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Summary The robustness of the LM tests for spatial error dependence of Burridge
(1980) and Born and Breitung (2011) for the linear regression model, and Anselin (1988)
and Debarsy and Ertur (2010) for the panel regression model with random or fixed
effects are examined. While all tests are asymptotically robust against distributional
misspecification, their finite sample behavior may be sensitive to the spatial layout. To
overcome this shortcoming, standardized LM tests are suggested. Monte Carlo results
show that the new tests possess good finite sample properties. An important observation
made throughout this study is that the LM tests for spatial dependence need to be both
mean- and variance-adjusted for good finite sample performance to be achieved. The
former is, however, often neglected in the literature.
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1. INTRODUCTION

The LM tests for spatial error correlation in the linear regression model (Burridge, 1980;
Born and Breitung, 2011) and the panel regression model (Anselin, 1988; Baltagi et al.,
2003; Debarsy and Ertur, 2010) are developed under the assumption that the model
errors are normally distributed. This leads to a natural question on how robust these
tests are against misspecification of the error distribution. While these tests are robust
asymptotically against distributional misspecification, as can be inferred from the results
of Kelejian and Prucha (2001) for the Moran’s I test in the linear regression model, and
proved in this article for the panel regression model, their finite sample behavior may not
be so; it can also be sensitive to the spatial layout. The main reason, as shown in this
paper, is the lack of standardization of these tests, i.e., subtracting the mean and dividing
by the standard deviation.1 In particular, when each spatial unit has many neighbors
(the number of neighbors grows with the number of spatial units), the mean of these tests
can be far below zero even when the sample size is fairly large (for e.g., 1000), causing
severe size distortion of these tests.

Standardized LM (SLM) tests are recommended, which correct both the mean and

1Honda (1985) shows that the LM test for random individual effects in the panel data regression model
is uniformly most powerful and is robust against non-normality. Moulton and Randolph (1989) show
that this test can perform poorly when the number of regressors is large or the interclass correlation of
some of the regressors is high. They suggest a standardized LM test by centering and scaling Honda’s
LM test. They show that the standardized LM test performs better in small samples when asymptotic
critical values from the normal distribution are used. However these papers do not deal with spatial
correlation.
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2 Baltagi-Yang

variance of the existing LM tests under more relaxed assumptions on the error dis-
tributions. It is shown that these LM tests are not only robust against distributional
misspecification, but are also quite robust against changes in the spatial layout. Monte
Carlo simulations show that the SLM tests have excellent finite sample properties and
significantly outperform their non-standardized counterparts. The Monte Carlo simula-
tions also show that the SLM tests are comparable to the bootstrap counterparts (when
they are available) in terms of size. Once size-adjusted, the LM and SLM tests have
similar power.

It is well known in the statistics and econometrics literature that standardizing an LM
test improves its performance especially if asymptotic critical values are used. Moulton
and Randolph (1989) emphasized this for the panel data regression model with random
individual effects. See also Honda (1991) and Baltagi et al. (1992). Koenker (1981) showed
that the standardization (or studentization in his terminology) leads to a robustified LM
test for heteroskedasticity. This point, however, is not emphasized in the spatial econo-
metrics literature, except for Anselin (1988), Kelejian and Prucha (2001), and Florax and
de Graaff (2004), where the authors mainly stressed the variance correction but not the
mean correction. Recently, Robinson (2008) proposed a general chi-squared test for non-
spherical disturbances, including spatial error dependence, in a linear regression model.
He pointed out that this test has an LM interpretation and may not provide a satisfactory
approximation in small samples. He then introduced a couple of modifications directly
on the chi-squared statistic. Our approach of standardization is more in line with that
of Koenker (1981). It works on the ‘standard normal’ version of an LM test, and thus is
simpler. More importantly, our approach allows the errors to be nonnormal and is not
restricted to linear regression models of non-spherical disturbances.

Our Monte Carlo simulation shows that the mean-correction as well as variance cor-
rection are both essential to attain good size and power. Section 2 deals with the tests for
spatial error dependence in a linear regression model. Section 3 deals with the tests for
spatial error dependence in a panel data regression model with random or fixed space-
specific effects. Section 4 presents the Monte Carlo results, while Section 5 concludes the
paper. Proofs of all results are given in the Appendix.

2. TESTS FOR SPATIAL ERROR DEPENDENCE IN A LINEAR REGRESSION
MODEL

This section studies the LM-type tests for zero spatial error dependence (SED) in a
linear regression model. Moran’s (1950) I tests, Burridge’s (1980) LM test based on
the expected information, and Born and Breitung’s (2011) LM test based on the outer
product of gradients (OPG) are considered. The standardized versions of these two LM
tests are proposed for improving their finite sample performance. A bootstrap version
of the Burridge’s LM test, discussed in Lin et al. (2007), is used as a benchmark for
comparisons.

2.1. Moran’s I tests

The original form of Moran’s I test (Moran, 1950) is based a sample of observations
Y = {Y1, Y2, · · · , Yn}′ on a variable of interest Y , which takes the form

I =

∑

i

∑

j wij(Yi − Ȳ )(Yj − Ȳ )
∑

i(Yi − Ȳ )2
, (2.1)
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where wij’s are the elements of an N × N spatial weight matrix W with wii = 0 and
∑N

j=1 wij = 1, i = 1, · · · , N , and Ȳ is the average of the Yi’s. If the observations are
normal, then the null distribution of Moran’s I test statistic is shown to be asymptotic
normal. Cliff and Ord (1972) extended Moran’s I test to the case of a spatial linear
regression model:

Y = Xβ + u (2.2)

where Y is an N×1 vector of observations on the response variable, X is an N ×k matrix
containing the values of explanatory (exogenous) variables, and u is an n × 1 vector of
disturbances with mean zero and variance σ2

u. The extended Moran’s I test takes the
form

I =
ũ′Wũ

ũ′ũ
, (2.3)

where ũ is a vector of OLS residuals obtained from regressing Y on X. If u is normal,
then the distribution of I under the null hypothesis of no spatial error dependence is
asymptotically normal with mean and variance given by:

E(I) =
1

N − k
tr(MW ),

Var(I) =
tr(MWMW ′) + tr((MW )2) − 2

N−k
[tr(MW )]2

(N − k)(N − k + 2)
.

Here M = IN −X(X′X)−1X′ and IN is an N -dimensional identity matrix. In empirical

applications, the test should be carried out based on I∗ = (I−EI)/Var
1

2 (I), and referred
to the standard normal distribution (see Anselin and Bera, 1998. However, most of the

literature suggested or hinted at the use of I◦ = I/Var
1

2 (I); see, e.g., Anselin (1988),
Kelejian and Prucha (2001) and Florax and de Graaff (2004). The reason may be that the

mean correction is asymptotically negligible or may be that I◦ = I/Var
1

2 (I) corresponds
directly to the Burridge (1980) LM test described below.

2.2. LM and standardized LM tests based on expected information

Consider the case where u in (2.2) follows either a spatial autoregressive (SAR) process
u = λWu + ε or a spatial moving average (SMA) process u = λWε + ε, where W is
defined above, λ is the spatial parameter, and ε is a vector of independent and identically
distributed (iid) normal innovations with mean zero and variance σ2

ε. The hypothesis of
no spatial error correlation can be expressed explicitly as H0 : λ = 0 vs Ha : λ 6= 0.
For this model specification, Burridge (1980) derived an LM test for H0 based on the
expected information (EI):

LMEI =
N√
S0

ũ′Wũ

ũ′ũ
, (2.4)

where S0 = tr(W ′W + W 2). Under the null hypothesis of no spatial error correlation,

LMEI

D−→ N(0, 1). LMEI resembles I◦ except for a scale factor. Our Monte Carlo simula-
tions show that it is important to standardize it if one is using asymptotic critical values,
especially for certain spatial layouts. Some discussion on this is given after Theorem 2.1.

The three test statistics (I∗, I◦ and LMEI) are derived under the assumption that the
errors are normally distributed. Theorem 2.1, given below, shows that all three tests
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behave well asymptotically under non-normality. But how do they behave in finite sam-
ples? We first present a modified version of these tests allowing the error distributions
to be non-normal, and then give some discussion answering why the finite sample per-
formance of I◦ and LMEI can be poor. The following regularity conditions are necessary
for studying the asymptotic behavior of these test statistics.

Assumption 2.1. The innovations {εi} are iid with mean zero, variance σ2
ε , and excess

kurtosis κε. Also, the moment E|εi|4+η exists for some η > 0.

Assumption 2.2. The elements {wij} of W are at most of order h−1
N uniformly for all

i, j, with the rate sequence {hN}, bounded or divergent, satisfying hN/N → 0 as N goes
to infinity. The N × N matrices {W} are uniformly bounded in both row and column
sums with wii = 0 and

∑

j wij = 1 for all i.

Assumption 2.3. The elements of the N × k matrix X are uniformly bounded for all
N , and limN→∞

1
N

X′X exists and is nonsingular.

Assumptions 2.1-2.3 are essentially the same as those in Yang (2010) for a spatial
error components (SEC) model where the disturbance vector u has two independent
components with the first being spatially correlated, i.e., u = Wv + ε, in contrast to the
SED model considered in this paper where u = λWu + ε or u = λWε + ε.

Theorem 2.1. Under Assumptions 2.1-2.3, the standardized LMEI test for testing H0 :
λ = 0 vs Ha : λ 6= 0 (or λ < 0, or λ > 0) takes the form

SLMEI =
Nũ′(W − S1IN )ũ

(κ̃εS2 + S3)
1

2 ũ′ũ
, (2.5)

where S1 = 1
N−k

tr(WM), S2 =
∑N

i=1 a2
ii, and S3 = tr(AA′ + A2), A = MWM − S1M ,

aii are the diagonal elements of A, and κ̃ε is the excess sample kurtosis of ũ. Under H0,

we have (i) SLMEI
D−→ N(0, 1); and (ii) the four test statistics, I∗, I◦, LMEI, and SLMEI

are asymptotically equivalent.

To help in understanding the theory, we outline the key steps leading to the standard-
ization given in (2.5). First note that ũ′Wũ, the key quantity appearing in the numerators
of (2.3)-(2.5), is not centered because E(ũ′Wũ) = σ2

εtr(WM) 6= 0. This motivates us to
consider ũ′Wũ − σ2

εtr(WM), or its feasible version ũ′Wũ − 1
n−k

(ũ′ũ)tr(WM) = u′Au.

Upon finding the variance of u′Au and replacing σ2
ε in the variance expression by its

MLE, we obtain (2.5). Some remarks follow.
The SLM given in Theorem 2.1 has an identical form as the SLM for the SEC model

given in Yang (2010). The difference is that in Yang (2010) W is replaced by WW ′. As
a result, LMEI, and SLMEI are asymptotically equivalent due to the fact that W has zero
diagonal elements. In contrast, the LM and SLM for the SEC model are not asymptot-
ically equivalent in general due to the fact that the diagonal elements of WW ′ are not
zero. See the proofs for the two sets of results for details.

It is important to note that the standardization of Moran’s I in earlier work based
on ũ′Wũ/ũ′ũ and its mean and variance are derived under the assumption that u ∼
N(0, σ2

εIN ). Robinson’s (2008) approach works on LM2
EI

or (ũ′Wũ/ũ′ũ)2. Again, the

c© Royal Economic Society 2012
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SLM Tests for Spatial Dependence 5

derivations of the mean and variance depend on the normality assumption. Our approach
works on the quadratic form u′Au with its mean and variance readily available as long
as the first four moments of the elements of u exist. Thus, our approach is simpler and
does not depend on the normality assumption. It is applicable to other models with more
complicated structure.

Although both Moran’s I and the LMEI test statistics are derived under the assump-
tion that the innovations are normally distributed, Theorem 2.1 shows that they are
asymptotically equivalent to the SLM test derived under relaxed conditions on the error
distribution. This means that all four tests are robust against distributional misspecifi-
cation when the sample size is large. But will the four tests behave similarly under finite
samples? The following discussion points out that their finite sample performance may
be different.

The major difference between LMEI and SLMEI lies in the mean correction of the statistic
ũ′Wũ/ũ′ũ. This correction may quickly become negligible as the sample size increases
under certain spatial layouts, but not necessarily under other spatial layouts. From (A-1)
in the appendix, we see that this mean correction factor is of the magnitude

NS1

(κ̃εS2 + S3)
1

2

= Op((hN/N)
1

2 ),

which shows that the magnitude of the mean correction depends on the ratio (hN/N)
1

2 .

For example, when hN = N0.8, (hN/N)
1

2 = N−0.1. Thus, if N = 20, 100, and 1000,
N−0.1 = 0.74, 0.63, and 0.50. This shows that the means of LMEI and I◦ can differ
from the means of LM∗

EI
and I∗ by 0.74 when N = 20, 0.63 when N = 100 and 0.50

when N = 1000. Note that situations leading to hN = N0.8 may be the spatial layouts
constructed under large group interactions, where the group sizes are large and the
number of groups is small.2 Our results show that in this situation, the non-standardized
LM test or Moran’s I test without the mean correction may be misleading. Monte Carlo
simulations presented in Section 4 confirm these findings.

2.3. LM and standardized LM tests based on outer product of gradients

Recently, Born and Breitung (2011) derived an outer product of gradients (OPG) variant
of Burridge’s LM test based on an elegant idea: decomposing the score into a sum of
uncorrelated components making use of the fact that the diagonal elements of the W
matrix are zero, so that the variance of the score can be estimated by the OPG method.
The test can be expressed simply as follows:

LMOPG =
ũ′Wũ

√

(ũ ⊙ ũ)′(ξ̃ ⊙ ξ̃)
, (2.6)

where ⊙ denotes the Hadamard product, ξ̃ = (Wl + W ′
u)ũ, Wl and Wu are the lower

and upper triangular matrices such that Wl + Wu = W , and LMOPG|H0

D−→ N(0, 1). An
important feature of this test is that it is robust against heteroskedasticity of unknown
form. However, the test statistic is not centered and thus is expected to suffer from the
same problem as Burridge’s LM test even when the innovations are homoskedastic.

2See Lee (2007) for a detailed discussion of spatial models with group interactions.
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6 Baltagi-Yang

Combining the idea leading to SLMEI and the idea leading to LMOPG, we obtain a stan-
dardized OPG-based LM test. Decompose the matrix A defined in Theorem 2.1 as
A = Al+Au+Ad, where Ad = diag(A), Al = tril(A)−Ad, and Au = triu(A)−Ad, with
diag(A), tril(A) and triu(A) denoting, respectively, the diagonal, lower triangular, and
upper triangular matrices of a square matrix A.

Theorem 2.2. Under Assumptions 2.1-2.3, the standardized LMOPG test for testing H0 :
λ = 0 vs Ha : λ 6= 0 (or λ < 0, or λ > 0) takes the form

SLMOPG =
ũ′(W − S1IN )ũ

√

(ũ ⊙ ũ)′[ζ̃ ⊙ ζ̃ + (Adũ) ⊙ (Adũ)]
, (2.7)

where ζ̃ = (Al + A′
u)ũ. Under H0, (i) SLMOPG

D−→ N(0, 1), and (ii) SLMOPG ∼ LMOPG.

Like LMOPG, the SLMOPG test statistic is also asymptotically robust against heteroskedas-
ticity. However, the finite sample mean correction is derived under the assumption that
the errors are homoskedastic. Monte Carlo results presented in Section 4 show that SLMOPG
improves LMOPG significantly in terms of the finite sample null distribution, and that it
is generally comparable, in terms of the tail probabilities, to the bootstrap LM test
suggested below.

Tests based on bootstrap p-values. We end this section by describing the bootstrap
LM test that serves as the benchmark for the finite sample performance of our SLM tests.
Essentially, each of the tests presented above has a bootstrap counterpart in the spirit
of Lin et al. (2007). One of the simplest is that based on LMEI , denoted as BLMEI . Note

that LMEI = N√
S0

u′MWMu
u′Mu

. Our suggested bootstrap procedure is as follows:

(a) Draw a bootstrap sample ũb from the OLS residuals ũ;

(b) Compute the bootstrap value of LMEI as BLMb
EI

= N√
S0

ũb′MWMũb

ũb′Mũb ;

(c) Repeat (a)-(b) B times to give {BLMb
EI
}B

b=1, and thus the bootstrap p-value.

The suggested bootstrap procedure is simpler than that of Lin et al. (2007) in that each
bootstrap value of the tests statistic is based on a bootstrap sample of the OLS residuals,
and thus the re-estimation of the spatial parameter in each bootstrap sample is avoided.3

3. TESTS FOR SPATIAL ERROR DEPENDENCE IN A PANEL LINEAR
REGRESSION MODEL

This section studies the LM and standardized LM tests for zero spatial error depen-
dence (SED) in a panel linear regression with random or fixed effects. When repeated
observations are made on the same set of N spatial units over time, Model (2.2) becomes

Yt = Xtβ + ut, t = 1, · · · , T, (3.1)

resulting in a panel data regression model, where {Yt, Xt} denote the data collected at
the tth time period. A defining feature of a panel data model is that the error vector ut

3We thank an anonymous referee for suggesting the bootstrap test. By noting that LMEI|H0
is free of

the parameters and is asymptotically robust against error distribution, the validity of the suggested
bootstrap procedure can be inferred from the work of Hall and Horowitz (1996).
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SLM Tests for Spatial Dependence 7

is allowed to possess a general structure of the form

uit = µi + εit, i = 1, · · · , N, t = 1, · · · , T, (3.2)

where µi denotes the unobservable space-specific effect, due to aspects of regional struc-
ture, firm’s specific feature, etc. Spatial units may be dependent. To allow for such a
possibility, Anselin (1988) introduced a SAR process into the disturbance vector εt =
{ε1t, · · · , εNt}′,

εt = λWεt + vt, t = 1, · · · , T, (3.3)

where the spatial weight matrix W is defined similarly to that in Model (2.2), and vt is
an N × 1 vector of iid remainder disturbances with mean zero and variance σ2

v.
We are interested in testing the hypothesis H0 : λ = 0. We consider the scenario where

the time dimension T is small and the ‘space’ dimension N is large. This is the typical
feature for many micro-level panel data sets. The space-specific effects µi can be random
or fixed. As T is small, the time-specific effects can be directly built into the model.

3.1. Panel linear regression with random effects

Let B = IN −λW . Stacking the vectors (Yt, ut, vt) and the matrix Xt, the model can be
written in matrix form:

Y = Xβ + u, u = (ιT ⊗ IN )µ + (IT ⊗ B−1)v, (3.4)

where ιm represents an m × 1 vector of ones, Im represents an m × m identity matrix.
Assuming (i) the elements of µ are iid with mean zero and variance σ2

µ, (ii) the elements
of v are iid with mean zero and variance σ2

v, and (iii) µ and v are independent. The log-
likelihood function, assuming µ and v are both normally distributed, is given by:

ℓ(β, σ2
v, σ2

µ, λ) = −NT

2
log(2πσ2

v) − 1

2
log |Σ| − 1

2σ2
v

u′Σ−1u, (3.5)

where Σ = 1
σ2

v
E(uu′) = φ(JT ⊗ IN )+ IT ⊗ (B′B)−1 , Σ−1 = J̄T ⊗ (TφIN +(B′B)−1)−1 +

ET ⊗ (B′B), φ = σ2
µ/σ2

v, JT = ιT ι′T , J̄T = 1
T

JT , and ET = IT − J̄T . See Anselin (1988)
and Baltagi et al. (2003) for details. Maximizing (3.3) gives the maximum likelihood esti-
mator (MLE) of the model parameters if the error components are normally distributed,
otherwise it gives a quasi-maximum likelihood estimator (QMLE).

Anselin (1988, p. 155) presents an LM test of H0 : λ = 0 for Model (3.4) in the presence
of random space-specific effects, which can be written in the form

LMRE =
ũ′[ρ̃2(J̄T ⊗ W ) + ET ⊗ W ]ũ

σ̃2
v[(T − 1 + ρ̃2)S0 ]

1

2

, (3.6)

where S0 = tr(W ′W )+W 2), ρ̃ and σ̃2
v are the constrained QMLEs of ρ = σ2

v/(Tσ2
µ +σ2

v)
and σ2

v under H0, and ũ is the vector of constrained QMLE residuals.4

A nice feature of the LM test is that it requires only the estimates of the model under

4Baltagi et al. (2003) considered the joint, marginal and conditional LM tests for λ and/or σ2
µ, which

includes (3.6) as a special case, and presented Monte Carlo results under spatial layouts with a fixed
number of neighbors. Apparently, the LM test given in (3.6) does not fit into the framework of Robinson
(2008), but it does if the test concerns H0 : λ = 0, σµ = 0. We note that our approach is applicable to
all scenarios similar to (3.6), i.e., testing spatial effect allowing other type of effects (such as random
effects, heteroskedasticity, etc.) to exist in the model.

c© Royal Economic Society 2012
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8 Baltagi-Yang

H0. However, even under H0, the constrained QMLE of ρ (or φ) does not posses an
explicit expression, meaning that ρ̃ has to be obtained via numerical optimization. In
fact, under H0, the partially maximized log-likelihood (with respect to β and σ2

v) is
given by:

ℓmax(ρ) = constant − NT

2
log σ̃2

v(ρ) +
N

2
logρ, (3.7)

where σ̃2
v(ρ) = 1

NT
ũ′(ρ)Σ−1

0 ũ(ρ), ũ(ρ) = Y − Xβ̃(ρ), β̃(ρ) = (X′Σ−1
0 X)−1X′Σ−1

0 Y , and

Σ−1
0 = Σ−1|λ=0 = ρJ̄T ⊗ IN + ET ⊗ IN . Maximizing (3.7) gives the constrained QMLE

(under H0) ρ̃ of ρ, which in turn gives the constrained QMLEs β̃ ≡ β̃(ρ̃), σ̃2
v ≡ σ̃2

v(ρ̃),
Σ̃−1

0 ≡ ρ̃J̄T ⊗ IN + ET ⊗ IN , and ũ ≡ ũ(ρ̃), for β, σ2
v, Σ−1

0 and u(ρ), respectively.
Similar to the LM test in the linear regression model, the numerator of LMRE given

in (3.6) is again a quadratic form in the disturbance vector u, but now u contains two
independent components. The large sample mean of this quadratic form is zero, but its
finite sample mean is not necessarily zero. This may distort the finite sample distribution
of the test statistic, in particular the tail probability. We now present a standardized
version of the LMRE test, which corrects both the mean and the variance and has a better
finite sample performance in the situation where each spatial unit has ‘many’ neighbors.
Lemma A.3 given in the Appendix is essential in deriving the modified test statistics.
Some basic regularity conditions are listed below.

Assumption 3.1. The random effects {µi} are iid with mean zero, variance σ2
µ, and

excess kurtosis κµ. The idiosyncratic errors {vit} are iid with mean zero, variance σ2
v, and

excess kurtosis κv. Also, the moments E|µi|4+η1 and E|vit|4+η2 exist for some η1, η2 > 0.

Assumption 3.2. The elements {wij} of W are at most of order h−1
N uniformly for all

i, j, with the rate sequence {hN}, bounded or divergent, satisfying hN/N → 0 as N goes
to infinity. The N × N matrices {W} are uniformly bounded in both row and column
sums with wii = 0 and

∑

j wij = 1 for all i.

Assumption 3.3. The elements of the NT × k matrix X are uniformly bounded for all
N and limN→∞

1
N

X′X exists and is nonsingular.

Now, define A(ρ) = ρ2(J̄T ⊗ W ) + ET ⊗ W , M(ρ) = INT − X(X′Σ−1
0 X)−1X′Σ−1

0 ,
C(ρ) = M ′(ρ)[A(ρ) − a0(ρ)Σ−1

0 ]M(ρ), and a0(ρ) = 1
NT−k

tr[Σ0M
′(ρ)A(ρ)M(ρ)]. Let

diagv(A) be a column vector formed by the diagonal elements of a square matrix A. We
have the following theorem.

Theorem 3.1. Assume that the constrained QMLE ρ̃ under H0 is a consistent estimator
of ρ. Under Assumptions 3.1-3.3, for testing H0; λ = 0, the standardized LM test which
corrects both the mean and variance takes the form:

SLMRE =
ũ′(Ã − ã0Σ̃

−1
0 )ũ

[φ̃2κ̃µã′
1ã1 + κ̃vã′

2ã2 + tr(Σ̃(C̃ ′ + C̃)Σ̃C̃)]
1

2 σ̃2
v

, (3.8)

where Ã = A(ρ̃), C̃ = C(ρ̃), ã0 = a0(ρ̃), κ̃µ is the sample excess kurtosis of µ̃ =
(J̄T ⊗ IN )ũ, κ̃v is the sample excess kurtosis of ṽ = ũ − (ι ⊗ IN )µ̃, ã1 = diagv[(ι′T ⊗
IN )C̃(ιT ⊗ IN )], and ã2 = diagv(C̃). Under H0, we have (i) SLMRE

D−→ N(0, 1), and (ii)
SLMRE ∼ LMRE.

c© Royal Economic Society 2012
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Similar to the results of Theorem 2.1, the results of Theorem 3.1 show that the mean
correction factor for the standardized LM test is also of the order Op((hN/N)

1

2 ). Thus,
the LMRE test can have large mean bias when hN is large.5

3.2. Panel linear regression with fixed effects

When the space-specific effects {µi} are treated as fixed, the incidental parameters prob-
lem occurs. The standard practice is to remove these fixed effects by some kind of trans-
formation. Recently, Lee and Yu (2010) studied the asymptotic properties of QML es-
timation of spatial panel models with fixed effects, which contain the above model as a
special case. They used an orthogonal transformation to the model specified by (3.1)-(3.3)
to obtain

Y ∗
t = X∗

t β + ε∗t , ε∗t = λWε∗t + v∗t , t = 1, · · · , T − 1,

where (Y ∗
1 , Y ∗

2 , · · · , Y ∗
T−1) = (Y1, Y2, · · · , YT )FT,T−1, FT,T−1 is a T × (T − 1) matrix

whose columns are the eigenvectors of IT − 1
T

ιT ι′T corresponding to the eigenvalues of
one, and similarly ε∗t , v∗t , and the columns of X∗

t are defined.
Debarsy and Ertur (2010) followed up with LM tests for spatial dependence. In case of

a spatial error panel model with fixed space-specific effects, the LM test takes the form:

LMFE =
N(T − 1)√

S0

ε̃∗′Wε̃∗

ε̃∗′ε̃∗
, (3.9)

where ε̃∗ is OLS residuals from regressing Y ∗ on X∗ with Y ∗ being the stacked {Y ∗
t }

and X∗ the stacked {X∗
t }, S0 = (T − 1)S0, and W = IT−1 ⊗ W . With the fixed effects

specification, the model wipes out time-invariant regressors.

Assumption 3.4. The idiosyncratic errors {vit} are iid with mean zero, variance σ2
v,

and excess kurtosis κv. Also, the moment E|vit|4+η exists for some η > 0.

Assumption 3.5. The elements of the NT×k matrix X are uniformly bounded for all N
and limN→∞

1
N

∑T
t=1(Xt−X̄)′(Xt−X̄) exists and is nonsingular, where X̄ = 1

T

∑T
t=1 Xt.

Define M = IN(T−1) −X∗(X∗′X∗)−1X∗′, A = (FT,T−1⊗ IN )(MWM−S1M)(F ′
T,T−1⊗

IN ), and aii as the diagonal elements of A. We have the following theorem:

Theorem 3.2. Under Assumptions 3.2, 3.4 and 3.5, for testing H0; λ = 0, the stan-
dardized LM test which corrects both the mean and variance takes the form:

SLMFE =
N(T − 1)√
κ̃vS2 + S3

ε̃∗′(W − S1IN(T−1))ε̃
∗

ε̃∗′ε̃∗
, (3.10)

where S1 = 1
N(T−1)−k

tr(WM), S2 =
∑N(T−1)

i=1 a2
ii, S3 = tr(AA′ + A2), and κ̃v is a

consistent estimator of κv. Under H0, we have (i) SLMFE
D−→ N(0, 1), and (ii) SLMFE ∼

LMFE.

For practical applications of the above theorem, one needs a consistent estimator of
κv. While the elements of ε∗ are uncorrelated, they may not be independent and thus

5The condition in Theorem 3.1 may be relaxed to allow ρ̃ to be an arbitrary consistent estimator of ρ.
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the sample kurtosis of ε̃∗ may not provide a consistent estimator for κv as in the case of
a linear regression model. The following corollary provides the needed result.

Corollary 3.1. Under the assumptions of Theorem 3.2, a method of moments type
estimator for κv that is consistent under H0 takes the form:

κ̃v =
(T − 1)2
∑T

t=1 c4
t

(

∑N
i=1(1

′
T−1ε̃

∗
i·)

4

N−1(ε̃∗′ε̃∗)2
− 3

)

, (3.11)

where ct is the tth element of FT,T−11T−1, and ε̃∗′i· is the ith row of (ε̃∗1 , ε̃
∗
2, · · · , ε̃∗T−1).

Tests based on bootstrap p-values. Again, for each of the LM tests presented
above, one may construct a bootstrap counterpart by extending the procedure given at
the end of Section 2. This is typically the case for the fixed effects model as seen below,
but for the random effects model there are two complications: one is the existence of
error components that makes it unclear on the way of resampling, and the other is that
the parameter σ2

µ has to be estimated in each bootstrap sample, making the bootstrap
procedure computationally more demanding. We thus present a bootstrap version only

for LMFE , denoted as BLMFE. Noting that LMFE = N(T−1)√
S0

ε∗′
MWMε∗

ε∗′Mε∗
, a bootstrap procedure

similar to that for LMEI can be obtained as follows:

(a) Draw a bootstrap sample ε̃∗b from the OLS residuals ε̃∗;

(b) Compute the bootstrap value of LMFE as BLMb
FE

= N(T−1)√
S0

ε̃∗b′
MWMε̃∗b

ε̃∗b′Mε̃∗b ;

(c) Repeat (a)-(b) B times to give {BLMb
FE
}B

b=1, and thus the bootstrap p-value.

The suggested BLMFE test can be used as a benchmark for the finite sample performance
of the SLM tests. Its validity can again be inferred from Hall and Horowitz (1996).

4. MONTE CARLO RESULTS

The finite sample performance of the test statistics introduced in this paper are evaluated
based on a series of Monte Carlo experiments. These experiments involve a number of
different error distributions and a number of different spatial layouts. Comparisons are
made between the standardized tests and their non-standardized counterparts to see the
effects of the error distributions, the spatial layouts, and the design of the regression
model. In cases of a linear regression and panel linear regression with fixed effects, LM
tests referring to bootstrap p-values are also implemented to serve as benchmarks for the
comparison.

4.1. Spatial layouts and error distributions

Three general spatial layouts are considered in the Monte Carlo experiments and they
are applied to all the test statistics involved in the experiments. The first is based on
the Rook contiguity, the second is based on Queen contiguity and the third is based on
the notion of group or social interactions with the number of groups G = Nd where
0 < d < 1. In the first two cases, the number of neighbors for each spatial unit stays the
same (2-4 for Rook and 3-8 for Queen) and does not change when sample size N increases.
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However, in the last case, the number of neighbors for each spatial unit increases with
the sample size but at a slower rate, and changes from group to group.

The details for generating the W matrix under Rook contiguity is as follows: (i) index
the N spatial units by {1, 2, · · · , N}, randomly permute these indices and then allocate
them into a lattice of r × m(≥ N) squares, (ii) let Wij = 1 if the index j is in a square
which is on the immediate left, or right, or above, or below the square which contains
the index i, otherwise Wij = 0, and (iii) divide each element of W by its row sum. The
W matrix under Queen contiguity is generated in a similar way, but with additional
neighbors which share a common vertex with the unit of interest.

To generate the W matrix according to the group interaction scheme, (i) calculate the
number of groups according to G = Round(Nd), and the approximate average group size
m = N/G, (ii) generate the group sizes (n1, n2, · · · , nG) according to a discrete uniform

distribution from m/2 to 3m/2, (iii) adjust the group sizes so that
∑G

i=1 ni = N , and (iv)
define W = diag{Wi/(ni−1), i = 1, · · · , G}, a matrix formed by placing the submatrices
Wi along the diagonal direction, where Wi is an ni × ni matrix with ones on the off-
diagonal positions and zeros on the diagonal positions. In our Monte Carlo experiments,
we choose d = 0.2, 0.5, and 0.8, representing respectively the situations where (i) there
are few groups and many spatial units in a group, (ii) the number of groups and the
sizes of the groups are of the same magnitude, and (iii) there are many groups with
few elements in each. Under Rook or Queen contiguity, hN defined in the theorems is
bounded, whereas under group interaction hN is divergent with rate N1−d. This spatial
layout covers the scenario considered in Case (1991). Lee (2007) shows that the group
size variation plays an important role in the identification and estimation of econometric
models with group interactions, contextual factors and fixed effects. Yang (2010) shows
that it also plays an important role in the robustness of the LM test of spatial error
components.

The reported Monte Carlo results correspond to the following three error distribu-
tions: (i) standard normal, (ii) mixture normal, standardized to have mean zero and
variance 1, and (iii) log-normal, also standardized to have mean zero and variance one.
The standardized normal-mixture variates are generated according to

ui = ((1 − ξi)Zi + ξiτZi)/(1 − p + p ∗ τ2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard
normal independent of ξ. The parameter p in this case also represents the proportion of
mixing the two normal populations. In our experiments, we choose p = 0.05, meaning
that 95% of the random variates are from standard normal and the remaining 5% are from
another normal population with standard deviation τ . We choose τ = 10 to simulate the
situation where there are gross errors in the data. The standardized lognormal random
variates are generated according to

ui = [exp(Zi) − exp(0.5)]/[exp(2) − exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mix-
ture gives an error distribution that is still symmetric like normal but leptokurtic. Other
non-normal distributions, such as normal-gamma mixture and chi-squared, are also con-
sidered and the results are available from the authors upon request. All the Monte Carlo
experiments are based on 10,000 replications.
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4.2. Performance of the tests for the linear regression model

The finite sample performance of seven LM-type test statistics are investigated and
compared: (1) LMEI, (2) SLMEI, (3) BLMEI which is LMEI referring to the bootstrap p-values
(Lin et al., 2007), (4) I◦, (5) I∗, (6) LMOPG, and (7) SLMOPG. The Monte Carlo experiments
are carried out based on the following data generating process:

Yi = β0 + X1iβ1 + X2iβ2 + ui.

The design of the experiment, or the way the regressors are generated also matters. We

thus consider two scenarios: (i) IID scheme: X1i
iid∼

√
6U(0, 1) and X2i

iid∼ N(0, 1)/
√

2; and
(ii) Non-IID scheme: the ith pair of X values in the gth group are generated according
to X1,ig = (2zg + zig)/

√
7 and X2,ig = (vg + vig)/

√
7, where {zg, zig, vg, vig} are iid

N(0, 1) across all i and g (see Lee, 2004a). Both X1 and X2 are treated as fixed in the
experiments. The parameters β = {5, 1, 1}′ and σ = 1, resulting in a signal-to-noise ratio
of 1. Five different sample sizes are considered, i.e., N = 50, 100, 200, 500, and 1000.

Null behavior of the tests. Table 1(a-c) reports the (null) empirical mean, standard
deviation, and the tail probabilities (10%, 5% and 1%) for the seven test statistics. From
the results (reported and unreported), the general observations are as follows: (i) in terms
of closeness to N(0, 1), the standardized tests (SLMEI, I∗ and SLMOPG) improve significantly
over their non-standardized counterparts (LMEI, I0 and LMOPG); (ii) the finite sample null
distributions of LMEI, I0 and LMOPG can be altered greatly by the spatial layout, and they
can also be affected by the error distributions and the way the regressors are generated;
and (iii) in general, SLMEI and in particular SLMOPG, perform comparably with BLMEI.

Some details are as follows: All tests including BLMEI perform better under (i) light
spatial dependence compared with heavy spatial dependence, (ii) normal errors rather
than non-normal errors, (iii) IID regressors rather than Non-IID regressors. The tests
LMEI, I0 and LMOPG have a downward mean shift, which can be sizable even when N is
quite large. Besides the mean shift, LMEI also has a downward SD shift, which can be
sizable as well when N is not large, but goes to zero as N increases. In contrast, SLMEI, I∗

and SLMOPG have mean close to zero and SD close to 1 which explain why they have better
size in all experiments. Recalling that LMEI corrects neither mean nor SD, and that I0

and LMOPG correct only for SD, it is clear now why I0 and LMOPG have size distortions, and
why LMEI is more severely undersized than I0. Thus, the LM tests of spatial dependence
need to be both mean- and variance-adjusted for good finite sample performance.

The results in Table 1 show that one of the major factors affecting the null distribution
of LMEI, I0 and LMOPG is the spatial layout, or rather the degree of spatial dependence.
In situations of a large group interaction, e.g., G = Round(N0.2) (results not reported
to conserve space), the number of groups ranges from 2 to 4 for N ranging from 50 to
1000. Thus, there are only a few groups, each containing many spatial units which are
all neighbors of each other. This ‘heavy’ spatial dependence distorts severely the null
distributions of LMEI, I0 and LMOPG, and combined with Non-IID regressors these tests
fail completely. In a sharp contrast, SLMEI still performs reasonably under these extreme
situations. In contrast, in situations of small group interaction, e.g., G = Round(N0.8)
(results not reported to conserve space), the number of groups ranges from 23 to 251
for N ranging from 50 to 1000. In this case, there are many groups each having only 2
to 4 units, giving a spatial layout with very weak spatial dependence. As a result, the
null distributions of LMEI, I0 and LMOPG are much closer to N(0, 1) though still not as
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close as those of the null distributions of SLMEI, I∗, and SLMOPG . These observations are
consistent with the discussion following Theorem 2.1. Another factor affecting the null
distribution of LMEI, I0 and LMOPG is the way the regressors were generated (or the design
of the model). Under the group interaction spatial layout, the null distributions of LMEI,
I0 and LMOPG are much closer to N(0, 1) when the regressors are generated under the IID

Table 1a. Empirical Means, SDs and Tail Probabilities: Linear Regression, Normal Errors

Group: G = N
0.5 Queen Contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%
N = 50

1 -0.5270 0.8408 .0615 .0144 .0038 -0.2268 0.9312 .0784 .0363 .0058
2 -0.0047 1.0367 .0836 .0507 .0214 -0.0132 1.0336 .1034 .0545 .0143
3 -0.5270 0.8408 .0977 .0485 .0113 -0.2268 0.9312 .0946 .0493 .0110
4 -0.6235 0.9948 .1583 .0583 .0085 -0.2416 0.9919 .0994 .0493 .0092
5 -0.0045 0.9948 .0743 .0445 .0184 -0.0127 0.9919 .0901 .0441 .0115
6 -0.7146 0.9806 .1843 .0972 .0163 -0.2946 0.9950 .1116 .0518 .0071
7 -0.1840 1.0669 .1315 .0641 .0094 -0.0748 1.0320 .1100 .0531 .0070

N = 100
1 -0.5027 0.8892 .0859 .0244 .0048 -0.1811 0.9585 .0906 .0396 .0070
2 -0.0035 1.0334 .0884 .0477 .0193 0.0091 1.0154 .1010 .0515 .0130
3 -0.5027 0.8892 .1018 .0519 .0107 -0.1811 0.9585 .0988 .0498 .0097
4 -0.5725 1.0126 .1553 .0677 .0086 -0.1880 0.9950 .1030 .0476 .0095
5 -0.0034 1.0126 .0828 .0453 .0174 0.0089 0.9950 .0936 .0459 .0109
6 -0.6701 1.0085 .1825 .1001 .0221 -0.2271 0.9920 .1080 .0492 .0077
7 -0.1576 1.0667 .1280 .0659 .0119 -0.0361 1.0124 .1044 .0508 .0084

N = 200
1 -0.4032 0.9200 .0920 .0323 .0045 -0.1246 0.9781 .0962 .0446 .0088
2 0.0168 1.0199 .0924 .0498 .0177 -0.0057 1.0040 .1031 .0515 .0100
3 -0.4032 0.9200 .1074 .0557 .0110 -0.1246 0.9781 .1029 .0493 .0111
4 -0.4425 1.0097 .1362 .0591 .0076 -0.1266 0.9939 .1017 .0478 .0095
5 0.0167 1.0097 .0887 .0475 .0172 -0.0056 0.9939 .0991 .0490 .0094
6 -0.5403 1.0171 .1597 .0878 .0223 -0.1571 0.9962 .1050 .0496 .0088
7 -0.1133 1.0485 .1192 .0638 .0141 -0.0371 1.0052 .1052 .0491 .0079

N = 500
1 -0.3315 0.9401 .0865 .0368 .0059 -0.0844 0.9869 .0961 .0462 .0078
2 0.0045 1.0010 .0888 .0434 .0139 -0.0017 0.9975 .0988 .0480 .0087
3 -0.3315 0.9401 .0925 .0501 .0117 -0.0844 0.9869 .0998 .0482 .0088
4 -0.3516 0.9970 .1123 .0516 .0086 -0.0850 0.9935 .0986 .0480 .0082
5 0.0045 0.9970 .0876 .0426 .0137 -0.0017 0.9935 .0971 .0469 .0084
6 -0.4395 1.0082 .1380 .0703 .0187 -0.1064 0.9947 .0999 .0484 .0088
7 -0.0976 1.0235 .1029 .0527 .0120 -0.0236 0.9980 .1010 .0468 .0085

N = 1000
1 -0.2929 0.9654 .0956 .0427 .0076 -0.0591 0.9884 .0946 .0454 .0101
2 -0.0060 1.0089 .0965 .0473 .0145 -0.0011 0.9937 .0954 .0467 .0108
3 -0.2929 0.9654 .1035 .0525 .0109 -0.0591 0.9884 .0969 .0487 .0119
4 -0.3055 1.0069 .1118 .0540 .0103 -0.0593 0.9918 .0959 .0462 .0103
5 -0.0059 1.0069 .0958 .0470 .0145 -0.0011 0.9918 .0950 .0460 .0106
6 -0.3829 1.0143 .1256 .0715 .0166 -0.0743 0.9931 .0978 .0478 .0108
7 -0.0923 1.0234 .1112 .0575 .0121 -0.0162 0.9947 .0969 .0477 .0111

Note: (1) Test: 1=LMEI , 2=SLMEI , 3=Bootstrap LMEI , 4=I◦, 5=I∗, 6=LMOPG , and 7=SLMOPG.
(2) X-Value: Non-IID for group interaction scheme, and IID for queen contiguity.
(3) True parameter values: β = {5,1, 1}′, and σ = 1.
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Table 1b. Empirical Means, SDs and Tail Probabilities: Linear Regression, Normal Mixtures

Group: G = N
0.5 Queen Contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%
N = 50

1 -0.5280 0.7350 .0414 .0112 .0031 -0.2253 0.8103 .0510 .0230 .0036
2 -0.0060 0.8916 .0559 .0324 .0112 -0.0114 0.8927 .0669 .0328 .0076
3 -0.5280 0.7350 .0838 .0407 .0098 -0.2253 0.8103 .0825 .0410 .0088
4 -0.6247 0.8696 .1115 .0395 .0058 -0.2400 0.8631 .0659 .0315 .0059
5 -0.0057 0.8696 .0520 .0288 .0099 -0.0111 0.8631 .0588 .0283 .0059
6 -0.6874 0.8907 .1288 .0543 .0052 -0.3028 0.9863 .0967 .0392 .0025
7 -0.0920 1.0212 .1017 .0415 .0044 -0.0456 1.0136 .0954 .0363 .0028

N = 100
1 -0.4969 0.7844 .0552 .0227 .0057 -0.1875 0.8417 .0588 .0283 .0062
2 0.0032 0.8946 .0601 .0341 .0139 0.0023 0.8882 .0667 .0342 .0094
3 -0.4969 0.7844 .0873 .0437 .0114 -0.1875 0.8417 .0875 .0433 .0100
4 -0.5658 0.8932 .1000 .0436 .0105 -0.1946 0.8738 .0669 .0331 .0074
5 0.0033 0.8932 .0597 .0346 .0137 0.0023 0.8738 .0635 .0314 .0087
6 -0.6550 0.9357 .1408 .0624 .0094 -0.2491 0.9764 .0870 .0327 .0039
7 -0.0598 1.0185 .1028 .0421 .0059 -0.0091 0.9913 .0815 .0308 .0033

N = 200
1 -0.4273 0.8505 .0722 .0259 .0040 -0.0994 0.9181 .0754 .0412 .0111
2 -0.0098 0.9295 .0693 .0335 .0097 0.0201 0.9413 .0811 .0442 .0139
3 -0.4273 0.8505 .1001 .0499 .0108 -0.0994 0.9181 .1008 .0522 .0139
4 -0.4690 0.9334 .1092 .0451 .0074 -0.1010 0.9330 .0799 .0438 .0127
5 -0.0098 0.9334 .0703 .0343 .0097 0.0200 0.9330 .0786 .0425 .0134
6 -0.5547 0.9754 .1338 .0609 .0104 -0.1472 0.9982 .0904 .0368 .0038
7 -0.0783 1.0256 .1014 .0434 .0052 0.0012 1.0033 .0871 .0351 .0043

N = 500
1 -0.3249 0.9106 .0791 .0340 .0065 -0.0890 0.9471 .0840 .0459 .0116
2 0.0115 0.9678 .0826 .0409 .0117 -0.0063 0.9570 .0856 .0471 .0118
3 -0.3249 0.9106 .0995 .0517 .0113 -0.0890 0.9471 .0987 .0514 .0103
4 -0.3446 0.9657 .1024 .0475 .0085 -0.0896 0.9534 .0863 .0474 .0123
5 0.0115 0.9657 .0822 .0407 .0116 -0.0063 0.9534 .0830 .0466 .0115
6 -0.4241 0.9924 .1273 .0594 .0079 -0.1127 0.9897 .0919 .0373 .0045
7 -0.0582 1.0187 .1068 .0471 .0043 -0.0145 0.9917 .0874 .0371 .0043

N = 1000
1 -0.2814 0.9555 .0901 .0404 .0079 -0.0640 0.9819 .0948 .0494 .0115
2 0.0061 0.9973 .0921 .0467 .0133 -0.0060 0.9872 .0957 .0486 .0122
3 -0.2814 0.9555 .1042 .0522 .0120 -0.0640 0.9819 .1031 .0507 .0107
4 -0.2935 0.9966 .1069 .0495 .0105 -0.0642 0.9853 .0958 .0500 .0116
5 0.0061 0.9966 .0918 .0465 .0132 -0.0060 0.9853 .0951 .0483 .0120
6 -0.3642 1.0036 .1268 .0597 .0089 -0.0847 1.0027 .1010 .0387 .0039
7 -0.0619 1.0189 .1058 .0499 .0079 -0.0192 1.0035 .0963 .0393 .0038

Note: (1) Test: 1=LMEI , 2=SLMEI , 3=Bootstrap LMEI , 4=I◦, 5=I∗, 6=LMOPG , and 7=SLMOPG.
(2) X-Value: Non-IID for group interaction scheme, and IID for queen contiguity.
(3) True parameter values: β = {5,1, 1}′, and σ = 1. For normal mixture, p = .1 and τ = 5.

scheme than under the Non-IID scheme.
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Table 1c. Empirical Means, SDs and Tail Probabilities: Linear Regression, Lognormal Errors

Group: G = N
0.5 Queen Contiguity

Test Mean SD 10% 5% 1% Mean SD 10% 5% 1%
N = 50

1 -0.5198 0.7849 .0441 .0137 .0042 -0.2105 0.8586 .0563 .0241 .0064
2 0.0041 0.9573 .0674 .0394 .0178 0.0050 0.9483 .0789 .0430 .0137
3 -0.5198 0.7849 .0861 .0446 .0120 -0.2105 0.8586 .0898 .0438 .0085
4 -0.6151 0.9287 .1222 .0424 .0082 -0.2242 0.9145 .0745 .0328 .0091
5 0.0040 0.9287 .0610 .0366 .0162 0.0047 0.9145 .0691 .0359 .0115
6 -0.7387 0.9345 .1623 .0842 .0170 -0.3630 0.9778 .1083 .0461 .0057
7 -0.1662 1.0361 .1116 .0532 .0070 -0.1177 1.0033 .0963 .0392 .0036

N = 100
1 -0.5076 0.8186 .0631 .0223 .0050 -0.2058 0.8854 .0653 .0283 .0056
2 -0.0093 0.9403 .0643 .0392 .0164 -0.0171 0.9358 .0752 .0382 .0095
3 -0.5076 0.8186 .0908 .0450 .0112 -0.2058 0.8854 .0926 .0453 .0094
4 -0.5780 0.9321 .1151 .0486 .0101 -0.2137 0.9192 .0751 .0358 .0074
5 -0.0090 0.9321 .0630 .0386 .0158 -0.0168 0.9192 .0695 .0354 .0082
6 -0.7197 0.9460 .1667 .0865 .0169 -0.3548 0.9971 .1176 .0580 .0099
7 -0.1581 1.0032 .0996 .0465 .0059 -0.1436 1.0117 .1027 .0486 .0054

N = 200
1 -0.3979 0.8718 .0660 .0242 .0055 -0.1305 0.9350 .0754 .0337 .0096
2 0.0225 0.9573 .0718 .0367 .0138 -0.0117 0.9590 .0783 .0406 .0136
3 -0.3979 0.8718 .0947 .0487 .0116 -0.1305 0.9350 .1007 .0451 .0108
4 -0.4367 0.9568 .1024 .0421 .0084 -0.1326 0.9502 .0796 .0360 .0105
5 0.0225 0.9568 .0715 .0371 .0137 -0.0116 0.9502 .0748 .0387 .0128
6 -0.5879 0.9876 .1496 .0811 .0199 -0.2868 1.0210 .1188 .0579 .0102
7 -0.1343 1.0185 .1031 .0507 .0096 -0.1552 1.0237 .1082 .0515 .0077

N = 500
1 -0.3326 0.9001 .0710 .0276 .0061 -0.0895 0.9524 .0803 .0386 .0078
2 0.0034 0.9569 .0736 .0369 .0136 -0.0068 0.9624 .0840 .0408 .0093
3 -0.3326 0.9001 .0905 .0426 .0090 -0.0895 0.9524 .0968 .0480 .0089
4 -0.3527 0.9545 .0937 .0380 .0084 -0.0901 0.9588 .0828 .0399 .0078
5 0.0034 0.9545 .0730 .0365 .0135 -0.0068 0.9588 .0825 .0400 .0089
6 -0.4923 0.9882 .1385 .0760 .0132 -0.2348 1.0151 .1129 .0560 .0118
7 -0.1320 1.0019 .1010 .0471 .0086 -0.1448 1.0122 .1050 .0500 .0094

N = 1000
1 -0.2946 0.9392 .0877 .0367 .0069 -0.0712 0.9479 .0827 .0399 .0077
2 -0.0077 0.9801 .0830 .0414 .0131 -0.0132 0.9530 .0835 .0417 .0086
3 -0.2946 0.9392 .1022 .0497 .0114 -0.0712 0.9479 .0950 .0447 .0073
4 -0.3073 0.9796 .1020 .0466 .0084 -0.0714 0.9512 .0839 .0405 .0080
5 -0.0077 0.9796 .0827 .0414 .0131 -0.0132 0.9512 .0830 .0411 .0086
6 -0.4311 1.0054 .1336 .0718 .0162 -0.1974 1.0057 .1076 .0528 .0129
7 -0.1305 1.0110 .1057 .0504 .0087 -0.1348 1.0025 .1023 .0494 .0105

Note: (1) Test: 1=LMEI , 2=SLMEI, 3=Bootstrap LMEI , 4=I◦, 5=I∗, 6=LMOPG , and 7=SLMOPG.
(2) X-Value: Non-IID for group interaction scheme, and IID for queen contiguity.
(3) True parameter values: β = {5,1, 1}′, and σ = 1.

Power of the tests. Empirical frequencies of rejection of the seven tests are plotted in
Figures 1a-1c against the values of λ (horizontal line). Simulated critical values for each
test are used, which means that the reported powers of the tests are size-adjusted. In
each plot of Figures 1a-1c, the power lines for LMEI, SLMEI, I0 and I∗(tests 1, 2, 4 and 5)
overlap. This means that once size-adjusted, these four tests have almost identical power.
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This is not surprising as all four tests share the same term ũ′Wũ/ũ′ũ. The four tests differ
mainly in their locations and scales, and thus have different sizes or null behaviors in
general when referred to the standard normal distribution. If, however, the exact critical
values are used, they become essentially the same test. However, in empirical applications,
asymptotic critical values are often used. In this case, it is important to do the mean
and variance corrections to the test statistics so that the asymptotic critical values give a
better approximation. An alternative way is to bootstrap. The power of BLMEI is generally
very close to that of the four tests, but the power of the two OPG-based LM tests can
be noticeably different from that of the four tests.

Figure 1 further reveals that the spatial layout and the sample size are the two impor-
tant factors affecting the power of these tests. With less neighbors (plots on the right) or
with a larger sample, the tests become more powerful. It is interesting to note that when
the spatial dependence is strong, it is harder to detect the spatial dependence when the
spatial parameter is negative than when it is positive (see the plots on the left). Another
factor affecting the power of the tests is the way that the regressors are generated. The
results (not reported to conserve space) show that the tests under IID regressors are
more powerful than tests under Non-IID regressors, although the signal-to-noise ratios
are the same. The error distribution also affects the power of the tests, but to a lesser
degree.

4.3. Performance of the tests for the random effects panel model

The LM and SLM tests (LMRE and SLMRE) introduced in Section 3.1 are compared by
Monte Carlo simulation based on the following DGP

Yt = β0 + X1tβ1 + X2tβ2 + ut, with ut = µ + εt, t = 1, · · · , T,

where the error components µ and εt can be drawn from any of the three distribu-
tions used in the previous two subsections, or the combination of any two distributions.
For example, µ and εt can both be drawn from the normal mixture, or µ from the
normal mixture but εt from the normal or log-normal distribution. The beta parame-
ters are set at the same values as before, σµ = σv = 1. For sample sizes, T = 3, 10;
and N = 20, 50, 100, 200, 500. The same spatial layouts are used as described above.

The two regressors follow either the IID scheme where {X1,it} iid∼
√

12(U(0, 1) − 0.5),

and {X2,it} iid∼ N(0, 1), or the Non-IID scheme for group interaction layout: X1,itg =
(2ztg + zitg)/

√
7 and X2,itg = (vtg + vitg)/

√
7, with {ztg, zitg, vtg, vitg} being iid N(0, 1)

across all i, t and g. For this model, we are unable to implement the bootstrap method
due to the extra complication in the error structure.

Null behavior of the tests. The results presented in Table 2 correspond to cases
where both µ and vt are normal, both are normal mixture, and both are log-normal.
Essentially, the same conclusions hold as in the case of the spatial linear regression
model. The SLM test outperforms its LM counterpart in all the experiments considered.
Increasing the value of T from 3 to 10 significantly improves both tests. Another in-
teresting phenomenon is that the null behavior of LMRE also depends upon the relative
magnitude of the variance components σ2

µ and σ2
v. The larger the ratio σ2

v/σ2
µ, the worse

is the performance of the LMRE test. In contrast, the performance of SLMRE is very robust.
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Figure 1a. Size-Adjusted Empirical Power of Tests 1-7, Normal Errors.

Power of the tests. Empirical frequencies of rejection, based on the simulated critical
values, of the two tests are plotted in Figure 2 against the values of λ (horizontal line).
Now each line we see from each plot of Figure 2 is in fact an overlap of two lines, one
for LMRE and the other for SLMRE. Similar to the case of the linear regression model,
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Figure 1b. Size-Adjusted Empirical Power of Tests 1-7, Normal Mixture Errors.

the two tests have almost identical power once they are size-adjusted. The power of the
tests depend heavily on the degree of spatial dependence and on the sample size. It also
depends on the error distributions and the type of regressors, though to a lesser degree.

Some interesting details are as follows. The two plots in the first row of Figure 2 show
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Figure 1c. Size-Adjusted Empirical Power of Tests 1-7, Log-Normal Errors.

that the two tests possess very low power and that the power does not seem to increase
as N increase from 20 to 50 (with T fixed at 3). This is because the underlying spatial
layout generates very strong spatial dependence. When N is increased from 20 to 50,
the number of groups stays at G = Round(N0.2) = 2. This means that under this spatial
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Table 2a. Empirical Means, SDs and Tail Probabilities: Panel with Random Effects, T = 3

Group: G = N
0.5 Queen Contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%
Normal Errors

20 -0.4242 0.9192 .0915 .0308 .0036 -0.0776 0.9854 .0889 .0434 .0090
0.0040 1.0275 .0960 .0514 .0184 0.0054 1.0635 .1143 .0602 .0154

50 -0.2383 0.9491 .0873 .0334 .0063 -0.0382 0.9904 .0965 .0490 .0102
0.0044 1.0042 .0905 .0493 .0135 -0.0090 1.0272 .1083 .0562 .0131

100 -0.2456 0.9627 .0919 .0414 .0071 -0.0211 0.9878 .0943 .0459 .0105
-0.0049 1.0045 .0943 .0485 .0131 0.0211 1.0152 .1032 .0537 .0136

200 -0.2132 0.9866 .0959 .0433 .0091 -0.0278 0.9938 .0970 .0474 .0097
0.0045 1.0187 .0971 .0520 .0143 -0.0042 1.0122 .1037 .0518 .0108

500 -0.1808 0.9789 .0910 .0415 .0073 -0.0139 1.0018 .1025 .0510 .0105
0.0004 0.9993 .0932 .0463 .0102 0.0001 1.0160 .1063 .0547 .0118

Normal Mixture Error

20 -0.4533 0.8550 .0715 .0272 .0046 -0.1006 0.9109 .0698 .0305 .0061
-0.0193 0.9520 .0726 .0398 .0125 -0.0075 0.9832 .0927 .0463 .0100

50 -0.2483 0.9255 .0780 .0335 .0070 -0.0473 0.9579 .0848 .0423 .0080
-0.0020 0.9774 .0823 .0416 .0131 -0.0131 0.9932 .0959 .0508 .0104

100 -0.2501 0.9399 .0815 .0357 .0075 -0.0361 0.9764 .0931 .0443 .0086
-0.0076 0.9800 .0826 .0432 .0117 0.0074 1.0035 .1033 .0511 .0109

200 -0.2293 0.9515 .0885 .0385 .0067 -0.0335 0.9867 .0950 .0474 .0092
-0.0113 0.9822 .0879 .0440 .0107 -0.0093 1.0048 .1013 .0508 .0103

500 -0.1779 0.9830 .0947 .0461 .0087 -0.0231 0.9973 .1004 .0484 .0096
0.0035 1.0033 .0947 .0478 .0110 -0.0090 1.0114 .1050 .0517 .0103

Lognormal Errors

20 -0.4311 0.8532 .0691 .0270 .0041 -0.0997 0.8820 .0583 .0249 .0062
0.0079 0.9501 .0786 .0418 .0147 -0.0008 0.9510 .0782 .0373 .0098

50 -0.2535 0.9076 .0682 .0311 .0071 -0.0329 0.9338 .0746 .0366 .0090
-0.0034 0.9572 .0735 .0380 .0125 0.0063 0.9681 .0846 .0426 .0120

100 -0.2377 0.9272 .0761 .0347 .0080 -0.0443 0.9555 .0826 .0430 .0090
0.0077 0.9663 .0809 .0435 .0126 0.0011 0.9818 .0898 .0481 .0114

200 -0.2014 0.9424 .0798 .0343 .0070 -0.0293 0.9641 .0864 .0448 .0094
0.0186 0.9724 .0814 .0409 .0112 -0.0039 0.9819 .0917 .0491 .0105

500 -0.1779 0.9741 .0936 .0426 .0089 -0.0039 0.9776 .0888 .0449 .0117
0.0042 0.9939 .0944 .0473 .0134 0.0110 0.9914 .0931 .0478 .0125

Note: (1) under each N , the first row corresponds to LMRE and the second corresponds to SLMRE.
(2) X-Value: Non-IID for group interaction scheme, and IID for queen contiguity.
(3) True parameter values: β = {5,1, 1}′, and σµ = σv = 1.

layout, the degree of spatial dependence at N = 50 is bigger than that at N = 20. As a
result, the power does not go up, and might even go down slightly.
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Table 2b. Empirical Means, SDs and Tail Probabilities: Panel with Random Effects, T = 10

Group: G = N
0.5 Queen Contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%
Normal Errors

20 -0.1770 0.9675 .0926 .0441 .0062 0.0045 1.0036 .1011 .0516 .0126
-0.0032 0.9902 .0956 .0477 .0093 0.0097 1.0431 .1136 .0606 .0155

50 -0.1474 0.9849 .1017 .0448 .0074 -0.0062 0.9968 .0982 .0495 .0111
-0.0127 0.9988 .1000 .0463 .0087 0.0035 1.0210 .1082 .0555 .0128

100 -0.1255 0.9903 .0943 .0461 .0089 0.0020 1.0096 .1013 .0501 .0119
-0.0058 1.0003 .0956 .0453 .0108 0.0076 1.0276 .1075 .0554 .0125

200 -0.0942 0.9967 .1005 .0491 .0089 0.0016 0.9987 .1006 .0467 .0089
0.0063 1.0041 .1010 .0509 .0102 0.0050 1.0134 .1053 .0513 .0096

500 -0.0685 0.9882 .0983 .0464 .0085 0.0048 1.0048 .0981 .0492 .0094
0.0131 0.9928 .0955 .0472 .0099 0.0072 1.0176 .1029 .0523 .0103

Normal Mixture Error

20 -0.1698 0.9571 .0849 .0410 .0096 -0.0079 0.9645 .0896 .0432 .0089
0.0087 0.9788 .0852 .0443 .0123 0.0035 1.0023 .1030 .0518 .0117

50 -0.1247 0.9790 .0905 .0442 .0102 -0.0132 0.9922 .0965 .0481 .0098
0.0119 0.9925 .0927 .0460 .0128 -0.0019 1.0162 .1051 .0534 .0111

100 -0.1203 0.9924 .0960 .0478 .0102 0.0076 0.9932 .0997 .0496 .0095
0.0001 1.0022 .0972 .0498 .0113 0.0140 1.0110 .1046 .0544 .0113

200 -0.1027 0.9919 .0966 .0454 .0090 -0.0027 0.9973 .0980 .0509 .0100
-0.0020 0.9992 .0974 .0482 .0102 0.0008 1.0119 .1034 .0548 .0111

500 -0.0652 0.9984 .1017 .0490 .0104 0.0024 0.9974 .0985 .0505 .0100
0.0165 1.0031 .1001 .0509 .0097 0.0048 1.0100 .1024 .0531 .0106

Lognormal Errors

20 -0.1893 0.9216 .0711 .0334 .0081 -0.0204 0.9433 .0753 .0380 .0098
-0.0081 0.9417 .0721 .0395 .0118 -0.0061 0.9801 .0859 .0455 .0127

50 -0.1255 0.9560 .0800 .0382 .0107 -0.0200 0.9553 .0805 .0393 .0090
0.0128 0.9688 .0789 .0439 .0135 -0.0068 0.9783 .0869 .0449 .0107

100 -0.1267 0.9615 .0876 .0397 .0098 0.0004 0.9760 .0865 .0452 .0115
-0.0054 0.9709 .0864 .0429 .0116 0.0076 0.9934 .0937 .0481 .0128

200 -0.0987 0.9755 .0919 .0444 .0101 0.0023 0.9845 .0922 .0467 .0109
0.0027 0.9825 .0907 .0472 .0108 0.0064 0.9989 .0961 .0495 .0123

500 -0.0750 0.9778 .0948 .0446 .0074 0.0048 0.9928 .0954 .0467 .0113
0.0068 0.9823 .0946 .0466 .0090 0.0074 1.0054 .0991 .0496 .0125

Note: (1) under each N , the first row corresponds to LMRE and the second corresponds to SLMRE.
(2) X-Value: Non-IID for group interaction scheme, and IID for queen contiguity.
(3) True parameter values: β = {5,1, 1}′, and σµ = σv = 1.

4.4. Performance of the tests for the fixed effects panel model

The LM and SLM tests (LMFE and SLMFE) introduced in Section 3.2 are compared by
Monte Carlo simulation based on the following DGP:

Yt = X1tβ1 + X2tβ2 + X3tβ3 + ut, with ut = µ + εt, t = 1, · · · , T.

As this model (after the transformation) and the corresponding test LMFE are quite similar
to the model and the test LMEI given in Section 2, a bootstrap version of LMFE, denoted
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Figure 2. Size-Adjusted Empirical Power of LM and SLM for Random Effects Panel Model.

as BLMFE, is also implemented to serve as a benchmark for the finite sample performance
of the proposed test SLMFE. The fixed effects are generated either according to µ =
1
T

∑T
t=1 X3t, or as a vector of iid N(0, 1) random numbers independent of the X-values.

The regressors are generated according to either the IID scheme: X1,it
iid∼ 2U(0, 1),
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X2,it
iid∼ N(0, 1)/

√
3, and X3,it

iid∼ [exp(N(0, 1) − exp(0.5))]/(3exp(2) − 3exp(1))0.5, or
the Non-IID scheme for group interaction layout: X1,itg = (2ztg + zitg)/

√
15, X2,itg =

(2vtg+vitg)/
√

15, and X3,itg = (2etg+eitg)/
√

15 with {ztg, zitg, vtg, vitg} being iid N(0, 1)
and {etg, eitg} iid [exp(N(0, 1)− exp(0.5))]/(3exp(2)− 3exp(1))0.5 across all i, t and g.

Table 3a. Empirical Means, SDs and Tail Probabilities: Panel with Fixed Effects, T = 3

Group: G = N
0.5 Queen Contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%
Normal Errors

20 -0.5108 0.8690 .0831 .0254 .0026 -0.0393 0.9691 .0830 .0394 .0105
-0.0124 1.0487 .0988 .0549 .0193 -0.0061 1.0405 .1060 .0577 .0150
-0.5108 0.8690 .1031 .0531 .0113 -0.0393 0.9691 .0929 .0470 .0101

100 -0.2865 0.9491 .0916 .0392 .0063 0.0098 0.9947 .0976 .0465 .0102
-0.0013 1.0110 .0977 .0504 .0142 0.0051 1.0089 .1016 .0498 .0111
-0.2865 0.9491 .1035 .0521 .0126 0.0098 0.9947 .0982 .0503 .0119

200 -0.2776 0.9483 .0896 .0378 .0058 -0.0102 1.0048 .1024 .0530 .0117
0.0020 0.9970 .0917 .0455 .0119 -0.0101 1.0122 .1054 .0547 .0121
-0.2776 0.9483 .0983 .0495 .0112 -0.0102 1.0048 .1061 .0556 .0119

500 -0.2439 0.9751 .0980 .0440 .0078 0.0160 0.9914 .0970 .0477 .0084
0.0027 1.0076 .0973 .0473 .0122 0.0134 0.9943 .0980 .0481 .0086
-0.2439 0.9751 .1024 .0507 .0118 0.0160 0.9914 .0992 .0485 .0092

Normal Mixture Errors

20 -0.5117 0.8234 .0645 .0224 .0041 -0.0215 0.9317 .0745 .0358 .0068
-0.0129 0.9825 .0804 .0467 .0171 0.0128 0.9936 .0938 .0492 .0120
-0.5117 0.8234 .0866 .0434 .0109 -0.0215 0.9317 .0923 .0447 .0095

100 -0.2592 0.9455 .0869 .0358 .0078 -0.0032 0.9657 .0891 .0422 .0070
0.0278 1.0049 .0908 .0484 .0152 -0.0080 0.9789 .0929 .0447 .0075
-0.2592 0.9455 .1030 .0514 .0130 -0.0032 0.9657 .0957 .0462 .0092

200 -0.2816 0.9314 .0842 .0359 .0050 0.0100 0.9920 .0964 .0498 .0099
-0.0022 0.9782 .0853 .0435 .0108 0.0103 0.9991 .0990 .0518 .0105
-0.2816 0.9314 .0939 .0473 .0098 0.0100 0.9920 .1004 .0527 .0119

500 -0.2533 0.9644 .0938 .0415 .0087 -0.0020 0.9972 .0990 .0482 .0101
-0.0070 0.9960 .0920 .0459 .0129 -0.0047 1.0001 .0992 .0489 .0101
-0.2533 0.9644 .0971 .0497 .0118 -0.0020 0.9972 .1016 .0505 .0105

Lognormal Errors

20 -0.4935 0.8121 .0583 .0217 .0046 -0.0300 0.8875 .0617 .0273 .0063
0.0095 0.9678 .0782 .0448 .0178 0.0033 0.9449 .0784 .0360 .0097
-0.4935 0.8121 .0822 .0422 .0095 -0.0300 0.8875 .0728 .0341 .0050

100 -0.2813 0.9135 .0761 .0341 .0077 -0.0053 0.9501 .0789 .0405 .0105
0.0045 0.9686 .0816 .0434 .0135 -0.0101 0.9626 .0820 .0429 .0113
-0.2813 0.9135 .0923 .0495 .0115 -0.0053 0.9501 .0917 .0459 .0103

200 -0.2842 0.9061 .0705 .0317 .0049 -0.0129 0.9654 .0883 .0431 .0083
-0.0049 0.9498 .0744 .0369 .0105 -0.0128 0.9722 .0899 .0448 .0087
-0.2842 0.9061 .0832 .0420 .0087 -0.0129 0.9654 .0955 .0470 .0088

500 -0.2550 0.9530 .0902 .0399 .0077 -0.0043 0.9905 .0964 .0481 .0088
-0.0088 0.9830 .0884 .0439 .0112 -0.0070 0.9933 .0975 .0484 .0089
-0.2550 0.9530 .0962 .0497 .0109 -0.0043 0.9905 .1008 .0500 .0089

Note: (1) under each N , 1st row: LMFE, 2nd row: SLMFE, and 3rd row: Bootstrap LMFE.
(2) X-Value: Non-IID for group interaction, IID for queen contiguity; β = {1,1,1}′, σv = 1.
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24 Baltagi-Yang

Table 3b. Empirical Means, SDs and Tail Probabilities: Panel with Fixed Effects, T = 10

Group: G = N
0.5 Queen Contiguity

N Mean SD 10% 5% 1% Mean SD 10% 5% 1%
Normal Errors

20 -0.2167 0.9780 .0972 .0508 .0064 0.0193 1.0151 .1036 .0538 .0126
0.0048 1.0133 .1034 .0540 .0116 0.0197 1.0322 .1084 .0594 .0146
-0.2167 0.9780 .1048 .0574 .0114 0.0193 1.0151 .1104 .0580 .0134

50 -0.1363 1.0044 .1044 .0472 .0090 -0.0243 0.9919 .1006 .0462 .0084
0.0189 1.0230 .1058 .0532 .0122 -0.0279 0.9983 .1026 .0472 .0084
-0.1363 1.0044 .1110 .0532 .0116 -0.0243 0.9919 .1038 .0510 .0106

100 -0.1658 0.9835 .0994 .0450 .0070 -0.0349 0.9819 .0896 .0460 .0088
-0.0057 0.9982 .1000 .0514 .0088 -0.0329 0.9852 .0908 .0464 .0088
-0.1658 0.9835 .1014 .0498 .0100 -0.0349 0.9819 .0934 .0466 .0114

200 -0.1345 0.9909 .1026 .0470 .0074 -0.0054 1.0029 .1026 .0470 .0086
-0.0016 1.0014 .0980 .0494 .0094 -0.0068 1.0046 .1032 .0472 .0088
-0.1345 0.9909 .1036 .0512 .0088 -0.0054 1.0029 .1042 .0486 .0104

Normal Mixture Errors

20 -0.2345 0.9639 .0944 .0440 .0096 0.0282 0.9654 .0850 .0434 .0090
-0.0136 0.9953 .0930 .0514 .0134 0.0288 0.9810 .0896 .0468 .0100
-0.2345 0.9639 .0970 .0520 .0140 0.0282 0.9654 .0904 .0510 .0120

50 -0.1518 0.9726 .0904 .0422 .0112 0.0080 0.9845 .0944 .0478 .0088
0.0031 0.9898 .0948 .0458 .0108 0.0047 0.9907 .0968 .0494 .0088
-0.1518 0.9726 .0980 .0474 .0150 0.0080 0.9845 .1028 .0508 .0134

100 -0.1409 0.9941 .0986 .0510 .0090 -0.0362 0.9922 .0992 .0460 .0086
0.0196 1.0077 .1054 .0536 .0120 -0.0342 0.9955 .0996 .0466 .0088
-0.1409 0.9941 .1062 .0562 .0122 -0.0362 0.9922 .1028 .0464 .0108

200 -0.1529 0.9825 .0966 .0498 .0096 -0.0067 0.9767 .0896 .0422 .0072
-0.0202 0.9929 .0958 .0472 .0100 -0.0081 0.9783 .0900 .0424 .0072
-0.1529 0.9825 .1000 .0532 .0112 -0.0067 0.9767 .0940 .0452 .0102

Lognormal Errors

20 -0.2386 0.9202 .0780 .0348 .0088 -0.0008 0.9355 .0702 .0348 .0096
-0.0181 0.9481 .0764 .0432 .0128 -0.0007 0.9500 .0752 .0362 .0100
-0.2386 0.9202 .0818 .0424 .0108 -0.0008 0.9355 .0808 .0398 .0104

50 -0.1520 0.9623 .0806 .0396 .0108 0.0065 0.9628 .0840 .0438 .0118
0.0030 0.9777 .0772 .0424 .0138 0.0031 0.9687 .0854 .0442 .0118
-0.1520 0.9623 .0870 .0452 .0134 0.0065 0.9628 .0912 .0464 .0128

100 -0.1487 0.9747 .0868 .0428 .0122 -0.0028 0.9622 .0816 .0426 .0094
0.0117 0.9853 .0868 .0450 .0156 -0.0006 0.9653 .0834 .0434 .0096
-0.1487 0.9747 .0936 .0486 .0140 -0.0028 0.9622 .0858 .0424 .0102

200 -0.1288 0.9845 .0938 .0470 .0090 -0.0021 0.9953 .0922 .0522 .0154
0.0042 0.9944 .0984 .0502 .0126 -0.0035 0.9969 .0924 .0528 .0154
-0.1288 0.9845 .1004 .0524 .0112 -0.0021 0.9953 .0982 .0534 .0158

Note: (1) under each N , 1st row: LMFE, 2nd row: SLMFE, and 3rd row: Bootstrap LMFE.
(2) X-Value: Non-IID for group interaction, IID for queen contiguity; β = {1,1,1}′, σv = 1.

Null behavior of the tests. The results reported in Table 3 provide even stronger
evidence for the effectiveness of centering and rescaling in improving the finite sample
performance of an LM test, compared with the case of the random effects model. General
observations made from the Monte Carlo results for the earlier two models still hold. Our
SLM test is generally comparable to the BLM test in terms of tail probabilities.
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Power of the tests. Selected results on size-adjusted power of the tests under the
nominal size 5% are plotted in Figure 3. Again, LMFE and SLMFE have almost identical
size-adjusted power. The power of BLMFE (based on bootstrap size) can be lower than the
other two tests when the error distribution is skewed.
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Figure 3. Size-Adjusted Empirical Power of LM, SLM and Bootstrap LM for Fixed Effects
Panel Model.
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5. CONCLUSION AND DISCUSSION

This paper recommends standardized LM tests of spatial error dependence for the
linear as well as the panel regression model. We showed that when standardizing the
LM tests for spatial effects, it is important to adjust for both the mean and variance of
the LM statistics. The mean adjustment is, however, often neglected in the literature.
One important reason for the mean adjustment of the LM tests for spatial effects is
that the degree of spatial dependence may grow with the sample size. This slows down
the convergence speed of the maximum likelihood estimators (Lee, 2004a), making the
concentrated score function (the key element of the LM test) more biased.

There are other LM tests for other spatial models that are derived under normal as-
sumptions such as Baltagi et al. (2003), and the LM test for spatial lag effect in the
linear spatial autoregressive models (Anselin, 1988) and panel linear spatial autoregres-
sive models (Debarsy and Ertur, 2010), which can be studied in a similar manner. This
paper recommends the standardized version of these LM tests because it offers improve-
ments in their finite sample performance, in addition to preserving the simplicity of the
original LM tests so that they can be easily adopted by applied researchers.

Two related and important issues: bootstrap and heteroskedasticity, deserve some fur-
ther discussions as both are of potential interest for future research.6 The two bootstrap
tests and the corresponding Monte Carlo results presented in this paper are rather encour-
aging. The questions are whether similar results can be obtained for more complicated
models, and whether a formal justification for the validity of the bootstrap methods can
be given in a more general framework. A detailed study of these issues is beyond the
scope of this paper. We plan to pursue them in future research. Another important issue
in testing spatial error dependence is the possible existence of heteroskedasticity. Our
tests are developed under the assumption that the idiosyncratic errors are homoskedas-
tic. By extending the idea of Born and Breitung (2011), we have successfully obtained
SLMOPG, which greatly improves upon their LMOPG in case of homoskedasticity. However,
the finite sample mean correction in SLMOPG is still subject to the homoskedasticity as-
sumption. Nevertheless, the derivation of SLMOPG sheds much light on a possible solution
to the general issue of standardizing spatial LM tests so that they are robust against
unknown heteroskedasticity in both large and finite samples.

ACKNOWLEDGEMENTS

We are grateful to the Co-Editor, Oliver Linton, and the anonymous referees for helpful
comments and suggestions. Zhenlin Yang gratefully acknowledges support from a research
grant (Grant number: C244/MSS11E006) at Singapore Management University.

REFERENCES

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic, Dor-
drecht.

Anselin, L. (2001). Rao’s score test in spatial econometrics. Journal of Statistical Plan-
ning and Inferences 97, 113-139.

Anselin, L. and A. K. Bera (1998). Spatial dependence in linear regression models with an

6We are very grateful to an anonymous referee for raising these two important issues.

c© Royal Economic Society 2012

Appeared in: The Econometrics Journal, 2013, 16, 103-134.



SLM Tests for Spatial Dependence 27

introduction to spatial econometrics. In A. Ullah and D. E. A. Giles (Eds.), Handbook
of Applied Economic Statistics, Volumn 155, 237–289. New York: Marcel Dekker.

Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). New York: John
Wiley & Sons, Ltd.

Baltagi, B.H., Y.J. Chang and Q. Li (1992). Monte Carlo results on several new and
existing tests for the error component model, Journal of Econometrics 54, 95–120.

Baltagi, B. H., S. H. Song and W. Koh (2003). Testing panel data regression models
with spatial error correlation. Journal of Econometrics 117, 123–150.

Born, B. and J. Breitung (2011). Simple regression based tests for spatial dependence.
Econometrics Journal 14, 330–342.

Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal
Statistical Society B 42, 107–108.

Case, A. C. (1991). Spatial patterns in household demand. Econometrica 59, 953-965.
Cliff, A. and J. K. Ord (1972). Testing for spatial autocorrelation among regression

residuals. Geographical Analysis 4, 267–284.
Debarsy, N. and C. Ertur (2010). Testing for spatial autocorrelation in a fixed effects

panel data model. Regional Science and Urban Economics, 40, 453–470.
Florax, R. J. G. M. and T. de Graaff (2004). The performance of diagnostic tests for

spatial dependence in linear regression models: a meta-analysis of simulation studies. In
L. Anselin, R. J. G. M. Florax and S. J. Rey (Eds.) Advances in Spatial Econometrics,
29-63. Berlin: Springer-Verlag.

Hall, P. and J. L. Horowitz (1996). Bootstrap critical values for tests on generalized-
method-of-moments estimators. Econometrica 64, 891–916.

Honda, Y. (1985). Testing the error components model with non-normal disturbances.
Review of Economic Studies 52, 681–690.

Honda, Y. (1991). A standardized test for the error components model with the two-way
layout, Economics Letters 37, 125–128.

Kelejian H. H. and I. R. Prucha (2001). On the asymptotic distribution of the Moran I
test statistic with applications. Journal of Econometrics 104, 219–257.

Koenker, R. (1981). A note on studentising a test for heteroscedasticity. Journal of
Econometrics 17, 107–112.

Lee, L. F. (2004a). Asymptotic distributions of quasi-maximum likelihood estimators for
spatial autoregressive models. Econometrica 72, 1899–1925.

Lee, L. F. (2004b). A supplement to ‘Asymptotic distributions of quasi-maximum like-
lihood estimators for spatial autoregressive models’. Working paper, Department of
Economics, Ohio State University.

Lee, L. F. (2007). Identification and estimation of econometric models with group inter-
action, contextual factors and fixed effects. Journal of Econometrics 140, 333–374.

Lee, L. F. and J. Yu (2010). Estimation of spatial autoregressive panel data models with
fixed effects. Journal of Econometrics 154, 165–185.

Lin, K.-P., Z. Long and M. Wu (2007). Bootstrap test statistics for spatial econometric
models. http://wise.xmu.edu.cn/panel2007/paper/LIN(Kuan-Pin).pdf

Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika 37,
17–33.

Moulton, B. R. and W. C. Randolph (1989). Alternative tests of the error components
model. Econometrica 57, 685–693.

Robinson, P. M. (2008). Correlation testing in time series, spatial and cross-sectional
data. Journal of Econometrics 147, 5–16.

Yang, Z. L. (2010). A robust LM test for spatial error components. Regional Science and
Urban Economics 40, 299–310.

c© Royal Economic Society 2012

Appeared in: The Econometrics Journal, 2013, 16, 103-134.



28 Baltagi-Yang

APPENDIX: PROOFS OF RESULTS

To prove the theorems, we need the following lemmas.

Lemma A.1. (Lee, 2004a): Let v be an N × 1 random vector of iid elements with mean
zero, variance σ2, and finite excess kurtosis κ. Let A be an N×N matrix with its elements
denoted by {aij}. Then E(v′Av) = σ2tr(A) and Var(v′Av) = σ4κ

∑N

i=1 a2
ii + σ4tr(AA′ +

A2).

Lemma A.2. (Lemma A.9, Lee, 2004b): Suppose that A represents a sequence of N ×N
matrices that are uniformly bounded in both row and column sums. Elements of the
N × k matrix X are uniformly bounded; and limn→∞

1
N

X′X exists and is nonsingular.
Let M = IN − X(X′X)−1X′. Then

(i) tr(MA) = tr(A) + O(1)
(ii) tr(A′MA) = tr(A′A) + O(1)
(iii) tr[(MA)2] = tr(A2) + O(1), and
(iv) tr[(A′MA)2] = tr[(MA′A)2] = tr[A′A)2] + O(1)

Furthermore, if the elements of A are such that aij = O(h−1
N ) for all i and j, then

(vi) tr2(MA) = tr2(A) + O( N
hN

), and

(vii)
∑N

i=1[(MA)ii]
2 =

∑N
i=1(aii)

2 + O(h−1
N ),

where (MA)ii are the diagonal elements of MA, and aii are the diagonal elements of A.

Lemma A.3. Let u = G1µ + G2v, where u and v are two independent random vectors
not necessarily of the same length containing, respectively, iid elements of means zero,
variances σ2

µ and σ2
v, skewness αµ and αv, and excess kurtosis κµ and κv; and G1 and

G2 are two conformable non-stochastic matrices. Let A be a conformable square matrix.
Then,

(i) E(u′Au) = σ2
vtr(ΣA),

(ii) Var(u′Au) = σ4
µκµa′

1a1 + σ4
vκva

′
2a2 + σ4

vtr[Σ(A′ + A)ΣA],

where Σ = σ−2
v E(uu′) =

σ2

µ

σ2
v
G1G

′
1+G2G

′
2, a1 = diagv(G′

1AG1), and a2 = diagv(G′
2AG2).

Proof of Lemma A.3: The result (i) is trivial. For ii), we have,

u′Au = µ′G′
1AG1µ + v′G′

2AG2v + µ′G′
1(A + A′)G2v.

It is easy to see that the three terms are uncorrelated. Thus,

Var(u′Au) = Var(µ′G′
1AG1µ) + Var(v′G′

2AG2v) + Var[µ′G′
1(A

′ + A)G2v].

From Lemma A.1, we obtain Var(µ′G′
1AG1µ) = σ4

µκµa′
1a1 +σ4

µtr[AG1G
′
1(A

′ +A)G1G
′
1],

and Var(v′G′
2AG2v) = σ4

vκva
′
2a2 + σ4

vtr[AG2G
′
2(A

′ + A)G2G
′
2]. It is easy to show that

Var(µ′G′
1(A

′ + A)G2v) = σ2
µσ2

vtr[(A′ + A)G2G
′
2(A

′ + A)G1G
′
1]. Putting these three ex-

pressions together leads to (ii). �

Proof of Theorem 2.1: First, we note that

ũ′Wũ − S1ũ
′ũ = ũ′(W − S1IN )ũ = u′M(W − S1IN )Mu = u′Au.
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Under H0 and Assumption 2.1, Lemma A.1 is applicable to u′Au, which gives Eu′Au =
σ2

εtrA = 0 and Var(u′Au) = σ4
εκε

∑n
i=1 a2

ii + σ4
ε [tr(AA′) + tr(A2)]. Letting W ∗ = W −

S1IN , we have A = MW ∗M . By Lemma A.2(i) and Assumption 2.2, tr(WM) = O(1)
which gives S1 = O(N−1). Hence, the elements of W ∗ are of uniform order O(h−1

N ).
Under Assumption 2.3, M is uniformly bounded in both row and column sums (Lee,
2004a, Appendix A). It follows that the elements of A are of uniform order O(1/hN),
and that the row and column sums of the matrix A are uniformly bounded. Thus, the
generalized central limit theorem for linear-quadratic forms of Lee (2004a, Appendix A)
is applicable,7 which shows that u′Au is asymptotically normal, or equivalently,

u′Au

σ2
ε(κεS2 + S3)

1

2

=
ũ′Wũ − S1ũ

′ũ

σ2
ε(κεS2 + S3)

1

2

D−→ N(0, 1).

Now, it is easy to show that under H0 σ̃2
ε ≡ ũ′ũ/N

p−→ σ2
ε and κ̃ε ≡ 1

nσ̃4
ε

∑n
i=1 ũ4

i −3
p−→

κε (see Yang, 2010) for the proof of a similar result). The result (i) thus follows from
Slutsky’s theorem by replacing σε by σ̃ε and κε by κ̃ε.

To prove the asymptotic equivalence of LMEI and SLMEI, we note that

SLMEI =

(

S0

κ̃εS2 + S3

)
1

2

LMEI −
NS1

(κ̃εS2 + S3)
1

2

. (A.1)

Thus, it is sufficient to show that the factor in front of LMEI is Op(1) and the second
term is op(1). As the elements {w∗

ij} of W ∗ are uniformly O(h−1
N ), Lemma A.2(vi)

and Assumption 2.2 (wii = 0) lead to S2 =
∑n

i=1 a2
ii =

∑N
i=1(w

∗
ii)

2 + O(h−1
N ) =

O(h−1
N ). Lemma A.2(ii) and (iii) lead to S3 = S0 + O(1). Since the elements of W

are uniformly O(h−1
N ) and the row sums of W are uniformly bounded, it follows that

the elements of WW ′ and W 2 are uniformly O(h−1
N ). Hence, S0 is O(N/hN), and

so is S3. Furthermore, κ̃ε = Op(1). These lead to (S0/(κ̃εS2 + S3))
1

2 = Op(1) and

NS1/(κ̃εS2 + S3)
1

2 = Op((hN/N)
1

2 ) = op(1), showing that LMB ∼ LM∗
B. Similarly, one

can show that Var(I) ∼ S0, and hence LMB ∼ I∗. Finally, it is evident that Io ∼ I∗. �

Proof of Theorem 2.2: To show (i), we have, ũ′(W −S1IN )ũ = u′Au = u′(Al+A′
u
)u+

u′Adu = u′ζ + u′Adu. It can be shown that (a) u′ζ =
∑n

i=1 uiζi and u′Adu =
∑n

i= aiiu
2
i

are uncorrelated, and (b) uiζi and ujζj , i 6= j, are uncorrelated, where {aii} are the
diagonal elements of A. These lead to a natural estimator of Var(u′Au):

n
∑

i=1

ũ2
i ζ̃

2
i +

n
∑

i=1

a2
iiũ

4
i .

The result (i) thus follows from 1
N

(
∑N

i=1 ũ2
i ζ̃

2
i +
∑n

i=1 a2
iiũ

4
i )− 1

N
σ4

ε(κεS2 +S3)
p−→ 0, and

the result (ii) follows from (a) 1√
N

ũ′(W−S1IN)ũ− 1√
N

ũ′Wũ
p−→ 0, and (b) 1

N
(
∑N

i=1 ũ2
i ζ̃

2
i +

∑n
i=1 a2

iiũ
4
i ) − 1

N

∑N
i=1 ũ2

i ξ̃
2
i

p−→ 0, which are all trivial. �

Proof of Theorem 3.1: We have ũ = Y −Xβ̃ = Y −X(X′Σ̃−1X)−1X′Σ̃−1Y ≡ M(ρ̃)Y .
The numerator of LMRE becomes ũ′A(ρ̃)ũ = Y ′M ′(ρ̃)A(ρ̃)M(ρ̃)Y = u′M ′(ρ̃)A(ρ̃)M(ρ̃)u ≡

7Lee (2004a) generalized the results of Kelejian and Prucha (2001) to cover the case where hN is
unbounded. Lee’s results require the matrix A to be symmetric. If it is not, it can be replaced by
1

2
(A + A′).
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u′C0(ρ̃)u. By the mean value theorem,

u′C0(ρ̃)u = u′C0(ρ)u + u′Ċ0(ρ̄)u (ρ̃ − ρ),

where ρ̄ lies between ρ̃ and ρ, Ċ0(ρ) =
∂C0(ρ)

∂ρ
= 2M ′(ρ)[ρ(J̄T⊗W )−(J̄T⊗IN )P (ρ)A(ρ)]M(ρ),

and P (ρ) = X(X′Σ−1
0 X)−1X′. From the results of Lee (2004a, Appendix), it is easy to

see the elements of C0(ρ) are of uniform order O(1/hN) uniformly in ρ, and so are
the elements of Ċ0(ρ̄). As ρ̃ is consistent, it follows that E[u′C0(ρ̃)u] ∼ E[u′C0(ρ)u] =
σ2

vtr[Σ0C0(ρ)]. This leads to a centered quantity ũ′A(ρ̃)ũ− σ2
vtr[Σ0C0(ρ)], or its feasible

version:

ũ′A(ρ̃)ũ − 1

NT − k
tr[Σ̃0C0(ρ̃)] ũ′Σ̃−1

0 ũ = ũ′(Ã − s̃0Σ̃
−1
0 )ũ,

which gives the numerator of SLMSE.
As ũ′(Ã− s̃0Σ̃

−1
0 )ũ = u′M(ρ̃)′(Ã− s̃0Σ̃

−1
0 )M(ρ̃)u = u′C(ρ̃)u, applying the mean value

theorem again leads to u′C(ρ̃)u ∼ u′C(ρ)u. It follows that Var[u′C(ρ̃)u] ∼ Var[u′C(ρ)u].
Now, u′C(ρ)u can be decomposed into the following three terms,

µ′(ι′T ⊗ IN)C(ρ)(ιT ⊗ IN)µ + v′C(ρ)v + µ′(ι′T ⊗ IN)C(ρ)v,

which are either independent or asymptotically independent. Thus, the asymptotic nor-
mality of the first two terms on the right hand side of the above equation follow from
the generalized central limit theorem for linear-quadratic forms of Lee (2004a, Appendix
A). The asymptotic normality of the last term follows from the fact that the two ran-
dom vectors involved are independent. The mean and variance of u′C(ρ)u can be easily
obtained from Lemma A.3 in the Appendix. In fact, E(u′C(ρ)u) = 0, and

Var(u′C(ρ)u) = σ4
v{φ2κµa′

1a1 + κva′
2a2 + tr[Σ0(C(ρ)′ + C(ρ))Σ0C(ρ)]}.

Thus the result in (i) follows and SLMRE
D−→ N(0, 1).

To prove the result in (ii), let X(ρ) = Σ
− 1

2

0 X and M∗(ρ) = INT−X(ρ)[X′(ρ)X(ρ)]−1X′(ρ).

Assumption 3.3 and the structure of Σ
− 1

2

0 guarantee that the elements of X(ρ) are
bounded uniformly in both N and ρ. Thus, Lemma A.2 in the Appendix is applicable

on M∗(ρ) for each ρ. We have C0(ρ) = M ′(ρ)A(ρ)M(ρ) = Σ
− 1

2

0 M∗(ρ)A(ρ)M∗(ρ)Σ
− 1

2

0 .
Thus,

tr[Σ0C0(ρ)] = tr[M∗(ρ)A(ρ)M∗(ρ)Σ0 ]

= tr[A(ρ)M∗(ρ)Σ0] + O(1) (by Lemma A.2)

= tr[M∗(ρ)Σ0A(ρ)] + O(1)

= tr[Σ0A(ρ)] + O(1) (by Lemma A.2)

= O(1).

Thus, a0(ρ) = 1
NT−k

tr(Σ0C0(ρ)] = O( 1
N

). Similarly, by successively applying Lemma A.2,
one shows that

tr[Σ0(C0(ρ)′ + C0(ρ))Σ0C0(ρ)] = tr[M∗(ρ)(A(ρ)′ + A(ρ))M∗(ρ)Σ0M
∗(ρ)A(ρ)M∗(ρ)Σ0]

= tr[(A(ρ)′ + A(ρ))Σ0A(ρ)Σ0 ] + O(1)

= (T − 1 + ρ2)S0 + O(1).

It follows that tr[Σ0(C(ρ)′ + C(ρ))Σ0C(ρ)] = (T − 1 + ρ2)S0 + O(1) as C(ρ) = C0(ρ) −
a0(ρ)Σ−1

0 M(ρ) . Under Assumption 3.2, the elements of W 2 and WW ′ are of uniform
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order O(1/hN). It follows that S0, the quantity in LMRE, is O(N/hN ). Hence,

tr[Σ0C(ρ)Σ0C(ρ)] ∼ (T − 1 + ρ2)S0 = O(N/hN).

Finally, Lemma A.2(vii) in the Appendix leads to a′
1a1 = O(1/hN) and a′

2a2 = O(1/hN).
The result in (ii) thus follows and the two LM tests given in (3.6) and (3.8) are asymp-
totically equivalent. �

Proof of Theorem 3.2: The proof of this theorem parallels that of Theorem 2.1. �

Proof of Corollary 3.1: Note that (ε∗1, ε
∗
2, · · · , ε∗T−1) = (ε1, ε2, · · · , εT )FT,T−1. With

ε∗′i· denoting the ith row of the N × (T − 1) matrix (ε∗1 , ε
∗
2, · · · , ε∗T−1) and ε′i· the ith row

of the N × T matrix (ε1 , ε2, · · · , εT ), we have

Var(1′T−1ε
∗
i·) = Var(1′T−1F

′
T,T−1εi·) = 1′T−1F

′
T,T−1Var(εi·)FT,T−11T−1 = (T − 1)σ2

ε.

Denoting c = FT,T−11T−1, and applying Lemma A.1 in Appendix, we have

Var[(1′T−1ε
∗
i·)

2] = Var[(c′εi·)
2] = Var[ε′i·(cc

′)εi·) = σ4
vκv

T
∑

t=1

c4
t + 2(T − 1)2σ4

v.

It follows that E[(1′T−1ε
∗
i·)

4] = E[(c′εi·)
4] = σ4

vκv

∑T
t=1 c4

t + 3(T − 1)2σ4
v. As c′εi· are iid,

Kolmogorov’s law of large numbers ensures that

1

N

N
∑

i=1

(1′T−1ε
∗
i·)

4 → σ4
vκv

T
∑

t=1

c4
t + 3(T − 1)2σ4

v.

The result follows by moving the terms other than κv to the left and then replacing ε∗i·
by ε̃∗i·, and σ2

v by 1
N(T−1) ε̃

∗′ε̃∗. �
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