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Abstract

The mixed inverse Gaussian given by Whitmore (1986) provides a conve-

nient way for testing the goodness of fit of a pure inverse Gaussian distribution.

The test is a one-sided score test with the null hypothesis being the pure inverse

Gaussian (i.e., the mixing parameter is zero) and the alternative a mixture. We

devise a simple score test and study its finite sample properties. Monte Carlo

results show that it compares favorably to the smooth test of Ducharme (2001).

In practical applications, when the pure inverse Gaussian distribution is

rejected, one is interested in making inference about the general values of the

mixing parameter. However, as it is well known that the inverse Gaussian mix-

ture is a defective distribution, hence the standard likelihood inference cannot

be applied. We propose several alternatives and provide score tests for the mix-

ing parameter. Finite sample properties of these tests are examined by Monte

Carlo simulation.

KEY WORDS: Defective Distribution, Inverse Gaussian, Score Tests.
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1 Introduction

The inverse Gaussian distribution has become a popular model in a variety of

application areas in the past few decades since the review paper of Chhikara and

Folks (1978). Three full length monographs, Chhikara and Folks (1989) and Seshadri

(1993, 1998) have been devoted to this model while Johnson et al. (Chapter 15, 1994)

contains a useful review. This distribution has been used to model equipment life-

times (Chhikara and Folks, 1977), strike durations (Lancaster, 1972), labour turnover

(Whitmore, 1979), product interpurchase times (Banerjee and Bhattacharyya, 1976)

and task completion times (Desmond and Chapman, 1993). More recently it has been

used to model positively skewed data in statistical process control (Edgeman, 1989)

and Hawkins and Olwell (1997). Hawkins and Olwell (1997) point out that an appeal

to the underlying physical process being modelled is a major reason for preferring

the inverse Gaussian model to competing positive, right-skewed distributions such as

the log-normal and the Weibull. Its genesis as the first passage time distribution for

Brownian motion with positive drift make it an attractive model in reliability theory,

where failure is due to some cumulative damage process or crack growth phenomenon

which may plausibly be modelled as an underlying Brownian motion process. In ad-

dition, its hazard rate behaviour is more descriptive of many empirical failure rate

phenomena than say the log-normal (which tends to zero asymptotically) as pointed

out by Hawkins and Olwell. Finally, tractability of sampling distributions of maxi-

mum likelihood estimators and pleasing analogies with normal sampling theory are

points in its favour.

In this paper, we consider the assessment of the inverse Gaussian model via

goodness of fit, and develop a score test for this assumption which is sensitive to a

broad class of mixture alternatives. Desmond and Chapman (1993) found evidence

that the inverse Gaussian was inadequate for some data sets on task completion times

at a large automobile plant and suggested that this was due to heterogeneity in worker

performance which could be modelled as stochastic variation in the drift parameter

of the underlying Brownian motion process, or equivalently in the mean parameter

of the inverse Gaussian distribution. In that paper using Wald and Likelihood Ratio

tests, they concluded that the mixed inverse Gaussian distribution of Whitmore (1979,

1986) provided a substantially better fit for more complex tasks whereas the regular
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inverse Gaussian proved adequate for simple tasks. The advantage of the score test is

that it requires estimation only under the null hypothesis, while the Wald test requires

estimation under the alternative. As a result, the score test is computationally more

attractive. In addition, it is shown here that the score test applies to a broad class

of mixture alternatives which do not require a full parametric specification.

Goodness-of-fit for the inverse Gaussian has been studied previously using meth-

ods based on the empirical cumulative distribution function in a series of papers by

Edgeman and others; see for example Edgeman (1990) or Pavur et al. (1992). A

graphical method for assessing fit based on standardized recursive residuals has been

studied by Letac et al. (1985). More recently, a smooth test has been developed and

examined by Ducharme (2001). Monte Carlo results presented in this paper show

that the proposed test compares favorably to the smooth test in terms of power.

In practical applications, when the pure inverse Gaussian distribution is rejected,

one is interested in making inference about the general values of the mixing parame-

ter. However, as it is well known that the inverse Gaussian mixture is a defective

distribution, hence the standard likelihood inference cannot be applied. We propose

several alternatives and provide score tests for the mixing parameter. Finite sample

properties of these tests are examined by Monte Carlo simulation.

2 The Mixed Inverse Gaussian Distributions

We adopt the following parameterization for the inverse Gaussian probability

density function

f(t; δ,λ) =

w
λ

2πt3

W1/2
exp

w−λ(δt− 1)2
2t

W
, t > 0. (1)

In terms of the underlying Brownian motion process, with drift and volatility

parameters γ and σ2, and fixed barrier s, we have δ = γ/s, and λ = s2/σ2. The mean

of the random variable T with the above distribution is E(T ) = μ = 1/δ while its

variance is V ar(T ) = μ3/λ = 1/(δ3λ).

To obtain the mixed inverse Gaussian, we follow Whitmore (1986) and assume

that heterogeneity in the drift parameter is modelled by a normal distribution for δ,

given λ, with mean d, variance v/λ and density p(δ; d,λ), say. Also, given δ, (1) above
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is now a conditional distribution f(t;λ | δ) say. The marginal mixture distribution
of T is a three parameter model with parameter vector θ = (v, d,λ)t where t denotes

transpose, and is given by

h(t;θ) =

8
f(t;λ | δ)p(δ; d, v)dδ. (2)

Straightforward integration over the entire real line then gives

h(t;θ) =

w
λ

2πt3(vt+ 1)

W1/2
exp

w−λ(dt− 1)2
2t(vt+ 1)

W
,

t > 0, λ > 0, v ≥ 0, d > 0.

(3)

As pointed out in Desmond and Chapman (1993), there is no reduction in di-

mensionality, via sufficiency, in (3), unlike the pure inverse Gaussian, so that the

inferences about θ rely on asymptotic likelihood theory. Note that, under H0 : v = 0,

(3) reduces to the pure inverse Gaussian given by (1) and if this can be accepted, the

exact sampling theory under (1) can be used.

However, there are two problems associated with the function defined in (3).

The first is that the value v = 0 falls on the boundary of the parameter space, which

violates one of the key conditions for the standard likelihood inference methods that

requires the true value of the parameter of interest to be an interior point of the

parameter space; see Lehmann (1983, Chapter 6). The second problem is that when

v > 0 the pdf (3) is improper in the sense that it does not integrate to one. It is only

close to a proper distribution when v/λ is small relative to d. Plots in Figure 1 show

clearly that as v increases, the area under the curve gets smaller and smaller. Some

numerical integrations show that the area under the curve can be as small as 0.5.

For example,
$∞
0
h(t, 1, 1, v)dt = 0.9150, 0.6800, and 0.5595 for v = 1, 10, and 100,

respectively. Some authors (Seshadri, 1998, p140; Aalen and Gjessing, 2001, p11)

have pointed out this problem, but did not proceed to give methods to deal with it.

Clearly, it is inappropriate to apply the standard likelihood inference theory to test

H : v = v0. We now elaborate on various methods to deal with these problems and

leave the details on inferences to the following sections.

Figure 1 here

The first problem can be avoided by using a score test. This is because (i) v

is nonnegative and a one-sided test is desired, (ii) v is a scalar parameter and the
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score test provides such a possibility, and (iii) the score test does not require the

estimation of v at the null (unlike the Wald and the likelihood ratio tests) and hence

the technical complications caused by the boundary issue can be avoided. See Verbeke

and Molenberghs (2003) for some detailed arguments on this.

To overcome the second problem we propose two approaches. The first approach

is to mix over δ by a truncated normal distribution, i.e., instead of assuming δ as

N(d, v/λ) which is the source of defectiveness as δ cannot be negative, we assume

p(δ;θ) =
1

P (δ > 0)

w
λ

2πv

W1/2
exp

w
−λ(δ − d)

2

2v

W
=

1

Φ
D
d
0
λ/v
i w λ

2πv

W1/2
exp

w
−λ(δ − d)

2

2v

W
, δ ≥ 0,

where Φ is the cumulative distribution function (CDF) of the standard normal dis-

tribution. On redoing the integration in (3) using the truncated normal mixing dis-

tribution, we have after some algebra,

h0(t;θ) = h(t;θ)Φ
D
(v + d)λ

1
2 (v2t+ v)−

1
2

i
Φ−1
D
d
0
λ/v
i
. (4)

Essentially, h(t;θ) is converted into a proper density by multiplying by a normaliza-

tion factor depending on both the variable and the parameters. Though inferences

based on (4) are complicated, standard regularity conditions apply, so that asymptotic

likelihood methods will be technically valid. Moreover, with the help of modern sta-

tistical packages such as GAUSS and S-Plus, maximizing the likelihood based on (4)

is, in principle, straightforward. The issue of improper pdf may not arise when testing

for departures from the pure inverse Gaussian distribution as in Section 3 (Mardia and

Kent, 1991), but surely does when inference concerns the inverse Gaussian mixture

as in Section 4. Figure 2 presents plots of the proper and improper inverse Gaussian

mixture, from which one sees clearly the need for modification.

Figure 2 here

An alternative way of handling problems with defective mixtures is to allow the

mixing distribution to be an arbitrary distribution (not necessary normal) with mean

d and variance v/λ, and then use some approximation arguments. If p(δ) is the pdf
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of such a distribution then the marginal distribution of t is

h(t; v, d,λ) =

8
f(t; δ,λ)p(δ)dδ

= Eδ[f(t; δ,λ)]

where f(t; δ,λ) is given by (1).

Expanding (1) in a Taylor series about E(δ) = d, we obtain

f(t; δ,λ) = f(t; d,λ)

X
1 +

∞3
j=2

(δ − d)j
j!

f (j)(t; δ,λ)
ee
δ=d

f(t; d,λ)

~
(5)

where f (j) is the j(th) partial derivative with respect to δ.

Taking expected values with respect to the mixing distribution and neglecting

terms of higher order than the quadratic we obtain:

h∗(t;θ) = f(t; d,λ)
�
1 +

v

2

D
λ(dt− 1)2 − ti= . (6)

For small v, h∗ is an approximation to h. Section 4.3 shows that h∗ is a proper

density under a mild parameter constraint.

3 Score Tests for Inverse Gaussian Distribution

Notice that all the inverse Gaussian mixtures (proper or improper ones) discussed

above have the common feature, that, when v = 0 the mixture distribution reduces

to the pure inverse Gaussian distribution. This provides us with a simple way of

testing the most interesting hypothesis: H0 : v = 0, i.e., the pure inverse Gaussian

fits the data well, against Ha : v > 0, i.e., some kind of inverse Gaussian mixture is

appropriate for fitting the data.

We consider two cases for completeness. In the first case, assume that d and λ

are known, so that H0 : v = 0 is a simple null hypothesis. There may be occasions

in physical or biological applications where subject matter theory implies specified

values of the drift and volatility parameters, so that this case may be of more than

academic interest. The score test is based on the derivative with respect to v of the

log-likelihood based on a random sample t1, · · · , tn from (3), which is given by

S(v) = −
n3
i=1

ti
2(vti + 1)

+
n3
i=1

λ(dti − 1)2
2(vti + 1)2

. (7)
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The null hypothesis, H0 : t1, · · · , tn are from an inverse Gaussian with parameters
d and λ, is equivalent to

H0 : v = 0.

The score test in this case is based on

S(0) =
1

2

n3
i=1

D
λ(dti − 1)2 − ti

i
. (8)

The exact variance of (8) can be obtained. Squaring (8) and taking expectations

involving the first four moments of the distribution (1) (Johnson et al., 1994) we

obtain:

V ar(S(0)) =
n

2d2
+

5n

2λd3
. (9)

A test pivotal is given by

T1 =

1
2

n�
i=1

D
λ(dti − 1)2 − ti

i
p n
2d2

+
5n

2λd3

Q1/2 . (10)

Following the arguments of Verbeke and Molenberghs (2003, p256), T1 converges in

distribution to the standard normal. Hence, our one sided test can still be carried out

in the usual way with reference to the standard normal distribution even if v = 0 falls

on the boundary of the parameter space. If one wants to use the likelihood ratio test,

the limiting distribution referred to is a modified chi-squared as described in Verbeke

and Molenberghs (2003). See also Silvapulle and Silvapulle (1995) and Silvapulle and

Sen (2005) for general discussions on statistical inferences under constrains.

While the normal distribution is an approximation here, the mean and variance

are exact under the inverse Gaussian assumption. The exact sampling distribution of

(10) eludes us, although we note the well-known result that

n3
i=1

λ(dti − 1)2
ti

is exactly χ2(n) and
n�
i=1

ti is inverse Gaussian. The statistic T1 can be used to test

the hypothesis H0 : v = 0 when both parameters are known.

When d and λ are unknown, the above test is no longer valid, and the score

test now should be based on the derivative of the log-likelihood in (7) with d and λ
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estimated by their maximum likelihood estimates under H0 : v = 0. From standard

results for the inverse Gaussian we get:

d̂ =
1

t̄
and λ̂−1 =

1

n

n3
i=1

w
1

ti
− 1
t̄

W
(11)

where t̄ = 1
n

�n
i=1 ti. The score test is then based on

S(0, d̂, λ̂) =
1

2

n3
i=1

p
λ̂(d̂ti − 1)2 − ti

Q
. (12)

We need to find the (asymptotic) variance of S(0, d̂, λ̂). From standard asymp-

totic theory, e.g. Cox and Hinkeley (1974), we obtain the large sample variance of

(12) from the expected Fisher information matrix for (3). We find, with θ = (v, d,λ)t

and, under H0 : v = 0, I(θ) = −E
J
∂2l/∂θ2

o
is given by

I(θ)
ee
v=0
=

⎡⎢⎢⎢⎢⎢⎢⎣
n

2d2
+

5n

2λd3
− n
d2
− n

2λd

− n
d2

nλ

d
0

− n

2λd
0

n

2λ2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣I11 It12

I12 I22

⎤⎥⎥⎦
where

I11 =

}
n

2d2
+

5n

2λd3

]
, It12 =

�
− n
d2
− n

2λd

=
and I22 =

⎡⎣nλd 0

0
n

2λ2

⎤⎦
are the appropriately partitioned matrices for the parameter of interest v, and the

nuisance parameter (d,λ). Thus, the large sample variance of (12) is given by

I11 − It12I−122 I12 =
3n

2λd3
.

Finally, a score test pivotal is given by:

T2 =

1
2

n�
i=1

D
λ̂(d̂ti − 1)2 − ti

i
w
3n

2λ̂d̂3

W1/2 (13)

which is asymptotically standard normal, where λ̂ and d̂ are given by (11).

8

Appeared in:  Applied Stochastic Models in Business and Industry, 2011, 27, 633–648.



Now we offer some arguments to show that the score test T2 is valid for a broad

class of mixing distributions not necessarily normal. The derivation of T2 is with

respect to a normal mixing distribution for δ. Since the normal assumption for δ is

a matter of convenience rather than scientific plausibility, we now assume that δ has

an arbitrary distribution p(δ) with mean d and variance v/λ. The score test is based

on (∂/∂v) lnh∗ evaluated at (d̂, λ̂, 0), where d̂ and λ̂ are the maximum likelihood

estimates under H0 : v = 0. We find

∂lnh∗

∂v
=

λ(dt− 1)2 − t
2 + v [λ(dt− 1)2 − t] .

Evaluating at the constrained MLEs (d̂, λ̂, 0) and summing over the sample we get the

numerator of T2. Further, some straightforward calculations show that the asymptotic

variance of the concentrated score also has the same expression as that based on the

normal mixing distribution. Thus, the score test for H0; v = 0 based on h∗ has an

identical expression to the score test based on h. The virtue of the above derivation

is that it holds for a wide class of mixing distributions. In other words, the test T2

is valid for any mixing distribution as long as v is small. The numerator of the test

statistic T2 has an interesting intuitive appeal on rewriting it as

num(T2) =
n

2d̂

w
σ̃2

σ̂2
− 1
W
. (14)

In (14), σ̃2 =
1

n

n�
i=1

(ti − t̄)2 is a method of moments estimator of the population
variance, hence independent of the inverse Gaussian distribution, while σ̂2 = (λ̂d̂3)−1

is the maximum likelihood estimator of the population variance under the inverse

Gaussian assumption. Thus (14) ought to be “close” to zero if the inverse Gaussian

assumption is true. A similar rationale underlies Fisher’s index of dispersion test for

the Poisson distribution.

The test is also related to the information matrix test of White (1982), T ∗ say,

which is a general test for model misspecification not dependent on mixture alterna-

tives. To see this, let

k(t; δ,λ) =

w
∂g

∂δ

W2
+
∂2g

∂δ2

where g = ln f(t; δ,λ) and f is the density (1). The basis of White’s test is that

provided the model is correctly specified, k(t; δ,λ) has zero expectation, from standard

9

Appeared in:  Applied Stochastic Models in Business and Industry, 2011, 27, 633–648.



likelihood identities, whereas under misspecification it will, in general, be non-zero.

An appropriate test for misspecification, therefore, is given by:

T ∗ =
n3
i=1

k(ti; δ̂, λ̂)

where δ̂ and λ̂ are the maximum likelihood estimates of δ and λ under the inverse

Gaussian assumption. Elementary calculation shows that T ∗ and num(T2) are equiv-

alent except for a multiplicative factor.

4 Score Tests for Inverse Gaussian Mixtures

When the data rejects the null hypothesis of a pure inverse Gaussian distribution

in favor of some form of mixture, it is of interest to carry out further analysis for

the mixing parameter v. Now, the regularity conditions for the standard asymptotic

likelihood inference theories are satisfied by the models h0 and h∗. Test statistics can

be derived based on these two types of mixture. Also, when, v is small such that h

is close to a proper density, the standard methods of inference can also be applied.

We now introduce the tests associated with these three models bearing in mind the

conditions under which they apply.

We will concentrate on the score tests based on the so-called outer product of

gradients (OPG) as the other tests are either computationally intensive (likelihood

ratio and Wald), or unavailable (score test based on expected information) or prob-

lematic (score test based on Hessian matrix, which can give rise to a negative variance

estimate). Let S(v) be the score function of v, and G the n×3 gradient matrix whose
ith row is the derivative of the log density with respect to θ corresponding to the ith

observation. The OPG-based score statistic is defined as

T (v) = S(v)D(v) (15)

where D(v) is the square-root of the diagonal element of (GtG)−1 corresponding to

v. All quantities are evaluated at d̂ and λ̂, the constrained MLEs of d and λ, given v.
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4.1 Score test based on defective mixture

When v is small, h is close to a proper density, and the application of the standard

likelihood inference will be correct to a high degree of approximation, the normalizing

constant being effectively unity. The log likelihood is, ignoring the constant,

f(θ) =
n

2
log(λ)− 1

2

n3
i=1

log(vti + 1)− λ

2

n3
i=1

(dti − 1)2
ti(vti + 1)

.

The score function for v is

S(v) =
λ

2

n3
i=1

w
dti − 1
vti + 1

W2
− 1
2

n3
i=1

ti
vti + 1

.

The ith row of the gradient matrix has elements

gdi = −λdti − 1
vti + 1

,

gλi =
1

2λ
− 1
2

(dti − 1)2
ti(vti + 1)

,

gvi =
λ

2

w
dti − 1
vti + 1

W2
− 1
2

ti
vti + 1

.

Thus, the OPG score test for testing H0 : v = v0 takes the form

T3(v0) = S(v0)D(v0), (16)

where all quantities are evaluated at (d̂, λ̂) with

d̂ =

X
n3
i=1

1

vti + 1

~X
n3
i=1

ti
vti + 1

~−1
, λ̂ =

1

t̃−1 − d̂ ,

and t̃ is the harmonic mean of the tis. The test is asymptotically standard normal.

So, it is seen that implementation of the OPG score test is very simple. Section

5 presents simulation results for its finite sample performance. The test performs

reasonably well when v is small.

4.2 Score test based on truncated-normal mixture

When v is not small, it is necessary to modify the defective mixture so that

application of the standard likelihood theory is warranted. Based on the proper
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mixture h0(t,θ) introduced in Section 2 and using the notation of Section 4.1, we

have the log likelihood function,

f0(θ) = f(θ) +
n3
i=1

logΦ

XF
(v + d)2λ

v2ti + v

k 1
2

~
− n logΦ

XF
d2λ

v

k 1
2

~
,

the score function for v is,

S0(v) = S(v) +
λ
1
2

2v
3
2

n3
i=1

X
2v

(vti + 1)
1
2

− (v + d)(2vti + 1)ξi
(vti + 1)

3
2

+ dξ0

~
,

where ξi = φ
J
(v+ d)(λ/(v2ti+ v))

1
2

o
/Φ
J
(v+ d)(λ/(v2ti+ v))

1
2

o
, and ξ0 = φ(d/

0
λ/v)

/Φ(d/
0
λ/v). The gradient matrix G0, corresponding to the ith observation, contains

the three elements,

g0di = gdi +

w
λ

v

W 1
2

X
ξi

(vti + 1)
1
2

− ξ0

~
,

g0λi = gλi +
1

2(λv)
1
2

X
(v + d)ξi

(vti + 1)
1
2

− dξ0
~
,

g0vi = gvi − λ
1
2

2v
3
2

X
2v

(vti + 1)
1
2

− (v + d)(2vti + 1)ξi
(vti + 1)

3
2

+ dξ0

~
.

Evaluating all quantities at (d̂, λ̂) gives the score test

T4(v0) = S
0(v0)D0(v)

where d̂ and λ̂ are the constrained MLEs maximizing f0(θ) given v = v0. The test is

again asymptotically standard normal.

4.3 Score tests based on general mixtures

The score tests developed in Sections 4.1 and 4.2 are based on normal or trun-

cated normal mixtures. It is desirable to develop a test that is less sensitive to the

assumption of the mixing distribution. The following theorem provides a theoretical

basis for a general score test.

Theorem. The function h∗(t; (4)) defined in (6) is a proper probability density

function provided that

d >
v

4

X
1 +

5
1 +

2

λv

~
.
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Furthermore, the score test for testing H0 : v = 0, based on h
∗(t;θ) and the expected

information, has the same form as T2 given in Section 2.

Proof: See Appendix.

The results of the theorem provides a basis for general inference on v when the

condition is satisfied. It is more robust to the mixing distribution as only the first

two moments of the mixing distribution are involved. As the expected information

matrix is not available for general v, and the Hessian matrix is quite messy, we derive

a score test based on the gradient. Writing the density (6) as f(t; d,λ)m(t;θ), and

denoting the log likelihood and the gradient elements of the pure inverse Gaussian

distribution by attaching a superscript 0, we have the log likelihood,

f∗(θ) = f0(d,λ) +
n3
i=1

logm(ti;θ),

the score function for v,

S∗(v) =
n3
i=1

mv(ti;θ)

m(ti;θ)
,

and the gradient matrix G∗ with typical elements of its ith row as

g∗di = g0di +
md(ti;θ)

m(ti;θ)

g∗λi = g0λi +
mλ(ti; d,λ, v)

m(ti;θ)

g∗vi =
mv(ti;θ)

m(ti;θ)

where md, mλ and mv are the partial derivatives of m. The test statistic for testing

H0 : v = v0 takes the form

T5(v0) =
n3
i=1

X
λ(d̂ti − 1)2 − ti

2 + v0
D
λ̂(d̂ti − 1)2 − ti

i~D∗(v0), (17)

where D∗(v0) is the square-root of the vv-element of (G∗TG∗)−1, and is evaluated

at (d̂, λ̂, v0), and d̂ and λ̂ are the constrained MLEs of d and λ at the null, which

maximizes f∗(θ) for v = v0. The test is asymptotically standard normal.
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The use of a general function m above allows an easy extension of the results to

other types of mixing distribution. For example, suppose δ has a variance v instead

of v/λ, then we have

m(t;θ) = 1 +
1

2
vλ[λ(dt− 1)2 − t]

and the condition for f(t; d,λ)m(t;θ) to be a proper density becomes

d >
1

4

D
λv +

√
λ2v2 + 2

i
.

Again, this condition is not restrictive. Note that the assumption that the variance

of δ is v/λ by Whitmore (1986) has no clear physical interpretation. It is a matter

of convenience. Thus, there is no reason why we could not have other forms of

distribution for δ. In fact, this latter form simplifies the matter.

5 Monte Carlo simulations

We carry out Monte Carlo simulations to investigate finite sample properties of

the test statistics introduced in Sections 3 and 4, and to compare the tests in Section

3 with the smooth test of Ducharme (2001). Pure inverse Gaussian random variates

are generated from an algorithm given in Michael at al. (1976). An inverse Gaussian

mixture random variate is generated in two steps: (i) generate a random variate, δ

say, from the mixing distribution, (ii) then generate an inverse Gaussian variate using

δ and λ as parameters. From each sample generated, the test statistic is calculated

and it is checked whether it exceeds the upper 10%, 5% or 1% values of the reference

distribution. The proportion of the test statistic values out of 10,000 exceeding 10%

(5% or 1%) nominal value gives a Monte Carlo estimate of the actual size of the test.

Table 1 summarizes the size of the test T1 and Table 2 the size of T2. First, note

that the size of the test can be affected heavily by the skewness of the population. The

more skewed the distribution, the poorer the test performs. Note that the measure of

skewness for the inverse Gaussian distribution is given by 3/
√
dλ. A population with a

skewness measure of 3 can be considered as a quite skewed population. The parameter

configurations given in Tables 1 and 2 are such that the population skewness increases

from one row to next. The first set of parameters gives a population skewness measure

of 0.3, whereas the last set of parameters gives a population skewness measure of 30.
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We can see that both T1 and T2 perform rather poorly at the last set of parameter

values even when the sample size is 200. The tests deteriorates quite rapidly with the

increase of the skewness measure.

The test T2 performs significantly poorer than T1 even when the population is

not so skewed, indicating the cost of estimating parameters is rather high. Increasing

the sample size, significantly improves the performance of both statistics. The tests

perform better at the 10% level than at the 5% and 1%, in particular at 1%, where

the sizes of the tests exceed the nominal levels quite a bit. This indicates that the

distributions of T1 and T2 both have a long right tail.

Tables 1 and 2 here

Tables 3-5 summarize the size-adjusted empirical power of the tests T1 and T2

introduced in Section 3 of the current paper, and the test R3 of Ducharme (2001),

which is in fact what Ducharme recommenced based on the joint considerations of

ease of computation and power. As the sizes of the three tests can be different, it is

thus only meaningful to compare the size-adjusted power. To this end, we use the

simulated critical values which are obtained based on 50,000 Monte Carlo samples

under each parameter configuration.

As expected, the results show that the test T1 is the most powerful one, followed

by T2 and R3. This is because T1 is derived under the assumption that the parameters

are known, and both T1 and T2 are derived based on an inverse Gaussian mixture.

In contrast, R3 is a smooth test without a specific alternative. What is interesting is

that our test T2 can be much more powerful than R3 of Ducharme (2001) in detecting

an inverse Gaussian mixture.

The simulation results (not reported for brevity) show that the above conclusions

also hold when the mixing distribution in the inverse Gaussian mixture deviates away

from (truncated) normality. This is consistent with the discussions following the

introduction of T2. However, as the test T2 is one directional against a general inverse

Gaussian mixture, it should be well expected that the test T2 would have a low power

compared with the smooth test in detecting other type of alternatives such as gamma,

lognormal and the other distributions considered in Ducharme (2001). See the last

section for more discussions for this and related issues.

Tables 3-5 here
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Table 6 summarizes the simulated sizes of the three score tests for testing the

general mixing parameter, with a one-sided alternative on the right. The mixing

distribution is chosen to be normal. The parameter configurations are chosen so that

essentially there is no truncation. We see from the table that when v is small, the

three tests perform very similarly. When v is not small, the test based on a general

mixing distribution rejects more frequently.

Table 6 here

6 Discussions

A referee has conjectured that the test based on T2 may be related to the first

component of a smooth test derived from the pure inverse Gaussian. Such a conjecture

is plausible, since the smooth test paradigm is based on alternatives of the form

h(t; θ)w(t; θ, β) as in our equation (6). A comprehensive treatment of such smooth

tests is given in the recent research monograph by Rayner et al. (2009). A variety

of tests may be derived depending on the nature of w(t; θ,β). The original idea is

due to Neyman (1937), and was developed to overcome deficiencies in Pearson’s chi-

squared test. Rayner and co-workers, in a series of papers, have used an alternative

formulation to that of Neyman in which w(t; θ, β) = C(θ,β) exp{�k
i=1 βihi(t; θ} as

in Rayner et al. page 95, equation (6.1). Note that we have interchanged θ and

β from Rayner et al. to be consistent with our own notation. In (6), for example,

θ = (δ, ,λ), f(t; θ) is the pure inverse Gaussian and {hi(t; θ) : i = 1, · · · , k} are
orthonormal polynomials with respect to f(t; θ). A test of H0 : β1 = · · · = βk = 0, is

then a smooth test of goodness of fit for the inverse Gaussian. Using the recurrence

relationship (A.1) of Rayner et al. (2009), the first orthonormal polynomial is:

h1(t) = (t− μ)/
0
μ3/λ,

where μ = 1/δ, and the second (after some tedious algebra) is:

h2(t) =
t2/μ2 − 3t/λ− 2t/μ+ 2μ/λ+ 1

2(μ/λ)3/2(3μ2/λ+ 1)
.
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The first orthogonal component is identically zero when evaluated at the MLEs μ̂ and

λ̂ and does not provide a useful test. The second component gives the test statistic

V2 =
1√
n

n3
i=1

h2(ti, θ̂).

We now explore the relationship between our test statistic T2 and the smooth

component V2. First evaluating the numerator and neglecting the normalizing con-

stant we find that V2 is proportional to

1√
n

n3
i=1

(ti/t̄)
2 −√n(μ̂/λ̂+ 1) = 1√

n

n3
i=1

[(ti/t̄)
2 − (ti/t̄)−1].

Thus the test based on the smooth component is effectively the sample equation

version of the moment identity E(T 2)/E(T )3 − E(T−1) = 0 which holds for T ∼
IG(μ,λ) distribution. Our test on the other hand motivated by alternatives involving

heterogeneity in the mean parameter involves a comparison of the method of moments

estimator of the variance and the MLE of the variance. Nevertheless, since it is

often the case, for example for the Poisson distribution, that smooth tests result in

comparisons between first and second moments under the model, a referee has raised

an intriguing question which is worth pursuing in future work. The key question

may well revolve around the types of alternative models envisioned and in our case

our test seems well motivated for the case of mixture-type alternatives. A further

problem with smooth tests for the IG, pointed out by Ducharme (2001), is that they

can exhibit inconsistency when the true distribution has E(1/X) = ∞, such as for
the exponential or the Weibull with shape parameter less than one. This problem

does not arise for our tests against alternatives of the mixed inverses Gaussian form,

since we have assumed a normal distribution on the drift parameter corresponding

to the reciprocal mean of the IG distribution, which ensures that the marginal mean

of the reciprocal random variable is finite. This is also true for our truncated normal

distributions on the drift parameter and for any distribution with finite first moments.

We have not studied the consistency aspect for general alternatives, since we were

motivated by heterogeneity in the drift which is important in practice. Nevertheless,

in future work we hope to explore this intriguing issue and more general comparisons

between the work here and alternative tests of goodness of fit. In this regard we thank

the reviewer for pointing out, that in Ducharme (2001), it is noted that tests based
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on the empirical cumulative distribution function need to be used with caution and

that errors have occurred in some published tables of quantiles for these tests. We

refer the reader to Ducharme (2001) for references and detailed caveats.
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APPENDIX

Proof of the Theorem: Writing h∗(t;θ) = f(t; d,λ)m(t;θ), it suffices to show

that i)
$∞
0
h∗(t;θ)dt = 1, and ii) m(t;θ) ≥ 0, ∀t, under the condition given in the

theorem.

For i), we have,8 ∞
0

h∗(t;θ)dt =
8 ∞
0

f(t; d,λ)dt+
v

2

8 ∞
0

[λ(dt− 1)2 − t]f(t; d,λ)dt

= 1 +
vλ

2

8 ∞
0

(dt− 1)2f(t; d,λ)dt− v
2

8 ∞
0

tf(t; d,λ)dt

= 1 +
vλ

2

1

λd
− v
2

1

d
= 1.

For ii), we have,

∂m

∂t
=
v

2
[2λd(dt− 1)− 1], and ∂

2m

∂t2
= vλd2 > 0,

which show that m has a unique minimum at t0 = (1 + 2λd)/(2λd
2). Evaluating m

at t0, we obtain,

m(t0;θ) = 1 +
v

2

^
λ

w
d
1 + 2λd

2λd2
− 1
W2
− 1 + 2λd

2λd2

�

=
8λd2 − 4λvd− v

8λd2
.

So, for m to be non-negative, it is sufficient to have

m(t0;θ) ≥ 0

which is equivalent to having

8λd2 − 4λvd− v ≥ 0.

Since d is non-negative, the admissible solution to the above inequality is

d >
4λv +

0
(4λv)2 + 32λv

16λ
=
v

4

X
1 +

5
1 +

2

λv

~
.
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Figure 1: Plots of the PDF of Improper Inverse Gaussian Mixture
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Figure 2: Plots for Comparing Proper and Improper IG Mixtures
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Table 1: Simulated sizes of the score test with known parameters (T1)
n = 50 n = 100 n = 200 n = 400

λ\α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
10.0 .099 .058 .018 .103 .059 .017 .107 .056 .015 .099 .054 .013
9.0 .102 .059 .019 .104 .057 .017 .105 .056 .015 .103 .055 .013
8.0 .106 .060 .017 .104 .058 .017 .105 .062 .019 .101 .054 .012
7.0 .103 .060 .019 .106 .058 .017 .103 .055 .014 .101 .053 .014
6.0 .110 .064 .023 .104 .059 .016 .100 .058 .016 .105 .055 .012
5.0 .102 .061 .019 .099 .059 .019 .106 .057 .016 .102 .054 .012
4.0 .098 .060 .021 .102 .060 .018 .101 .054 .016 .100 .052 .014
3.0 .103 .061 .021 .100 .056 .017 .104 .056 .016 .101 .054 .013
2.0 .101 .060 .023 .108 .065 .023 .102 .057 .017 .106 .057 .015
1.0 .099 .063 .024 .104 .062 .023 .110 .066 .022 .103 .059 .018
0.8 .099 .062 .025 .104 .061 .020 .107 .065 .022 .100 .054 .017
0.6 .106 .068 .028 .105 .064 .022 .107 .062 .021 .103 .057 .016
0.4 .095 .062 .029 .102 .064 .025 .101 .063 .024 .101 .060 .018
0.2 .095 .062 .030 .097 .064 .030 .103 .064 .026 .102 .062 .023
0.1 .082 .058 .029 .096 .063 .032 .100 .064 .028 .101 .065 .024

Table 2: Simulated sizes of the score test with unknown parameters (T2), d = 10
n = 50 n = 100 n = 200 n = 400

λ\α 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
10.0 .082 .042 .011 .089 .047 .012 .097 .051 .013 .098 .052 .012
9.0 .083 .044 .014 .092 .050 .013 .091 .052 .012 .097 .053 .012
8.0 .083 .044 .012 .097 .052 .014 .096 .050 .012 .100 .054 .012
7.0 .083 .043 .011 .087 .050 .014 .095 .051 .014 .090 .049 .013
6.0 .085 .047 .012 .092 .047 .013 .094 .051 .013 .093 .049 .012
5.0 .084 .046 .013 .091 .048 .014 .093 .052 .015 .095 .049 .012
4.0 .088 .044 .012 .092 .050 .015 .090 .047 .013 .099 .052 .014
3.0 .082 .044 .016 .087 .045 .012 .096 .053 .015 .095 .051 .012
2.0 .083 .045 .014 .091 .052 .016 .093 .052 .014 .094 .050 .012
1.0 .081 .049 .016 .093 .052 .017 .090 .050 .016 .100 .055 .014
0.8 .081 .048 .016 .090 .054 .019 .094 .054 .017 .093 .052 .015
0.6 .075 .043 .017 .081 .047 .016 .092 .054 .018 .092 .053 .016
0.4 .076 .044 .018 .080 .045 .017 .090 .049 .018 .095 .051 .017
0.2 .059 .036 .013 .073 .046 .016 .083 .052 .019 .096 .056 .021
0.1 .048 .029 .012 .067 .042 .018 .075 .047 .018 .084 .049 .019
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Table 3: Size-adjusted empirical power of the tests at α = 0.1
n = 50 n = 100 n = 200 n = 400

v T1 T2 R3 T1 T2 R3 T1 T2 R3 T1 T2 R3
d = 10,λ = 1
0 .105 .104 .105 .099 .100 .105 .099 .102 .096 .103 .098 .101
1 .264 .153 .110 .339 .184 .116 .473 .232 .124 .649 .300 .157
2 .444 .212 .138 .619 .277 .161 .817 .395 .217 .961 .555 .327
3 .626 .282 .174 .809 .386 .238 .958 .568 .362 .998 .778 .565
4 .760 .340 .217 .925 .504 .333 .992 .702 .511 1.00 .897 .768
5 .843 .407 .280 .968 .595 .425 .999 .809 .647 1.00 .963 .893
6 .901 .473 .338 .990 .685 .533 1.00 .878 .763 1.00 .986 .956
7 .942 .536 .396 .996 .744 .610 1.00 .930 .857 1.00 .996 .984
8 .965 .592 .459 .999 .805 .692 1.00 .961 .914 1.00 .999 .995
9 .978 .632 .511 .999 .847 .758 1.00 .977 .950 1.00 1.00 .998
10 .986 .675 .557 1.00 .884 .812 1.00 .985 .971 1.00 1.00 1.00
11 .992 .710 .607 1.00 .911 .852 1.00 .993 .981 1.00 1.00 1.00
12 .994 .743 .649 1.00 .933 .888 1.00 .994 .989 1.00 1.00 1.00
d = 4,λ = .25
.0 .100 .095 .103 .097 .098 .103 .100 .102 .098 .096 .102 .098
.1 .179 .135 .096 .217 .167 .106 .276 .212 .112 .356 .257 .110
.2 .273 .185 .114 .359 .249 .122 .497 .362 .141 .656 .486 .177
.3 .374 .242 .126 .497 .348 .154 .670 .490 .210 .863 .690 .294
.4 .444 .284 .153 .622 .439 .201 .803 .633 .303 .948 .826 .463
.5 .529 .339 .170 .718 .527 .262 .892 .735 .407 .985 .908 .631
.6 .601 .386 .206 .786 .590 .330 .939 .806 .507 .995 .956 .759
.7 .651 .415 .236 .840 .647 .382 .966 .855 .598 .999 .975 .843
.8 .695 .442 .255 .879 .687 .426 .982 .891 .655 .999 .986 .895
.9 .731 .462 .281 .904 .724 .473 .987 .920 .727 1.00 .991 .929
1.0 .769 .484 .298 .919 .746 .502 .991 .928 .754 1.00 .993 .954
1.1 .787 .492 .324 .935 .763 .537 .994 .941 .792 1.00 .996 .964
1.2 .804 .507 .337 .947 .772 .558 .996 .949 .821 1.00 .995 .970
d = 1,λ = 4
.00 .102 .097 .102 .098 .098 .101 .097 .098 .104 .103 .107 .102
.05 .202 .141 .109 .235 .167 .109 .307 .200 .105 .416 .259 .126
.10 .306 .193 .122 .410 .241 .134 .574 .348 .167 .767 .475 .241
.15 .426 .256 .155 .595 .341 .181 .780 .490 .266 .935 .669 .399
.20 .542 .306 .179 .720 .431 .245 .903 .619 .378 .987 .831 .594
.25 .642 .370 .232 .830 .528 .329 .957 .736 .515 .998 .917 .768
.30 .721 .427 .271 .891 .611 .412 .985 .822 .641 1.00 .962 .877
.35 .780 .474 .326 .938 .693 .509 .994 .884 .746 1.00 .987 .948
.40 .836 .530 .384 .961 .750 .579 .998 .930 .826 1.00 .994 .974
.45 .867 .577 .430 .979 .795 .654 .999 .953 .882 1.00 .997 .988
.50 .901 .616 .472 .988 .835 .705 1.00 .971 .926 1.00 .999 .996
.55 .925 .654 .516 .993 .866 .763 1.00 .977 .949 1.00 .999 .998
.60 .940 .679 .554 .995 .893 .806 1.00 .987 .967 1.00 .999 .999
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Table 4: Size-adjusted empirical power of the tests at α = 0.05
n = 50 n = 100 n = 200 n = 400

v T1 T2 R3 T1 T2 R3 T1 T2 R3 T1 T2 R3
d = 10,λ = 1
0 .052 .050 .051 .051 .052 .053 .051 .050 .048 .052 .049 .050
1 .167 .089 .060 .232 .112 .062 .332 .135 .065 .524 .202 .089
2 .335 .132 .074 .501 .187 .096 .724 .282 .133 .921 .420 .210
3 .514 .189 .107 .724 .283 .154 .924 .440 .243 .996 .660 .421
4 .664 .245 .142 .871 .386 .229 .984 .597 .383 1.00 .831 .647
5 .778 .306 .185 .942 .477 .307 .998 .719 .535 1.00 .928 .819
6 .857 .374 .245 .977 .577 .411 1.00 .817 .666 1.00 .970 .918
7 .901 .418 .288 .991 .664 .506 1.00 .890 .777 1.00 .988 .968
8 .937 .487 .353 .997 .732 .592 1.00 .931 .860 1.00 .996 .987
9 .960 .532 .406 .999 .782 .664 1.00 .954 .909 1.00 .998 .995
10 .975 .586 .456 .999 .824 .731 1.00 .976 .946 1.00 1.00 .999
11 .983 .623 .505 1.00 .865 .780 1.00 .985 .969 1.00 1.00 .999
12 .989 .661 .553 1.00 .894 .832 1.00 .991 .981 1.00 1.00 1.00
d = 4,λ = .25
.0 .046 .049 .055 .051 .052 .049 .051 .047 .050 .048 .050 .054
.1 .105 .080 .051 .134 .097 .047 .177 .124 .049 .251 .172 .052
.2 .181 .116 .057 .269 .172 .054 .376 .244 .064 .548 .376 .098
.3 .275 .162 .065 .402 .253 .077 .577 .387 .120 .793 .586 .182
.4 .362 .207 .078 .530 .331 .112 .730 .526 .191 .921 .761 .335
.5 .446 .259 .101 .643 .422 .161 .843 .639 .279 .971 .866 .491
.6 .510 .293 .116 .716 .483 .208 .906 .724 .373 .991 .926 .639
.7 .570 .322 .140 .781 .550 .256 .944 .795 .465 .996 .960 .749
.8 .619 .344 .159 .830 .595 .295 .968 .839 .537 .999 .975 .829
.9 .657 .362 .177 .860 .614 .333 .980 .869 .595 1.00 .983 .868
1.0 .686 .365 .186 .886 .643 .368 .986 .891 .654 .999 .988 .908
1.1 .725 .375 .201 .909 .668 .397 .988 .897 .685 1.00 .989 .930
1.2 .749 .383 .220 .923 .691 .424 .992 .909 .716 1.00 .991 .947
d = 1,λ = 4
.00 .047 .051 .051 .048 .052 .054 .053 .049 .048 .052 .050 .051
.05 .123 .078 .051 .152 .096 .056 .202 .111 .057 .300 .163 .067
.10 .210 .112 .057 .292 .159 .070 .439 .221 .091 .664 .347 .133
.15 .329 .162 .077 .468 .240 .105 .685 .369 .155 .897 .561 .277
.20 .439 .207 .106 .618 .323 .156 .845 .509 .255 .974 .732 .440
.25 .547 .270 .139 .744 .419 .219 .928 .633 .379 .995 .857 .643
.30 .623 .320 .180 .838 .505 .298 .972 .747 .516 1.00 .933 .796
.35 .703 .377 .222 .896 .581 .381 .989 .821 .632 1.00 .972 .893
.40 .771 .418 .267 .936 .654 .463 .997 .878 .739 1.00 .988 .950
.45 .819 .473 .314 .958 .713 .533 .999 .920 .816 1.00 .994 .975
.50 .857 .519 .357 .977 .766 .612 .999 .947 .872 1.00 .998 .990
.55 .892 .557 .411 .984 .800 .663 1.00 .964 .915 1.00 .999 .996
.60 .914 .588 .449 .991 .831 .716 1.00 .974 .934 1.00 .999 .999
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Table 5: Size-adjusted empirical power of the tests at α = 0.01
n = 50 n = 100 n = 200 n = 400

v T1 T2 R3 T1 T2 R3 T1 T2 R3 T1 T2 R3
d = 10,λ = 1
0 .010 .009 .011 .011 .009 .010 .009 .008 .010 .009 .010 .012
1 .059 .024 .012 .094 .034 .009 .148 .044 .011 .283 .067 .012
2 .166 .046 .015 .287 .068 .014 .516 .119 .020 .801 .217 .042
3 .319 .077 .021 .537 .126 .029 .819 .236 .057 .978 .432 .145
4 .473 .114 .037 .740 .202 .055 .952 .377 .127 .999 .656 .312
5 .619 .159 .055 .867 .284 .099 .991 .514 .215 1.00 .813 .523
6 .714 .205 .080 .936 .376 .151 .998 .643 .347 1.00 .910 .710
7 .804 .242 .103 .972 .466 .216 1.00 .753 .483 1.00 .964 .850
8 .861 .302 .145 .987 .541 .291 1.00 .826 .596 1.00 .984 .929
9 .910 .357 .180 .994 .618 .364 1.00 .890 .711 1.00 .994 .968
10 .938 .401 .219 .998 .675 .436 1.00 .922 .782 1.00 .998 .987
11 .955 .445 .259 .999 .734 .513 1.00 .952 .851 1.00 .999 .995
12 .968 .496 .298 1.00 .779 .570 1.00 .967 .898 1.00 1.00 .998
d = 4,λ = .25
.0 .010 .009 .011 .009 .009 .010 .009 .009 .009 .011 .011 .009
.1 .037 .018 .008 .047 .024 .009 .069 .041 .008 .107 .066 .009
.2 .087 .034 .008 .132 .063 .007 .213 .114 .006 .362 .193 .009
.3 .151 .062 .007 .242 .118 .008 .393 .223 .013 .644 .404 .026
.4 .223 .087 .006 .377 .188 .012 .575 .346 .029 .839 .590 .077
.5 .305 .121 .010 .478 .253 .022 .732 .476 .058 .943 .743 .161
.6 .378 .144 .009 .582 .314 .032 .830 .577 .100 .972 .834 .258
.7 .446 .156 .012 .666 .367 .039 .881 .633 .129 .990 .893 .373
.8 .502 .173 .011 .725 .398 .052 .928 .702 .164 .996 .930 .468
.9 .538 .179 .011 .777 .421 .059 .952 .739 .209 .998 .948 .543
1.0 .573 .170 .014 .810 .450 .069 .966 .764 .237 .999 .963 .611
1.1 .603 .178 .017 .833 .475 .072 .976 .795 .274 1.00 .971 .664
1.2 .626 .183 .018 .865 .478 .078 .983 .805 .290 1.00 .975 .708
d = 1,λ = 4
.00 .009 .010 .011 .012 .010 .011 .011 .011 .011 .010 .010 .009
.05 .040 .022 .008 .051 .028 .008 .074 .033 .008 .128 .056 .010
.10 .092 .039 .009 .148 .057 .011 .237 .087 .010 .444 .166 .015
.15 .165 .061 .012 .280 .101 .014 .471 .178 .018 .763 .337 .045
.20 .256 .093 .017 .440 .158 .026 .698 .300 .051 .931 .539 .125
.25 .369 .133 .032 .585 .245 .051 .837 .422 .099 .985 .711 .267
.30 .452 .171 .039 .704 .315 .087 .924 .555 .181 .997 .833 .454
.35 .549 .223 .063 .803 .402 .140 .965 .653 .283 1.00 .918 .639
.40 .626 .259 .083 .862 .466 .183 .988 .753 .398 1.00 .960 .775
.45 .689 .294 .102 .913 .547 .248 .995 .818 .501 1.00 .980 .870
.50 .755 .344 .128 .941 .596 .296 .998 .869 .598 1.00 .990 .930
.55 .806 .386 .155 .961 .649 .359 .999 .908 .684 1.00 .996 .962
.60 .834 .404 .170 .975 .692 .404 .999 .930 .742 1.00 .996 .980
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Table 6: Simulated sizes of score tests for IG mixture, δ ∼ N(10, v/λ)

α = 0.1 α = 0.05 α = 0.01
v0 λ T3(v0) T4(v0) T5(v0) T3(v0) T4(v0) T5(v0) T3(v0) T4(v0) T5(v0)

n = 50
0.01 10 0.146 0.144 0.144 0.088 0.086 0.086 0.025 0.024 0.025
0.01 8 0.147 0.143 0.149 0.087 0.086 0.091 0.025 0.023 0.025
0.01 6 0.141 0.142 0.142 0.083 0.079 0.085 0.021 0.022 0.025
0.01 3 0.138 0.135 0.134 0.081 0.077 0.077 0.019 0.020 0.022
0.01 1 0.116 0.114 0.111 0.059 0.061 0.058 0.011 0.014 0.013
0.10 10 0.143 0.150 0.166 0.088 0.091 0.107 0.026 0.027 0.036
0.10 8 0.141 0.142 0.167 0.085 0.087 0.106 0.025 0.024 0.035
0.10 6 0.144 0.142 0.161 0.087 0.083 0.097 0.022 0.021 0.029
0.10 3 0.129 0.128 0.142 0.074 0.070 0.082 0.021 0.021 0.024
0.10 1 0.111 0.119 0.120 0.064 0.062 0.067 0.014 0.015 0.017
1.00 10 0.140 0.146 0.255 0.083 0.089 0.192 0.024 0.027 0.099
1.00 8 0.142 0.146 0.243 0.087 0.082 0.178 0.024 0.025 0.095
1.00 6 0.141 0.141 0.239 0.083 0.085 0.174 0.025 0.024 0.087
1.00 3 0.134 0.133 0.215 0.076 0.075 0.151 0.020 0.020 0.068
1.00 1 0.114 0.110 0.176 0.063 0.061 0.110 0.013 0.014 0.044
n = 100
0.01 10 0.122 0.125 0.124 0.069 0.068 0.067 0.017 0.017 0.017
0.01 8 0.123 0.126 0.125 0.065 0.067 0.069 0.013 0.015 0.017
0.01 6 0.119 0.119 0.124 0.065 0.064 0.065 0.016 0.015 0.014
0.01 3 0.119 0.110 0.113 0.064 0.061 0.059 0.015 0.014 0.012
0.01 1 0.092 0.096 0.102 0.045 0.047 0.052 0.009 0.008 0.008
0.10 10 0.127 0.123 0.139 0.070 0.069 0.082 0.017 0.017 0.025
0.10 8 0.125 0.123 0.139 0.067 0.068 0.084 0.016 0.018 0.023
0.10 6 0.119 0.112 0.123 0.064 0.060 0.070 0.016 0.015 0.019
0.10 3 0.112 0.111 0.116 0.060 0.060 0.066 0.012 0.013 0.015
0.10 1 0.094 0.097 0.100 0.043 0.045 0.051 0.007 0.008 0.010
1.00 10 0.125 0.122 0.195 0.071 0.068 0.141 0.017 0.017 0.064
1.00 8 0.126 0.128 0.193 0.068 0.070 0.130 0.015 0.017 0.063
1.00 6 0.120 0.124 0.194 0.066 0.070 0.135 0.014 0.018 0.060
1.00 3 0.112 0.114 0.174 0.059 0.060 0.119 0.012 0.015 0.047
1.00 1 0.105 0.101 0.147 0.050 0.052 0.089 0.008 0.010 0.029
n = 200
0.01 10 0.115 0.109 0.114 0.060 0.059 0.060 0.013 0.013 0.013
0.01 8 0.110 0.107 0.113 0.055 0.057 0.057 0.012 0.011 0.013
0.01 6 0.108 0.105 0.112 0.057 0.053 0.057 0.011 0.012 0.010
0.01 3 0.105 0.107 0.103 0.053 0.052 0.051 0.009 0.011 0.010
0.01 1 0.093 0.092 0.097 0.044 0.041 0.046 0.007 0.006 0.007
0.10 10 0.111 0.115 0.124 0.057 0.060 0.067 0.014 0.013 0.020
0.10 8 0.112 0.107 0.120 0.057 0.055 0.066 0.014 0.012 0.018
0.10 6 0.111 0.105 0.118 0.056 0.053 0.063 0.013 0.011 0.017
0.10 3 0.106 0.099 0.108 0.052 0.050 0.059 0.010 0.011 0.013
0.10 1 0.093 0.094 0.095 0.043 0.043 0.047 0.007 0.006 0.007
1.00 10 0.113 0.110 0.169 0.059 0.058 0.112 0.014 0.012 0.046
1.00 8 0.110 0.114 0.157 0.057 0.059 0.100 0.014 0.014 0.042
1.00 6 0.108 0.108 0.160 0.058 0.053 0.105 0.012 0.009 0.042
1.00 3 0.102 0.101 0.143 0.048 0.050 0.091 0.011 0.010 0.032
1.00 1 0.094 0.089 0.127 0.044 0.041 0.073 0.007 0.007 0.022
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