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Abstract

The mixed inverse Gaussian given by Whitmore (1986) provides a conve-
nient way for testing the goodness of fit of a pure inverse Gaussian distribution.
The test is a one-sided score test with the null hypothesis being the pure inverse
Gaussian (i.e., the mixing parameter is zero) and the alternative a mixture. We
devise a simple score test and study its finite sample properties. Monte Carlo
results show that it compares favorably to the smooth test of Ducharme (2001).

In practical applications, when the pure inverse Gaussian distribution is
rejected, one is interested in making inference about the general values of the
mixing parameter. However, as it is well known that the inverse Gaussian mix-
ture is a defective distribution, hence the standard likelihood inference cannot
be applied. We propose several alternatives and provide score tests for the mix-
ing parameter. Finite sample properties of these tests are examined by Monte

Carlo simulation.
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1 Introduction

The inverse Gaussian distribution has become a popular model in a variety of
application areas in the past few decades since the review paper of Chhikara and
Folks (1978). Three full length monographs, Chhikara and Folks (1989) and Seshadri
(1993, 1998) have been devoted to this model while Johnson et al. (Chapter 15, 1994)
contains a useful review. This distribution has been used to model equipment life-
times (Chhikara and Folks, 1977), strike durations (Lancaster, 1972), labour turnover
(Whitmore, 1979), product interpurchase times (Banerjee and Bhattacharyya, 1976)
and task completion times (Desmond and Chapman, 1993). More recently it has been
used to model positively skewed data in statistical process control (Edgeman, 1989)
and Hawkins and Olwell (1997). Hawkins and Olwell (1997) point out that an appeal
to the underlying physical process being modelled is a major reason for preferring
the inverse Gaussian model to competing positive, right-skewed distributions such as
the log-normal and the Weibull. Its genesis as the first passage time distribution for
Brownian motion with positive drift make it an attractive model in reliability theory,
where failure is due to some cumulative damage process or crack growth phenomenon
which may plausibly be modelled as an underlying Brownian motion process. In ad-
dition, its hazard rate behaviour is more descriptive of many empirical failure rate
phenomena than say the log-normal (which tends to zero asymptotically) as pointed
out by Hawkins and Olwell. Finally, tractability of sampling distributions of maxi-
mum likelihood estimators and pleasing analogies with normal sampling theory are
points in its favour.

In this paper, we consider the assessment of the inverse Gaussian model via
goodness of fit, and develop a score test for this assumption which is sensitive to a
broad class of mixture alternatives. Desmond and Chapman (1993) found evidence
that the inverse Gaussian was inadequate for some data sets on task completion times
at a large automobile plant and suggested that this was due to heterogeneity in worker
performance which could be modelled as stochastic variation in the drift parameter
of the underlying Brownian motion process, or equivalently in the mean parameter
of the inverse Gaussian distribution. In that paper using Wald and Likelihood Ratio
tests, they concluded that the mixed inverse Gaussian distribution of Whitmore (1979,

1986) provided a substantially better fit for more complex tasks whereas the regular
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inverse Gaussian proved adequate for simple tasks. The advantage of the score test is
that it requires estimation only under the null hypothesis, while the Wald test requires
estimation under the alternative. As a result, the score test is computationally more
attractive. In addition, it is shown here that the score test applies to a broad class
of mixture alternatives which do not require a full parametric specification.

Goodness-of-fit for the inverse Gaussian has been studied previously using meth-
ods based on the empirical cumulative distribution function in a series of papers by
Edgeman and others; see for example Edgeman (1990) or Pavur et al. (1992). A
graphical method for assessing fit based on standardized recursive residuals has been
studied by Letac et al. (1985). More recently, a smooth test has been developed and
examined by Ducharme (2001). Monte Carlo results presented in this paper show
that the proposed test compares favorably to the smooth test in terms of power.

In practical applications, when the pure inverse Gaussian distribution is rejected,
one is interested in making inference about the general values of the mixing parame-
ter. However, as it is well known that the inverse Gaussian mixture is a defective
distribution, hence the standard likelihood inference cannot be applied. We propose
several alternatives and provide score tests for the mixing parameter. Finite sample

properties of these tests are examined by Monte Carlo simulation.

2 The Mixed Inverse Gaussian Distributions

We adopt the following parameterization for the inverse Gaussian probability

density function

o~ () o (PO 0

In terms of the underlying Brownian motion process, with drift and volatility
parameters 7y and o2, and fixed barrier s, we have § = v/s, and A = s?/0%. The mean
of the random variable T" with the above distribution is E(7T) = p = 1/§ while its
variance is Var(T) = p3 /X = 1/(53N).

To obtain the mixed inverse Gaussian, we follow Whitmore (1986) and assume
that heterogeneity in the drift parameter is modelled by a normal distribution for 9,

given A\, with mean d, variance v/\ and density p(J;d, A), say. Also, given 4, (1) above
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is now a conditional distribution f(¢; A | §) say. The marginal mixture distribution
of T is a three parameter model with parameter vector @ = (v, d, )" where * denotes

transpose, and is given by

h(t56) = [ F(t:) | 0)p(0:d. o). )
Straightforward integration over the entire real line then gives
A 12 —\(dt — 1)
h(t;0) = —— _—
(t:6) (27rt3(vt+ 1)) eXp( 2t(vt + 1) ) ’ (3)

t>0, A>0, v>0, d>0.

As pointed out in Desmond and Chapman (1993), there is no reduction in di-
mensionality, via sufficiency, in (3), unlike the pure inverse Gaussian, so that the
inferences about 6 rely on asymptotic likelihood theory. Note that, under Hy : v = 0,
(3) reduces to the pure inverse Gaussian given by (1) and if this can be accepted, the
exact sampling theory under (1) can be used.

However, there are two problems associated with the function defined in (3).
The first is that the value v = 0 falls on the boundary of the parameter space, which
violates one of the key conditions for the standard likelihood inference methods that
requires the true value of the parameter of interest to be an interior point of the
parameter space; see Lehmann (1983, Chapter 6). The second problem is that when
v > 0 the pdf (3) is improper in the sense that it does not integrate to one. It is only
close to a proper distribution when v/ is small relative to d. Plots in Figure 1 show
clearly that as v increases, the area under the curve gets smaller and smaller. Some
numerical integrations show that the area under the curve can be as small as 0.5.
For example, fooo h(t,1,1,v)dt = 0.9150,0.6800, and 0.5595 for v = 1,10, and 100,
respectively. Some authors (Seshadri, 1998, p140; Aalen and Gjessing, 2001, pl1)
have pointed out this problem, but did not proceed to give methods to deal with it.
Clearly, it is inappropriate to apply the standard likelihood inference theory to test
H : v =vy. We now elaborate on various methods to deal with these problems and

leave the details on inferences to the following sections.
Figure 1 here

The first problem can be avoided by using a score test. This is because (i) v

is nonnegative and a one-sided test is desired, (ii) v is a scalar parameter and the

4
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score test provides such a possibility, and (iii) the score test does not require the
estimation of v at the null (unlike the Wald and the likelihood ratio tests) and hence
the technical complications caused by the boundary issue can be avoided. See Verbeke
and Molenberghs (2003) for some detailed arguments on this.

To overcome the second problem we propose two approaches. The first approach
is to mix over § by a truncated normal distribution, i.e., instead of assuming J as

N(d,v/X) which is the source of defectiveness as § cannot be negative, we assume

p(5;0) = p(51> 0) <27);v>1/2 b <_)\(52—;d>2>

@(d\%—/v) (2;))”2 exp (—A(‘Sz—?‘”?> 50

where @ is the cumulative distribution function (CDF) of the standard normal dis-

tribution. On redoing the integration in (3) using the truncated normal mixing dis-

tribution, we have after some algebra,

h(t;0) = h(t; 0)®((v + d)A3 (0% + v) 7)1 (dy/A/v). (4)

Essentially, h(t; @) is converted into a proper density by multiplying by a normaliza-
tion factor depending on both the variable and the parameters. Though inferences
based on (4) are complicated, standard regularity conditions apply, so that asymptotic
likelihood methods will be technically valid. Moreover, with the help of modern sta-
tistical packages such as GAUSS and S-Plus, maximizing the likelihood based on (4)
is, in principle, straightforward. The issue of improper pdf may not arise when testing
for departures from the pure inverse Gaussian distribution as in Section 3 (Mardia and
Kent, 1991), but surely does when inference concerns the inverse Gaussian mixture
as in Section 4. Figure 2 presents plots of the proper and improper inverse Gaussian

mixture, from which one sees clearly the need for modification.
Figure 2 here

An alternative way of handling problems with defective mixtures is to allow the
mixing distribution to be an arbitrary distribution (not necessary normal) with mean

d and variance v/, and then use some approximation arguments. If p(d) is the pdf
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of such a distribution then the marginal distribution of ¢ is
hltiv,d,N) = [ £(t:6.2)p(0)d5
= Es[f(t;6,))]

where f(t;6,A) is given by (1).
Expanding (1) in a Taylor series about E(§) = d, we obtain

F(t;8,0) = f(t;d, ) (1 +Z (tt(SdAA‘)‘S:d) (5)

where f) is the 7 partial derivative with respect to 6.

Taking expected values with respect to the mixing distribution and neglecting

terms of higher order than the quadratic we obtain:
hE(t:0) = f(t;d, ) [1 + g(A(dt 12— t)} . (6)

For small v, h* is an approximation to h. Section 4.3 shows that hA* is a proper

density under a mild parameter constraint.

3 Score Tests for Inverse Gaussian Distribution

Notice that all the inverse Gaussian mixtures (proper or improper ones) discussed
above have the common feature, that, when v = 0 the mixture distribution reduces
to the pure inverse Gaussian distribution. This provides us with a simple way of
testing the most interesting hypothesis: Hy : v = 0, i.e., the pure inverse Gaussian
fits the data well, against H, : v > 0, i.e., some kind of inverse Gaussian mixture is
appropriate for fitting the data.

We consider two cases for completeness. In the first case, assume that d and A
are known, so that Hy : v = 0 is a simple null hypothesis. There may be occasions
in physical or biological applications where subject matter theory implies specified
values of the drift and volatility parameters, so that this case may be of more than

academic interest. The score test is based on the derivative with respect to v of the

log-likelihood based on a random sample ¢y, - - , ¢, from (3), which is given by
= t; " \(dt; — 1)
Sv)=—)» —— — 7
(v) z_; 2ot 1 1) z_; 2(vt; + 1)2 (7)
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The null hypothesis, Hy : t1,-- - ,t, are from an inverse Gaussian with parameters
d and A, is equivalent to
Hy:v=0.

The score test in this case is based on
1 )
5(0) = 5 ; (A(dt; — 1)* — ;). (8)
The exact variance of (8) can be obtained. Squaring (8) and taking expectations
involving the first four moments of the distribution (1) (Johnson et al., 1994) we

obtain:
n 5n

2 T a

Var(S(0)) = (9)

A test pivotal is given by
LSS (M 12 1)
T, = - TR (10)
242 2)\d3)
Following the arguments of Verbeke and Molenberghs (2003, p256), 7} converges in

distribution to the standard normal. Hence, our one sided test can still be carried out
in the usual way with reference to the standard normal distribution even if v = 0 falls
on the boundary of the parameter space. If one wants to use the likelihood ratio test,
the limiting distribution referred to is a modified chi-squared as described in Verbeke
and Molenberghs (2003). See also Silvapulle and Silvapulle (1995) and Silvapulle and
Sen (2005) for general discussions on statistical inferences under constrains.

While the normal distribution is an approximation here, the mean and variance
are exact under the inverse Gaussian assumption. The exact sampling distribution of

(10) eludes us, although we note the well-known result that
i Adt; —1)?

: ti

=1

is exactly x*(n) and Z t; is inverse Gaussian. The statistic 77 can be used to test

the hypothesis Hy : v = 0 when both parameters are known.
When d and A\ are unknown, the above test is no longer valid, and the score
test now should be based on the derivative of the log-likelihood in (7) with d and A

7
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estimated by their maximum likelihood estimates under Hy : v = 0. From standard
results for the inverse Gaussian we get:

~ 1
d= ? and (11)

where ¢ = % > ti. The score test is then based on

5(0.4.3) = 2 3 (Mdh— 17 1)
=1

(12)
We need to find the (asymptotic) variance of S(0,d,\). From standard asymp-
totic theory, e.g. Cox and Hinkeley (1974), we obtain the large sample variance of

(12) from the expected Fisher information matrix for (3). We find, with 6 = (v,d, \)*
and, under Hy : v =0, I(0) = —F [821/892] is given by

(0, o n ]
02 B & 2 LT
12
10)_ =| -2 n,
n n 12 22
Y
where
ni
I — n 5n o n n 4 T — i 0
L= 152 T oB| 12_[_E ‘m] and. f22 =

n
22
are the appropriately partitioned matrices for the parameter of interest v, and the

nuisance parameter (d, \). Thus, the large sample variance of (12) is given by

3n

203

L —I,0, T, =
Finally, a score test pivotal is given by:

n
1
2

(A(dt; — 1)? — ;)

37’L 1/2
<2§\c23>

which is asymptotically standard normal, where X and d are given by (11).

=1

T, =

8
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Now we offer some arguments to show that the score test T5 is valid for a broad
class of mixing distributions not necessarily normal. The derivation of 75 is with
respect to a normal mixing distribution for §. Since the normal assumption for § is
a matter of convenience rather than scientific plausibility, we now assume that ¢ has
an arbitrary distribution p(d) with mean d and variance v/A. The score test is based
on (9/0v)Inh* evaluated at (d, A,0), where d and A are the maximum likelihood
estimates under Hy : v = 0. We find

Olnh* Adt —1)2 —t
v 2+ v [Mdt—1)2—t]

Evaluating at the constrained MLEs (cz, 5\, 0) and summing over the sample we get the
numerator of T5. Further, some straightforward calculations show that the asymptotic
variance of the concentrated score also has the same expression as that based on the
normal mixing distribution. Thus, the score test for Hy;v = 0 based on h* has an
identical expression to the score test based on h. The virtue of the above derivation
is that it holds for a wide class of mixing distributions. In other words, the test T3
is valid for any mixing distribution as long as v is small. The numerator of the test
statistic T, has an interesting intuitive appeal on rewriting it as

num(7Ty) = —= (0—2 - 1) . (14)

2d \ 62

1 .n
In (14), 6% = = >_(t; — t)? is a method of moments estimator of the population
n =1

variance, hence independent of the inverse Gaussian distribution, while 62 = (Ad3)~!
is the maximum likelihood estimator of the population variance under the inverse
Gaussian assumption. Thus (14) ought to be “close” to zero if the inverse Gaussian
assumption is true. A similar rationale underlies Fisher’s index of dispersion test for
the Poisson distribution.

The test is also related to the information matrix test of White (1982), T* say,
which is a general test for model misspecification not dependent on mixture alterna-

tives. To see this, let
dg\> 9%
k(t;0,\) = | = —
50 = (52) + 55
where g = In f(t;9,\) and f is the density (1). The basis of White’s test is that

provided the model is correctly specified, k(¢; 4, A) has zero expectation, from standard

9
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likelihood identities, whereas under misspecification it will, in general, be non-zero.
An appropriate test for misspecification, therefore, is given by:

i=1
where § and ) are the maximum likelihood estimates of § and A under the inverse
Gaussian assumption. Elementary calculation shows that 7% and num(75) are equiv-

alent except for a multiplicative factor.

4 Score Tests for Inverse Gaussian Mixtures

When the data rejects the null hypothesis of a pure inverse Gaussian distribution
in favor of some form of mixture, it is of interest to carry out further analysis for
the mixing parameter v. Now, the regularity conditions for the standard asymptotic
likelihood inference theories are satisfied by the models A° and h*. Test statistics can
be derived based on these two types of mixture. Also, when, v is small such that h
is close to a proper density, the standard methods of inference can also be applied.
We now introduce the tests associated with these three models bearing in mind the
conditions under which they apply.

We will concentrate on the score tests based on the so-called outer product of
gradients (OPG) as the other tests are either computationally intensive (likelihood
ratio and Wald), or unavailable (score test based on expected information) or prob-
lematic (score test based on Hessian matrix, which can give rise to a negative variance
estimate). Let S(v) be the score function of v, and G the n x 3 gradient matrix whose
1th row is the derivative of the log density with respect to 6 corresponding to the ith

observation. The OPG-based score statistic is defined as
T(v) = S(v)D(v) (15)

where D(v) is the square-root of the diagonal element of (G'G)™! corresponding to

v. All quantities are evaluated at d and 5\, the constrained MLEs of d and A, given v.

10
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4.1 Score test based on defective mixture

When v is small, h is close to a proper density, and the application of the standard
likelihood inference will be correct to a high degree of approximation, the normalizing

constant being effectively unity. The log likelihood is, ignoring the constant,

A x— (dt; —1)?

n 1 —
i=1 =1

The score function for v is

n

A [dti—1\? 1 t;

The ith row of the gradient matrix has elements

dt. — 1
B g
ga ot + 1
1 1(dt, —1)?
xi ( )

oA 2t (vt + 1)
oA [d -1\ 1
i = 9 \otir1)  2vh+1

Thus, the OPG score test for testing Hy : v = vy takes the form

Tg(vo) = S(’Uo)D(Uo), (16)

where all quantities are evaluated at (d, \) with

-1
. n 1 n t7, R 1
d:<zvti+1> (thmtl) : Azg—l_g’

i=1 i=1

and ¢ is the harmonic mean of the ¢;s. The test is asymptotically standard normal.
So, it is seen that implementation of the OPG score test is very simple. Section
5 presents simulation results for its finite sample performance. The test performs

reasonably well when v is small.

4.2 Score test based on truncated-normal mixture

When v is not small, it is necessary to modify the defective mixture so that

application of the standard likelihood theory is warranted. Based on the proper

11
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mixture h°(t,0) introduced in Section 2 and using the notation of Section 4.1, we

have the log likelihood function,
1
>\ ?
—nlog® ({—} ) ,
v
DL 2
S°(v) = S(v) + = ( .

_ (2Utz + ].)&
—(vti n 1)% (U + d)— + d&)) s

n

©(6) = £(6)+ > log @ ({M})

where &; =

(vt; +1)2

B[(v+ )V (036 +))2] /8[(0 -+ d) (A (031 + )], and & = 6(d/r/30)
/®(d/+/A/v). The gradient matrix G°, corresponding to the ith observation, contains
the three elements,

co (A e
i gd#(v) ((vtiﬂ)% &’)’
o ) 1 (U_I_d)gz .
ST (<vti+1> d&’)’

Az o (2ut; + 1)§;
oo = Gui — —(v+d)——=+4d .
g i 508 ((vti 1) (v+d) 50)

(vt; +1)%
Evaluating all quantities at (d, \) gives the score test

N

T4(U0) = SO(U())DO(’U)

where d and ) are the constrained MLEs maximizing 0°(0) given v = vy. The test is
again asymptotically standard normal.

4.3 Score tests based on general mixtures

The score tests developed in Sections 4.1 and 4.2 are based on normal or trun-

cated normal mixtures. It is desirable to develop a test that is less sensitive to the

assumption of the mixing distribution. The following theorem provides a theoretical
basis for a general score test.

Theorem. The function h*(t; (4)) defined in (6) is a proper probability density
function provided that

v 2
d>—|1+4/1+—|.
>4<+ —i-)\)

12
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Furthermore, the score test for testing Hy : v = 0, based on h*(t;0) and the expected

information, has the same form as Ty given in Section 2.
Proof: See Appendix.

The results of the theorem provides a basis for general inference on v when the
condition is satisfied. It is more robust to the mixing distribution as only the first
two moments of the mixing distribution are involved. As the expected information
matrix is not available for general v, and the Hessian matrix is quite messy, we derive
a score test based on the gradient. Writing the density (6) as f(t;d, \)m(t;0), and
denoting the log likelihood and the gradient elements of the pure inverse Gaussian

distribution by attaching a superscript °, we have the log likelihood,
(5(6) = °(d, \) + > _logmit;; ),
i=1

the score function for v,

S*(U) _ Z mv<ti; 0)

— m(t; 0)’

and the gradient matrix G* with typical elements of its ¢th row as

* o 0 md(t’“ 0)
gdi - gdi + m(ti; 9)

« 0 m)\(ti;d,)\,’U)
Ii = G+t —m(ti; 0)
Poi = Tt 0)

where mg, my and m, are the partial derivatives of m. The test statistic for testing

Hy : v = vy takes the form

< Adt; —1)2 — t; "
Ts(vg) = ; <2 oo (@ 1) - u)) D* (), (17)

where D*(vg) is the square-root of the vv-element of (G*TG*)™!, and is evaluated
at (ci, A, vp), and d and \ are the constrained MLEs of d and \ at the null, which

maximizes ¢*(0) for v = vg. The test is asymptotically standard normal.

13
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The use of a general function m above allows an easy extension of the results to
other types of mixing distribution. For example, suppose § has a variance v instead
of v/, then we have

m(t;0) =1+ %v)\[)\(dt —1)% — ]

and the condition for f(t;d, \)m(t; @) to be a proper density becomes
1
d > Z()\v + V202 + 2).

Again, this condition is not restrictive. Note that the assumption that the variance
of § is v/A by Whitmore (1986) has no clear physical interpretation. It is a matter
of convenience. Thus, there is no reason why we could not have other forms of

distribution for 4. In fact, this latter form simplifies the matter.

5 Monte Carlo simulations

We carry out Monte Carlo simulations to investigate finite sample properties of
the test statistics introduced in Sections 3 and 4, and to compare the tests in Section
3 with the smooth test of Ducharme (2001). Pure inverse Gaussian random variates
are generated from an algorithm given in Michael at al. (1976). An inverse Gaussian
mixture random variate is generated in two steps: (i) generate a random variate, &
say, from the mixing distribution, (ii) then generate an inverse Gaussian variate using
0 and X\ as parameters. From each sample generated, the test statistic is calculated
and it is checked whether it exceeds the upper 10%, 5% or 1% values of the reference
distribution. The proportion of the test statistic values out of 10,000 exceeding 10%
(5% or 1%) nominal value gives a Monte Carlo estimate of the actual size of the test.

Table 1 summarizes the size of the test 77 and Table 2 the size of T5. First, note
that the size of the test can be affected heavily by the skewness of the population. The
more skewed the distribution, the poorer the test performs. Note that the measure of
skewness for the inverse Gaussian distribution is given by 3/ Vd\. A population with a
skewness measure of 3 can be considered as a quite skewed population. The parameter
configurations given in Tables 1 and 2 are such that the population skewness increases
from one row to next. The first set of parameters gives a population skewness measure

of 0.3, whereas the last set of parameters gives a population skewness measure of 30.

14
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We can see that both 77 and T, perform rather poorly at the last set of parameter
values even when the sample size is 200. The tests deteriorates quite rapidly with the
increase of the skewness measure.

The test T, performs significantly poorer than 7} even when the population is
not so skewed, indicating the cost of estimating parameters is rather high. Increasing
the sample size, significantly improves the performance of both statistics. The tests
perform better at the 10% level than at the 5% and 1%, in particular at 1%, where
the sizes of the tests exceed the nominal levels quite a bit. This indicates that the
distributions of 77 and T, both have a long right tail.

Tables 1 and 2 here

Tables 3-5 summarize the size-adjusted empirical power of the tests T and T5
introduced in Section 3 of the current paper, and the test R3 of Ducharme (2001),
which is in fact what Ducharme recommenced based on the joint considerations of
ease of computation and power. As the sizes of the three tests can be different, it is
thus only meaningful to compare the size-adjusted power. To this end, we use the
simulated critical values which are obtained based on 50,000 Monte Carlo samples
under each parameter configuration.

As expected, the results show that the test 77 is the most powerful one, followed
by 715 and R3. This is because T} is derived under the assumption that the parameters
are known, and both T} and 75 are derived based on an inverse Gaussian mixture.
In contrast, R3 is a smooth test without a specific alternative. What is interesting is
that our test 75 can be much more powerful than R3 of Ducharme (2001) in detecting
an inverse Gaussian mixture.

The simulation results (not reported for brevity) show that the above conclusions
also hold when the mixing distribution in the inverse Gaussian mixture deviates away
from (truncated) normality. This is consistent with the discussions following the
introduction of T,. However, as the test T5 is one directional against a general inverse
Gaussian mixture, it should be well expected that the test T, would have a low power
compared with the smooth test in detecting other type of alternatives such as gamma,
lognormal and the other distributions considered in Ducharme (2001). See the last

section for more discussions for this and related issues.

Tables 3-5 here

15
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Table 6 summarizes the simulated sizes of the three score tests for testing the
general mixing parameter, with a one-sided alternative on the right. The mixing
distribution is chosen to be normal. The parameter configurations are chosen so that
essentially there is no truncation. We see from the table that when v is small, the
three tests perform very similarly. When v is not small, the test based on a general

mixing distribution rejects more frequently.

Table 6 here

6 Discussions

A referee has conjectured that the test based on 75 may be related to the first
component of a smooth test derived from the pure inverse Gaussian. Such a conjecture
is plausible, since the smooth test paradigm is based on alternatives of the form
h(t;0)w(t; 0, ) as in our equation (6). A comprehensive treatment of such smooth
tests is given in the recent research monograph by Rayner et al. (2009). A variety
of tests may be derived depending on the nature of w(¢;6,3). The original idea is
due to Neyman (1937), and was developed to overcome deficiencies in Pearson’s chi-
squared test. Rayner and co-workers, in a series of papers, have used an alternative
formulation to that of Neyman in which w(t;8,3) = C(6,8) exp{3_F_, Bihi(t; 0} as
in Rayner et al. page 95, equation (6.1). Note that we have interchanged 6 and
G from Rayner et al. to be consistent with our own notation. In (6), for example,
0 = (3,,A), f(t;0) is the pure inverse Gaussian and {h;(¢;0) : ¢ = 1,--- k} are
orthonormal polynomials with respect to f(¢;0). A test of Hy: 6y = -+ = [, =0, is
then a smooth test of goodness of fit for the inverse Gaussian. Using the recurrence

relationship (A.1) of Rayner et al. (2009), the first orthonormal polynomial is:

ha(t) = (t = w)/V i3/ A,
where = 1/9, and the second (after some tedious algebra) is:

ha(t) t2/u? — 3t/ =2t/ +2u/ X + 1
s 2(p/ NP2 (Bp2 /A + 1)

16
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The first orthogonal component is identically zero when evaluated at the MLEs i and

X and does not provide a useful test. The second component gives the test statistic

I & R
=— ho(t;,0).
v

We now explore the relationship between our test statistic 75 and the smooth
component V5. First evaluating the numerator and neglecting the normalizing con-

stant we find that V5 is proportional to

Zt/f)? Va(i/A+1) = Zt/f)? (t/07.

Thus the test based on the smooth component is effectively the sample equation
version of the moment identity E(7?)/E(T)* — E(T~') = 0 which holds for T" ~
IG(u, ) distribution. Our test on the other hand motivated by alternatives involving
heterogeneity in the mean parameter involves a comparison of the method of moments
estimator of the variance and the MLE of the variance. Nevertheless, since it is
often the case, for example for the Poisson distribution, that smooth tests result in
comparisons between first and second moments under the model, a referee has raised
an intriguing question which is worth pursuing in future work. The key question
may well revolve around the types of alternative models envisioned and in our case
our test seems well motivated for the case of mixture-type alternatives. A further
problem with smooth tests for the IG, pointed out by Ducharme (2001), is that they
can exhibit inconsistency when the true distribution has E(1/X) = oo, such as for
the exponential or the Weibull with shape parameter less than one. This problem
does not arise for our tests against alternatives of the mixed inverses Gaussian form,
since we have assumed a normal distribution on the drift parameter corresponding
to the reciprocal mean of the IG distribution, which ensures that the marginal mean
of the reciprocal random variable is finite. This is also true for our truncated normal
distributions on the drift parameter and for any distribution with finite first moments.
We have not studied the consistency aspect for general alternatives, since we were
motivated by heterogeneity in the drift which is important in practice. Nevertheless,
in future work we hope to explore this intriguing issue and more general comparisons
between the work here and alternative tests of goodness of fit. In this regard we thank

the reviewer for pointing out, that in Ducharme (2001), it is noted that tests based

17
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on the empirical cumulative distribution function need to be used with caution and
that errors have occurred in some published tables of quantiles for these tests. We

refer the reader to Ducharme (2001) for references and detailed caveats.
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APPENDIX

Proof of the Theorem: Writing h*(¢;0) = f(t;d, \)m(t; 0), it suffices to show
that i) [~ h*(t;0)dt = 1, and ii) m(t;6) > 0, V¢, under the condition given in the
theorem.

For i), we have,

/Oo h*(t; 0)dt = /oo ft;d, N)dt + g /OO[A(dt — 1) —t]f(t;d, \)dt

v [ v [
:1+7/0 (dt—1)2f(t;d,>\)dt—§/ tf(t;d, \)dt

0
oA 1 vl

BERECSV IRV i

For ii), we have,

2
8_m — B[Q}d(dt —1)—1], and o'm

_ 2
% 2 5z = vAd® > 0,

which show that m has a unique minimum at t, = (1 + 2\d)/(2\d?). Evaluating m

at £y, we obtain,
v 1+ 2XMd > 142Md
m(t;0) =1+ 3 | A (d—QW - 1) s

B 8\d? — 4 \vd — v
N 8\d?

So, for m to be non-negative, it is sufficient to have
m(to;6) > 0
which is equivalent to having
8Ad® — 4 vd — v > 0.

Since d is non-negative, the admissible solution to the above inequality is

4+ 4/(4\)2 + 3200 v 2
d =—11 1+—1.
g 167 UV TN
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Figure 1: Plots of the PDF of Improper Inverse Gaussian Mixture
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Figure 2: Plots for Comparing Proper and Improper IG Mixtures
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Table 1: Simulated sizes of the score test with known parameters (77)

n = o0 n = 100 n = 200 n = 400

0.1 005 0.01] 01 005 001] 0.1 0.05 0.01] 0.1 0.05 0.01

.099 058 .0I8|.103 .059 .0I7|.I07 .056 .0I5]|.099 .054 .0I3
102 .059 .019 | .104 .057 .017 | .105 .056 .015|.103 .055 .013
106 .060 .017|.104 .058 .017 |.105 .062 .019 | .101 .054 .012
103 .060 .019 | .106 .058 .017 | .103 .055 .014 | .101 .053 .014
110 .064 .023 | .104 .059 .016 | .100 .058 .016 | .105 .055 .012
102 .061 .019].099 .059 .019 |.106 .057 .016 | .102 .054 .012
098 .060 .021|.102 .060 .018 |.101 .054 .016 | .100 .052 .014
. . .021 | .100 .056 .017 | .104 .056 .016 | .101 .054 .013
101 .060 .023 | .108 .065 .023 |.102 .057 .017|.106 .057 .015
099 .063 .024 | .104 .062 .023 | .110 .066 .022 | .103 .059 .018
099 .062 .025|.104 .061 .020 | .107 .065 .022|.100 .054 .017
106 .068 .028 | .105 .064 .022 | .107 .062 .021 | .103 .057 .016
095 .062 .029 | .102 .064 .025|.101 .063 .024 | .101 .060 .018
095 .062 .030|.097 .064 .030 |.103 .064 .026 | .102 .062 .023
082 .058 .029].096 .063 .032|.100 .064 .028 | .101 .065 .024

—
COOOO W U 1000 T
)—‘M%QOOOOOOOOOOOOQ

—_
(an)
[J6)]
o
D
—_

Table 2: Simulated sizes of the score test with unknown parameters (753), d = 10

n = 50 n = 100 n = 200 n = 400

0.1 005 001] 0.1 0.05 0.01] 0.1 0.05 0.01] 0.1 0.05 0.01

082 .042 .0IT|.089 .047 .01I21.097 .051 .0I3|.098 .052 .0I2
083 .044 .014|.092 .050 .013|.091 .052 .012|.097 .053 .012
083 .044 .012|.097 .052 .014 | .096 .050 .012|.100 .054 .012
083 .043 .011|.087 .050 .014 |.095 .051 .014|.090 .049 .013
085 .047 .012].092 .047 .013|.094 .051 .013|.093 .049 .012
084 .046 .013 | .091 .048 .014 |.093 .052 .015|.095 .049 .012
088 .044 .012|.092 .050 .015|.090 .047 .013|.099 .052 .014
082 .044 .016 | .087 .045 .012].096 .053 .015|.095 .051 .012
083 .045 .014|.091 .052 .016 | .093 .052 .014|.094 .050 .012
.081 .049 .016 | .093 .052 .017 | .090 .050 .016 | .100 .055 .014
.081 .048 .016 | .090 .054 .019 |.094 .054 .017|.093 .052 .015
075 .043 .017|.081 .047 .016 | .092 .054 .018|.092 .053 .016
076 .044 .018 |.080 .045 .017 |.090 .049 .018|.095 .051 .017
059 .036 .013|.073 .046 .016 | .083 .052 .019 [ .096 .056 .021
048 .029 .012].067 .042 .018 | .075 .047 .018 | .084 .049 .019

—
COOOOHINW R U N1000 T
}—‘I\DH;CTJOOOOOOOOOOOOQ
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Table 3: Size-adjusted empirical power of the tests at a = 0.1
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n = 400
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961
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985
995
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Table 4: Size-adjusted empirical power of the tests at a = 0.05
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Table 5: Size-adjusted empirical power of the tests at a = 0.01
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930
948
963
971
975

.010
.056
.166
337
539
711
.833
918
960
.980
990
.996
.996

012
012
.042
145
312
523
710
.850
929
968
987
995
998

.009
.009
.009
.026
077
161
.258
373
468
543
611
.664
708

.009
.010
.015
.045
125
267
454
.639
75
870
930

980
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Table 6: Simulated sizes of score tests for IG mixture, § ~ N(10,v/))

a=0.1 o= 0.05 a=0.01

Vo =5 A T3<'U0) T4(U0) T5 (’Uo) T3('U0) T4(U0) T5 (’Uo) Tg(v()) T4(U0) T5 (’Uo)
n =
0.0 I0] 0.146 0.144 0.144| 0.088 0.086 0.086 | 0.025 0.024 0.025
0.01 8| 0.147 0.143 0.149 | 0.087 0.086 0.091 | 0.025 0.023 0.025
001 6| 0.141 0.142 0.142| 0.083 0.079 0.085 | 0.021 0.022 0.025
001 3| 0138 0.135 0.134| 0.081 0.077 0.077 | 0.019 0.020 0.022
001 1| 0.116 0.114 0.111| 0.059 0.061 0.058 | 0.011 0.014 0.013
0.10 10| 0.143 0.150 0.166 | 0.088 0.091 0.107 | 0.026 0.027  0.036
0.10 8| 0.141 0.142 0.167 | 0.085 0.087 0.106 | 0.025 0.024 0.035
0.10 6| 0.144 0.142 0.161 | 0.087 0.083 0.097 | 0.022 0.021  0.029
0.10 3| 0.129 0.128 0.142 | 0.074 0.070 0.082 | 0.021 0.021  0.024
0.10 1| 0.111 0.119 0.120 | 0.064 0.062 0.067 | 0.014 0.015 0.017
1.00 10| 0.140 0.146 0.255 | 0.083 0.089 0.192 | 0.024 0.027 0.099
1.00 8| 0.142 0.146 0.243 | 0.087 0.082 0.178 | 0.024 0.025 0.095
1.00 6| 0.141 0.141 0.239 | 0.083 0.085 0.174 | 0.025 0.024 0.087
1.00 3| 0.134 0.133 0.215| 0.076 0.075 0.151 | 0.020 0.020 0.068
1.00 1| 0.114 0.110 0.176 | 0.063 0.061 0.110| 0.013 0.014 0.044
n = 100
00T 107 0122 0.125 0.124] 0.069 0.068 0.067 | 0.017 0.017 0.017
0.01 8| 0.123 0.126 0.125| 0.065 0.067 0.069 | 0.013 0.015 0.017
001 6| 0119 0.119 0.124| 0.065 0.064 0.065 | 0.016 0.015 0.014
001 3, 0119 0.110 0.113 | 0.064 0.061 0.059 | 0.015 0.014 0.012
001 1| 0.092 0.096 0.102| 0.045 0.047 0.052 | 0.009 0.008 0.008
0.10 10| 0.127v 0.123 0.139 | 0.070 0.069 0.082 | 0.017 0.017 0.025
0.10 8| 0.125 0.123 0.139 | 0.067 0.068 0.084 | 0.016 0.018 0.023
0.10 6| 0.119 0.112 0.123 | 0.064 0.060 0.070 | 0.016 0.015 0.019
0.10 3| 0.112 0.111 0.116 | 0.060 0.060 0.066 | 0.012 0.013 0.015
0.10 1| 0.094 0.097 0.100| 0.043 0.045 0.051 | 0.007 0.008 0.010
1.00 10| 0.125 0.122 0.195| 0.071 0.068 0.141 | 0.017 0.017 0.064
1.00 8| 0.126 0.128 0.193 | 0.068 0.070 0.130 | 0.015 0.017 0.063
1.00 6| 0.120 0.124 0.194 | 0.066 0.070 0.135| 0.014 0.018 0.060
1.00 3| 0.112 0.114 0.174| 0.059 0.060 0.119 | 0.012 0.015 0.047
1.00 1| 0.105 0.101 0.147 | 0.050 0.052 0.089 | 0.008 0.010 0.029
n = 200
0.0 107 0.I15 0.109 0.114 | 0.060 0.059 0.060 | 0.013 0.013 0.013
0.01 8| 0.110 0.107 0.113 | 0.055 0.057 0.057 | 0.012 0.011 0.013
0.01 6| 0.108 0.105 0.112| 0.057 0.053 0.057 | 0.011 0.012 0.010
0.01 3| 0.105 0.107 0.103 | 0.053 0.052 0.051 | 0.009 0.011 0.010
0.01 1| 0.093 0.092 0.097| 0.044 0.041 0.046 | 0.007 0.006 0.007
0.10 10| 0.111 0.115 0.124| 0.057 0.060 0.067 | 0.014 0.013 0.020
0.10 8| 0.112 0.107 0.120 | 0.057 0.055 0.066 | 0.014 0.012 0.018
0.10 6| 0.111 0.105 0.118 | 0.056 0.053 0.063 | 0.013 0.011 0.017
0.100 3| 0.106 0.099 0.108 | 0.052 0.050 0.059 | 0.010 0.011 0.013
0.10 1| 0.093 0.094 0.095| 0.043 0.043 0.047 | 0.007 0.006 0.007
1.00 10| 0.113 0.110 0.169 | 0.059 0.058 0.112| 0.014 0.012 0.046
1.00 8| 0.110 0.114 0.157 | 0.057 0.059 0.100 | 0.014 0.014 0.042
1.00 6| 0.108 0.108 0.160 | 0.058 0.053 0.105 | 0.012 0.009 0.042
1.00 3| 0.102 0.101 0.143 | 0.048 0.050 0.091 | 0.011 0.010 0.032
1.00 1] 0.094 0.089 0.127 | 0.044 0.041 0.073 | 0.007 0.007 0.022






