + 1. Solving S∗
N(θ) = 0 gives the M-estimator θ̂M of θ.

The root-finding process can be simplified by first solving the equations for β and σ2
v :

β̂M(δ) = [X′(δ)QD(δ)X(δ)]−1X′(δ)QD(δ)Y(δ) and σ̂2
v,M(δ) =

1
N1

V̂′(δ)V̂(δ), (2.8)

where V̂(δ) = Ṽ(β̂M(δ), δ). Then, plugging β̂M(δ) and σ̂2
v,M(δ) back into the δ-component

of (2.7) gives the concentrated AQS (estimating) function of δ:

S∗c
N (δ) =


V̂′(δ)Hλ(δ)V̂(δ)
2V̂′(δ)V̂(δ)/N1

+
V̂′(δ)J(δ)ε(β̂M(δ), δ)

V̂′(δ)V̂(δ)/N1

− 1

2
tr[Hλ(δ)QD(δ)],

V̂′(δ)Hρ(δ)V̂(δ)
2V̂′(δ)V̂(δ)/N1

− 1

2
tr[Hρ(δ)QD(δ)].

(2.9)

Solving S∗c
N (δ) = 0 gives us the unconstrained M-estimator δ̂M of δ, and the M-estimators

of β and σ2
v : β̂M ≡ β̂M(δ̂M) and σ̂2

v,M ≡ σ̂2
v,M(δ̂M). The M-estimator of θ is θ̂M = (β̂′

M, σ̂
2
v,M, δ̂

′
M)

′.

As discussed in the Introduction, the standard methods in dealing with the fixed effects

problem in nonlinear panels, or in general the incidental parameters problem of Neyman

and Scott (1948), are (in our context) to bias-correct θ̂QML, or S
c
N(θ), or ℓ

c
N(θ) (Arellano
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and Hahn, 2007). These methods require responses to be independent and T to increase

with n as the corrections are derived under large-T approximations. Our method falls

into the second category but it does not impose these conditions and provides an exact

bias correction on Sc
N(θ0). In addition, our method allows for the estimation of time-

or unit-invariant covariates effects as indicated below (2.1). With our method, further

bias corrections on S∗c
N (δ0) can be made to correct the effect of estimating β and σ2

v on

the estimation of δ, in light of Yang (2015) and Yang et al. (2016). This is particularly

meaningful when β is of a large dimension and spatial dependence is heavy. Finally, our

methods can be extended to a GMM framework by adding extra moments.

Lee and Yu (2010a) bias-correct the QMLE of θ for a complete spatial panel with FE,

which requires n
T 3 → 0 and T

n3 → 0 for valid inference (see Lee, 2023, p.326). The second

method can be traced back to Neyman and Scott (1948, Sec. 5) but has the smallest

literature. The third method may not apply to the type of model we consider.

2.2. Asymptotic properties of M-estimator

To study the asymptotic properties of the proposed M-estimator, it is necessary that

the errors, regressors, selection matrix, and spatial weight matrices satisfy certain basic

conditions. Let ∆ϖ be the parameter space for ϖ = λ, ρ and ∆ = ∆λ ×∆ρ. For a real

symmetric matrix, γmin(·) and γmax(·) denote its smallest and largest eigenvalues. For a

real matrix A, ∥A∥1 and ∥A∥∞ are the maximum absolute column and row sum norms.

Assumption A. The elements vit of V are iid for all i and t with mean zero, variance

σ2
v0, and E|vit|4+ϵ0 < ∞ for some ϵ0 > 0.

Assumption B. The space ∆ of δ is compact with the true δ0 in its interior.

Assumption C. X and S are non-stochastic. Elements of X are bounded uniformly

in i and t. limN→∞
1
N
X′(δ)QD(δ)X(δ) exists and is non-singular, uniformly in δ ∈ ∆.
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Assumption D. {Wt} and {Mt} are known time-varying matrices, and W and M

are such that (i) elements are at most of uniform order h−1
n such that hn

n
→ 0, as n → ∞;

(ii) diagonal elements are zero; and (iii) column and row sum norms are bounded.

Assumption E. Denoting by A(ϖ) either AN(λ) or BN(ρ), where ϖ = λ, ρ,

(i) both ∥A−1(ϖ)∥∞ and ∥A−1(ϖ)∥1 are bounded;

(ii) 0 < cϖ ≤ infϖ∈∆ϖ γmin[A′(ϖ)A(ϖ)] ≤ supϖ∈∆ϖ
γmax[A′(ϖ)A(ϖ)] ≤ c̄ϖ < ∞.

Assumptions A-E are standard in spatial econometrics or missing-data literature (Lee,

2004; Abrevaya, 2019). For technical convenience, X and S are treated as non-stochastic.

They can instead be stochastic but strictly exogenous (w.r.t. V). The analyses are then

interpreted conditionally on X and S (White, 2001, p.6). The strict exogeneity of S is

in line with Little and Rubin (2019); see Appendix E, Sec. E.2. Assumption E ensures

that ΩN(δ), its partial derivatives, and its inverse are uniformly bounded in both row

and column sum norms, uniformly in δ ∈ ∆ (see Lemma B.2(i)).

Some additional technical assumptions are required. Note that AnT (λ) and C(δ) are

both block diagonal. Denote their tth blocks by At(λ) and Ct(δ), respectively.

Assumption F: A−1
s (λ)[ 1

T

∑T
t=1C

′
t(δ)Qt(δ)Ct(δ)]

−1A−1′
t (λ) is bounded in both row

and column sum norms, uniformly in δ ∈ ∆ for all s and t, where Q1(δ) = In1 and

Qt(δ) = Int − Ct(δ)ln[l
′
nC

′
t(δ)Ct(δ)ln]

−1l′nC
′
t(δ), t = 2, . . . , T .

Assumption F ensures that Ω
− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ) is bounded in both row and column

sum norms uniformly in δ ∈ ∆ (see Lemma B.2(ii)), which facilitates our asymptotic

analysis (see Appendix E). Another high-level assumption, the identification uniqueness,

on the population object function S̄∗c
N (δ) is imposed as in GMM estimation, where S̄∗c

N (δ)

is the “concentrated” E[S∗
N(θ)] with β and σ2

v being concentrated out (see Appendix C).

Assumption G: infδ:d(δ,δ0)≥ϵ

∥∥S̄∗c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure
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of distance between δ and δ0.

More primitive conditions under which Assumption G is satisfied are given in Ap-

pendix E. Finally, to cater to various asymptotic scenarios, the missingness cannot be

“too heavy”. In the case of a fixed T or n, the number of observed responses is at least 2

to ensure a complete spatial structure after ϕ is concentrated out. See Appendix E, Sec.

E.2, for details. Let Ti be the number of times that the unit-i’s response is observed.

Theorem 2.1. Under Assumptions A-G, as N → ∞, if nt

n
→ ct and

Ti

T
→ di, where

ct, di ∈ (0, 1], and min(Ti) ≥ 2 and min(nt) ≥ 2, then we have θ̂M
p−→ θ0.

The asymptotic distribution of θ̂M can be derived by applying the mean value theorem:

0 = S∗
N(θ̂M) = S∗

N(θ0) +
∂
∂θ′

S∗
N(θ̄)(θ̂M − θ0), where θ̄ lies between θ̂M and θ0 and its value

varies over the rows of ∂
∂θ′

S∗
N(θ̄). The key result is the asymptotic normality of 1√

N1
S∗
N(θ0).

Recall Ṽ = QDV, ε = Xβ0+Dϕ0+D(D′D)−1D′V, and V = ΓV, where Γ = CB−1
nT . Then,

S∗
N(θ0) can be written in linear-quadratic (LQ) forms in V:

S∗
N(θ0) =



1
σ2
v0
Π′

1V,

1
2σ4

v0
V′Φ1V − N1

2σ2
v0
,

1
2σ2

v0
V′Φ2V + 1

σ2
v0
Π′

2V − 1
2
tr(HλQD),

1
2σ2

v0
V′Φ3V − 1

2
tr(HρQD),

(2.10)

where Π1 = Γ′QDX, Π2 = Γ′QDJ(Xβ0 + Dϕ0), Φ1 = Γ′QDΓ, Φ2 = Γ′QD[HλQD +

2JD(DD)−1D′]Γ, and Φ3 = Γ′QDHρQDΓ.

The representation (2.10) allows the application of the central limit theorem (CLT)

for liner-quadratic (LQ) forms of Kelejian and Prucha (2001) and the Wold device to

give 1√
N1

S∗
N(θ0)

D−→ N(0, limN→∞ Γ∗
N(θ0)), an important step toward establishing the

asymptotic normality of θ̂M. It also allows for an easy derivation of Var[S∗
N(θ0)] as seen

in Appendix A. The consistency of θ̂M leads to 1
N1

[ ∂
∂θ′

S∗
N(θ̄)− E[ ∂

∂θ′
S∗
N(θ0)]] = op(1).
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Theorem 2.2. Under the assumptions of Theorem 2.1, we have, as N → ∞,√
N1

(
θ̂M − θ0

) D−→ N
(
0, lim

N→∞
Σ∗−1

N (θ0)Γ
∗
N(θ0)Σ

∗−1′
N (θ0)

)
,

where Σ∗
N(θ0) = − 1

N1
E[ ∂

∂θ′
S∗
N(θ0)] and Γ∗

N(θ0) = 1
N1

Var[S∗
N(θ0)], both assumed to exist

and Σ∗
N(θ0) assumed to be positive definite for sufficiently large N .

2.3. Estimation of the VC matrix

Inferences for θ require a consistent estimator of the asymptotic variance-covariance

(VC) matrix Σ∗−1
N (θ0)Γ

∗
N(θ0)Σ

∗−1′
N (θ0). The analytical expressions of

∂
∂θ′

S∗
N(θ) and Γ∗

N(θ0)

are given in Appendix A. First, it is easy to show that Σ̂∗
N = − 1

N1

∂
∂θ′

S∗
N(θ)|θ=θ̂M

consis-

tently estimates Σ∗
N(θ0), i.e., Σ̂

∗
N − Σ∗

N(θ0) = op(1).

Γ∗
N(θ0) contains the common parameters θ0, the fixed effects ϕ0 embedded in Π2,

and the skewness κ3 and excess kurtosis κ4 of the idiosyncratic errors. The common

plug-in method may not be valid due to the involvement of incidental parameters ϕ0. A

corrected plug-in method is proposed. Let Γ∗
N(θ̂M) = Γ∗

N(θ)|(θ=θ̂M,ϕ=ϕ̂M,κ3=κ̂3,N ,κ4=κ̂4,N ) be the

plug-in estimator, where ϕ̂M is the M-estimator of ϕ (or a GLS estimator by regressing

S[Y−A−1
nT (λ̂M)Xβ̂M] on SA−1

nT (λ̂M)D with weightΩN(δ̂M)), and κ̂3,N and κ̂4,N are consistent

estimators of κ3 and κ4. When both n and T are large, Γ∗
N(θ̂M) would be consistent as

ϕ̂M is. However, when either n or T is fixed, ϕ̂M is not consistent and a bias correction

is necessary after plugging ϕ̂M into Γ∗
N(θ). We show that the only term that cannot be

consistently estimated is the one quadratic in ϕ0, embedded in Π′
2Π2.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have,

Γ∗
N(θ̂M) = Γ∗

N(θ0) + Bias∗(δ0) + op(1),

where Bias∗(δ0) has a single nonzero element on the diagonal corresponding to the λ-λ

entry, given by 1
N1
tr[(D′D)−1D′J′QDJD].

11



See the proof of Corollary 2.1 in Appendix E (Sec. E.3) for details. Corollary 2.1

leads immediately to a general consistent estimator of Γ∗
N(θ0):

Γ̂∗
N = Γ∗

N(θ̂M)− Bias∗(δ̂M),

referred to in this paper as the corrected plug-in estimator.

Finally, we provide consistent estimators for κ3 and κ4. As V is infeasible for es-

timation due to the incidental parameters problem and incompleteness, we start from

Ω
− 1

2
N Ṽ = Ω

− 1
2

N QDΓV, which can be “consistently” estimated by Ω
− 1

2
N (δ̂M)V̂(β̂M, δ̂M) =

Ω
− 1

2
N (δ̂M)QD(δ̂M)Ω

− 1
2

N (δ̂M)S[Y−A−1
nT (λ̂M)Xβ̂M]. Let qjk be the (j, k)th element of N×nT ma-

trix Q̄D ≡ Ω
− 1

2
N QDΓ. Denote the elements of V by vl, l = 1, . . . , nT , and the elements of

Q̄DV by ṽj, j = 1, . . . , N , where l and j are the combined index of cross-sectional and time

dimensions. Then, ṽj =
∑nT

k=1 qjkvk, and thus E(ṽ3j ) =
∑nT

k=1 q
3
jkE(v

3
k) = σ3

v0κ3

∑nT
k=1 q

3
jk.

Summing E(ṽ3j ) over j gives κ3 = (
∑N

j=1 E(ṽ
3
j ))(σ

3
v0

∑N
j=1

∑nT
k=1 q

3
jk)

−1. Its sample analog:

κ̂3,N =

∑N
j=1 v̂

3
j

σ̂3
v,M

∑N
j=1

∑nT
k=1 q̂

3
jk

(2.11)

gives a consistent estimator of κ3, where v̂j is the jth element of Ω
− 1

2
N (δ̂M)V̂(β̂M, δ̂M), and

q̂jk is the (j, k)th element of Q̄D(δ̂M). Similarly, to estimate κ4, we have,

E(ṽ4j ) =
∑nT

k=1 q
4
jkE(v

4
k) + 3σ4

v0

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl − 3σ4

v0

∑nT
k=1 q

4
jk

=
∑nT

k=1 q
4
jkκ4σ

4
v0 + 3σ4

v0

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl, j = 1, . . . , N ,

which gives κ4 =
(∑N

j=1 E(ṽ
4
j )− 3σ4

v0

∑N
j=1

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl

)(
σ4
v0

∑N
j=1

∑nT
k=1 q

4
jk

)−1
, by

summing E(ṽ4j ) over j. Hence, a consistent estimator for κ4 is

κ̂4,N =

∑N
j=1 v̂

4
j − 3σ̂4

v,M

∑N
j=1

∑nT
k=1

∑nT
l=1 q̂

2
jkq̂

2
jl

σ̂4
v,M

∑N
j=1

∑nT
k=1 q̂

4
jk

. (2.12)

Corollary 2.2. Under the assumptions of Theorem 2.1, we have, as N → ∞,

(i) κ̂3,N
p−→ κ3,0 and κ̂4,N

p−→ κ4,0; (ii) Σ̂∗
N −Σ∗

N(θ0)
p−→ 0 and Γ̂∗

N −Γ∗
N(θ0)

p−→ 0;

and therefore Σ̂∗−1
N Γ̂∗

N Σ̂
∗−1′
N − Σ∗−1

N (θ0)Γ
∗
N(θ0)Σ

∗−1′
N (θ0)

p−→ 0.
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3. M-Estimation with Serial Correlation

In this section, we show that our M-estimation and inference methods introduced in

Sec. 2 can be extended to allow the errors to be serially correlated.

Assumption A′: The innovations follow an MA process, vit = eit + τei,t−1, for all i

and t with |τ | < 1, eit ∼ iid(0, σ2
e), and E|eit|4+ϵ0 < ∞ for some ϵ0 > 0.

To conserve space, we use the same set of notations of Sec. 2, with relevant quantities

being redefined to cater to the extra parameter τ . Let now δ = (λ, ρ, τ)′, θ = (β′, σ2
e , δ

′)′

andΩN(δ) ≡ SA−1
nT (λ)B

−1
nT (ρ)[Υ(τ)Υ′(τ)⊗In]B

−1′
nT (ρ)A−1′

nT (λ)S ′, where Υ(τ) is T×(T+1)

with rows: (τ, 1, 0, . . . , 0), (0, τ, 1, . . . , 0), · · · , (0, 0, . . . , τ, 1).

With the redefined δ, θ and ΩN(δ), update Y, X, D, and V in (2.2). The transformed

model remains in the same form as (2.2) except that now Var(V) = σ2
e0IN . The loglikeli-

hood function of (θ, ϕ) remains in the same form as (2.3) with σ2
v0 being replaced by σ2

e0.

The constrained QMLE of ϕ remains in the same form as (2.4). Updating QD(δ) with

the updated D(δ) and thus Ṽ(β, δ), we then see that the concentrated quasi Gaussian

loglikelihood of θ has the same form as (2.5), which leads to the direct QMLE of θ.

The CQS function of θ is obtained and its expectation at the true θ0 is found in a

similar way as that in Sec. 2. The desired AQS function of θ is obtained:

S⋄
N(θ) =



1
σ2
e
X′(δ)Ṽ(β, δ),

1
2σ4

e
[Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
e ],

1
2σ2

e
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
e
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)QD(δ)],

1
2σ2

e
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)QD(δ)],

1
2σ2

e
Ṽ′(β, δ)Hτ (δ)Ṽ(β, δ)− 1

2
tr[Hτ (δ)QD(δ)],

(3.1)

where Hλ(δ), Hρ(δ), J(δ), Ṽ(β, δ), and ε(β, δ) in (2.6) are redefined to accommodate the

extra τ , and Hτ (δ) is defined as Hρ(δ). Solving S⋄
N(θ) = 0 gives the M-estimator θ̂⋄M of θ.

13



The asymptotic properties of θ̂⋄M can be established in a similar way as for θ̂M in Sec.

2, based on a similar set of assumptions (A′ given above and B′−G′ in Appendix D).

Theorem 3.1. Under Assumptions A′−G′, as N → ∞, if nt

n
→ ct and Ti

T
→ di,

where ct, di ∈ (0, 1], and min(Ti) ≥ 2 and min(nt) ≥ 2, then θ̂⋄M
p−→ θ0.

To derive the asymptotic distribution of θ̂⋄M, note that the AQS functions at the true θ0,

expressed inV, take forms similar to (2.10), with an extra τ -component. In (2.10), replace

V by (Υ ⊗ In)E and σ2
v0 by σ2

e0, where E = (E ′
0, E ′

1, . . . , E ′
T )

′, and Et = (e1t, e2t, . . . , ent)
′;

redefine Γ as Ω
− 1

2
N SA−1

nTB
−1
nT (Υ ⊗ In) and update Πr and Φs accordingly, r = 1, 2, s =

1, 2, 3; and introduce new Φ4 (defined as Φ3) and Hτ (defined as Hρ). We have,

S⋄
N(θ0) =



1
σ2
e0
Π′

1E ,

1
2σ4

e0
E ′Φ1E − N1

2σ2
v0
,

1
2σ2

e0
E ′Φ2E + 1

σ2
v0
Π′

2V − 1
2
tr(HλQD),

1
2σ2

e0
E ′Φ3E − 1

2
tr(HρQD),

1
2σ2

e0
E ′Φ4E − 1

2
tr(HτQD),

(3.2)

which is linear-quadratic in E with iid elements. Again, the importance of this represen-

tation is two-fold: it allows the application of CLT for LQ forms of Kelejian and Prucha

(2001) and Wold device to establish the asymptotic normality of 1√
N1

S⋄
N(θ0) (thus the

asymptotic normality θ̂⋄M) and an easy derivation of Var[S⋄
N(θ0)] as seen in Appendix A.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as N → ∞,

√
N1

(
θ̂⋄M − θ0

) D−→ N
(
0, lim

N→∞
Σ⋄−1

N (θ0)Γ
⋄
N(θ0)Σ

⋄−1′
N (θ0)

)
,

where Σ⋄
N(θ0) = − 1

N1
E[ ∂

∂θ′
S⋄
N(θ0)] and Γ⋄

N(θ0) = 1
N1

Var[S⋄
N(θ0)], both assumed to exist

and Σ⋄
N(θ0) assumed to be positive definite for sufficiently large N .

For statistical inference, Σ⋄
N(θ0) is estimated by Σ̂⋄

N = − 1
N1

∂
∂θ′

S⋄
N(θ)|θ=θ̂⋄M

. The ana-

lytical expressions of ∂
∂θ′

S⋄
N(θ) and Γ⋄

N(θ0) are given in Appendix A. Similar to Γ∗
N(θ0) in

14



Sec. 2, Γ⋄
N(θ0) contains the common parameters θ0, the incidental parameters ϕ0, and the

skewness κe
3 and excess kurtosis κe

4 of idiosyncratic errors {eit}. Again, the usual plug-in

estimator would not lead to a consistent estimate of Γ⋄
N(θ0).

Corollary 3.1. Under the assumptions of Theorem 3.1, we have,

Γ⋄
N(θ̂

⋄
M) = Γ⋄

N(θ0) + Bias⋄(δ0) + op(1),

where Bias⋄(δ0) has a single nonzero element on the diagonal corresponding to the λ-λ

entry, given by 1
N1
tr[(D′D)−1D′J′QDJD].

Thus, a corrected plug-in estimator (corrected in Π′
2Π2) is developed:

Γ̂⋄
N = Γ⋄

N(θ̂
⋄
M)− Bias⋄(δ̂⋄M).

Finally, we note that Ω
− 1

2
N Ṽ = Q̄D(Υ ⊗ In)E can be “consistently” estimated by

Ω
− 1

2
N (δ̂⋄M)V̂(β̂⋄

M , δ̂
⋄
M) = Ω

− 1
2

N (δ̂⋄M)QD(δ̂
⋄
M)Ω

− 1
2

N (δ̂⋄M)S[Y − A−1
nT (λ̂

⋄
M)Xβ̂⋄

M ]. We follow the idea of

Corollary 2.2 and develop a pair of consistent estimators for κe
3 and κe

4 as follows:

κ̂e
3,N =

∑N
j=1 v̂

3
j

σ̂⋄3
e,M

∑N
j=1

∑n(T+1)
k=1 q̂3jk

and κ̂e
4,N =

∑N
j=1 v̂

4
j − 3σ̂⋄4

e,M

∑N
j=1

∑n(T+1)
k=1

∑nT
l=1 q̂

2
jkq̂

2
jl

σ̂⋄4
e,M

∑N
j=1

∑n(T+1)
k=1 q̂4jk

.

where q̂jk is the (j, k)th element of N × n(T +1) matrix Ω
− 1

2
N (δ̂⋄M)Q̄D(δ̂

⋄
M)(Υ(τ̂ ⋄M )⊗ In) and

v̂j the jth element of Ω
− 1

2
N (δ̂⋄M)V̂(β̂⋄

M , δ̂
⋄
M).

Corollary 3.2. Under the assumptions of Theorem 3.1, we have, as N → ∞,

(i) κ̂e
3,N

p−→ κe
3,0 and κ̂e

4,N

p−→ κe
4,0; (ii) Σ̂⋄

N −Σ⋄
N(θ0)

p−→ 0 and Γ̂⋄
N −Γ⋄

N(θ0)
p−→ 0;

and therefore Σ̂⋄−1
N Γ̂⋄

N Σ̂
⋄−1′
N − Σ⋄−1

N (θ0)Γ
⋄
N(θ0)Σ

⋄−1′
N (θ0)

p−→ 0.

4. Monte Carlo Results

Extensive Monte Carlo experiments are conducted to investigate (i) the finite sam-

ple performance of the proposed M-estimator and the corresponding corrected plug-in

estimator of the VC matrix, (ii) the consequence of discarding observations with miss-

ing responses, (iii) the effect of ignoring the estimation of fixed effects, and (iv) the
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performance of some related estimators. The following data-generating process is used:

StYt = StA
−1
t (λ)(Xtβ + µ+ αtln + Ut), Ut = ρMtUt + Vt, t = 1, . . . , T,

The parameters values are set at (β, λ, ρ, σ2
v) = (1, .2, .2, 1). The X ′

ts are generated from

N(2, 22In) independently, the individual FEs µ from 1
T
ΣT

t=1Xt + e, where e ∼ N(0, In),

and the time FEs α from N(0, IT ) with n ∈ (50, 100, 200, 400) and T ∈ (5, 10). For each

Monte Carlo experiment, the number of Monte Carlo runs is set to 1000.

The spatial weight matrices can be Group interaction or Queen contiguity. To generate

Wt under Queen, randomly permute the indices {1, 2, . . . , n} for n spatial units and

then allocate them into a lattice of k × m squares. Let Wt,ij = 1 if square j shares a

common boundary or vertex with square i and 0 otherwise. To generate Wt under Group,

let K(n) = Round(n0.5) be the number of groups and then generate K(n) group sizes

according to a uniform distribution. The distribution of the idiosyncratic errors can be

(1) normal, (2) standardized normal mixture (10% N(0, 42) and 90% N(0, 1)), or (3)

standardized chi-square with 3 degrees of freedom. See Yang (2015) for details. Both

the case of iid errors and the case of serially correlated errors (τ = 0.5) are considered.

The selection matrices St are generated according to two mechanisms: (i) MAR (miss-

ing at random) or (ii) MCAR (missing completely at random). The former depends on

Xt and ϕ, but the latter simply on the outcomes of independent Bernoulli trials with the

probability of missing pt for period t. We design a MAR mechanism such that the missing

percentage is about 25% (see Appendix E, Sec. E.5 for detail), and choose pt = 0.1 or

0.3 for MCAR mechanism to see the effect of the degree of missingness.

Our Monte Carlo experiments involve nine estimators, but the main ones are ME-MR

(the proposed M-estimator), ME-GU (M-estimator assuming genuine unbalancedness (GU)

after deleting observations with missingness, considered in Meng and Yang (2021)), and
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QMLE-MR (the QML estimator ignoring the effect of estimating the FEs). With these,

the issues (i)-(iii) are addressed. The remaining six estimators relate to the “existing”

methods, in particular the imputation methods, which address the issue (iv).

Table 1 contains partial Monte Carlo results on the three main estimators for the

case of iid errors and MCAR. The results show an excellent performance of the proposed

M-estimation and inference methods, irrespective of the error distributions, the spatial

layouts, parameter values, as well as the missing percentage. In contrast, the QMLE-MRs

(the closest to ME-MRs) of spatial parameters do not perform as well as the ME-MRs.

This shows the consequence of ignoring the effects of estimating the FE parameters. By

comparing ME-GU with ME-MR, we can see the consequences of treating MR mechanism as

GU mechanism: ME-GUs of the spatial parameters perform poorly even when the sample

size is fairly large. When the missing percentage is higher, ME-GUs become more biased.

This is consistent with our expectation: treating MR as GU ignores spatial effects from

the deleted units and the larger the missing percentage, the more serious the consequence.

Table 2 contains partial results on two estimators QMLE-MRSC and ME-MRSC for the

case of serially correlated errors and MCAR, as GU-type estimators are unavailable. The

proposed ME-MRSCs of all parameters have a very good finite sample performance. Their

corresponding standard error estimates are also close to Monte Carlo standard deviations.

In contrast, the QMLE-MRSCs typically provide much worse estimates for error variance

parameter σ2 and serial correlation parameter τ , showing that the incidental parameters

problem is more serious to the estimation of the parameters in the error term.

Due to space constraints, we report the Monte Carlo results under MAR mechanism

in online Appendix E (Table 9). Again, the results show that the proposed M-estimation

and inference methods perform excellently in finite sample, and that their performance
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is not affected by allowing missingness to depend on the regressors and fixed effects.

While strictly speaking there are no existing methods for use in estimating our models,

some may relate to ours. These include the three imputation estimators, one nonlinear

least square estimator (Wang and Lee, 2013), one näıve estimator, and a QMLE under

GU. See Appendix E (Sec. E.5) for a detailed definition of these estimators. It is in-

teresting to know how these estimators perform in estimating our model. We therefore

included these six estimators in our Monte Carlo experiments. A much larger set of

Monte Carlo results, including these reported in the main text, is given in Appendix E

(Sec. E.5). The results show that none of these six estimators perform satisfactorily.

5. An Empirical Application

In this section, we present an empirical study to analyze horizontal competition in

excise taxes on beer and gasoline among US states. The theoretical models set up in

Kanbur and Keen (1993) and Nielsen (2001) imply that independent jurisdictions have

incentives to engage in commodity tax competition in order to attract cross-border shop-

pers and thus maximize their tax revenue. Therefore, the tax rates of neighboring states

are likely to play a role in the determination of the state’s own tax policy. Egger et al.

(2005) and Devereux et al. (2007) find empirical evidence for positive spillover effects.

Egger et al. (2005) estimate the SE parameter using GMM and the SL parameter by 2SLS.

Devereux et al. (2007) do not include the SE effect in the model. They deleted the entire

state-year observation with missing response and/or covariates and treated the resulting

data as genuinely unbalanced (GU) panel in the sense of Meng and Yang (2021). Thus,

spillover effects to/from these ignored units with missing tax rates were not captured.

In this section, we reconsider this study under the missing-on-response-only (MR)

mechanism since the explanatory variables can be fully observed over a chosen period.
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We construct two panels based on 48 contiguous US states over 19 years (1978-1996), the

tax rates on beer and the tax rates on gasoline. The numbers of observations for beer

and gasoline tax rates are, respectively, 911 and 888. We define the spatial neighboring

states as those that share a common border. The overall spatial weight matrix W is row-

normalized. The explanatory variables we use are state size (Size, measured by population

density), spatially weighted size (WSize), dependency ratio (DR), government ideological

orientation (GIO), lagged sales tax rate (LSTR), gross state product (GSP, in trillion),

and public expenditure (PE, in billion). With these, we write the model as

StTaxt = StA
−1(λ)

(
Sizetβ1 +W × Sizetβ2 +DRtβ3 +GIOtβ4 + LSTRtβ5

+GSPtβ6 + PEtβ7 + µ+ αtln + Ut

)
, Ut = ρWUt + Vt, t = 1, . . . , 19.

Among the various model parameters, λ and τ are of particular interest as they quantify

the intensity of tax competition and the path dependence in setting state tax rates.

Table 3 gives a descriptive summary of the data. Tables 4 and 5 summarize the

empirical results for the beer tax rates and the gasoline tax rates, respectively. Besides

the five estimators involved in the above Monte Carlo study, two additional M-estimators,

ME-IMR and ME-IMRSC, based on imputed data (Honaker and King, 2010) under iid errors

and serially correlated errors, respectively, are also included.

Our analyses lead to a deeper understanding of the mechanism of tax competition

and offer more insight into the nature of spatial interactions. Both analyses based on

the proposed methods point to the existence of strong and positive endogenous spatial

spillover effects and strong and positive serial correlation. These imply that states mimic

neighbors’ tax moves (tax competition) and competition persists over time (a point not

considered by Egger et al., 2005). They help mitigate revenue erosion and underscore the

importance of multi-year fiscal planning for both temporary and permanent tax reforms.

From Table 4, ME-MR shows that the SL effect is significant and positive at 10% level,
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indicating the presence of beer tax competition. In contrast, none of the remaining four

estimates reveals this, highlighting the limitations of QML, GU-based and imputation-

based methods. QML method ignores the effect of estimating fixed effects; GU method

ignores the spatial effects of the units with missing responses; and imputation methods

do not account for spatial dependence during imputation. Interestingly, although the

beer tax rates data have only one missing response, ignoring the spatial effects from

this observation either through ME-GU or ME-IMR completely changes the conclusion on

tax competition. All estimates show that the SE effect is negative but insignificant,

consistent with findings of Egger et al. (2005). However, our proposed methods are able

to tell that the SE effect is insignificant. Furthermore, the three MRSC-based estimates

reveal that the serial correlation is positive and significant, suggesting the presence of path

dependence in state beer tax rate decisions. ME-MRSC successfully identifies significant tax

competition at 5% level, whereas QMLE-MRSC does not. After imputing the single missing

response, ME-IMRSC shows the SL effect becomes less significant compared to ME-MRSC.

From Table 5, ME-IMR, QMLE-MR and ME-MR all provide significant evidence for a pos-

itive SL effect, indicating the existence of gasoline tax competition. However, this effect

is not captured by GU-based estimates. Both QMLE-MR and ME-IMR appear to underesti-

mate the competition effects compared to the proposed ME-MR. The underestimation by

QMLE-MR may result from the incidental parameters problem, while that by ME-IMR may

stem from neglecting the spatial dependence during imputation. Most estimates of the

SE coefficient show insignificant SE effect. Furthermore, ME-IMRSC of the SL parameter

is smaller than the proposed ME-MRSC, again showing an underestimation of competition

effects. The QMLE-MRSC shows the SL effect is insignificant, and thus fails to capture

the competition effects. Lastly, all estimates show serial correlation is significant and
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positive, further supporting the presence of path dependence in tax-setting decisions.

6. Conclusions and Discussions

We consider fixed effects estimation of spatial panel data models with missing re-

sponses. It allows for unobserved spatiotemporal heterogeneity, time-varying endogenous

and contextual spatial interactions, time-varying cross-sectional error dependence, and

serial correlation. We propose an M-estimation method for model estimation and a

corrected plug-in method for model inference, both taking into account the effects of

estimating the fixed effects. We study the asymptotic and finite sample properties of the

proposed methods. We apply our methods to US state tax competition data, leading to

a much deeper understanding of the tax competition mechanism. Our methods allow for

the estimation of time or unit invariant covariates effects, such as gender and policy, by

imposing relevant constraints on the FE parameters ϕ and the D matrix in Model (2.1).

The proposed methods apply to matrix exponential spatial specification (MESS) by

replacing, in Model (1.2), In − λWt by exp(λWt) =
∑∞

i=0(λWt)
i/i! and In − ρMt by

exp(ρMt) =
∑∞

i=0(ρMt)
i/i!, and can be easily extended to allow for a high-order MA

process for serial correlation. They can be further extended to allow for high-order spatial

effects by replacing In−λWt by In−
∑p

l=1 λlWlt and In−ρMt by In−
∑p

e=1 ρeMet. Details

on these are available from the authors upon request. Extending MESS to high order

runs into a computational issue as the partial derivatives do not possess analytical forms.
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Appendix A: AQS, Hessian, and Variance of AQS

A.1. Derivation for Section 2

AQS function. Write Ṽ′(β, δ)Ṽ(β, δ) = V ′(β, λ)Ψ(δ)V(β, λ), where V(β, λ) = S[Y−

A−1
nT (λ)Xβ] and Ψ(δ) = Ω

− 1
2

N (δ)QD(δ)Ω
− 1

2
N (δ). Letting D(λ) = SA−1

nT (λ)D, then,

Ψ(δ) = Ω−1
N (δ)−Ω−1

N (δ)D(λ)[D′(λ)Ω−1
N (δ)D(λ)]−1D′(λ)Ω−1

N (δ), (A.1)

which allows the use of the matrix result: ∂
∂ω
Ω−1

N (δ) = −Ω−1
N (δ)[ ∂

∂ω
Ω(δ)]Ω−1

N (δ), ω = λ, ρ.

Denoting Ψ̇ω(δ) ≡ ∂
∂ω
Ψ(δ), ω = λ, ρ, we obtain, after some tedious algebra:

Ψ̇λ(δ) = −Ω
− 1

2
N (δ)QD(δ)Hλ(δ)QD(δ)Ω

− 1
2

N (δ)−Ψ(δ)K(δ)−K′(δ)Ψ(δ), (A.2)

Ψ̇ρ(δ) = −Ω
− 1

2
N (δ)QD(δ)Hρ(δ)QD(δ)Ω

− 1
2

N (δ), (A.3)

where K(δ) = S[ ∂
∂λ
A−1

nT (λ)]D[D′(δ)D(δ)]−1D′(δ)Ω
− 1

2
N (δ). These lead immediately to the

CQS function (2.6) and thus the AQS function (2.7).

The Hessian matrix. To derive H∗
N(θ) =

∂
∂θ′

S∗
N(θ), let Ω̇ω(δ) and Ω̈ωϖ(δ) be the

1st- and 2nd-order partial derivatives ofΩ(δ), ω,ϖ = λ, ρ; similarly are Ψ̇ω(δ) and Ψ̈ωϖ(δ)

defined. Denoting J(δ) = Ω
− 1

2
N (δ)S[ ∂

∂λ
A−1

nT (λ)], we obtain the components of H∗
N(θ):

H∗
ββ(θ) = − 1

σ2
v
X′(δ)QD(δ)X(δ), H∗

βσ2
v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′

σ2
vβ
(θ),

H∗
βλ(θ) =

1
σ2
v
X′J′(δ)Ṽ(β, δ) + 1

σ2
v
X′A−1′

nT (λ)S ′Ψ̇λ(δ)V(β, λ)− 1
σ2
v
X′(ρ)J(δ)Xβ = H∗′

λβ(θ),

H∗
βρ(θ) =

1
σ2
v
X′A−1′

nT (λ)S ′Ψ̇ρ(δ)V(β, λ), H∗
σ2
vσ

2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1,

H∗
σ2
vλ
(θ) = 1

2σ4
v
V ′(β, λ)Ψ̇λ(δ)V(β, λ)− 1

σ4
v
Ṽ′(β, δ)J(δ)Xβ = H∗′

λσ2
v
(θ),

H∗
σ2
vρ
(θ) = 1

2σ4
v
V ′(β, λ)Ψ̇ρ(δ)V(β, λ) = H∗′

ρσ2
v
(θ), H∗

ρβ(θ) = H∗′
βρ(θ),

H∗
λλ(θ) =

2
σ2
v
V ′(β, λ)Ψ̇λ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ + 2
σ2
v
Ṽ′(β, δ)J(δ)WnTA

−1
nT (λ)Xβ

− 1
σ2
v
β′X′J′(δ)QD(δ)J(δ)Xβ − 1

2σ2
v
V ′(β, λ)Ψ̈λλ(δ)V(β, λ)

−1
2
tr[Ω̇λ(δ)Ψ̇λ(δ) + Ω̈λλ(δ)Ψ(δ)],

H∗
λρ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈λρ(δ)V(β, λ) + 1

σ2
v
V ′(β, λ)Ψ̇ρ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ
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−1
2
tr[Ω̇λ(δ)Ψ̇ρ(δ) + Ω̈λρ(δ)Ψ(δ)],

H∗
ρλ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈λρ(δ)V(β, λ) + 1

σ2
v
V ′(β, λ)Ψ̇ρ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇ρ(δ)Ψ̇λ(δ) + Ω̈λρ(δ)Ψ(δ)],

H∗
ρρ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈ρρ(δ)V(β, λ)− 1

2
tr[Ω̇ρ(δ)Ψ̇ρ(δ) + Ω̈ρρ(δ)Ψ(δ)].

The VC matrix. For stochastic terms of the forms in (2.10), we show that, for

r, s = 1, 2, 3, (i) Cov(Π′
rV, Π′

sV) = σ2
v0Π

′
rΠs; (ii) Cov(V′ΦrV, Π′

sV) = σ3
v0κ3φ

′
rΠs;

and (iii) Cov(V′ΦrV, V′ΦsV) = σ4
v0κ4φ

′
rϕs + σ4

v0tr(ΦrΦ
◦
s), where φr = diagv(Φr) and

Φ◦
s = Φs + Φ′

s. Apply these results to (2.10), we obtain,

Var[S∗
N(θ0)] =

1

σ2
v0



Π′
1Π1,

1
σ0
κ3Π

′
1φ1, Π′

1Π2 + σ0κ3Π
′
1φ2, σ0κ3Π

′
1φ3

∼, 1
σ2
0
Ξ11, Ξ12,

1
σ2
0
Ξ13

∼, ∼, Ξ22 +Π′
2Π2 + 2σ0κ3Π

′
2φ2, Ξ23 + σ0κ3Π

′
2φ3

∼, ∼, ∼, Ξ33


where Ξrs = tr(ΦrΦ

◦
s) + κ4φ

′
rφs, r, s = 1, 2, 3.

A.2. Derivation for Section 3.

The Hessian matrix. With redefined ΩN(δ), the non-τ -block of H⋄
N(θ) =

∂
∂θ′

S⋄
N(θ)

has the same form as H∗
N(θ) in Sec. 2. Extending the notations, Ω̇ω(δ), Ω̈ωϖ(δ), Ψ̇ω(δ),

and Ψ̈ωϖ(δ) of Sec. 2 to ω,ϖ = λ, ρ, τ , we obtain the τ -components of H⋄
N(θ):

H⋄
βτ (θ) =

1
σ2
e
X′A−1′

nT (λ)S ′Ψ̇τ (δ)V(β, λ) = H⋄′
τβ(θ),

H⋄
σ2
eτ
(θ) = 1

2σ4
e
V ′(β, λ)Ψ̇τ (δ)V(β, λ) = H⋄′

τσ2
e
(θ),

H⋄
λτ (θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈λτ (δ)V(β, λ) + 1

σ2
e
V ′(β, λ)Ψ̇τ (δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇λ(δ)Ψ̇τ (δ) + Ω̈λτ (δ)Ψ(δ)],

H⋄
τλ(θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈λτ (δ)V(β, λ) + 1

σ2
e
V ′(β, λ)Ψ̇τ (δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇τ (δ)Ψ̇λ(δ) + Ω̈λτ (δ)Ψ(δ)], and for (ω,ϖ) = (ρ, τ), (τ, ρ), (τ, τ),

H⋄
ωϖ(θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈ωϖ(δ)V(β, λ)− 1

2
tr[Ωω(δ)Ψ̇ϖ(δ) + Ω̈ωϖ(δ)Ψ(δ)],
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The VC matrix. Applying the results leading to Var[S∗
N(θ0)] on (3.2), we obtain,

Var[S⋄
N(θ0)]

=
1

σ2
e0



Π′
1Π1,

1
σe0

κ3Π
′
1φ1, Π′

1Π2 + σe0κ3Π
′
1φ2, σe0κ3Π

′
1φ3, σe0κ3Π

′
1φ4

∼, 1
σ2
e0
Ξ11, Ξ12,

1
σ2
e0
Ξ13,

1
σ2
e0
Ξ14

∼, ∼, Ξ22 +Π′
2Π2 + 2σe0κ3Π

′
2φ2, Ξ23 + σe0κ3Π

′
2φ3, Ξ24 + σe0κ3Π

′
2φ4

∼, ∼, ∼, Ξ33, Ξ34

∼, ∼, ∼, ∼, Ξ44


where Ξrs = tr(ΦrΦ

◦
s) + κ4φ

′
rφs, r, s = 1, 2, 3, 4.

Appendix B: Some Basic Lemmas

The following lemmas are essential to the proofs of the main results in Sections 2 and

3. Lemmas B.2 and B.3 are new and their proofs are given in Appendix E (Sec. E.1).

Lemma B.1. (Kelejian and Prucha, 1999): Let {AN} and {BN} be two sequences

of N × N matrices that are bounded in both row and column sum norms. Let CN be a

sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are bounded in both row and column sum norms,

(ii) the elements of AN are uniformly bounded and tr(AN) = O(N), and

(iii) the elements of ANCN and CNAN are uniformly O(h−1
N ).

Lemma B.2. Under the setup of Section 2 and Assumptions C-F, the following ma-

trices are bounded in both row and column sum norms, uniformly in δ ∈ ∆: (i) ΩN(δ),

Ω̇ω(δ) ≡ ∂
∂ω
ΩN(δ), ω = λ, ρ, Ω−1

N (δ), (ii) Ω
− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ), and (iii) Ω
− 1

2
N (δ)PX̃(δ)Ω

− 1
2

N (δ),

where PX̃(δ) is the projection matrix based on X̃(δ) = QD(δ)X(δ).

Lemma B.3. Under Assumptions C-E, tr[ANX[X′(δ)QD(δ)X(δ)]−1X′BN ] = O(1),

uniformly in δ ∈ ∆, for AN and BN bounded in either row or column sum norm.
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Lemma B.4. (Lee, 2004): Let AN be an N × N matrix bounded in both row and

column sum norms, with elements of uniform order O(h−1
N ), cN be an N × 1 vector with

elements of uniform order O(h
−1/2
n ), and V = (v1, . . . , vN)

′ with vj ∼ iid(0, σ2). Then,

(i) E(V′ANV) = O( N
hn
), (ii) Var(V′ANV) = O( N

hn
),

(iii) V′ANV = Op(
N
hn
), (iv) V′ANV − E(V′ANV) = Op((

N
hn
)
1
2 ),

(v) c′NANV = Op((
N
hn
)
1
2 ).

Appendix C: Proofs for Section 2

Population objective function. The population counterpart of S∗c
N (δ) is

S̄∗c
N (δ) =


E[V̄′(δ)Hλ(δ)V̄(δ)]
2E[V̄′(δ)V̄(δ)]/N1

+
E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]

E[V̄′(δ)V̄(δ)]/N1

− 1

2
tr[Hλ(δ)QD(δ)],

E[V̄′(δ)Hρ(δ)V̄(δ)]
2E[V̄′(δ)V̄(δ)]/N1

− 1

2
tr[Hρ(δ)QD(δ)],

(C.1)

where V̄(δ) = Ṽ(β̄M(δ), δ), obtained by first solving S̄∗
N(θ) = E[S∗

N(θ)] = 0 for β and σ2:

β̄M(δ) = [X′(δ)QD(δ)X(δ)]−1X′(δ)QD(δ)E[Y(δ)] and σ̄2
v,M(δ) =

1
N1

E[V̄′(δ)V̄(δ)], (C.2)

and then substituting β̄M(δ) and σ̄2
v,M(δ) back into the δ-component of S̄∗

N(θ).

Proof of Theorem 2.1: By theorem 5.9 of Van der Vaart (1998), we only need to

show supδ∈δ
1
N1

∥∥S∗c
N (δ)− S̄∗c

N (δ)
∥∥ p−→ 0 under the assumptions in Theorem 2.1. From

(2.9) and (C.1), the consistency of δ̂M follows from:

(a) infδ∈∆σ̄
2
v,M(δ) is bounded away from zero,

(b) supδ∈∆
∣∣σ̂2

v,M(δ)− σ̄2
v,M(δ)

∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣V̂′(δ)Hω(δ)V̂(δ)− E[V̄′(δ)Hω(δ)V̄(δ)]
∣∣ = op(1), for ω = λ, ρ,

(d) supδ∈∆
1
N1

∣∣V̂′(δ)J(δ)ε(β̂M(δ), δ)− E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]
∣∣ = op(1).

Proof of (a). From (C.2), V̄(δ) = QD(δ)Y(δ)−QD(δ)X(δ)β̄M(δ) = QX̃(δ)QD(δ)Y(δ)+

PX̃(δ)QD(δ)[Y(δ)−E(Y(δ))], where PX̃(δ) and QX̃(δ) are the projection matrices based on

X̃(δ) = QD(δ)X(δ). Let η = SA−1
nT (Xβ0+Dϕ0). As Y(δ) = Ω

− 1
2

N (δ)η+Ω
− 1

2
N (δ)SA−1

nTB
−1
nTV,
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we have by orthogonality between QX̃(δ) and PX̃(δ),

σ̄2
v,M(δ) =

1
N1

E[Y′(δ)Q(δ)Y(δ)] + 1
N1

E
{
[Y(δ)− E(Y(δ))]′P(δ)[Y(δ)− E(Y(δ))]

}
(C.3)

= 1
N1

η′Ω
− 1

2
N (δ)Q(δ)Ω

− 1
2

N (δ)η +
σ2
v0

N1
tr[QD(δ)ON(δ)], (C.4)

whereQ(δ) = QD(δ)QX̃(δ)QD(δ), P(δ) = QD(δ)PX̃(δ)QD(δ) andON(δ) = Ω
− 1

2
N (δ)ΩNΩ

− 1
2

N (δ).

The first term of (C.4) can be written in the form of a′(δ)a(δ) for an N × 1 vector

function of δ, and thus is non-negative, uniformly in δ ∈ ∆. For the second term,

σ2
v0

N1
tr[QD(δ)ON(δ)] ≥ σ2

v0

N1
γmin[ON(δ)]tr[QD(δ)] ≥ σ2

v0γmax(ΩN)
−1γmin[ΩN(δ)]

≥ σ2
v0γmax(A

′
NAN)

−1γmax(B
′
NBN)

−1γmin[A
′
N(λ)AN(λ)]γmin[B

′
N(ρ)BN(ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
2
v,M(δ) > 0.

Proof of (b). From (2.8), V̂(δ) = QD(δ)[Y(δ) − X(δ)β̂M(δ)] = QX̃(δ)QD(δ)Y(δ) and

σ̂2
v,M(δ) =

1
N1

Y′(δ)Q(δ)Y(δ). From (C.3), σ̄2
v,M(δ) =

1
N1

E[Y′(δ)Q(δ)Y(δ)]+σ2
v0

N1
tr[P(δ)ON(δ)].

Thus, σ̂2
v,M(δ)− σ̄2

v,M(δ) =
1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))]− σ2
v0

N1
tr[P(δ)ON(δ)].

For the second term, 0 ≤ 1
N1
tr[P(δ)ON(δ)] ≤ 1

N1
γmax[ON(δ)]γ

2
max[QD(δ)]tr[PX̃(δ)] =

o(1), because tr[PX̃(δ)] = k, γmax[QD(δ)] = 1 and, by Assumption E(iii),

γmax[ON(δ)] ≤ γmin(A
′
NAN)

−1γmin(B
′
NBN)

−1γmax[A
′
N(λ)AN(λ)]γmax[B

′
N(ρ)BN(ρ)] < ∞.

Therefore, one has supδ∈∆ |σ
2
v0

N1
tr[P(δ)ON(δ)]| = o(1). For the first term, letting Q̄(δ) =

Ω
− 1

2
N (δ)Q(δ)Ω

− 1
2

N (δ) and using SY = η + SA−1
nTB

−1
nTV, we have

1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] = 1
N1

[Y′S ′Q̄(δ)SY − E(Y′S ′Q̄(δ)SY)]

= 2
N1

η′Q̄(δ)SA−1
nTB

−1
nTV + 1

N1
[V′B−1′

nT A−1′
nT SQ̄(δ)SA−1

nTB
−1
nTV − σ2

v0tr(Q̄(δ)ΩN)].

Thus, the pointwise convergence of the first term follows from Lemma B.4(v), and

the pointwise convergence of the second term follows from Lemma B.4(iv). Therefore,

1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] p−→ 0, for each δ ∈ ∆.

Next, let δ1 and δ2 be in ∆. By the mean value theorem (MVT):
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1
N1

Y′(δ1)Q(δ1)Y(δ1)− 1
N1

Y′(δ2)Q(δ2)Y(δ2) = 1
N1

Y′S ′[ ∂
∂δ′

Q̄(δ̄)]SY(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that
1
N1

Y′(δ)Q(δ)Y(δ) is stochastically equicon-

tinuous as supδ∈∆
1
N1

Y′S ′[ ∂
∂ϖ

Q̄(δ)]SY = Op(1), ϖ = λ, ρ (See Appendix E, Sec. E.3

for details). With the pointwise convergence of 1
N1

[Y′(δ)Q(δ)Y(δ) − E(Y′(δ)Q(δ)Y(δ))]

to zero for each δ ∈ ∆ and the stochastic equicontinuity of 1
N1

Y′(δ)Q(δ)Y(δ), the uni-

form convergence result, supδ∈∆ | 1
N1

[Y′(δ)Q(δ)Y(δ)−E(Y′(δ)Q(δ)Y(δ))]| = op(1), follows

(Andrews, 1992). Thus, the result (b) is proved.

Proof of (c). We show only supδ∈∆
1
N1

∣∣V̂′(δ)Hλ(δ)V̂(δ)−E[V̄′(δ)Hλ(δ)V̄(δ)]
∣∣ = op(1),

as he other part is similar. By Hλ(δ), V̂(δ) and V̄(δ) given below (2.6) and in the proofs

of (a) and (b) above, we can write 1
N1

V̂′(δ)Hλ(δ)V̂(δ)− 1
N1

E[V̄′(δ)Hλ(δ)V̄(δ)] as

1
N1

[Y′S ′Q̄(δ)( ∂
∂λ
ΩN(δ))Q̄(δ)SY − E(Y′S ′Q̄(δ)( ∂

∂λ
ΩN(δ))Q̄(δ)SY)]

−σ2
v0

N1
tr[P̄(δ)( ∂

∂λ
ΩN(δ))P̄(δ)ΩN ],

where P̄(δ) = Ω
− 1

2
N (δ)QD(δ)PX̃(δ)QD(δ)Ω

− 1
2

N (δ). The first term is similar in form to

1
N1

[Y′S ′Q̄(δ)SY−E(Y′S ′Q̄(δ)SY)] from (b) and its uniform convergence is shown in a

similar way. Furthermore, by Lemma B.3, the second term is o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of β̂M(δ), β̄M(δ), V̂(δ) and V̄(δ), we have

1
N1

V̂′(δ)J(δ)ε(β̂M(δ), δ)− 1
N1

E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]

= 1
N1

[Y′S ′Q̄(δ)(M(δ) +K(δ))SY − E(Y′S ′Q̄(δ)(M(δ) +K(δ))SY)]

− σ2
v0

N1
tr[P̄(δ)K(δ)ΩN ]− σ2

v0

N1
tr[Q̄(δ)M(δ)ΩN ],

where M(δ) = [S( ∂
∂λ
A−1

nT (λ))X − K(δ)X (λ)][X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ), and X (λ) =

SA−1
nT (λ)X. Therefore, the uniform convergence of the first term can be shown in a similar

way as we do for 1
N1

[Y′S ′Q̄(δ)SY−E(Y′S ′Q̄(δ)SY)] from (b) due to their similar forms.

By Lemma B.3, the remaining two terms are shown to be o(1), uniformly in δ ∈ ∆. ■
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Proof of Theorem 2.2: Applying the MVT to each element of S∗
N(θ̂M), we have

0 = 1√
N1

S∗
N(θ̂M) =

1√
N1

S∗
N(θ0) +

[
1
N1

∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

]√
N1(θ̂M − θ0), (C.5)

where {θ̄r} are on the line segment between θ̂M and θ0. The result follows if

(a) 1√
N1

S∗
N(θ0)

D−→ N [0, limN→∞ Γ∗
N(θ0)],

(b) 1
N1

[ ∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′

S∗
N(θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′

S∗
N(θ0)− E( ∂

∂θ′
S∗
N(θ0))] = op(1).

Proof of (a). As seen from (2.10), the elements of S∗
N(θ0) are linear-quadratic forms

in V. Thus, for every non-zero (k + 3)× 1 constant vector a, a′S∗
N(θ0) is of the form:

a′S∗
N(θ0) = b′NV +V′ΦNV − σ2

vtr(ΦN),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions

A-F, it is easy to verify (by Lemma B.1 and Lemma B.2) that bN and matrix ΦN satisfy

the conditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence the

asymptotic normality of 1√
N1

a′S∗
N(θ0) follows. By Cramér-Wold device, 1√

N1
S∗
N(θ0)

D−→

N [0, limN→∞ Γ∗
N(θ0)], where elements of Γ∗

N(θ0) are given in Appendix A.

Proof of (b). The Hessian matrix H∗
N(θ) = ∂

∂θ′
S∗
N(θ) is given in Appendix A.

Rewrite Ψ̇λ(δ) in (A.2) as −Ψ(δ)Ω̇λ(δ)Ψ(δ)−Ψ(δ)K(δ)−K′(δ)Ψ(δ) and Ψ̇ρ(δ) in (A.3)

as −Ψ(δ)Ω̇ρ(δ)Ψ(δ). Following exactly the same way of proving Lemma B.2(ii), we show

that both K(δ) (defined below (A.3)) and ∂
∂ω
K(δ), ω = λ, ρ are uniformly bounded in

both row and column sums, uniformly in δ ∈ ∆. In addition, the proof of Lemma B.2(i)

also implies Ω̈ωϖ(δ), ω,ϖ = λ, ρ is bounded in row and column sum norms, uniformly in

δ ∈ ∆. Thus, by Lemma B.1, we have Ψ̇ω(δ) and Ψ̈ωϖ(δ), ω,ϖ = λ, ρ are all bounded

in row and column sum norms, uniformly in δ ∈ ∆. With these, Ṽ(β0, δ0) = QDΓV

and V(β0, λ0) = SA−1
nT [Dϕ0 + B−1

nTV], Lemma B.4 leads to 1
N1

H∗
N(θ0) = Op(1). Thus,

1
N1

H∗
N(θ̄) = Op(1) since θ̄

p−→ θ0 due to θ̂M
p−→ θ0, where for simplicity, H∗

N(θ̄) is used to
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denote ∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

. As σ̄2
v

p−→ σ2
v0, we have σ̄−r

v = σ−r
v0 + op(1), for r = 2, 4, 6.

As σ−r
v appears in H∗

N(θ) multiplicatively, 1
N1

H∗
N(θ̄) =

1
N1

H∗
N(β̄, δ̄, σ

2
v0) + op(1). Thus,

the proof of (b) is equivalent to the proof of 1
N1

[H∗
N(β̄, δ̄, σ

2
v0) − H∗

N(θ0)]
p−→ 0, or the

proofs of 1
N1

[H∗S
N (β̄, δ̄, σ2

v0)−H∗S
N (θ0)]

p−→ 0 and 1
N1

[H∗NS
N (δ̄)−H∗NS

N (δ0)]
p−→ 0, where H∗S

N

and H∗NS
N denote, respectively, the stochastic and non-stochastic parts of H∗

N .

For the stochastic part, we see that all the components of H∗S
N (β, δ, σ2

v0) are linear

or quadratic in β, but nonlinear in δ. Hence, with an application of the MVT on

H∗S
N (β̄, δ̄, σ2

v0) w.r.t δ̄, the result follows. For the non-stochastic part, the results can

also be shown using the MVT (See Appendix E, Sec. E.3, for details).

Proof of (c). Since Ṽ(β0, δ0) = QDΓV and V(β0, λ0) = SA−1
nT [Dϕ0 + B−1

nTV], the

Hessian matrix at true θ0 are seen to be linear combinations of terms linear or quadratic in

V. We have, e.g., 1
N1

[H∗
ρρ(ρ0)− E(H∗

ρρ(ρ0))] =
1

N1σ2
v0
[V′B−1′

nT A−1′
nT S ′Ψ̈ρρ(δ0)SA−1

nTB
−1
nTV −

E(V′B−1′
nT A−1′

nT S ′Ψ̈ρρ(δ0)SA−1
nTB

−1
nTV)] = op(1). The other terms follow similarly. ■

Proof of Corollary 2.1. See Appendix E, Sec. E.3.

Proof of Corollary 2.2. See Appendix E, Sec. E.3.

Appendix D: Proofs for Section 3

Let now ∆ = ∆λ × ∆ρ × ∆τ be the parameter space for δ = (λ, ρ, τ)′, where ∆ϖ

is the parameter space for ϖ = λ, ρ, τ . Let C(δ) = Ω
− 1

2
N (δ)SA−1

nT (λ), X(δ) = C(δ)X,

D(δ) = C(δ)D, and QD(δ) be the projection matrix based on D(δ), where ΩN(δ) ≡

SA−1
nT (λ)B

−1
nT (ρ)[Υ(τ)Υ′(τ)⊗ In]B

−1′
nT (ρ)A−1′

nT (λ)S ′. The additional assumptions are:

Assumption B′. The space ∆ of δ is compact with the true δ0 in its interior.

Assumption C′. The elements of X are non-stochastic and bounded uniformly in i

and t. limN→∞
1
N
X′(δ)QD(δ)X(δ) exists and is non-singular, uniformly in δ ∈ ∆.
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Assumption D′. {Wt} and {Mt} are known time-varying matrices, and W and M

are such that (i) elements are at most of uniform order h−1
n such that hn

n
→ 0, as n → ∞;

(ii) diagonal elements are zero; and (iii) column and row sum norms are bounded.

Assumption E′. Denoting by A(ϖ) either AN(λ) or BN(ρ), where ϖ = λ, ρ,

(i) both ∥A−1(ϖ)∥∞ and ∥A−1(ϖ)∥1 are bounded;

(ii) 0 < cϖ ≤ infϖ∈∆ϖ γmin[A′(ϖ)A(ϖ)] ≤ supϖ∈∆ϖ
γmax[A′(ϖ)A(ϖ)] ≤ c̄ϖ < ∞.

Assumption F′: ∥Ω− 1
2

N (δ)QD(δ)Ω
− 1

2
N (δ)∥1 and ∥Ω− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ)∥∞ are bounded

uniformly in δ ∈ ∆.

Assumption G′: infδ:d(δ,δ0)≥ϵ

∥∥S̄⋄c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure

of distance between δ and δ0 and S̄⋄c
N (δ) is the concentrated version of S̄⋄

N(θ) = E[S⋄
N(θ)].

Assumptions B′-E′ are either similar to or the same as Assumptions B-E. Assumption

F′ extends Assumption F as ΩN(δ) is no longer block diagonal. Assumption G′ extends

Assumption G, and a more primitive version of it is given in Appendix E (Sec. E.2).

Proofs of the results in Sec. 3 extend those in Sec. 2 (see Appendix E, Sec. E.4).

Appendix E: Online Supplementary Material

The Supplementary Material contains proofs of the two new lemmas in Appendix

B, details on some important issues (literature, time/space invariant effects, computing)

and technical assumptions, detailed proofs of the theories in the main text, a complete

set of Monte Carlo results, and an additional application.
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Table 1: Empirical bias(sd)[ŝe] of estimators, MR model with iid errors.
Missing percentage=10%, (β, λ, ρ, σ2

v) = (1, 0.2, 0.2, 1), and W = Group and M = Queen.

T=5 T=10

QMLE-MR ME-GU ME-MR QMLE-MR ME-GU ME-MR

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

β .0010(.027) .0042(.027)[.027] .0007(.027)[.027] -.0005(.018) .0025(.018)[.018] -.0007(.018)[.018]

λ -.0120(.052) -.0438(.054)[.051] -.0009(.051)[.051] -.0122(.033) -.0221(.034)[.034] -.0016(.033)[.033]

ρ -.0182(.133) -.0147(.105)[.106] -.0095(.114)[.103] -.0271(.071) -.0018(.065)[.066] -.0044(.064)[.064]

σ2
v -.2408(.058) .0068(.076)[.076] -.0122(.075)[.075] -.1238(.043) .0083(.049)[.051] -.0050(.049)[.050]

β -.0003(.027) .0028(.027)[.027] -.0005(.027)[.027] .0003(.019) .0033(.019)[.018] .0000(.019)[.018]

λ -.0190(.055) -.0496(.054)[.051] -.0077(.054)[.052] -.0111(.032) -.0206(.034)[.034] -.0006(.032)[.032]

ρ -.0200(.131) -.0158(.103)[.106] -.0121(.108)[.103] -.0278(.068) -.0025(.062)[.066] -.0051(.061)[.064]

σ2
v -.2354(.127) .0130(.167)[.159] -.0052(.165)[.158] -.1295(.105) .0013(.120)[.113] -.0115(.119)[.112]

β -.0002(.027) .0030(.027)[.027] -.0004(.027)[.027] .0007(.018) .0037(.018)[.018] .0005(.018)[.018]

λ -.0181(.053) -.0471(.051)[.051] -.0068(.052)[.052] -.0148(.034) -.0241(.035)[.034] -.0041(.033)[.033]

ρ -.0125(.133) -.0084(.104)[.105] -.0049(.114)[.102] -.0296(.072) -.0044(.066)[.066] -.0066(.064)[.064]

σ2
v -.2433(.095) .0023(.125)[.116] -.0154(.124)[.115] -.1201(.074) .0118(.084)[.082] -.0007(.084)[.082]

n = 400; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

β .0004(.013) .0008(.013)[.013] .0003(.013)[.013] .0000(.009) -.0005(.009)[.009] -.0001(.009)[.009]

λ -.0083(.036) -.0457(.036)[.035] -.0033(.036)[.036] -.0081(.024) -.0487(.022)[.022] -.0022(.024)[.024]

ρ .0426(.064) -.0005(.053)[.053] -.0025(.052)[.051] .0111(.035) .0011(.033)[.032] -.0006(.032)[.031]

σ2
v -.2286(.030) .0092(.038)[.039] -.0005(.038)[.039] -.1152(.023) .0067(.025)[.025] -.0010(.025)[.025]

β -.0002(.013) .0002(.013)[.013] -.0002(.013)[.013] -.0004(.009) -.0008(.009)[.009] -.0005(.009)[.009]

λ -.0092(.037) -.0464(.037)[.035] -.0041(.037)[.036] -.0064(.025) -.0472(.023)[.022] -.0005(.025)[.024]

ρ .0446(.061) .0011(.051)[.053] -.0012(.050)[.051] .0114(.034) .0009(.032)[.032] -.0004(.031)[.031]

σ2
v -.2308(.063) .0063(.082)[.083] -.0034(.082)[.083] -.1128(.051) .0096(.058)[.058] .0017(.058)[.057]

β .0001(.014) .0005(.014)[.013] .0001(.014)[.013] -.0001(.009) -.0005(.009)[.009] -.0002(.009)[.009]

λ -.0081(.035) -.0460(.035)[.035] -.0030(.034)[.036] -.0080(.025) -.0486(.023)[.022] -.0021(.025)[.024]

ρ .0435(.063) -.0003(.052)[.053] -.0021(.051)[.051] .0120(.034) .0016(.032)[.032] .0002(.031)[.031]

σ2
v -.2301(.049) .0073(.063)[.061] -.0025(.063)[.061] -.1143(.038) .0078(.043)[.042] .0001(.043)[.041]

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 30%

β -.0002(.035) .0019(.035)[.035] -.0003(.034)[.035] .0014(.021) .0045(.020)[.021] -.0006(.021)[.021]

λ -.0182(.064) -.0994(.055)[.055] -.0087(.064)[.061] -.0117(.036) -.0615(.035)[.039] -.0020(.039)[.039]

ρ -.0515(.246) -.0098(.158)[.161] -.0099(.145)[.145] -.0408(.095) .0015(.086)[.090] -.0145(.089)[.087]

σ2
v -.3128(.073) .0227(.098)[.093] -.0202(.092)[.091] -.1576(.050) .0272(.058)[.060] -.0046(.063)[.059]

β -.0003(.034) .0015(.034)[.035] -.0008(.036)[.035] .0014(.020) .0045(.020)[.021] -.0004(.021)[.021]

λ -.0161(.064) -.1003(.055)[.055] -.0040(.064)[.061] -.0156(.039) -.0632(.040)[.039] -.0042(.039)[.039]

ρ -.0393(.259) -.0011(.163)[.161] -.0170(.144)[.147] -.0475(.103) -.0052(.093)[.091] -.0057(.088)[.086]

σ2
v -.3205(.140) .0153(.184)[.182] -.0087(.200)[.182] -.1473(.115) .0381(.133)[.132] -.0137(.125)[.128]

β -.0033(.036) -.0013(.035)[.035] -.0017(.035)[.035] -.0016(.022) .0015(.022)[.021] .0016(.020)[.021]

λ -.0140(.066) -.0989(.057)[.055] -.0049(.061)[.062] -.0159(.039) -.0638(.041)[.039] -.0018(.041)[.039]

ρ -.0683(.246) -.0224(.157)[.162] -.0082(.144)[.148] -.0350(.098) .0060(.090)[.089] -.0058(.082)[.086]

σ2
v -.3183(.102) .0161(.138)[.133] -.0174(.141)[.136] -.1573(.088) .0258(.100)[.095] -.0103(.100)[.092]

n = 400; error = 1, 2, 3, for the three panels below; Missing percentage = 30%

β .0001(.016) -.0014(.016)[.016] -.0003(.016)[.016] -.0001(.010) -.0005(.010)[.010] -.0002(.010)[.010]

λ -.0087(.046) -.0978(.039)[.037] -.0050(.044)[.042] -.0066(.030) -.0989(.028)[.024] -.0008(.027)[.027]

ρ .0631(.091) .0035(.073)[.072] -.0009(.064)[.067] .0127(.046) .0033(.044)[.044] -.0041(.041)[.040]

σ2
v -.2990(.036) .0127(.047)[.045] -.0037(.044)[.045] -.1478(.025) .0189(.029)[.030] -.0016(.030)[.029]

β -.0007(.016) -.0022(.016)[.016] .0001(.016)[.016] -.0008(.010) -.0012(.010)[.010] -.0003(.010)[.010]

λ -.0100(.049) -.0975(.039)[.037] -.0020(.041)[.042] -.0074(.028) -.0974(.025)[.024] -.0014(.026)[.026]

ρ .0649(.092) .0049(.073)[.072] -.0030(.065)[.067] .0153(.044) .0061(.043)[.044] .0015(.041)[.040]

σ2
v -.2967(.071) .0162(.093)[.095] -.0096(.087)[.092] -.1535(.059) .0119(.067)[.065] -.0027(.067)[.065]

β .0008(.016) -.0007(.016)[.016] -.0012(.016)[.016] .0007(.011) .0003(.011)[.010] .0004(.010)[.010]

λ -.0100(.048) -.0984(.040)[.037] -.0061(.044)[.042] -.0056(.028) -.0968(.024)[.024] -.0017(.026)[.026]

ρ .0673(.088) .0051(.071)[.072] -.0045(.066)[.067] .0116(.047) .0023(.045)[.044] .0005(.039)[.040]

σ2
v -.2992(.052) .0129(.068)[.069] -.0063(.070)[.069] -.1483(.041) .0184(.047)[.048] -.0040(.046)[.047]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2: Empirical bias(sd)[ŝe] of estimators, MR model with serially correlated errors.
Missing percentage=10%, (β, λ, ρ, τ, σ2

e) = (1, 0.2, 0.2, 0.5, 1), and W = Group and M = Queen.

T=5 T=10

QMLE-MRSC ME-MRSC QMLE-MRSC ME-MRSC

n = 100; error = 1, 2, 3, for the three panels below

β .0024(.028) .0011(.024)[.024] -.0002(.015) -.0004(.015)[.016]

λ -.0150(.052) -.0038(.043)[.044] -.0089(.030) -.0001(.029)[.029]

ρ -.0098(.147) -.0039(.096)[.094] -.0142(.065) -.0051(.057)[.057]

τ -.6263(.573) .0183(.082)[.079] -.0829(.045) .0019(.038)[.040]

σ2
v -.3089(.156) -.0195(.077)[.077] -.1159(.044) -.0080(.049)[.050]

β .0005(.032) .0007(.025)[.024] .0006(.016) .0003(.016)[.016]

λ -.0123(.052) -.0028(.044)[.044] -.0097(.030) -.0003(.029)[.029]

ρ -.0054(.139) -.0034(.094)[.094] -.0158(.066) -.0064(.057)[.057]

τ -.6840(.594) .0163(.095)[.096] -.0785(.049) .0061(.043)[.045]

σ2
v -.3171(.182) -.0084(.153)[.157] -.1186(.097) -.0113(.109)[.108]

β .0002(.029) -.0008(.023)[.024] .0005(.016) .0001(.016)[.016]

λ -.0154(.053) -.0036(.045)[.044] -.0117(.032) -.0021(.032)[.029]

ρ -.0173(.145) -.0092(.095)[.095] -.0145(.066) -.0055(.058)[.057]

τ -.6763(.590) .0140(.080)[.085] -.0803(.047) .0042(.042)[.042]

σ2
v -.3189(.175) -.0148(.123)[.114] -.1185(.072) -.0111(.081)[.079]

n = 400; error = 1, 2, 3, for the three panels below

β -.0007(.014) -.0008(.012)[.012] .0000(.008) -.0001(.008)[.008]

λ -.0094(.036) -.0035(.031)[.032] -.0068(.024) -.0005(.024)[.024]

ρ .0478(.063) -.0027(.046)[.046] .0209(.031) -.0001(.028)[.028]

τ -.4706(.399) .0029(.036)[.037] -.0803(.022) .0028(.020)[.020]

σ2
v -.2466(.106) -.0070(.041)[.038] -.1065(.023) -.0033(.025)[.025]

β -.0003(.014) -.0002(.013)[.012] .0000(.008) .0000(.008)[.008]

λ -.0070(.036) .0002(.031)[.032] -.0067(.025) -.0007(.025)[.024]

ρ .0469(.061) -.0030(.045)[.045] .0204(.031) -.0002(.028)[.028]

τ -.5007(.438) .0052(.042)[.045] -.0839(.026) -.0002(.022)[.022]

σ2
v -.2566(.122) -.0066(.078)[.080] -.1087(.050) -.0056(.056)[.055]

β -.0001(.013) -.0001(.012)[.012] .0006(.008) .0007(.008)[.008]

λ -.0081(.038) -.0014(.034)[.032] -.0079(.023) -.0016(.023)[.024]

ρ .0505(.063) .0005(.045)[.046] .0172(.030) -.0036(.026)[.028]

τ -.4567(.395) .0063(.041)[.040] -.0807(.023) .0029(.020)[.021]

σ2
v -.2429(.107) -.0043(.059)[.059] -.1051(.038) -.0018(.042)[.041]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).

Table 3: Descriptive statistics for the data.

Variables Obs Mean Std Min Max

Beer Tax Rates 911 0.193 0.152 0.017 0.768

Gasoline Tax Rates 888 0.137 0.052 0.040 0.380

Size 912 0.647 0.907 0.017 4.279

DR 912 0.540 0.055 0.430 0.720

GIO 912 0.523 0.108 0.213 0.728

LSTR 912 0.042 0.017 0.000 0.080

GSP 912 0.098 0.123 0.004 0.964

PE 912 9.391 12.756 0.448 109.000

Note. Tax rates and PE are from World Tax Database (https://www.bus.umich.edu/otpr/otpr/default.
asp); GSP from US Bureau of Economic Analysis (https://www.bea.gov/data/gdp/gdp-state); other con-
trol variables from Egger et al. (2005); and the missing values on PE are recovered from United States Census
Bureau (https://www.census.gov/programs-surveys/state/data/historical_data.html). Little’s test of
missing completely at random (Little, 1988) has a p-value of 0.9886, and thus is not rejected.

34

https://www.bus.umich.edu/otpr/otpr/default.asp
https://www.bus.umich.edu/otpr/otpr/default.asp
https://www.bea.gov/data/gdp/gdp-state
https://www.census.gov/programs-surveys/state/data/historical_data.html


Table 4: Estimation results for beer tax rates using various methods.

Variables QMLE-GU ME-GU ME-IMR QMLE-MR ME-MR ME-IMRSC QMLE-MRSC ME-MRSC

Size 0.158∗∗∗ 0.160∗∗∗ 0.156∗∗∗ 0.158∗∗∗ 0.159∗∗∗ 0.148∗∗∗ 0.147∗∗∗ 0.147∗∗∗

(4.39) (4.45) (2.72) (4.27) (4.30) (3.39) (3.42) (3.42)

WSize −0.107 −0.113∗ −0.087 −0.114∗ −0.124∗∗ −0.152∗∗ −0.142∗∗ −0.155∗∗∗

(−1.64) (−1.73) (−0.42) (−1.91) (−2.09) (−2.25) (−2.18) (−2.37)

DR 0.193∗ 0.194∗ 0.232 0.185∗∗ 0.175∗∗ 0.125 0.133∗ 0.116

(1.89) (1.90) (1.49) (2.10) (1.98) (1.44) (1.66) (1.46)

GIO −0.035∗∗ −0.034∗∗ −0.031 −0.036∗∗∗ −0.036∗∗∗ −0.009 −0.009 −0.008

(−2.29) (−2.24) (−0.93) (−2.44) (−2.42) (−0.64) (−0.66) (−0.60)

LSTR 0.268 0.273 0.282 0.268 0.270 −0.061 −0.075 −0.085

(1.15) (1.17) (1.22) (1.15) (1.16) (−0.25) (−0.33) (−0.37)

GSP −0.786∗∗∗ −0.783∗∗∗ −0.762∗∗∗ −0.775∗∗∗ −0.758∗∗∗ −0.603∗∗∗ −0.613∗∗∗ −0.586∗∗∗

(−8.95) (−8.91) (−2.79) (−7.86) (−7.69) (−5.54) (−6.12) (−5.85)

PE 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(10.00) (9.84) (3.28) (8.50) (8.14) (6.15) (7.00) (6.48)

SL(λ) 0.168 0.197 0.025 0.234 0.316∗ 0.346∗ 0.244 0.370∗∗

(0.71) (0.83) (0.02) (1.28) (1.74) (1.68) (1.39) (2.10)

SE(ρ) −0.036 −0.026 0.150 −0.111 −0.165 −0.222 −0.139 −0.245

(−0.13) (−0.09) (0.11) (−0.49) (−0.72) (−0.89) (−0.63) (−1.12)

SC(τ) 0.663∗∗∗ 0.688∗∗∗ 0.699∗∗∗

(8.89) (38.44) (38.96)

Pseudo R2 96.55% 96.56% 96.51% 96.59% 96.64% 98.09% 98.21% 98.26%

States 48 48 48 48 48 48 48 48

Years 19 19 19 19 19 19 19 19

N 911 911 911 911 911 911 911 911

Significance levels: ∗:10%, ∗∗:5%, and ∗∗∗: 1%; t-statistic values in parentheses.

Table 5: Estimation results for gasoline tax rates using various methods.

Variables QMLE-GU ME-GU ME-IMR QMLE-MR ME-MR ME-IMRSC QMLE-MRSC ME-MRSC

Size 0.041 0.038 0.033 0.051∗ 0.053∗ 0.029 0.046 0.048

(1.40) (1.31) (1.01) (1.66) (1.73) (0.74) (1.37) (1.41)

WSize −0.134∗∗∗ −0.129∗∗∗ −0.131∗∗∗ −0.127∗∗∗ −0.119∗∗∗ −0.133∗∗ −0.120∗∗ −0.114∗∗

(−2.65) (−2.55) (−2.48) (−2.70) (−2.52) (−2.08) (−2.28) (−2.15)

DR 0.012 0.003 0.013 0.016 0.014 0.014 0.036 0.034

(0.16) (0.04) (0.17) (0.25) (0.21) (0.16) (0.54) (0.50)

GIO 0.014 0.014 0.006 0.014 0.014 0.002 0.016 0.016

(1.21) (1.16) (0.48) (1.22) (1.19) (0.13) (1.38) (1.38)

LSTR −0.031 −0.044 0.194 0.005 0.007 0.178 −0.085 −0.086

(−0.17) (−0.24) (0.93) (0.03) (0.04) (0.76) (−0.46) (−0.47)

GSP −0.136 −0.107 −0.195∗∗ −0.179∗ −0.173∗ −0.206∗∗ −0.153 −0.146

(−1.45) (−1.15) (−2.10) (−1.79) (−1.72) (−2.06) (−1.53) (−1.47)

PE 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000

(0.24) (−0.07) (0.98) (0.65) (0.58) (1.03) (0.44) (0.37)

SL(λ) 0.100 0.081 0.251∗∗∗ 0.267∗∗ 0.329∗∗∗ 0.186∗∗∗ 0.208 0.262∗∗

(0.94) (0.76) (3.67) (2.28) (2.81) (3.86) (1.63) (2.05)

SE(ρ) 0.197 0.270∗∗ 0.018 0.026 0.010 0.037 0.045 0.038

(1.55) (2.12) (0.18) (0.16) (0.06) (0.56) (0.28) (0.23)

SC(τ) 0.415∗∗∗ 0.682∗∗∗ 0.691∗∗∗

(18.85) (41.53) (42.11)

Pseudo R2 82.19% 82.31% 77.62% 82.37% 82.52% 81.79% 90.52% 90.59%

States 48 48 48 48 48 48 48 48

Years 19 19 19 19 19 19 19 19

N 888 888 888 888 888 888 888 888

Significance levels: ∗:10%, ∗∗:5%, and ∗∗∗; t-statistic values in parentheses.
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