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Abstract

To test the existence of spatial dependence in an econometric model, a convenient test is the

Lagrange Multiplier (LM) test. However, evidence shows that, in finite samples, the LM test

referring to asymptotic critical values may suffer from the problems of size distortion and low power,

which become worse with a denser spatial weight matrix. In this paper, residual-based bootstrap

methods are introduced for asymptotically refined approximations to the finite sample critical values

of the LM statistics. Conditions for their validity are clearly laid out and formal justifications are

given in general, and in details under several popular spatial LM tests using Edgeworth expansions.

Monte Carlo results show that when the conditions are not fully met, bootstrap may lead to

unstable critical values that change significantly with the alternative, whereas when all conditions

are met, bootstrap critical values are very stable, approximate much better the finite sample critical

values than those based on asymptotics, and lead to significantly improved size and power. The

methods are further demonstrated using more general spatial LM tests, in connection with local

misspecification and unknown heteroskedasticity.
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1 Introduction

To test the existence of spatial dependence in an econometric model, a convenient test is the La-
grange Multiplier (LM) test as it requires model estimation only under the null hypothesis (Anselin,
1988b). However, evidence shows that, in finite samples, the true sizes of the LM test referring to the
asymptotic critical values can be quite different from their nominal sizes, and more so with a denser
spatial weight matrix and with one-sided tests. As a result, the LM tests in such circumstances may
have low power in detecting a ‘negative’ or ‘positive’ spatial dependence. Also, LM tests may not be
robust against the misspecification in error distribution. Standardization (Koenker, 1981; Robinson,
2008; Yang, 2010; Yang and Shen, 2011; Baltagi and Yang, 2013) robustifies the LM tests. It also helps
alleviate the problem of size distortion for two-sided tests, but not for one-sided tests. Furthermore,
standardization does not solve the problem of low power in detecting a negative or positive spatial
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dependence. The reason is that a denser spatial weight matrix makes the shape of the finite-sample
distribution of the LM statistic deviate more from the shape of its limiting distribution (rendering the
asymptotic critical values less accurate). In the special case where the LM test is univariate and asymp-
totically standard normal under the null, a denser spatial weight makes its finite sample distribution
more skewed to the left or right depending on the design of the regressors. Standardization only changes
the location and scale, but not the shape of the distribution of the LM test. This is why it cannot solve
the problems of size distortion and low power for one-sided tests. However, we demonstrate in this
paper that standardization coupled with bootstrap provide a satisfactory solution to these problems.

It is well documented in the econometrics literature that bootstrap method is able to provide asymp-
totic refinements on the critical values of a test statistic if this statistic is asymptotically pivotal under
the null hypothesis. See, among others, Beran (1988), Hall (1992), Horowitz (1994, 1997), Hall and
Horowitz (1996), Davidson and MacKinnon (1999, 2006), van Giersbergen and Kiviet (2002), MacK-
innon (2002), Cameron and Trivedi (2005, Ch. 11), and Godfrey (2009), for theoretical analyses and
numerical evidence for many different type of econometric models. However, as pointed out by Davidson
(2007) and reiterated in Godfrey (2009, p. 82), it is not always the case that the asymptotic analy-
sis seems to provide a good explanation of what is observed in finite samples. For the residual-based
bootstrap method which is followed in this paper, Godfrey (2009, Ch. 3), based on the work of van
Giersbergen and Kiviet (2002) and MacKinnon (2002), give a detailed discussion on the type of resid-
uals (restricted under the null hypothesis or unrestricted) to be resampled and the type of estimates
(restricted or unrestricted) of the nuisance parameters to be used as parameters in the bootstrap world.
However, the debate on the choices of parameter estimates and residuals does not seem to have been
settled. These issues carry over to spatial models. In contrast to the vast literature on the bootstrap
tests in general econometrics, such a literature in spatial econometrics is rather thin, in both appli-
cations (e.g., Burridge and Fingleton, 2010; Lin et al., 2007, 2009, 2011; and Burridge, 2012), and in
theory (e.g., Yang, 2011; and Jin and Lee, 2012a,b). This research completes Yang (2011) by providing
second-order asymptotic analyses in LM test setting, which provides a good explanation of what is
observed in finite sample and settles the debate over the choice of bootstrap parameters.

Residual-based bootstrap methods are introduced for asymptotically refined approximations to the
finite sample critical values of the LM statistics. Conditions for their validity are clearly laid out and
formal justifications are given in general, and in details under several popular spatial LM tests, namely,
LM tests for spatial error dependence (SED), LM tests for spatial lag dependence (SLD), and LM tests
for spatial error components (SEC). The key methodologies used in the proofs are asymptotic expansions
(Beran, 1988) for general LM tests, and Edgeworth expansions (Hall, 1992, Ch. 3) for the three specific
LM tests. The validity of the proposed methods is further demonstrated using more complicated spatial
LM tests: joint LM test for SLD and SED, LM test of SED allowing SLD and vise versa, spatial LM
tests under local misspecification, and spatial LM tests with unknown heteroskedasticity. Our results
show that with the unrestricted estimates/residuals, bootstrap is able to provide critical values that
are stable (with respect to the true value of the tested parameters) and achieve full asymptotically
refined approximations to the finite sample critical values of the test statistic, leading to correct size
and reliable power. In contrast, use of restricted estimates/residuals, the bootstrap critical values can
be either smaller or larger (in absolute value) than the ‘true’ values when the null is false, leading to
the power of the test that is either higher or lower than the ‘true’ underlining power. However, we
show that while use of restricted estimates/residuals does not lead to full asymptotic refinements, it
does provide partial asymptotic refinements. This explains why in certain situations bootstrap based

2

To appear in  Journal of Econometrics 185 (2015) 33-59 
DOI: http://dx.doi.org/10.1016/j.jeconom.2014.10.005



on restricted estimates/residuals still leads to improved results over the large sample approximations.
The proposed bootstrap methods are applicable to a wide class of LM testing situations, not only the

LM tests for spatial dependence. We demonstrate that for these methods to work well, it is important
that (i) the bootstrap DGP resembles the null model, (ii) the LM statistic is asymptotically pivotal
under the null or its robustified/standardized version must be used, (iii) the estimates of the nuisance
parameters, to be used as parameters in the bootstrap world, are consistent whether or not the null
hypothesis is true, (iv) the empirical distribution function (EDF) of the residuals to be resampled con-
sistently estimates the error distribution whether or not the null hypothesis is true, and (v) calculation
of the bootstrapped values of the LM statistic is done under the null hypothesis.

Among these points, (i) and (ii) are well understood and agreed among the researchers, (v) follows
the nature of LM or score tests, and (iii) and (iv) lead in general to the use of unrestricted parameter
estimates and unrestricted residuals. Points (iii) and (iv), related to the major subjects of debate,
make sense because in reality one does not know whether or not the null hypothesis is true. In order
for the bootstrap world to be able to mimic the real world at the null, it must be set up such that
the ‘parameters’ in the bootstrap world mimic (converge to) the nuisance parameters in the real world,
and the errors in the bootstrap world mimic the true errors in the real world whether the null is true
or false. These can only be guaranteed in general if the unrestricted estimates and residuals are used.
Clearly, (ii) is typically true when the error distribution is correctly specified, but may not be so when
it is misspecified. In this case, bootstrap may not be able to provide the desired level of improvement
on the critical values, and a robust version of the LM statistic needs to be in place.

We conclude that the general validity of the proposed bootstrap methods lies upon the use of unre-
stricted estimates of the nuisance parameters, unrestricted residuals, and an LM-type statistic robust
against distributional misspecification. There are special cases where it doesn’t matter whether to use
the unrestricted or restricted estimates and residuals (see Section 3 for details), which is perhaps the
reason why some authors advocate the use of the restricted estimates and residuals as they are often
simpler computationally than their unrestricted counterparts. However, the additional computational
cost of the proposed procedure occurs only at the initial estimation stage, not in the bootstrap process.

Section 2 presents the results under a general LM test framework. Section 3 considers the three
special cases (LM tests for SLD, SED and SEC) where each case is supplemented with a set of Monte
Carlo results. Section 4 provides further demonstrations of the proposed methods using more compli-
cated spatial LM tests. Section 5 concludes the paper. Appendix A contains some derivations and
fundamental lemmas, Appendix B provides some additional details of the proofs for Section 3, and
Appendix C describes the general setting of the Monte Carlo experiments.

2 Bootstrap Critical Values for LM Tests

Consider an LM test statistic LMn(λ) ≡ LMn(Yn, Xn, Wn; λ) for testing the spatial dependence
represented by the parameter (vector) λ, in a model with dependent variable Yn conditional on a set of
independent variables Xn, a spatial weight matrix Wn

2, and parameters θ and λ, where the parameter
vector θ may contain the regression coefficients, error standard deviations, etc., depending on the model
considered. Typically, LMn(λ) is not a pivotal quantity as its finite sample distribution depends on
the parameters θ and λ, but is asymptotically pivotal if the error distribution is correctly specified, in

2It is a known matrix that specifies the relationship (distance) among the spatial units. In case when λ is a vector,

each component of it may associate with a different spatial weight matrix.
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the sense that its limiting distribution is free of parameters, such as standard normal or chi-square,
depending on whether λ is a scalar or a vector. However, if the error distribution is misspecified,
LMn(λ) may not even be an asymptotically pivotal quantity as its limiting distribution may depend on
the unknown error distribution, as well as the model parameters (see Section 3.3 for such a case), and
this will have important implications on the performance of the bootstrap procedures (Beran, 1988).

The most interesting inference in a spatial model is perhaps to test H0 : λ = 0, i.e., non-existence of
spatial dependence, versus Ha : λ �= 0 (< 0, > 0), i.e., existence of spatial dependence (negative spatial
dependence or positive spatial dependence). To test this hypothesis using the test statistic LMn(0), one
often refers to the asymptotic critical values of LMn(0) at H0, or LMn(0)|H0 . However, as argued in the
introduction, these asymptotic critical values may give poor approximations in cases of heavy spatial
dependence.3 It is thus desirable to find better approximations to the finite sample critical values of
LMn(0)|H0 . As LMn(λ) is not a pivotal quantity, it is not possible to find the exact finite sample critical
values. However, if LMn(λ) is asymptotically pivotal, the bootstrap approach can be used to obtain
critical values that are more accurate than the asymptotic critical values, according to Beran (1988),
Hall (1992), Horowitz (1994) and Hall and Horowitz (1996). See also Cameron and Trivedi (2005, Ch.
11) and Godfrey (2009, Ch. 2 & 3) for detailed descriptions on bootstrap tests.

Our discussions above and below are for the LM tests of spatial regressions models. However, they
can be applied to the LM tests of other types of models as well. It is the unique feature of LM tests
(requiring the estimation of the null model only) and the unique feature of the spatial models (finite
sample behavior of the LM tests of spatial dependence can be heavily affected by the spatial weight
matrix Wn) that make it more appealing to study bootstrap methods in approximating the finite sample
critical values of spatial LM statistics.

2.1 The methods

To facilitate our discussions, suppose that the model can be written as,

q(Yn, Xn, Wn; θ, λ) = en, (1)

where en is an n-vector of model errors, with iid elements {en,i}, of zero mean, unit variance, and
cumulative distribution function (CDF) F . The error standard deviation σ is absorbed into θ.4 Suppose
that the model can be inverted to give

Yn = h(Xn , Wn; θ, λ; en). (2)

Consider a general hypothesis: H0 : λ = λ0 versus Ha : λ �= λ0 (< λ0, > λ0). The test statistic to
be used is the LMn(λ0), derived under a ‘specified’ error distribution, typically N(0, 1), although the
true F may not be the CDF of N(0, 1). We are interested in the finite sample null CDF Gn(·, θ,F)

3The denser the matrix Wn is, the more skewed is the finite sample null distribution of the LM test, e.g., the first three

cumulants of LMSED|H0 considered in Section 3.1 are shown to be O(
p

hn/n), 1+O(hn/n), and O(
p

hn/n), respectively,

where hn can be understood as a dense measure of Wn as it corresponds to the number of non-zero elements in each row

of Wn. This suggests that for a fixed n the first three cumulants of LMSED can be quite different from their asymptotic

values 0, 1 and 0, and more so with a larger hn (denser Wn). See Section 3.1 and the proof of Proposition 3.1 for details.

The same results hold for the other spatial LM tests considered in Subsections 3.2 and 3.3, and in Section 4.
4Model (1) encompasses many popular spatial models, linear or nonlinear, such as SAR, SARAR, SEC, spatial probit,

spatial Tobit, etc.; see Kelejian and Prucha (2001). It can be extended to include more than one spatial weight matrix

and to have non-spherical disturbances of the form un ∼ (0, σ2Ωn(ρ)), where Ωn(ρ) is an n × n positive definite matrix,

known up to a finite number of parameters ρ. Writing un = σΩ
1/2
n (ρ)en and merging σ and ρ into θ give the form of (1).
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of LMn(λ0), in particular the finite sample critical values of LMn(λ0)|H0 , cn(α; θ,F), 0 < α < 1, and
investigate how bootstrap can provide a valid method for approximating these critical values.

In what follows, θ̃n denotes the restricted estimate of θ under H0, and (θ̂n , λ̂n) the unrestricted
estimates of (θ, λ). The observable counterpart of en is referred to as residuals. If the residuals are
obtained from the null model, i.e., ẽn = q(Yn, Xn, Wn; θ̃n, λ0), they are called the restricted residuals; if
they are obtained from the full model, i.e., ên = q(Yn, Xn, Wn; θ̂n, λ̂n), they are called the unrestricted
residuals. The corresponding empirical distribution function (EDF) of the restricted residuals is denoted
as F̃n, and that of the unrestricted residuals as F̂n.

Note that the null model is determined by the pair {θ,F}, and that under the LM framework only
the estimation of the null model is required. In order to approximate the finite sample null distribution
(or critical values) of LMn(λ0), the bootstrap world must be set up so that it is able to mimic the real
world at the null. Thus, the bootstrap DGP should take the following form:

Y ∗
n = h(Xn, Wn; θ̈n, λ0; e∗n), e∗n

iid∼ F̈n, (3)

where θ̈n is the bootstrap parameter vector (an estimate of the nuisance parameter vector based on
the original data) which mimics (consistently estimates) θ, and F̈n is the bootstrap error distribution
(the EDF of some type of residuals) mimicking (consistently estimating) F . The steps for finding the
bootstrap critical values for LMn(λ0)|H0 is summarized as follows:

(a) Draw a bootstrap sample e∗n from F̈n;

(b) Compute Y ∗
n = h(Xn, Wn; θ̈n, λ0; e∗n) to obtain the bootstrap data {Y ∗

n , Xn, Wn};
(c) Estimate the null model based on {Y ∗

n , Xn, Wn}, and then compute a bootstrapped value
LMb

n(λ0) of LMn(λ0)|H0 ;

(d) Repeat (a)-(c) B times to obtain the EDF of {LMb
n(λ0)}B

b=1, and its α-quantile gives a bootstrap
estimate of cn(α; θ,F), the true finite sample α-quantile of LMn(λ0)|H0 .5

In reality, one does not know whether or not H0 is true, thus it incurs an important issue: the choice
of the pair {θ̈n, F̈n}. We argue in this paper that for the bootstrap DGP Y ∗

n = h(Xn, Wn; θ̈n, λ0; e∗n)
to be able to mimic the real world null DGP Yn = h(Xn, Wn; θ, λ0; en) in general, {θ̈n, F̈n} must be
consistent for {θ,F} whether or not H0 is true. In this spirit, the only choice for {θ̈n, F̈n} that can be
correct in general is {θ̂n, F̂n}. As this resampling scheme is based on the unrestricted estimates of the
nuisance parameters and the unrestricted residuals, it is termed as the unrestricted resampling scheme,
or the resampling scheme with unrestricted estimates and unrestricted residuals (RSuu).

There are many special cases where θ̃n and/or F̃n are consistent whether or not H0 is true. This
leads to other choices for the pair {θ̈n, F̈n}: {θ̃n, F̃n}, {θ̂n, F̃n}, or {θ̃n, F̂n}, giving, respectively, the
so-called the restricted resampling scheme (RSrr), and the hybrid resampling schemes 1 (RSur) and the
hybrid resampling schemes 2 (RSru), to adopt the similar terms as in Godfrey (2009).

Alternative to the bootstrap method based on RSuu, one may consider the bootstrap analog of H0,
H∗

0 : λ = λ̂n. To test H∗
0 , one generates the response values through the estimated full model, and

performs bootstrap estimation conditional on λ̂n. Thus, the bootstrap critical values of LMn(λ0)|H0

are simply the empirical quantiles of the bootstrap distribution of LMn(λ̂n) conditional on λ̂n. This
resampling scheme is denoted as RSuf , and the corresponding bootstrap procedure is as follows:

5By choosing an arbitrarily large B, the EDF of {LMb
n(λ0)}B

b=1 gives an arbitrarily accurate approximation to the

true bootstrap CDF of LMn(λ0)|H0 and its quantiles (Efron, 1978; Beran, 1988). Hence, in the subsequent discussions

on the validity of the proposed bootstrap method this type of approximation errors are ignored.

5
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(a) Draw a bootstrap sample ê∗n from the EDF F̂n of ên,

(b) Compute Y ∗
n = h(Xn, Wn; θ̂n, λ̂n; ê∗n) to obtain the bootstrap data {Y ∗

n , Xn, Wn},
(c) Conditional on λ̂n, estimate the model based on {Y ∗

n , Xn, Wn}, and then compute LMn(λ̂n) and
denote its value as LMb

n(λ̂n),

(d) Repeat (a)-(c) B times to obtain the EDF of {LMb
n(λ̂n)}B

b=1, and the quantiles of it give the
bootstrap critical values of LMn(λ0)|H0 .

Among the five resampling schemes (RSuu, RSrr , RSur, RSru, RSuf) described above, RSrr is the
simplest as the estimation of λ is not required in both the model estimation based on the original data
and the model estimation based on the bootstrap data. This method is attractive, but it is valid only
under special scenarios. Other schemes all require the estimation of λ based on the original data, but
not based on the bootstrapped data, to be in line with the LM principle. The proposed bootstrap
methods preserve the feature of LM tests in the process of bootstrapping the values of the test statistic,
thus greatly alleviate the computational burden as compared with bootstrapping, e.g., a Wald type test,
or a likelihood ratio type test where the full model is estimated in every bootstrap sample. This point
is particularly relevant to the tests of spatial dependence as spatial parameters often enter the model
in a nonlinear fashion, and hence the estimation of them must be through a numerical optimization,
which is avoided by the LM tests.

2.2 Validity of the bootstrap methods

When do the bootstrap methods described above offer asymptotically refined (higher-order) ap-
proximation to the finite sample critical values of the LM statistic? To address this issue, we need the
following general assumptions regarding the LM test statistic LMn(λ0) and its finite sample null distri-
bution Gn(·, θ,F) at the true (θ,F). Let Nθ,F denote a neighborhood of (θ,F). When the ‘specified’
CDF for en,i (i.e., the CDF under which LMn(λ0) is developed) is the same as F , we say F is correctly
specified, otherwise misspecified.

Assumption G1. F is correctly specified such that (i) LMn(λ0) developed under F is asymptotically
pivotal when H0 is true; (ii) (θ̃n, F̃n) is

√
n-consistent for (θ,F) under H0; and (iii) (θ̂n, F̂n) is

√
n-

consistent for (θ,F) whether or not H0 is true.

Assumption G2. F is misspecified but Assumptions G1(ii)-(iii) remain. Furthermore, either
LMn(λ0) is robust (i.e., it remains to be asymptotically pivotal at H0) or its robust version, denoted as
SLMn(λ0), exists and is used.

Assumption G3. For (ϑ, F ) ∈ Nθ,F , the null CDF Gn(·, ϑ, F ) converges weakly to a limit null
CDF G(·, ϑ, F ) as n increases, and admits the following asymptotic expansion uniformly in t and locally
uniformly for (ϑ, F ) ∈ Nθ,F :

Gn(t, ϑ, F ) = G(t, ϑ, F ) + n− 1
2 g(t, ϑ, F ) + O(n−1), (4)

where G(·, ϑ, F ) is differentiable and strictly monotone over its support, and g(t, ϑ, F ) is a functional of
(t, ϑ, F ) differentiable in (ϑ, F ).

Assumption G1 is standard for likelihood-based inferences. Assumption G2 (consistency part) is
also standard for quasi-likelihood-based inferences (see, e.g., White, 1982; White, 1994). Assumption
G3 is adapted from Beran (1988). The difference is that the θ in our set-up contains only the nuisance
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parameters. Clearly, the limit null CDF G(t, θ,F) depends on (θ,F) in general, unless F is correctly
specified. In this case, an asymptotically robust version, SLMn(λ0), has to be used for the bootstrap
methods to be effective. In an important special case where λ0 is a scalar and the test statistic is
asymptotic N(0, 1), the asymptotic expansion (4) at (θ,F) reduces to:

Gn(t, θ,F) = Φ(t) + n− 1
2 φ(t)p(t, θ,F) + O(n−1), (5)

where Φ and φ are, respectively, the CDF and pdf of N(0, 1), provided that the jth cumulant κj,n ≡
κj,n(θ,F) of LMn(λ0)H0 can be expanded as a power series in n−1:

κj,n = n− j−2
2 (kj,1 + n−1kj,2 + n−2kj,3 + · · · ), (6)

from which one has p(t, θ,F) = −k1,2 + 1
6
k3,1(1− t2). See Hall (1992, Sec. 2.3) and Section 3 below for

details. The validity of the bootstrap methods given above is summarized below.

Proposition 2.1. Under Assumptions G1 and G3, the bootstrap methods under RSuu and RSuf are
generally valid in that they are both able to provide full asymptotic refinements on the critical values of
the LM tests, with an error of approximation of order O(n−1).

Proposition 2.2. Under Assumptions G2 and G3, if further ∂
∂F g(t, θ,F) = O(n− 1

2 ),6 then F̃n can
be used in place of F̂n, and thus the bootstrap method with RSur is also valid.

Proposition 2.3. Under Assumption G1 or G2, and Assumption G3, if either θ̃n is also consistent
when H0 is false or LM or SLM test is invariant of θ, then θ̃n can be used in place of θ̂n and thus the
bootstrap method with RSru is also valid.

Proposition 2.4. Under Assumptions G2 and G3, if the conditions for both Propositions 2.2 and
2.3 hold, then all the five bootstrap methods are valid.

Remark 2.1: The four propositions give general principles on the proper ways to set up the
bootstrap DGP in bootstrapping the critical values of LM tests, and settle the debate on the choices
of residuals and parameter estimates (e.g., van Giersbergen and Kiviet (2002), MacKinnon (2002), and
Godfrey (2009)) within the LM test framework. For related works on other type of tests, see, e,g,,
Horowitz (1994) and Hall and Horowitz (1996).7

Proof. We present proofs in the main text to facilitate the understanding of the results. We
prove these propositions collectively. Based on the general model specified in (1) and (2), the general
hypothesis stated therein, and the LM statistic LMn(λ0), we have by (2) and under H0, i.e., under the
real world null DGP: Yn = h(Xn, Wn, θ, λ0; en),

LMn(λ0)|H0 ≡ LMn(Yn, Xn, Wn; λ0)

= LMn[h(Xn, Wn, θ, λ0; en), Xn, Wn; λ0]

≡ LMn(Xn, Wn, θ, λ0; en).

The bootstrap DGP that mimics the real world null DGP is Y ∗
n = h(Xn, Wn; θ̈n, λ0; e∗n), where e∗n

iid∼ F̈n.
Based on the bootstrap data (Y ∗

n , Xn, Wn), estimating the null model and computing the bootstrap
6This implies that the terms involving F in Gn(t, θ, F) are smaller in magnitude than their neighboring terms. See

Sections 3 and 4 for such cases.
7Godfrey (2009, p. 82) remarked that there are many published results on the asymptotic refinements associated with

bootstrap tests. This literature is technical and sometimes involves relatively complex asymptotic analysis. However, it

is not always the case that such asymptotic analysis seems to provide a good explanation of what is observed in finite

samples. See also Davidson (2007) for some similar remarks.
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analogue of LMn(λ0), we have

LM∗
n(λ0) ≡ LMn(Y ∗

n , Xn, Wn; λ0)

= LMn[h(Xn, Wn, θ̈n, λ0; e∗n), Xn, Wn; λ0]

≡ LMn(Xn, Wn, θ̈n, λ0; e∗n).

Thus, LM∗
n(λ0) is identical in structure to LMn(λ0)|H0 , suggesting that the bootstrap CDF of LM∗

n(λ0)
has the form Gn(·, θ̈n, F̈n), identical in form to the finite sample CDF Gn(·, θ,F) of LMn(λ0)|H0 .8 If
(θ̈n, F̈n) is consistent for (θ,F) and Gn(·, θ,F) converges weakly to the limit CDF G(·, θ,F) (Assump-
tions G1-G3), it can be easily argued based on the triangular-array convergence that Gn(·, θ̈n, F̈n) con-
verges weakly to G(·, θ,F). This shows that the test based on the bootstrap critical values has correct
sizes asymptotically. When do the bootstrap methods offer asymptotically refined approximations?

Clearly, under Assumption G3, the asymptotic expansion (4) holds for (θ,F), which gives,

Gn(t, θ,F) = G(t, θ,F) + n− 1
2 g(t, θ,F) + O(n−1). (7)

Assume (W.L.O.G.) plimn→∞(θ̈n, F̈n) ∈ Nθ,F . As (4) holds locally uniformly for any (ϑ, F ) ∈ Nθ,F ,
the bootstrap CDF admits the following asymptotic expansion:

Gn(t, θ̈n, F̈n) = G(t, θ̈n, F̈n) + n− 1
2 g(t, θ̈n, F̈n) + Op(n−1). (8)

Comparing (8) with (7), the scenarios under which the bootstrap is able to provide asymptotic refine-
ments on the critical values are clear.

First, for Proposition 2.1, as F is correctly specified, G(t, θ,F) = G(t), i.e., the limit null CDF is
independent of the unknown parameter (θ). As (7) holds locally uniformly in (θ,F), it follows that
G(t, θ̂n, F̂n) = G(t). Taking difference between (7) and (8), we have whether or not H0 is true,

Gn(t, θ,F) − Gn(t, θ̂n, F̂n) = n− 1
2 [g(t, θ,F) − g(t, θ̂n, F̂n)] + Op(n−1) = Op(n−1),

where the latter equality is due to the differentiability of g(·, θ,F) and the
√

n-consistency of (θ̂n, F̂n).
It follows that cn(α, θ,F) − cn(α, θ̂n, F̂n) = Op(n−1). However, cn(α, θ,F) − c(α) = Op(n− 1

2 ), where
c(α) is the asymptotic critical value of LMn(λ0)|H0 or the α-quantile of G(t), showing that the bootstrap
critical value gives a higher-order approximation to the finite sample critical value of LMn(λ0)|H0 than
does the c(α). Thus, the RSuu scheme is valid. Similar arguments lead to the validity of the RSfu

scheme. Finally, when the pair (θ̂n, F̃n), or (θ̃n , F̂n), or (θ̃n, F̃n) is used for (θ̈n, F̈n), i.e., LM∗
n(λ0) is

constructed as if (θ̈n, F̈n) = (θ,F), neither G(t, θ̈n, F̈n) = G(t) nor g(t, θ̈n, F̈n) − g(t, θ,F) = Op(n− 1
2 )

holds in general, because neither θ̃n nor F̃n is generally consistent when H0 is false. This shows that
the remaining resampling schemes cannot be valid in general.

To prove Proposition 2.2, we have in view of (7),

Gn(t, θ̂n, F̃n) = G(t, θ̂n, F̃n) + n− 1
2 g(t, θ̂n, F̃n) + Op(n−1).

The fact that LMn(λ0)|H0 (or its robust version) is asymptotically pivotal even if F is misspecified
implies that G(t, θ,F) = G(t) and that G(t, θ̂n, F̃n) = G(t). Since ∂

∂F g(t, θ,F) = O(n− 1
2 ) and θ̂n is

consistent, it follows that g(t, θ̂n, F̃n)−g(t, θ,F) = Op(n− 1
2 ). The result of Proposition 2.2 thus follows.

The proofs of Propositions 3 and 4 are evident.
8Clearly, Gn(·, θ,F) does not have a closed-form expression in general and hence cannot be evaluated. However, as

remarked in Footnote 5 the EDF of LM∗
n(λ0) offers an arbitrarily accurate approximation to Gn(·, θ̈n, F̈n) for sufficiently

large B. The question that remains is thus how close can Gn(·, θ̈n, F̈n) be to Gn(·, θ,F).
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Remark 2.2: When F is misspecified and LMn(λ0) is not robust such that its limit null CDF
G(t, θ,F) depends on (θ,F), one can easily see from (7) and (8) that G(t, θ̂n, F̂n) typically differs from
G(t, θ,F) by an order of Op(n− 1

2 ), and that G(t, θ̃n, F̃n) may differ from G(t, θ,F) by an order of Op(1)
when H0 is false. This shows that bootstrapping a non-robust LM statistic in case of misspecification
does not improve the critical values, or may even give wrong results.

Remark 2.3: The idea of using a robust/standardized statistic in case of misspecification in error
distribution is in line with the ‘prepivoting’ idea of Beran (1988). Standardization can be viewed as
analytical prepivoting. As indicated by Beran (1988), prepivoting can be iterated in the bootstrap way
to attain further refinements on the critical values.

Remark 2.4: The arguments used in the proofs of the propositions rest on the formal asymptotic
expansion (4) the existence of which can be shown in many cases (see Sec. 3).

3 Bootstrap LM Tests for Spatial Dependence

In this section, we consider several popular spatial LM tests to demonstrate the general methodology
described in the last section. These include the LM tests for spatial error dependence (SED), the LM
tests for spatial lag dependence (SLD), and the LM tests for spatial error components (SEC), presented
respectively in Subsections 3.1-3.3. In each subsection, we present the LM tests (existing or new),
formal arguments for the validity of the five bootstrap methods to supplement the general theoretical
arguments presented in Section 2, and Monte Carlo results to support these arguments.

In what follows, the set of notation used above will be followed closely. Specifically, Yn denotes an
n × 1 vector of response values, Xn an n × k matrix containing the values of nonstochastic regressors
with its first column being a column of ones, Wn is an n × n spatial weight matrix, and F the CDF of
the standardized errors {en,i}, with following conditions maintained.

Assumption S1. The innovations {en,i} are iid random draws from F with mean zero, variance
1, and finite cumulants κj ≡ κj(F), j = 3, 4, 5, 6.

Assumption S2. The elements of Xn are uniformly bounded for all n, and limn→∞ 1
n
X′

nXn exists
and is nonsingular. (These conditions are to be replaced by their stochastic versions if Xn is stochastic.
The results are then interpreted conditionally, given the exogenous Xn.)

Assumption S3. The elements {wn,ij} of Wn are at most of order h−1
n uniformly for all i, j, with

the rate sequence {hn} satisfying hn/n → 0 as n → ∞. {Wn} are uniformly bounded in both row and
column sums with wn,ii = 0 and

∑
j wn,ij = 1 for all i.

We adopt the notation: E∗, Var∗, D∗−→, p∗
−→, op∗(·), etc., to indicate that the expectation, variance,

convergence in distribution, convergence in probability, smaller order of magnitude in probability, etc.,
are with respect to the bootstrap error distribution F̈n, to distinguish from the usual notation corre-
sponding to F . We assume throughout F̈n has a zero mean and a unit variance (which are achievable
through centering and scaling), and jth cumulant κ̈jn ≡ κ̈j(F̈n), j = 3, 4, 5, 6. Further, let tr(A) denote
the trace of a square matrix A, and diagv(A) the column vector formed by the diagonal elements of A.
Denote n/hn by nr. Recall: ‘˜’ means restricted, and ‘ˆ’ means unrestricted.

3.1 Linear Regression with Spatial Error Dependence

We consider the LM test of Burridge (1980) (or Moran’s I) and the standardized LM test of Baltagi
and Yang (2013). As shown in Baltagi and Yang (2013), these tests are robust against nonnormality.
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Also, they are invariant of the nuisance parameters. According to the general principles laid in Section
2, the three bootstrap methods using the unrestricted residuals are valid for any F . Indeed, this result
is shown to be true, and further the two bootstrap methods using the restricted residuals are also valid
if the error distribution is symmetric, but if not they are still able to achieve partial asymptotic refine-
ments. Monte Carlo results confirm these findings and show that the gains from using the bootstrap
critical values can be great. While the literature does contain some works on bootstrap tests for this
model (Lin et al., 2011; Jin and Lee, 2012b) it seems to be lacking on both theoretical justifications
and detailed comparisons on various bootstrap methods.

3.1.1 The model and the LM tests.

The linear regression model with spatial error dependence (SED) takes the form:

Yn = Xnβ + un, un = ρWnun + εn, εn = σen, (9)

where ρ is the spatial parameter, β is a k × 1 vector of regression coefficients, and σ is the error
standard deviation. Clearly, this model falls into the general framework of Model (1) with θ = {β′, σ2}′,
en = q(Yn, Xn, Wn; θ, ρ) = Bn(ρ)(Yn −Xnβ)/σ, and its inverse Yn = Xnβ +σB−1

n (ρ)en, where Bn(ρ) =
In−ρWn and In is an n×n identity matrix. Given ρ, the restricted QMLEs of β and σ2 under Gaussian
likelihood are β̃n(ρ) = [X′

nBn(ρ)′Bn(ρ)Xn ]−1X′
nBn(ρ)′Bn(ρ)Yn and σ̃2

n(ρ) = 1
nY ′

nBn(ρ)′Mn(ρ)Bn(ρ)Yn,
where Mn(ρ) = In − Bn(ρ)Xn[X′

nBn(ρ)′Bn(ρ)Xn ]−1X′
nBn(ρ)′. Maximizing the concentrated quasi

Gaussian likelihood of ρ numerically leads to the unrestricted QMLE ρ̂n of ρ, which upon substitutions
gives the unrestricted QMLEs β̂n ≡ β̃n(ρ̂n) and σ̂2

n ≡ σ̃2
n(ρ̂n) of β and σ2.

We are interested in testing the lack of SED in the model, i.e., H0 : ρ = 0 vs Ha : ρ �= 0 (< 0, > 0),
based on the LM principle. The LM test of Burridge (1980) takes the form:

LMSED =
n√
Kn

ε̃′nWnε̃n

ε̃′nε̃n
, (10)

where ε̃n is the vector of restricted (or OLS) residuals under H0 and Kn = tr(W ′
nWn + WnWn). To

improve the finite sample performance and to enhance the robustness of LMSED , Baltagi and Yang (2013)
introduced a standardized version:

SLMSED =
n√

K†
n + κ̃4na′

nan

ε̃′nW ◦
n ε̃n

ε̃′nε̃n
, (11)

where W ◦
n = Wn − 1

n−k tr(WnMn)In, Mn = Mn(0), K†
n = tr[An(An + A′

n)], an = diagv(An), An =
MnW ◦

nMn, and κ̃4n is the 4th cumulant of ẽn = σ̃−1
n ε̃n (or F̃n). Baltagi and Yang (2013) show that

both LMSED and SLMSED have limiting null distribution N(0, 1) and are robust to F . To implement the
bootstrap method under the RSuf scheme, we derived an LM statistic for a nonzero ρ, LMSED(ρ), and a
standardized version of it, SLMSED(ρ), which are given in (B-2) and (B-3) of Appendix B.

3.1.2 Validity of the bootstrap methods

To see the validity of the various bootstrap methods presented in Section 2, we concentrate on
LMSED. Under the real world null DGP: Yn = Xnβ + σen, ε̃n = σMnen, and

LMSED|H0 =
n√
Kn

e′nMnWnMnen

e′nMnen
. (12)
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which shows LMSED|H0 is invariant of the nuisance parameters, and thus a pivot if F is known, normal
or nonnormal. In this situation, one can simply use Monte Carlo method to find the finite sample critical
values of LMSEC|H0 to any level of accuracy. To be exact, one draws en from the known distribution
F repeatedly to give a sequence of values for LMSED|H0 , and then find the quantiles of this sequence
that serve as approximations to the finite sample quantiles of LMSEC|H0 . When F is unknown and
possibly misspecified, however, LMSED|H0 is not an exact pivot, hence the Monte Carlo method just
described does not work and the bootstrap methods need to be called for to provide asymptotically
refined approximations to the finite sample critical values of LMSED|H0 .

In the bootstrap world, the bootstrap DGP that mimics the real world null DGP is Y ∗
n = Xnβ̈n +

σ̈ne∗n, where the elements of e∗n are random draws from F̈n, the EDF of standardized residuals. Based
on the bootstrap data (Y ∗

n , Xn), computing the OLS estimates of (β̈n, σ̈n), the OLS residuals and the
LM test (10), we have the bootstrap analogue of LMSED|H0 :

LM∗
SED =

n√
Kn

e∗n
′MnWnMne∗n
e∗n

′Mne∗n
, (13)

which shows that LM∗
SED is invariant of β̈n and σ̈2

n. Thus, whether β̈n and σ̈2
n correspond to the restricted

or unrestricted estimates of β and σ makes no difference on the performance of the bootstrap procedures.
Comparing (13) with (12), it is intuitively quite clear that if e∗n are drawn from an EDF F̈n that

consistently estimates F whether or not H0 is true, then the EDF of LM∗
SED offers a consistent estimate

of the finite sample distribution of LMSED|H0 . This is just like the Monte Carlo approach under a
known F . However, with F̈n the finite sample distribution of LMSED|H0 is estimated nonparametrically.
With this in mind, the attractiveness of the bootstrap approach becomes clearer.

Proposition 3.1. Suppose Model (9) satisfies Assumptions S1-S3. If (i) ρ̂n is
√

n/hn-consistent,
and (ii) |LMSED |H0 | ≤ U a.e., and E(U4) exists, then the bootstrap methods under RSuu, RSuf and RSru

are valid for LMSED, ∀F . If, in addition, κ3 = 0, the bootstrap methods under RSur and RSrr are valid
as well. The same conclusions apply to SLMSED.

Proof: We highlight the key arguments here for a quick appreciation of the results. Details are given
in Appendix B (Lemma A8 and Proof of Proposition 3.1 (Cont’d)). We have LMSED|H0

D−→ N(0, 1), ∀F ,
and the following Edgeworth expansion for the finite sample null CDF of LMSED :

Gn(t,F) = Φ(t) + n
− 1

2
r c

− 3
2

0 φ(t) p(t,F) + O(n−1
r ), (14)

where p(t,F) = −c0c1+(1
6κ2

3T4+T5)(1−t2), nr = n
hn

, c0 = limn→∞ n−1
r Kn, c1 = limn→∞ tr(MnWnMn),

and T4 and T5, given in Appendix B, are O(1) and are free of θ. Similarly, we show that LM∗
SED

D∗−→
N(0, 1), ∀F̈n, and that the bootstrap CDF of LM∗

SED admits the following asymptotic expansion:

Gn(t, F̈n) = Φ(t) + n
− 1

2
r c

− 3
2

0 φ(t) p(t, F̈n) + Op(n−1
r ), (15)

where p(t, F̈n) = −c0c1 + (1
6 κ̈2

3nT4 + T5)(1 − t2). Taking difference between (15) and (14), we obtain,

Gn(t, F̈n) − Gn(t,F) = 1
6n

− 1
2

r c
− 3

2
0 T4 φ(t)(1 − t2)(κ̈2

3n − κ2
3) + Op(n−1

r ).

By Lemma A8, when F̈n = F̂n, κ̂2
3n − κ2

3 = Op(n
− 1

2
r ), ∀F . Thus, Gn(t, F̂n) − Gn(t,F) = Op(n−1

r ) and
cn(t, F̂n)− cn(t,F) = Op(n−1

r ), showing the first part of Proposition 3.1. Now, when error distribution
is symmetric, κ3 = 0, and by Lemma A8 κ̃3n is op(1), showing that F̂n can be replaced by F̃nwith error

becoming op(n
− 1

2
r ). Finally, the same set of results are obtained for the standardized LM statistic.
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Remark 3.1: When the error distribution is skewed, the bootstrap methods under RSur and RSrr,
though not strictly valid, improve the asymptotic method as the main second-order terms involving
c0c1 and T5 are captured by the bootstrap methods, resulting partial asymptotic refinements.9

Remark 3.2: The detailed proof given in Appendix B shows the first three cumulants of LMSED|H0 :
κ1,n = n

− 1
2

r c
− 1

2
0 c1 + O(n− 3

2
r ), κ2,n = 1 + O(n−1

r ), and κ3,n = n
− 1

2
r c

− 3
2

0 (κ2
3T4 + 6T5) + O(n− 3

2
r ), from

which we see precisely the reason why the finite sample distribution of a spatial LM test deviates more
from its limiting distribution with a denser spatial weight matrix.

3.1.3 Monte Carlo Results

The Monte Carlo experiments are carried out based on the following DGP:

Yn = β01n + Xn1β1 + Xn2β2 + un, un = ρWnun + σen.

The parameter values are set at β = {5, 1, 1}′ and σ = 1 or 2. Four different sample sizes are considered,
i.e., n = 50, 100, 200, and 500. All results are based on M = 2, 000 Monte Carlo samples, and B = 699
bootstrap samples for each Monte Carlo sample. The methods for generating spatial layouts, error
distributions, and fixed regressors’ values are described in Appendix C.

For ρ = {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}, two types of Monte Carlo results are recorded: (a)
the means and standard deviations of the bootstrap critical values, and (b) the rejection frequencies
of the LM and SLM tests. As the tests are invariant of the nuisance parameters, the results under
RSur coincide with those under RSrr, and the results under RSru are identical to those under RSuu.
Also, the results under RSuf are very close to those under RSuu, and hence are not reported for brevity.
Furthermore, the bootstrap results for SLMSED are also not reported as the rejection frequencies are
almost identical to those for LMSED, and the critical values, though different from those for LMSED, show
the same degree of stability and agreement with the ‘true’ finite sample critical values by Monte Carlo
methods. Finally, a small sets of results are reported in Table 3.1a for the (average) bootstrap critical
values and 3.1b for rejection frequencies. General observations are summarized as follows:

1. The (average) bootstrap critical values are all very close to the ‘true’ finite sample critical values
(obtained by Monte Carlo simulation), but can all be far from their asymptotic critical values
(ACR) which are ±1.6449 and ±1.96. The implication of this is clear: the use of asymptotic
critical values may lead to large distortions on size and power of the tests. Working with SLM
improves in this regard, but it is still not satisfactory if one sided tests are desired;

2. The bootstrap critical values for both LM and SLM under RSuf , RSuu and RSru are all very stable;
those under RSur and RSrr change with ρ slightly, confirming the Remark 3.1.

3. The standard deviations of the bootstrap critical values (not reported for brevity) are all small,
in the magnitudes of (0.0425, 0.0376, 0.1042, 0.1363) for the four critical values of the LMSED test
under normal errors. They increase a little bit when errors are nonnormal or when SLMSED is used;
they don’t change much with n but decrease when B increases (both are as expected). As far as
the rejection frequency is concerned we found that using B = 699 is sufficient;

4. Use of the bootstrap critical values significantly improves the size of the LM tests, and the power
of the left-tailed LM tests.

9Robinson and Rossi (2010) developed a finite sample correction for a simpler version of (10) without regressors and

with normal errors, using Edgeworth expansion. Jin and Lee (2012b) presented first-order results for a test that can be

approximated by a linear-quadratic form in the error vector, and gave a preliminary discussion of possible asymptotic

refinements. The key issue on the type of estimates and residuals to be used in bootstrap DGP was not addressed.
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5. When the regressors are generated under the iid setting (XVAL-A), the finite sample distribution
of LMSED is more skewed to the right, making the left-tail rejection frequencies much lower than
their nominal values. Use of a denser spatial weight matrix worsens this problem. However, in all
these scenarios, standardizations method help and bootstrap methods work well.

<< Insert Table 3.1a Here >>

A note in passing to read Table 3.1b is that the values under the column of |ρ| should read as
negative if L2.5% and L5%, i.e., the left-tailed 2.5% and 5% tests, are concerned. All results in Table
3.1b correspond to LMSED, except the rows labeled with ACR∗ which correspond to SLMSED referring to the
asymptotic critical values.

<< Insert Table 3.1b Here >>

3.2 Linear Regression with Spatial Lag Dependence

We now present a case where the LM statistics depends on the nuisance parameters, the restricted
estimates of nuisance parameters are inconsistent when the null hypothesis is false, but the LM statistic
at the null is still robust against nonnormality. According to the general results presented in Section 2,
only the bootstrap methods under RSuu and RSuf are valid. As this case is more involved, a more detailed
study is given. This study contributes to the spatial econometrics literature by (i) providing theoretical
justifications on the validity of various bootstrap methods with respect to the choice of bootstrap
parameters and the choice of bootstrap error distribution, and (ii) providing detailed Monte Carlo
results to support these theoretical arguments, in particular the results on the bootstrap critical values.
Common Monte Carlo study on the performance of bootstrap tests typically reports the empirical
rejection frequencies (size and power). This study reveals that judging a bootstrap test based only on
size and power may be misleading as in reality one does not know whether or not the null hypothesis is
true, and hence the seemingly ‘correct’ size and ‘higher’ power for certain tests may not be achievable.
Some related works can be found in Lin et al. (2007, 2009).

3.2.1 The Model and the LM Tests.

The linear regression model with spatial lag dependence (SLD), also known as the spatial autore-
gressive (SAR) model, takes the following form:

Yn = λWnYn + Xnβ + εn, εn = σen (16)

where en, Xn and Wn satisfy Assumptions S1-S3, λ is the spatial parameter, and β is a k × 1 vec-
tor of regression coefficient. Clearly, Model (16) fits into the general framework of Model (1) with
θ = {β′, σ2}′, en = q(Yn, Xn, Wn; θ, λ) = [An(λ)Yn−Xnβ]/σ, and its inverse Yn = h(Xn, Wn; θ, λ; en) =
A−1

n (λ)(Xnβ+σen), where An(λ) = In−λWn. Given λ, the restricted QMLEs of β and σ2 under Gaus-
sian likelihood are, respectively, β̃n(λ) = (X′

nXn)−1X′
nAn(λ)Yn, and σ̃2

n(λ) = 1
nY ′

nA′
n(λ)MnAn(λ)Yn.

Maximizing the concentrated Gaussian likelihood for λ gives the unrestricted QMLE λ̂n, and hence the
unrestricted QMLEs β̂n ≡ β̃n(λ̂n), and σ̂2

n ≡ σ̃2
n(λ̂n).

The LM test for testing H0 : λ = 0 vs Ha : λ �= 0 (< 0, > 0) is given in Anselin (1988a,b):

LMSLD =
ε̃′nWnYn

σ̃2
n

√
η̃′

nMnη̃n + Kn

, (17)

where ε̃n = Yn − Xnβ̃n , Kn = tr(W ′
nWn + WnWn), η̃n = σ̃−1

n WnXnβ̃n, β̃n = β̃n(0) and σ̃2
n = σ̃2

n(0).
A standardized version of LMSLD, having better finite sample properties and more robust against the
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spatial layouts, is given in Yang and Shen (2011):

SLMSLD =
ε̃′nW ◦

nYn

σ̃2
n

√
η̃′

nMnη̃n + K†
n + κ̃4nd′

ndn + 2κ̃3nη̃′
nMndn

, (18)

where W ◦
n = Wn − 1

n−k
tr(WnMn)In, K†

n = tr[An(An + A′
n)], an = diagv(An), An = MnW ◦

n , and κ̃3n

and κ̃4n are, respectively, the 3rd and 4th cumulants of ẽn = σ̃−1
n ε̃n. Yang and Shen (2011) show that

both LMSLD and SLMSLD have limiting null distribution N(0, 1), whether or not F is correctly specified,
showing that both are asymptotically robust against distributional misspecification. To implement
the bootstrap method under the resampling scheme RSuf , more general LM statistics for a nonzero λ,
LMSLD(λ), and its standardized version, SLMSLD(λ), can be found in Yang and Shen (2011).

3.2.2 Validity of the Bootstrap Methods

To study the validity of various resampling schemes when bootstrapping the critical values of the
LM and SLM tests of spatial lag dependence, we concentrate on the test LMSLD . Under the real world
null DGP: Yn = Xnβ + σen, we have after some algebra,

LMSLD |H0 =
√

n(e′nMnWnen + e′nMnηn)

(e′nMnen)
1
2 {η′

nMnηn + Q(en) + 2e′nPnWnMnηn}
1
2
, (19)

where Q(en) = n−1Kne′nMnen+e′nP ′
nW ′

nMnWnPnen, ηn = σ−1WnXnβ, and Pn = In−Mn. This shows
that LMSLD |H0 = f(en , Xn, Wn, β, σ), meaning that LMSLD|H0 is not an exact pivot whether or not F is
known as its finite sample null distribution is governed by F , the CDF of {en,i}, and the values of the
nuisance parameters β and σ2, given Xn and Wn. The dependence of LMSLD|H0 on (β, σ2) is expected
to impose constraints on the choices of their estimates to be used as parameters in the bootstrap DGP.
On the other hand, the limiting distribution of LMSLD |H0 does not depend on (β, σ2) and F (Kelejian
and Prucha, 2001; Yang and Shen, 2011), suggesting (as in Section 3.1.2) that bootstrap methods can
be applied to provide asymptotically refined critical values for LMSLD |H0 .

Under the bootstrap world, the bootstrap DGP that mimics the real world null DGP takes the form:
Y ∗

n = Xnβ̈n + σ̈ne∗n, where the elements of e∗n are random draws from F̈n. Based on the bootstrap data
(Y ∗

n , Xn), estimating the bootstrap model and computing the test statistic (17) lead to the bootstrap
analogue of LMSLD |H0 :

LM∗
SLD =

√
n(e∗′n MnWne∗n + e∗′n Mnη̈n)

(e∗′n Mne∗n)
1
2 {η̈′

nMnη̈n + Q(e∗n) + 2e∗′n PnWnMnη̈n}
1
2
, (20)

where η̈n = σ̈−1
n WnXnβ̈n. Comparing (20) with (19), it is intuitively clear that for bootstrap to provide

a higher-order approximation to the finite sample critical values of LMSLD|H0 , it is necessary that β̈n, σ̈2
n,

and F̈n are consistent whether or not H0 is true. We have the following result.

Proposition 3.2. Suppose Model (16) satisfies Assumptions S1-S3. If (i) λ̂n is
√

n/hn-consistent,
and (ii) |LMSLD |H0 | ≤ U a.e., and E(U4) exists, then the bootstrap methods under RSuu and RSufare
valid for LMSLD, ∀F . If, in addition, κ3 = 0 and the conditions in (A-3) hold, the bootstrap methods
under RSur is valid as well. The same conclusions apply to SLMSLD.

Proof: For a quick appreciation of the results, we present the key arguments here, and give details
in Appendix B (Lemma A8 and Proof of Proposition 3.2 (Cont’d)). First, LMSLD|H0

D−→ N(0, 1), ∀F .
The finite sample CDF of LMSLD|H0 admits the following Edgeworth expansion:
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Gn(t, θ,F) = Φ(t) + n
− 1

2
r c0(θ)−

3
2 φ(t) p(t, θ,F) + O(n−1

r ), (21)

p(t, θ,F) = −c0(θ)c1 + [ 16κ2
3T4 + T5 + 1

6κ3(S3(θ) + 2S5(θ)) + 1
3S4(θ)](1 − t2),

where c0(θ) = limn→∞ n−1
r (η′

nMnηn+Kn), c1 = limn→∞ tr(MnWn), and Ti, i = 4, 5 and Si(θ), i = 3, 4, 5
are all O(1) with their exact definitions given in Appendix B.

Similarly, LM∗
SLD

D∗−→ N(0, 1). The bootstrap CDF of LM∗
SLD admits the asymptotic expansion:

Gn(t, θ̈n, F̈n) = Φ(t) + n
− 1

2
r c0(θ̈n)−

3
2 φ(t) p(t, θ̈n, F̈n) + Op(n−1

r ), (22)

p(t, θ̈n, F̈n) = −c0(θ̈n)c1 + [ 1
6
κ̈2

3nT4 + T5 + 1
6
κ̈3n(S3(θ̈n) + 2S5(θ̈n)) + 1

3
S4(θ̈n)](1− t2).

With these two expansions, the conclusions reached in Proposition 3.2 are clear. In particular,
Gn(t, θ̈n, F̈n) − Gn(t, θ,F) = Op(n−1

r ) only when θ̈n = θ̂n and F̈n = F̂n. Similar to the SED model,
p(t, θ,F) depends on F only through κ3, thus F̂n can be replaced by F̃n when κ3 = 0 and the conditions
in (A-3) hold, leading to the validity of RSur. Finally, the same set of results are obtained for SLMSLD .

Remark 3.3: When the error distribution is skewed, the bootstrap method under RSur, though
not strictly valid, improves upon the asymptotic method as the main second-order terms involving T5,
c0(θ)c1 and S4(θ) are captured by bootstrap due to the consistency of θ̂n, leading to the so-called partial
asymptotic refinements. This explains why the Monte Carlo results (not reported for brevity) under
RSur are very similar to these under RSuu even when the errors are skewed.

Remark 3.4: Again, the cumulants of LMSLD|H0 given in Appendix B show clearly the effect of
spatial weight matrix on the finite sample distribution of LMSLD|H0 .

3.2.3 Monte Carlo Results.

The finite sample performance of LMSLD and SLMSLD for testing H0: λ = 0 vs Ha: λ < 0 or Ha:
λ > 0, when referring to the asymptotic critical values and the bootstrap critical values under various
resampling schemes, are investigated in terms of accuracy and stability of the bootstrap critical values
with respect to the true value of λ, and the size and power of the tests. The Monte Carlo experiments
are carried out based on the following data generating process:

Yn = λWnYn + β01n + Xn1β1 + Xn2β2 + εn

where the methods for generating Wn, Xn and εn are described in Appendix C. The regressors are
treated as fixed in the experiments. The parameter values are set at β = {5, 1, 1}′ and σ = 1 or 2,
and sample sizes used are n = (50, 100, 200, 500). All results reported below are based on M = 2, 000
Monte Carlo samples, and B = 699 bootstrap samples for each Monte Carlo sample generated. The
bootstrap critical values are bench-marked against the Monte Carlo (MC) critical values obtained based
on M = 30, 000 Monte Carlo samples.

Bootstrap critical values. We first report in Table 3.2a the averages of 2,000 bootstrap critical
values of LMSLD and SLMSLD based on the restricted resampling scheme RSrr and the unrestricted
resampling scheme RSuu. The results with RSru are very similar to those with RSrr and the results
with RSur and RSuf are very similar to those with RSuu, thus, are not reported for saving space. These
unreported results show that whether to use the restricted or unrestricted residuals does not affect much
the bootstrap critical values, which is consistent with Remark 3.3. Furthermore, Monte Carlo results
clearly reveal the following:
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1. The bootstrap critical values can be quite different from the corresponding asymptotic critical
values, showing the necessity of using finite sample critical values for testing the existence of
spatial lag dependence in a linear regression model;

2. The bootstrap critical values based on RSrr (and RSru) vary significantly with λ. This suggests
that, if when H0 is true the bootstrap critical values and the resulted sizes of the tests are accurate
(indeed they are), then when H0 is false, the bootstrap critical values cannot be accurate and the
resulted powers of the tests cannot be reliable;

3. The bootstrap critical values based on RSuu are very stable with respect to λ, and are very accurate
as they agree very well with the corresponding Monte Carlo critical values obtained by imposing
H0 and using M = 30, 000, and with the bootstrap critical values under RSrr and H0 (considered
as an ideal situation). The same holds when |λ| further increases from 0.5.

The bootstrap critical values do not depend much on the error distributions due to the fact that the
LM tests involved are asymptotically pivotal at the null under a general F . As sample size n increases,
the bootstrap critical values move closer to their limiting values, but the instability of those based
on restricted estimates still exists. The above observations are consistent with the theoretical results:
while the tests are asymptotically pivotal, their finite sample distributions depends on the nuisance
parameter and the restricted estimates of the nuisance parameters are not consistent when null is false,
which make the bootstrap methods based on the restricted estimates invalid.

<< Insert Table 3.2a Here >>

Size and power of the tests. We now report in Tables 3.2b and 3.2c the size and power of the
one-sided LM tests based on the asymptotic critical values (ACR) and the bootstrap critical values with
RSrr and RSuu. Again the results based on other three resampling schemes RSru, RSur and RSuf (not
reported for brevity and clarity of presentation) are very close to those based on either RSrr or RSuu,
showing again the type of residuals to be used in resampling does not affect much the performance of
the bootstrap methods. The results (reported and unreported) further reveal the following:

1. The tests referring to the asymptotic critical values can have severe size-distortion, and more so
with heavier spatial dependence. Referring to bootstrap critical values effectively remove the size
distortions under any resampling method, but one must bear in mind that this is unachievable
with the restricted estimates as in practice whether H0 is true or false remains unknown.

2. The bootstrap critical values of the LM statistic based on the restricted estimates tend to increase
in magnitude as λ increases. As a result, the power tends to be lower for a right-tailed test,
and higher for a left-tailed test, compared with the power of the tests based on the unrestricted
estimates. The bootstrap critical values of the SLM statistic based on the restricted estimates
decrease as λ increases. As a result, the power of both left- and right-tailed tests tends to be higher
than that based on the unrestricted estimates. However, the former corresponds to a larger size
due to smaller underlining bootstrap critical values.

3. As the original LM test is already asymptotically pivotal and robust, standardization does not
provide further improvements on the bootstrap critical values in that the use of restricted estimates
still lead to bootstrap critical values that vary with λ.

To summarize, using the restricted estimates of the nuisance parameters in the bootstrap DGP results
in bootstrap critical values that can be either larger or smaller than the ‘true’ ones, leading to a test
with either higher or lower power than it supposes to be. In contrast, using the unrestricted parameter
estimates leads to test with ‘realizable or achievable’ power.
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<< Insert Table 3.2b and Table 3.2c Here >>

The bias of the restricted estimators of the regression coefficients and the error standard deviation
when H0 is false is investigated under the same setup as for the above results, as it is the major cause of
instability of the bootstrap critical values. The results (not reported for brevity) show that the empirical
means of the restricted estimators of (β0, β1, β2, σ) = (5, 1, 1, 1) range from (3.35, 0.76, 0.70, 1.04) to
(9.96, 1.75, 1.92, 1.19) as λ changes from −0.5 to 0.5 with n = 100, and that the bias does not go away
with larger sample sizes. In contrast, the unrestricted estimators are nearly unbiased.

3.3 Linear Regression with Spatial Error Components

In this section, we present a case where the usual LM test is not robust against the misspecification
of the error distribution F , but its finite sample distribution is invariant of the nuisance parameters.
According to the general theories presented in Section 2, the bootstrap methods under RSru, RSuu and
RSuf are valid. The results presented in this section contribute to the spatial econometrics literature by
providing theoretical justifications and empirical evidence concerning the validity of various bootstrap
methods applied to LM and SLM tests of spatial error components.

3.3.1 The Model and the LM Tests

Kelejian and Robinson (1995) proposed a spatial error components model which provides a useful
alternative to the traditional spatial models with a spatial autoregressive (SAR) or a spatial moving
average (SMA) error process, in particular in the situation where the range of spatial autocorrelation is
constrained to close neighbors, e.g., spatial spillovers in the productivity of infrastructure investments
(Kelejian and Robinson, 1997; Anselin and Moreno, 2003). The model takes the form:

Yn = Xnβ + un, with un = Wnvn + εn, and εn = σen (23)

where vn is an n×1 vector of errors that together with Wn incorporates the spatial dependence, and εn

is an n× 1 vector of location specific disturbance terms. The error components vn and εn are assumed
to be independent, with iid elements of mean zero and variances σ2

v and σ2, respectively.
Let λ = σ2

v/σ2, and Ωn(λ) = In + λWnW ′
n, we have Var(un) = σ2Ωn(λ). Maximizing the Gaus-

sian likelihood for a given λ gives the restricted QMLEs β̃n(λ) = [X′
nΩ−1

n (λ)Xn ]−1X′
nΩ−1

n (λ)Yn and
σ̃2

n(λ) = 1
n [Yn −Xnβ̃n(λ)]′Ω−1

n (λ)[Yn −Xnβ̃n(λ)] of β and σ2, and maximizing the concentrated Gaus-
sian likelihood of λ numerically gives the unrestricted QMLE λ̂n of λ, which upon substitutions gives
the unrestricted QMLEs for β and σ2 as β̂n ≡ β̃n(λ̂n) and σ̂2

n ≡ σ̃2
n(λ̂n). Although this model is not

in the standard form used in Section 2, it can be ‘turned’ into that form as indicated in the footnote
therein. In this case, simply write un = σΩ

1
2
n (λ)en , where Ω

1
2
n (λ) is the square-root matrix of Ωn(λ),

and en ∼ (0, In) though it is not exactly the same as the en in (23) in general. However, as far as
bootstrap methods is concerned, all it is important is to be able to get a set of residuals whose EDF
consistently estimates the true distribution of en,i.

For this model the null hypothesis of no spatial effect can be either H0 : σ2
ν = 0, or λ = σ2

ν/σ2 = 0.
The alternative hypothesis can only be one-sided as σ2

ν cannot be negative, i.e., Ha : σ2
ν > 0, or λ > 0.

Anselin (2001) derived an LM test based on the assumptions that errors are normally distributed, which
can be rewritten in a simpler form

LMSEC =
n√
Kn

ε̃′nHnε̃n

ε̃′nε̃n
, (24)
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where Hn = WnW ′
n− 1

n tr(WnW ′
n)In, Kn = 2tr(H2

n), and ε̃n is the vector of OLS residuals. The limiting
null distribution of LMSEC is N(0, 1) when F = Φ.

Anselin and Moreno (2003) conducted Monte Carlo experiments to assess the finite sample behavior
of Anselin’s test, the GMM test of Kelejian and Robinson (1995) and Moran’s (1950) I test, and found
that none seems to perform satisfactorily in general. They recognized that the LM test for spatial error
components of Anselin (2001) is sensitive to distributional misspecifications and the spatial layouts.
Yang (2010) provided a robust/standardized LM test, which can be rewritten as:

SLMSEC =
n√

K†
n + κ̃4na′

nan

ε̃′nH†
nε̃n

ε̃′nε̃n
, (25)

where H†
n = WnW ′

n − 1
n−k tr(WnW ′

nMn)In, K†
n = 2tr(A2

n), an = diagv(An), An = MnH†
nMn, and κ̃4n

is the 4th cumulant of ẽn = σ̃−1
n ε̃n. Yang (2010) showed that SLMSEC|H0

D−→ N(0, 1), ∀F .
Comparing (24) and (25) with (10) and (11), we see that they possess very similar structure. The

major difference is that the diagonal elements of Wn in (10) are zero and as a result the quantity a′
nan

in (11) is of smaller order than K†
n, but the diagonal elements of WnW ′

n in (24) are not zero and as a
result the quantity a′

nan in (25) can be of the same order as K†
n therein. This gives the exact reason

on why SLMSEC is robust against the distributional misspecification and why LMSEC is not.

3.3.2 Validity of the bootstrap methods

Note that under H0, ε̃′n = Mnεn = σMnen, and the statistics LMSEC can be written as

LMSEC|H0 =
n√
Kn

e′nMnHnMnen

e′nMnen
(26)

which shows that LMSEC|H0 is invariant of the nuisance parameters, and thus a pivot if F is known (to
be Φ or some other CDF). In this case one can again, as for the SED model, simply use Monte Carlo
method to find the finite sample critical values of LMSEC|H0 to any level of accuracy. However, when
F is unknown and possibly misspecified, LMSEC|H0 is not even an asymptotic pivot as indicated above.
Indeed, Lemma A2 leads to (1+κ4c0)−

1
2 LMSEC|H0

D−→ N(0, 1), ∀F , where c0 = limn→∞ K−1
n b′nbn and

bn = diagv(MnHnMn).10 Then, what is the consequence of ignoring this when conducting bootstrap?
The bootstrap DGP that mimics the real world null DGP is again: Y ∗

n = Xnβ̈n + σ̈ne∗n. Based on
the bootstrap data (Y ∗

n , Xn), compute the OLS estimate of (β̈n, σ̈n), the corresponding OLS residuals,
and the statistic (24). Some algebra leads to the bootstrap analogue of (26):

LM∗
SEC =

n√
Kn

e∗′n MnHnMne∗n
e∗′n Mne∗n

. (27)

Similarly, Lemma A2 leads to (1 + κ̈4nc0)−
1
2 LM∗

SEC
D∗−→ N(0, 1). This show that the leading terms in

the asymptotic expansions of the finite sample CDF of LMSEC|H0 and the bootstrap CDF of LM∗
SEC

are, respectively, Φ(t/
√

1 + κ4c0) and Φ(t/
√

1 + κ̈4nc0). Thus,

Φ(t/
√

1 + κ̈4nc0) − Φ(t/
√

1 + κ4c0) = op(1), if F̈n = F̂n; Op(1) if F̈n = F̃n.

(See Lemma A8 in Appendix A.) This clearly shows that when F is misspecified the bootstrap method
is not able to provide an improved approximation to the finite sample critical values of LMSEC|H0

10Yang (2010) showed that when the group sizes are fixed and when there exist group size variations, c0 is strictly

positive, showing that in general LMSEC|H0 is not an asymptotic pivot unless κ4 = 0 or F = Φ.
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over the asymptotic critical values even if the unrestricted residuals are used, and that the use of the
restricted residuals worsens the approximation.

The above arguments lead to the consideration of a standardized/robust LM statistic. Similar
algebra as for LMSEC|H0 and its bootstrap analogue LM∗

SEC gives

SLMSEC|H0 =
n√

K†
n + κ4(en)a′

nan

e′nMnH†
nMnen

e′nMnen
, (28)

where κ4(en) is the 4th cumulant of Mnen/
√

e′nMnen/n, and its bootstrap analogue

SLM∗
SEC =

n√
K†

n + κ4(e∗n)a′
nan

e∗′n MnH†
nMne∗n

e∗′n Mne∗n
. (29)

Similar to the fact that SLMSEC|H0

D−→ N(0, 1) for all F , SLM∗
SEC

D∗−→ N(0, 1) for both F̂n and F̃n. The
implication of these results is that when bootstrapping the standardized LM test given in (25), using
either unrestricted residuals or restricted residuals leads to bootstrap critical values that are correct
asymptotically. However, as stated in the following proposition, only the use of unrestricted residuals
leads to full asymptotic refinements. As the implementation of the resampling scheme RSuf is more
complicated than RSuu, it is excluded from this study for saving space.

Proposition 3.3. Suppose Assumptions S1-S3 hold for Model (23) with un = Ω
1
2
n (λ)εn. If (i)

λ̂n is
√

n/hn-consistent, and (ii) |SLMSEC |H0 | ≤ U a.e., and E(U4) exists, then the bootstrap methods
under the resampling schemes RSuu, and RSru are valid for SLMSEC. The results remain if instead
un = Wnvn + εn such that the jth sample cumulant of σ−1Ω− 1

2
n (λ)un

p−→ κj , j = 1, . . . , 6.

Proof: Again, we highlight the key arguments here for a quick understanding of the results, and
put details in Appendix B (Lemma A8 and Proof of Proposition 3.3 (Cont’d)). We show that the finite
sample CDF of SLMSEC|H0 admits the following Edgeworth expansion:

Gn(t,F) = Φ(t) + n
− 1

2
r c

− 3
2

1 φ(t) p(t,F) + O(n−1
r ), with (30)

p(t,F) = { 1
3(2T3 − T1 + 3T5) + 1

6 [κ6T1 + 2κ4(6T1 + T3) + κ2
3(10T1 + T4) + 2κ3T2]}(1 − t2),

where c1 = limn→∞ n−1
r (K†

n + κ4a
′
nan), K†

n and an are defined in (25), Ti = limn→∞ n−1
r Ti,n, and Ti,n

are defined in the detailed proof in Appendix B. Similarly, the bootstrap CDF of SLM∗
SEC admits the

following asymptotic expansion:

Gn(t, F̈n) = Φ(t) + n
− 1

2
r c

− 3
2

1 φ(t) p(t, F̈n) + Op(n−1
r ), with (31)

p(t, F̈n) = { 1
3
(2T3 − T1 + 3T5) + 1

6
[κ̈6nT1 + 2κ̈4n(6T1 + T3) + κ̈2

3n(10T1 + T4) + 2κ̈3nT2]}(1− t2).

It is thus clear from (30) and (31) that Gn(t, F̂n) − Gn(t,F) = op(n
− 1

2
r ) due to the consistency of F̂n,

but Gn(t, F̃n) − Gn(t,F) = Op(n
− 1

2
r ) due to the inconsistency of F̃n.

Remark 3.5. Under SLMSEC, use of F̂n leads to bootstrap critical values in error of order op(n
− 1

2
r ),

whereas use of F̃n leads to bootstrap critical values in error of order Op(n
− 1

2
r ). This means that at least

in theory the bootstrap critical values based on the restricted residuals offer no improvement over the
asymptotic ones. However, a closer examination on the Edgeworth expansion shows that the bootstrap
based on F̃n can still do a better job as the main second-order effect, term involving 1

3
(2T3 −T1 +3T5),

is captured by the bootstrap. Our Monte Carlo results given below confirm this point.
Remark 3.6. The point that a denser weight matrix makes the finite sample null distribution of

the test statistic deviate more from the limiting distribution is once again demonstrated by the first
three cumulants of LMSEC|H0 , which are derived as those of SLMSEC |H0 given in Appendix B.
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3.3.3 Monte Carlo results

The finite sample performance of LMSEC and SLMSEC for testing H0 : λ = 0 vs Ha : λ > 0, when
referring to the asymptotic critical values and the bootstrap critical values under various resampling
schemes, are investigated in terms of the accuracy and stability of the bootstrap critical values with
respect to the true value of λ, and the size and power of the tests. The Monte Carlo experiments are
carried out based on the following data generating process:

Yn = β01n + Xn1β1 + Xn2β2 + Wnvn + εn

where {vn,i} are iid draws from
√

0.6t5, and the methods for generating Wn, Xn and εn are described
in Appendix C. The regressors are treated as fixed in the experiments. The parameter values are set at
β = {5, 1, 1}′ and σ = 1, and sample sizes used are n = (54, 108, 216, 513). All results reported below
are based on M = 2, 000 Monte Carlo samples, and B = 699 bootstrap samples for each Monte Carlo
sample generated. The bootstrap critical values are bench-marked against the Monte Carlo (MC) critical
values obtained based on M = 50, 000 Monte Carlo samples under H0.

Similar to the LM tests for SED model considered earlier, the LM tests for SEC model are also
invariant of the nuisance parameters, thus the bootstrap methods with RSur and RSru are omitted as
the former produces identical results as RSrr and the latter produces identical results as RSuu. We also
omit the RSuf method in this study as it requires the derivation of the test statistics for a general value
of λ, and concentrate on RSrr and RSuu.

Bootstrap critical values. We first report in Table 3.3a the bootstrap critical values for LMSEC

and SLMSEC . As discussed above, LMSEC is sensitive to the distributional misspecification, thus it is
expected to produce bootstrap critical values that vary with λ when F̃n is used, even if F is N(0, 1).
Indeed this is observed from the results under RSrr and Normal Error though the change is not big.
In contrast, the bootstrap critical values based on F̂n with normal error are very stable.

When error distribution is not normal and is unknown, LMSEC|H0 is no longer a pivot, and not
even an asymptotic pivot as both its finite sample and limiting distributions depend on F . It is thus
expected that bootstrap critical values based on LMSEC would vary more with λ whether RSrr or RSuu

is followed. Again, this is very much true and in fact the bootstrap critical values change (drop) much
more significantly as λ increases. In contrast, if we bootstrap SLMSEC, the bootstrap critical values
become much more stable. In both cases, the method with RSuu performs better.

<< Insert Table 3.3a Here >>

Rejection Frequencies. Partial results corresponding to the rejection frequencies are reported in
Table 3.3b. From the results reported and unreported, we observe the following.

1. When errors are normal, all other tests improve upon the LMSEC test referring to the asymptotic
critical values, in particular when sample size is small;

2. When errors are nonnormal, LMSEC referring to the asymptotic critical values failed, but very
interestingly LMSEC referring to the bootstrap critical values performs reasonably well although a
clear sign of deterioration is observed for the cases of nonnormal errors;

3. SLMSEC performs well whether with asymptotic critical values or bootstrap critical values, but
bootstrap shows clear improvements in particular when error distributions are skewed.

<< Insert Table 3.3b Here >>

We end the section with some important remarks. The bootstrap LM test seems to offer higher
power than does the bootstrap SLM test. However, as cautioned earlier, such a higher power is built
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upon the ‘hidden’ lower critical values, thus is unachievable as in practice one does not know whether
or not the null is true. Once again, we stress on that the performance of a bootstrap test should be
judged based on whether it can offer critical values which are stable with respect to the change in the
value of the parameters of interest. The Monte Carlo results reported in Table 3.3 correspond to a
spatial layout (group interaction with fixed group sizes) that may not fully satisfy the condition stated
in Proposition 3.3 (see the proof of Lemma A.8), which is why the bootstrap critical values are not
as stable as those in the previous two models. However, the the results under group interaction with
growing group sizes (unreported for brevity) show much more stable bootstrap critical values.

As discussed above, the SEC model is not the standard model considered in this paper. Proposition
3.3 clearly reveals the complications caused by the existence of error components un = Wnvn + σen:
ûn = Yn −Xnβ̂n cannot be decomposed into v̂n and ên to give a consistent F̂n directly based ên, unless
H0 is imposed or vn and εn are normal. In contrast, the same model but with un = σΩ

1
2
n (λ)en leads to

ên and hence a consistent F̂n directly. This reveals an interesting issue: bootstrap in models with error
components, such as the SEC model and the panel error components models with short panels, which
merits a further study. See Lemma A8 and its proof for more detailed discussions.

4 Bootstrap LM Tests for More General Spatial Models

Section 3 proves/disproves the validity of the five bootstrap methods introduced in Section 2 in
the context of three popular spatial regression models, and concludes that only the methods using
unrestricted estimates of nuisance parameters and unrestricted residuals are generally valid. In this
section, we further illustrate these methods using a more general model: the linear regression with both
SLD and SED, also referred to as the SARAR model in the literature:

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn, εn = σen, (32)

where all quantities are defined as in (9) and (16). The spatial weight matrices W1n and W2n can be the
same. Clearly, (32) has the form of the general model given in (1): σ−1Bn(ρ)[An(λ)Yn − Xnβ] = en,
where An(λ) = In − λW1n and Bn(λ) = In − ρW2n. QMLEs (restricted or unrestricted) of model
parameters can be obtained in a similar manner.

Several interesting tests arise from this model: (i) joint or marginal LM tests, (ii) LM tests of
spatial dependence under local misspecification, and (iii) LM tests of spatial dependence under unknown
heteroskedasticity. We apply the proposed bootstrap methods to each of these tests. Monte Carlo results
show strong support of the main point of the paper: in bootstrapping the finite sample distribution of
an LM test, the unrestricted estimates and residuals should be used in setting up the bootstrap DGP.

4.1 Bootstrap LM tests for SARAR effects

We are interested in testing three hypothesis: Ha
0 : λ = 0, ρ = 0, Hb

0 : ρ = 0 allowing the presence
of λ, and Hc

0 : λ = 0 allowing the presence of ρ. The corresponding LM tests can be found in Anselin
et al. (1996) and can be written as (assuming W1n = W2n = Wn): for testing Ha

0 ,

LMSARAR =
(ε̃′nWnYn − ε̃′nWnε̃n)2

σ̃4
nη̃′

nMnη̃n
+

(ε̃′nWnε̃n)2

σ̃4
nKn

, (33)

where all quantities are defined in (10) and (17); for testing Hb
0,

LMSED|SLD =
ε̃′nWnε̃n

σ̃2
n[Kn − S̃2

1n/(η̃′
nMnη̃n + S̃2n)]1/2

, (34)
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where S̃1n = tr[(Wn +W ′
n)G̃n], S̃2n = tr[(G̃◦

n +G̃◦′
n )G̃◦

n], G̃n = WnA−1
n (λ̃n), and G̃◦

n = G̃n− 1
n tr(G̃n)In;

and for testing Hc
0,

LMSLD|SED =
ε̃′nB̃nWnYn

σ̃2
n[S̃3n + η̃′

nB̃′
nB̃nη̃n + h̃′

nJ̃−1
n h̃n]1/2

, (35)

where S̃3n = tr(W 2
n+Q̃′

nB̃′
nB̃nQ̃n), h̃n = {σ̃−1

n X′
nB̃′

nB̃nη̃n, 0, tr((Q̃′
nB̃n+Wn)Q̃n)}′, J̃n = Jn(θ̃n) given

in (B-1) of Appendix B, B̃n = B̃n(ρ̃n), and Q̃n = WnB̃−1
n . Recall that θ̃n and ε̃n denote generically the

restricted QML estimates of the nuisance parameters θ and the errors εn under the null hypothesis.
The bootstrap methods can be implemented in the same manner as in Section 3. The bootstrap

DGPs that mimic the real world null DGPs are, Y ∗
n = Xnβ̈n + σ̈ne∗n, Y ∗

n = A−1
n (λ̈n)(Xnβ̈n + σ̈ne∗n), and

Y ∗
n = Xnβ̈n + σ̈nB−1

n (ρ̈n)e∗n, respectively, for testing Ha
0 , Hb

0 and Hc
0, where e∗n are the iid draws from

the EDF F̈ of ên or ẽn, standardized to have mean zero and standard deviation one. For example, to
bootstrap the α-quantile of LMSLD|SED |Hc

0
, based on the unrestricted estimates/residuals,

(a) Compute the unrestricted QMLEs (β̂n, σ̂2
n, λ̂n, ρ̂n) based on Model (32);

(b) Compute ên = σ̂−1
n Bn(ρ̂n)[An(λ̂n)Yn − Xnβ̂n], and standardize, to give F̂n;

(c) Draw a bootstrap sample e∗n from F̂n, and compute Y ∗
n = Xnβ̂n + σ̂nB−1

n (ρ̂n)e∗n;

(d) Estimate the null model Yn = Xnβ + un, un = ρWnun + εn, based on the bootstrap data
(Y ∗

n , Xn, Wn), and then compute a bootstrap value LMb
SLD|SED of LMSLD|SED ;

(e) Repeat (c) and (d) B times to obtain the EDF of {LMb
SLD|SED}B

b=1 and its α-quantile. The latter
gives a bootstrap estimate of the true finite sample α-quantile of LMSLD|SED |Hc

0
.

We state without proofs of the following results: (i) the limiting null distributions of the three test
statistics are χ2

2 for LMSARAR, and N(0, 1) for the other two, for a general F satisfying Assumption S1;
and (ii) the bootstrap methods with RSuu and RSuf resampling schemes are generally valid.

Monte Carlo results. Extensive Monte Carlo experiments are performed for assessing the finite
sample performance of the bootstrap methods, based on a DGP that adds a spatial lag term onto the
DGP used in Section 3.1.3. Due to space limitation, only partial Monte Carlo results are reported in
Table 4.1. The results lead to a general conclusion: the bootstrap method with RSuu performs very well
in general. In contrast, the bootstrap methods with either restricted estimates or restricted residuals
or both may give critical values quite different from the ‘true’ ones (the ones under H0), thus leading
to unreliable power (either unduly too low or unduly too high), in particular in the case of Ha

0 .

<< Insert Tables 4.1a, 4.1b and 4.1c Here >>

4.2 Bootstrap spatial LM tests under local misspecification

Anselin et al. (1996), following Bera and Yoon (1993), obtained a modified LM test for testing
Ha

0 : ρ = 0, robust against the presence of local misspecification involving a spatial lag with λ = δ/
√

n:

LMSED|λ =
ε̃′nWnε̃n − H̃nε̃′nWnYn

σ̃2
n[Kn(1 − H̃n)]1/2

, (36)

and a modified LM test for testing Hb
0 : λ = 0, robust against local misspecification involving a spatial

error process with ρ = δ/
√

n:

LMSLD|ρ =
ε̃′nWnε̃n − ε̃′nWnYn

σ̃2
n(η̃′

nMnη̃n)1/2
, (37)

where H̃n = Kn(η̃′
nMnη̃n +Kn)−1, δ is a constant, and all other quantities are defined in (10) and (17).
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We again state the following conclusions without formal proofs: Both tests statistics have limiting
null distributions being standard normal, for a general F satisfying Assumption S1; (ii) the bootstrap
methods with RSuu and RSuf resampling schemes are generally valid.

Monte Carlo results. The same DGP as in Section 4.1 is followed. The local misspecification
parameter is taken as λ = 0.1/

√
n for (36) and ρ = 0 for (37). Partial Monte Carlo results are

give in Table 4.2. The results show that the bootstrap method under RSuu is the most reliable one,
leading to significant improvements on the finite sample performance of the LM tests. Comparing the
results in Table 4.2b with the corresponding results in Table 3.2b, we see that LMSLD|ρ is less powerful
than LMSLD, consistent with the observations made by Anselin et al. (1996). Detailed comparisons of
(LMSED , LMSED|SLD , LMSED|λ); and of (LMSLD, LMSLD|SED , LMSLD|ρ) are interesting. Formal justifications on
the validity of the bootstrap methods applied to (36) and (37) need to be given. These studies are
clearly beyond the scope of this paper, and will be pursued in a future research.

<< Insert Tables 4.2a and 4.2b Here >>

4.3 Bootstrap spatial LM tests with unknown heteroskedasticity

When the errors in the spatial models are heteroskedastic, none of the tests considered above
are generally valid. Born and Breitung (2011) proposed OPG (outer product of gradients) variants
of the three LM tests given in (10), (17) and (33), which are shown to be robust against unknown
heteroskedasticity and non-normality. The three tests can be written more compactly as:

LMOPG
SED =

ε̃′nW2nε̃n

(ε̃2 ′
n ξ̃2

2n) 1
2
, (38)

LMOPG
SLD =

ε̃′nW1nYn

(ε̃2 ′
n ξ̃2

1n)
1
2
, and (39)

LMOPG
SARAR =

(
ε̃′nW1nYn

ε̃′nW2nε̃n

)′(
ε̃2 ′
n ξ̃2

1n ε̃2 ′
n (ξ̃1n � ξ̃2n)

ε̃2 ′
n (ξ̃1n � ξ̃2n) ε̃2 ′

n ξ̃2
2n

)−1(
ε̃′nW1nYn

ε̃′nW2nε̃n

)
, (40)

where ξ̃1n = (Wu′
1n + W l

1n)ε̃n + Mnη̃n, ξ̃2n = (Wu′
2n + W l

2n)ε̃n, Wu
rn and W l

rn are the upper and lower
triangular matrices of Wrn, r = 1, 2, ‘�’ denotes the Hadamard product, and a2 = a� a for a vector a.

Like the original tests, the OPG variants do not take into account the estimation of β, and hence
may suffer from the problems of size distortion due mainly to the lack of centering and rescaling (Baltagi
and Yang, 2013). It is interesting to see how the bootstrap can help in this regard. The three tests have
the same null DGP: Yn = Xnβ + σen where the errors en,i are independent but heteroskedastic. As
indicated by Davidson and Flachaire (2008), heteroskedasticity of unknown form cannot be mimicked
in the bootstrap distribution. The wild bootstrap gets round this problem by using a DGP:

Y ∗
n = Xnβ̈n + σ̈ne∗n, e∗n,i = fi(ën,i)vi, (41)

where fi is a transformation, and the vi are mutually independent draws, completely independent of
original data, from an auxiliary distribution with mean 0 and variance 1. We follow Davidson and
Flachaire (2008) and consider an identity function for fi and a two points (-1,1) distribution with equal
probability for vi. More detailed discussions on this can be found in Godfrey (2009, Ch. 5).

Monte Carlo results. The same set of DGPs as in Sections 3.1, 3.2 and 4.1 are used. Error
variances are made proportional to the group sizes. Partial results are reported in Table 4.3., from which
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we see (i) the OPG variants of LM tests can have large finite sample size distortion when referred to the
asymptotic critical values, which are largely removed when referred to the bootstrap critical values; (ii)
bootstrap critical values show noticeable variations for all four resampling schemes considered. This
is because both restricted and unrestricted estimates used in the bootstrap DGP ignore the unknown
heteroskedasticity, and hence are inconsistent in general (Lin and Lee, 2010).

The above observations are in fact consistent with our theoretical findings: use of consistent (fully
unrestricted) estimates leads to full asymptotic refinements, whereas use of inconsistent (restricted
somehow) estimates may still lead to partial asymptotic refinements, provided the underlining test
statistic is an asymptotic pivot. The latter finding is also interesting as in certain LM testing situations
fully unrestricted (or generally consistent) estimates may not be available, such as QML estimation
with unknown heteroskedasticity. The robust GMM estimators of Lin and Lee (2010) or Kelejian and
Prucha (2010) may be used instead, and formal justification on the validity of the bootstrap method
described above should be given. However, these studies are clearly beyond the scope of this paper,
and will be pursued in a future research.

<< Insert Tables 4.3a, 4.3b and 4.3c Here >>

5 Conclusions and Discussions

In bootstrapping the critical values of an LM test, one faces two important issues: one is the
choice of the type of estimates of nuisance parameters to be used as parameters in the bootstrap data
generating process, and the other is the choice of the type of residuals to be used to construct the
bootstrap error distribution. We argue in general and show through three popular spatial regression
models that the choice that is correct in general is the one which uses the unrestricted estimates and
the unrestricted residuals. However, if the test statistic is invariant of the nuisance parameters or the
restricted estimates of the nuisance parameters are consistent in general, the restricted estimates can
be used in place of the unrestricted estimates; if the test statistic at the null is robust against the
distributional misspecification, then use of restricted residuals leads to full asymptotic refinements if
the error distribution is symmetric, otherwise it leads to partial asymptotic refinements.

It is emphasized that comparison on the performance of various bootstrap methods should not be
made based on the size and power of the tests, instead it should be made based on the stability of the
bootstrap critical values with respect to the change in the value of the parameters of interest. The main
reason is that in reality, one does not know whether or not the null hypothesis is true, thus the size
of the bootstrap tests based on restricted estimates and/or residuals may not be achievable if the null
hypothesis is false, and the resulting power would be unreliable. The power in this situation tends to
be higher (than that based on unrestricted resampling) if the underlining bootstrap critical values are
smaller than the true ones, or lower if the underlining bootstrap critical values are larger. Furthermore,
the evaluation of the performance of various bootstrap methods should also be based on how close the
bootstrap critical values are to the Monte Carlo critical values.

While the theories and Monte Carlo results presented the paper clearly suggest that the bootstrap
with RSuu scheme be followed in practice for its ability to achieve full asymptotic refinements on the
finite sample critical values of LM tests and for its simplicity when compared with RSuf ,11 we do not

11The computational cost of the five resampling schemes is the same in the process of bootstrapping the test statistics.

Except RSrr , all other four require the estimation of the parameter(s) being tested based on the original data. The RSuf

is equivalent to RSuu, at least in theory, but it involves more complicated expressions of LM statistics.
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rule out the other three schemes as they may be able to achieve partial asymptotic refinements for cases
where the fully unrestricted estimates are not available, such as the LM tests of spatial dependence
under unknown heteroskedasticity considered in Section 4.3.

With the general principles laid out in this paper, it would be interesting to proceed to study the
properties of the bootstrap LM tests discussed in Section 4. While the validity of the bootstrap methods
applied to the LM tests in Sections 4.1 and 4.2 can largely be inferred from the results presented in
Section 3, formal theoretical justifications needs to be given. The LM tests in Section 4.3 deviate from
the main set up of the paper, traditional bootstrap resampling methods fail, but the wild bootstrap
methods are shown to be very promising. Hence, further theoretical and empirical investigations would
be highly desirable. Nonetheless, the results presented in this section are very supportive to the general
theoretical findings of this paper, and encouraging for further research.

Appendix A: Some Fundamental Results

Following lemmas are essential for the theoretical discussions in Sections 2 and 3.

Lemma A1: (Kelejian and Prucha, 2001; Lee, 2004a) Let An and Bn be n × n matrices, cn be an
n× 1 vector, an = diagv(An) and bn = diagv(Bn). Let εn be an n× 1 vector of iid elements with mean
zero, variance σ2, and jth cumulant κj , j = 3, 4. Define Pn = ε′nAnεn +c′nεn and Qn = ε′nBnεn. Then,

(i) E(Pn) = σ2tr(An), and E(Qn) = σ2tr(Bn),
(ii) Var(Pn) = σ4tr(A′

nAn + A2
n) + κ4a

′
nan + σ2c′ncn + 2κ3a

′
ncn,

(iii) Var(Qn) = σ4tr(B′
nBn + B2

n) + κ4b
′
nbn,

(iv) Cov(Pn, Qn) = σ4tr[(A′
n + An)Bn ] + κ4a

′
nbn + κ3b

′
ncn.

Lemma A2: (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001) Let An, an, cn and
εn be defined in Lemma A1. Assume (i) An is bounded uniformly in row and column sums, (ii)
n−1

∑n
i=1 |c2+η1

n,i | < ∞, η1 > 0, and (iii) E|ε4+η2
n,i | < ∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′
nAn + A2

n) + κ4a′
nan + σ2c′ncn + 2κ3a′

ncn}
1
2

D−→ N(0, 1).

Lemma A3: Let Pn = ε′nAnεn + c′nεn be defined in Lemma A1. Let An = {aij}, cn = {ci} and
εn = {εi} where εi has cumulants κj, j = 1 · · · , 6, κ1 = 0, and κ2 = σ2. Then, we have,

E[(Pn − EPn)3] = κ6T1n + 3κ5S1n + κ4(12σ2T1n + 2σ2T3n + 3S2n)
+κ2

3(10T1n + T4n) + κ3(24σ2S1n + 2σ2S5n + S3n + 2σ2T2n)
+2σ6(2T3n − T1n + 3T5n) + 2σ4(3S2n + S4n),

where T1n =
∑n

i=1 a3
ii, T2n =

∑n
i=1 aiid1i, T3n =

∑n
i=1 aiid2i, T4n =

∑n
i=1

∑i−1
j=1 ā3

ij, āij = aij +
aji, T5n =

∑n
i=1

∑i−1
j=1

∑j−1
k=1 āijāikājk; S1n =

∑n
i=1 a2

iici, S2n =
∑n

i=1 aiic
2
i , S3n =

∑n
i=1 c3

i , S4n =∑n
i=1 cid1i, S5n =

∑n
i=1 cid2i, d1i =

∑i−1
j=1 āij , and d2i =

∑i−1
j=1 ā2

ij .

Proof: Decompose An = Au
n +A�

n +Ad
n , the sum of upper triangular, lower triangular, and diagonal

matrices, and define ζn = (Au
n
′ + A�

n)εn. Then, Pn − EPn =
∑n

i=1 ui +
∑n

i=1 vi where ui = εiζi and
vi = aii(ε2

i − σ2) + ciεi. Taking use of the facts that ui
′s are uncorrelated due to the independence

between εi and ζi, vi
′s are independent, and un and vn are uncorrelated, the rest of the proof is

straightforward though tedious.
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Lemma A4: (Lee, 2004b, Lemma A.8) Let {An} be a sequence of n × n matrices of which the
elements {an,ij} are O(h−1

n ) uniformly in all i and j. Let {Bn} be a sequence of conformable n × n

matrices, uniformly bounded in column sums, or uniformly bounded in row sums. Then,

(i) for the former case, the elements of AnBn have uniform order O(h−1
n ),

(ii) for the latter case, the elements of BnAn have uniform order O(h−1
n ), and

(iii) for both cases, tr(AnBn) = tr(BnAn) = O(nh−1
n ).

Lemma A5: (Lee, 2004b, Lemma A.9) Let Xn be defined at the beginning of Section 3 and satisfy
Assumption S2. Let Mn = In − Xn(XnX′

n)−1X′
n, and An be an n × n matrix uniformly bounded in

both row and column sums. Then, tr(MnAn) = tr(An) + O(1).

Lemma A6: For Xn and Wn defined at the beginning of Section 3, satisfying, respectively, As-
sumption S2 and Assumption S3 therein, let Mn = In − Xn(XnX′

n)−1X′
n, An = MnWn or MnWnMn,

and write An = {aij}. Then, we have,

(i)
∑n

i=1 ar
ii = O(n−(r−1)), r = 1, 2, 3, · · ·,

(ii)
∑n

i=1

∑n
j=1 aiiaijaji = O(h−1

n ),
(iii)

∑n
i=1

∑n
j=1

∑n
k=1 aijaikajk = O(nh−1

n ).

If Wn is replaced by a general n × n matrix Wn, which shares all the properties of Wn except that
the diagonal elements are not zero but rather O(h−1

n ) uniformly. Then, we have,

(iv)
∑n

i=1 aii = O(nh−1
n );

∑n
i=1 ar

ii = O(nh−r
n ), r = 2, 3,

(v)
∑n

i=1

∑n
j=1 aiiaijaji = O(nh−2

n ),
(vi)

∑n
i=1

∑n
j=1

∑n
k=1 aijaikajk = O(nh−1

n ).

Proof: Following the arguments in the proof of Lemma A.9 in Lee (2004b).

Lemma A7: (Hall, 1992, p.46-48) Let Tn denote a statistic with a limiting standard normal distri-
bution, and κj,n be the jth cumulant of Tn. If κ4,n exists, and κj,n can be expanded as a power series
in n−1: κj,n = n− (j−2)

2 (kj,1 + n−1kj,2 + n−2kj,3 + · · · ), j = 1, 2, 3, where k1,1 = 0 and k2,1 = 1, then,

P (Tn ≤ t) = Φ(t) + n− 1
2 φ(t) p(t) + O(n−1), (A-1)

where p(t) = −k1,2 + 1
6k3,1(1 − t2), and φ and Φ are, respectively, the pdf and CDF of N(0, 1).

Note: From the expansion for κj,n, we see k1,2 = limn→∞ n
1
2 κ1,n, and k3,1 = limn→∞ n

1
2 κ3,n.

That k1,1 = 0 and k2,1 = 1 correspond to κ1,n = E(Tn) → 0 and κ2,n = Var(Tn) → 1.

Lemma A8: For models specified by (9), (16) and (23) with un = Ω
1
2
n (λ)εn, assume (a) Assumptions

S1-S3 hold, (b) the unrestricted QMLEs of the parameters that the tests concern are
√

nr-consistent,12

and (c) the matrices B−1
n (ρ), A−1

n (λ) and Ω− 1
2

n (λ) defined therein are uniformly bounded in both row
and column sums. Then, (i) κ̂3n = κ3 +Op(n

− 1
2

r ) and κ̂jn = κj +op(1), j = 4, 5, 6, (ii) κ̃jn = Op(1), j =
3, 4, 5, 6, and (iii) if κ3 = 0 and conditions in (A-3) hold for model (16), then both κ̂3n and κ̃3n are
op(1). Finally, the results remain for Model (23) if instead un = Wnvn + εn such that the jth sample

cumulant of σ−1Ω− 1
2

n (λ)un
p−→ κj, j = 1, . . . , 6.

Proof: Note that κ̈jn is the jth cumulant of σ̈−1
n ε̈n where¨denotes eitherˆor ,̃ and that κ̈1n = κ1 = 0

and κ̈2n = κ2 = 1 by construction. Detailed proofs for the three models are tedious, and are put in
12The

√
nr -consistency of λ̂n for the SLD model is proved by Lee (2004a). Similarly, one can prove the

√
nr-consistency

of ρ̂n for the SED model and that of λ̂n for the SEC model. Following Lee (2004a), it can be proved that σ̂2
n is always√

n-consistent, but β̂n is
√

nr -consistent in general for the SLD model and
√

n-consistent for the other two models.
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a Supplementary Appendix made available at http://www.mysmu.edu/faculty/zlyang/. A sketch is
given here. For the SED model, we have using Mn(ρ) defined below (9),

ε̂n = Mn(ρ̂n)Bn(ρ̂n)Yn = Mn(ρ̂n)εn − (ρ̂n − ρ)Mn(ρ̂n)WnB−1
n (ρ)εn = εn + Op(n

− 1
2

r ), (A-2)

Thus, κ̂3n = 1
nσ̂3

n

∑n
i=1 ε̂3

n,i = 1
nσ3

∑n
i=1 ε3

n,i + Op(n
− 1

2
r ) = κ3 + Op(n

− 1
2

r ) where the last step follows by
the generalized Chebyshev inequality and Assumption S1; κ̂4n = 1

nσ̂4
n

∑n
i=1 ε̂4

n,i − 3 = 1
n

∑n
i=1 e4

n,i − 3 +

Op(n
− 1

2
r ) = κ4 + op(1) by Kolmogorov law of large numbers; and similarly κ̂jn = κj + op(1), j = 5, 6.

To prove (ii), note that ε̃n = MnYn = MnB−1
n (ρ)εn ≡ Gnεn where Mn = Mn(0). Let g′n,i denote the

ith row of Gn. We have κ̃3n = 1
nσ̃3

n

∑n
i=1(g

′
n,iεn)3. Decomposing 1

n

∑n
i=1(g

′
n,iεn)3 into three sums of

martingale difference sequences and using σ̃2
n = 1

n
ε̃′nε̃n = σ2

n
tr(G′

nGn)+Op(n− 1
2 ) ≡ σ̄2

n +Op(n− 1
2 ), one

shows that κ̃3n = κ3

(
σ3

nσ̄3

∑n
i=1

∑n
j=1 g3

n,ij

)
+ op(1) = Op(1). The remaining elements in (ii) follow

similarly. The results in (iii) follow directly from the results in (i) and (ii) by setting κ3 = 0.
The proof for the SLD model is similar to that for the SED model, except for (iii): κ̃3n =

1
nσ̄3

n

∑n
i=1 μ3

n,i+
σ2

nσ̄3
n

∑n
j=1 ζn,j+κ3

(
σ3

nσ̄3
n

∑n
i=1

∑n
j=1 g3

n,ij

)
+op(1), where μn = GnXnβ, Gn = MnA−1

n (λ),
and ζn,j =

∑n
i=1 μn,ig

2
n,ij. Thus, κ̃3n = op(1) if κ3 = 0 and

limn→∞ 1
n

∑n
i=1 μ3

n,i = 0 and limn→∞ 1
n

∑n
i=1 ζn,i = 0. (A-3)

The proof for the SEC model with un = Ω
1
2
n (λ)εn is similar to that for the SED model. For the

SEC model with un = Wnvn + εn, it is easy to see that ε̂n = Ω− 1
2

n (λ̂n)ûn = Ω− 1
2

n (λ)un + Op(n
− 1

2
r ).

Thus, if the sample cumulants κjn of σ−1Ω− 1
2

n (λ)un converges to κj , the sample cumulants of σ̂−1
n ε̂n,

κ̂jn, follows. To see the plausibility of this condition, we have proved the following useful result,

κjn = κvj
λj/2

n

n∑
i=1

n∑
t=1

hj
n,it + κj

1
n

n∑
i=1

n∑
t=1

gj
n,it + op(1), (A-4)

where κvj is the jth cumulant of vn,i, {hn,it} are the elements of Ω− 1
2

n (λ)Wn and gn,it the elements of

Ω− 1
2

n (λ). Under certain conditions, e.g., hn in Assumption S3 is unbounded, λj/2

n

∑n
i=1

∑n
t=1 hj

n,it → 0
and 1

n

∑n
i=1

∑n
t=1 gj

n,it → 1, giving κjn
p−→ κj, for j ≥ 3. See the Supplementary Appendix for details.

Appendix B: Derivations and Proofs for Section 3

Derivations of LMSED(ρ) and SLMSED(ρ) in Section 3.1: To implement the RSuf scheme, the
LM statistics under ρ �= 0 are needed. The loglikelihood function is: �n(β, σ2, ρ) = −n

2 log(2πσ2) +
log |Bn(ρ)| − 1

2σ2 u′
n(β)B′

n(ρ)Bn(ρ)un(β), where un(β) = Yn − Xnβ. The score functions are: ∂�n

∂β
=

1
σ2 X′

nB′
n(ρ)Bn(ρ)un(β), ∂�n

∂σ2 = 1
2σ4 u′

n(β)B′
n(ρ)Bn(ρ)un(β) − n

2σ2 , and ∂�n

∂ρ = 1
σ2 u′

n(β)B′
n(ρ)Wnun(β) −

tr[WnB−1
n (ρ)]. Plugging β̃n(ρ) and σ̃2

n(ρ) into the last expression gives the concentrated score for ρ:

Sc
n(ρ) = σ̃−2

n (ρ)ε̃n(ρ)′Q◦
n(ρ)(ρ)ε̃n(ρ),

where ε̃n(ρ) = Bn(ρ)(Yn − Xnβ̃n(ρ)), Q◦
n(ρ) = Qn(ρ) − 1

n
tr[Qn(ρ)]In and Qn(ρ) = WnB−1

n (ρ). The
expected information matrix is:

Jn(β, σ2, ρ) =

⎛
⎜⎝

1
σ2 X′

nB′
n(ρ)Bn(ρ)Xn , 0, 0

0, n
2σ4 , 1

σ2 tr[Qn(ρ)]
0, 1

σ2 tr[Qn(ρ)], tr[Q′
n(ρ)Qn(ρ) + Q2

n(ρ)]

⎞
⎟⎠ . (B-1)
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Thus, AVar[Sc
n(ρ)] = Jn,22 − Jn,21J

−1
n,11Jn,12 = tr[Q◦

n(ρ)′Q◦
n(ρ) + Q◦

n(ρ)2] ≡ Kn(ρ), where {Jn,ij, i, j =
1, 2} partitions Jn according to (β, σ2) and ρ. Putting the two together gives:

LMSED(ρ) =
n√

Kn(ρ)
ε̃n(ρ)′Q◦

n(ρ)ε̃n(ρ)
ε̃n(ρ)′ε̃n(ρ)

. (B-2)

To improve the finite sample performance and to enhance the robustness of LMSED(ρ), we derive
a standardized version of it by centering and rescaling (without assuming normality) its numerator
ε̃n(ρ)′Q◦

n(ρ)ε̃n(ρ). The resulted statistic takes the form:

SLMSED(ρ) =
ε̃n(ρ)′Q†

n(ρ)ε̃n(ρ)

σ̃2
n(ρ)[K†

n(ρ) + κ̃4n(ρ)a′
n(ρ)an(ρ)]

1
2

, (B-3)

where Q†
n(ρ) = Qn(ρ) − 1

n−k tr[Mn(ρ)Qn(ρ)]Mn(ρ), K†
n(ρ) = tr[An(ρ)(An(ρ) + An(ρ)′)], an(ρ) =

diagv[An(ρ)], An(ρ) = Mn(ρ)Q†
n(ρ)Mn(ρ), and κ̃4n(ρ) is the 4th cumulant of σ̃−1

n (ρ)ε̃n(ρ). These
two statistics can also be used to construct a confidence interval for ρ without having to estimate it.

Proof of Proposition 3.1 (Cont’d): Additional details needed are the proofs of

(a) LMSED|H0

D−→ N(0, 1), ∀F , (c) p(t,F) = −c0c1 + (1
6κ2

3T4 + T5)(1 − t2),

(b) LM∗
SED

D∗−→ N(0, 1), ∀F̈n, (d) p(t, F̈n) = −c0c1 + (1
6 κ̈2

3nT4 + T5)(1 − t2),

where Ti = limn→∞ n−1
r Tin, i = 4, 5, and Tin are defined in Lemma A3 under An = MnWnMn.

First, (a) follows from Kelejian and Prucha (2001) or Baltagi and Yang (2013). We prove (b) by
directly applying Lemmas A1 and A2 to (13) under An = MnWnMn and cn = 0. Lemma A1 gives,

E∗(e∗n
′Ane∗n) = tr(An), and Var∗(e∗n

′Ane∗n) = tr(A2
n + A′

nAn) + κ̈4na′
nan.

By Assumption S3 and Lemma A4, Kn = O(nr); by Lemmas A5 and A6, limn→∞ K
− 1

2
n tr(An) = 0,

limn→∞ K−1
n a′

nan = 0, and limn→∞ K−1
n tr(A′

nAn + A2
n) = 1; by lemma A2, K

− 1
2

n e∗n
′Ane∗n

D∗
−→ N(0, 1);

by Kolmogorov’s law of large numbers, 1
ne∗n

′Mne∗n = 1
ne∗n

′e∗n + op(1)
p∗
−→ 1; and by Slutsky’s theorem,

LM∗
SED

D∗−→ N(0, 1), for F̈n = F̂n or F̃n.

With (a) and (b), and the existence of the 4th moment of LMSED|H0 , Lemma A7 is applicable to
LMSED|H0 and LM∗

SED, leading to (14) and (15). For these it suffices to show (c) and (d). Applying Lemma
A3 with An = MnWnMn, cn = 0, εn = en(σ2 = 1) and the quantities Tin, i = 1, · · · , 5, defined therein,
we obtain, E[(e′nAnen − tr(An))3] = κ6T1n + 2κ4(6T1n + T3n) + κ2

3(10T1n + T4n) + 2κ3T2n + 2(2T3n −
T1n + 3T5n)). By Lemma A6, T1n =

∑n
i=1 a3

ii = O(n−2), T2n =
∑n

i=1 aii

∑i−1
j=1(aij + aji) = O(1), and

T3n =
∑n

i=1 aii

∑i−1
j=1(aij + aji)2 = O(h−1

n ). It follows that

E[(e′nAnen − tr(An))3] = κ2
3T4n + 6T5n + O(1). (B-4)

It left to show that the first three cumulants of LMSED |H0 have the following asymptotic expansions:

κ1,n = n
− 1

2
r c

− 1
2

0 c1 + O(n− 3
2

r ), κ2,n = 1 + O(n−1
r ), and κ3,n = n

−1
2

r c
− 3

2
0 (κ2

3T4 + 6T5) + O(n−3
2

r ).

By (a) and the conditions given in Proposition 3.1, we have by the dominated convergence theorem
(DCT), (see, e.g., Chung, 1974, p. 42), κ1,n = o(1), κ2,n = 1 + o(1) and κ3,n = o(1). To derive the

higher-order terms for κj,n, let Zn = K
− 1

2
n e′nAnen and qn = 1

ne′nMnen, so that LMSED |H0 = Zn/qn. As
qn = 1 +Op(n− 1

2 ), it is easy to show that q−j
n = 1 +Op(n− 1

2 ), j = 1, 2, 3, 4. By Taylor series expansion,

q−j
n = 1 − j(qn − 1) + j(j + 1)(qn − 1)2 + Op(n− 3

2 ), j = 1, 2, 3. (B-5)
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Let cn0 = n−1
r Kn and cn1 = tr(An). Using (B-5) with j = 1, we have

κ1,n = E(Zn/qn) = E(Zn) − E[Zn(qn − 1)] + 2E[Zn(qn − 1)2] + E[Op(n− 3
2 )],

where E(Zn) = K
− 1

2
n cn1 and E[Zn(qn − 1)] = O(n− 1

2
r )O(n−1) by Lemma A1(iv). The existence of the

4th moment of LMSED|H0 implies the existence of the 8th moment of en,i. It follows by Chebyshev’s

inequality that (qn − 1)2 = E[(qn − 1)2] + O(n−3
2 ). Thus, E[Zn(qn − 1)2] = O(n− 1

2
r )O(n−1). Finally,

the remainder term follows from a simplifying assumption, e.g., E[Op(n− 3
2 )] = O(n− 3

2 ).13 Thus, k1,1 =

limn→∞ κ1,n = 0 and k1,2 = limn→∞ n
1
2
r κ1,n = c

− 1
2

0 c1, giving κ1,n = n
− 1

2
r c

− 1
2

0 c1 + O(n− 3
2

r ).
For κ2,n, noting that the diagonal elements of An are O(n−1) by Assumption S2, we have, by

Lemmas A1(iii) and A5, Var(Zn) = 1 + O(n−1
r ). By (B-5) with j = 2, we obtain

κ2,n = Var(LMSED |H0) = Var(Zn) − 2E[Z2
n(qn − 1)] + O(n−1),

giving k2,1 = 1, k2,2 = O(n−1
r ), and thus κ2,n = 1 + O(n−1

r ), provided that E[Z2
n(qn − 1)] is O(n−1

r ) or

smaller. It is easy to see that qn−1 = 1
n

∑n
i=1 νi +Op(n−1) and Zn−E(Zn) = K

− 1
2

n
∑n

i=1 ui +Op(n−1
r ),

where νi = e2
n,i−1 and ui is defined as in the proof of Lemma A3, which lead to E[Z2

n(qn−1)] = O(n−1).
For κ3,n, noting that κ3,n = E[(LMSED |H0 − E(LMSED |H0))3] = E[(LMSED |H0)3] − 3E(LMSED |H0) +

O(n− 3
2

r ), we obtain by (B-5) with j = 3 and the fact that E(LMSED |H0) = E(Zn) + O(n− 3
2

r ),

κ3,n = E[(Zn − E(Zn))3]− 3E[Z3
n(qn − 1)] + 12E[Z3

n(qn − 1)2] + O(n−3
2

r ),

where E[(Zn − E(Zn))3] = K
− 3

2
n (κ2

3T4n + 6T5n) by (B-4), E[Z3
n(qn − 1)] = O(n− 1

2
r )O(n−1) by qn − 1 =

1
n

∑n
i=1 νi + Op(n−1) and Zn − E(Zn) = K

− 1
2

n
∑n

i=1 ui + Op(n−1
r ), and [Z3

n(qn − 1)2] = O(n− 1
2

r )O(n−1)

by (B-4) and (qn − 1)2 = E[(qn − 1)2] + O(n− 3
2 ). Thus, k3,1 = limn→∞ n

1
2
r κ3,n = c

− 3
2

0 (κ2
3T4 + 6T5),

which gives κ3,n = n
− 1

2
r c

− 3
2

0 (κ2
3T4 + 6T5) + O(n−3

2
r ). These give the function in Lemma A7: p(t) =

−k1,2 + 1
6k3,1(1 − t2) = −c

− 1
2

0 c1 + c
− 3

2
0 (1

6κ2
3T4 + T5)(1 − t2), and thus (c) and hence (14).14 Similarly,

one proves (d) and hence (15). The rest follows from Lemma A8.

Proof of Proposition 3.2 (Cont’d): Similar to the proof of Proposition 3.1, the necessary details
for the proof of Proposition 3.2 amount to show that

(a) LMSLD|H0

D−→ N(0, 1), ∀F ,

(b) LM∗
SLD

D∗−→ N(0, 1), ∀(θ̈n, F̈n),
(c) p(t, θ,F) = −c0(θ)c1 + [ 1

6
κ2

3T4 + T5 + 1
6
κ3(S3(θ) + 2S5(θ)) + 1

3
S4(θ)](1 − t2), and

(d) p(t, θ̈n, F̈n) = −c0(θ̈n)c1 + [ 1
6
κ̈2

3nT4 + T5 + 1
6
κ̈3n(S3(θ̈n) + 2S5(θ̈n)) + 1

3
S4(θ̈n)](1 − t2),

where Ti = limn→∞ n−1
r Tin, i = 4, 5, and Si(θ) = limn→∞ n−1

r Sin, i = 3, 4, 5, with Tin and Sin being
defined in Lemma A3 under An = MnWn and cn = Mnηn.

First, (a) is proved in Yang and Shen (2011). We prove (b) by directly applying Lemmas A1 and
A2 to (20) under An = MnWn and cn = Mnη̈n. In particular, by Lemma A1, we have,

E∗(e∗′n Ane∗n + e∗′n Mnη̈n) = tr(An); and

Var∗(e∗′n Ane∗n + e∗′n Mnη̈n) = η̈′
nMnη̈n + tr(A2

n + AnA′
n) + κ̈4na′

nan + 2κ̈3na′
nMnη̈n,

By Lemmas A5 and A6, we have as n → ∞, K
− 1

2
n tr(An) → 0, K−1

n a′
nan → 0, and K−1

n tr(A2
n+AnA′

n) →
1. By law of large numbers, 1

n
e∗′n Mne∗n

p∗
−→ 1. Thus, K−1

n Q(e∗n) p∗
−→ 1 and K−1

n e∗′n PnWnMnη̈n
p∗
−→ 0.

13This is a slight simplification as in Hall (1992, p. 54-55), which is also followed in the derivations for κ2,n and κ3,n.
14The remainder of (14) is O(n−1

r ) as k2,2 = O(n−1
r ), the key term in the Edgeworth expansion; see Hall (1992, p.46-28).
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Furthermore, it is easy to show that plimn→∞ K−1
n a′

nMnη̈n = 0. It follows that

η̈′
nMnη̈n + Q(e∗n) + 2e∗′n PnWnMnη̈n

η̈′
nMnη̈n + tr(A2

n + AnA′
n) + κ̈4na′

nan + 2κ̈3na′
nMnη̈n

p∗
−→ 1.

Thus, by Lemma A2 and Slutsky’s theorem, we have LM∗
SLD

D∗−→ N(0, 1), ∀(θ̈n , F̈n).
With (a) and (b), and the existence of the 4th moment of LMSLD|H0 , Lemma A7 is applicable to

LMSLD|H0 and LM∗
SLD, leading to (21) and (22). For these it suffices to show (c) and (d). Applying

Lemma A3 with An = MnWn, cn = Mnηn and εn = en(σ2 = 1), and using Lemma A6 to show that
Tin, i = 1, 2, 3, and Sin, i = 1, 2, are all of order O(1) or smaller, we obtain,

E[(Pn − EPn)3] = κ2
3T4n + 6T5n + κ3[S3n(θ) + 2S5n(θ)] + 2S4n(θ).

Similar to the proof of Proposition 3.1, we show by DCT and some tedious algebra that the first
three cumulants of LMSLD |H0 are: κ1,n = n

− 1
2

r c0(θ)−
1
2 c1 + O(n−3

2
r ), κ2,n = 1 + O(n−1

r ), and κ3,n =

n
− 1

2
r c0(θ)−

3
2 [κ2

3T4+6T5+κ3(S3(θ)+2S5(θ))+2S4(θ)]+O(n− 3
2

r ), leading to (c) and hence the Edgeworth
expansion (21). Similar arguments lead to (d) and (22). The rest follows from Lemma A8.

Proof of Proposition 3.3 (Cont’d): It suffices to prove the Edgeworth expansion (30) and the
asymptotic expansion (31). For the former, we have, SLMSEC|H0

D→ N(0, 1) by Lemma A2, and the first
three cumulants of SLMSEC |H0 : κ1,n = O(n− 3

2
r ), κ2,n = 1 + O(n−2

r ),15 and κ3,n = n
− 1

2
r c

− 3
2

1 [4T3 − 2T1 +

6T5 + κ6T1 + 2κ4(6T1 + T3) + κ2
3(10T1 + T4) + 2κ3T2] + O(n− 3

2
r ), by applying Lemma A1, Lemma A3

(with An = MnH†
nMn and cn = 0), and DCT. Now, applying Lemma A7 to LMSEC|H0 gives (30), where

c1 = limn→∞ n−1
r Kn, Ti = limn→∞ n−1

r Tin, and Tin are given in Lemma A3 with An = MnH†
nMn. The

asymptotic expansion (31) can be proved in an similar manner. The rest follows from Lemma A8.

Appendix C: Settings for Monte Carlo Experiments

We now describe the methods for generating the regressors values, the spatial weight matrices,
and the errors, to be used in the Monte Carlo experiments. All the DGPs used in our Monte Carlo
experiments contain two regressors.

Regressors Values. The simplest method for generating the values for the regressors is to make
random draws from a certain distribution, i.e., the values {x1i} of Xn1 and the values {x2i} of Xn2 in
the Monte Carlo experiments are generated according to:

XVal-A: {x1i} iid∼ N(0, 1), and {x2i} iid∼ N(0, 1),

where Xn1 and Xn2 are independent. Alternatively, to allow for the possibility that there might be
systematic differences in X values across the different sets of spatial units, e.g., spatial groups, spatial
clusters, etc., the ith value in the rth ‘group’ {x1,ir} of Xn1, and the ith value in the rth group {x2,ir}
of Xn2 are generated as follows:

XVal-B: {x1,ir} = (2zr + zir)/
√

5, and {x2,ir} = (2vr + vir)/
√

5,

where {zr , zir, vr, vir} iid∼ N(0, 1), across all i and r. Apparently, unlike the XVal-A scheme that gives
iid X values, the XVal-B scheme gives non-iid X values, or different group means in terms of group
interaction (Lee 2004a).

15Note that the standardization brings the first two moments of the test statistic closer to their asymptotic values, even

when the errors are normal. The same issue applies to the earlier tests.
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Spatial Weight Matrix. The spatial weight matrices used in the Monte Carlo experiments are
generated according to Rook Contiguity, Queen Contiguity and Group Interaction, using the same
methods as in Baltagi and Yang (2013), except that in the group interaction scheme, the group sizes
(n1, n2, · · · , ng) are generated according to a discrete uniform distribution from 2 to m − 2 where g =
Round(nδ), and δ is chosen to be 0.3, 0.5 and 0.7. In the first two cases, the number of neighbors for
each spatial unit does not change with n, whereas in the last case, the number of neighbors for each
spatial unit increases with n but at a slower rate, and changes from group to group. A special group
interaction scheme is also considered, where a set of fixed group sizes, e.g., {2, 3, 4, 5, 6, 7}, is repeated
m times. In this case, the group sizes and their variance are both fixed fixed with respect to n, leading
to a case where the LMSEC test in Section 3.3 is non-robust against nonnormality. See Case (1991),
Lee (2007) and Yang (2010) for more discussions on the group interaction scheme.

Error Distributions. The reported Monte Carlo results correspond to the following three error
distributions: (i) standard normal, (ii) mixture normal, ei = ((1− ξi)Zi + ξiτZi)/(1− p + p ∗ τ2)0.5,
where ξi is Bernoulli with parameter p = .05 or .1, Zi is N(0, 1) independent of ξi, and τ = 4; and (iii)
log-normal, ei = [exp(Zi) − exp(0.5)]/[exp(2) − exp(1)]0.5. See Baltagi and Yang (2013) for details.
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Table 3.1a. Bootstrap and MC Critical Values for Burridge’s LM Test of SED

spatial Layout: Group Interaction with g = n0.5; H0 : ρ = 0; σ = 2

n = 50 n = 200

Method ρ 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%

Normal Error

RSrr -0.5 -1.9437 -1.7281 0.9379 1.3402 -1.8809 -1.7281 1.1689 1.5818

0.0 -1.9466 -1.7318 0.9379 1.3417 -1.8827 -1.7292 1.1658 1.5802

0.5 -1.9426 -1.7276 0.9395 1.3446 -1.8833 -1.7292 1.1655 1.5820

RSuu -0.5 -1.9450 -1.7292 0.9385 1.3428 -1.8802 -1.7277 1.1682 1.5836

0.0 -1.9476 -1.7316 0.9390 1.3438 -1.8827 -1.7297 1.1654 1.5801

0.5 -1.9420 -1.7276 0.9400 1.3448 -1.8819 -1.7285 1.1659 1.5795

MC -1.9615 -1.7236 0.9375 1.3204 -1.8818 -1.7294 1.1664 1.6138

Normal Mixture, p = .05

RSrr -0.5 -1.8721 -1.6584 0.8608 1.2739 -1.8771 -1.7134 1.1291 1.5341

0.0 -1.8758 -1.6607 0.8629 1.2705 -1.8770 -1.7141 1.1295 1.5382

0.5 -1.8815 -1.6686 0.8704 1.2787 -1.8788 -1.7166 1.1317 1.5391

RSuu -0.5 -1.8690 -1.6579 0.8608 1.2730 -1.8765 -1.7132 1.1295 1.5337

0.0 -1.8773 -1.6616 0.8642 1.2714 -1.8769 -1.7146 1.1296 1.5393

0.5 -1.8728 -1.6625 0.8618 1.2685 -1.8781 -1.7146 1.1271 1.5367

MC -1.8653 -1.6217 0.9279 1.2777 -1.8830 -1.7173 1.1046 1.5283

Log-Normal Error

RSrr -0.5 -1.8161 -1.6256 0.8157 1.2596 -1.8165 -1.6603 1.0887 1.5252

0.0 -1.8079 -1.6237 0.8100 1.2597 -1.8157 -1.6589 1.0872 1.5218

0.5 -1.8345 -1.6389 0.8324 1.2697 -1.8279 -1.6686 1.0959 1.5267

RSuu -0.5 -1.8133 -1.6263 0.8164 1.2601 -1.8156 -1.6589 1.0853 1.5272

0.0 -1.8120 -1.6263 0.8115 1.2613 -1.8160 -1.6597 1.0872 1.5212

0.5 -1.8138 -1.6263 0.8163 1.2603 -1.8177 -1.6596 1.0875 1.5266

MC -1.8184 -1.5850 0.8618 1.2742 -1.8248 -1.6603 1.0932 1.5195

RSrr and RSuu: Average bootstrap critical values based on M = 2,000 and B = 699;

MC: Monte Carlo critical values based on M = 30,000; Regressors generated according to XVal-B.

Note: The same pattern holds when |ρ| further increases from 0.5.
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Table 3.1b. Rejection Frequencies for One-Sided LM Test of SED, H0 : ρ = 0

spatial Layout: Group Interaction with g = n0.5; σ = 2

n = 100 n = 200

Method |ρ| L2.5% L5% R5% R2.5% L2.5% L5% R5% R2.5%

Normal Error

ACR 0.00 0.0155 0.0690 0.0175 0.0110 0.0200 0.0740 0.0200 0.0115

0.25 0.0700 0.2440 0.2295 0.1760 0.0930 0.2740 0.3245 0.2625

0.50 0.1925 0.4735 0.7865 0.7400 0.3005 0.6000 0.8860 0.8585

RSrr 0.00 0.0270 0.0530 0.0485 0.0215 0.0290 0.0565 0.0445 0.0235

0.25 0.1165 0.2000 0.3550 0.2520 0.1370 0.2270 0.4450 0.3410

0.50 0.2715 0.4105 0.8570 0.8050 0.3875 0.5245 0.9280 0.8915

RSuu 0.00 0.0265 0.0530 0.0470 0.0210 0.0300 0.0555 0.0435 0.0235

0.25 0.1170 0.2020 0.3595 0.2560 0.1375 0.2235 0.4430 0.3390

0.50 0.2740 0.4060 0.8565 0.8030 0.3845 0.5275 0.9280 0.8915

ACR∗ 0.00 0.0015 0.0170 0.0705 0.0420 0.0300 0.0555 0.0435 0.0235

0.25 0.0145 0.0825 0.4035 0.3440 0.1375 0.2235 0.4430 0.3390

0.50 0.0555 0.2180 0.8785 0.8465 0.3845 0.5275 0.9280 0.8915

Normal Mixture, p = .05

ACR 0.00 0.0165 0.0605 0.0150 0.0090 0.0155 0.0540 0.0205 0.0135

0.25 0.0710 0.2110 0.2305 0.1735 0.0945 0.2635 0.3325 0.2625

0.50 0.2045 0.4460 0.7815 0.7390 0.2940 0.5850 0.9020 0.8705

RSrr 0.00 0.0250 0.0530 0.0480 0.0230 0.0215 0.0415 0.0520 0.0245

0.25 0.0930 0.1730 0.3705 0.2710 0.1355 0.2255 0.4575 0.3600

0.50 0.2580 0.3915 0.8690 0.8110 0.3595 0.5290 0.9410 0.9120

RSuu 0.00 0.0245 0.0510 0.0475 0.0235 0.0200 0.0415 0.0515 0.0245

0.25 0.0925 0.1780 0.3700 0.2735 0.1365 0.2235 0.4570 0.3575

0.50 0.2550 0.3935 0.8675 0.8105 0.3665 0.5335 0.9410 0.9105

ACR∗ 0.00 0.0045 0.0170 0.0600 0.0370 0.0065 0.0165 0.0690 0.0425

0.25 0.0325 0.0790 0.4070 0.3410 0.0260 0.0995 0.5050 0.4270

0.50 0.0960 0.2145 0.8855 0.8535 0.0860 0.3045 0.9480 0.9325

Log-Normal Error

ACR 0.00 0.0125 0.0490 0.0180 0.0090 0.0150 0.0530 0.0210 0.0110

0.25 0.0735 0.1975 0.2190 0.1630 0.0820 0.2605 0.3115 0.2395

0.50 0.2120 0.4350 0.7910 0.7340 0.2805 0.5605 0.9180 0.8900

RSrr 0.00 0.0295 0.0440 0.0485 0.0240 0.0250 0.0495 0.0660 0.0285

0.25 0.1155 0.1950 0.3600 0.2605 0.1525 0.2485 0.4540 0.3460

0.50 0.2860 0.4235 0.8870 0.8165 0.4090 0.5460 0.9525 0.9255

RSuu 0.00 0.0290 0.0445 0.0490 0.0250 0.0255 0.0495 0.0635 0.0290

0.25 0.1155 0.1965 0.3650 0.2580 0.1560 0.2520 0.4550 0.3470

0.50 0.2905 0.4255 0.8865 0.8170 0.4110 0.5525 0.9530 0.9230

ACR∗ 0.00 0.0045 0.0140 0.0535 0.0375 0.0015 0.0165 0.0720 0.0470

0.25 0.0310 0.0760 0.3915 0.3140 0.0255 0.0870 0.4825 0.4025

0.50 0.1170 0.2185 0.9015 0.8630 0.0985 0.2925 0.9570 0.9430

L = Left tail (ρ < 0), R = Right tail (ρ > 0); Regressors generated according to XVal-B
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Table 3.2a. Bootstrap Critical Values for LM and SLM Tests of SLD, H0 : λ = 0

Spatial Layout: Group Interaction with g = n0.5; n = 100; σ = 1

LM Test SLM Test

Method λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Normal Error

RSrr -0.5 -2.0718 -1.8294 1.2718 1.6270 -1.8282 -1.5691 1.7465 2.1265

-0.3 -2.0872 -1.8313 1.2960 1.6438 -1.8529 -1.5813 1.7331 2.1033

0.0 -2.1064 -1.8372 1.3469 1.6844 -1.8904 -1.6090 1.7195 2.0722

0.3 -2.1144 -1.8318 1.4030 1.7303 -1.9238 -1.6322 1.7031 2.0407

0.5 -2.1135 -1.8245 1.4375 1.7608 -1.9383 -1.6417 1.6994 2.0307

RSuu -0.5 -2.1034 -1.8378 1.3510 1.6849 -1.8908 -1.6133 1.7145 2.0635

-0.3 -2.1030 -1.8312 1.3507 1.6870 -1.8905 -1.6072 1.7121 2.0638

0.0 -2.1064 -1.8363 1.3559 1.6924 -1.8949 -1.6127 1.7163 2.0682

0.3 -2.1099 -1.8376 1.3563 1.6908 -1.8982 -1.6139 1.7183 2.0667

0.5 -2.1049 -1.8366 1.3578 1.6898 -1.8929 -1.6132 1.7184 2.0655

MC 0.0 -2.1190 -1.8415 1.3262 1.6512 -1.9018 -1.6117 1.7002 2.0447

Normal Mixture, p = .05

RSrr -0.5 -2.0640 -1.8098 1.2502 1.6027 -1.8228 -1.5513 1.7074 2.0825

-0.3 -2.0809 -1.8167 1.2730 1.6198 -1.8494 -1.5695 1.6954 2.0620

0.0 -2.0941 -1.8170 1.3308 1.6675 -1.8818 -1.5923 1.6900 2.0411

0.3 -2.1066 -1.8191 1.3962 1.7254 -1.9197 -1.6235 1.6859 2.0250

0.5 -2.1095 -1.8175 1.4302 1.7542 -1.9361 -1.6367 1.6885 2.0196

RSuu -0.5 -2.0972 -1.8206 1.3424 1.6743 -1.8888 -1.6003 1.6899 2.0362

-0.3 -2.1001 -1.8210 1.3401 1.6761 -1.8918 -1.6008 1.6887 2.0385

0.0 -2.0959 -1.8175 1.3414 1.6763 -1.8872 -1.5971 1.6898 2.0389

0.3 -2.0978 -1.8204 1.3428 1.6777 -1.8900 -1.6009 1.6899 2.0368

0.5 -2.0975 -1.8229 1.3425 1.6761 -1.8886 -1.6023 1.6913 2.0389

MC 0.0 -2.1175 -1.8320 1.3125 1.6077 -1.9059 -1.6033 1.6781 1.9927

Log-Normal Error

RSrr -0.5 -2.0232 -1.7734 1.2626 1.6337 -1.7806 -1.5159 1.6860 2.0766

-0.3 -2.0374 -1.7797 1.2960 1.6574 -1.8064 -1.5353 1.6806 2.0586

0.0 -2.0556 -1.7869 1.3500 1.6995 -1.8455 -1.5663 1.6759 2.0381

0.3 -2.0807 -1.7979 1.4160 1.7513 -1.8982 -1.6079 1.6794 2.0233

0.5 -2.0947 -1.8026 1.4362 1.7671 -1.9235 -1.6251 1.6797 2.0169

RSuu -0.5 -2.0612 -1.7899 1.3612 1.7118 -1.8549 -1.5735 1.6780 2.0391

-0.3 -2.0592 -1.7883 1.3631 1.7083 -1.8530 -1.5722 1.6782 2.0348

0.0 -2.0608 -1.7884 1.3581 1.7057 -1.8545 -1.5721 1.6764 2.0344

0.3 -2.0667 -1.7921 1.3664 1.7162 -1.8626 -1.5780 1.6790 2.0388

0.5 -2.0614 -1.7901 1.3601 1.7104 -1.8553 -1.5743 1.6762 2.0373

MC 0.0 -2.0276 -1.7597 1.3454 1.6944 -1.8154 -1.5290 1.6663 2.0354

RSrr and RSuu: Average bootstrap critical values based on M = 2, 000 and B = 699;

MC: Monte Carlo critical values based on M = 30,000; Regressors generated according to XVal-B;

Note: As |ρ| further increases from .5, the values diverge further under RSrr , but stable under RSuu.
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Table 3.2b. Rejection Frequencies for LM Tests of SLD, H0 : λ = 0

Spatial Layout: Group Interaction with g = n0.5; σ = 1

n = 50 n = 100

Method |λ| L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Normal Error

ACR 0.0 0.0435 0.0970 0.0190 0.0085 0.0430 0.0875 0.0235 0.0095

0.1 0.1010 0.1905 0.0905 0.0550 0.1405 0.2300 0.1240 0.0805

0.2 0.2150 0.3510 0.2885 0.1985 0.2955 0.4400 0.4510 0.3430

0.3 0.3585 0.5420 0.6110 0.4990 0.4705 0.6410 0.8535 0.7690

RSrr 0.0 0.0285 0.0565 0.0485 0.0260 0.0305 0.0540 0.0445 0.0235

0.1 0.0655 0.1220 0.1640 0.0975 0.1045 0.1725 0.1960 0.1190

0.2 0.1555 0.2455 0.3975 0.2890 0.2405 0.3505 0.5495 0.4310

0.3 0.2870 0.4175 0.7135 0.6055 0.4075 0.5390 0.8920 0.8340

RSuu 0.0 0.0270 0.0575 0.0555 0.0280 0.0290 0.0555 0.0475 0.0245

0.1 0.0605 0.1195 0.1715 0.1030 0.0995 0.1755 0.2015 0.1255

0.2 0.1415 0.2440 0.4070 0.3020 0.2325 0.3500 0.5590 0.4420

0.3 0.2610 0.4025 0.7260 0.6220 0.3955 0.5350 0.8935 0.8410

Normal Mixture, p = .05

ACR 0.0 0.0445 0.0860 0.0160 0.0075 0.0335 0.0765 0.0250 0.0125

0.1 0.1045 0.1925 0.0975 0.0520 0.1265 0.2285 0.1355 0.0800

0.2 0.2290 0.3795 0.3070 0.2160 0.2995 0.4355 0.4630 0.3400

0.3 0.3800 0.5505 0.6380 0.5335 0.5035 0.6625 0.8415 0.7780

RSrr 0.0 0.0295 0.0545 0.0470 0.0215 0.0245 0.0520 0.0485 0.0255

0.1 0.0745 0.1335 0.1730 0.1015 0.0995 0.1705 0.2070 0.1300

0.2 0.1860 0.2705 0.4200 0.3105 0.2515 0.3610 0.5520 0.4400

0.3 0.3140 0.4440 0.7375 0.6350 0.4480 0.5790 0.8850 0.8285

RSuu 0.0 0.0280 0.0525 0.0515 0.0235 0.0240 0.0510 0.0495 0.0275

0.1 0.0675 0.1325 0.1820 0.1055 0.0985 0.1680 0.2180 0.1325

0.2 0.1720 0.2685 0.4360 0.3215 0.2425 0.3535 0.5660 0.4500

0.3 0.2935 0.4390 0.7460 0.6485 0.4260 0.5755 0.8890 0.8345

Log-Normal Error

ACR 0.0 0.0275 0.0715 0.0140 0.0070 0.0310 0.0800 0.0270 0.0130

0.1 0.1165 0.2020 0.1175 0.0655 0.1355 0.2375 0.1630 0.1030

0.2 0.2725 0.4065 0.3895 0.2795 0.3275 0.4620 0.5045 0.4020

0.3 0.4380 0.5925 0.7130 0.6260 0.5360 0.6880 0.8675 0.8060

RSrr 0.0 0.0175 0.0480 0.0375 0.0150 0.0255 0.0550 0.0420 0.0225

0.1 0.0880 0.1540 0.1860 0.1110 0.1145 0.1800 0.2290 0.1515

0.2 0.2255 0.3260 0.4865 0.3825 0.3020 0.4035 0.5980 0.4725

0.3 0.3945 0.5045 0.8000 0.7055 0.4970 0.6185 0.9030 0.8520

RSuu 0.0 0.0165 0.0415 0.0450 0.0185 0.0235 0.0495 0.0460 0.0230

0.1 0.0745 0.1420 0.1935 0.1155 0.1115 0.1815 0.2390 0.1565

0.2 0.2050 0.3160 0.5010 0.3935 0.2895 0.3990 0.6075 0.4860

0.3 0.3750 0.4920 0.8080 0.7160 0.4810 0.6165 0.9080 0.8570

L = Left tail (λ < 0), R = Right tail (λ > 0); Regressors generated according to XVal-B
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Table 3.2c. Rejection Frequencies for SLM Tests of SLD, H0 : λ = 0

Spatial Layout: Group Interaction with g = n0.5; σ = 1

n = 50 n = 100

Method |λ| L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Normal Error

ACR 0.0 0.0230 0.0475 0.0635 0.0355 0.0235 0.0495 0.0510 0.0280

0.1 0.0520 0.1100 0.1865 0.1160 0.0915 0.1610 0.2065 0.1350

0.2 0.1265 0.2290 0.4345 0.3325 0.2050 0.3340 0.5740 0.4575

0.3 0.2275 0.3755 0.7500 0.6505 0.3500 0.5055 0.9050 0.8510

RSrr 0.0 0.0280 0.0565 0.0520 0.0280 0.0300 0.0535 0.0450 0.0240

0.1 0.0655 0.1215 0.1695 0.0980 0.1050 0.1715 0.1955 0.1190

0.2 0.1540 0.2440 0.4005 0.2950 0.2380 0.3505 0.5525 0.4355

0.3 0.2865 0.4145 0.7190 0.6120 0.4075 0.5350 0.8925 0.8340

RSuu 0.0 0.0235 0.0520 0.0515 0.0235 0.0250 0.0525 0.0450 0.0220

0.1 0.0575 0.1105 0.1650 0.0925 0.0960 0.1690 0.1930 0.1175

0.2 0.1340 0.2270 0.4005 0.2920 0.2240 0.3395 0.5485 0.4220

0.3 0.2485 0.3910 0.7165 0.6060 0.3820 0.5230 0.8905 0.8320

Normal Mixture, p = .05

ACR 0.0 0.0230 0.0475 0.0565 0.0285 0.0185 0.0460 0.0540 0.0290

0.1 0.0540 0.1145 0.1960 0.1245 0.0825 0.1535 0.2220 0.1470

0.2 0.1450 0.2395 0.4525 0.3520 0.2080 0.3240 0.5760 0.4705

0.3 0.2475 0.3945 0.7610 0.6750 0.3925 0.5400 0.8940 0.8430

RSrr 0.0 0.0290 0.0530 0.0505 0.0235 0.0245 0.0515 0.0495 0.0275

0.1 0.0730 0.1280 0.1780 0.1075 0.0985 0.1680 0.2110 0.1295

0.2 0.1845 0.2690 0.4305 0.3190 0.2520 0.3580 0.5530 0.4445

0.3 0.3085 0.4415 0.7445 0.6440 0.4460 0.5775 0.8875 0.8305

RSuu 0.0 0.0265 0.0505 0.0505 0.0220 0.0215 0.0490 0.0475 0.0265

0.1 0.0640 0.1200 0.1765 0.1050 0.0920 0.1560 0.2115 0.1255

0.2 0.1595 0.2550 0.4275 0.3135 0.2320 0.3395 0.5580 0.4390

0.3 0.2775 0.4180 0.7430 0.6395 0.4160 0.5610 0.8855 0.8290

Log-Normal Error

ACR 0.0 0.0120 0.0350 0.0480 0.0235 0.0165 0.0415 0.0485 0.0285

0.1 0.0605 0.1295 0.2055 0.1315 0.0910 0.1570 0.2395 0.1670

0.2 0.1800 0.2890 0.5125 0.4175 0.2455 0.3605 0.6145 0.5025

0.3 0.3250 0.4535 0.8160 0.7400 0.4180 0.5670 0.9090 0.8655

RSrr 0.0 0.0160 0.0460 0.0440 0.0185 0.0235 0.0525 0.0450 0.0230

0.1 0.0830 0.1505 0.1935 0.1175 0.1125 0.1770 0.2330 0.1555

0.2 0.2185 0.3200 0.4990 0.3985 0.2990 0.3995 0.6040 0.4815

0.3 0.3875 0.4975 0.8110 0.7160 0.4925 0.6135 0.9045 0.8550

RSuu 0.0 0.0135 0.0355 0.0445 0.0185 0.0195 0.0465 0.0430 0.0215

0.1 0.0685 0.1345 0.1920 0.1135 0.1050 0.1700 0.2340 0.1520

0.2 0.1960 0.3010 0.5010 0.3935 0.2785 0.3845 0.6045 0.4770

0.3 0.3565 0.4730 0.8115 0.7170 0.4675 0.5970 0.9065 0.8530

L = Left tail (λ < 0), R = Right tail (λ > 0); Regressors generated according to XVal-B

38

To appear in  Journal of Econometrics 185 (2015) 33-59 
DOI: http://dx.doi.org/10.1016/j.jeconom.2014.10.005



Table 3.3a. Bootstrap Critical Values for LM and SLM Tests of SEC, H0 : λ = 0

Normal Error Normal Mixture p=.05 Lognormal

Method λ 10% 5% 1% 10% 5% 1% 10% 5% 1%

LM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 8

RSrr 0.0 1.0763 1.4706 2.2198 1.6682 2.3600 3.6943 2.1365 3.2755 5.5770

0.5 1.0766 1.4684 2.2162 1.5400 2.1660 3.3711 1.9092 2.9030 4.8534

1.0 1.0784 1.4699 2.2376 1.4653 2.0475 3.1833 1.8069 2.7365 4.5543

1.5 1.0836 1.4811 2.2416 1.4126 1.9668 3.0347 1.6942 2.5609 4.2301

2.0 1.0935 1.4932 2.2571 1.3744 1.9066 2.9449 1.6207 2.4350 4.0063

RSuu 0.0 1.0754 1.4690 2.2184 1.6453 2.3256 3.6383 2.0866 3.1835 5.3784

0.5 1.0738 1.4649 2.2097 1.5392 2.1640 3.3659 1.9024 2.8723 4.7672

1.0 1.0709 1.4609 2.2217 1.4829 2.0749 3.2285 1.8312 2.7751 4.5934

1.5 1.0710 1.4632 2.2140 1.4439 2.0192 3.1225 1.7438 2.6375 4.3598

2.0 1.0732 1.4657 2.2190 1.4137 1.9705 3.0440 1.6968 2.5611 4.2373

MC 0.0 1.0772 1.4737 2.2308 1.7310 2.4793 4.0564 2.2162 3.4827 7.4663

SLM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 8

RSrr 0.0 1.3219 1.7255 2.4923 1.3693 1.8443 2.7315 1.4028 1.9818 2.9503

0.5 1.3204 1.7213 2.4860 1.3578 1.8204 2.6939 1.3953 1.9451 2.8880

1.0 1.3181 1.7185 2.4993 1.3520 1.8043 2.6625 1.3877 1.9264 2.8542

1.5 1.3175 1.7208 2.4910 1.3498 1.7939 2.6297 1.3729 1.8944 2.8019

2.0 1.3218 1.7272 2.4974 1.3463 1.7834 2.6192 1.3654 1.8749 2.7717

RSuu 0.0 1.3215 1.7251 2.4921 1.3675 1.8399 2.7248 1.3998 1.9700 2.9357

0.5 1.3202 1.7212 2.4856 1.3581 1.8205 2.6921 1.3954 1.9418 2.8843

1.0 1.3176 1.7182 2.4977 1.3543 1.8077 2.6717 1.3900 1.9348 2.8701

1.5 1.3169 1.7186 2.4882 1.3529 1.8049 2.6488 1.3783 1.9076 2.8291

2.0 1.3197 1.7224 2.4938 1.3505 1.7988 2.6390 1.3748 1.8983 2.8169

MC 0.0 1.3189 1.7238 2.5153 1.3714 1.8843 2.8192 1.3823 2.0921 3.1531

LM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 19

RSrr 0.0 1.1502 1.5338 2.2687 1.8199 2.4772 3.7743 2.6510 4.0188 6.6391

0.5 1.1526 1.5372 2.2731 1.6764 2.2758 3.4514 2.3728 3.6083 5.9152

1.0 1.1558 1.5418 2.2794 1.5888 2.1559 3.2507 2.1695 3.2701 5.2968

1.5 1.1612 1.5485 2.2905 1.5333 2.0724 3.1247 2.0451 3.0671 4.9338

2.0 1.1710 1.5607 2.3023 1.4866 2.0145 3.0414 1.9375 2.8884 4.6049

RSuu 0.0 1.1499 1.5333 2.2678 1.8084 2.4606 3.7472 2.6015 3.9204 6.4371

0.5 1.1495 1.5341 2.2673 1.6880 2.2929 3.4773 2.3740 3.5833 5.8370

1.0 1.1489 1.5332 2.2617 1.6219 2.2022 3.3299 2.2332 3.3549 5.4274

1.5 1.1473 1.5295 2.2640 1.5833 2.1467 3.2393 2.1538 3.2382 5.2166

2.0 1.1525 1.5362 2.2629 1.5435 2.0858 3.1581 2.0716 3.1130 4.9923

MC 0.0 1.1569 1.5445 2.2472 1.8325 2.5278 3.9093 2.6464 4.1103 8.5357

SLM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 19

RSrr 0.0 1.3026 1.6901 2.4312 1.3369 1.7769 2.6263 1.3836 1.9416 2.9125

0.5 1.3029 1.6909 2.4326 1.3286 1.7583 2.5835 1.3722 1.9220 2.8692

1.0 1.3003 1.6882 2.4274 1.3259 1.7512 2.5635 1.3661 1.8927 2.8153

1.5 1.3011 1.6880 2.4293 1.3239 1.7435 2.5493 1.3579 1.8737 2.7870

2.0 1.3048 1.6925 2.4299 1.3194 1.7361 2.5346 1.3549 1.8583 2.7535

RSuu 0.0 1.3024 1.6899 2.4311 1.3360 1.7745 2.6227 1.3820 1.9352 2.9025

0.5 1.3026 1.6911 2.4319 1.3287 1.7610 2.5867 1.3742 1.9187 2.8649

1.0 1.3010 1.6895 2.4243 1.3274 1.7571 2.5783 1.3696 1.9025 2.8324

1.5 1.3000 1.6862 2.4279 1.3280 1.7526 2.5666 1.3657 1.8932 2.8177

2.0 1.3045 1.6926 2.4266 1.3238 1.7442 2.5579 1.3643 1.8821 2.8027

MC 0.0 1.3033 1.6967 2.4031 1.3209 1.7774 2.6576 1.3432 2.0206 3.0694

MC: Monte Carlo critical values based on M = 50,000, σ = 1, XVAL-B.
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Table 3.3b. Rejection Frequencies for LM and SLM Tests of SEC, H0 : λ = 0

Normal Error Normal Mixture p=.05 Lognormal

Method λ 10% 5% 1% 10% 5% 1% 10% 5% 1%

LM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 8

ACR 0.0 0.0690 0.0330 0.0070 0.1480 0.1075 0.0575 0.1790 0.1420 0.0960

0.5 0.5845 0.4640 0.2490 0.5550 0.4590 0.2980 0.5795 0.5015 0.3665

1.0 0.9005 0.8460 0.6780 0.8540 0.7870 0.6470 0.8110 0.7635 0.6525

2.0 0.9960 0.9910 0.9665 0.9850 0.9750 0.9340 0.9530 0.9375 0.9010

RSrr 0.0 0.1010 0.0465 0.0120 0.1045 0.0555 0.0135 0.1180 0.0625 0.0180

0.5 0.6560 0.5215 0.2760 0.4890 0.3505 0.1505 0.4735 0.3275 0.1610

1.0 0.9330 0.8720 0.7045 0.8140 0.6980 0.4520 0.7190 0.5945 0.3850

2.0 0.9960 0.9935 0.9720 0.9805 0.9545 0.8570 0.9215 0.8560 0.7130

RSuu 0.0 0.1010 0.0480 0.0115 0.1065 0.0605 0.0205 0.1215 0.0685 0.0395

0.5 0.6570 0.5230 0.2840 0.4835 0.3490 0.1540 0.4690 0.3245 0.1580

1.0 0.9330 0.8740 0.7055 0.8090 0.6850 0.4320 0.7145 0.5820 0.3670

2.0 0.9960 0.9930 0.9715 0.9795 0.9490 0.8295 0.9160 0.8395 0.6735

SLM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 8

ACR 0.0 0.1025 0.0525 0.0130 0.1090 0.0660 0.0255 0.1160 0.0795 0.0440

0.5 0.6640 0.5465 0.3210 0.4985 0.3875 0.2085 0.4685 0.3735 0.2225

1.0 0.9340 0.8845 0.7485 0.8210 0.7320 0.5420 0.7160 0.6320 0.4745

2.0 0.9965 0.9950 0.9805 0.9810 0.9590 0.9010 0.9045 0.8725 0.7900

RSrr 0.0 0.1015 0.0465 0.0120 0.0970 0.0515 0.0105 0.1040 0.0590 0.0170

0.5 0.6535 0.5205 0.2755 0.4730 0.3380 0.1435 0.4400 0.3105 0.1585

1.0 0.9330 0.8715 0.7050 0.8045 0.6825 0.4510 0.6870 0.5705 0.3765

2.0 0.9960 0.9935 0.9715 0.9785 0.9510 0.8530 0.8955 0.8335 0.7080

RSuu 0.0 0.1000 0.0485 0.0110 0.0975 0.0525 0.0110 0.1035 0.0595 0.0210

0.5 0.6550 0.5220 0.2780 0.4750 0.3405 0.1460 0.4420 0.3105 0.1560

1.0 0.9320 0.8730 0.7020 0.8050 0.6795 0.4470 0.6875 0.5670 0.3715

2.0 0.9960 0.9935 0.9715 0.9780 0.9485 0.8475 0.8940 0.8330 0.7010

LM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 19

ACR 0.0 0.0850 0.0425 0.0080 0.1680 0.1205 0.0630 0.2025 0.1705 0.1200

0.5 0.8835 0.8175 0.6270 0.8205 0.7510 0.5775 0.7595 0.6995 0.5670

1.0 0.9980 0.9945 0.9795 0.9900 0.9805 0.9340 0.9520 0.9330 0.8785

RSrr 0.0 0.1070 0.0560 0.0085 0.0955 0.0525 0.0100 0.1105 0.0615 0.0140

0.5 0.9125 0.8420 0.6400 0.7415 0.5895 0.3340 0.5735 0.4145 0.2165

1.0 0.9985 0.9960 0.9810 0.9790 0.9405 0.8095 0.8590 0.7565 0.5485

RSuu 0.0 0.1085 0.0550 0.0085 0.0975 0.0535 0.0145 0.1130 0.0695 0.0295

0.5 0.9115 0.8450 0.6400 0.7365 0.5825 0.3255 0.5685 0.4105 0.2110

1.0 0.9985 0.9960 0.9820 0.9765 0.9375 0.7895 0.8530 0.7440 0.5185

SLM Test: Group Sizes {2, 3, 4, 5, 6, 7}, m = 19

ACR 0.0 0.1105 0.0585 0.0125 0.1010 0.0610 0.0205 0.1055 0.0765 0.0360

0.5 0.9135 0.8510 0.6760 0.7520 0.6220 0.3980 0.5650 0.4600 0.2965

1.0 0.9985 0.9970 0.9845 0.9805 0.9510 0.8555 0.8465 0.7870 0.6485

RSrr 0.0 0.1075 0.0565 0.0080 0.0935 0.0490 0.0105 0.0975 0.0560 0.0120

0.5 0.9120 0.8425 0.6385 0.7310 0.5845 0.3295 0.5360 0.3985 0.2105

1.0 0.9985 0.9960 0.9820 0.9765 0.9375 0.8120 0.8265 0.7330 0.5480

RSuu 0.0 0.1065 0.0555 0.0080 0.0920 0.0515 0.0125 0.0980 0.0570 0.0180

0.5 0.9115 0.8450 0.6385 0.7300 0.5820 0.3240 0.5345 0.3965 0.2095

1.0 0.9985 0.9960 0.9815 0.9760 0.9385 0.8065 0.8275 0.7305 0.5385

Note: σ = 1, XVAL-B.
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Table 4.1a. Bootstrap Critical Values and Rejection Frequencies for LMSARAR, H0: λ = ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 50, XVal-B

Normal Error Normal Mixture p=.1 Lognormal Error

Method λ ρ 10% 5% 1% 10% 5% 1% 10% 5% 1%

Bootstrap Critical Values

RSrr -0.50 -0.2 4.649 5.938 9.399 4.927 6.343 10.132 5.429 7.384 15.622

-0.25 -0.1 4.568 5.790 9.016 4.796 6.116 9.525 5.164 6.869 12.081

0.00 0.0 4.526 5.711 8.792 4.676 5.917 9.082 4.981 6.504 10.876

0.25 0.1 4.499 5.650 8.594 4.594 5.776 8.752 4.764 6.113 9.603

0.50 0.2 4.530 5.692 8.580 4.577 5.738 8.639 4.675 5.934 9.173

RSur -0.50 -0.2 4.626 5.867 9.080 4.954 6.378 10.573 5.668 7.755 16.345

-0.25 -0.1 4.609 5.843 9.059 5.045 6.557 11.428 5.616 7.740 17.464

0.00 0.0 4.604 5.841 9.054 5.015 6.510 11.137 5.657 7.816 16.494

0.25 0.1 4.616 5.857 9.098 5.173 6.831 13.028 6.490 9.328 22.458

0.50 0.2 4.624 5.874 9.175 5.393 7.342 15.868 8.227 12.890 48.097

RSru -0.50 -0.2 4.446 5.537 8.267 4.460 5.539 8.183 4.403 5.485 8.195

-0.25 -0.1 4.452 5.551 8.292 4.473 5.546 8.189 4.408 5.489 8.196

0.00 0.0 4.447 5.546 8.280 4.464 5.544 8.216 4.410 5.489 8.218

0.25 0.1 4.449 5.543 8.283 4.466 5.550 8.199 4.421 5.508 8.235

0.50 0.2 4.455 5.550 8.286 4.470 5.556 8.205 4.423 5.502 8.234

RSuu -0.50 -0.2 4.445 5.539 8.276 4.461 5.544 8.194 4.413 5.504 8.223

-0.25 -0.1 4.454 5.553 8.296 4.471 5.547 8.191 4.414 5.496 8.213

0.00 0.0 4.446 5.544 8.282 4.464 5.544 8.219 4.411 5.489 8.217

0.25 0.1 4.450 5.543 8.281 4.466 5.548 8.197 4.416 5.501 8.218

0.50 0.2 4.452 5.545 8.285 4.469 5.551 8.198 4.415 5.491 8.219

MC 0.00 0.00 4.450 5.542 8.356 4.428 5.517 8.145 4.315 5.385 8.048

Rejection Frequencies

ACR -0.50 -0.2 .5600 .3520 .1000 .6140 .4035 .1225 .6805 .5135 .2140

-0.25 -0.1 .2525 .1305 .0275 .3065 .1685 .0355 .3680 .2010 .0495

0.00 0.0 .0985 .0360 .0070 .0910 .0320 .0055 .0910 .0350 .0070

0.25 0.1 .4455 .3465 .1755 .4605 .3470 .1640 .5170 .4075 .2180

0.50 0.2 .9830 .9730 .9275 .9890 .9770 .9440 .9845 .9745 .9405

RSrr -0.50 -0.2 .5525 .3580 .1005 .5790 .3795 .1165 .6065 .4400 .1510

-0.25 -0.1 .2595 .1430 .0335 .2870 .1655 .0365 .3175 .1745 .0335

0.00 0.0 .0990 .0450 .0110 .0880 .0385 .0060 .0800 .0295 .0045

0.25 0.1 .4520 .3630 .1970 .4640 .3680 .1820 .5090 .4095 .2185

0.50 0.2 .9840 .9755 .9415 .9895 .9780 .9530 .9810 .9705 .9385

RSuu -0.50 -0.2 .5975 .4140 .1515 .6300 .4655 .1870 .7060 .5715 .2965

-0.25 -0.1 .2720 .1580 .0490 .3220 .1980 .0625 .3885 .2590 .0795

0.00 0.0 .1030 .0540 .0130 .1020 .0500 .0090 .1010 .0495 .0100

0.25 0.1 .4565 .3755 .2080 .4765 .3855 .2050 .5305 .4435 .2665

0.50 0.2 .9840 .9755 .9475 .9905 .9780 .9565 .9850 .9790 .9560

MC: Monte Carlo critical values based on M = 30,000;

Note: Larger values of |λ| and |ρ| are considered, and the patterns on bootstrap critical values remain.
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Table 4.1b. Bootstrap Critical Values and Rejection Frequencies for LMSED|SLD , H0: ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, λ = 0.25, XVal-B

Normal Error Lognormal Error

Method ρ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Bootstrap Critical Values

RSrr -0.50 -2.1615 -1.9302 1.1107 1.4812 -1.9531 -1.7562 1.0984 1.5787

-0.25 -2.1735 -1.9390 1.1115 1.4823 -1.9577 -1.7561 1.0847 1.5536

0.00 -2.1857 -1.9459 1.1178 1.4897 -1.9903 -1.7667 1.0758 1.5207

0.25 -2.2003 -1.9557 1.1326 1.4991 -2.0973 -1.7993 1.0647 1.4808

0.50 -2.2453 -1.9832 1.1639 1.5186 -2.3318 -1.8836 1.0706 1.4511

RSur -0.50 -2.1766 -1.9397 1.1182 1.4870 -2.0037 -1.7737 1.0731 1.5107

-0.25 -2.1856 -1.9463 1.1174 1.4863 -2.0271 -1.7780 1.0706 1.5140

0.00 -2.1912 -1.9489 1.1212 1.4916 -2.0460 -1.7848 1.0741 1.5158

0.25 -2.1881 -1.9474 1.1236 1.4931 -2.0702 -1.7895 1.0752 1.5193

0.50 -2.1914 -1.9508 1.1256 1.4921 -2.0858 -1.7998 1.0786 1.5218

RSru -0.50 -2.1485 -1.9194 1.1051 1.4742 -1.9382 -1.7440 1.0948 1.5791

-0.25 -2.1633 -1.9297 1.1059 1.4727 -1.9514 -1.7511 1.0795 1.5523

0.00 -2.1816 -1.9425 1.1140 1.4866 -1.9825 -1.7638 1.0727 1.5146

0.25 -2.2076 -1.9619 1.1365 1.5033 -2.0891 -1.8010 1.0653 1.4805

0.50 -2.2990 -2.0294 1.1910 1.5552 -2.3591 -1.9098 1.0844 1.4731

RSuu -0.50 -2.1756 -1.9394 1.1190 1.4897 -1.9881 -1.7672 1.0728 1.5149

-0.25 -2.1850 -1.9457 1.1173 1.4841 -2.0160 -1.7759 1.0696 1.5167

0.00 -2.1913 -1.9499 1.1204 1.4922 -2.0265 -1.7810 1.0733 1.5110

0.25 -2.1887 -1.9476 1.1244 1.4928 -2.0675 -1.7890 1.0740 1.5138

0.50 -2.1928 -1.9509 1.1271 1.4915 -2.0794 -1.7905 1.0732 1.5178

MC 0.00 -2.1641 -1.9271 1.1382 1.4957 -2.1120 -1.8134 1.0815 1.4698

|ρ| Rejection Frequencies

ACR 0.00 0.0415 0.1030 0.0180 0.0080 0.0325 0.0750 0.0145 0.0090

0.25 0.1815 0.3080 0.1370 0.0920 0.1095 0.2360 0.1225 0.0770

0.50 0.4105 0.5720 0.5275 0.4300 0.2965 0.4920 0.5235 0.4285

RSrr 0.00 0.0225 0.0450 0.0520 0.0235 0.0310 0.0490 0.0420 0.0185

0.25 0.3215 0.4275 0.2550 0.1645 0.1110 0.1780 0.2510 0.1540

0.50 0.3215 0.4275 0.6765 0.5745 0.3050 0.4175 0.6980 0.5855

RSur 0.00 0.0225 0.0425 0.0515 0.0230 0.0255 0.0470 0.0415 0.0170

0.25 0.1155 0.1880 0.2590 0.1680 0.1010 0.1745 0.2505 0.1385

0.50 0.3140 0.4250 0.6815 0.5815 0.2910 0.4115 0.7010 0.5640

RSru 0.00 0.0245 0.0470 0.0500 0.0225 0.0325 0.0525 0.0405 0.0180

0.25 0.3295 0.4260 0.2505 0.1650 0.1160 0.1815 0.2555 0.1520

0.50 0.3140 0.4250 0.6690 0.5605 0.3120 0.4300 0.6965 0.5855

RSuu 0.00 0.0230 0.0440 0.0530 0.0240 0.0290 0.0465 0.0400 0.0175

0.25 0.1195 0.1890 0.2585 0.1715 0.1005 0.1725 0.2495 0.1405

0.50 0.3140 0.4250 0.6820 0.5840 0.2920 0.4170 0.7025 0.5710

L = Left tail (ρ = −0.25,−0.5, in the rejection frequencies), R = Right tail (ρ = 0.25,0.5);

MC: Monte Carlo critical values based on M = 30,000;

Note: As |ρ| further increases from 0.5, the patterns on bootstrap critical values remain.
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Table 4.1c. Bootstrap Critical Values and Rejection Frequencies for LMSLD|SED , H0: λ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, ρ = 0.25, XVal-B

Normal Error Lognormal Error

Method λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Bootstrap Critical Values

RSrr -0.50 -2.0881 -1.7779 1.6071 1.9263 -2.1305 -1.8197 1.8749 2.3047

-0.25 -2.0652 -1.7471 1.6662 1.9839 -2.0594 -1.7505 1.8153 2.2001

0.00 -2.0469 -1.7311 1.7164 2.0320 -2.0311 -1.7230 1.7878 2.1438

0.25 -2.0498 -1.7350 1.7511 2.0605 -2.0498 -1.7377 1.7944 2.1315

0.50 -2.0333 -1.7279 1.7506 2.0366 -2.3410 -1.9435 1.8272 2.1340

RSur -0.50 -2.0533 -1.7361 1.7028 2.0204 -2.1716 -1.8266 1.8291 2.2021

-0.25 -2.0556 -1.7395 1.7010 2.0168 -2.1903 -1.8348 1.8271 2.2009

0.00 -2.0521 -1.7364 1.7063 2.0202 -2.1448 -1.8087 1.8282 2.2073

0.25 -2.0564 -1.7398 1.7019 2.0174 -2.1021 -1.7839 1.8244 2.2137

0.50 -2.0474 -1.7354 1.7081 2.0216 -2.0979 -1.7810 1.8177 2.2215

RSru -0.50 -2.0924 -1.7780 1.6048 1.9253 -2.1283 -1.8176 1.8750 2.2999

-0.25 -2.0642 -1.7472 1.6655 1.9830 -2.0583 -1.7498 1.8129 2.1954

0.00 -2.0457 -1.7299 1.7155 2.0297 -2.0276 -1.7203 1.7868 2.1407

0.25 -2.0510 -1.7351 1.7501 2.0589 -2.0390 -1.7295 1.7935 2.1308

0.50 -2.0377 -1.7296 1.7515 2.0356 -2.3268 -1.9328 1.8290 2.1334

RSuu -0.50 -2.0546 -1.7375 1.7025 2.0188 -2.0941 -1.7745 1.8133 2.1834

-0.25 -2.0547 -1.7382 1.7004 2.0157 -2.0913 -1.7693 1.8057 2.1723

0.00 -2.0517 -1.7355 1.7058 2.0195 -2.0865 -1.7674 1.8047 2.1709

0.25 -2.0561 -1.7402 1.7017 2.0169 -2.0682 -1.7569 1.8018 2.1763

0.50 -2.0502 -1.7354 1.7066 2.0214 -2.0616 -1.7545 1.8002 2.1772

MC 0.00 -2.0219 -1.6982 1.7281 2.0400 -2.0399 -1.7167 1.7464 2.0859

|λ| Rejection Frequencies

ACR 0.00 0.0330 0.0625 0.0645 0.0320 0.0325 0.0570 0.0605 0.0315

0.25 0.1995 0.3050 0.4120 0.2795 0.2745 0.3840 0.4850 0.3650

0.50 0.5025 0.6295 0.8615 0.7280 0.6040 0.7055 0.8280 0.7475

RSrr 0.00 0.0265 0.0565 0.0590 0.0250 0.0265 0.0500 0.0495 0.0230

0.25 0.1755 0.2665 0.3585 0.2380 0.2515 0.3450 0.4350 0.3005

0.50 0.4435 0.5765 0.8200 0.6850 0.5415 0.6565 0.7905 0.6945

RSur 0.00 0.0265 0.0540 0.0665 0.0345 0.0250 0.0465 0.0430 0.0200

0.25 0.1810 0.2715 0.3870 0.2610 0.2530 0.3475 0.4255 0.2820

0.50 0.4620 0.5955 0.8235 0.6840 0.5725 0.6730 0.7920 0.6865

RSru 0.00 0.0260 0.0560 0.0575 0.0270 0.0260 0.0510 0.0485 0.0230

0.25 0.1765 0.2665 0.3585 0.2355 0.2515 0.3445 0.4300 0.2975

0.50 0.4445 0.5810 0.8190 0.6875 0.5450 0.6530 0.7895 0.6970

RSuu 0.00 0.0260 0.0545 0.0645 0.0340 0.0275 0.0490 0.0450 0.0205

0.25 0.1785 0.2730 0.3840 0.2605 0.2580 0.3525 0.4315 0.2780

0.50 0.4580 0.5960 0.8270 0.6845 0.5765 0.6820 0.7930 0.6835

L = Left tail (λ = −0.25,−0.5, in the rejection frequencies), R = Right tail (λ = 0.25,0.5);

MC: Monte Carlo critical values based on M = 30,000;

Note: As |λ| further increases from 0.5, the patterns on bootstrap critical values remain.
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Table 4.2a. Bootstrap Critical Values and Rejection Frequencies for LMSED|λ, H0: ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, λ = 0.1/
√

n, XVal-B

Normal Mixture p=.1 Lognormal Error

Method ρ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Bootstrap Critical Values

RSrr -0.50 -2.0659 -1.8374 1.1455 1.5160 -2.0565 -1.8214 1.0966 1.4772

-0.25 -2.0616 -1.8340 1.1401 1.5053 -2.0547 -1.8215 1.0888 1.4752

0.00 -2.0568 -1.8332 1.1356 1.5028 -2.0519 -1.8186 1.0909 1.4712

0.25 -2.0589 -1.8337 1.1405 1.5077 -2.0554 -1.8216 1.0909 1.4762

0.50 -2.0721 -1.8414 1.1629 1.5257 -2.0662 -1.8306 1.1108 1.4835

RSur -0.50 -2.0582 -1.8329 1.1383 1.5102 -2.0479 -1.8153 1.0911 1.4743

-0.25 -2.0588 -1.8317 1.1377 1.5041 -2.0509 -1.8177 1.0892 1.4763

0.00 -2.0547 -1.8309 1.1369 1.5059 -2.0514 -1.8176 1.0952 1.4752

0.25 -2.0578 -1.8329 1.1400 1.5086 -2.0540 -1.8203 1.0919 1.4763

0.50 -2.0635 -1.8376 1.1512 1.5173 -2.0559 -1.8239 1.0989 1.4758

RSru -0.50 -2.0650 -1.8372 1.1468 1.5135 -2.0585 -1.8231 1.0973 1.4791

-0.25 -2.0609 -1.8344 1.1405 1.5071 -2.0571 -1.8238 1.0924 1.4755

0.00 -2.0566 -1.8336 1.1374 1.5066 -2.0543 -1.8209 1.0933 1.4746

0.25 -2.0593 -1.8334 1.1397 1.5089 -2.0575 -1.8239 1.0917 1.4775

0.50 -2.0707 -1.8400 1.1597 1.5258 -2.0643 -1.8276 1.1066 1.4821

RSuu -0.50 -2.0583 -1.8323 1.1395 1.5082 -2.0490 -1.8160 1.0903 1.4761

-0.25 -2.0575 -1.8321 1.1373 1.5038 -2.0524 -1.8195 1.0925 1.4759

0.00 -2.0548 -1.8315 1.1389 1.5078 -2.0529 -1.8188 1.0963 1.4775

0.25 -2.0584 -1.8317 1.1397 1.5090 -2.0554 -1.8220 1.0925 1.4776

0.50 -2.0631 -1.8364 1.1481 1.5172 -2.0552 -1.8206 1.0950 1.4746

MC 0.00 -2.0844 -1.8431 1.1522 1.5052 -2.0330 -1.8251 1.1176 1.4931

|ρ| Rejection Frequencies

ACR 0.00 0.0325 0.0800 0.0160 0.0085 0.0345 0.0875 0.0105 0.0065

0.25 0.0950 0.1960 0.1765 0.1225 0.1170 0.2070 0.1735 0.1255

0.50 0.1835 0.3220 0.7190 0.6600 0.2015 0.3355 0.7155 0.6475

RSrr 0.00 0.0225 0.0510 0.0495 0.0245 0.0295 0.0530 0.0505 0.0190

0.25 0.0735 0.1300 0.3050 0.2045 0.0935 0.1500 0.2810 0.2040

0.50 0.1500 0.2290 0.8060 0.7405 0.1710 0.2565 0.8120 0.7425

RSur 0.00 0.0210 0.0500 0.0530 0.0265 0.0280 0.0505 0.0525 0.0210

0.25 0.0710 0.1295 0.3090 0.2095 0.0915 0.1490 0.2830 0.2075

0.50 0.1505 0.2305 0.8060 0.7410 0.1705 0.2565 0.8080 0.7475

RSru 0.00 0.0230 0.0510 0.0490 0.0235 0.0285 0.0535 0.0495 0.0195

0.25 0.0750 0.1335 0.3065 0.2030 0.0905 0.1530 0.2810 0.2015

0.50 0.1535 0.2275 0.8045 0.7455 0.1700 0.2570 0.8145 0.7440

RSuu 0.00 0.0215 0.0510 0.0525 0.0245 0.0275 0.0520 0.0505 0.0200

0.25 0.0725 0.1325 0.3120 0.2065 0.0875 0.1500 0.2830 0.2030

0.50 0.1525 0.2305 0.8050 0.7425 0.1655 0.2595 0.8120 0.7440

L = Left tail (ρ = −0.25,−0.5, in the rejection frequencies), R = Right tail (ρ = 0.25,0.5);

MC: Monte Carlo critical values based on M = 30,000;

Note: With larger values of |λ| and |ρ|, the patterns on bootstrap critical values remain.
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Table 4.2b. Bootstrap Critical Values and Rejection Frequencies for LMSLD|ρ, H0: λ = 0

Group Interaction with g = n0.35, σ = 1, Lognormal Error, ρ = 0, XVal-B

n = 50 n = 100

Method λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Bootstrap Critical Values

RSrr -0.50 -2.2163 -1.8053 1.8734 2.2132 -2.0149 -1.6857 1.7067 2.0194

-0.25 -2.1720 -1.7780 1.8583 2.1851 -1.9925 -1.6679 1.7084 2.0136

0.00 -2.1445 -1.7667 1.8305 2.1475 -1.9791 -1.6602 1.7078 2.0114

0.25 -2.0934 -1.7339 1.7962 2.1058 -1.9751 -1.6636 1.6908 1.9934

0.50 -2.0616 -1.7289 1.7302 2.0399 -2.0075 -1.6982 1.6491 1.9585

RSur -0.50 -2.0887 -1.7021 1.9351 2.2538 -1.9643 -1.6396 1.7435 2.0543

-0.25 -2.0783 -1.6972 1.9318 2.2485 -1.9644 -1.6397 1.7368 2.0452

0.00 -2.0826 -1.7047 1.9229 2.2365 -1.9632 -1.6372 1.7578 2.0766

0.25 -2.0823 -1.6967 1.9384 2.2539 -1.9646 -1.6363 1.7552 2.0709

0.50 -2.0851 -1.6959 1.9537 2.2734 -1.9714 -1.6404 1.7557 2.0743

RSru -0.50 -2.0170 -1.6865 1.6840 1.9875 -1.9852 -1.6759 1.6733 1.9784

-0.25 -2.0275 -1.6957 1.6855 1.9906 -1.9825 -1.6773 1.6698 1.9754

0.00 -2.0394 -1.7041 1.6870 1.9892 -1.9806 -1.6752 1.6753 1.9798

0.25 -2.0462 -1.7107 1.6864 1.9880 -1.9831 -1.6738 1.6706 1.9734

0.50 -2.0501 -1.7168 1.6862 1.9886 -1.9782 -1.6719 1.6676 1.9765

RSuu -0.50 -2.0310 -1.7000 1.6856 1.9858 -1.9823 -1.6745 1.6720 1.9774

-0.25 -2.0307 -1.6995 1.6879 1.9928 -1.9807 -1.6760 1.6695 1.9747

0.00 -2.0332 -1.7009 1.6908 1.9972 -1.9807 -1.6747 1.6755 1.9796

0.25 -2.0337 -1.6999 1.6901 1.9927 -1.9832 -1.6753 1.6711 1.9754

0.50 -2.0360 -1.7015 1.6857 1.9900 -1.9803 -1.6742 1.6679 1.9781

MC 0.00 -2.0130 -1.6810 1.6749 1.9615 -2.0049 -1.6920 1.6561 1.9679

|λ| Rejection Frequencies

ACR 0.00 0.0310 0.0605 0.0590 0.0295 0.0210 0.0450 0.0535 0.0265

0.25 0.0985 0.1595 0.2880 0.1940 0.2810 0.4000 0.6480 0.5540

0.50 0.1535 0.2420 0.7805 0.7015 0.5860 0.6980 0.9905 0.9865

RSrr 0.00 0.0275 0.0595 0.0400 0.0240 0.0205 0.0490 0.0465 0.0225

0.25 0.0950 0.1605 0.2420 0.1620 0.2805 0.4065 0.6375 0.5440

0.50 0.1400 0.2490 0.7625 0.6785 0.5645 0.6755 0.9925 0.9885

RSur 0.00 0.0300 0.0615 0.0235 0.0120 0.0215 0.0510 0.0390 0.0190

0.25 0.1010 0.1645 0.1755 0.0955 0.2905 0.4130 0.6235 0.5235

0.50 0.1510 0.2585 0.7360 0.6415 0.5770 0.6990 0.9895 0.9835

RSru 0.00 0.0270 0.0525 0.0530 0.0280 0.0195 0.0435 0.0510 0.0260

0.25 0.0910 0.1455 0.2760 0.1860 0.2730 0.3880 0.6395 0.5475

0.50 0.1425 0.2270 0.7705 0.6930 0.5705 0.6925 0.9900 0.9850

RSuu 0.00 0.0280 0.0500 0.0540 0.0255 0.0195 0.0450 0.0510 0.0250

0.25 0.0895 0.1465 0.2735 0.1850 0.2735 0.3890 0.6385 0.5485

0.50 0.1330 0.2235 0.7700 0.6925 0.5735 0.6920 0.9900 0.9850

L = Left tail (λ = −0.25,−0.5, in the rejection frequencies), R = Right tail (λ = 0.25,0.5);

MC: Monte Carlo critical values based on M = 30,000;

Note: With larger values of |λ| and |ρ|, the patterns on bootstrap critical values remain.
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Table 4.3a. Bootstrap Critical Values and Rejection Frequencies for (LMOPG
SED)

2, H0: ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, XVal-B

Normal Error Normal Mixture p=.1 Lognormal Error

Method ρ 10% 5% 1% 10% 5% 1% 10% 5% 1%

Bootstrap Critical Values

RSrr -0.50 4.2298 5.4966 8.2242 3.8352 4.9103 7.1814 3.6285 4.6342 6.7905

-0.25 4.2322 5.4930 8.2321 3.8212 4.8931 7.1986 3.6597 4.6578 6.7998

0.00 4.2132 5.4697 8.1889 3.8456 4.9286 7.2311 3.6447 4.6357 6.7333

0.25 4.2126 5.4794 8.2101 3.8145 4.8912 7.1815 3.6526 4.6255 6.6607

0.50 4.1596 5.4268 8.1718 3.7960 4.8901 7.2334 3.6738 4.6882 6.8030

RSur -0.50 4.2298 5.4966 8.2242 3.8352 4.9103 7.1814 3.6285 4.6342 6.7905

-0.25 4.2322 5.4930 8.2321 3.8212 4.8931 7.1986 3.6597 4.6578 6.7998

0.00 4.2132 5.4697 8.1889 3.8456 4.9286 7.2311 3.6447 4.6357 6.7333

0.25 4.2126 5.4794 8.2101 3.8145 4.8912 7.1815 3.6526 4.6255 6.6607

0.50 4.1596 5.4268 8.1718 3.7960 4.8901 7.2334 3.6738 4.6882 6.8030

RSru -0.50 4.2415 5.5112 8.2479 3.8346 4.9157 7.2090 3.6582 4.6795 6.8856

-0.25 4.2399 5.5112 8.2411 3.8242 4.9045 7.2117 3.6904 4.7142 6.9129

0.00 4.2195 5.4733 8.1938 3.8518 4.9357 7.2513 3.6732 4.6837 6.8291

0.25 4.1761 5.4447 8.1687 3.8068 4.8989 7.2295 3.7025 4.7252 6.8875

0.50 3.9215 5.1613 7.8709 3.6826 4.8243 7.3023 3.6584 4.7710 7.1278

RSuu -0.50 4.2415 5.5112 8.2479 3.8346 4.9157 7.2090 3.6582 4.6795 6.8856

-0.25 4.2399 5.5112 8.2411 3.8242 4.9045 7.2117 3.6904 4.7142 6.9129

0.00 4.2195 5.4733 8.1938 3.8518 4.9357 7.2513 3.6732 4.6837 6.8291

0.25 4.1761 5.4447 8.1687 3.8068 4.8989 7.2295 3.7025 4.7252 6.8875

0.50 3.9215 5.1613 7.8709 3.6826 4.8243 7.3023 3.6584 4.7710 7.1278

MC 0.00 4.1710 5.4494 8.1923 3.8039 4.8905 7.2895 3.6219 4.8850 7.6153

Rejection Frequencies

ACR -0.50 0.6815 0.4775 0.1525 0.6275 0.4050 0.1325 0.5725 0.3725 0.1390

-0.25 0.4735 0.2890 0.0795 0.4365 0.2385 0.0595 0.4130 0.2500 0.0765

0.00 0.2130 0.1060 0.0245 0.1940 0.0970 0.0175 0.2045 0.1055 0.0210

0.25 0.1490 0.0785 0.0185 0.1715 0.0940 0.0225 0.1820 0.1030 0.0310

0.50 0.5670 0.4640 0.3000 0.6220 0.5290 0.3525 0.6495 0.5500 0.3545

RSrr -0.50 0.4320 0.2590 0.0715 0.4300 0.2720 0.0970 0.4055 0.2575 0.1040

-0.25 0.2580 0.1425 0.0315 0.2595 0.1490 0.0350 0.2655 0.1645 0.0505

0.00 0.0900 0.0460 0.0125 0.1045 0.0585 0.0105 0.1090 0.0575 0.0115

0.25 0.0705 0.0325 0.0085 0.1010 0.0635 0.0190 0.1295 0.0885 0.0400

0.50 0.4520 0.3655 0.2170 0.5395 0.4625 0.3175 0.5775 0.5125 0.3705

RSuu -0.50 0.4285 0.2590 0.0730 0.4340 0.2715 0.0925 0.4015 0.2520 0.1000

-0.25 0.2530 0.1400 0.0320 0.2570 0.1495 0.0340 0.2655 0.1590 0.0490

0.00 0.0880 0.0460 0.0125 0.1030 0.0575 0.0090 0.1070 0.0570 0.0115

0.25 0.0745 0.0395 0.0100 0.1015 0.0615 0.0155 0.1270 0.0780 0.0305

0.50 0.4660 0.3890 0.2510 0.5485 0.4670 0.3150 0.5755 0.5025 0.3415

Heteroskedasticity = Group Size/Mean Group Size; MC: Monte Carlo critical values, M = 30,000.

Note: With larger values of |ρ|, the patterns on bootstrap critical values remain.
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Table 4.3b. Bootstrap Critical Values and Rejection Frequencies for (LMOPG
SLD)

2, H0: λ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, XVal-B

Normal Error Normal Mixture p=.1 Lognormal Error

Method λ 10% 5% 1% 10% 5% 1% 10% 5% 1%

Bootstrap Critical Values

RSrr -0.50 3.3218 4.4780 6.9787 3.1414 4.1841 6.4259 3.0121 4.0061 6.1958

-0.25 3.2023 4.3345 6.8421 3.0670 4.0927 6.3188 2.9522 3.9366 6.1067

0.00 3.0961 4.2206 6.6973 2.9921 4.0159 6.2409 2.8685 3.8226 5.9170

0.25 3.0072 4.1264 6.6152 2.9156 3.9301 6.1695 2.8350 3.7905 5.9133

0.50 2.9384 4.0394 6.5423 2.9125 3.9795 6.3447 2.8590 3.8980 6.1988

RSur -0.50 3.1150 4.2507 6.7507 2.9970 4.0315 6.2846 2.8973 3.8830 6.0654

-0.25 3.0802 4.2068 6.7125 2.9864 4.0090 6.2393 2.8846 3.8718 6.0433

0.00 3.0740 4.1948 6.6778 2.9739 3.9993 6.2305 2.8532 3.8100 5.8966

0.25 3.0755 4.2036 6.6860 2.9667 3.9842 6.2187 2.8712 3.8270 5.9550

0.50 3.0790 4.2066 6.7140 3.0239 4.1018 6.4674 2.9509 3.9930 6.3094

RSru -0.50 3.3128 4.4618 6.9600 3.1317 4.1573 6.3814 2.9872 3.9463 6.0390

-0.25 3.2066 4.3479 6.8424 3.0666 4.0924 6.3055 2.9465 3.9117 6.0485

0.00 3.1008 4.2264 6.7197 2.9970 4.0243 6.2634 2.8766 3.8417 5.9520

0.25 3.0091 4.1269 6.6262 2.9092 3.9255 6.1272 2.8268 3.7726 5.8845

0.50 2.9215 4.0301 6.5383 2.8586 3.8790 6.1324 2.7740 3.7272 5.8283

RSuu -0.50 3.1053 4.2360 6.7423 2.9834 4.0072 6.2420 2.8679 3.8246 5.9156

-0.25 3.0839 4.2135 6.7113 2.9869 4.0053 6.2358 2.8798 3.8472 5.9867

0.00 3.0764 4.2003 6.6942 2.9807 4.0097 6.2482 2.8612 3.8226 5.9321

0.25 3.0801 4.2091 6.6968 2.9626 3.9806 6.1864 2.8615 3.8109 5.9199

0.50 3.0703 4.1932 6.6813 2.9636 3.9823 6.2193 2.8505 3.8088 5.9028

MC 0.00 3.0778 4.1540 6.6321 2.9792 4.0013 6.3022 2.8502 3.8316 6.0753

Rejection Frequencies

ACR -0.50 0.8550 0.7325 0.3905 0.8580 0.7345 0.4065 0.8695 0.7565 0.4815

-0.25 0.5505 0.3945 0.1290 0.5475 0.3800 0.1215 0.5995 0.4395 0.1740

0.00 0.1330 0.0600 0.0080 0.1220 0.0585 0.0070 0.1105 0.0445 0.0080

0.25 0.4495 0.3215 0.1415 0.5070 0.3840 0.1850 0.5895 0.4745 0.2560

0.50 0.9975 0.9920 0.9710 0.9930 0.9835 0.9560 0.9980 0.9940 0.9730

RSrr -0.50 0.7935 0.6730 0.3575 0.8275 0.7215 0.4260 0.8605 0.7625 0.5205

-0.25 0.4875 0.3445 0.1195 0.4960 0.3590 0.1450 0.5705 0.4395 0.2000

0.00 0.1045 0.0500 0.0085 0.1040 0.0525 0.0100 0.1020 0.0460 0.0105

0.25 0.4110 0.3110 0.1420 0.4815 0.3870 0.2155 0.5820 0.4975 0.3165

0.50 0.9970 0.9920 0.9700 0.9920 0.9875 0.9605 0.9980 0.9960 0.9820

RSuu -0.50 0.8165 0.7015 0.3865 0.8390 0.7290 0.4475 0.8660 0.7785 0.5550

-0.25 0.4980 0.3615 0.1340 0.5055 0.3700 0.1500 0.5770 0.4570 0.2170

0.00 0.1105 0.0520 0.0075 0.1050 0.0535 0.0115 0.1045 0.0465 0.0085

0.25 0.4020 0.3030 0.1300 0.4790 0.3835 0.2120 0.5800 0.4900 0.3215

0.50 0.9970 0.9905 0.9690 0.9930 0.9875 0.9655 0.9980 0.9960 0.9825

Heteroskedasticity = Group Size/Mean Group Size; MC: Monte Carlo critical values, M = 30,000.

Note: With larger values of |λ|, the patterns on bootstrap critical values remain.
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Table 4.3c. Bootstrap Critical Values and Rejection Frequencies for LMOPG
SARAR, H0: λ = ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 50, XVal-B

Normal Error Normal Mixture p=.1 Lognormal Error

Method λ ρ 10% 5% 1% 10% 5% 1% 10% 5% 1%

Bootstrap Critical Values

RSrr -0.50 -0.20 5.829 6.922 9.137 5.352 6.356 8.384 5.200 6.192 8.254

-0.25 -0.10 5.809 6.894 9.080 5.375 6.370 8.375 5.158 6.141 8.152

0.00 0.00 5.766 6.841 9.030 5.324 6.313 8.324 5.197 6.164 8.155

0.25 0.10 5.791 6.888 9.088 5.399 6.412 8.450 5.281 6.278 8.319

0.50 0.20 5.793 6.912 9.159 5.563 6.632 8.782 5.547 6.609 8.761

RSur -0.50 -0.20 5.815 6.904 9.121 5.340 6.341 8.363 5.196 6.187 8.260

-0.25 -0.10 5.805 6.882 9.068 5.370 6.364 8.367 5.151 6.135 8.148

0.00 0.00 5.764 6.839 9.030 5.322 6.311 8.315 5.193 6.161 8.146

0.25 0.10 5.795 6.893 9.091 5.403 6.414 8.456 5.284 6.278 8.321

0.50 0.20 5.801 6.925 9.171 5.571 6.644 8.797 5.561 6.626 8.770

RSru -0.50 -0.20 5.793 6.883 9.085 5.368 6.377 8.411 5.240 6.235 8.272

-0.25 -0.10 5.806 6.900 9.090 5.421 6.428 8.482 5.254 6.251 8.308

0.00 0.00 5.791 6.883 9.089 5.390 6.399 8.450 5.294 6.297 8.336

0.25 0.10 5.796 6.887 9.096 5.412 6.433 8.485 5.276 6.280 8.347

0.50 0.20 5.806 6.911 9.147 5.427 6.452 8.515 5.287 6.291 8.355

RSuu -0.50 -0.20 5.779 6.866 9.069 5.356 6.358 8.389 5.230 6.223 8.250

-0.25 -0.10 5.799 6.890 9.077 5.415 6.423 8.474 5.245 6.240 8.295

0.00 0.00 5.790 6.880 9.087 5.388 6.394 8.447 5.289 6.292 8.326

0.25 0.10 5.799 6.893 9.098 5.416 6.437 8.493 5.275 6.278 8.342

0.50 0.20 5.816 6.920 9.152 5.436 6.458 8.529 5.294 6.297 8.357

MC 0.00 0.00 5.753 6.876 9.291 5.312 6.383 8.632 5.284 6.451 8.856

Rejection Frequencies

ACR -0.50 -0.20 .6135 .3945 .0785 .6045 .3725 .0780 .6410 .4295 .1155

-0.25 -0.10 .4000 .2135 .0235 .3915 .2015 .0250 .3840 .2160 .0325

0.00 0.00 .2055 .0840 .0070 .1735 .0695 .0100 .1750 .0835 .0080

0.25 0.10 .2815 .1695 .0385 .3325 .2015 .0425 .4715 .3260 .1175

0.50 0.20 .8590 .7710 .5010 .8995 .8380 .6015 .9250 .8745 .7150

RSrr -0.50 -0.20 .4090 .2610 .0785 .4810 .3290 .1195 .5515 .4030 .1685

-0.25 -0.10 .2320 .1225 .0290 .2735 .1525 .0410 .3000 .1845 .0590

0.00 0.00 .0965 .0495 .0100 .1080 .0575 .0165 .1100 .0580 .0130

0.25 0.10 .1905 .1195 .0410 .2595 .1705 .0690 .4075 .3115 .1755

0.50 0.20 .7810 .7000 .4990 .8515 .7975 .6460 .8920 .8525 .7495

RSuu -0.50 -0.20 .4155 .2705 .0830 .4800 .3240 .1205 .5430 .3950 .1555

-0.25 -0.10 .2330 .1275 .0275 .2640 .1480 .0400 .2865 .1750 .0510

0.00 0.00 .0925 .0470 .0095 .1040 .0535 .0170 .1010 .0530 .0090

0.25 0.10 .1870 .1175 .0470 .2565 .1705 .0695 .4015 .3080 .1735

0.50 0.20 .7790 .6950 .4975 .8580 .8000 .6650 .8995 .8565 .7555

Heteroskedasticity = Group Size/Mean Group Size; MC: Monte Carlo critical values, M = 30,000.

Note: With larger values of |λ| and |ρ|, the patterns on bootstrap critical values remain.
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