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Abstract
In this paper, M -estimation and inference methods are developed for spatial dynamic

panel data models with correlated random effects, based on short panels. The unobserved

individual-specific effects are assumed to be correlated with the observed time-varying

regressors linearly or in a linearizable way, giving the so-called correlated random effects

model, which allows the estimation of effects of time-invariant regressors. The unbiased

estimating functions are obtained by adjusting the conditional quasi-scores given the

initial observations, leading to M -estimators that are consistent, asymptotically normal,

and free from the initial conditions except the process starting time. By decomposing

the estimating functions into sums of terms uncorrelated given idiosyncratic errors, a

hybrid method is developed for consistently estimating the variance-covariance matrix

of the M -estimators, which again depends only on the process starting time. Monte

Carlo results demonstrate that the proposed methods perform well in finite sample. An

empirical application on the political competition in China is presented.
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1. Introduction

Consider the spatial dynamic panel data (SDPD) model where the spatial effects appear
in the model in the forms of spatial lag (SL), space-time lag (STL), and spatial error (SE):

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ αt1n + ut, (1.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ and vt = (v1t, v2t, . . . , vnt)′ are n× 1 vectors of response values
and idiosyncratic errors at time t, and {vit} are independent and identically distributed (iid)
across i and t with mean zero and variance σ2

v ; the scalar parameter ρ characterizes the
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dynamic effect, λ1 the spatial lag (SL) effect, λ2 the space-time lag (STL) effect, and λ3 the
spatial error (SE) effect; {Xt} are n×p matrices containing values of p time-varying exogenous
variables, Z is an n× q matrix containing the values of q time-invariant exogenous variables
that may include the intercept, dummy variables (e.g., individuals’ gender and race), etc.; β
and γ are the usual regression coefficients; Wr, r = 1, 2, 3, are the given n× n spatial weight
matrices; and µ is an n× 1 vector of unobserved individual-specific effects, α = {αt}Tt=1 is a
T × 1 vector of unobserved time-specific effects, and 1n is an n× 1 vector of ones.

According to the way (µ, α) relate to {Xt}, the model is classified as: (i) fixed effects (FE)
model if (µ, α) are correlated with Xt arbitrarily; (ii) random effects (RE) model if (µ, α) are
uncorrelated with Xt; and (iii) correlated random effects (CRE) if (µ, α) are correlated with
Xt linearly or in a linearizable way (see Footnote 1). Lee, M-J (2002) called FE the related
effects, and RE the unrelated effects. So, naturally the CRE can be called the linearly related
effects. The term CRE is a tribute of Mundlak (1978), and Chamberlain (1982, 1984). In
this work, we adopt the more popular terms: FE, RE and CRE, so that the SDPD models
specified in (1.1) can be: FE-SDPD model, RE-SDPD model, or CRE-SDPD model.

Extensive discussions have appeared in the panel model literature, see, e.g. Cameron
and Trivedi (2005), Wooldridge (2010), Baltagi (2013), and Hsiao (2014). The FE model has
weaknesses (Cameron and Trivedi, 2005, p.715-716): (i) it does not allow the estimation of the
effects of time-invariant regressors, e.g., gender, race; (ii) while coefficients of time-varying
regressors are estimable, these estimates may be very imprecise if most of the variation
in a regressor is cross sectional rather than over time; (iii) prediction of the conditional
mean is impossible, instead only changes in conditional mean caused by the changes in time-
varying regressors can be predicted; and (iv) even coefficients of time-varying regressors
may be difficult or theoretically impossible to identify in nonlinear models. The RE model
overcomes these difficulties, but causal interpretation may then be unwarranted (Cameron and
Trivedi, 2005, p.715-716). The CRE model makes a compromise between the two: overcomes
the weaknesses of the FE model and at the same time captures the linear or linearizable
correlation between the ‘effects’ and the time-varying regressors.

The literature on spatial dynamic panels is fast expanding in recent years. However, most
of the research on spatial dynamic panel data models focused on the long panels (with large
n and large T ), see, e.g., Yang, et al. (2006), Mutl (2006), Yu, et al. (2008), Yu and Lee
(2010), Lee and Yu (2010a, 2012, 2014); Bai and Li (2015), Shi and Lee (2017), with relatively
fewer works on the short panels, e.g., Elhorst (2010), Su and Yang (2015), Qu, et al. (2016),
Kuersteiner and Prucha (2018), and Yang (2018). Most of the works on short panels are on
the FE-SDPD model, except Su and Yang (2015) who considered RE-SDPD model but with
only the SE effect built in the model. The general RE-SDPD model of the form (1.1) has
not been formally considered, and the more general CRE-SDPD model specification has not
even appeared in the literature. See Anselin et al. (2008), and Lee and Yu (2010b, 2015)
for nice surveys on spatial panel data models. In this paper, we give a full treatment on the
estimation and inference for the CRE-SDPD model, which includes the RE-SDPD model as
a special case. We focus on the large-n and small-T setting, i.e., the short panels.
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The CRE assumption renders a linear model for µ based on the observed Xt. We adopt
the approach of Mundlak (1978) and specify that µ is linearly related to {Xt} as,

µ = X̄π + ε, (1.2)

where X̄ = 1
T+1

∑T
t=0Xt and ε is an n-vector of iid(0, σ2

ε) errors, independent of vt for all t.
This can be extended to µ = X0π0 +X1π1 + · · ·+XTπT + ε, as in Chamberlain (1982, 1984),
a spatial Durbin form as in Debarsy (2012), or any linearizable relationship.1

Clearly, the advantages of the CRE-SDPD model over the FE-SDPD model are (i) it
captures the typical correlation between µ and Xt and at the same time allows the effects of
time-invariant variables Z, such as gender and race, be estimated, (ii) it may be more robust
against possible existence of measurement errors and random coefficients, (iii) it makes the
prediction of conditional mean possible as it works with levels rather than on differences
series as in FE-approach, and (iv) it avoids the incidental parameters problem caused by the
individual fixed effects, and hence may increase the estimation efficiency greatly.2 Therefore,
it is highly desirable to carry out a formal study on the CRE-SDPD model to provide a set
of easy-to-use estimation and inference methods for applied researchers.

However, the CRE induces another set of errors ε, associated with the model for the
individual-specific effects µ, besides the original set of idiosyncratic errors {vt}, which further
complicates the initial conditions in the model estimation and posts a much greater challenge
in the estimation of the variance-covariance (VC) matrix of parameter estimates, compared
with the FE-approach. The key problem is that in short panels, the error components in
the disturbance cannot be separately estimated, rendering the outer-product-of-martingale-
difference (OPMD) method of Yang (2018) for the FE-SDPD model unapplicable. The full
quasi maximum likelihood (QML) approach of Su and Yang (2015) is also unapplicable as
the usual way of modeling the initial observations based on a linear model may not be valid
in the existence of spatial lag terms, as discussed in Yang (2018).

This paper contributes to the literature of dynamic short panel data models with spatial
dependence by (i) providing an M -estimation method for the CRE-SDPD model, and (ii)
introducing a new method for estimating the VC matrix of the M -estimators, of which both
are free from the initial conditions except the process starting time (−m). Our M -
estimation strategy provides a complement to Yang (2018) for FE-SDPD model. It starts by
adjusting the conditional quasi score function given the initial observations, to give a set of
unbiased estimation functions or moment conditions that are free from the specification of the
distribution of the y0 (the initial conditions) apart from the process starting time (−m). The
vector of estimating functions is then written as a sum with the n summands being martingale
differences with respect to individual-specific errors given idiosyncratic errors, so that a hybrid

1The intercept of Model (1.2) is absorbed into that of Model (1.1) for parameter identifiability (see Sec.
2.1 for details). By ‘linearizable’ we mean any CRE relationship that can be written as or approximated by a
model linear in a finite number of parameters. To keep our exposition simple enough, we work with (1.2). For
issue on parameter identification, see, e.g., Anselin et al. (2008, p.647), Elhorst (2012), Lee and Yu (2016).

2The FE-approach treats µ as unknown parameters, directly estimated or removed by some transformation.
Hence, one period of the data is ‘lost’ which may consist of one third or one quarter of the ‘usable’ data if
T = 3 or 4, making a significant difference in estimation efficiency.

3



method that combines analytical derivations and the feasible sample analogues is proposed for
estimating the VC matrix of the M -estimators. The resulting VC matrix estimator is also free
from the initial conditions except the process starting time. The consistency and asymptotic
normality of theM -estimators are established, and the consistency of the VC matrix estimator
is also proved. Extensive Monte Carlo results show that, in finite samples, (i) proposed M -
estimators perform very well, much superior to the conditional QML estimators (QMLE), (ii)
proposed VC matrix estimator also performs well, and (iii) in case of the simple RE-SDPD
model with only SE effect, the proposed M -estimator performs equally well as the full QMLE
of Su and Yang (2015), but is numerically much more efficient. Without time-specific effects
and if T goes large with n as in Yu et al. (2008), the proposed M -estimation method remains
valid, and in this case, the usual method for estimating the VC matrix applies.

The CRE-SDPD model given in (1.1) is fairly general, embedding several important sub-
models obtained by dropping one or two spatial effects, none of which has been formally
treated in the literature except Su and Yang (2015).3 The proposed estimation and inference
methods can easily be simplified to suit each special model of interest for a particular applied
problem. Very interestingly, in a simple static panel data model, i.e., setting ρ, λ1, λ2 and
λ3 in Model (1.1) to zero, one can show that the CRE-estimators of β under Mundlak’s and
Chamberlain’s specifications reduce to the usual FE-estimator (Cameron and Trivedi, 2005,
Sec. 21.4.4; Krishnakumar, 2006; Hsiao, 2014, Sec. 3.4.2.1). However, we show that such an
equivalence fails to hold once we move away from these formulations (e.g., a subset of Xt is
correlated with µ), add dynamic terms, add spatial terms, etc.4 These reinforce the need of
a new set of estimation and inference methods for the general CRE-SDPD model.

The rest of the paper goes as follows. Section 2 introduces the M -estimator for the CRE-
SDPD model and presents its asymptotic properties. Section 3 introduces the new method
of estimating the VC matrix of the M -estimator. Section 4 presents Monte Carlo results.
Section 5 presents an empirical application. Section 6 concludes the paper and offers some
further discussions. All the technical proofs are relegated to the appendices.

2. Estimation of SDPD Model with CRE

2.1. Conditional QML Estimation of CRE-SDPD Model

Let Br ≡ Br(λr) = In − λrWr, r = 1, 3, and B2 ≡ B2(ρ, λ2) = ρIn + λ2W2. The CRE-
SDPD model specified by (1.1)-(1.2) has reduced form, for t = 1, . . . , T :

yt = B−1
1 B2yt−1 +B−1

1 (Xtβ + Zγ + X̄π + αt1n) +B−1
1 ε+B−1

1 B−1
3 vt. (2.1)

Let Y = (y′1, . . . , y
′
T )′, Y−1 = (y′0, . . . , y

′
T−1)

′, X = (X ′
1, . . . , X

′
T )′, D = (IT−1⊗1′n, 0(T−1)0′n)

′,
and X = (1nT , D,X, 1T ⊗ Z, 1T ⊗ X̄), where ⊗ denotes the Kronecker product, 1k denotes a

3They considered an SDPD model with RE and spatial error (i.e., setting λ1 and λ2 to zero in Model (1.1),
and setting π to zero in Model (1.2)), and a full QMLE by modeling the initial observations.

4We thank a referee for pointing out this simple connection and for raising the issue on its possible existence
in general. See Supplementary Appendix at http://www.mysmu.edu/faculty/zlyang/ for details.
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k × 1 vector of ones, 0k a k × 1 vector of zeros, and Ik a k × k identity matrix. Further, let
ε = 1T ⊗ ε, v = (v′1, . . . , v

′
T )′, Wr = IT ⊗Wr, and Br = IT ⊗ Br, r = 1, 2, 3. The reduced

form (2.1) can be written compactly in matrix form:

Y = B−1
1 B2Y−1 + B−1

1 Xβ + B−1
1 ε + B−1

1 B−1
3 v. (2.2)

where β = (α̌′, β′, γ′, π′)′ with dim(β) = 2p+ q + T , and α̌ = (αT , α1 − αT , . . . , αT−1 − αT )′.
Let e = ε+B−1

3 v be the composite error vector. As {εi} are iid(0, σ2
ε), {vit} are iid(0, σ2

v),
and ε and v are independent, the variance-covariance (VC) matrix of e is:

Var(e) = σ2
ε(JT ⊗ In) + σ2

v(B
′
3B3)−1 = σ2

v [φ(JT ⊗ In) + (B′
3B3)−1] ≡ σ2

vΩ, (2.3)

where φ = σ2
ε/σ

2
v . Let λ = (λ1, λ2, λ3)′, θ = (β′, ρ, λ1, λ2) and ψ = (β′, σ2

v , φ, ρ, λ
′)′. Assume

X is exogenously given. The quasi Gaussian loglikelihood, treating ε and v as normally
distributed and y0 as exogenously generated (conditioning on y0), is

`SDPD(ψ) = −nT
2 log(2πσ2

v)− 1
2 log |Ω(φ, λ3)|+ log |B1(λ1)| − 1

2σ2
v
e′(θ)Ω−1(φ, λ3)e(θ), (2.4)

where e(θ) = B1Y −B2Y−1 −Xβ, and | · | denotes the determinant of a square matrix.
Maximizing `SDPD(ψ) gives the conditional QML estimator (QMLE) ψ̂c of ψ. However, y0

is not exogenous unless m = 0 (data collection starts when process starts) and ε and/or v may
not be normal. Thus, `SDPD(ψ) may not be a true loglikelihood function and maximizing it
may not give a consistent estimate of ψ, in particular when m > 0 so that y0 is endogenously
generated. When T is also large, consistency may be achieved as ignoring the endogeneity in
y0 is asymptotically negligible. However, it may still suffer from the asymptotic bias problem.
To solve these problems, we adopt the fundamental idea of Yang (2018) to ‘correct’ the quasi
score functions to give a set of unbiased estimating functions or moment conditions.

2.2. M-Estimation of CRE-SDPD Model

The quasi-score function, SSDPD(ψ) = ∂
∂ψ `SDPD(ψ), has the form:

SSDPD(ψ) =



1
σ2

v
X′Ω−1e(θ),

1
2σ4

v
e′(θ)Ω−1e(θ)− nT

2σ2
v
,

1
2σ2

v
e′(θ)Ω−1(JT ⊗ In)Ω−1e(θ)− 1

2tr[Ω−1(JT ⊗ In)],
1
σ2

v
e′(θ)Ω−1Y−1,

1
σ2

v
e′(θ)Ω−1W1Y − tr(B−1

1 W1),
1
σ2

v
e′(θ)Ω−1W2Y−1,

1
2σ2

v
e′(θ)Ω−1Ω̇λ3Ω

−1e(θ)− 1
2tr(Ω−1Ω̇λ3),

(2.5)

where Ω̇λ3 = (B′
3B3)−1(B′

3W3 + W′
3B3)(B′

3B3)−1, and tr(·) is the trace of a square matrix.
Let ψ0 be the true value of ψ. A parametric quantity evaluated at the true parameters is

denoted by adding a subscript ‘0’, e.g., B10, Ω0. The usual expectation and variance operators
E(·) and Var(·) correspond to the true parameters. We derive E[SSDPD(ψ0)], and show that the
(ρ, λ1, λ2)-components of E[SSDPD(ψ0)] are generally not zero, and that the same components
of plimn→∞

1
nT SSDPD(ψ0) are not zero. Thus, the conditional QMLE ψ̂c cannot be consistent.
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Assumption A: Assume (i) the processes started m(≥ 0) periods before the start of data
collection (0th period), and then evolve according to Models (1.1) and (1.2), (ii) y−m and
zi are exogenous, and (iii) the individual specific effects µ are related to Xt linearly or in a
linearizable way with additive errors ε independent of vt, t = −m+ 1, . . . , T .

It is easy to show that the (β, σ2
v , φ, λ3)-components of E[SSDPD(ψ0)] are all zero. The

derivations of the other components are complicated by the additional time-invariant er-
ror component ε (induced by the CRE-formulation), which generates cumulative impact on
yt, t = 0, 1, . . . , T . Recursive substitutions on (2.1) lead to the following important lemma.

Lemma 2.1. Suppose Assumption A holds. Assume further that the errors {vit} in Model
(1.1) are iid(0, σ2

v0) across i and t, the errors {εi} in Model (1.2) are iid(0, σ2
ε0), and {vit}

and {εi} are independent. If both B−1
10 and B−1

30 exist, then we have for m ≥ 1,

E(Y−1e′) = σ2
v0(φ0C−10 + D−10), (2.6)

E(Y e′) = σ2
v0(φ0C0 + D0), (2.7)

where C ≡ C(ρ, λ1, λ2,m), C−1 ≡ C−1(ρ, λ1, λ2,m), D ≡ D(ρ, λ1, λ2, λ3), and D−1 ≡
D−1(ρ, λ1, λ2, λ3) are nT ×nT matrices, defined as follows: C = [1T ⊗ (C ′1, C

′
2, . . . , C

′
T )]′ and

C−1 = [1T ⊗ (C ′0, C
′
1, . . . , C

′
T−1)]

′, where Ct = (
∑t+m−1

i=0 Bi)B−1
1 and B = B−1

1 B2;

D =


D0 0 . . . 0 0
D1 D0 . . . 0 0
D2 D1 . . . 0 0
...

...
. . .

...
...

DT−1 DT−2 . . . D1 D0

 and D−1 =


0 0 . . . 0 0
D0 0 . . . 0 0
D1 D0 . . . 0 0
...

...
. . .

...
...

DT−2 DT−3 . . . D0 0

 ,

where Dt = BtB−1
1 (B′

3B3)−1.

The results of Lemma 2.1 lead immediately to

E(e′Ω−1
0 Y−1) = tr[(φ0C−10 + D−10)Ω−1

0 ], (2.8)

E(e′Ω−1
0 W1Y ) = tr[(φ0C0 + D0)Ω−1

0 W1], (2.9)

E(e′Ω−1
0 W2Y−1) = tr[(φ0C−10 + D−10)Ω−1

0 W2], (2.10)

showing that the (ρ, λ1, λ2)-components of E[SSDPD(ψ0)] are generally not zero, and more
importantly, the (ρ, λ1, λ2)-components of plimn→∞

1
nT SSDPD(ψ0) are not zero. Therefore, the

conditional QMLE ψ̂c cannot be consistent in general.
It is very interesting to note that these quantities are free from the specification of the

distribution of the initial observations y0, except the process starting time (−m) embedded
in the matrices C and C−1. Thus, these results provide a simple way to adjust the condi-
tional quasi-scores, SSDPD(ψ0), so as to give a set of unbiased estimating functions or moment
conditions free from the initial conditions except m.5 Unlike in the FE-approach of Yang
(2018), where ε is differenced away, we need to account for its presence which is not trivial.

5The full QMLEs of the regular dynamic panel data model of Hsiao et al. (2002) and the SE-SDPD model
of Su and Yang (2015), where the initial observations are modeled, also depend on m.
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The adjusted quasi-score (AQS) functions are:

S∗SDPD(ψ) =



1
σ2

v
X′Ω−1e(θ),

1
2σ4

v
e′(θ)Ω−1e(θ)− nT

2σ2
v
,

1
2σ2

v
e′(θ)Ω−1(JT ⊗ In)Ω−1e(θ)− 1

2tr[Ω−1(JT ⊗ In)],
1
σ2

v
e′(θ)Ω−1Y−1 − tr[(φC−1 + D−1)Ω−1],

1
σ2

v
e′(θ)Ω−1W1Y − tr[(φC + D)Ω−1W1],

1
σ2

v
e′(θ)Ω−1W2Y−1 − tr[(φC−1 + D−1)Ω−1W2],

1
2σ2

v
e′(θ)Ω−1Ω̇λ3Ω

−1e(θ)− 1
2tr(Ω−1Ω̇λ3).

(2.11)

It is easy to show that E[S∗SDPD(ψ0)] = 0, and that plimn→∞
1
nT S

∗
SDPD(ψ0) = 0. Solving the

estimating equations S∗SDPD(ψ) = 0 gives M -estimator ψ̂M, which is shown to be consistent and
asymptotically normal under some regularity conditions in Theorems 2.1 and 2.2.

The equation solving process can be simplified by first solving the equations for β and σ2
v

given δ = (φ, ρ, λ′)′ to obtain the constrained M -estimators of β and σ2
v as

β̂(δ) = (X′Ω−1X)−1X′Ω−1(B1Y −B2Y−1), (2.12)

σ̂2
v(δ) = 1

nT ê′(δ)Ω−1ê(δ), (2.13)

where ê(δ) = B1Y −B2Y−1 −Xβ̂(δ). Substituting them back into the last five components
of the AQS functions gives the concentrated AQS functions S∗cSDPD(δ) (see (B.1), Appendix B).
Solving S∗cSDPD(δ) = 0, we obtain the unconstrained M -estimator δ̂M of δ, and the unconstrained
M -estimators β̂M ≡ β̂(δ̂M) and σ̂2

v,M ≡ σ̂2
v(δ̂M) of β and σ2

v . Thus, ψ̂M = (β̂′M, σ̂
2
v,M, δ̂

′
M)
′.

Remark 2.1. From the way that the AQS function is defined in (2.11), we see that
the M -estimator ψ̂M for the CRE-SDPD model specified by (1.1) and (1.2) is free from the
specification of the distribution of y0, except the value m that is unknown.

However, this does not pose a serious problem as (i) in practice one is often able to ‘tell’
roughly the value of m from the data, and (ii) ψ̂M is quite robust against the changes in the
value of m. See Elhorst (2010) and Su and Yang (2015) for similar remarks.6

2.3. Asymptotic Properties of M-Estimator

To proceed with a formal study on the asymptotic properties of the proposedM -estimator,
some generic notations are helpful: blkdiag(· · · ) forms a block-diagonal matrix based on the
given matrices, γmin(·) and γmax(·) denote the smallest and largest eigenvalues of a real
symmetric matrix, and ‖ · ‖ denotes the Frobenius norm of a matrix.

Assumption B: The innovations vit are iid for all i and t with E(vit) = 0, Var(vit) = σ2
v0,

and E|vit|4+ε0 < ∞ for some ε0 > 0. The innovations εi are iid for all i with E(εi) = 0,
Var(εi) = σ2

ε0, and E|εi|4+ε0 <∞ for some ε0 > 0.

6Under simpler models with full QML estimation, Hsiao et al. (2002) recommended to estimate m together
with the other common parameters; Su and Yang (2015) pointed out that m may not be separately identified
unless the ‘lag’ parameter ρ 6= 0. In our general model, m may be identifiable unless the ‘lag’ parameters
(ρ, λ1, λ2) in B are all zero. We choose this practical approach to avoid additional numerical complications.
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Assumption C: The space ∆ is compact, and the true parameter δ0 lies in its interior.

Assumption D: The elements of (y−m, Z,Xt), t = −m+ 1, . . . , 0, . . . , T , are uniformly
bounded, and the limn→∞

1
nTX′X exists and is nonsingular.

Assumption E: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order h−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) hn/n→ 0 as n→∞; (iii) {Wr, r = 1, 2, 3}
and {B−1

r0 , r = 1, 3} are uniformly bounded in both row and column sums; (iv) For r = 1, 3,
{B−1

r } are uniformly bounded in either row or column sums, uniformly in λr in a compact
parameter space Λr, and 0 < cr ≤ infλr∈Λr γmin(B′

rBr) ≤ supλr∈Λr
γmax(B′

rBr) ≤ c̄r <∞.

Assumption F: (i)
∑∞

i=0 Bi0 exists and is uniformly bounded in both row and column
sums, and (ii)

∑∞
i=0 Bi is invertible for (λ1, λ2) in a neighborhood of (λ10, λ20).

Assumption B is standard in spatial panel data models with error components (see, e.g., Su
and Yang, 2015). Assumption C is needed in establishing the consistency of δ̂M. Assumption
D and Assumption E(iv) guarantee the existence and nonsingularity of limn→∞

1
nTX′Ω−1X,

so that once δ is identified, the identifications of β and σ2
v follow. Assumption E parallels

Assumption E of Yang (2018) and relates to Lee (2004). Allowing hn to grow with n but at a
slower rate is useful as it corresponds a spatial layout where the degree of spatial dependence
increases with n. See Lee (2004) and Yang (2015) for related discussions. Due to the cumula-
tive impact of εn from the past, we need Assumption F(i) to ensure that the initial observa-
tions y0 have a proper stochastic behavior when m = ∞, e.g., hn

n [y′0Φy0 − E(y′0Φy0)] = op(1)
for Φ uniformly bounded in either row or column sums with elements of uniform order h−1

n .
Clearly, it is satisfied when ‖B0‖ < 1, giving

∑∞
i=0 Bi0 = (In − B0)−1. A similar assumption

is made in Yu et al. (2008). Assumption F(ii) is needed for feasible VC matrix estimation.
To establish the consistency of δ̂M, define S̄∗SDPD(ψ) = E[S∗SDPD(ψ)], the population counter

part of the AQS function. Given δ, the population AQS equations S̄∗SDPD(ψ) = 0 are partially
solved at β̄(δ) = (X′Ω−1X)−1X′Ω−1(B1EY −B2EY−1) and σ̄2

v(δ) = 1
n(T−1)E[ē(δ)′Ω−1ē(δ)],

where ē(δ) = e(θ)|β=β̄(δ) = B1Y − B2Y−1 −Xβ̄(δ). Substituting β̄(δ) and σ̄2
v(δ) back into

the last five components of S̄∗SDPD(ψ) leads to the population counter part of the concentrated
AQS functions, which is denoted by S̄∗cSDPD(δ) (see (B.2), Appendix B). It is easy to see that the
M -estimator δ̂M of δ0 is a zero of S∗cSDPD(δ), and δ0 is a zero of S̄∗cSDPD(δ). Thus, by Theorem 5.9
of van der Vaart (1998), δ̂M will be consistent for δ0 if supδ∈∆

1
nT

∥∥S∗cSDPD(δ)− S̄∗cSDPD(δ)∥∥ p−→ 0,
and the following identification condition holds.

Assumption G: infδ: d(δ,δ0)≥ε
∥∥S̄∗cSDPD(δ)∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure

of distance between δ0 and δ.

Theorem 2.1. Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(Y )]
and γmax[Var(Y−1)] are bounded, and (ii) infδ∈∆ γmin

[
Var(B1Y − B2Y−1)

]
≥ cy > 0. We

have, as n→∞, δ̂M
p−→ δ0. It follows that ψ̂M

p−→ ψ0.

To establish asymptotic normality of the proposed M -estimator ψ̂M, the following repre-
sentations of Y and Y−1 in terms of y0 = 1T ⊗ y0 and e are very useful.

Y = Qy0 + η + Se and Y−1 = Q−1y0 + η−1 + S−1e, (2.14)
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where Q = blkdiag(B0,B2
0, . . . ,BT0 ), Q−1 = blkdiag(In,B1

0, . . . ,B
T−1
0 ), S = RB−1

10 , S−1 =
R−1B−1

10 , η = SXβ0, η−1 = S−1Xβ0,

R =


In 0 0 . . . 0
B0 In 0 . . . 0
...

...
...

. . .
...

BT−1
0 BT−2

0 BT−3
0 . . . In

 and R−1 =


0 0 0 . . . 0
In 0 0 . . . 0
...

...
...

. . .
...

BT−2
0 BT−3

0 BT−4
0 . . . 0

 .

By the representations given in (2.14) the AQS vector at ψ0 is written as

S∗SDPD(ψ0) =



Π′
10e,

e′Φ10e− nT
2σ2

v0
,

e′Φ20e− 1
2tr[Ω−1

0 (JT ⊗ In)],
e′Ψ10y0 + Π′

20e + e′Φ30e− tr[(φ0C−10 + D−10)Ω−1
0 ],

e′Ψ20y0 + Π′
30e + e′Φ40e− tr[(φ0C0 + D0)Ω−1

0 W1],
e′Ψ30y0 + Π′

40e + e′Φ50e− tr[(φ0C−10 + D−10)Ω−1
0 W2],

e′Φ60e− 1
2tr(Ω−1

0 Ω̇λ30),

(2.15)

where Π1 = 1
σ2

v
Ω−1X, Π2 = 1

σ2
v
Ω−1η−1, Π3 = 1

σ2
v
Ω−1W1η, and Π4 = 1

σ2
v
Ω−1W2η−1;

Φ1 = 1
2σ4

v
Ω−1, Φ2 = 1

2σ2
v
Ω−1(JT ⊗ In)Ω−1, Φ3 = 1

σ2
v
Ω−1S−1, Φ4 = 1

σ2
v
Ω−1W1S,

Φ5 = 1
σ2

v
Ω−1W2S−1, and Φ6 = 1

2σ2
v
Ω−1Ω̇λ3Ω

−1; Ψ1 = 1
σ2

v
Ω−1Q−1, Ψ2 = 1

σ2
v
Ω−1W1Q,

and Ψ3 = 1
σ2

v
Ω−1W2Q−1.

As e = ε + B−1
30 v, Y and Y−1 are further represented as

Y = Qy0 + η + Sε + Bv and Y−1 = Q−1y0 + η−1 + S−1ε + B−1v, (2.16)

where B = SB−1
30 and B−1 = S−1B−1

30 . Thus, S∗SDPD(ψ0) are further expressed in terms of v, ε
and y0. Using backward substitution on equation (2.1), we have, for m ≥ 1:

y0 = Bmy−m +
∑m−1

k=0 BkB
−1
1 X−kβ +

∑m−1
k=0 BkB

−1
1 ε+

∑m−1
k=0 BkB

−1
1 B−1

3 v−k

≡ ηm +Kmε+ Vm, (2.17)

where ηm = Bmy−m +
∑m−1

k=0 BkB
−1
1 X−kβ, being the mean of y0 given X−k, k = 0, 1, . . . ,m

and thus exogenous; Km =
∑m−1

k=0 BkB
−1
1 ; Vm =

∑m−1
k=0 BkB

−1
1 B−1

3 v−k; and X−k collects all
the regressors’ values at the (−k)th period. Obviously, Vm is independent of ε and vt, t =
1, 2, . . . , T . Therefore, the components of S∗SDPD(ψ0) are linear combinations of terms linear-
quadratic in v, linear-quadratic in ε, and bilinear in ε and v, in ε and Vm, and in v and
Vm. These lead to a simple way for establishing the asymptotic normality of the AQS vector
S∗SDPD(ψ0), and thus the asymptotic normality of the proposed M -estimator.

Theorem 2.2. Under assumptions of Theorem 2.1, we have, as n→∞,
√
nT

(
ψ̂M − ψ0

) D−→ N
[
0, lim
n→∞

Σ∗−1
SDPD(ψ0)Γ∗SDPD(ψ0)Σ∗−1

SDPD(ψ0)
]
,

where Σ∗SDPD(ψ0) = − 1
nT E[ ∂

∂ψ′S
∗
SDPD(ψ0)] and Γ∗SDPD(ψ0) = 1

nT Var[S∗SDPD(ψ0)], both assumed to
exist and Σ∗SDPD(ψ0) to be positive definite, for sufficiently large n.

9



3. Robust VC Matrix Estimation of M-Estimators

The expected negative Hessian matrix Σ∗SDPD(ψ) can be consistently estimated by its ob-
served counter part Σ̂∗SDPD = − 1

nT
∂
∂ψ′S

∗
SDPD(ψ)|ψ=ψ̂M

. The detailed expression of ∂
∂ψ′S

∗
SDPD(ψ) is

given in Appendix B. Unfortunately, none of the existing methods can be used to estimate
Γ∗SDPD(ψ0). The traditional plug-in method requires the unconditional distribution of y0 or a
valid model for y0 when T is fixed, of which neither is plausible as the unconditional distri-
bution involves unobservables and a valid model seems very difficult (if not impossible) to
formulate, in particular when the model contains spatial lag terms (Yang, 2018). To over-
come these difficulties in estimating the VC matrix for the FE-SDPD model, Yang (2018)
proposed an outer-product-of-martingale-difference (OPMD) method, where the AQS func-
tion of the FE-SDPD model is decomposed into a sum of vector martingale difference (MD)
sequences so that the average of the outer products of the MDs gives a consistent estimate
of the VC matrix of that AQS function. However, this OPMD method does not apply to our
CRE-SDPD model due to the existence of two error components ε and vt.

A new method of feasible and consistent VC matrix estimation is needed. We see that
the representations given in (2.15) are crucial in obtaining such an estimate. From (2.15) we
see that the AQS function contains three types of elements:

Π′e, e′Φe, and e′Ψy0,

where Π,Φ, and Ψ are nonstochastic matrices depending on ψ0 with Π being nT ×dim(β) or
nT ×1, and Φ and Ψ being nT ×nT . The closed form expressions for the variances of Π′e and
e′Φe can be derived but the plug-in method cannot be applied as their analytical expressions
involve the 3rd and 4th moments of both εi and vit, which cannot be consistently estimated
simultaneously with a fixed T . Furthermore, the closed-form expressions for the variance of
e′Ψy0 and its covariances with Π′e and e′Φe depend on the past values of the regressors and
the process starting positions, which are unobserved. Thus, the plug-in method based on the
full analytical expression of Γ∗SDPD does not work either in this case.

As neither the traditional plug-in method nor the OPMD method works for estimating
Γ∗SDPD, an alternative method must be developed. To fix the idea, we again, as in Yang (2018),
endeavor to decompose S∗SDPD(ψ0) into a sum

∑n
i=1 gi such that {gi} possess some ‘desirable

properties’ and a feasible estimator for Γ∗SDPD can thus be developed. Difficulty lies in the fact
that the composite error, et = ε+B−1

3 vt, consists of two components vt and ε, which cannot
be ‘consistently’ estimated simultaneously due to the fixed T nature. Thus, although {gi}
can be written as MD sequences separately in terms of ε and vt, it cannot be estimated this
way as only the estimates êt are available. However, if the decomposition

∑n
i=1 gi is such

that the covariance between gi and gj , j 6= i, are uncorrelated with respect to ε for given
{vt}, then a hybrid method, i.e., combining sample analogue and the analytical expressions,
can be developed for estimating Γ∗SDPD. Note that based on S∗SDPD(ψ0) =

∑n
i=1 gi,

Γ∗SDPD = 1
nT E[S∗SDPD(ψ0)S∗′SDPD(ψ0)] = 1

nT

∑n
i=1 E(gig′i) + 1

nT

∑n
i=1

∑n
j=1,j 6=i E(gig′j). (3.1)
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The single-sum term
∑n

i=1 E(gig′i) may be estimated by its sample analogue
∑n

i=1 ĝiĝ′i, where
ĝi is the plug-in estimate of gi by plugging ψ̂M and êit in gi. For the double-sum term, we
derive ‘semi-analytical’ expressions in terms of ψ0, µ

(3)
v0 and µ

(4)
v0 (the 3rd and 4th moments

of the idiosyncratic error vit), and the initial values y0, so that a mixture of the plug-in and
sample analogue methods can be applied. We choose ĝi in such a way that this method is free
from the specifications of the distributions of the initial observations, and that it involves only
µ

(3)
v0 and µ(4)

v0 , of which estimates are readily available. The latter is achieved by transforming
y0 so that the transformed y0 has an error structure similar to et:

y∗0 = K−1
m y0 = ε+K−1

m ηm +K−1
m Vm ≡ ε+ η∗m + V ∗

m, (3.2)

see (2.17). Clearly, making ε ‘stand out’ in the above expression as in e is to take a full
advantage of the MD structure in ε so that, in the double-sum part of (3.1), the 3rd and 4th
moments of εi do not appear and some complicated terms disappear. This is important as
the 3rd and 4th moments of εi cannot be consistently estimated together with these of vit.
The invertibility of Km, m ≥ 1, is ensured by Assumption F(ii).

To proceed, for a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular,
lower- triangular, and diagonal matrix such that A = Au+Al+Ad. Denote by Πt,Φts and Ψts

the submatrices of Π,Φ and Ψ partitioned according to t, s = 2, . . . , T . Denote the partial sum
of time-indexed quantities using the ‘+’ notation: e.g., Ψt+ =

∑T
s=1 Ψts, Ψ+s =

∑T
t=1 Ψts,

Ψ++ =
∑T

t=1

∑T
s=1 Ψts, and similarly for Φts, Πt and other time-indexed quantities.

First, to estimate the variance of e′Ψy0, letting Ψ∗
ts = ΨtsKm, we have:

e′Ψy0 =
∑T

t=1

∑T
s=1 e

′
tΨtsy0 =

∑T
t=1 e

′
tΨ

∗
t+y

∗
0

=
∑T

t=1 e
′
tΨ

∗d
t+y

∗
0 +

∑T
t=1 e

′
t(Ψ

∗l
t+ + Ψ∗u

t+)y∗0
=

∑T
t=1 e

′
tΨ

∗d
t+y

∗
0 +

∑T
t=1 e

′
tξt

=
∑n

i=1

( ∑T
t=1 eitΨ

∗
ii,t+y

∗
0i +

∑T
t=1 eitξit

)
,

where {ξit} = ξt = (Ψ∗l
t+ + Ψ∗u

t+)y∗0 and Ψ∗
ii,t+ is the ith diagonal element of Ψ∗

t+, i = 1, . . . , n.
Noting that et = ε+B−1

3 vt and y∗0 = ε+ η∗m + V ∗
m, we have, E(e′itΨ

∗
ii,t+y

∗
0i) = σ2

ε0Ψ
∗
ii,t+ ≡

dΨ,it, and E(e′itξit) = 0. These lead to e′Ψ0y0 − E(e′Ψ0y0) =
∑n

i=1 gΨ,i, where

gΨ,i =
∑T

t=1

[
(eitΨ∗

ii,t+y
∗
0i − dΨ,it) + eitξit

]
, (3.3)

i.e., e′Ψ0y0 − E(e′Ψ0y0) is decomposed into a sum of n ‘gradients’.
Similarly for the terms quadratic in e, we have

e′Φe =
∑T

t=1

∑T
s=1 e

′
tΦtses =

∑T
t=1

∑T
s=1 e

′
t(Φ

d
ts + Φu

ts + Φl
ts)es

=
∑T

t=1

∑T
s=1 e

′
tΦ

d
tses +

∑T
t=1

∑T
s=1 e

′
tΦ

l
tses +

∑T
t=1

∑T
s=1 e

′
sΦ

u′
tset

=
∑T

t=1

∑T
s=1 e

′
tΦ

d
tses +

∑T
t=1

∑T
s=1 e

′
tΦ

l
tses +

∑T
t=1

∑T
s=1 e

′
tΦ

u′
stes

=
∑T

t=1 e
′
t

∑T
s=1 Φd

tses +
∑T

t=1 e
′
t

∑T
s=1(Φ

l
ts + Φu′

st)es
=

∑T
t=1 e

′
te
∗
t +

∑T
t=1 e

′
tϕt,

=
∑n

i=1(
∑T

t=1 eite
∗
it +

∑T
t=1 eitϕit),

where e∗t =
∑T

s=1 Φd
tses with elements e∗it, and ϕt =

∑T
s=1(Φ

l
ts + Φu′

st)es with elements ϕit.
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Letting a′i,ts, b
′
i and c′i,ts be the ith row of (Φl

ts+Φu′
st), B

−1
3 and (Φl

ts+Φu′
st)B

−1
3 , respectively,

we have e∗it = Φii,t+εi +
∑T

s=1 Φii,tsb
′
ivs and ϕit = a′i,t+ε+

∑T
s=1 c

′
i,tsvs. It follows that

E(eite∗it) = E[(εi + b′ivt)(Φii,t+εi +
∑T

s=1 Φii,tsb
′
ivs)] = σ2

ε0Φii,t+ + σ2
v0Φii,tt(b′ibi) ≡ d1Φ,it,

E(eitϕit) = E[(εi + b′ivt)(a
′
i,t+ε+

∑T
s=1 c

′
i,tsvs)] = σ2

v0(b
′
ici,tt) ≡ d2Φ,it.

These lead to e′Φ0e− E(e′Φ0e) =
∑n

i=1 gΦ,i, where

gΦ,i =
∑T

t=1

[
(eite∗it − d1Φ,it) + (eitϕit − d2Φ,it)

]
. (3.4)

Finally, for the terms linear in e, E(Π′e) = 0, and, letting Π′
it be the ith row of Πt,

Π′e =
∑n

i=1(
∑T

t=1 Πiteit) ≡
∑n

i=1 gΠ,i. (3.5)

The decompositions of the three types of quantities into sums with ‘gradients’ given by (3.3)-
(3.5) lead to a ‘possible’ way for a consistent estimate of the VC matrix of the AQS function.

For for each Ψr, r = 1, 2, 3, defined in (2.15), define gΨr,i according to (3.3); for each
Φr, r = 1, . . . , 6, defined in (2.15), define gΦr,i according to (3.4); and each Πr, r = 1, 2, 3, 4,
defined in (2.15), define gΠr,i according to (3.5). Define,

gi =



gΠ1,i,
gΦ1,i,
gΦ2,i,
gΠ2,i + gΦ3,i + gΨ1,i,
gΠ3,i + gΦ4,i + gΨ2,i,
gΠ4,i + gΦ5,i + gΨ3,i,
gΦ6,i.

(3.6)

Then, the AQS vector at the true parameter value is S∗SDPD(ψ0) =
∑n

i=1 gi and its variance
is given by (3.1), i.e., Var [S∗SDPD(ψ0)] =

∑n
i=1 E(gig′i) +

∑n
i=1

∑n
j=1,j 6=i E(gig′j), where the

single sum can be estimated by its sample counter part
∑n

i=1 ĝiĝ′i with ĝi being obtained by
replacing ψ0 and e in gi by their estimates ψ̂M and ê, and the double sum is estimated using
its semi-analytical form shown in the following lemma.

To simplify the representation and to facilitate the calculations, let πr and πν be the
column(s) of Π = (Π1,Π2,Π3,Π4), for r, ν = 1, 2, . . . , k$, where k$ = dim(β) + 3, and gπr

and gπν be the corresponding gradients vectors defined according to (3.5).

Lemma 3.1. For the gradient vectors (gπr , gπν ), r, ν = 1, . . . , k$; (gΦr,i, gΦν ,i), r, ν =
1, . . . , 6; and (gΨr,i, gΨν ,i), r, ν = 1, 2, 3, corresponding to (πr,πν), (Φr,Φν), and (Ψr,Ψν),
respectively, we have under Assumptions A-B, for j 6= i (= 1, . . . , n) and m ≥ 1,

E(gπri gπνj) = σ2
v0(b

′
ibj)

∑T
t=1 πri,tπνj,t, (3.7)

E(gΦri gΦνj) = σ4
v0

∑T
t=1

∑T
s=1

[
(b′jc

∗
ri,ts)(b

′
ic
∗
νj,st) + (b′ibj)(c

∗′
ri,tsc

∗
νj,ts)

]
+ σ2

v0σ
2
ε0

∑T
t=1

[
aνji,t+(b′jc

∗
ri,+t) + arij,t+(b′ic

∗
νj,+t) + (b′ibj)(a

∗′
ri,t+a

∗
νj,t+)

]
+ (µ(4)

v0 − 3σ4
v0)

∑T
t=1

[
(bi � c∗ri,tt)

′(bj � c∗νj,tt)
]
, (3.8)

E(gΨri gΨνj) = σ4
ε0(wrij,+wνji,+) + σ2

v0

∑T
t=1(b

′
ibj)E(ξ∗ri,tξ

∗
νj,t), (3.9)
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E(gΦri gπνj) = µ
(3)
v0

∑T
t=1(bi � c∗ri,tt)

′bjπνj,t, (3.10)

E(gΨri gπνj) = σ2
v0

∑T
t=1 π′νj,tE(ξ∗ri,t)(b

′
ibj), (3.11)

E(gΦri gΨνj) = σ2
ε0σ

2
v0

∑T
t=1

[
(b′ibj)(a

′
ri,t+w

∗
νj,t) + wνji,t(b′jc

∗
ri,+t) + Φii,t+wνji,t(b′ibj)

]
+ σ4

ε0(wνji,+arij,++) + µ
(3)
v0

∑T
t=1(bi � c∗ri,tt)

′bjE(ξ∗νj,t), (3.12)

where ξ∗ri,t= w∗′ri,ty
∗
0; w

∗′
ri,t, a

∗′
ri,ts and c∗′ri,ts are the ith row of Ψ∗

r,t+, Φ∗r,ts = (Φl
r,ts+Φu ′

r,st+Φd
r,ts),

and Φ∗r,tsB
−1
3 , respectively; and arij,t+ and wrij,+ are the (i, j)th element of (Φl

r,t+ + Φu′
r,+t)

and (Ψ∗l
r,++ + Ψ∗u

r,++), respectively.

From (3.6), it is clear that E(gig′j), i 6= j, can be obtained from the results of Lemma

3.1. Note that the (Π,Φ) terms of E(gig′j) are analytical functions of ψ0, µ
(3)
v0 and µ

(4)
v0 , and

hence can be estimated by plugging-in consistent estimators of these parameters. However,
the Ψ-related terms are also functions of E(y0) and E(y0y

′
0) that appear in E(ξ∗ri,t) and

E(ξ∗ri,tξ
∗
νj,t), beside these parameters. Consistent estimators µ̂(3)

v and µ̂
(4)
v of µ(3)

v0 and µ
(4)
v0

are readily available as seen below, but the estimation of E(y0) and E(y0y
′
0) is not trivial.

Their expressions involve unobservables and thus cannot be used. In this paper, we propose
to estimate the terms involving E(ξ∗ri,t) and E(ξ∗ri,tξ

∗
νj,t) by their sample analogues and the

other analytical terms by plugging-in method, i.e., removing E in the expressions and then
replacing (in all terms) ψ0, µ

(3)
v0 and µ(4)

v0 by ψ̂M, µ̂
(3)
v and µ̂(4)

v . The resulting estimator Ê(gig′j)
of E(gig′j) is thus mixtures of plug-in method and sample analogue method. The resulting
estimator of the variance of the estimating functions, Γ∗SDPD, is given as follows,

Γ̂∗SDPD =
1
nT

n∑
i=1

ĝiĝ′i +
1
nT

n∑
i=1

n∑
j=1,j 6=i

Ê(gig′j). (3.13)

Its consistency is proved in the following theorem.

Theorem 3.1. Under the assumptions of Theorem (2.1), we have, as n→∞,

Γ̂∗SDPD − Γ∗SDPD(ψ0) =
1
nT

n∑
i=1

[
ĝiĝ′i − E(gig′i)

]
+

1
nT

n∑
1=1

n∑
j=1,j 6=i

[
Ê(gig′j)− E(gig′j)

] p−→ 0,

and hence, Σ∗−1
SDPD(ψ̂M)Γ̂∗SDPDΣ

∗−1
SDPD(ψ̂M)− Σ∗−1

SDPD(ψ0)Γ∗SDPD(ψ0)Σ∗−1
SDPD(ψ0)

p−→ 0.

Finally, we present a pair of simple and consistent estimators of the 3rd and 4th moments
of vit, µ

(3)
v0 and µ(4)

v0 . Let ē = 1
T

∑T
t=1 et and v̄ = 1

T

∑T
t=1 vt. Then, we have vt− v̄ = B3(et− ē).

Letting v∗t = vt − v̄, we have E(v∗3it ) = T 2−3T+2
T 2 µ

(3)
v0 . An estimator of µ(3)

v0 is naturally

µ̂
(3)
v = T 2

T 2−3T+2
1
nT

∑T
t=1

∑n
i=1 v̂

∗3
it .

To estimate µ(4)
v0 , we take first difference of eit to get rid of the error component related to

the CRE term. After first differencing, we have ∆vt = B3∆et, t = 2, . . . , T , and

E(∆v4
it) = E[(vit − vi,t−1)4] = E(v4

it) + E(v4
i,t−1) + 6E(v2

itv
2
i,t−1) = 2µ(4)

v0 + 6σ4
v0.

Therefore an estimator of µ(4)
v0 can be: µ̂

(4)
v0 = 1

2n

∑n
i=1 ∆v̂4

it − 3σ̂4
v0, for any t = 2, . . . , T .
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Obviously, one should combine these to give a pooled estimator:

µ̂
(4)
v0 = 1

2n(T−1)

∑T
t=2

∑n
i=1 ∆v̂4

it − 3σ̂4
v0.

A computational note. The calculation of the double summation term in (3.13), i.e.,∑n
i=1

∑n
j=1,j 6=i Ê(gig′j), is greatly facilitated by writing (3.7)-(3.12) in matrix forms for all

i, j, using the Kronecker product ⊗ operator, and the Hadamard product operator �:

Λ(πr, πν) = σ2
v0B3 �

( ∑T
t=1 πrtπ

′
νt

)
, (3.14)

Λ(Ψr,Ψν) = σ4
ε0(Ψ

∗
r,++ �Ψ∗′

ν,++) + σ2
v0

∑T
t=1 B3 � E(ξ∗r,tξ

∗′
ν,t), (3.15)

Λ(Φr,Φν) = σ4
v0

∑T
t=1

∑T
s=1

[
(Φ∗r,tsB3)� (B3Φ∗′ν,st) + B3 � (Φ∗r,tsB3Φ∗′ν,ts)

]
+ σ2

v0σ
2
ε0

∑T
t=1

[
Φ◦′ν,t � (Φ∗r,+tB3) + Φ◦r,t � (B3Φ∗′ν,+t) + B3 � (Φ∗r,t+Φ∗′ν,t+)

]
+ (µ(4)

v0 − 3σ4
v0)

∑T
t=1

[
B−1

3 � (Φ∗r,ttB
−1
3 )

][
B−1

3 � (Φ∗ν,ttB
−1
3 )

]′
, (3.16)

Λ(Ψr, πν) = σ2
v0B3 � [

∑T
t=1 E(ξ∗r,t)π

′
νt], (3.17)

Λ(Φr, πν) = µ
(3)
v0

∑T
t=1

[
B−1

3 � (Φ∗r,ttB
−1
3 )

]
B′−1

3 diag(πνt), (3.18)

Λ(Φr,Ψν) = σ4
ε0(Φ

◦
r,++ �Ψ∗′

ν,++) + σ2
v0σ

2
ε0

∑T
t=1

[
B3 � (Φ◦r,tΨ

∗′
ν,t+) + (Φ]B3)�Ψ∗′

ν,t+

]
+ µ

(3)
v0

∑T
t=1

[
B−1

3 � (Φ∗r,ttB
−1
3 )

]
B′−1

3 diag
[
E(ξ∗ν,t)

]
, (3.19)

where B3 = (B′
3B3)−1, Φ]

r,t = Φ∗r,+t + Φd
r,t+, and Φ◦r,t = Φl

r,t+ + Φu′
r,+t.

Then, it is easy to see that
∑n

i=1

∑n
j=1,j 6=i E(gωi gwj) equals the sum of the off-diagonal

elements of Λ(ω,w), for ω,w = π1, . . . ,πk$ , Ψ1, Ψ2, Ψ3, and Φ1, . . . ,Φ6, which lead imme-
diately to

∑n
i=1

∑n
j=1,j 6=i E(gig′j) and its estimate

∑n
i=1

∑n
j=1,j 6=i Ê(gig′j).

A final discussion is given to the case where m = 0, i.e., y0 is exogenous. In this case,
it is obvious that the conditional QML method is valid for parameter estimation. But for
the VC matrix estimation, the traditional plug-in method still cannot be applied under fixed
T scenario, due to the coexistence of 3rd and 4th moments of the two error components.
In contrast, our new method applies and all we need is to re-derive the Ψ-related results of
Lemma 3.1 under exogenous y0, which take the following simple forms:

E(gΨri gΨνj) = σ2
v0

∑T
t=1(b

′
ibj)E(ξ◦ri,tξ

◦
νj,t), r, ν = 1, 2, 3, (3.20)

E(gΨri gπνj) = σ2
v0

∑T
t=1 π′νj,tE(ξ◦ri,t)(b

′
ibj), r = 1, 2, 3, ν = 1, . . . , k$, (3.21)

E(gΦri gΨνj) = µ
(3)
v0

∑T
t=1(bi � c∗ri,tt)

′bjE(ξ◦νj,t), r = 1, . . . , 6, ν = 1, 2, 3, (3.22)

where ξ◦it = w◦′ity0, and w◦′it is the ith row of (Ψl
t+ + Ψu

t+).

4. Monte Carlo Study

Extensive Monte Carlo experiments are run to investigate the finite sample performance
of the proposed M -estimator of the CRE-SDPD model, and the finite sample performance
of the proposed estimate of the VC matrix of the M -estimator. As in the special case of
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a RE-SDPD model with only spatial errors the full QMLE is available from Su and Yang
(2015), a comparison is made between the full QMLE and the proposed M -estimator. We
use the following three data generating processes (DGPs):

DGP1: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ αt1n + ut,

DGP2: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + ε+ αt1n + ut,

DGP3: yt = α1n + ρyt−1 +Xtβ + Zγ + ε+ ut,

where ut = λ3W3ut+ vt for all three DGPs, and µ, ε and vt represent, respectively, the CRE,
RE, and idiosyncratic error. Mundlak’s specification, µ = X̄π + ε, is adopted.

The elements of Xt are generated in a similar fashion as in Hsiao et al. (2002),7 and the
elements of Z are random draws from Bernoulli (0.5). The elements of ε are random draws
from N(0, 1). The spatial weight matrices are generated according to the following schemes:
Rook contiguity, Queen contiguity, or group interaction.8 The error vt distribution can be
(i) normal, (ii) normal mixture (10%N(0, 4), 90%N(0, 1)), or (iii) chi-squared with degree of
freedom of 3. In both (ii) and (iii), the generated errors are standardized to have mean zero
and variance σ2

v . We choose β = γ = π = σ2
v = αT = 1, and generate αt, t = 1, . . . , T−1, from

N(1, 1). We use a set of values for ρ ranging from −0.9 to 0.9, a set of values for (λ1, λ2, λ3)
in the similar range, T = 3 or 6, and N = 50, 100, 200, 400. Each set of Monte Carlo results,
corresponding to a combination of the values of (n, T,m, ρ, λ′s), is based on 2000 samples.

Monte Carlo (empirical) means and standard deviations (sds) are reported for the CQML
estimator (CQMLE), theM -estimator, and the full QMLE (DGP3). Empirical averages of the
robust standard errors (rses) based on the VC matrix estimate Σ∗−1

SDPD(ψ̂M)Γ̂∗SDPDΣ
∗−1
SDPD(ψ̂M) are

also reported for the M -estimator, which should be compared with the corresponding empir-
ical sds. A subset of results are reported in Tables 1-5. Monte Carlo results that are involved
in the discussions but unreported due to space constraint can be found in the Supplement

Appendix to this paper, available from http://www.mysmu.edu/faculty/zlyang/.
Tables 1-3 present the results based on DGP1, the CRE-SDPD model with all three types

of spatial effects. The results show an excellent performance of the proposed M -estimators
of the model parameters, and the rses. The M -estimator of the dynamic parameter is nearly
unbiased, whereas the CQMLE can be quite biased and as n increases it does not show a sign
of convergence. The M -estimators of the spatial parameters λ1 and λ2 also show an excellent
finite sample performance. Both CQMLE and M -estimator of the spatial parameter λ3 show
some bias. This is perhaps due to the intrinsic nature of the QML-type estimation of spatial
error effects. Increasing T improves its performance as shown in Table 2. The rses are on
average very close to the corresponding Monte Carlo sds in general, showing the robustness
and good finite sample performance of the proposed VC matrix estimate. The non-robust

7The detail is: Xt = µx +gt1n +ζt, (1−φ1L)ζt = εt +φ2εt−1, εt ∼ N(0, σ2
1In), µx = e+ 1

T+m+1

PT
t=−m εt,

and e ∼ N(0, σ2
2In). Let θx = (g, φ1, φ2, σ1, σ2).

8The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of
sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k, where 0 < α < 1 and n̄ = n/k, and then adjust ng so that

Pk
g=1 ng = n.

The reported results correspond to α = 0.5. See Yang (2015) for details in generating these spatial layouts.
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ses based on Γ̂∗−1
SDPD only or Σ∗−1

SDPD(ψ̂M) only are also simulated and the results (unreported for
conserving space) show that when errors are normal, all three methods give averaged standard
errors close to the corresponding Monte Carlo sds; but when the errors are not normal the
non-robust ses can be quite different from the corresponding Monte Carlo sds in particular
in the standard errors of σ2

v and φ.
Tables 4-5 present the results based on DGP2, the RE-SDPD with all three types of spatial

effects. Similar observations hold: the proposed estimation strategy performs excellently and
clearly outperforms the conditional QMLEs. The results also show that the proposed estimate
of the standard errors of M -estimator also performs very well.

Table 6 presents the results based on DGP3, the RE-SDPD with only spatial error effect.
For this model, the full QMLE (FQMLE) is available from Su and Yang (2015). As the
main focus of this set of Monte Carlo experiments is to compare M -estimator with FQMLE,
the rses of the M -estimator are not reported. The results show that both M -estimator and
FQMLE of the dynamic parameter are nearly unbiased whereas the CQMLE is quite different
from the true value and does not show a sign of convergence. Three estimators of spatial
parameter λ3 all show some bias, but the M -estimator has the smallest bias among the three.
Comparing the empirical sds, we see that the M -estimator is slightly less efficient than the
FQMLE, as expected. Computationally, however, the M -estimator is much more efficient.

Under all three DGPs, the Monte Carlo experiments are also run using a ‘wrong’ value of
m and the results show that the M -estimator is quite robust against the choice of m value;
more W specifications are considered, and the results show a quite robust performance of
our estimation and inference methods; and more cases for T = 6 are considered and the
general observations from the results are that with a larger value of T the performance of
the estimators of λ3 significantly improved, and the CQMLE perform significantly better but
is still clearly dominated by the M -estimator. All Monte Carlo results, upon which these
conclusions are drawn, can be found in the Supplementary Appendix.

5. Empirical Application: Political Competition in China

In this section, we apply the estimation and inference methods for the CRE-SDPD model
proposed in this paper to investigate strategic interactions in political competitions across
Chinese cities. The tournament competition among Chinese local government leaders has
been well documented. The competitions have been found over primary policy issues such as
economic growth and fiscal budget, as well as over second-dimensional policy issues such as
coal mine safety (Li and Zhou, 2005; Yao and Zhang 2015; Yu et al., 2016; Shi and Xi, 2018).
The provincial superiors can evaluate and promote local leaders based on their performance,
and local leaders compete with each other for positions at higher levels.

We analyze the annual total investments (in RMB) of 338 prefecture-level cities (of which
80 are autonomous) in the 27 provincial level administrative regions (in short, provinces) in
mainland China, from 2010 to 2013. The list of cities can be found in the Supplementary

Appendix. The time-lagged dependent variable yt−1 measures policy stability. The spatial
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lag term Wyt captures the competition among cities, reflecting how investment decisions of
the neighbouring cities affect the own investment level of a city. The competition may also be
dynamic in the sense that the own investment decision of a city can depend on the investment
level of its neighbours in the past, reflected by the space-time lag termWyt−1. The unobserved
shocks that affect the investment level are likely to be correlated across neighbouring cities,
reflected by the spatial error term Wut. Time specific effects αt capture macroeconomic
conditions general to all cities in each year. The time-varying regressors Xt contain a set of
city level variables: population, GDP, fiscal revenue, fiscal expenditure, and fiscal account
balance in the previous year. To capture the effect of provincial economic environment, we
also include a set of province level variables: fiscal revenue, fiscal expenditure, and public
capital investment that is the government funded investment in fixed assets. The time-
invariant regressors contain a constant and a dummy variable that indicates if a city is an
autonomous city. As the basic spatial units in this study are cities, the model for CRE is
constructed using city level time-varying variables: GDP, fiscal revenue, fiscal expenditure
and fiscal account balance, with Population being excluded as it does not vary much over
time (2010-2013). We considered two types of spatial weight matrices: Wprov that treats
cities as neighbors if they are in the same province, and Wgeo that treats cities as neighbors if
they share a common border but may not be in the same province. Both weight matrices are
row-normalized with zero on the diagonals. Table 7 below summarizes the main empirical
findings.

Table 7. Spatial and Dynamic Interaction/Competition in Investments among Chinese Cities
Wprov Wgeo

Population 0.263∗∗∗ [0.119] 0.424∗∗∗ [0.206]
GDP 0.489∗∗∗ [0.058] 0.412∗∗∗ [0.174]
Fiscal revenue 0.575 [0.487] 3.454∗ [1.370]
Fiscal expenditure 0.635∗∗∗ [0.247] 0.906 [1.241]
Fiscal account balance −0.337 [0.293] 0.297 [1.177]
Provincial fiscal revenue −0.162∗∗∗ [0.041] −0.239∗∗∗ [0.121]
Provincial fiscal expenditure 0.074∗∗∗ [0.025] 0.194∗∗∗ [0.093]
Public capital investment −0.058∗ [0.036] −0.140 [0.119]
Autonomous city −97.861∗∗∗ [37.057] −187.332∗∗ [103.53]
2011 −25.562 [28.248] −344.618 [638.06]
2012 −9.296 [15.918] −149.003 [288.44]
Dynamic Parameter
Time lag (ρ) 0.211∗∗∗ [0.061] −0.803 [2.556]
Spatial Parameters
SL (λ1) 0.249∗∗∗ [0.068] 0.041 [0.712]
STL (λ2) −0.042 [0.070] 0.043 [0.218]
SE (λ3) 0.293∗∗∗ [0.115] 0.287 [0.899]
Correlated Random Effects
Average GDP −0.165∗ [0.108] 0.325 [1.164]
Average fiscal revenue −0.206 [0.777] −1.785 [5.237]
Average fiscal expenditure −0.583 [1.092] −1.750 [2.430]
Average fiscal account balance −0.059 [0.424] −0.346 [1.783]
Note: Population is measured in 104, and other variables excluding dummies are measured in 108.

The symbols ***, **, and * represent significance at 1%, 5% and 10% level.
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The point estimate of the spatial lag parameter λ1 is 0.249 and significant at 1% level
when Wprov is used, suggesting a positive and strong spatial interaction in total investment
among cities in the same province. When Wgeo is used, λ1 is estimated to be 0.041 and is
insignificant. This result is consistent with the theory of tournament competition between
local leaders. Dynamic competition does not seem affect the investment level as λ2 are small
and insignificant in both specifications. The spatial error parameter λ3 is estimated to be
0.249 with standard error 0.115 under Wprov, and 0.287 with standard error 0.899 under
Wgeo. These provide strong evidence that unobserved shocks are highly correlated among
administrative neighbours while less likely to be correlated among geographic neighbours,
suggesting that shocks are mainly political and confined within administrative boundaries.

Based on Wprov, the coefficient of the time lag investment is estimated to be 0.211 and
is significant at 1% level, indicating a positive dependence of investment on its previous
level. As expected, the total investment depends positively on population and GDP. Fiscal
expenditure have positive and significant impacts on the investment as it contributes to
creating investment opportunities and providing pro-business services. Based on our results,
budget constraints of the city-level government do not affect the investment level as both
parameters of fiscal revenue and fiscal account balance in the previous year are insignificant.
On the provincial level, we find negative effects of provincial fiscal revenue and public capital
investment, and a positive effect of fiscal expenditure. Moreover, being an autonomous city
has a large negative impact on the total investment level. We find that the ‘individual-specific’
effects are correlated (negatively) with GDP but not with the other time varying regressors.
Robustness checks and alternative analyses can be found in Supplementary Appdix.9 Issues
remaining include a better way to define the spatial weight matrices, a better way to capture
regional effects, etc. While we strive for a rigorous empirical analysis, the main purpose of
this study is to illustrate the proposed set of inference methods for the SDPD-CRE model.
A comprehensive study on this topic is beyond the scope of the current research.

6. Conclusion and Discussion

This paper introduces anM -estimation method for the spatial dynamic panel data (SDPD)
model with correlated random effects (CRE), based on the short panel setup. The estimation
strategy is based on the adjusted quasi score functions following the fundamental idea of
Yang (2018). For statistical inferences, a hybrid method that combines analytical derivations
and the feasible sample analogues is proposed for estimating the robust standard errors of
the M -estimators. The asymptotic properties of these estimators are studied in detail and
Monte Carlo simulation shows that both the M -estimators and the robust standard errors
perform very well in finite samples. Clearly, the proposed estimation and inference meth-
ods for the CRE-SDPD model provide a useful complement to Yang (2018) for the FE-SDPD

9To see the possible existence of other social/natural effects at regional levels (in addition to the included
province level variables and the Autonomous city dummy), we have done robustness checks by adding various
regional dummies and the results remain largely unchanged.
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model, for their various advantages as discussed in the introduction, in particular, for allowing
estimation of effects of time-invariant regressors and prediction in levels.

We end the paper by offering a discussion on possible extensions of our work. In this paper,
we have focused on the Mundlak’s (1978) CRE specification to ease exposition. The method is
differentiated from the FE-approach in the introduction and Supplementary Appendix. The
results can be adapted to cover any CRE form that is linearizable in the sense that it can be
written as or approximated by a linear model based on the observed time-varying regressors.
The most general CRE form may be µ = g(X0, X1, . . . , XT ) + ε with an unknown g(·) and
an additive error ε, giving a SDPD model with nonlinear CRE. Standard semiparametric
methods may be used to handle this unknown function and the model estimation may proceed
in a similar way as that in this paper. This is an interesting model specification, but a detailed
study is clearly beyond the scope of this paper, which will be carried out in a future research.

We have focused on the case where the idiosyncratic errors {vit} are iid. While time
dependence is already built in the model as a dynamic lag of the response, it may be important
to allow time dependence in {vt} as well in case of excessive time dependence of the process.
We show that our results can be extended by allowing vt to follow an MA(1) process:

vt = νt + τνt−1,

where {νit} are iid(0, σ2
ν). It is easy to see that E(vtv′t) = (1 + τ2)σ2

νIn, and that E(vtv′t−1) =
E(vt−1v

′
t) = τσ2

νIn, t = 2, . . . , T , so that E(vv′) = σ2
νΣ ⊗ In, where Σ = (1 + τ2)IT + τA

and A is T × T with its (i, j)th element being 1 if i = j ± 1, and 0 otherwise. Then, letting
φ = σ2

ε/σ
2
ν , the VC matrix of the composite errors, e = ε + B−1

3 v, takes a similar form:

Var(e) = σ2
ν [φ(JT ⊗ In) + Σ⊗ (B′

3B3)−1] ≡ σ2
νΩ.

With the new parameter τ , the vector of model parameters becomes ψ = (β′, σ2
ν , φ, τ, ρ, λ

′)′.
The results of Lemma 2.1 are extended, with C and C−1 being kept the same, but D and D−1

taking new and slightly more complicated expressions. The desired AQS functions are then
obtained, leading to the M -estimator of ψ (see Supplementary Appendix for details). Theo-
rems 2.1 and 2.2 can be extended as the AQS functions can be written as linear combinations
of terms linear, quadratic, and bilinear in ν, ν−1, ε, and Vm. Lemma 3.1 and Theorem 3.1
can be extended as well by re-defining the gi functions and re-deriving the results in Lemma
3.1. While fundamental ideas are the same, these extensions require additional complicated
algebra and proofs, and need to be handled by a separate research.

So far, the time heterogeneity appears in the model in the form of time-specific effects
{αt}. It may be of interest to allow more extensive forms of time-heterogeneity such as time-
varying regression coefficients, time-varying spatial coefficients, time-varying spatial weight
matrices, etc.. From the theoretical developments, we see that our results may be extended
to allow for time-varying regression coefficients, but may not be for the other types of time-
heterogeneity. Finally, the cross-sectional heteroskedasticity (space-varying error variances)
in the CRE-SDPD model is another interesting extension to consider. It requires an entirely
different way to adjust the conditional quasi scores so that the AQS functions obtained are not
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only (asymptotically) unbiased but also robust against unknown cross-sectional heteroskedas-
ticity. These models and methods would be much more challenging than the already quite
challenging works presented in this paper, and will be the topics of our future research.

Finally, it should be pointed out that moving the Zγ term in (1.1) to (1.2), i.e., letting
µ = X̄π + Zγ + ε, gives an equivalent model specification, and all results carry over, in-
cluding the equivalence between FE and CRE estimators of the coefficients of time-varying
regressors under a simple static panel data model as discussed in the introduction (see also
Krishnakumar, 2006). In this case, µ is explained as having two components: observable and
unobservable (see Haussman and Taylor, 1981, p.1378). However, common perception on µ is
that it represents unobservable individual-specific effects such as ability or managerial skill,
and hence the original specification in (1.1) and (1.2) would be more sensible. Furthermore,
the time-invariant variables Z are assumed to be strictly exogenous. This is reasonable but
not entirely necessary, because some variables in Z may be linearly correlated with µ through
Xt and this type of endogeneity may be captured by Mundlak’s or Chamberlain’s specifica-
tion. If not, a more general CRE specification in line with the above discussion may help.
See Hausman and Taylor (1981) for a general discussion on the endogeneity in Z. A full
treatment of the issue of endogeneity in the components of Z under the current SDPD-CRE
setting would be an interesting topic of future research.
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Appendix A: Some Basic Lemmas

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-
quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn
be a sequence of conformable matrices whose elements are uniformly O(h−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(h−1

n ).

Lemma A.2. (Lee, 2004, p.1918): For W1 and B1 defined in Model (1.1), if ‖W1‖ and
‖B−1

10 ‖ are uniformly bounded, where ‖ ·‖ is a matrix norm, then ‖B−1
1 ‖ is uniformly bounded

in a neighbourhood of λ10.

Lemma A.3. (Lee, 2004, p.1918): Let Xn be an n × p matrix. If the elements Xn are
uniformly bounded and limn→∞

1
nX

′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma A.4, Yang, 2018): Let {An} be a sequence of n×n matrices that
are uniformly bounded in either row or column sums. Suppose that the elements an,ij of An
are O(h−1

n ) uniformly in all i and j. Let vn be a random n-vector of iid elements with mean
zero, variance σ2 and finite 4th moment, and bn a constant n-vector of elements of uniform
order O(h−1/2

n ). Then
(i) E(v′nAnvn) = O( n

hn
), (ii) Var(v′nAnvn) = O( n

hn
),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op( n
hn

),
(v) v′nAnvn − E(v′nAnvn) = Op(( n

hn
)

1
2 ), (vi) v′nAnbn = Op(( n

hn
)

1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn
such that {E(b2ni)} are of uniform order O(h−1

n ).

Lemma A.5. (Lemma A.5, Yang, 2018): Let {Φn} be a sequence of n × n matrices
with row and column sums uniformly bounded, and elements of uniform order O(h−1

n ). Let
vn = (v1, · · · , vn)′ be a random vector of iid elements with mean zero, variance σ2

v, and finite
(4 + 2ε0)th moment for some ε0 > 0. Let bn = {bni} be an n× 1 random vector, independent
of vn, such that (i) {E(b2ni)} are of uniform order O(h−1

n ), (ii) supiE|bni|2+ε0 < ∞, (iii)
hn
n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of Φn, and (iv)

hn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(Φn),

and let σ2
Qn

be the variance of Qn. If limn→∞h
1+2/ε0
n /n = 0 and {hn

n σ
2
Qn
} are bounded away

from zero, then Qn/σQn

d−→ N(0, 1).

Lemma A.6. Under Assumption F, for an n× n matrix Φ uniformly bounded in either
row or column sums, with elements of uniform order h−1

n , and an n×1 vector φ with elements
of uniform order h−1/2

n , we have:
(i) hn

n y
′
0Φy0 = Op(1); (ii) hn

n [y0 − E(y0)]′φ = op(1); (iii) hn
n [y′0Φy0 − E(y′0Φy0)] = op(1).
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Appendix B: Proofs for Section 2

Proof of Lemma 2.1: By (2.1), backward substitution leads to, for t = −m+ 1, . . . , T ,

E(ytε′) = B−1
1 B2E(yt−1ε

′) +B−1
1 E(εε′) +B−1

1 B−1
3 E(vtε′)

= BtE(y0ε
′) + (

∑t−1
i=0 Bi)B

−1
1 E(εε′) = (

∑t+m−1
i=0 Bi)B−1

1 σ2
ε0.

Therefore, E(Y−1ε
′) = σ2

ε0C−1 and E(Y ε′) = σ2
ε0C.

For t, s = 1, . . . , T , we have E(ytv′t) = B−1
1 B2E(yt−1v

′
t) + B−1

1 B−1
3 E(vtv′t) = σ2

v0B
−1
1 B−1

3 ;
E(ytv′s) = 0 when t < s; and

E(ytv′s) = B−1
1 B2E(yt−1v

′
s) +B−1

1 B−1
3 E(vtv′s) = B2E(yt−2v

′
s) = · · ·

= Bt−sE(ysv′s) = Bt−sE(B−1
1 B−1

3 vsv
′
s) = Bt−sB−1

1 B−1
3 σ2

v0,

when t > s. Therefore, E(Y−1v′)(B−1
3 )′ = σ2

v0D−1 and E(Y v′)(B−1
3 )′ = σ2

v0D. Combining
these results, we obtain the results of Lemma 2.1. �

Proof of Theorem 2.1: The proof of this theorem uses similar ideas as in the proof of
Theorem 3.1 of Yang (2018). Rather than working with differences series, levels are used and
account need to be taken of additional randomness from ε. Under Assumption G, by Theorem
5.9 of van der Vaart (1998) the consistency of δ̂M follows if supδ∈∆

1
nT ‖S

∗c
SDPD(δ)− S̄∗cSDPD(δ)‖

p−→
0 as n→∞, where S∗cSDPD(δ) is the concentrated AQS function of δ defined below (2.13), and
S̄∗cSDPD(δ) is its population counterpart defined above Theorem 2.1, given below

S∗cSDPD(δ) =



1
2σ̂2

v(δ)
ê′(δ)Ω−1(JT ⊗ In)Ω−1ê(δ)− 1

2tr[(Ω−1(JT ⊗ In)],
1

σ̂2
v(δ)

ê′(δ)Ω−1Y−1 − tr[(φC−1 + D−1)Ω−1],
1

σ̂2
v(δ)

ê′(δ)Ω−1W1Y − tr[(φC + D)Ω−1W1],
1

σ̂2
v(δ)

ê′(δ)Ω−1W2Y−1 − tr[(φC−1 + D−1)Ω−1W2],
1

2σ̂2
v(δ)

ê′(δ)Ω−1Ω̇λ3Ω
−1ê(δ)− 1

2tr(Ω−1Ω̇λ3),

(B.1)

S̄∗cSDPD(δ) =



1
2σ̄2

v(δ)
E[ē′(δ)Ω−1(JT ⊗ In)Ω−1ē(δ)]− 1

2tr[(Ω−1(JT ⊗ In)],
1

σ̄2
v(δ)

E[ē′(δ)Ω−1Y−1]− tr[(φC−1 + D−1)Ω−1],
1

σ̄2
v(δ)

E[ē′(δ)Ω−1W1Y ]− tr[(φC + D)Ω−1W1],
1

σ̄2
v(δ)

E[ē′(δ)Ω−1W2Y−1]− tr[(φC−1 + D−1)Ω−1W2],
1

2σ̄2
v(δ)

E[ē′(δ)Ω−1Ω̇λ3Ω
−1ē(δ)]− 1

2tr(Ω−1Ω̇λ3),

(B.2)

where σ̂2
v(δ) is defined in (2.13), and σ̄2

v(δ) is defined above Theorem 2.1. With (B.1) and
(B.2), the proof of consistency of δ̂M boils down to the proofs of the following:

(a) infδ∈∆σ̄
2
v(δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂2
v(δ)− σ̄2

v(δ)
∣∣ = op(1),

(c) supδ∈∆
1
nT

∣∣ê′(δ)Ω−1(JT ⊗ In)Ω−1ê(δ)− E[ē′(δ)Ω−1(JT ⊗ In)Ω−1ē(δ)]
∣∣ = op(1),

(d) supδ∈∆
1
nT

∣∣ê′(δ)Ω−1Y−1 − E[ē′(δ)Ω−1Y−1]
∣∣ = op(1),

(e) supδ∈∆
1
nT

∣∣ê′(δ)Ω−1W1Y − E[ē′(δ)Ω−1W1Y ]
∣∣ = op(1),
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(f) supδ∈∆
1
nT

∣∣ê′(δ)Ω−1W2Y−1 − E[ē′(δ)Ω−1W2Y−1]
∣∣ = op(1),

(g) supδ∈∆
1
nT

∣∣ê′(δ)Ω−1Ω̇λ3Ω
−1ê(δ)− E[ē′(δ)Ω−1Ω̇λ3Ω

−1ê(δ)]
∣∣ = op(1).

Let Ω
1
2 be a square-root matrix of Ω. Define ē∗(δ) = Ω−

1
2 ē(δ), ê∗(δ) = Ω−

1
2 ê(δ), and

B∗
r = Ω−

1
2 Br, r = 1, 2. Let Y ◦ = Y − E(Y ) and Y ◦−1 = Y−1 − E(Y−1). Define the projection

matrices: M = InT − Ω−
1
2 X(X′Ω−1X)−1X′Ω−

1
2 and P = InT −M. We have:

ē∗(δ) = M(B∗
1Y −B∗

2Y−1) + P(B∗
1Y

◦ −B∗
2Y

◦
−1), (B.3)

ê∗(δ) = M(B∗
1Y −B∗

2Y−1). (B.4)

Proof of (a). Recall that σ̄2
v(δ) = 1

nT E[ē∗′(δ)ē∗(δ)], by (B.3) and the orthogonality
between M and P, we can write

σ̄2
v(δ) = 1

nT tr[Var(B∗
1Y −B∗

2Y−1)] + 1
nT (B∗

1EY −B∗
2EY−1)′M(B∗

1EY −B∗
2EY−1).

As M is positive semi-definite (p.s.d), the second term is non-negative uniformly in δ ∈ ∆. By
Assumption C, and Assumption E (iv), infδ∈∆ γmax(Ω) ≤ supδ∈∆ γmax(Ω) ≤ φ+ 1

c3
. Therefore

the first term is 1
nT tr[Ω−1Var(B1Y −B2Y−1)] ≥ 1

nT γ
−1
max(Ω)tr[Var(B1Y −B2Y−1)] ≥ c > 0,

uniformly in δ ∈ ∆. It follows that infδ∈∆σ̄
2
v(δ) > c > 0. The result (a) follows.10

Proof of (b). By (B.3) and (B.4), we can decompose σ̂2
v(δ)− σ̄2

v(δ) into four terms

σ̂2
v(δ)− σ̄2

v(δ) = (Q1 − EQ1) + (Q2 − EQ2) + 2(Q3 − EQ3) + EQ4. (B.5)

where Q1 = 1
nT Y

′B∗′
1 MB∗

1Y , Q2 = 1
nT Y

′
−1B

∗′
2 MB∗

2Y−1, Q3 = − 2
nT Y

′B∗′
1 MB∗

2Y−1, and Q4 =
− 1
nT (B∗

1Y
◦ − B∗

2Y
◦
−1)

′P(B∗
1Y

◦ − B∗
2Y

◦
−1). The results follows if Qj − EQj

p→ 0, j = 1, 2, 3,
and EQ4→0, uniformly in δ ∈ ∆. By (2.14) and letting M∗ = Ω−

1
2 MΩ−

1
2 , we have

Q1 =
∑9

`=1Q1,` + 1
nT η′B′

1M
∗B1η,

Q2 =
∑9

`=1Q2,` + 1
nT η′−1B

′
2M

∗B2η−1,

Q3 =
∑14

`=1Q3,` + 1
nT η′B′

1M
∗B2η−1,

where Qk` takes one of the forms: 1
nT y′0Φ1(δ)y0, 1

nT v′Φ2(δ)v, 1
nT ε′Φ3(δ)ε, 1

nT y′0Ψ1(δ)v,
1
nT y′0Ψ2(δ)ε, 1

nT ε′Ψ3(δ)v, 1
nT y′0Π1(δ), 1

nT v′Π2(δ), and 1
nT ε′Π3(δ). The matrices Φr(δ) and

Ψr(δ), and vectors Πr(δ), r = 1, 2, 3, depend on δ through B1, B2 and M∗, and involve Q,
Q−1, S, S−1, B, B−1, η and η−1, which are all matrix or vector functions of true parameters.

By Lemma A.1, Assumption E and the expressions in (2.15) and (2.16), the nT × nT

matrices R, R−1, S, S−1, B and B−1 are uniformly bounded in both row and column sums, and
the elements of the nT ×1 vectors η and η−1 are uniformly bounded. By Assumptions E(iii)
and E(v), Assumption D, Lemma A.1 and Lemma A.3, B1, B2 and M∗ are uniformly bounded
in either row or column sums. By Lemma A.6, it can be easily shown that 1

nT [y′0Φ1(δ)y0 −
E(y′0Φ1(δ)y0)] = op(1), and 1

nT [y′0Π1(δ)− E(y′0)Π1(δ)] = op(1). The point wise convergence

10Note: (i) eigenvalues of a projection matrix are either 0 or 1; (ii) eigenvalues of a positive definite matrix
are strictly positive; (iii) for symmetric matrix A and positive semidefinite (p.s.d.) matrix B, γmin(A)tr(B) ≤
tr(AB) ≤ γmax(A)tr(B); (iv) for symmetric matrices A and B, γmax(A + B) ≤ γmax(A) + γmax(B); and (v)
for p.s.d. matrices A and B, γmax(AB) ≤ γmax(A)γmax(B). See, e.g, Bernstein (2009).
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of the quadratic terms 1
nT v′Φ2(δ)v and 1

nT ε′Φ3(δ)ε, and the bilinear term 1
nT y′0Ψ1(δ)v, can

be established by Assumption B and Lemma A.4. The result 1
nT {y

′
0Ψ2(δ)ε−E[y′0Ψ2(δ)ε]} =

op(1) is proved by decomposing y0 into three terms using (2.17) and then applying Lemma
A.4 under Assumptions B and F. The point wise convergence of the linear terms 1

nT v′Π2(δ)
and 1

nT ε′Π3(δ) are proved by Chebyshev’s inequality. Therefore, for k = 1, 2, 3, and all `,

Qk,`(δ)− EQk,`(δ)
p−→ 0, for each δ ∈ ∆.

Now, all the Qk,`(δ) terms are linear or quadratic in ρ, λ1 and λ2, and it is easy to show
that supδ∈∆ | ∂∂ωQk,`(δ)| = Op(1), for ω = ρ, λ1, λ2. Note that only matrix M∗ involves λ3 and
φ. For ω = φ, λ3, some algebra leads to the following simple expression d

dωM∗ = −M∗Ω̇ωM∗,
where Ω̇λ3 = ∂

∂λ3
Ω = IT⊗(B′

3B3)−1(B′
3W3+W ′

3B3)(B′
3B3)−1 and Ω̇φ = ∂

∂φΩ = JT⊗In. Thus,
by applying Lemmas A.1, A.4 and A.6, repeatedly, it is easy to show that, for k = 1, 2, 3, and
all `, supδ∈∆ | ∂

∂λ3
Qk,`(δ)| = Op(1). It follows that Qk,`(δ) are stochastically equicontinuous.

The pointwise convergence and stochastic equicontinuity therefore lead to,

Qk,`(δ)− EQk,`(δ)
p−→ 0, uniformly in δ ∈ ∆,

by Theorem 2.1 of Newey (1991).
It left to show EQ4(δ) = 1

nT E[(B∗
1Y

◦ − B∗
2Y

◦
−1)

′P(B∗
1Y

◦ − B∗
2Y

◦
−1)] → 0, uniformly in

δ ∈ ∆. By Assumption D, γmin

(
X′X
nT

)
> cx. By Assumption E,

supδ∈∆ γmin(Ω) ≥ infδ∈∆ γmin(Ω) ≥ infλ3∈Λ3 γ
−1
max(B

′
3B3) ≥ supλ3∈Λ3

γ−1
max(B

′
3B3) ≥ 1

c3
.

Hence, supδ∈∆ γmin(X′Ω−1X
nT ) ≥ supφ∈Φ

c3
φc3+1cx ≥ c ≥ 0. Therefore, we have by the assump-

tions in Theorem 2.1 and Assumption D,

EQ4 = 1
nT tr[Ω−1X(X′Ω−1X)−1X′Ω−1Var(B1Y −B2Y−1)]

≤ 1
nT γ

−2
min(Ω)γ−1

min

(
X′Ω−1X

nT

)
c̄y

1
nT tr[X′X] = O(n−1),

Hence, σ̂2
v(δ)− σ̄2

v(δ)
p−→ 0, uniformly in δ ∈ ∆, completing the proof of (b).

Proofs of (c)-(g). Using the expressions (B.3) and (B.4) and the representation (2.16),
all the quantities inside | · | in (c)-(g) can all be expressed in the forms similar to (B.5).
Thus, the proofs of (c)-(g) follow the proof of (b). See the Supplementary Appendix for
more details on the proof of Theorem 2.1. �

Proof of Theorem 2.2: We have by the mean value theorem (henceforth MVT),

0 = 1√
nT
S∗SDPD(ψ̂SDPD) = 1√

nT
S∗SDPD(ψ0) +

[
1
nT

∂
∂ψ′S

∗
SDPD(ψ̄)

]√
nT (ψ̂M − ψ0),

where ψ̄ lies elementwise between ψ̂M and ψ0. The result of the theorem follows if

(a) 1√
nT
S∗SDPD(ψ0)

D−→ N
[
0, limn→∞ Γ∗SDPD(ψ0)

]
,

(b) 1
nT

[
∂
∂ψ′S

∗
SDPD(ψ̄)− ∂

∂ψ′S
∗
SDPD(ψ0)

] p−→ 0, and

(c) 1
nT

[
∂
∂ψ′S

∗
SDPD(ψ0)− E

(
∂
∂ψ′S

∗
SDPD(ψ0)

)] p−→ 0.

Proof of (a). By e = ε + B−1
30 v and letting Π◦

r0 = B′−1
30 Πr0, r = 1, . . . , 4, Ψ◦

r0 =
B′−1

30 Ψr0, r = 1, 2, 3, and Φ◦r0 = B′−1
30 Φr0B−1

30 , r = 1, . . . , 6, and Φ◦r0 = B′−1
30 Φr0 and Φ�r0 =
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B′−1
30 Φr0B−1

30 , r = 1, . . . , 6, dropping subscript “0” to simplify notations, the AQS functions
given by (2.15) can be further expressed as follows,

S∗SDPD(ψ0) =



Π′
1ε+ Π◦′

1 v,
ε′Φ1ε + v′Φ�1v + 2v′Φ◦1ε− µσ2

v
,

ε′Φ2ε + v′Φ�2v + 2v′Φ◦2ε− µφ,

ε′Ψ1y0 + v′Ψ◦
1y0 + Π′

2ε + Π◦′
2 v + ε′Φ3ε + v′Φ�3v + 2v′Φ◦3ε− µρ,

ε′Ψ2y0 + v′Ψ◦
2y0 + Π′

3ε + Π◦′
3 v + ε′Φ4ε + v′Φ�4v + 2v′Φ◦4ε− µλ1 ,

ε′Ψ3y0 + v′Ψ◦
3y0 + Π′

4ε + Π◦′
4 v + ε′Φ5ε + v′Φ�5v + 2v′Φ◦5ε− µλ12 ,

ε′Φ6ε + v′Φ�6v + 2v′Φ◦6ε− µλ3 ,

(B.6)

where µσ2
v

= nT
2σ2

v0
, µφ = 1

2tr[Ω−1
0 (JT ⊗ In)], µρ = tr[(φ0C−10 + D−10)Ω−1

0 ], µλ1 = tr[(φ0C0 +

D0)Ω−1
0 W1], µλ2 = tr[(φ0C−10 + D−10)Ω−1

0 W2], and µλ3 = tr(Ω−1
0 Ω̇λ30).

Partition the vectors or matrices Πr and Π◦
r according to t = 1, . . . , T , and denote the

partitioned vectors or matrices, respectively, by {Πrt} and {Π◦
rt}; partition the matrices

Φr, Φ◦r , Φ�r , Ψr, and Ψ◦
r according to t, s = 1, . . . , T , and denote the partitioned matrices,

respectively, by {Φrts}, {Φ◦rts}, {Φ�rts}, {Ψrts}, and {Φ◦rts}. As ε = 1T ⊗ ε and y0 = 1T ⊗ y0,
denoting Πr+ =

∑T
t=1 Πrt, Φ◦rt+ =

∑T
s=1 Φ◦rts, Φr++ =

∑T
s=1

∑T
s=1 Φrts, we have

Π′
rε = Πr+ε, ε′Φε = ε′Φr++ε, ε′Ψy0 = ε′Ψr++y0,

v′Ψ◦
ry0 = v′Ψ◦

r+y0, v′Φ◦rε = v′Φ◦r+ε.

where Ψ◦
r+ = Ψ◦

r(1T ⊗ In) and Φ◦r+ = Φ◦r(1T ⊗ In). Now, by (3.2), the terms bilinear in ε and
y0, and the terms bilinear in v and y0 can be expressed as

ε′Ψr++y0 = ε′Ψr++Kmε+ ε′Ψr++Km(η∗m + V ∗
m), and

v′Ψ◦
r+y0 = v′Ψ◦

r+Kmε+ v′Ψ◦
r+Km(η∗m + V ∗

m).

Therefore, the AQS vector at the true parameters consists of terms linear-quadratic in v,
linear-quadratic in ε, and bilinear in ε and v. Thus, for every non-zero dim(ψ)× 1 vector of
constants c, c′S∗SDPD(ψ0) can be expressed as

c′S∗SDPD(ψ0) = v′Av + v′ζ + ε′Bε+ ε′ϕ+ vDε− c′µψ,

for suitably defined non-stochastic matrices A, B and D, and (random) vectors ζ and ϕ,
where µψ = {0′dim(β), µσ2

v
, µφ, µρ, µλ1 , µλ2 , µλ3}′. Both ζ and ϕ are measurable functions of

Vm, and hence are independent of ε and v. Putting c′S∗SDPD(ψ0) in a more compact form:
V′AV + V′$ − c′µψ, where V = (v′, ε′)′, A = {A,D;0, B}, $ = (ζ ′, ϕ)′, and 0 denotes
a matrix of zeros, the asymptotic normality of 1√

nT
c′S∗SDPD(ψ0) follows from Lemma A.5.

Finally, the Cramér-Wold devise leads to the joint asymptotic normality of 1√
nT
S∗SDPD(ψ0).

Proof of (b). The Hessian matrix, H∗
SDPD(ψ) = ∂

∂ψ′S
∗
SDPD(ψ), has the elements:

H∗
ββ = − 1

σ2
v
X ′Ω−1X, H∗

βσ2
v

= − 1
σ4

v
X ′Ω−1e(θ), H∗

βφ = 1
σ2

v
X ′Ω̇−

φ e(θ),

H∗
βρ = − 1

σ2
v
X ′Ω−1Y−1, H∗

βλ1
= − 1

σ2
v
X ′Ω−1W1Y, H∗

βλ2
= − 1

σ2
v
X ′Ω−1W2Y−1

H∗
βλ3

= 1
σ2

v
X ′Ω̇−

λ3
e(θ), H∗

σ2
vσ2

v
= − 1

σ6
v
e′(θ)Ω−1e(θ) + nT

2σ4
v
, H∗

σ2
vφ = 1

2σ4
v
e′(θ)Ω̇−

φ e(θ),
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H∗
σ2

vρ = − 1
σ4

v
e′(θ)Ω−1Y−1, H∗

σ2
vλ1

= − 1
σ4

v
e′(θ)Ω−1W1Y, H∗

σ2
vλ2

= − 1
σ4

v
e′(θ)Ω−1W2Y−1,

H∗
σ2

vλ3
= 1

2σ4
v
e′(θ)Ω̇−

λ3
e(θ), H∗

φρ = 1
σ2

v
e′(θ)Ω̇−

φ Y−1, H∗
φλ1

= 1
σ2

v
e′(θ)Ω̇−

φW1Y,

H∗
φλ2

= 1
σ2

v
e′(θ)Ω̇−

φW2Y−1, H∗
φφ = − 1

2σ2
v
e′(θ)Ω̈−

φ e(θ)− 1
2 tr[Ω̇−

φ (JT ⊗ In)],

H∗
φλ3

=− 1
2σ2

v
e′(θ)Ω̈−

φ,λ3
e(θ)− 1

2 tr[Ω̇−
λ3

(JT ⊗ In)],

H∗
ρρ =− 1

σ2
v
Y ′
−1Ω

−1Y−1 − tr[(φĊ−1,ρ + Ḋ−1,ρ)Ω−1],

H∗
ρλ1

=− 1
σ2

v
Y ′W ′

1Ω
−1Y−1 − tr[(φĊ−1,λ1 + Ḋ−1,λ1)Ω

−1],

H∗
ρλ2

=− 1
σ2

v
Y ′
−1W

′
2Ω

−1Y−1 − tr[(φĊ−1,λ2 + Ḋ−1,λ2)Ω
−1],

H∗
ρλ3

= 1
σ2

v
e′(θ)Ω̇−

λ3
Y−1 − tr[(Ḋ−1,λ3Ω

−1) + (φC1 + D1)Ω̇−
λ3

],

H∗
λ1λ1

=− 1
σ2

v
Y ′W ′

1Ω
−1W1Y − tr[(φĊλ1 + Ḋλ1)Ω

−1W1],

H∗
λ1λ2

=− 1
σ2

v
Y ′
−1W

′
2Ω

−1W1Y − tr[(φĊλ2 + Ḋλ2)Ω
−1W2],

H∗
λ1λ3

= 1
σ2

v
e′(θ)Ω̇−

λ3
W1Y − tr{[Ḋλ3Ω

−1 + (φC + D)Ω̇−
λ3

]W1},
H∗

λ2λ2
=− 1

σ2
v
Y ′
−1W

′
2Ω

−1W2Y1 − tr[(φĊ−1,λ2 + Ḋ−1,λ2)Ω
−1W2],

H∗
λ2λ3

= 1
σ2

v
e′(θ)Ω̇−

λ3
W2Y−1 − tr{[Ḋ−1λ3Ω

−1 + (φC1 + D1)Ω̇−
λ3

]W2},
H∗

λ3λ3
=− 1

2σ2
v
e′(θ)Ω̈−

λ3
e(θ)− 1

2 tr(Ω̇−
λ3

Ω̇λ3 + Ω−1Ω̈λ3),

where Ċω = ∂C
∂ω , Ḋω = ∂D

∂ω , Ċ−1,ω = ∂C−1
∂ω , Ḋ−1,ω = ∂D−1

∂ω , for ω = ρ, λ1, λ2, λ3, and these expressions
can easily be obtained from the expressions of C, C−1, D, and D−1 given in Lemma 2.1; and further,

Ω̇λ3 = ∂Ωλ3
∂λ3

= (B′
3B3)−1(B′

3W3 + W′
3B3)(B′

3B3)−1,

Ω̈λ3 = ∂Ω̇λ3
∂λ3

= 2[Ω̇λ3(B
′
3W3 + W′

3B3)(B′
3B3)−1 − (B′

3B3)−1(W′
3W3)(B′

3B3)−1],

Ω̇−
λ3

= ∂Ω−1

∂λ3
= −Ω−1Ω̇λ3Ω

−1, Ω̈−
λ3

=
∂Ω̇−λ3
∂λ3

= −2Ω−1Ω̇λ3Ω̇
−
λ3
− Ω−1Ω̈λ3Ω

−1,

Ω̇−
φ = ∂Ω−1

∂φ = Ω−1(JT ⊗ In)Ω−1, Ω̈−
φ =

∂Ω̇−1
φ

∂φ = 2Ω−1(JT ⊗ In)Ω−1(JT ⊗ In)Ω−1,

Ω̈−
φ,λ3

=
∂Ω̇−φ
∂λ3

= 2Ω−1Ω̇λ3Ω
−1(JT ⊗ In)Ω−1.

It is easy to show that 1
nTH

∗
SDPD(ψ0) = Op(1) by Lemma A.1 and the model assumptions.

Thus, 1
nTH

∗
SDPD(ψ̄) = Op(1) because ψ̄ − ψ0 = op(1), which is implied by ψ̂M

p−→ ψ0. As
σ̄2
v

p−→ σ2
v0, σ̄

−r
v = σ−rv0 + op(1), r = 2, 4, 6. As σrv appears in H∗

SDPD(ψ) multiplicatively,

1
n(T−1)H

∗
SDPD(ψ̄) = 1

n(T−1)H
∗
SDPD(β̄, σ

2
v0, φ̄, ρ̄, λ̄) + op(1).

The proof of (b) is thus equivalent to the proof of

1
n(T−1)

[
H∗

SDPD(β̄, σ
2
v0, φ̄, ρ̄, λ̄)−H∗

SDPD(ψ0)
] p−→ 0.

Writing e(θ) = e− (λ1 − λ10)W1Y − (ρ− ρ0)Y−1 − (λ2 − λ20)W2Y−1 −X(β − β0), and
by the representations for Y and Y−1 given in (2.14), we see that all the random elements of
H∗

SDPD(ψ) can be written as linear combinations of terms:

quadratic in e : ($ −$0)j(ω − ω0)ke′AG(φ, λ3)Be,
quadratic in y0 : ($ −$0)j(ω − ω0)ky′0AG(φ, λ3)By0,

linear in e : ($ −$0)je′AG(φ, λ3)BZ,
linear in y0 : ($ −$0)jy′0AG(φ, λ3)BZ,
bylinear in e and y0 : ($ −$0)j(ω − ω0)ke′AG(φ, λ3)By0,

for j, k = 0, 1, $,ω = ρ, λ1, λ2, where A and B denote generically nT × nT non-stochastic
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matrices, and Z generically nT × d non-stochastic vector or matrices, all from (2.14) and free
from parameters; and G(φ, λ3) can be Ω−1, Ω̇−λ3

, Ω̈−λ3
, Ω̇−φ , Ω̈−φ , and Ω̈−φ,λ3

.
Take a typical quadratic term of e, e′AG(φ, λ3)Be, for example. Letting (φ∗, λ∗3) be

between (φ̄, λ̄3) and (φ0, λ30), we have by MVT,

1
nT [e′AG(λ̄3, φ̄)Be− e′AG(λ30, φ0)Be] = φ̄−φ0

nT e′AĠφ∗Be + λ̄3−λ0
nT e′AĠλ∗3

Be,

where Ġφ and Ġλ3 are the partial derivatives of G(φ, λ3) evaluated at (φ∗, λ∗3). Noting
that G is a linear combination of the matrices Ω−1, B−1

3 and W3, and their products, its
partial derivatives evaluated at (φ, λ3) are linear combinations of Ω−1, B−1

3 and W3, and
their products as well, and hence are uniformly bounded in both row and column sums
for (φ, λ3) in a neighbourhood of (φ0, λ30). By Lemma A.4 (i) and the consistency of ψ̂M,
1
nT [e′AG(φ̄, λ̄3)Be − e′AG(φ0, λ30)Be]

p−→ 0. The convergence of all other terms can be
shown similarly by using Lemma A.4, Assumption F, and the consistency of ψ̂M.

It left to show that all the ‘trace’ terms in 1
nT

[
H∗

SDPD(β̄, σ
2
v0, φ̄, ρ̄, λ̄)−H∗

SDPD(ψ0)
]

are op(1).
Consider, for example, its ρρ-element. Denote E−1 ≡ E−1(φ, ρ, λ) = φC−1 + D−1 and let
Ė−1,ρ(φ, ρ, λ) be its partial derivative w.r.t. ρ. For (φ∗, ρ∗, λ∗) be between (φ̄, ρ̄, λ̄) and
(φ0, ρ0, λ0), we have by MVT,

1
nT {tr[Ė−1,ρ(φ̄, ρ̄, λ̄)Ω−1(φ̄, λ̄3)]− tr[Ė−1,ρ(φ0, ρ0, λ0)Ω−1(φ0, λ30)]}

= φ̄−φ0

nT tr[φ∗Ω−1(φ∗, λ∗3) + Ė−1,ρ∗Ω̇−1
φ∗ ] + ρ̄−ρ0

nT tr[Ëρ∗

−1,ρΩ
−1(φ∗, λ∗3)]

+ λ̄1−λ10
nT tr[Ëλ∗1

−1,ρΩ
−1(φ∗, λ∗3)] + λ̄2−λ20

nT tr[Ëλ∗2
−1,ρΩ

−1(φ∗, λ∗3)]

+ λ̄3−λ30
nT tr[Ëλ∗3

−1,ρΩ
−1(φ∗, λ∗3) + Ė−1,ρΩ̇−1(λ∗3)],

where Ër∗
−1,ρ, r = φ, ρ, λ1, λ2, λ3, are the partial derivatives of Ė−1,ρ evaluated at (φ∗, ρ∗, λ∗).

Consider W.L.O.G. T = 2. Recall the definitions of C and D, we have,

D(ρ, λ1, λ2, λ3) =

 B−1
1 (B′

3B3)−1, B−1
1 (B′

3B3)−1

BB−1
1 (B′

3B3)−1, BB−1
1 (B′

3B3)−1

 ,

C(ρ, λ1, λ2) =

 (
∑m

i=0 Bi)B
−1
1 , (

∑m
i=0 Bi)B

−1
1

(
∑m+1

i=0 Bi)B−1
1 , (

∑m+1
i=0 Bi)B−1

1

 .

This shows that the elements of E−1 and E−1,ρ are linear combinations of the matrices
W1, B−1

1 , B2 and B−1
3 , and their products. Therefore, Ër

−1,ρ has elements being linear
combinations of W1, W2, W3, B−1

1 , B2, and B−1
3 , and their products, and hence are uniformly

bounded in both row and column sums for (ρ, λ) in a neighborhood of (ρ0, λ0) by Lemmas
A.1 and A.2. Therefore, each trace term in the equation above divided by nT , such as
1
nT tr[φ∗Ω−1(φ∗, λ∗3) + Ė−1,ρ∗Ω̇−1

φ∗ ], is Op(1). This completes the proof (b).

Proof of (c). By the representations given in (2.16), the elements of Hessian matrix can
be written as linear combinations of quadratic and linear terms of v and ε, quadratic and
linear terms of y0, bilinear terms of v and y0, ε and y0, v and ε. Thus, the results follow by
repeatedly applying Lemma A.1, Lemma A.4, and Lemma A.6. �
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Appendix C: Proofs for Section 3

Proof of Lemma 3.1. The result (3.7) is obvious. To show (3.8), we need the result:

E[(a′vt)(b′vt)(c′vt)(d′vt)] = (µ(4)
v0 −3σ4

v0)(a� b)′(c�d)+σ4
v0[(a

′b)(c′d)+(a′c)(b′d)+(a′d)(b′c)],

where � denotes the Hadamard product, and a, b, c, and d are n× 1 vectors. Write

gΦri =
∑T

t=1(eite
∗
ri,t − d1Φrit) +

∑T
t=1(eitϕri,t − d2Φrit) = Qr1,i +Qr2,i, r = 1, 2, . . . , 6.

As e∗ri,t = Φrii,t+εi +
∑T

s=1 Φrii,tsb
′
ivs and ϕri,t = a′ri,t+ε+

∑T
s=1 c

′
ri,tsvs, we have

E(Qr1,iQν1,j) =
∑T

t=1 Cov(eite∗rit, ejte
∗
νjt) +

∑T
t=1

∑T
s=1,s 6=t Cov(eite∗rit, ejse

∗
νjs)

= σ4
v0

∑T
t=1

∑T
s=1

[
Φrii,tsΦνjj,st(b′ibj)

2 + Φrii,tsΦνjj,ts(b′ibj)
2
]

+(µ(4)
v0 − 3σ4

v0)
∑T

t=1 Φrii,ttΦνjj,tt(bi � bi)′(bj � bj),

E(Qr1iQν2j) = σ4
v0

∑T
t=1

∑T
s=1[Φrii,ts(b′icνj,st)(b

′
ibj) + Φrii,ts(b′icνj,ts)(b

′
ibj)]

+σ2
v0σ

2
ε0

∑T
t=1(Φrii,t+ + Φrii,+t)(1′iaνj,t+)(b′ibj)

+(µ(4)
v0 − 3σ4

v0)
∑T

t=1 Φrii,tt(bi � bi)′(bj � cνj,tt),

E(Qr2iQν1j) = σ4
v0

∑T
t=1

∑T
s=1[Φνjj,ts(b′jcri,st)(b

′
ibj) + Φνjj,ts(b′jcri,ts)(b

′
ibj)]

+σ2
v0σ

2
ε0

∑T
t=1(Φνjj,t+ + Φνjj,+t)(1′jari,t+)(b′ibj)

+(µ(4)
v0 − 3σ4

v0)
∑T

t=1 Φνjj,tt(bj � bj)′(bi � cri,tt),

E(Qr2iQν2j) = σ4
v0

∑T
t=1

∑T
s=1[(b

′
icνj,st)(b

′
jcri,ts) + (b′ibj)(c

′
ri,tscνj,ts)]

+σ2
v0σ

2
ε0

∑T
t=1[(1

′
jari,t+)(b′icνj,+t) + (1′iaνj,t+)(b′jcri,+t) + (a′ri,t+aνj,t+)(b′ibj)]

+(µ(4)
v0 − 3σ4

v0)
∑T

t=1(bi � cri,tt)′(bj � cνj,tt).

Summarizing and simplifying by letting c∗ri,ts be the ith row of (Φl
r,ts + Φu′

r,st + Φd
r,ts)B

−1
3 , we

obtain the result for E(gΦrigΦνj), i.e., (3.8) in Lemma 3.1.

To show (3.9), write gΨri =
∑T

t=1(eitΨ
∗
rii,t+y

∗
0i − dΨrit) +

∑T
t=1 e

′
itξri,t = Qr1,i + Qr2,i.

Using eit = εi + b′ivt, and y∗0 = ε+ η∗m + V ∗
m, we obtain

E(Qr1,iQν1,j) =
∑T

t=1 Cov(e′itΨ
∗
rii,t+y

∗
0i, e

′
jtΨ

∗
νjj,t+y

∗
0j) +

∑T
t=1

∑
s( 6=t) Cov(e′itΨ

∗
rii,t+y

∗
0i, e

′
jsΨ

∗
νjj,s+y

∗
0j)

=
∑T

t=1 E
[
(εi + b′ivt)Ψ

∗
rii,t+y

∗
0i(εj + b′jvt)Ψ

∗
νjj,t+y

∗
0j)

]
− dΨritdΨνjt

+
∑T

t=1

∑
s( 6=t) E

[
(εi + b′ivt)Ψ

∗
rii,t+y

∗
0i(εj + b′jvs)Ψ

∗
νjj,s+y

∗
0j)

]
− dΨritdΨνjs

= σ2
v0(b

′
ibj)

∑T
t=1(Ψ

∗
rii,t+Ψ∗

νjj,t+)E(y∗0iy
∗
0j),

where the double summation part vanishes, because for i 6= j and t 6= s, e′itΨ
∗
rii,t+y

∗
0i and

e′jsΨ
∗
νjj,s+y

∗
0j are conditionally independent given Vm as they are, respectively, measurable-

(εi, vt, Vm) and measurable-(εj , vs, Vm). Similarly, using ξri,t = w′ri,ty
∗
0, we show that

E(Qr1,iQν2,j) = σ2
v0(b

′
ibj)

∑T
t=1 Ψ∗

rii,t+E(y∗0iξνj,t),

E(Qr2,iQν1,j) = σ2
v0(b

′
ibj)

∑T
t=1 Ψ∗

νjj,t+E(y∗0jξri,t),

E(Qr2,iQν2,j) = σ2
v0(b

′
ibj)

∑T
t=1 E(ξri,tξνj,t) + σ4

ε0(1
′
jwri,+)(1′iwνj,+),
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where 1i denotes an n × 1 vector of element 1 at the ith position and zero elsewhere. Sum-
marizing and simplifying, we have the result for E(gΨri gΨνj) given in (3.9).

To show (3.11), write gΠν i =
∑T

t=1 Π′
νj,tejt = Pνi, ν = 1, 2, . . . , k$. Using this and

gΨri = Qr1i +Qr2i, r = 1, 2, 3, given above, we obtain

E(Qr1,iPνj) = σ2
v0

∑T
t=1(b

′
ibj)Π

′
νj,tΨ

∗
rii,t+E(y∗0i) and E(Qr2,iPνj) = σ2

v0

∑T
t=1(b

′
ibj)Π

′
νj,tE(ξri,t),

leading to E(gΨrig
′
Πνj

) = σ2
v0

∑T
t=1 Π′

νj,tE(ξ∗ri,t)(b
′
ibj).

Result (3.10) and (3.12) are derived in a similar way in which we separate each gΦri and
gΨri into two terms, and calculate the covariances of each pair of the terms and then sum
them up. Details on these can be found in the Supplementary Appendix. �

Proof of Theorem 3.1. First, the result Σ∗SDPD(ψ̂M)−Σ∗SDPD(ψ0)
p−→ 0 is implied by the

result (b) in the proof of Theorem 2.2. The result Γ̂∗SDPD − Γ∗SDPD(ψ0)
p−→ 0 follows from

(a) 1
nT

∑n
i=1

[
ĝiĝ′i − E(gig′i)

] p−→ 0,

(b) 1
nT

∑n
1=1

∑n
j=1,j 6=i

[
Ê(gig′j)− E(gig′j)

] p−→ 0.

To show (a): the result follows if (i) 1
nT

∑n
i=1(ĝiĝ

′
i−gig′i)

p−→ 0, and (ii) 1
nT

∑n
i=1[gig

′
i−

E(gig′i)]
p−→ 0. The proof of (i) is straightforward by MVT. We focus on the proof of (ii).

The components of S∗SDPD(ψ0) are mixtures of terms of the forms: Π′e =
∑n

i=1 gΠi, e
′Ψy0−

E(e′Ψy0) =
∑n

i=1 gΨi, and e′Φe− E(e′Φe) =
∑n

i=1 gΦi. It suffices to show that

1
nT

∑n
i=1[gkig

′
ri − E(gkig′ri)] = op(1), for gki, gri = gΠi, gΨi, gΦi. (C.1)

First, we show 1
nT

∑n
i=1[g

2
Πi − E(g2

Πi)]
p−→ 0. Assuming, W.L.O.G, Πit are scalars, write

gΠi =
∑T

t=1 Πiteit =
∑T

t=1 Πit(εi + b′ivt) = Πi+εi + b′ivi, (C.2)

where Πi+ =
∑T

t=1 Πit and vi =
∑T

t=1 Πitvt. We have 1
nT

∑n
i=1

[
g2
Πi−E(g2

Πi)
]
≡ U1 +U2 +U3,

where U1 = 1
nT

∑n
i=1 Π2

i+(ε2i −σ2
ε0), U2 = 2

nT

∑n
i=1(Πi+εi)(b′ivi) and U3 = 1

nT

∑n
i=1

[
(b′ivi)

2−
σ2
v0(

∑T
t=1 Π2

it)(b
′
ibi)

]
. Now, it is straightforward to show that Ur = op(1), for r = 1, 2, 3, by

applying Lemmas A.1 and A.4, and Chebyshev’s inequality.

Second, we show 1
nT

∑n
i=1[g

2
Φi − E(g2

Φi)]
p−→ 0. Using (3.4), we can write

gΦi = ki(ε2i − σ2
ε) + εiz1i + εi(r′iε) + (ui − µui) +

∑T
t=1(q

′
itε)(b

′
ivt), (C.3)

where ki are scalar constants that are uniformly bounded; z1i =
∑T

t=1 p
′
itvt with p′it being

the ith row of some non-stochastic matrix uniformly bounded in row and column sums; ui =∑T
t=1

∑T
s=1 v

′
tAi,tsvs with mean µui = σ2

v

∑T
t=1 tr(Ai,tt), where Ai,ts = Φii,ts(bib′i) + (bic′i,ts);

bi are defined as before, and r′i and q′it represent ith row of some non-stochastic strictly lower
triangular matrices which are uniformly bounded in both row and column sums. Noticing
that the five terms in (C.3) are uncorrelated, it follows that

1
nT

∑n
i=1

[
g2
Φi − E(g2

Φi)
]

=
∑15

r=1 Ur, (C.4)

where U1 = 1
nT

∑n
i=1 k

2
i {(ε2i − σ2

ε0)
2 − E[(ε2i − σ2

ε0)
2]}, U2 = 2

nT

∑n
i=1 ki(ε

2
i − σ2

ε0)εi(r
′
iε),
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U3 = 1
nT

∑n
i=1[ε

2
i (r

′
iε)

2 − σ4
ε0

∑n
j=1 r

2
ij ], U4 = 2

nT

∑n
i=1 εi(r

′
iε)

∑T
t=1(q

′
itε)(b

′
ivt),

U5 = 2
nT

∑n
i=1 ε

2
i (r

′
iε)z1i, U6 = 2

nT

∑n
i=1 ki(ε

2
i − σ2

ε0)εiz1i,

U7 = 2
nT

∑n
i=1 ki(ε

2
i − σ2

ε0)
∑T

t=1(q
′
itε)(b

′
ivt), U8 = 2

nT

∑n
i=1[εiz1i

∑T
t=1(q

′
itε)(b

′
ivt)],

U9 = 2
nT

∑n
i=1 εi(r

′
iε)(ui − µui), U10 = 2

nT

∑n
i=1 ki(ε

2
i − σ2

ε0)(ui − µui),

U11 = 1
nT

∑n
i=1[ε

2
i z

2
1i − (

∑T
t=1 p

′
itpit)σ

2
v0σ

2
ε0], U13 = 1

nT

∑n
i=1 εiz1i(ui − µui),

U12 = 1
nT

∑n
i=1{[

∑T
t=1(q

′
itε)(b

′
ivt)]

2 − σ2
v0σ

2
ε0(

∑T
t=1 q

′
itqit)(b

′
ibi)},

U14 = 2
nT

∑n
i=1(ui − µui)

∑T
t=1(q

′
itε)(b

′
ivt), U15 = 1

nT

∑n
i=1{(ui − µui)

2 − E[(ui − µui)
2]}.

To show each of the fifteen terms above is op(1), we write it as the sum of a martingale
differences (MD) array and thus the weak law of large numbers (WLLN) for an MD array,
e.g., Theorem 19.7 of Davidson (1994, p.299), can be applied to prove its convergence in
probability to zero. As the full proof is tedious, we present details for a few typical terms:
U2, U4, U10 and U15. More details are put in the Supplementary Appendix.

Write U2 = 2
nT

∑n
i=1 ki(ε

3
i − µ

(3)
ε0 )(r′iε) + 2

nT

∑n
i=1 kiµ

(3)
ε0 (r′iε) − 2

nT σ
2
ε0

∑n
i=1 kiεi(r

′
iε) ≡

2
nT

∑3
r=1

∑n
i=1 Vrn,i. Let Fε

ni be the increasing σ-field generated by (ε1, . . . , εi). As (r′iε) is
Fε
n,i−1 measurable, we have for r = 1, 3, E(Vrn,i|Fε

n,i−1) = 0, and thus {Vrn,i,Fε
n,i} forms an

MD array. As ki are uniformly bounded, it is easy to see {V1n,i} and {V3n,i} are uniformly
integrable. With constant coefficients 1

nT , the other two conditions of WLLN for MD array
of Davidson are satisfied. So 1

nT

∑n
i=1 Vrn,i = op(1), r = 1, 3, by Davidson’s WLLN for MD

arrays. Finally, 1
nT

∑n
i=1 V2n,i =

∑n
i=1 aniεi, for some constants ani. Therefore, U2

p−→ 0.
Write U4 = 2

nT

∑n
i=1 εi(r

′
iε)

∑T
t=1(q

′
itε)(b

′
ivt) ≡

∑n
i=1 Vni. Let Gni be the increasing σ-

field generated by (v, ε1, . . . , εi). We have E(Vni|Gn,i−1) = 0, and thus {Vni,Gni} form an
MD array. By Assumption B and Lemma A.1 we have E(V 2

ni) =
∑T

t=1(b
′
ibi)σ

2
ε0σ

2
v0{(µ

(4)
ε0 −

3σ4
ε0)(ri�ri)′(qit�qit)+σ4

ε0[(r
′
iri)(q

′
itqit)+2(r′iqit)

2]} ≤ K ≤ ∞. Therefore, {Vni} is uniformly
integrable. The other two conditions of the WLLN for MD arrays of Davidson are satisfied
with constant coefficients 1

nT . So we have U4
p−→ 0.

Write U10 = 2
nT

∑n
i=1 ki(ε

2
i − σ2

ε0)ui − 2
nT

∑n
i=1 ki(ε

2
i − σ2

ε0)µui ≡ 2
nT

∑2
r=1

∑n
i=1 Vrn,i. As

ki and µui are uniformly bounded, we immediately have 2
nT

∑n
i=1 V2n,i

p−→ 0 by Kolmogorov’s
law of large numbers (LLN). For V1n,i, first we notice that ui depends only on v, and thus is
independent of εi for all i. So, {V1n,i,Gn,i} form an MD array. We have

E(u2
i ) = σ4

v0

∑T
t=1

∑
s 6=t[tr(Ai,tt)tr(Ai,ss) + tr(Ai,tsA′i,ts) + tr(Ai,tsAi,st)]

+(µ(4)
v0 − 3σ4

v0)
∑T

t=1

∑n
j=1 a

2
itt,jj .

where aitt,jj denotes the (j, j) element of Ai,tt. As Ai,ts = Φii,ts(bib′i) + (bic′i,ts), we have
tr(Ai,ts) = c∗′i,tsbi, which is the (i, i) element of Φ∗ts(B

′
3B

′
3)
−1. So tr(Ai,ts) = O(h−1

n ) by
Lemma A.1 and assumption D. Similarly we have

∑n
j=1 a

2
itt,jj ≤ tr(Ai,tsA′i,ts) = O(h−1

n ) and
tr(Ai,tsAi,st) = O(h−1

n ). Therefore, the condition, E(|V1n,i|1+ε) < Kv <∞ for some ε > 0, is
satisfied. With constant coefficients 1

nT , the other two conditions of WLLN for MD array of
Davidson are satisfied. So we have 2

nT

∑n
i=1 V1n,i

p−→ 0 and thus, U10
p−→ 0.

Write U15 = 1
nT

∑n
i=1[u

2
i −E(u2

i )]− 1
nT

∑n
i=1 µui(ui−µui). The convergence of the second

30



term follows from Lemma A.4. Now, write u2
i = (

∑T
t=1

∑T
s=1 v

′
tAi,tsvs)

2 =
∑4

r=1Hr,ni, where

H1,ni =
∑

t

∑
s

∑
k

∑
` 6=t6=s 6=k v

′
tAi,tsvsv

′
kAi,k`v`; H3,ni =

∑
t

∑
s 6=t v

′
tAi,tsvsv

′
tAi,tsvs;

H2,ni =
∑

t

∑
s 6=t v

′
tAi,ttvtv

′
sAi,ssvs; H4,ni =

∑
t v
′
tAi,ttvtv

′
tAi,ttvt.

WriteH1,ni =
∑

` v
′
`ϕi`, where ϕi` =

∑
t6=`

∑
s 6=`

∑
k 6=`A

′
i,k`vkv

′
tAi,tsvs. We have E(v′`ϕi`) =

0 as v` and ϕi` are independent. For each `, we can write 1
n

∑n
i=1 v

′
`ϕi` = 1

nv
′
`

∑n
i=1 ϕi`, which

is a bilinear form. Therefore, by Assumption B and D, it is easy to verify the conditions of
Lemma A.5. As T is fixed, we have 1

nT

∑n
i=1H1,ni = op(1).

Rewrite H2,ni =
∑

t

∑
s 6=t uituis. For each t and s, write 1

nT

∑n
i=1[uituis−E(uit)E(uis)] =

1
nT

∑n
i=1[uit −E(uit)]E(uis) + 1

nT

∑n
i=1[uis −E(uis)]uit ≡ 1

nT

∑n
i=1 V1n,i + 1

nT

∑n
i=1 V2n,i. Let

v∗t = [
∑n

i=1A
d
i,tttr(Ai,ss)]vt and ξt = [

∑n
i=1(A

l
i,tt +Au′i,tt)]vt. The V1n,i is decomposed into:

1
nT

∑n
i=1 V1n,i = 1

nT

∑n
i=1

[(
v′tA

d
i,ttvt − σ2

v0tr(Ai,tt)
)

+ v′t(A
l
i,tt +Au′i,tt)vt

]
E(uis)

= σ2
v0
nT v

′
t[
∑n

i=1A
d
i,tttr(Ai,ss)]vt −

σ4
v0
nT

∑n
i=1 tr(Ai,tt)tr(Ai,ss) + 1

nT v
′
t[
∑n

i=1(A
l
i,tt +Au′i,tt)]vt

= σ2
v0
nT [v′tv

∗
t − E(v′tv

∗
t )] + 1

nT v
′
tξt = σ2

v0
nT

∑n
j=1(vjtv

∗
jt − E(vjtv∗jt)) + 1

nT

∑n
j=1 vjtξjt.

Clearly, the first term is the average of n independent terms. The second term can be seen to
be the average of the MD array {vjtξjt} with respect to the increasing σ-field, Fv

nj , generated
by {v1t, . . . , vjt, t = 1, . . . , T}. The ξjt is Fv

n,j−1-measurable and the conditions of WLLN of
Davidson are easily verified. Hence, 1

nT

∑n
i=1 V1n,i = op(1). Similarly but more tediously, we

show that 1
nT

∑n
i=1 V2n,i = op(1). Therefore, 1

nT

∑n
i=1(H2,ni − EH2,ni) = op(1).

The result 1
nT

∑n
i=1[H3,ni − E(H3,ni)]

p−→ 0 can be shown in a similar way.
As H4,ni =

∑
t(v

′
tv
∗
it + v′tξit)

2, where v∗it = Adi,ttvt and ξit = (Ali,tt + Au′i,tt)vt, we have, for
each t, 1

nT

∑n
i=1(v

′
tv
∗
it + v′tξit)

2 = 1
nT

∑n
i=1(v

′
tv
∗
it)

2 + 1
nT

∑n
i=1(v

′
tξit)

2 + 2
nT

∑n
i=1 v

′
tv
∗
itv

′
tξit ≡

1
nT

∑3
r=1

∑n
i=1 Vrn,it. By Assumptions B and E, and Lemma A.1, it is easy to show that

1
nT

∑n
i=1[V1n,it−E(V1n,it)] = 1

nT

∑n
j=1(v

4
jt−µ

(4)
v )ajj+ 1

nT

∑n
j=1

∑
k 6=j(v

2
jtv

2
kt−σ4

v0)akj = op(1).
Similarly, 1

nT

∑n
i=1[V3n,it − E(V3n,it)] = op(1). Decompose 1

nT

∑n
i=1[V2n,it − E(V2n,it)] as:

1
nT

∑n
j=1(v

2
jt − σ2

v0)(
∑n

i=1 ξ
2
it,j) + 1

nT

∑n
j=1[(

∑n
i=1 ξ

2
it,j)− E(

∑n
i=1 ξ

2
it,j)]

+σ2
v0
nT

∑n
j=1 vjt[

∑
k 6=j vkt(

∑n
i=1 ξit,jξit,k)].

The first and third terms can be shown to be op(1) by WLLN for MD arrays as ξit,j is Fv
n,j−1-

measurable. Let a′i,j be the j th row of Ali,tt + Au′i,tt, then we have ξit,j = a′i,jvt. The second
term becomes 1

nT

∑n
j=1

[
v′t(

∑n
i=1 ai,ja

′
i,j)vt−σ2

v0tr(
∑n

i=1 ai,ja
′
i,j)

]
= op(1) by Lemma A.1, A.2

and A.4. Therefore, 1
nT

∑n
i=1H4,ni = op(1). Combining these results, we have U15 = op(1).

Other terms can be proved similarly, and therefore, 1
nT

∑n
i=1[g

2
Φi − E(g2

Φi)] = op(1).

Third, we show 1
nT

∑n
i=1[g

2
Ψi −E(g2

Ψi)]
p−→ 0. Write, using y∗0 = η∗m + ε+ V ∗

m and (3.3),

gΨi = εihi + Ψ∗
ii+(ε2i − σ2

ε) + εi(w′i+ε) + z2i +
∑T

t=1(b
′
ivt)(w

′
itε), (C.5)

where hi = a′iV
∗
m +

∑T
t=1 c

′
itvt, z2i =

∑T
t=1 s

′
itvt, and a′i, s

′
i, and c′it are ith row of some non-

stochastic matrices that are uniformly bounded in both row and column sums. Recall w′it is
the ith row of (Ψ∗l

t+ + Ψ∗u
t+) and note that the ith element of w′it is 0. We have,

1
nT

∑n
i=1[g

2
Ψi − E(g2

Ψi)] =
∑15

r=1 Ur, where (C.6)
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U1 = 1
nT

∑n
i=1[ε

2
ih

2
i − σ2

ε0E(h2
i )], U2 = 1

nT

∑n
i=1 Ψ∗2

ii+{(ε2i − σ2
ε)

2 − E[(ε2i − σ2
ε)

2]},
U3 = 1

nT

∑n
i=1[ε

2
i (w

′
i+ε)

2 − σ4
ε0

∑n
j=1w

2
ij ], U4 = 1

nT

∑n
i=1[z

2
2i − E(z2

2i)],
U6 = 2

nT

∑n
i=1 Ψ∗

ii+(ε2i − σ2
ε)εihi, U7 = 2

nT

∑n
i=1 ε

2
i (w

′
i+ε)hi,

U8 = 2
nT

∑n
i=1 εihiz2i, U9 = 2

nT

∑n
i=1 εihi

∑T
t=1(b

′
ivt)(w

′
itε),

U10 = 2
nT

∑n
i=1 Ψ∗

ii+(ε2i − σ2
ε)εi(w

′
i+ε), U11 = 2

nT

∑n
i=1 Ψ∗

ii+(ε2i − σ2
ε)

∑T
t=1(b

′
ivt)(w

′
itε),

U12 = 2
nT

∑n
i=1 Ψ∗

ii+(ε2i − σ2
ε)z2i, U13 = 2

nT

∑n
i=1 εi(w

′
i+ε)

∑T
t=1(b

′
ivt)(w

′
itε),

U14 = 2
nT

∑n
i=1 εi(w

′
i+ε)z2i, U15 = 2

nT

∑n
i=1 z2i

∑T
t=1(b

′
ivt)(w

′
itε).

U5 = 1
nT

∑n
i=1[(

∑T
t=1(b

′
ivt)(w

′
itε))

2 − σ2
v0σ

2
ε0(b

′
ibi)

∑T
t=1(w

′
itwit)].

By Assumption A and B, V ∗
m is independent of ε and vt, and η∗m is exogenous. With

Assumption F, the terms in (C.6) are similar to those in (C.4), and therefore their convergence
is proved similarly. Using (C.2), (C.3) and (C.5), the convergence of the cross product
terms 1

nT

∑n
i=1

[
gΠigΦi − E(gΠigΦi)

]
= op(1), 1

nT

∑n
i=1

[
gΦigΨi − E(gΨigΨi)

]
= op(1), and

1
nT

∑n
i=1

[
gΠigΨi − E(gΨigΨi)

]
= op(1) can also be shown similarly. Detailed expressions for

the cross product terms can be found in the Supplementary Appendix. These complete the
prove of convergence in the single summation part of Theorem 3.1.

To show (b): the result 1
nT

∑n
1=1

∑n
j=1,j 6=i

[
Ê(gig′j)− E(gig′j)

] p−→ 0 follows if

(i) 1
nT

∑n
i=1

∑n
j=1,j 6=i(Ê(gig′j)−Υij)

p−→ 0, and (ii) 1
nT

∑n
i=1

∑n
j=1,j 6=i[Υij −E(gig′j)]

p−→ 0,

where Υij is from E(gig′j) by removing E(·) in E(ξ∗ri,t) and E(ξ∗ri,tξ
∗
νj,t). As each element of

Υij is a linear combination of the terms in (3.7)-(3.12), only the consistency of them matters.
Proof of (i): (1). By lemma 3.1 we have, E(gπrg

′
πν

) = σ2
v0

∑T
t=1(b

′
ibj)π

′
r,itπν,jt. As T is

fixed, and as σ2
v0 enters linearly and σ̂2

v is consistent, it suffices to prove

Qt0 = 1
n

∑n
i=1

∑
j 6=i[(b̂

′
ib̂j)π̂itπ̂jt − (b′ibj)πitπjt]

p−→ 0, for each t = 1, . . . , T,

which is done by applying Holder’s inequality, Lemmas A.1 and A.2, and Assumption E.
(2). By the expression of E(gΦri gΦνj) given in (3.8) in Lemma 3.1, dropping r and ν,

Qt1 = 1
n

∑n
i=1

∑
j 6=i[(b̂

′
j ĉ
∗
i,ts)(b̂

′
iĉ
∗
j,st)− (b′jc

∗
i,ts)(b

′
ic
∗
j,st)]

p−→ 0,

Qt2 = 1
n

∑n
i=1

∑
j 6=i[(b̂

′
ib̂j)(ĉ

∗′
i,tsĉ

∗
j,ts)− (b′ibj)(c

∗′
i,tsc

∗
j,ts)]

p−→ 0,

Qt3 = 1
n

∑n
i=1

∑
j 6=i[âji,t+(b̂′j ĉ

∗
i,+t)− aji,t+(b′jc

∗
i,+t)]

p−→ 0,

Qt4 = 1
n

∑n
i=1

∑
j 6=i[âij,t+(b′iĉ

∗
j,+t)− aij,t+(b′ic

∗
j,+t)]

p−→ 0,

Qt5 = 1
n

∑n
i=1

∑
j 6=i[(â

∗′
i,t+â

∗
j,t+)(b̂′ib̂j)− (a∗′i,t+a

∗
j,t+)(b′ibj)]

p−→ 0,

Qt6 = 1
n

∑n
i=1

∑
j 6=i[(b̂i � ĉ∗i,tt)

′(b̂j � ĉ∗j,tt)− (bi � c∗i,tt)
′(bj � c∗j,tt)]

p−→ 0.

(3). E(gΨr,igΨν ,j) = σ4
ε0(wrij,+wνji,+) + σ2

v0

∑T
t=1(b

′
ibj)E(ξ∗ri,tξ

∗
νj,t). We need to show:

Qt7 = 1
n

∑n
i=1

∑
j 6=i(ŵij,+ŵji,+ − wij,+wji,+)

p−→ 0, and
Qt8 = 1

n

∑n
i=1

∑
j 6=i[(b̂

′
ib̂j)(ξ̂

∗
i,tξ̂

∗
j,t)− (b′ibj)(ξ

∗
i,tξ

∗
j,t)]

p−→ 0.

(4). E(gΦigΠ′j) = µ
(3)
v0

∑T
t=1(bi� c∗i,tt)′bjπj,t from Lemma 3.1, and thus we need to show:

Qt9 = 1
n

∑n
i=1

∑
j 6=i[(b̂i � ĉ∗i,tt)

′b̂jπ̂j,t − (bi � c∗i,tt)
′bjπj,t]

p−→ 0.

(5). E(gΨigΠ′j) = σ2
v0

∑T
t=1 πj,tE(ξ∗ri,t)(b

′
ibj) from Lemma 3.1, and thus we need to show:

Qt10 = 1
n

∑n
i=1

∑
j 6=i[(π̂j,tξ̂

∗
i,t)(b̂

′
ib̂j)− (πj,tξ∗ri,t)(b

′
ibj)]

p−→ 0.
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(6). Finally by Lemma 3.1, E(gΦigΨj) = σ2
ε0σ

2
v0

∑T
t=1

[
(b′ibj)(a

′
ri,t+w

∗
νj,t)+wνji,+(b′jc

◦
ri,+t)

]
+

σ4
ε0(wji,+aij,++) + µ

(3)
v0

∑T
t=1(bi � c∗ri,tt)

′bjE(ξ∗νj,t), and thus we need to show:

Qt11 = 1
n

∑n
i=1

∑
j 6=i[(b̂

′
ib̂j)(â

′
i,t+ŵ

∗
j,t)− (b′ibj)(a

′
i,t+w

∗
j,t)]

p−→ 0,
Qt12 = 1

n

∑n
i=1

∑
j 6=i[ŵji,+(b̂′j ĉ

◦
i,+t)− wji,+(b′jc

◦
i,+t)]

p−→ 0,
Qt13 = 1

n

∑n
i=1

∑
j 6=i[(ŵji,+âij,++)− (wji,+aij,++)]

p−→ 0,
Qt14 = 1

n

∑n
i=1

∑
j 6=i[(b̂i � ĉ∗i,tt)

′b̂j(ξ̂∗j,t)− (bi � c∗i,tt)
′bj(ξ∗j,t)]

p−→ 0.

Following (3.2) and Assumption F, we can see that all the terms in (3)-(6) are similar
to the terms in (i) and (ii), and therefore their convergence in probability to zero is proved
similarly to that of the terms in (i) and (ii).

Proof of (ii): First we note that (ii) is not needed for the terms not involving y∗0. For
the terms which involve y∗0, we need to prove:

Rt1 = 1
n

∑n
i=1

∑
j 6=i(b

′
ibj)[ξ

∗
i,tξ

∗
j,t − E(ξ∗i,tξ

∗
j,t)]

p−→ 0,
Rt2 = 1

n

∑n
i=1

∑
j 6=i πj,t[ξ

∗
i,t − E(ξ∗i,t)]

p−→ 0,
Rt3 = 1

n

∑n
i=1

∑
j 6=i[(bi � c∗i,tt)

′bj ][ξ∗j,t − E(ξ∗j,t)]
p−→ 0.

Recall that ξ∗i,t = w∗′ity
∗
0 where w∗′it is the ith row of Ψ∗

t . The convergence of Rt2 and Rt3

immediately follow by Lemma A.1 and Lemma A.6. To show Rt1
p−→ 0, note that Ψ∗

t =
ΨtKm, and y∗0 = K−1

m y0, so we can write, ξ∗i,t = a′ity0, where a′it is the ith row of Ψt. Then we
have,

∑n
i=1

∑
j 6=i(b

′
ibj)ξ

∗
i,tξ

∗
j,t = y′0[

∑n
i=1(aitb

′
i)

∑
j 6=i(bja

′
jt)]y0 = y′0Aty0, where At = Ψ′

tBΨt−
Ψ′
tdiag(B)Ψt, and B = (B′

3B3)−1. Clearly, At is bounded in both row and column sums by
Assumption E(iii) and Lemma A.1(i). Therefore, Rt1 = 1

n [y′0Aty0 − E(y′0Aty0)] = op(1), by
Lemma A.6. These complete the proof of the convergence of the double summation part in
Theorem 3.1, and therefore complete the proof of Theorem 3.1. �

Additional details on the proof of Theorem 3.1, in particular, the proof of (b), can be found
in the Supplementary Appendix available at http://www.mysmu.edu/faculty/zlyang/.
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Table 1. Empirical Mean(sd) [se] of CQMLE and M -Estimator, DGP1 (CRE), T = 3, m = 10
W1 = W3: Queen Contiguity; W2: Group Interaction

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50
1 .999 (.053) 1.003 (.052) [.050] .998 (.054) 1.001 (.053) [.050] .999 (.053) 1.003 (.052) [.050]
1 .915 (.319) .996 (.339) [.322] .925 (.311) 1.007 (.331) [.320] .911 (.313) .992 (.332) [.320]
1 .856 (.163) .995 (.153) [.136] .854 (.166) .991 (.156) [.137] .850 (.167) .987 (.157) [.136]
1 .995 (.163) .940 (.147) [.135] 1.008 (.261) .952 (.242) [.205] 1.004 (.235) .949 (.216) [.188]
1 .761 (.374) .992 (.432) [.374] .775 (.424) 1.003 (.485) [.397] .774 (.422) 1.001 (.486) [.390]
.3 .353 (.055) .300 (.050) [.043] .355 (.055) .302 (.050) [.043] .354 (.055) .302 (.051) [.043]
.2 .189 (.052) .193 (.053) [.049] .186 (.050) .190 (.051) [.049] .188 (.053) .193 (.054) [.049]
.2 .193 (.039) .197 (.040) [.037] .191 (.039) .196 (.040) [.037] .191 (.039) .195 (.039) [.036]
.2 .101 (.182) .096 (.184) [.169] .098 (.183) .093 (.188) [.165] .106 (.174) .099 (.177) [.165]

n = 100
1 1.001 (.036) 1.000 (.035) [.035] 1.000 (.036) .999 (.036) [.035] 1.001 (.036) 1.000 (.036) [.035]
1 .919 (.224) .997 (.237) [.230] .916 (.217) .993 (.229) [.231] .921 (.220) .999 (.232) [.230]
1 .843 (.117) .994 (.106) [.099] .849 (.119) 1.000 (.109) [.100] .847 (.118) .997 (.107) [.100]
1 1.035 (.117) .979 (.105) [.100] 1.039 (.188) .983 (.170) [.155] 1.034 (.171) .978 (.156) [.143]
1 .755 (.254) .981 (.295) [.259] .770 (.284) .996 (.322) [.284] .766 (.278) .991 (.315) [.280]
.3 .355 (.037) .301 (.033) [.030] .353 (.037) .300 (.033) [.030] .354 (.037) .300 (.033) [.030]
.2 .185 (.025) .198 (.026) [.025] .185 (.026) .198 (.027) [.025] .185 (.026) .197 (.027) [.025]
.2 .191 (.028) .198 (.029) [.028] .191 (.027) .198 (.028) [.028] .189 (.028) .196 (.029) [.028]
.2 .165 (.118) .152 (.121) [.116] .165 (.118) .151 (.120) [.114] .162 (.117) .150 (.120) [.114]

n = 200
1 .999 (.025) 1.001 (.025) [.025] .999 (.026) 1.000 (.026) [.025] 1.000 (.025) 1.001 (.025) [.025]
1 .925 (.160) .997 (.171) [.167] .929 (.156) 1.001 (.167) [.167] .927 (.160) .998 (.172) [.167]
1 .829 (.086) .996 (.078) [.072] .833 (.086) .998 (.077) [.073] .833 (.087) .999 (.078) [.072]
1 1.050 (.085) .987 (.075) [.072] 1.046 (.129) .984 (.116) [.113] 1.052 (.122) .989 (.109) [.105]
1 .738 (.179) .992 (.208) [.190] .753 (.196) 1.004 (.227) [.207] .744 (.184) .996 (.210) [.203]
.3 .361 (.028) .301 (.024) [.022] .360 (.028) .300 (.024) [.023] .359 (.028) .300 (.024) [.023]
.2 .186 (.022) .198 (.023) [.023] .187 (.022) .198 (.023) [.023] .186 (.023) .198 (.023) [.023]
.2 .185 (.023) .197 (.023) [.022] .185 (.022) .197 (.023) [.022] .185 (.022) .198 (.023) [.022]
.2 .186 (.083) .176 (.085) [.084] .185 (.084) .175 (.086) [.083] .187 (.085) .178 (.087) [.083]

n = 400
1 1.000 (.019) 1.000 (.019) [.019] 1.000 (.019) 1.000 (.019) [.019] 1.001 (.019) 1.001 (.018) [.019]
1 .923 (.110) 1.002 (.118) [.117] .917 (.112) .995 (.119) [.117] .920 (.113) .999 (.120) [.117]
1 .842 (.061) 1.000 (.054) [.051] .839 (.061) .998 (.055) [.052] .839 (.061) .998 (.055) [.052]
1 1.053 (.060) .995 (.054) [.051] 1.054 (.094) .995 (.085) [.082] 1.054 (.088) .995 (.080) [.075]
1 .756 (.122) .995 (.140) [.133] .761 (.143) 1.001 (.163) [.148] .759 (.141) .999 (.160) [.144]
.3 .356 (.019) .300 (.017) [.015] .357 (.019) .300 (.017) [.016] .357 (.019) .301 (.017) [.016]
.2 .184 (.014) .200 (.015) [.014] .184 (.014) .200 (.014) [.014] .183 (.014) .199 (.014) [.014]
.2 .189 (.021) .199 (.021) [.021] .189 (.020) .198 (.021) [.021] .189 (.021) .199 (.021) [.021]
.2 .203 (.059) .187 (.060) [.059] .205 (.059) .189 (.061) [.059] .203 (.059) .187 (.061) [.059]
Note: ψ = (β, γ, π, σ2

v, φ, ρ, λ1, λ2, λ3)
′. The results corresponding to α̌ are suppressed to save space, and are

reported in Supplement Appendix; Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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Table 2. Empirical Mean (sd) [se] of CQMLE and M -Estimator, DGP1 (CRE), T = 6, m = 10
W1 = W3: Queen Contiguity; W2: Group Interaction

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50
1 .998 (.028) 1.001 (.028) [.028] .998 (.029) 1.001 (.029) [.027] .997 (.029) 1.000 (.029) [.027]
1 .991 (.306) 1.002 (.309) [.295] .987 (.300) .998 (.303) [.293] .996 (.300) 1.007 (.303) [.292]
1 .975 (.087) .997 (.086) [.082] .979 (.087) 1.000 (.087) [.082] .976 (.089) .997 (.089) [.082]
1 .965 (.088) .961 (.088) [.085] .971 (.160) .967 (.158) [.144] .971 (.145) .967 (.144) [.133]
1 .927 (.270) .960 (.277) [.256] .939 (.441) .973 (.468) [.364] .927 (.395) .959 (.407) [.337]
.3 .309 (.025) .300 (.024) [.023] .308 (.025) .299 (.025) [.023] .309 (.025) .300 (.025) [.023]
.2 .195 (.040) .195 (.040) [.036] .196 (.039) .196 (.039) [.035] .194 (.039) .195 (.039) [.036]
.2 .200 (.031) .198 (.031) [.028] .199 (.030) .197 (.030) [.028] .200 (.031) .198 (.031) [.028]
.2 .120 (.115) .119 (.116) [.109] .120 (.113) .119 (.113) [.107] .124 (.113) .123 (.113) [.107]

n = 100
1 .997 (.021) 1.001 (.020) [.020] .996 (.021) 1.000 (.021) [.020] .996 (.021) 1.000 (.021) [.020]
1 .985 (.222) .998 (.225) [.213] .989 (.219) 1.002 (.222) [.212] .982 (.217) .995 (.220) [.213]
1 .980 (.062) 1.000 (.062) [.061] .981 (.062) 1.001 (.062) [.060] .982 (.064) 1.001 (.064) [.061]
1 .986 (.064) .981 (.064) [.062] .989 (.114) .984 (.113) [.108] .990 (.102) .985 (.102) [.099]
1 .945 (.187) .977 (.192) [.186] .949 (.312) .981 (.321) [.279] .955 (.286) .988 (.295) [.263]
.3 .308 (.017) .299 (.017) [.016] .308 (.017) .300 (.016) [.016] .308 (.018) .299 (.017) [.017]
.2 .197 (.026) .198 (.026) [.025] .197 (.025) .197 (.025) [.024] .197 (.026) .198 (.026) [.024]
.2 .200 (.026) .199 (.026) [.026] .200 (.027) .199 (.027) [.026] .200 (.028) .198 (.028) [.026]
.2 .164 (.081) .163 (.081) [.077] .164 (.080) .163 (.080) [.076] .161 (.080) .160 (.080) [.076]

n = 200
1 .997 (.014) 1.000 (.014) [.014] .997 (.014) 1.000 (.014) [.014] .996 (.014) 1.000 (.014) [.014]
1 .990 (.154) 1.002 (.155) [.152] .990 (.153) 1.001 (.155) [.152] .989 (.152) 1.001 (.154) [.151]
1 .982 (.045) 1.001 (.045) [.043] .980 (.045) .999 (.045) [.043] .981 (.044) 1.000 (.044) [.043]
1 .997 (.045) .993 (.044) [.045] .995 (.079) .991 (.078) [.078] .999 (.073) .995 (.072) [.072]
1 .959 (.136) .990 (.140) [.133] .961 (.219) .991 (.225) [.209] .952 (.193) .982 (.198) [.189]
.3 .307 (.012) .300 (.012) [.011] .308 (.012) .300 (.012) [.011] .308 (.012) .300 (.012) [.011]
.2 .199 (.019) .199 (.019) [.019] .199 (.019) .200 (.019) [.019] .199 (.019) .199 (.019) [.019]
.2 .199 (.020) .199 (.020) [.020] .200 (.020) .200 (.020) [.020] .199 (.020) .199 (.020) [.020]
.2 .181 (.055) .180 (.055) [.055] .180 (.056) .179 (.056) [.055] .181 (.055) .180 (.055) [.055]

n = 400
1 .996 (.010) 1.000 (.010) [.010] .997 (.010) 1.001 (.010) [.010] .996 (.010) 1.000 (.010) [.010]
1 .984 (.106) .995 (.108) [.108] .987 (.110) .997 (.111) [.108] .991 (.107) 1.001 (.109) [.108]
1 .981 (.029) 1.000 (.029) [.030] .982 (.030) 1.001 (.029) [.030] .981 (.030) 1.001 (.030) [.030]
1 1.000 (.031) .996 (.031) [.032] 1.001 (.057) .997 (.057) [.056] 1.001 (.053) .997 (.052) [.051]
1 .964 (.093) .994 (.095) [.095] .966 (.153) .996 (.157) [.152] .964 (.138) .994 (.142) [.139]
.3 .308 (.008) .300 (.008) [.008] .307 (.009) .299 (.008) [.008] .308 (.008) .300 (.008) [.008]
.2 .199 (.012) .200 (.012) [.012] .198 (.012) .200 (.012) [.012] .198 (.012) .200 (.012) [.012]
.2 .199 (.016) .199 (.016) [.016] .200 (.016) .200 (.016) [.016] .200 (.016) .199 (.016) [.016]
.2 .192 (.038) .191 (.038) [.038] .192 (.037) .191 (.038) [.038] .192 (.039) .192 (.039) [.038]
Note: ψ = (β, γ, π, σ2

v, φ, ρ, λ1, λ2, λ3)
′. The results corresponding to α̌ are suppressed to save space, and are

reported in Supplement Appendix; Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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Table 3. Empirical Mean (sd) [se] of CQMLE and M -Estimator, DGP1 (CRE), T = 3, m = 10
W1 = W3: Group Interaction; W2: Queen Contiguity

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50
1 .994 (.048) 1.000 (.048) [.046] .998 (.049) 1.003 (.048) [.046] .995 (.051) 1.001 (.050) [.046]
1 .906 (.330) .991 (.345) [.327] .911 (.329) .994 (.343) [.326] .899 (.331) .983 (.346) [.326]
1 .883 (.141) .996 (.135) [.123] .884 (.147) .995 (.141) [.121] .881 (.143) .993 (.136) [.121]
1 .990 (.158) .946 (.146) [.136] .996 (.256) .953 (.240) [.205] .997 (.230) .953 (.214) [.189]
1 .784 (.351) .965 (.400) [.357] .811 (.416) .990 (.465) [.384] .799 (.411) .980 (.462) [.377]
.3 .344 (.046) .302 (.043) [.038] .343 (.048) .301 (.045) [.038] .344 (.047) .303 (.044) [.038]
.2 .187 (.026) .197 (.027) [.024] .187 (.027) .197 (.027) [.024] .187 (.027) .196 (.028) [.024]
.2 .186 (.037) .196 (.037) [.035] .188 (.037) .198 (.037) [.035] .187 (.038) .197 (.038) [.035]
.2 .127 (.152) .123 (.152) [.132] .122 (.157) .117 (.159) [.129] .126 (.151) .121 (.152) [.129]

n = 100
1 .997 (.034) 1.001 (.034) [.033] .997 (.033) 1.001 (.033) [.033] .997 (.035) 1.001 (.035) [.033]
1 .908 (.225) .997 (.237) [.234] .906 (.232) .995 (.243) [.234] .908 (.228) .997 (.238) [.235]
1 .868 (.106) .997 (.099) [.092] .869 (.107) .998 (.098) [.092] .869 (.108) .998 (.099) [.092]
1 1.023 (.114) .974 (.104) [.099] 1.030 (.184) .980 (.169) [.154] 1.024 (.169) .974 (.156) [.143]
1 .786 (.257) .992 (.298) [.260] .789 (.282) .992 (.318) [.280] .798 (.277) 1.005 (.313) [.280]
.3 .348 (.035) .300 (.032) [.029] .348 (.034) .301 (.031) [.029] .348 (.036) .300 (.032) [.029]
.2 .187 (.025) .197 (.026) [.024] .186 (.024) .196 (.025) [.024] .187 (.024) .197 (.025) [.024]
.2 .191 (.030) .197 (.031) [.029] .191 (.030) .197 (.031) [.029] .193 (.031) .199 (.031) [.029]
.2 .148 (.117) .145 (.118) [.109] .154 (.117) .151 (.118) [.108] .157 (.116) .154 (.117) [.107]

n = 200
1 .997 (.025) .999 (.025) [.025] .998 (.026) 1.001 (.026) [.025] .998 (.025) 1.000 (.025) [.025]
1 .940 (.167) .996 (.177) [.165] .949 (.157) 1.006 (.165) [.166] .941 (.165) .998 (.174) [.165]
1 .876 (.074) 1.001 (.068) [.066] .877 (.074) 1.001 (.069) [.067] .873 (.076) .998 (.071) [.067]
1 1.034 (.083) .987 (.075) [.071] 1.028 (.125) .982 (.116) [.112] 1.034 (.118) .987 (.108) [.104]
1 .800 (.178) .996 (.201) [.184] .815 (.197) 1.011 (.220) [.204] .801 (.185) .998 (.207) [.198]
.3 .345 (.023) .300 (.021) [.020] .344 (.023) .299 (.021) [.020] .345 (.024) .300 (.021) [.020]
.2 .189 (.028) .195 (.029) [.028] .191 (.029) .196 (.030) [.028] .190 (.028) .196 (.030) [.028]
.2 .192 (.020) .199 (.021) [.020] .192 (.021) .199 (.021) [.020] .192 (.021) .199 (.021) [.020]
.2 .165 (.095) .163 (.097) [.094] .162 (.100) .160 (.102) [.094] .165 (.095) .162 (.097) [.094]

n = 400
1 .996 (.019) 1.000 (.019) [.018] .997 (.018) 1.001 (.018) [.018] .996 (.019) 1.000 (.019) [.018]
1 .916 (.108) .996 (.116) [.117] .924 (.110) 1.004 (.116) [.117] .917 (.109) .997 (.117) [.117]
1 .838 (.059) .999 (.053) [.051] .838 (.059) .999 (.053) [.051] .840 (.062) 1.000 (.056) [.051]
1 1.055 (.059) .995 (.053) [.051] 1.053 (.092) .992 (.083) [.082] 1.054 (.087) .993 (.078) [.075]
1 .751 (.121) .996 (.141) [.134] .757 (.138) 1.003 (.158) [.148] .754 (.135) 1.000 (.155) [.145]
.3 .358 (.019) .300 (.016) [.016] .358 (.019) .300 (.016) [.016] .358 (.020) .300 (.017) [.016]
.2 .184 (.021) .197 (.022) [.021] .184 (.021) .197 (.022) [.021] .184 (.021) .197 (.022) [.021]
.2 .187 (.013) .199 (.014) [.014] .187 (.013) .199 (.014) [.014] .187 (.013) .200 (.014) [.014]
.2 .182 (.079) .174 (.080) [.077] .181 (.079) .173 (.081) [.076] .184 (.080) .176 (.082) [.076]
Note: ψ = (β, γ, π, σ2

v, φ, ρ, λ1, λ2, λ3)
′. The results corresponding to α̌ are suppressed to save space, and are

reported in Supplement Appendix; Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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Table 4. Empirical Mean (sd) [se] of CQMLE and M -Estimator, DGP2 (RE), T = 3, m = 10
W1 = W3: Queen Contiguity; W2: Group Interaction

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50
1 .979 (.047) 1.001 (.045) [.042] .978 (.047) 1.000 (.045) [.042] .977 (.047) .999 (.046) [.042]
1 .936 (.321) 1.000 (.335) [.325] .947 (.315) 1.011 (.330) [.323] .930 (.314) .993 (.329) [.322]
1 .971 (.153) .937 (.144) [.134] .983 (.248) .949 (.236) [.203] .980 (.223) .947 (.213) [.187]
1 .861 (.373) 1.024 (.424) [.371] .875 (.419) 1.037 (.474) [.398] .873 (.416) 1.032 (.469) [.392]
.3 .333 (.042) .297 (.040) [.035] .334 (.041) .298 (.039) [.036] .334 (.041) .298 (.040) [.035]
.2 .203 (.076) .189 (.075) [.067] .199 (.072) .184 (.072) [.067] .203 (.076) .188 (.075) [.068]
.2 .204 (.061) .194 (.059) [.055] .202 (.061) .193 (.059) [.055] .202 (.061) .192 (.058) [.055]
.2 .082 (.194) .095 (.192) [.175] .082 (.191) .095 (.191) [.171] .088 (.183) .100 (.182) [.170]

n = 100
1 .979 (.032) .999 (.031) [.030] .979 (.032) .999 (.031) [.030] .979 (.032) .999 (.031) [.029]
1 .956 (.226) .998 (.234) [.229] .967 (.221) 1.009 (.229) [.230] .958 (.229) .999 (.237) [.229]
1 1.002 (.107) .974 (.103) [.098] 1.013 (.175) .984 (.168) [.155] 1.006 (.161) .978 (.154) [.143]
1 .869 (.244) .996 (.276) [.252] .877 (.279) 1.006 (.310) [.278] .874 (.267) 1.001 (.298) [.272]
.3 .329 (.026) .300 (.025) [.023] .329 (.026) .299 (.026) [.024] .329 (.026) .299 (.025) [.024]
.2 .186 (.044) .195 (.044) [.042] .186 (.044) .195 (.045) [.042] .186 (.045) .195 (.046) [.042]
.2 .204 (.046) .196 (.045) [.044] .204 (.046) .195 (.045) [.044] .200 (.047) .191 (.046) [.044]
.2 .163 (.126) .154 (.128) [.120] .161 (.125) .151 (.126) [.119] .160 (.126) .151 (.128) [.119]

n = 200
1 .977 (.023) .999 (.022) [.022] .978 (.024) 1.000 (.023) [.022] .978 (.023) 1.000 (.022) [.022]
1 .938 (.162) 1.002 (.169) [.168] .941 (.166) 1.005 (.172) [.168] .936 (.162) 1.000 (.169) [.168]
1 1.021 (.076) .991 (.073) [.071] 1.014 (.121) .984 (.116) [.113] 1.019 (.113) .989 (.108) [.105]
1 .861 (.169) .996 (.191) [.180] .879 (.195) 1.015 (.217) [.202] .867 (.185) 1.002 (.206) [.195]
.3 .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017] .331 (.019) .300 (.019) [.017]
.2 .195 (.036) .194 (.037) [.035] .199 (.036) .198 (.036) [.035] .198 (.035) .196 (.035) [.035]
.2 .197 (.037) .196 (.037) [.035] .198 (.037) .197 (.036) [.035] .198 (.036) .197 (.036) [.035]
.2 .178 (.089) .180 (.089) [.088] .173 (.089) .174 (.089) [.087] .177 (.088) .178 (.088) [.087]

n = 400
1 .979 (.017) 1.000 (.016) [.016] .979 (.017) 1.001 (.016) [.016] .979 (.017) 1.000 (.016) [.016]
1 .953 (.112) .997 (.116) [.117] .955 (.113) .998 (.117) [.117] .957 (.114) 1.001 (.118) [.117]
1 1.023 (.052) .992 (.050) [.051] 1.025 (.090) .995 (.086) [.082] 1.023 (.080) .993 (.076) [.075]
1 .867 (.116) 1.003 (.132) [.128] .868 (.136) 1.004 (.152) [.142] .870 (.131) 1.006 (.146) [.139]
.3 .332 (.013) .300 (.013) [.012] .331 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
.2 .190 (.023) .199 (.023) [.023] .189 (.023) .198 (.024) [.023] .189 (.023) .198 (.023) [.023]
.2 .203 (.033) .199 (.032) [.031] .200 (.033) .196 (.032) [.031] .201 (.033) .197 (.032) [.031]
.2 .199 (.062) .188 (.063) [.061] .196 (.062) .185 (.063) [.061] .198 (.062) .187 (.063) [.061]
Note: ψ = (β, γ, σ2

v, φ, ρ, λ1, λ2, λ3)
′. The results corresponding to α̌ are suppressed to save space, and are

reported in Supplement Appendix; Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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Table 5. Empirical Mean (sd) [se] of CQMLE and M -Estimator, DGP2 (RE), T = 3, m = 10
W1 = W3: Group Interaction; W2: Queen Contiguity

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50
1 .978 (.046) 1.000 (.045) [.042] .976 (.047) .998 (.046) [.041] .977 (.046) .999 (.045) [.042]
1 .954 (.328) 1.019 (.341) [.324] .938 (.338) 1.001 (.351) [.323] .945 (.326) 1.009 (.339) [.325]
1 .971 (.150) .939 (.143) [.134] .982 (.247) .950 (.237) [.204] .977 (.223) .945 (.213) [.187]
1 .869 (.373) 1.022 (.426) [.371] .877 (.420) 1.029 (.470) [.399] .888 (.417) 1.043 (.473) [.397]
.3 .332 (.040) .298 (.039) [.035] .333 (.041) .300 (.040) [.035] .331 (.040) .297 (.039) [.035]
.2 .186 (.051) .187 (.051) [.047] .187 (.053) .187 (.053) [.047] .187 (.053) .188 (.053) [.047]
.2 .209 (.075) .196 (.070) [.067] .205 (.076) .192 (.071) [.067] .207 (.073) .194 (.069) [.068]
.2 .130 (.156) .127 (.158) [.134] .133 (.154) .130 (.155) [.130] .131 (.153) .130 (.154) [.129]

n = 100
1 .980 (.032) .999 (.031) [.030] .981 (.032) 1.000 (.031) [.030] .981 (.033) 1.000 (.032) [.030]
1 .988 (.223) 1.004 (.231) [.228] .996 (.226) 1.012 (.234) [.228] .982 (.232) .997 (.240) [.228]
1 1.003 (.108) .977 (.104) [.099] 1.004 (.172) .978 (.165) [.154] 1.002 (.156) .976 (.150) [.142]
1 .875 (.246) .994 (.275) [.251] .892 (.266) 1.012 (.293) [.278] .890 (.267) 1.009 (.293) [.273]
.3 .327 (.025) .300 (.025) [.023] .327 (.025) .300 (.025) [.023] .327 (.025) .299 (.024) [.023]
.2 .193 (.041) .191 (.041) [.039] .191 (.040) .189 (.041) [.039] .193 (.040) .191 (.041) [.039]
.2 .192 (.047) .194 (.045) [.044] .193 (.046) .194 (.045) [.044] .196 (.046) .197 (.045) [.043]
.2 .145 (.120) .147 (.121) [.111] .148 (.120) .150 (.120) [.110] .153 (.117) .155 (.117) [.107]

n = 200
1 .977 (.022) 1.000 (.021) [.021] .977 (.023) 1.000 (.022) [.022] .978 (.023) 1.000 (.022) [.021]
1 .933 (.161) 1.001 (.168) [.168] .930 (.162) .998 (.169) [.168] .931 (.166) .998 (.173) [.167]
1 1.018 (.077) .988 (.074) [.071] 1.014 (.122) .984 (.117) [.113] 1.019 (.114) .989 (.109) [.104]
1 .867 (.171) 1.001 (.194) [.180] .877 (.193) 1.011 (.216) [.201] .865 (.187) .997 (.209) [.194]
.3 .332 (.018) .300 (.018) [.017] .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017]
.2 .186 (.031) .195 (.031) [.030] .187 (.030) .196 (.030) [.030] .186 (.031) .195 (.031) [.029]
.2 .204 (.033) .198 (.033) [.032] .203 (.033) .198 (.033) [.032] .202 (.033) .197 (.032) [.032]
.2 .167 (.101) .161 (.103) [.095] .171 (.096) .165 (.097) [.094] .165 (.097) .159 (.099) [.094]

n = 400
1 .977 (.017) 1.000 (.016) [.016] .977 (.017) 1.000 (.016) [.016] .977 (.017) 1.000 (.016) [.016]
1 .958 (.113) 1.001 (.117) [.116] .956 (.109) .998 (.114) [.116] .958 (.112) 1.000 (.117) [.116]
1 1.026 (.056) .995 (.053) [.051] 1.025 (.087) .994 (.083) [.081] 1.025 (.081) .994 (.078) [.075]
1 .861 (.118) .999 (.134) [.127] .867 (.135) 1.005 (.151) [.142] .862 (.133) 1.001 (.148) [.139]
.3 .332 (.013) .300 (.013) [.012] .332 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
.2 .197 (.032) .196 (.033) [.032] .196 (.033) .195 (.034) [.032] .196 (.033) .195 (.033) [.032]
.2 .198 (.023) .199 (.023) [.023] .198 (.023) .199 (.023) [.023] .198 (.024) .199 (.024) [.023]
.2 .172 (.082) .174 (.083) [.078] .176 (.081) .177 (.081) [.078] .170 (.081) .172 (.082) [.078]
Note: ψ = (β, γ, σ2

v, φ, ρ, λ1, λ2, λ3)
′. The results corresponding to α̌ are suppressed to save space, and are

reported in Supplement Appendix; Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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Table 6. Empirical Mean (sd) of CQMLE, M-Estimator, and FQMLE, DGP3 (RE), T = 3, m = 10; W3: Queen Contiguity
Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est FQMLE CQMLE M-Est FQMLE CQMLE M-Est FQMLE

50 1 .971 (.045) .998 (.044) .999 (.044) .974 (.046) 1.001 (.045) 1.002 (.044) .973 (.045) 1.000 (.043) 1.001 (.043)
1 .888 (.317) 1.000 (.338) .991 (.337) .889 (.335) 1.001 (.359) .993 (.357) .879 (.316) .990 (.338) .982 (.338)
1 1.006 (.076) .984 (.073) .983 (.071) 1.003 (.124) .982 (.120) .980 (.117) 1.006 (.117) .985 (.113) .983 (.111)
1 .785 (.325) .992 (.400) .994 (.366) .839 (.400) 1.052 (.474) 1.058 (.446) .815 (.391) 1.020 (.458) 1.033 (.435)
.5 .539 (.032) .500 (.032) .499 (.031) .538 (.032) .499 (.032) .498 (.030) .540 (.032) .501 (.032) .499 (.031)
.3 .265 (.142) .269 (.142) .235 (.139) .266 (.151) .271 (.151) .236 (.146) .262 (.146) .267 (.147) .233 (.141)

100 1 .975 (.032) .999 (.031) 1.000 (.031) .974 (.032) .999 (.032) .999 (.031) .975 (.032) .999 (.032) 1.000 (.031)
1 .918 (.224) .996 (.237) 1.000 (.236) .924 (.227) 1.002 (.240) 1.005 (.239) .922 (.228) 1.000 (.241) 1.005 (.240)
1 1.010 (.052) .993 (.051) .993 (.050) 1.009 (.086) .992 (.084) .993 (.083) 1.011 (.080) .994 (.078) .994 (.075)
1 .830 (.229) .992 (.274) .996 (.247) .849 (.259) 1.012 (.302) 1.014 (.277) .841 (.252) 1.004 (.295) 1.010 (.273)
.5 .531 (.020) .500 (.021) .499 (.020) .531 (.020) .500 (.020) .499 (.019) .531 (.020) .500 (.020) .499 (.020)
.3 .283 (.106) .285 (.107) .289 (.098) .283 (.104) .285 (.104) .290 (.096) .281 (.106) .284 (.106) .288 (.096)

200 1 .968 (.023) .999 (.023) 1.000 (.022) .969 (.023) 1.000 (.023) 1.001 (.022) .969 (.023) 1.000 (.023) 1.001 (.023)
1 .954 (.157) .998 (.166) .996 (.166) .950 (.157) .993 (.166) .991 (.166) .951 (.158) .994 (.167) .992 (.167)
1 1.014 (.037) .996 (.036) .995 (.035) 1.012 (.061) .994 (.060) .993 (.059) 1.012 (.056) .994 (.054) .993 (.053)
1 .821 (.156) .990 (.189) .993 (.176) .837 (.181) 1.007 (.213) 1.009 (.204) .833 (.175) 1.004 (.208) 1.007 (.193)
.5 .533 (.014) .500 (.014) .500 (.014) .533 (.014) .500 (.014) .499 (.014) .533 (.014) .500 (.014) .500 (.014)
.3 .286 (.073) .289 (.074) .266 (.072) .292 (.075) .295 (.076) .271 (.074) .288 (.073) .291 (.074) .268 (.071)

400 1 .972 (.015) 1.000 (.015) 1.002 (.016) .973 (.016) 1.000 (.015) 1.002 (.016) .973 (.015) 1.000 (.015) 1.002 (.016)
1 .933 (.112) 1.000 (.120) 1.010 (.120) .935 (.110) 1.002 (.117) 1.013 (.118) .932 (.114) .998 (.121) 1.008 (.122)
1 1.018 (.027) .998 (.026) 1.029 (.027) 1.016 (.043) .997 (.042) 1.027 (.036) 1.017 (.041) .997 (.040) 1.028 (.035)
1 .813 (.113) .996 (.137) .955 (.211) .823 (.127) 1.007 (.151) .971 (.212) .819 (.126) 1.001 (.150) .961 (.213)
.5 .535 (.010) .500 (.010) .498 (.012) .535 (.011) .500 (.011) .497 (.012) .535 (.011) .500 (.011) .498 (.012)
.3 .293 (.051) .297 (.051) .285 (.053) .291 (.053) .295 (.053) .283 (.053) .293 (.052) .296 (.053) .284 (.053)

Note: ψ = (β, γ, σ2
v, φ, ρ, λ3)

′. The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).
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