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Abstract

Simple and reliable tests are proposed for testing the existence of dynamic and/or
spatial effects in fixed-effects panel data models with small T and possibly het-
eroskedastic errors. The tests are constructed based on the adjusted quasi scores
(AQS), which correct the conditional quasi scores given the initial differences to
account for the effect of initial values. To improve the finite sample performance,
standardized AQS tests are also derived, which are shown to have much improved
finite sample properties. All the proposed tests are robust against nonnormality,
but some are not robust against cross-sectional heteroskedasticity (CH). A different
type of adjustments are made on the AQS functions, leading to a set of tests that
are fully robust against unknown CH. Monte Carlo results show excellent finite
sample performance of the standardized versions of the AQS tests.

Key Words: Adjusted quasi scores; Dynamic effect; Fixed effects; Heteroskedas-
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1. Introduction

Panel data (PD) model has been an important tool for the applied economics re-
searchers over the past few decades. However, there have been growing concerns on
whether the panel models are dynamic in nature due to the impacts from the past to
the current and future ‘economic’ performance, and whether the models contain spa-
tial dependence caused by the interactions among economic agents or social actors (e.g.,
neighbourhood effects, copy-catting, social network, and peer group effects). In other
words, there have been growing concerns from the applied researchers on whether a spa-
tial dynamic panel data model (SDPD) is more appropriate than a regular PD model, or
a regular dynamic panel data (DPD) model, or a static spatial panel data (SPD) model.
Thus, it is highly desirable to device simple and reliable tests helping applied researchers
to choose the most appropriate model.
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the participants of the 15th International Workshop on Spatial Econometrics and Statistics, Orleans,
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The spatial dynamic panel data (SDPD) model that our tests concern takes the form:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ αt1n + ut, (1.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)
′ and vt = (v1t, v2t, . . . , vnt)

′ are n × 1 vectors of response
values and idiosyncratic errors at time t, and {vit} are independent across i and t with
mean zero and possibly cross-sectional heteroskedasticity (CH) of unknown form; the
scalar parameter ρ characterizes the dynamic effect, λ1 the spatial lag (SL) effect, λ2 the
space-time lag (STL) effect, and λ3 the spatial error (SE) effect; {Xt} are n× p matrices
containing values of p time-varying exogenous variables, Z is an n× q matrix containing
the values of q time-invariant exogenous variables; β and γ are the usual regression
coefficients; Wr, r = 1, 2, 3 are the given n× n spatial weight matrices; and µ is an n× 1
vector of unobserved individual-specific effects, {αt} are the time-specific effects, and 1n
is an n× 1 vector of ones.

Model (1.1) is fairly general, embedding several important submodels popular in the
literature. As T is fixed and small, the time specific effects {αt} are always treated as fixed
effects and are merged into the time-varying regressors Xt. The individual specific effects
µ can be treated as fixed effects (FE), random effects (RE) or correlated random effects
(CRE). Yang (2018a) present a unified, initial conditions free, M -estimation and inference
method for the FE-SDPD model, Li and Yang (2020b) extend this M -estimation and
inference strategy to allow for unknown CH in the model, and Li and Yang (2020a) present
an M -estimation and inference method for the CRE-SDPD (or RE-SDPD) model.1

A question arises naturally: in practical applications, do we really need such a general
and complicated model, or does a simpler model suffice as it gives easier interpretations
of the results? This suggests that before applying this general model, it is helpful to carry
out some specification tests to identify a suitable model based on the data. To be exact,
the tests of interest concern the dynamic and spatial parameters δ = (ρ, λ1, λ2, λ3)

′ =
(ρ, λ′)′. They may be marginal or joint tests (under null, one or more elements of δ are
set to zero and the rest are treated as free parameters), or conditional tests (under the
null, one or more element of δ are to zero, given the rest already being set to zero).

In this paper, we tackle this general testing problem by focusing on the SDPD model
with small T , fixed effects, and unknown CH. The specific tests of interest are as follows.

Joint test HPD
0 : δ = 0, the regular FE panel data (FE-PD) model suffices.

When HPD
0 is not rejected, then one proceeds with the regular panel data model with

FE and the decision is clear. When HPD
0 is rejected, at least one element of δ is not zero

and one does not know the exact cause of rejection and hence it would be necessary to
carry out some sub-joint or marginal tests to identify the cause of such a rejection.

Joint testHDPD
0 : λ = 0, the regular FE dynamic panel data (FE-DPD) model suffices.

If HDPD
0 is not rejected, then the cause of rejecting HPD

0 is due to ρ being non-zero and
the FE-DPD model is chosen; otherwise, one needs to proceed with the following test.

Marginal testHSTPD
0 : ρ = 0, the space-time spatial panel data (STPD) model suffices.

If HSTPD
0 is not rejected, then the cause of rejecting HPD

0 is that at least one element of

1Other works on short SDPD models include Elhorst (2010), Su and Yang (2015), Qu, et al. (2016),
and Kuersteiner and Prucha (2018). However, most of the research on SDPD models focuses on long
panels (with large n and large T ), see, e.g., Yang, et al. (2006), Mutl (2006), Yu, et al. (2008), Yu and
Lee (2010), Lee and Yu (2010, 2012, 2014); Bai and Li (2015), and Shi and Lee (2017).
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λ is not zero. In this case, one may proceed further to identify which element of λ is not
zero by carrying out conditional tests on one or two elements of λ, given ρ = 0.

If HSTPD
0 is rejected after HDPD

0 has been rejected, it is clear that at least one element of
λ is non-zero when ρ is treated as a free parameter, and the marginal tests on λr should
be carried out, respectively, for r = 1, 2, 3:

Marginal test HSDPD1
0 : λ1 = 0, the FE-SDPD model without λ1 suffices.

Marginal test HSDPD2
0 : λ2 = 0, the FE-SDPD model without λ2 suffices.

Marginal test HSDPD3
0 : λ3 = 0, the FE-SDPD model without λ3 suffices.

Note that the marginal test HSDPD3
0 is quite interesting as the general model (1.1)

reduces to a SDPD model with SL and STL effects under the null, which is the model con-
sidered by Lee and Yu (2008) under large n and large T set-up, allowing fixed individual
and time effects. The marginal test HSDPD2

0 is also interesting as the null model becomes
a SDPD model with both SL and SE effects, popular in practical applications. Another
pair of joint tests of particular interest are,

Joint test HSDPD4
0 : λ1 = λ2 = 0, the FE-SDPD model with only SE effect suffices.

Joint test HSDPD5
0 : λ2 = λ3 = 0, the FE-SDPD model with only SL effect suffices.

When HSDPD4
0 is true, the general model given in (1.1) reduces to a SDPD model with

only the SE effect. This model is extensively studied by Su and Yang (2015) under large n
and small T set-up, with either random or fixed individual effects. However, specification
test from Model (1.1) to this reduced model has not been considered. When HSDPD5

0 is
true, the general model reduces to a SDPD model with only the SL effect. This is perhaps
the most popular SDPD model among the applied researchers. However, a test for its
adequacy is not available. The last test that we would like to highlight is:

Joint test HSDP
0 : ρ = λ2 = 0, the FE spatial panel data (FE-SPD) model suffices.

Under HSDP
0 , the model reduces to a static spatial panel data model with SL and SE

(or SARAR) effects. QML estimation and inference for this model were given by Lee and
Yu (2010), LM tests for the spatial effects are given by Debarsy and Ertur (2010), and
LM-type tests robust against unknown CH are given by Baltagi and Yang (2013b).

More conditional tests might be of interest besides the ones discussed after the in-
troduction of HSTPD

0 . By conditional tests we mean tests for certain types of effects, give
some other effect(s) are removed from the model. For example, given HSDPD2

0 is not re-
jected, i.e., λ2 is set to zero, one might be interested in testing further whether ρ = 0, i.e.,
whether the static SARAR model suffices; given HSTPD

0 is not rejected, i.e., ρ = 0, one might
be interested in testing further whether λ2 = 0 and if so a static SARAR model suffices.

However, methods for testing the above hypotheses do not seem to be available, in
particular, when T is small. Two related works, GMM gradient tests (Taspinar et al.,
2017) and robust LM tests (Bera et al., 2019), require a large panel, concern mostly
the parametric misspecifications, and do not allow for unknown CH. In contrast, the
literature on statistical tests for spatial regression models or static spatial panel data
models is much bigger. See, among others, Anselin et al. (1996), Anselin and Bera
(1998), Anselin (2001), Kelejian and Prucha (2001), Yang (2010, 2015, 2018c), Born and
Breitung (2011), Baltagi and Yang (2013a,b), Robinson and Rossi (2014, 2015a), Jin
and Lee (2015, 2018), Liu and Prucha (2018) for spatial regression models; Baltagi et
al. (2003), Baltagi et al. (2007), Debarsy and Ertur (2010), Baltagi and Yang (2013a,b),
Robinson and Rossi (2015b), and Xu and Yang (2020) for static panel data models.
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In this paper, we propose a general and yet simple method, the adjusted quasi score
(AQS) method, for constructing test statistics for various hypothesis concerning the
SDPD models with fixed-effects, small T and possibly heteroskedastic errors. A score-
type test is preferred as it requires only the estimation of the null model. The initial
constructions of the tests are based on the unified M -estimation method of Yang (2018a):
first adjusting the conditional quasi score functions given the initial differences to achieve
unbiasedness and consistency, and then developing a martingale difference representation
of the AQS function to give a consistent estimate of the variance-covariance matrix of
the AQS functions. The resulting AQS tests are shown to have standard asymptotic null
behavior and are free from the specifications of the initial conditions. Further corrections
are made on the concentrated AQS functions, giving a set of standardized AQS (SAQS)
tests with much better finite sample properties. All the proposed tests are robust against
nonnormality. Certain tests are fully robust against unknown CH; the others are not and
for this alternative modifications are made by following the M -estimation strategy of Li
and Yang (2020b) to give tests that are fully robust against unknown CH. Monte Carlo
results show excellent performance of the SAQS tests and full robustness of the last test.

The rest of the paper is organized as follows. Section 2 presents the AQS and stan-
dardized AQS tests under homoskedasticity. Section 3 presents the AQS tests fully robust
against cross-sectional heteroskedasticity. Section 4 present Monte Carlo results. Section
5 concludes the paper. Some necessary technical details are given in Appendix.

2. Adjusted Quasi Score Tests
In this section, we introduce that AQS and standardized AQS tests under the as-

sumptions that the idiosyncratic errors {vit} are independent and identically distributed
(iid). We identify that some of these tests are automatically robust against unknown CH
due to the fact that the spatial weights matrices have zero diagonal elements.

2.1. The AQS function

The methodology we adopt in constructing tests statistics for testing various hypothe-
ses requires the estimation of the null models. In certain cases, e.g., HPD

0 , the null models
are very simple, but in other cases they are not as the null models may still contain the
dynamic parameter ρ and/or some of the spatial parameters. Also, the construction of
the AQS tests requires the AQS function for the full model. Thus, it is necessary to
outline the unified M -estimation method of Yang (2018a). As the current paper focuses
on the fixed effects model with small T , the time specific effects are absorbed into the
time-varying regressors Xt. First-differencing Model (1.1) to eliminate µ, we have,

∆yt = ρ∆yt−1 + λ1W1∆yt + λ2W2∆yt−1 + ∆Xtβ + ∆ut, ∆ut = λ3W3∆ut + ∆vt, (2.1)

for t = 2, 3, . . . , T . The parameters left in Model (2.1) are ψ = {β′, σ2
v , ρ, λ

′}′. Note that
∆y1 depends on both the initial observations y0 and the first period observations y1. Thus,
even if y0 is exogenous, y1 and hence ∆y1 is not. Letting ψ0 be the true value of ψ and E(·)
correspond to ψ0, Yang’s (2018a) M -estimation strategy goes as follows: formulate the
conditional quasi likelihood function as if ∆y1 is exogenous to give the conditional quasi
score vector S(ψ), then adjust S(ψ) to give the AQS vector S∗(ψ0) = S(ψ0)− E[S(ψ0)],
and then estimate ψ by solving the AQS equations S∗(ψ) = 0.2 Some details follow.

2Interestingly, this method finds root in Neyman and Scott (1948) on modified likelihood equations.
Chudik and Pesaran (2017) use similar ideas to give a bias-corrected method of moments estimation.
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Let ∆Y = {∆y′2, . . . ,∆y′T}′, ∆Y−1 = {∆y′1, . . . ,∆y′T−1}′, ∆X = {∆X ′
2, . . . ,∆X

′
T}′,

and ∆v = {∆v′2, . . . ,∆v′T}. Let Wr = IT−1 ⊗Wr, r = 1, 2, 3; Br(λr) = In − λrWr and
Br(λr) = IT−1 ⊗ Br(λr), for r = 1 and 3; and B2(ρ, λ2) = ρIn + λ2W2 and B2(ρ, λ2) =
IT−1 ⊗ B2(ρ, λ2), where ⊗ denotes the Kronecker product and Im an m × m identity
matrix. Denote B1 = B1(λ1) and B10 = B1(λ10), etc. Assume (i) the errors {vit} are iid
across i and t > 0, (ii) the regressors {Xt} are exogenous with respect to {vit}, (iii) both
B−1

10 and B−1
30 exist; and (iv) the following ‘knowledge’ about the process in the past:

Assumption A. Under Model (1.1), (i) the processes started m periods before the
start of data collection, the 0th period, and (ii) if m ≥ 1, ∆y0 is independent of future
errors {vt, t ≥ 1}; if m = 0, y0 is independent of future errors {vt, t ≥ 1}.
Yang (2018a) shows: E(∆Y−1∆v

′) = −σ2
v0D−10B

−1
30 and E(∆Y∆v′) = −σ2

v0D0B
−1
30 , where

D−1 =


In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

BT−4(In − B)2, BT−5(In − B)2, . . . B − 2In, In

B−1
1 ,

D =


B − 2In, In, . . . 0
(In − B)2, B − 2In, . . . 0
...

...
. . .

...
BT−3(In − B)2, BT−4(In − B)2, . . . B − 2In

B−1
1 ,

and B ≡ B(ρ, λ1, λ2) = B−1
1 (λ1)B2(ρ, λ2). These immediately lead to E[S(ψ0)], the AQS

vector at ψ0: S
∗(ψ0) = S(ψ0)− E[S(ψ0)], and the AQS vector at a general ψ:

S∗(ψ) =



1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− N

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1 + tr(C−1D−1),

1
σ2

v
∆u(θ)′Ω−1W1∆Y + tr(C−1DW1),

1
σ2

v
∆u(θ)′Ω−1W2∆Y−1 + tr(C−1D−1W2),

1
σ2

v
∆u(θ)′(C−1 ⊗A)∆u(θ)− (T − 1)tr(G3),

(2.2)

where θ = (β′, ρ, λ1, λ2)
′, ∆u(θ) = B1(λ1)∆Y − B2(ρ, λ2)∆Y−1 − ∆Xβ, G3 = W3B

−1
3 ,

A = 1
2
(W ′

3B3 +B′
3W3), Ω = C ⊗ (B′

3B3)
−1, noting B3 = B3(λ3), and

C =


2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(T−1)×(T−1)

Solving S∗(ψ) = 0 leads to the M -estimator ψ̂M of ψ. This root-finding process can be
simplified by first solving concentrated AQS equations, S∗c(δ) = 0, with β and σ2

v being
concentrated out from (2.2), to give the M -estimator δ̂M of δ, where

S∗c(δ) =



1
σ̂2

v(δ)
∆û(δ)′Ω−1∆Y−1 + tr(C−1D−1),

1
σ̂2

v(δ)
∆û(δ)′Ω−1W1∆Y + tr(C−1DW1),

1
σ̂2

v(δ)
∆û(δ)′Ω−1W2∆Y−1 + tr(C−1D−1W2),

1
σ̂2

v(δ)
∆û(δ)′(C−1 ⊗A)∆û(δ)− (T − 1)tr(G3),

(2.3)
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∆û(δ) = ∆u(β̂(δ), ρ, λ1, λ2), β̂(δ) = (∆X ′Ω−1∆X)−1∆X ′Ω−1(B1∆Y − B2∆Y−1), and
σ̂2
v(δ) = 1

N
∆û(δ)′Ω−1∆û(δ). The M -estimators of β and σ2

v are thus β̂M ≡ β̂(δ̂M) and

σ̂2
v,M ≡ σ̂2

v(δ̂M). Yang (2018a) show that under regularity conditions the M -estimator

ψ̂M = (β̂′M, σ̂
2
v,M, δ̂

′
M)
′ is

√
N -consistent and asymptotically normal, where N = n(T − 1).

The M -estimators under the constraints imposed by various hypotheses will remain to be√
N -consistent and asymptotically normal. It is important to note that the adjustments

(non-stochastic terms in (2.2)) are free from the initial conditions, and hence the resulting
AQS function and the M -estimators are free from the initial conditions.

2.2. Construction of the AQS test

The AQS functions given in (2.2) are the key elements in the construction of the AQS
tests. In this section, we first formulate the AQS test in a unified manner, and then
present some details for the tests defined in Sec. 1. Let diag(A) form a diagonal matrix
by the diagonal elements of a square matrix A and blkdiag(Ak) form a block-diagonal
matrix by matrices {Ak}. The subscript ‘n’ is often dropped shall no confusion arise.

The construction of the joint and marginal AQS tests depends critically on the avail-
ability of the variance covariance (VC) matrix of the AQS function S∗(ψ0) given in (2.2),
i.e., Γ∗(ψ0) = 1

N
Var[S∗(ψ0)]. The dynamic nature of Model (1.1) makes such an esti-

mation very difficult, as the derivation of the expression of Γ∗(ψ0) runs into a similar
problems as the full QML estimation of the model – initial differences need to be spec-
ified or modeled when T is fixed and small. To overcome this difficulty, Yang (2018a)
propose a martingale difference (M.D.) method, i.e., decompose the joint AQS function
into a sum of M.D. sequences so that the outer-product-of-martingale-differences (OPMD)
gives a consistent estimate of Γ∗(ψ0). As a result, the OPMD estimate of Γ∗(ψ0) is free
from the specification of initial conditions. This together with the same feature of the
AQS functions lead to the AQS tests that are free from the initial conditions.

Yang (2018a) developed the representations: ∆Y = R ∆y1 + η + S∆v and ∆Y−1 =
R−1∆y1 + η−1 + S−1∆v, leading to the expression for the AQS vector at ψ0 as:

S∗(ψ0) =



Π′
1∆v,

∆v′Φ1∆v − N
2σ2

v0
,

∆v′Ψ1∆y1 + ∆v′Π2 + ∆v′Φ2∆v + tr(C−1D−10),
∆v′Ψ2∆y1 + ∆v′Π3 + ∆v′Φ3∆v + tr(C−1D0W1),
∆v′Ψ3∆y1 + ∆v′Π4 + ∆v′Φ4∆v + tr(C−1D−10W2),
∆v′Φ5∆v − (T − 1)tr(G30),

(2.4)

where Π1= 1
σ2

v0
Cb∆X, Π2= 1

σ2
v0

Cbη−1, Π3= 1
σ2

v0
CbW1η, Π4= 1

σ2
v0

CbW2η−1, Φ1= 1
2σ4

v0
(C−1 ⊗ In),

Φ2= 1
σ2

v0
CbS−1, Φ3= 1

σ2
v0

CbW1S, Φ4= 1
σ2

v0
CbW2S−1, Φ5= 1

2σ2
v0

[C−1⊗ (G′
30 +G30)], Ψ1= 1

σ2
v0

CbR−1,

Ψ2= 1
σ2

v0
CbW1R, Ψ3= 1

σ2
v0

CbW2R−1, and Cb=C−1 ⊗ B30. Furthermore, ∆y1 = 1T−1 ⊗ ∆y1,

R = blkdiag(B0,B2
0, . . . ,BT−1

0 ), R−1 = blkdiag(In,B0, . . . ,BT−2
0 ), η = BB−1

10 ∆Xβ0,
η−1 = B−1B

−1
10 ∆Xβ0, S = BB−1

10 B−1
30 , S−1 = B−1B

−1
10 B−1

30 , and

B =


In 0 . . . 0 0
B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

 , and B−1 =


0 0 . . . 0 0
In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

 .

The expression (2.4) is the key to the proof of asymptotic normality of 1√
N
S∗(ψ0),

and to the development of OPMD estimate of the VC matrix of S∗(ψ0), so that an AQS
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test can be constructed. Note that S∗(ψ0) contains three types of stochastic elements:

Π′∆v, ∆v′Φ∆v, and ∆v′Ψ∆y1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being N × p or
N ×1, and Φ and Ψ being N ×N . As noted in Yang (2018a), the closed form expressions
for variances of Π′∆v and ∆v′Φ∆v, and their covariance can readily be derived, but the
closed-form expressions for the variance of ∆v′Ψ∆y1 and its covariances with Π′∆v and
∆v′Φ∆v depend on the knowledge of the distribution of ∆y1, which is unavailable. Yang
(2018a) went on to give a unified method of estimating the VC matrix of AQS function,
the OPMD estimate, which is summarized as follows.

For a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = Au + Al + Ad. Denote by Πt, Φts and
Ψts the submatrices of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T . Define
Ψt+ =

∑T
s=2 Ψts, Θ = Ψ2+(B30B10)

−1, ∆y◦1 = B30B10∆y1, and ∆y∗1t = Ψt+∆y1. Define

g1i =
∑T

t=2 Π′
it∆vit, (2.5)

g2i =
∑T

t=2(∆vit∆ξit + ∆vit∆v
∗
it − σ2

v0dit), (2.6)

g3i = ∆v2i∆ζi + Θii(∆v2i∆y
◦
1i + σ2

v0) +
∑T

t=3 ∆vit∆y
∗
1it, (2.7)

where for (2.6), ξt =
∑T

s=2(Φ
u′
st+Φl

ts)∆vs, ∆v∗t =
∑T

s=2 Φd
ts∆vs, and {dit} are the diagonal

elements of CΦ; for (2.7), {∆ζi} = ∆ζ = (Θu + Θl)∆y◦1, and diag{Θii} = Θd. Then,

Π′∆v =
∑n

i=1 g1i, (2.8)

∆v′Φ∆v − E(∆v′Φ∆v) =
∑n

i=1 g2i, (2.9)

∆v′Ψ∆y1 − E(∆v′Ψ∆y1) =
∑n

i=1 g3i, (2.10)

and {(g′1i, g2i, g3i)
′,Fn,i}ni=1 form a vector martingale difference (MD) sequence, where

Fn,i = Fn,0 ⊗ Gn,i, with {Gn,i} being an increasing sequence of σ-fields generated by
(vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n, and Fn,0 the σ-field generated by (v0,∆y0).

Now, following these results, for each Πr, r = 1, 2, 3, 4, defined in (2.4), define g1ri

according to (2.5); for each Φr, r = 1, . . . , 5, defined in (2.4), define g2ri according to
(2.6); and for each Ψr, r = 1, 2, 3, defined in (2.4), define g3ri according to (2.7). Define

gi = (g′11i, g21i, g31i + g12i + g22i, g32i + g13i + g23i, g33i + g14i + g24i, g25i)
′. (2.11)

Then, S∗(ψ0) =
∑n

i=1 gi, where {gi,Fn,i} form a vector MD sequence. It follows that
Γ∗(ψ0) = Var[S∗(ψ0)] =

∑n
i=1 E(gig

′
i), and therefore its sample analogue,

Γ̂∗ =
∑n

i=1 ĝiĝ
′
i, (2.12)

gives a consistent OPMD estimator of Γ∗(ψ0), i.e., plimn→∞
1
N

∑n
i=1[ĝiĝ

′
i − Γ∗(ψ0)] = 0,

where ĝi is obtained by replacing ψ0 in gi by ψ̂M and ∆v by its observed counterpart ∆̂v,
noting that ∆y1 is observed. To construct the AQS tests, the estimates (ψ̂M, ∆̂v) of the

full model are replaced by the constrained estimates at the null, (ψ̃M, ∆̃v).
To develop the AQS test in a unified manner, let δ = (π′, ϕ′)′ and the null hypoth-

esis specifies ϕ = 0. Let ϑ = (β′, σ2, π′)′ and therefore ψ = (ϑ′, ϕ′)′. Let Σ∗(ψ0) =
−E[ ∂

∂ψ′S
∗(ψ0)]. Partition Σ∗(ψ) and Γ∗(ψ) according to ϑ and ϕ, and denote their sub-

matrices by Σ∗
ab(ψ) and Γ∗ab(ψ), a = ϑ, ϕ, b = ϑ, ϕ. Let S∗(ψ) = (S∗′ϑ (ψ), S∗′ϕ (ψ))′ and

gi = (g′i,ϑ,g
′
i,ϕ)

′. Clearly, the construction of the test of ϕ = 0 depends on S∗ϕ(ϑ̃, 0) and

its variance, where ϑ̃ is the null estimate of ϑ. Under mild conditions, a Taylor expansion
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leads to the following asymptotic MD representation:

1√
N
S∗ϕ(ϑ̃, 0k) = 1√

N
S∗ϕ(ϑ0, 0k)− 1√

N
Σ∗
ϕϑΣ

∗−1
ϑϑ S

∗
ϑ(ϑ0, 0k) + op(1)

= 1√
N

∑n
i=1(gi,ϕ − Λgi,ϑ) + op(1), (2.13)

where Λ = Σ∗
ϕϑΣ

∗−1
ϑϑ , and k = dim(ϕ). Clearly {gi,ϕ −Λgi,ϑ} form a vector MD sequence

with respect to Fn,i. Therefore, Var[ 1√
N
S∗ϕ(ϑ̃, 0k)] = 1

N

∑n
i=1[(gi,ϕ−Λgi,ϑ)(gi,ϕ−Λgi,ϑ)

′]+

o(1). An AQS-based test for testing the hypothesis H0 : ϕ = 0 is thus,

TM = S∗′ϕ (ϑ̃, 0k)
{ ∑n

i=1(g̃i,ϕ − Λ̃g̃i,ϑ)(g̃i,ϕ − Λ̃g̃i,ϑ)
′}−1

S∗ϕ(ϑ̃, 0k), (2.14)

where M = PD, DPD, SDPD1, · · · , SDPD5, and SPD, associated with the null hypotheses
defined in Sec. 1, Λ̃ = Σ̃∗

ϕϑΣ̃
∗−1
ϑϑ is the null estimate of Λ∗, and g̃i,ϑ and g̃i,ϕ are the null

estimates of gi,ϑ and gi,ϕ. The asymptotic distribution of T M
AQS, i.e., χ2

k, can be proved
under some additional regularity conditions generic to all tests, and some additional
regularity conditions specific for a given test. The generic conditions are as follows.

Assumption B: The idiosyncratic errors {vit} are independent across i = 1, . . . , n
and t = 0, 1, . . . , T , with E(vit) = 0, Var(vit) = σ2

v0, and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C: The time-varying regressors {Xt, t = 0, 1, . . . , T} are exogenous,
their values are uniformly bounded, and limN→∞

1
N

∆X ′∆X exists and is nonsingular.

Assumption D: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order
ι−1
n , uniformly in all i and j, and wr,ii = 0 for all i; (ii) ιn/n → 0 as n → ∞; (iii)
{Wr, r = 1, 2, 3} are uniformly bounded in both row and column sums.

Assumption D allows the degree of spatial dependence, e.g., the number of neighbors
each spatial unit has, to grow with the sample size but in a lower speed. As a result,
the convergence rate of certain parameter estimators may need to be adjusted down to√
N/ιn.

3 When homoskedasticity is in question, Assumption B is relaxed to:

Assumption B∗: The idiosyncratic errors {vit} are independent across i = 1, . . . , n
and t = 0, 1, . . . , T , with E(vit) = 0, Var(vit) = σ2

v0hni such that 0 < hni ≤ c < ∞ and
1
n

∑n
i=1 hni = 1, and E|vit|4+ε0 <∞ for some ε0 > 0.

Additional conditions on the initial differences are necessary when the null model
contains the dynamic term, and additioal conditions on B1 and B3 are necessary when the
null model contains λ1 and λ3 terms. These are summarized in the following assumptions.

Assumption E: For Φ, n × n, uniformly bounded in either row or column sums
with elements of uniform order ι−1

n , and φ, n× 1, with elements of uniform order ι
−1/2
n ,

(i) ιn
n

∆y′1Φ∆y1 = Op(1), ιn
n

∆y′1Φ∆v2 = Op(1); (ii) ιn
n

[∆y1 − E(∆y1)]
′φ = op(1); (iii)

ιn
n

[∆y′1Φ∆y1 − E(∆y′1Φ∆y1)] = op(1); and (iv) ιn
n

[∆y′1Φ∆v2 − E(∆y′1Φ∆v2)] = op(1).

Assumption F: B−1
1 and B−1

2 exist, and are uniformly bounded in both row and
column sums in absolute value, for (λ1, λ3) in a neighborhood of (λ10, λ30).

Theorem 2.1. Under Assumptions A-F, if ϑ̃ is
√
N-consistent, we have under HM

0 ,

TM
D−→ χ2

k, as n→∞, where M denotes a null model specified in Sec. 1.

Note that in a special case where Γ∗ ≈ Σ∗ at the null, i.e., the information matrix
equality (IME) holds (asymptotically), the AQS test is asymptotically equivalent to

3This typically occurs to the estimator of the spatial error parameter; see Lee (2004), Liu and Yang
(2015), Su and Yang (2015), and Yang (2018a). However, this feature is not explicitly reflected in the
subsequent developments as the implementations of the tests do not require ι.
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TM,0 = S∗′(ψ̃)(
∑n

i=1 g̃ig̃
′
i)
−1S∗(ψ̃), (2.15)

where ψ̃ = (ϑ̃′, 0′k)
′. The cases under which the above can be true are those with the null

model being a static panel data model (i.e., ρ = λ2 = 0) and the errors are Gaussian.
To facilitate the practical applications of the AQS tests, we now present details for

each of the hypothesis postulated in Sec. 1 so that a specific test can directly be applied
without going through the complicated general case. More interestingly, we show that
certain tests are valid under Assumption B∗, i.e., robust against unknown CH.

Joint test HPD
0 : δ = 0. Under HPD

0 , the model SDPD(δ) is reduced to the simplest
PD model, and the estimation of the model at the null is simply the ordinary least squares
(OLS) estimation, i.e., β̃ = (∆X ′C−1∆X)−1∆X ′C−1∆Y and σ̃2

v = 1
N

∆ṽ′C−1∆ṽ, where

∆ṽ = ∆Y −∆Xβ̃, leading to ψ̃ = (β̃′, σ̃2
v , 0

′
4)
′. Under HPD

0 , B1 = B3 = In, and B2 = 0n
where 0n denotes an n × n matrix of zeros. It is easy to see that E[S∗(ψ0)|HPD

0
] = 0 and

that β̃ and σ̃2
v are robust against unknown CH.

Corollary 2.1. Under Assumptions A, B∗, C and D, TPD|HPD
0

D−→ χ2
4, as n→∞.

The very attractive feature of this joint test is that it is robust against unknown
CH as specified in Assumption B∗, besides being robust against nonnormality of the
idiosyncratic errors vit. The same goes to the conditional tests where under the null and
the given ‘condition’ the model becomes a pure panel data model.

Joint test HDPD
0 : λ = 0. Under HDPD

0 , B1 = B3 = In, and B2 = ρIn. The estimation
of the null model goes as follows. The constrained M -estimators of β and σ2

v , given ρ, are
β̃(ρ) = (∆X ′C−1∆X)−1∆X ′C−1(∆Y − ρ∆Y−1) and σ̃2

v(ρ) = 1
N

∆ṽ′(ρ)C−1∆ṽ(ρ), where

∆ṽ(ρ) = ∆Y − ρ∆Y−1 −∆Xβ̃(ρ). The constrained M -estimator of ρ under HDPD
0 is

ρ̃ = arg
{

1
σ̃2

v(ρ)
∆ṽ′(ρ)C−1∆Y−1 + n

(
1

1−ρ −
1−ρT

T (1−ρ)2
)

= 0
}
, (2.16)

leading to the constrained M estimators of β and σ2
v as β̃ = β̃(ρ̃) and σ̃2

v = σ̃2
v(ρ̃). The

constrained M -estimator of ϑ is thus ϑ̃ = (β̃′, σ̃2
v , ρ̃)

′. The following lemma shows that
the restricted M -estimator ρ̃ defined in (2.16) is robust against unknown CH.4

Lemma 2.1. Under Assumptions A, B∗, and C-E, if ρ0 is in the interior of a compact
parameter space, then for the DPD model, we have, as n → ∞, ϑ̃ = (β̃′, σ̃2

v , ρ̃)
′ p−→ ϑ0,

and
√
N(ϑ̃− ϑ0)

D−→ N(0,Ψ), for a suitably defined Ψ.

Corollary 2.2. Under the assumptions of Lemma 2.1, TDPD|HDPD
0

D−→ χ2
3, as n→∞.

Corollary 2.2 presents another interesting result: TDPD is robust against both nonnor-
mality and unknown CH, which applies to all tests with a pure DPD model at null.

Marginal test HSTPD
0 : ρ = 0. Under the null, B2 = λ2W2. The constrained M -

estimator λ̃ of λ solves the following estimating equations:
1

σ̃2
v(λ)

∆ũ(λ)′Ω−1W1∆Y + tr(C−1DW1) = 0,
1

σ̃2
v(λ)

∆ũ(λ)′Ω−1W2∆Y−1 + tr(C−1D−1W2) = 0,
1

σ̃2
v(λ)

∆ũ(λ)′(C−1 ⊗A)∆ũ(λ)− (T − 1)tr(G3) = 0,

4The concentrated AQS function for ρ contained in (2.16) clearly shows that the M -estimator is not
only consistent when T is fixed but also eliminates the bias of order O(T−1). In contrast, the estimator
based on the unadjusted score is inconsistent when T is fixed and has a bias of order O(T−1) when T
grows with n. See Hahn and Kuersteiner (2002), and Yang (2018a,b) for more discussions.
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where ∆ũ(λ) = B1∆Y − λ2W2∆Y−1 − ∆Xβ̃(λ), and β̃(λ) and σ̃2
v(λ) are those given

below (2.3) by setting ρ = 0. Let β̃ = β̃(λ̃), σ̃2
v = σ̃2

v(λ̃), and ϑ̃ = {β̃′, σ̃2
v , λ̃

′}′. Based on
the result of Li and Yang (2020b), it is easy to see that plimn→∞

1
n
S∗(ψ0)|ρ=0 6= 0 under

unknown CH. Therefore ϑ̃ cannot be consistent under unknown CH and TSTPD is generally
not robust against unknown CH. Sec. 3 presents a CH-robust version of this test.

Marginal test HSDPDr
0 : λr = 0, where r can be 1, or 2 or 3, giving three marginal

tests corresponding one specific type of spatial effects. Among these three marginal tests,
the test of HSDPD2

0 : λ2 = 0 is the most interesting one as under HSDPD2
0 the model is reduced

to the popular SDPD model with SL and SE effects. We consider only this case as the
others can be handled in the similar manner. Under HSDPD2

0 , B2 = ρIn. The constrained
M -estimators (ρ̃, λ̃1, λ̃3) of (ρ, λ1, λ3) solve the following estimating equations:

1
σ̃2

v(ρ,λ1,λ3)
∆ũ(ρ, λ1, λ3)

′Ω−1∆Y−1 + tr(C−1D−1) = 0,
1

σ̃2
v(ρ,λ1,λ3)

∆ũ(ρ, λ1, λ3)
′Ω−1W1∆Y + tr(C−1DW1) = 0,

1
σ̃2

v(ρ,λ1,λ3)
∆ũ(ρ, λ1, λ3)

′(C−1 ⊗A)∆ũ(ρ, λ1, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(ρ, λ1, λ3) = B1∆Y −ρ∆Y−1−∆Xβ̃(ρ, λ1, λ3), and β̃(ρ, λ1, λ3) and σ̃2
v(ρ, λ1, λ3)

are those given below (2.3) by setting λ2 = 0. Let β̃ = β̃(ρ̃, λ̃1, λ̃3), σ̃
2
v = σ̃2

v(ρ̃, λ̃1, λ̃3),
and ψ̃ = {β̃′, σ̃2

v , ρ̃, λ̃1, 0, λ̃3}′. We obtain the AQS test statistic TSPDD2 from (2.14).

Joint test HSDPD4
0 : λ1 = λ2 = 0. This is an interesting test as under the null the

model reduces to a popular SDPD model with spatial error only, which was studied by
Su and Yang (2015) under fixed T with initial observations being modeled. In this case,
B1 = In and B2 = ρIn, and the constrained M -estimators ρ̃ and λ̃3 solve:{

1
σ̃2

v(ρ,λ3)
∆ũ(ρ, λ3)

′Ω−1∆Y−1 + tr(C−1D−1) = 0,
1

σ̃2
v(ρ,λ3)

∆ũ(ρ, λ3)
′(C−1 ⊗A)∆ũ(ρ, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(ρ, λ3) = ∆Y − ρ∆Y−1 −∆Xβ̃(ρ, λ1, λ3), and β̃(ρ, λ3) and σ̃2
v(ρ, λ3) are those

given below (2.3) by setting λ1 = λ2 = 0. Let β̃ = β̃(ρ̃, λ̃3), σ̃
2
v = σ̃2

v(ρ̃, λ̃3), and
ψ̃ = {β̃′, σ̃2

v , ρ̃, 0, 0, λ̃3}′. We obtain from (2.14) the AQS test TSDPD4 for testing HSDPD4
0 .

Joint test HSDPD5
0 : λ2 = λ3 = 0. Under the null hypothesis, the model reduces to

another popular model, the SDPD model with only the spatial lag effect. In this case,
B2 = ρIn and B3 = In, and the constrained M -estimators ρ̃ and λ̃1 solve:{ 1

σ̃2
v(ρ,λ1)

∆ṽ(ρ, λ1)
′Ω−1∆Y−1 + tr(C−1D−1) = 0,

1
σ̃2

v(ρ,λ1)
∆ṽ(ρ, λ1)

′Ω−1W1∆Y + tr(C−1DW1) = 0,

where ∆ṽ(ρ, λ1) = B1∆Y − ρ∆Y−1 − ∆Xβ̃(ρ, λ1), and β̃(ρ, λ1) and σ̃2
v(ρ, λ1) are those

given below (2.3) by setting λ2 = λ3 = 0. Let β̃ = β̃(ρ̃, λ̃1), σ̃
2
v = σ̃2

v(ρ̃, λ̃1), and
ψ̃ = {β̃′, σ̃2

v , ρ̃, λ̃1, 0, 0}′. We obtain from (2.14) the AQS test TSDPD5 for testing HSDPD5
0 .

Joint test HSPD
0 : ρ = λ2 = 0. Under the null, B2 = 0 and D = −CB−1

1 , and the
model becomes the static SARAR model. The constrained M -estimators λ̃1 and λ̃3 of λ1

and λ3 solve the following estimating equations (see also Lee and Yu (2010)):{
1

σ̃2
v(λ1,λ3)

∆ũ(λ1, λ3)
′Ω−1W1∆Y − (T − 1)tr(B−1

1 W1) = 0,
1

σ̃2
v(λ1,λ3)

∆ũ(λ1, λ3)
′(C−1 ⊗A)∆ũ(λ1, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(λ1, λ3) = B1∆Y −∆Xβ̃(λ1, λ3), and β̃(λ1, λ3) and σ̃2
v(λ1, λ3) are those given

below (2.3) by setting ρ = λ2 = 0. Let β̃ = β̃(λ̃1, λ̃3), σ̃
2
v = σ̃2

v(λ̃1, λ̃3), and ψ̃ =
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{β̃′, σ̃2
v , 0, λ̃1, 0, λ̃3}′. We obtain from (2.14) the AQS test TSPD for testing HSPD

0 .
Conditional tests are those for testing whether the model can be further reduced,

given that it has already been reduced. For example, HPD1
0 : λ1 = 0, given λ2 = λ3 = 0;

HPD3
0 : λ3 = 0, given λ1 = λ2 = 0; HSPD

0 : ρ = 0, given λ2 = 0. The last conditional test
says that based on the model without λ2, we want to see if ρ = 0, i.e., if the model full
SDPD model can be reduced to a regular SPD model. The conditional tests conditional
upon ρ = λ2 = 0 are the tests of model reduction for the regular SPD model, and the LM-
type of tests have been developed by, e.g., Debarsy and Erther (2010) and Baltagi and
Yang (2013a) for models with homoskedastic models, and Born and Breitung (2011) and
Baltagi and Yang (2013b) for models with heteroskedastic errors. All these conditional
tests can be easily developed based on the general methodology presented above. Some
conditional tests are robust against unknown CH in light of Corollaries 2.1 and 2.2, and
some can be made to be robust against unknown CH in light of Baltagi and Yang (2013b).
Given the fact that the OPMD estimator of the VC matrix of AQS functions are robust
against unknown CH, any AQS or SAQS test can be made to be CH-robust, provided
the AQS function is made so. Instead of discussing this for the individual AQS or SAQS
test, a general CH-robut method is given in Sec. 3.

All the tests developed above can be implemented in a unified manner based on the
general expressions of the AQS function given in (2.2) or (2.4), and the general OPMD
estimate of its VC matrix given in (2.12). Σ̃∗ can be Σ∗(ψ̃) or − ∂

∂ψ
S∗(ψ)|ψ=ψ̃M

. For each
specific test, all it is necessary is to change the definitions of the matrices Br, r = 1, 2, 3
according to the null hypothesis, and modify the user-supplied function that does root-
finding. Matlab codes are available from the author upon request.

2.3. Finite Sample Improved AQS Tests

The joint and marginal AQS tests presented above are simple but may not be satisfac-
tory when n is not large enough. The reason is that the variability from the estimation of
β and σ2

v are not taken into account when constructing the test statistics. It is thus desir-
able to find simple ways to improve the finite sample performance of these tests. Clearly,
after β0 and σ2

v being replaced by β̂(δ0) and σ̂v(δ0) in the last four components of S∗(ψ0)
given in (2.2), the concentrated AQS functions no longer have mean zero, although they
do asymptotically. Furthermore, the variance of the concentrated AQS functions may
also be affected. Thus, re-adjustments on the mean and variance may help improving the
finite sample performance of the AQS tests (see Baltagi and Yang 2013a,b).

Rewrite the numerator, σ̂2
v(δ)S

∗
c(δ), of the concentrated AQS function in (2.3) as

S∗c,N(δ) =


∆û(δ)′Ω−1∆Y−1 + φ1∆û(δ)

′Ω−1∆û(δ),

∆û(δ)′Ω−1W1∆Y + φ2∆û(δ)
′Ω−1∆û(δ),

∆û(δ)′Ω−1W2∆Y−1 + φ3∆û(δ)
′Ω−1∆û(δ),

∆û(δ)′(C−1 ⊗A)∆û(δ)− φ4∆û(δ)
′Ω−1∆û(δ),

(2.17)

where φ1 = 1
N

tr(C−1D−1), φ2 = 1
N

tr(C−1DW1), φ3 = 1
N

tr(C−1D−1W2) and φ4 =
1
n
tr(G3). The ideas are: finding the mean of S∗c,N(δ0) and recentering, and then finding

the variance estimate of the recentered S∗c,N(δ0) and restandardizing.

Letting Ω
1
2 be the symmetric square root matrix of Ω, and ∆X∗ = Ω− 1

2 ∆X, we have

Ω− 1
2 ∆û(δ) = MΩ− 1

2 (B1∆Y −B2∆Y−1),

where M = IN −∆X∗(∆X∗′∆X∗)−1∆X∗′ is a projection matrix. Noting that M∆X∗ =

11



0, and that at the true δ0, Ω
− 1

2
0 (B10∆Y −B20∆Y−1) = ∆X∗β0 + Ω

− 1
2

0 B−1
30 ∆v, we obtain

S∗c,N(δ0) =


∆v′B′−1

30 M∗
0∆Y−1 + φ10∆v

′M∗∗
0 ∆v,

∆v′B′−1
30 M∗

0W1∆Y + φ20∆v
′M∗∗

0 ∆v,

∆v′B′−1
30 M∗

0W2∆Y−1 + φ30∆v
′M∗∗

0 ∆v,

∆v′M∗∗
0 (C ⊗G30)M

∗∗
0 ∆v − φ40∆v

′M∗∗
0 ∆v,

(2.18)

where M∗ = Ω− 1
2MΩ− 1

2 and M∗∗ = B′−1
3 M∗B−1

3 , and thus E[S∗c,N(δ0) with elements:
µρ0 = σ2

v0tr[(B
′
30B30)

−1M∗
0(φ10C−D−10)], µλ10 = σ2

v0tr[(B
′
30B30)

−1M∗
0(φ20C−W1D0)],

µλ20 = σ2
v0tr[(B

′
30B30)

−1M∗
0(φ30C−W2D−10)], and µλ30 = σ2

v0tr[M
∗∗
0 (C ⊗G30− φ40C)].5

Thus, the recentered AQS function takes the form:

S�c,N(δ) = S∗c,N(δ)− (µρ, µλ1 , µλ2 , µλ3)
′. (2.19)

To develop an OPMD estimate of the VC matrix of S�c,N(δ0), similar to (2.4) we have,

S�c,N(δ0) =


∆v′Ψ1∆y1 + ∆v′Π1 + ∆v′Φ1∆v − µρ0 ,

∆v′Ψ2∆y1 + ∆v′Π2 + ∆v′Φ2∆v − µλ10 ,

∆v′Ψ3∆y1 + ∆v′Π3 + ∆v′Φ3∆v − µλ20 ,

∆v′Φ4∆v − µλ30 ,

(2.20)

where Π1 = B′−1
30 M∗

0η−1, Π2 = B′−1
30 M∗

0W1η, Π3 = B′−1
30 M∗

0W2η−1; Φ1 = B′−1
30 M∗

0S−1 +
φ10M

∗∗
0 , Φ2 = B′−1

30 M∗
0W1S + φ20M

∗∗
0 , Φ3 = B′−1

30 M∗
0W2S−1 + φ30M

∗∗
0 , Φ4 = M∗∗

0 (C ⊗
G30)M

∗∗
0 − φ40M

∗∗
0 ; Ψ1 = B′−1

30 M∗
0R−1, Ψ2 = B′−1

30 M∗
0W1R, Ψ3 = B′−1

30 M∗
0W2R−1.

Similar to {gi} defined based on (2.4), we define {g◦i } based on (2.20). Now, {g�i } are
functions of unknown parameters δ0 and unobserved errors ∆v. Replacing δ0 by δ̃ and
∆v by ∆̃v in {g�i } to give {g̃�i }, one obtains an OPMD estimate of Γ�(δ0) = Var[S�c,N(δ0)]:

Γ̂� =
∑n

i=1 g̃�i g̃
�′
i . (2.21)

Again, to develop the standardized AQS tests in a unified manner, recall δ = (π′, ϕ′)′

and the null hypothesis specifies ϕ = 0. Let Σ�(δ0) = −E[ ∂
∂δ
S�(δ0)]. Partition Σ�(δ) and

Γ�(δ) according to π and ϕ, and denote their submatrices by Σ�
ab(δ) and Γ�ab(δ), a = π, ϕ,

b = π, ϕ. Let S�(δ) = (S�′π (δ), S�′ϕ (δ))′ and g�i = (g�′i,π,g
�′
i,ϕ)

′. Now, the construction of the
test of ϕ = 0 depends on S∗ϕ(π̃, 0) and its variance, where π̃ is the null estimate of π.
Similar to (2.13), a Taylor expansion leads to the following asymptotic MD representation:

1√
N
S�ϕ(π̃, 0k) = 1√

N
S�ϕ(π0, 0k)− 1√

N
Σ�
ϕπΣ

�−1
ππ S

�
π(π0, 0k) + op(1)

= 1√
N

∑n
i=1(g

�
i,ϕ − Λ�g�i,π) + op(1), (2.22)

where Λ� = Σ�
ϕπΣ

�−1
ππ . Therefore, the standardized AQS (SAQS) test statistic for testing

H0 : ϕ = 0 takes a similar form as the AQS test:

T �M = S�′ϕ (π̃, 0k)
{ ∑n

i=1(g̃
�
i,ϕ − Λ̃�g̃�i,π)(g̃

�′
i,ϕ − Λ̃�g̃�i,π)

′}−1
S�ϕ(π̃, 0k), (2.23)

where M corresponds to PD, DPD, SDPDr, etc., for testing the hypotheses HPD
0 , HDPD

0 , HSDPDr
0 ,

etc., postulated in Sec. 1. As in (2.15), if IME holds asymptotically, i.e., Σ� = Γ� +
o(N), the test can be simplified to T �M,0 = S�′(δ̃)(

∑n
i=1 g̃�i g̃

�′
i )−1S�(δ̃), where δ̃ = (π̃′, 0′k)

′.
Furthermore, if null specifies δ = 0, T �PD reduces to T �PD,0 and there is no need of (2.22).

Theorem 2.2. Under Assumptions A-D, if π̃ is
√
N-consistent, we have under HM

0 ,

T M
SAQS

D−→ χ2
k, as n→∞, where M denotes a null model specified in Sec. 1.

5As M∗ = Ω−1 − Ω−1∆X(∆X ′Ω−1∆X)−1∆X ′Ω−1, calculations of Ω
1
2 and Ω− 1

2 are avoided.
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Monte Carlo results show that the SAQS tests can offer much improvements over the
AQS tests when n is not large, particularly when spatial dependence is heavy. In each
SAQS test, the null estimate π̃ can be obtained in the same way as that for the AQS test
or solving a subset of equations obtained from S�c,N(δ), and T �M is implemented similarly.

All the conditional AQS tests discussed in Sec. 2.2 have their counterparts based on
the standardized AQS function. Similar to the case of the regular AQS tests presented in
Sec. 2.2, the standardized AQS tests can also be implemented in a unified manner based
on the general expressions (2.19) or (2.20), the VC matrix estimate defined in (2.21),
and Σ̃� = −∂

∂
S�c,N(δ)|δ=δ̃M . Similar to the AQS tests TPD and TDPD, the two standardized

AQS tests, T �PD and T �DPD, are also robust against both nonnormality and unknown CH.
Others are in general robust only against nonnormality as the corresponding AQS tests.
Therefore, it is desirable to have AQS tests fully robust against unknown CH.

3. CH-Robust AQS Tests

As indicated in the early section, when the null model involves both dynamic and
spatial parameters, the AQS tests may not be robust against the unknown CH, and there
is no simple way to further adjust the AQS function to make it CH-robust. In this section,
we introduce an alternative CH-robust AQS method, to give a set of CH-robust tests.

3.1. The CH-robust M-estimation

Li and Yang (2020b) extend Yang (2018a) to propose CH-robust estimation and in-
ference method for Model (2.1), using an alternative way of adjusting the conditional QS
functions to give a set of CH-robust AQS functions:

S∗H(ψ) =



1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− N

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1 + 1

σ2
v
∆u(θ)′Eρ∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W1∆Y + 1

σ2
v
∆u(θ)′Eλ1∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W2∆Y−1 + 1

σ2
v
∆u(θ)′Eλ2∆u(θ),

1
σ2

v
∆u(θ)′ [C−1 ⊗ (A− Eλ3)] ∆u(θ),

(3.1)

where (Eρ,Eλ1 ,Eλ2) = Ω−1C−1(D−1,W1D,W2D−1), and Eλ3 = B′
3diag(G3)[diag(B

−1
3 )]−1.

Solving the estimating equations, S∗CH(ψ) = 0, gives the CH-robust M -estimator ψ̂H.
This can be done by first solving the equations for β and σ2

v , given δ = (ρ, λ′)′, to give
β̂H(δ) = (∆X ′Ω−1∆X)−1∆X ′Ω−1(B1∆Y − B2∆Y−1), and σ̂2

v,H(δ) = 1
N

∆û(δ)′Ω−1∆û(δ),

where ∆û(δ) = ∆u(β̂(δ), ρ, λ1, λ2). Then, substituting β̂H(δ) and σ̂2
v,H(δ) back into the

last four components of (3.1) gives the concentrated AQS functions:

S∗cH (δ) =


1

σ̂2
v,M(δ)

∆û(δ)′Ω−1∆Y−1 + 1
σ̂2

v,M(δ)
∆û(δ)′Eρ∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1W1∆Y + 1

σ̂2
v,M(δ)

∆û(δ)′Eλ1∆û(δ),
1

σ̂2
v,M(δ)

∆û(δ)′Ω−1W2∆Y−1 + 1
σ̂2

v,M(δ)
∆û(δ)′Eλ2∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′ [C−1 ⊗ (A− Eλ3)] ∆û(δ).

(3.2)

Solving S∗cH (δ) = 0 gives the CH-robust M -estimator δ̂H of δ, and then the CH-robust
M -estimators of β and σ2

v : β̂H ≡ β̂H(δ̂H) and σ̂2
v,H ≡ σ̂2

v,H(δ̂H).
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3.2. The CH-robust AQS tests

By the representations for ∆Y and ∆Y−1 used in Sec. 2.1 and using the relationship
∆u = B−1

30 ∆v, the AQS function at ψ0 can be written as

S∗H(ψ0) =



Π′
1∆v,

∆v′Φ1∆v − n(T−1)

2σ2
v0
,

∆v′Ψ1∆y1 + Π′
2∆v + ∆v′Φ2∆v,

∆v′Ψ2∆y1 + Π′
3∆v + ∆v′Φ3∆v,

∆v′Ψ3∆y1 + Π′
4∆v + ∆v′Φ4∆v,

∆v′Φ5∆v,

(3.3)

where Π1 = 1
σ2

v0
Cb0∆X, Π2 = 1

σ2
v0

Cb0η−1, Π3 = 1
σ2

v0
Cb0W1η, Π4 = 1

σ2
v0

Cb0W2η−1,

Φ1 = 1
2σ4

v0
C−1, Φ2 = 1

σ2
v0

(Cb0S−1 + B−1′
30 Eρ0B

−1
30 ), Φ3 = 1

σ2
v0

(Cb0W1S + B−1′
30 Eλ10B

−1
30 ),

Φ4 = 1
σ2

v0
(Cb0W2S−1 + B−1′

30 Eλ20B
−1
30 ), Φ5 = 1

σ2
v0

[C−1 ⊗
(
B−1′

30 (A0 − Eλ30)B
−1
30

)
],

Ψ1 = 1
σ2

v0
Cb0R−1, Ψ2 = 1

σ2
v0

Cb0W1R, and Ψ3 = 1
σ2

v0
Cb0W2R−1.

The similarity between (2.4) and (3.3) immediately leads to an MD representation
for the CH-robust AQS function, i.e., S∗H(ψ0) =

∑n
i=1 gHi, referring to (2.5)-(2.10). The

vectors S∗H(ψ) and gHi, and the matrix Σ∗
H(ψ) = −E[ ∂

∂ψ′S
∗
H(ψ0)] are partitioned in the

same way according to ϑ and ϕ. A similar asymptotic MD representation, as in (2.13)and
(2.22), holds for S∗′H,ϕ(ϑ̃H, 0k), where ϑ̃H is the constrained estimator under the null. An
AQS-based and CH-robust test for testing the hypothesis H0 : ϕ = 0 is thus,

T †M = S∗′H,ϕ(ϑ̃H, 0k)
{ ∑n

i=1(g̃Hi,ϕ − Λ̃∗
Hg̃Hi,ϑ)(g̃Hi,ϕ − Λ̃∗

Hg̃Hi,ϑ)
′}−1

S∗H,ϕ(ϑ̃H, 0k), (3.4)

where M = PD, DPD, SDPD1, · · · , SDPD5, and SPD, associated with the null hypotheses
defined in Sec. 1, Λ̃∗

H = Σ̃∗
H,ϕϑΣ̃

∗−1
H,ϑϑ, and g̃Hi,ϑ and g̃Hi,ϕ are the null estimates of gHi,ϑ and

gHi,ϕ. We take Σ̃∗
H = − ∂

∂ψ
S∗H(ψ)|ψ=ψ̃H

with ∂
∂ψ
S∗H(ψ) being given in Appendix B.

Theorem 3.1. Under Assumptions A, B∗, C and D, if ϑ̃H is
√
N-consistent, we have

under HM
0 , T

†
M

D−→ χ2
k, as n→∞, where M denotes a null model specified in Sec. 1.

Working with the numerator of S∗cH (δ) given in (3.2), one may be able to obtain
finite sample improved tests that are fully robust against unknown CH. However, this
does not seem to be an easy task, as the existence of unknown CH renders the simple
recentering method followed in Sec. 2.3 for the homoskedastic case unapplicable. This is
seen from the results given in Li and Yang (2020b): E(∆Y−1∆v

′) = −σ2
v0D−10B

−1
30 H and

E(∆Y∆v′) = −σ2
v0D0B

−1
30 H, where H = IT−1 ⊗Hn and Hn = diag{hni, i = 1, . . . , n}.

4. Monte Carlo Simulation

Monte Carlo experiments are carried out to investigate the finite sample performance
of the proposed AQS test TM, standardized AQS (SAQS) test T �M , and the CH-robust
AQS test T †M , in terms of size and size-adjusted power of the tests. The following data
generating process (DGP) is followed:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + µ+ ut, ut = λ3W3ut + vt,

with certain parameter(s) being dropped corresponding to each specific test, for generat-
ing observations at the null. The elements of Xt are generated as in Yang (2018a), and
the elements of Z are randomly generated from Bernoulli(0.5).
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The spatial weight matrices are generated according to Rook contiguity, Queen contigu-
ity, or group interaction schemes: Group-I or Group-II.6 The values of (β0, β1, γ, σµ, σv)
are set to (5, 1, 1, 1, 1), T = 3 or 6, and n = (50, 100, 200, 500). Each set of Monte Carlo
results is based on 5000 samples (for T = 3) or 2000 (for T = 6). The error (vit) dis-
tributions can be (i) normal, (ii) normal mixture (10% N(0, 4) and 90% N(0, 1)), or
(iii) lognormal.7 The fixed effects µ are generated according to 1

T

∑T
t=1Xt + e, where

e ∼ (0, IN). The cross-sectional heteroskedasticity (CH) is generated according to: CH-1:
hni ∝ 1

T

∑T
t=1 |∆Xnt|; CH-2: hni ∝ ng for ith unit in gth group of size ng; and CH-3:

hni ∝ ng if ng ≤ n̄k; and ∝ 1/n2
g otherwise, where n̄k is the average group size. The case

of homoskedasticity is denoted as CH-0. Group-I gives strongest spatial interaction and
CH-3 gives the most severe cross-sectional heteroskedasticity. Under Group-II, variation
in number of neighbors for each spatial unit stays constant as n increases; in all other
spatial layouts, it vanishes as n increases although slower for Group-I (see Yang, 2010).

We report in Tables 1a-1c partial results for testing HPD
0 : δ = 0. When n is not large,

the AQS test TPD and the CH-robust AQS (RAQS) test T †PD can be severely oversized,
whereas the standardized AQS (SAQS) test T �PD can be slightly undersized. As n increases,
the empirical sizes of T �PD quickly approach to their nominal values corresponding to the
χ2

4 distribution. As T increases from 3 (Table 1a) to 6 (Table 1b), all tests improve
significantly. As shown by Corollary 2.1 and Theorem 3.1, these tests are all robust
against unknown CH. The results given in Table 1b confirm this. The results further
reveal that the severity of CH has a much greater impact on the AQS and RAQS tests
than on the SAQS test in finite sample performance. As all three tests are asymptotically
valid, it is important to compare their finite sample performance in terms of the power
of the tests. This has to be done with sizes being adjusted. The results in Table 1c show
that the size-adjusted power is the highest for T �PD and the lowest for T †PD, as expected.

Tables 2a-2c present partial results for testing HDPD
0 : λ = 0, allowing ρ to be present

in the model as a free parameter. The results show an excellent performance of the SAQS
test with its empirical sizes being very close to their nominal values even when n = 50. In
contrast, the regular and robust AQS tests can have sever size distortions when n is not
so large, which get smaller in a significantly slower speed than those of the SAQS test, in
particular under CH. While all three tests are robust against unknown CH as shown by
Corollary 2.2 and Theorem 3.1, their finite sample properties differ (from both reported
and unreported results), with TDPD and T †DPD being affected by the severity of CH much
more than the SAQS test T �DPD. When T increases from 3 to 6, the AQS and RAQS tests
improve significantly. The SAQS test is in general slightly more powerful than the AQS
and RAQS tests. The true value of ρ does not have a significant effect on both tests.

We now turn to the tests of HSDPD4
0 : λ1 = λ2 = 0, allowing ρ and λ3 to be present in

the model as free parameters. As this is a case under which the null model contains both
spatial and dynamic parameters and the AQS and SAQS tests are non-robust against
unknown CH, we therefore focus on the two main issues: the performance of the tests
when the spatial parameters approach to the boundary of parameter space,8 and the
severity of CH that would lead to RAQS to perform better than AQS and SAQS.

6The Rook and Queen schemes are standard. For Group-I, we first generate k =
√

n groups of sizes
ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k and n̄ = n/k, and then adjust ng so that

∑k
g=1 ng = n. For Group-II,

we first generate 6 groups of fixed sizes (3, 5, 7, 9, 11, 15), and replicate these groups r times to give
n = r × 50. See Lin and Lee (2010) and Yang (2018a) for details in generating these spatial layouts.

7In both (ii) and (iii), the generated errors are standardized to have mean zero and variance σ2
v .

8See Lee and Yu (2016) for a detailed discussion on parameter identification of the SDPD model.
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Table 3a presents results with λ3 = ±.9, close to the upper or lower boundaries of the
parameter space for λ3 with W3 being row-normalized. The results show that the value
of λ3 does not affect much on the performance of the tests. The results (reported and
unreported) further show that under the homoskedasticity, these tests perform reasonably
well, although not as well as the SAQS tests for the first two cases and some unreported
cases. Table 3b presents partial results based on Group-I and Group-II spatial layouts,
and under CH-1, CH-2 and CH-3. The results show that the empirical sizes of the RAQS
test generally converge to their nominal levels no matter how severe the CH is, showing
the full robustness of the RAQS test. For AQS and SAQS tests, the results show that
they can be quite robust against mild CH, but under the most severe CH (CH-3 with
Group-II) their size distortions do not get smaller when sample size becomes larger. In
contrast, the size distortions of the RAQS test almost vanishes at n = 500.

Additional Monte Carlo results for the three reported cases and several unreported
cases are given in a Supplementary Appendix to this paper available at author’s website:
http://www.mysmu.edu/faculty/zlyang/. All results suggest that if a test has a PD
or a DPD as its null model, the SAQS test is recommended as it has a much better finite
sample performance than the other two, given that all three tests are robust against
unknown CH. The results also show that in many situations the AQS and SAQS tests are
quite robust against mild departure from homoskedasticity of the errors, and the SAQS
tests compare favorably against the RAQS tests. In a situation under which the AQS
and SAQS are more sensitive to CH and/or when heteroskedasticity is truly in doubt,
the fully robust version of the tests may be used. Finally, when the null model involves
spatial and/or dynamic parameters with their true values being close to the boundary of
the parameter space, how do the corresponding tests perform? Our results suggest that
λ3 may have a bigger impact on the performance of the tests than the other three.

5. Conclusions and Discussions

General methods for constructing tests for the existence/nonexistence of dynamic
and/or spatial effects in the fixed effects panel data model are introduced, based on the
adjusted quasi scores (AQS) and their martingale difference representations. Standard-
ized versions of the AQS tests are also introduced, by adjusting the concentrated quasi
scores, for an improved finite sample performance. The standardized versions of the tests
are shown to be as simple as the non-standardized versions but are more reliable in finite
samples and are quite robust against the unknown CH in general, hence are recommended
for the empirical applications. In case of severe cross-sectional heteroskedasticity (CH)
and when the regular AQS tests are non-robust, the AQS tests fully robust against un-
known CH are also introduced. Monte Carlo results show excellent performance of the
standardized AQS tests and the full robustness of the robust versions of the AQS tests
under severe CH. The results presented in the paper show that the general methodology
for constructing tests of this nature are promising – it overcomes the difficulty faced by
the short (spatial) dynamic panel models.

Appendix A: Some Useful Lemmas

The development and the proofs of theoretical results reported in this paper depend
critically on the following lemmas.
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Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002). Let {An} and {Bn} be two
sequences of n×n matrices that are uniformly bounded in both row and column sums. Let
Cn be a sequence of conformable matrices whose elements are uniformly O(ι−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(ι−1

n ).

Lemma A.2. (Lee, 2004, p.1918). For Wr and Br, r = 1, 3, defined in Model (1.1),
if ‖Wr‖ and ‖B−1

r0 ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖B−1
r ‖ is

uniformly bounded in a neighborhood of λr0.

Lemma A.3. (Lee, 2004, p.1918). Let Xn be an n × p matrix. If the elements
Xn are uniformly bounded and limn→∞

1
n
X ′
nXn exists and is nonsingular, then Pn =

Xn(X
′
nXn)

−1X ′
n and Mn = In−Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Li and Yang, 2020b) Let {An} be a sequence of n×n matrices that are
uniformly bounded in either row or column sums. Suppose that the elements an,ij of An are
O(ι−1) uniformly in all i and j. Let vn be a random n-vector of inid elements satisfying
Assumption B, and bn a constant n-vector of elements of uniform order O(ι−1/2). Then

(i) E(v′nAnvn) = O( n
ιn

), (ii) Var(v′nAnvn) = O( n
ιn

),
(iii) Var(v′nAnvn + b′nvn) = O( n

ιn
), (iv) v′nAnvn = Op(

n
ιn

),

(v) v′nAnvn − E(v′nAnvn) = Op((
n
ιn

)
1
2 ), (vi) v′nAnbn = Op((

n
ιn

)
1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent
of vn such that {E(b2ni)} are of uniform order O(ι−1

n ).

Lemma A.5. (Li and Yang, 2020b): Let {Φn} be a sequence of n× n matrices with
row and column sums uniformly bounded, and elements of uniform order O(ι−1

n ). Let vn
be a random n-vector satisfying Assumption B. Let bn = {bni} be an n×1 random vector,
independent of vn, such that (i) {E(b2ni)} are of uniform order O(ι−1

n ), (ii) supiE|bni|2+ε0 <
∞, (iii) ιn

n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of Φn,

and (iv) ιn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Let Hn= diag(hn1, . . . , hnn). Define the bilinear-

quadratic form:
Qn = b′nvn + v′nΦnvn − σ2

vtr(ΦnHn),

and let σ2
Qn

be the variance of Qn. If limn→∞ ι
1+2/ε0
n /n = 0 and { ιn

n
σ2
Qn
} are bounded

away from zero, then Qn/σQn

d−→ N(0, 1).

The following lemma extends the formulations in Sec. 2.2 to allow for unknown CH.
Its proof follows the results of Theorems 3.2 and 3.3 of Li and Yang (2020b). Recall: Au,
Al and Ad denote the upper-triangular, lower-triangular, and diagonal matrix of a square
matrix A; Πt, Φts and Ψts the submatrices of Π, Φ and Ψ partitioned according to t, s =
2, . . . , T ; Ψt+ =

∑T
s=2 Ψts, Θ = Ψ2+(B30B10)

−1, ∆y◦1 = B30B10∆y1, and ∆y∗1t = Ψt+∆y1.

Lemma A.6. Suppose Assumptions A, B∗, C-E hold for Model (2.1). Consider the
linear, quadratic and bilinear forms, Q(ψ0) = {(Π∆′v)′,∆v′Φ∆v, (∆v′Ψ∆y1)

′}′, associ-
ated with the model. Assume the elements of Π (N × 1) are uniformly bounded, and the
matrices Φ and Ψ (N ×N) are uniformly bounded in both row and column sums. Define

g1i =
∑T

t=2 Π′
it∆vit,

g2i =
∑T

t=2(∆vit∆ξit + ∆vit∆v
∗
it − σ2

v0dit),
g3i = ∆v2i∆ζi + Θii(∆v2i∆y

◦
1i + σ2

v0hni) +
∑T

t=3 ∆vit∆y
∗
1it,
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where ξt =
∑T

s=2(Φ
u′
st+Φl

ts)∆vs, ∆v∗t =
∑T

s=2 Φd
ts∆vs, and {dit} are the diagonal elements

of Φ(C ⊗Hn), {∆ζi} = ∆ζ = (Θu + Θl)∆y◦1, and diag{Θii} = Θd. Then, we have,

(i) Q(ψ0)− E[Q(ψ0)] =
∑n

i=1 gi, where gi = (g1i, g2i, g3i)
′,

(ii) 1
N

[Q(ψ0)− E(Q(ψ0))]
D−→ N(0, limn→∞

1
N

Γ), where Γ = Var(Q(ψ0)).

(iii) Var[Q(ψ0)] =
∑n

i=1 E(gig
′
i), and (iv) 1

N

∑n
i=1[gig

′
i − E(gig

′
i)] = op(1).

Appendix B: Some Technical Details

We sketch the proofs of the theorems, corollaries, and lemmas. Details are given in
Supplementary Appendix available at http://www.mysmu.edu/faculty/zlyang/, in-
cluding the detailed expressions for the derivative matrices of the three AQS functions,
which is referred to loosely as the Hessian matrix in this paper.

Proof Theorem 2.1: The proof of Theorem 2.1 follows closely the proofs of Theo-
rems 3.2 and 3.3 of Yang (2018a), and is typically simpler as under HM

0 the model becomes
simpler. The Hessian matrix ∂

∂ψ′S
∗(ψ) used to estimate Σ∗(ψ0) can be easily derived based

on the expression of S∗(ψ) given in (2.2). It can found in Yang (2018a, Proof of Theo-
rem 3.2), and also in the Supplementary Appendix to this paper containing additional
‘asymmetric components’ that did not appear in Yang (2018a).

Proof of Corollary 2.1. The quantities needed for evaluating the AQS function de-
fined in (2.4) become: Π1 = 1

σ2
v0

C−1∆X, Π2 = 1
σ2

v0
C−1B−1∆Xβ, Π3 = 1

σ2
v0

C−1W1∆Xβ,

Π4 = 1
σ2

v0
C−1W2B−1∆Xβ, Φ1 = 1

2σ4
v0

C−1, Φ2=
1
σ2

v0
C−1B−1, Φ3 = 1

σ2
v0

C−1W1, Φ4 =
1
σ2

v0
C−1W2B−1, Φ5 = 1

2σ2
v0

[C−1⊗(W ′
3+W3)], Ψ1 = 1

σ2
v0

C−1R−1, Ψ2 = 0, Ψ3 = 1
σ2

v0
C−1W2R−1,

R−1 = blkdiag(In, 0, . . . , 0), B−1 = I∗T−1⊗ In, and I∗T−1 is a (T − 1)× (T − 1) matrix with
elements 1 on the positions immediately below the diagonal elements, and zero elsewhere.
Further, B0 = 0n, and hence D0 = −C ⊗ In and D−10 = −C−1 ⊗ In, where

C−1 =


−1 0 0 · · · 0 0 0

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · 0 2 −1


(T−1)×(T−1)

.

These show that with ψ0 = (β′0, σv0, 0, 0, 0, 0)′, all the Φ and Ψ matrices are either of the
form A⊗In or A⊗W for some (T −1)× (T −1) matrix A and a spatial weight matrix W
satisfying Assumption D. Thus, E[S∗(ψ0)] = 0 even when the errors are heteroskedastic.

Hence by Lemma A.5, we have 1√
N
S∗(ψ0)

D−→ N [0, limn→∞
1
N

Γ∗(ψ0)].

By the mean value theorem (MVT), one easily shows that 1√
N

[S∗δ (ψ̃)−S∗δ (ψ0)] = op(1),

where ψ̃ = (β̃′, σ̃2
v0, 0, 0, 0, 0)′ and we note that the OLS estimators β̃ and σ̃2

v0 are robust
against unknown heteroskedasticity {hni}. Now, since by (2.12) S∗(ψ0) =

∑n
i=1 gi, where

{gi,Fn,i} form a vector MD sequence, we have 1
N

∑n
i=1[gig

′
i−E(gig

′
i)] = op(1) by Lemma

A.6. By MVT and the consistency of β̃ and σ̃2
v0, one shows that 1

N

∑n
i=1(g̃ig̃

′
i − gig

′
i) =

op(1) under heteroskedasticity. Finally, it is easy to show that plimn→∞(Λ̃−Λ) = 0, using
the simplified expression of H∗(ψ) and MVT.

Proof of Lemma 2.1. Consider the AQS vector S∗(β, σ2
v , ρ) for the DPD model,

and the concentrated AQS function which defines ρ̃ under HDPD
0 :
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S∗cDPD(ρ) = 1
σ̃2

v(ρ)
∆ṽ′(ρ)C−1∆Y−1 + n

(
1

1−ρ −
1−ρT

T (1−ρ)2
)
,

where ∆ṽ(ρ) = ∆Y − ρ∆Y−1−∆Xβ̃(ρ), β̃(ρ) = (∆X ′C−1∆X)−1∆X ′C−1(∆Y − ρ∆Y−1)
and σ̃2

v(ρ) = 1
N

∆ṽ′(ρ)C−1∆ṽ(ρ).
Define S̄∗(β, σ2

v , ρ) = E[S∗(β, σ2
v , ρ)]. Given ρ, S̄∗(β, σ2

v , ρ) = 0 is partially solved at
β̄(ρ) = (∆X ′C−1∆X)−1∆X ′C−1(E∆Y − ρE∆Y−1) and σ̄2

v(ρ) = 1
N

E[∆v̄(ρ)′C−1∆v̄(ρ)],
where ∆v̄(ρ) = ∆Y −ρ∆Y−1−∆Xβ̄(ρ). Substituting β̄(ρ) and σ̄2

v(ρ) back into S̄∗(β, σ2
v , ρ)

gives the population counter part of S∗cDPD(ρ) as

S̄∗cDPD(ρ) = 1
σ̄2

v(ρ)
E[∆v̄′(ρ)C−1∆Y−1] + n

(
1

1−ρ −
1−ρT

T (1−ρ)2
)
.

By Theorem 5.9 of van der Vaart (1998), ρ̃ will be consistent if (i) infρ:|ρ−ρ0|≥ε |S̄∗cDPD(ρ)| >
0 for every ε > 0, and (ii) supρ∈Υ

1√
N
|S∗cDPD(ρ)− S̄∗cDPD(ρ)|

p−→ 0, which are straightforward.
The asymptotic normality can be proved using Lemma A.5.

Proof of Corollary 2.2. First, with ψ0 = (β0, σ
2
v0, ρ0, 0

′
3)
′ it is easy to show that

E[S∗(ψ0)] = 0 under the general heteroskedasticity {hni}. By Lemma A.5, one shows

that 1√
N
S∗(ψ0)

D−→ N(0,Γ∗(ψ0)). By Lemma A.6, one shows that 1
N

∑n
i=1[gn,ig

′
n,i −

E(gig
′
i)]

p−→ 0. By the mean value theorem, and
√
N consistency and robustness of β̃,

σ̃2
v and ρ̃ against unknown heteroskedasticity {hni} as shown in Lemma 2.1, we have
1√
N

[S∗λ(ψ̃) − S∗λ(ψ0)]
p−→ 0 where ψ̃ = (β̃′, σ̃2

v , ρ̃, 03)
′, and 1

N

∑n
i=1(g̃n,ig̃

′
n,i − gig

′
i)

p−→ 0.

Finally, using the simplified expression of H∗(ψ) and MVT, we show plimn→∞(Λ̃−Λ) = 0.

Proof of Theorem 2.2: The proof is similar to that of Theorem 2.1. The partial
derivatives of S�(δ) required to estimate the components of Σ�

ϕπ(δ0) and Σ�
ϕϕ(δ0) can be

easily obtained from the expression S�(δ) given in (2.19). The full expression of ∂
∂δ′
S�(δ)

is given in the Supplementary Appendix to this paper.

Proof of Theorem 3.1: The proof of Theorem 3.1 follows closely the proofs of
Theorems (3.2) and (3.3) of Li and Yang (2020b). The Hessian matrix ∂

∂ψ′S
∗
H(ψ) used

to estimate Σ∗
H(ψ0) is given in Li and Yang (2020b, Proof of Theorem 3.2), and can

also be found in the Supplementary Appendix to this paper, where the ‘asymmetric
components’ that did not appear in Li and Yang (2020b) are also given.
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Table 1a Empirical Size of Tests of HPD
0 : δ = 0; Group-I, T = 3

TPD T �
PD T †

PD

CH n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
CH-0 50 1 15.30 8.08 1.22 10.78 4.28 0.46 15.54 8.20 1.16

2 22.80 14.18 3.90 8.46 3.20 0.22 25.76 16.60 5.18
3 16.48 9.46 2.16 8.78 3.44 0.22 18.24 10.54 2.64

100 1 12.60 6.48 1.28 10.42 5.08 0.60 13.30 7.38 1.56
2 17.22 10.34 3.16 9.78 4.16 0.72 19.68 12.16 3.94
3 14.00 7.96 2.10 9.80 4.54 0.80 16.04 8.98 2.50

200 1 11.14 6.52 1.26 10.56 5.30 0.90 12.66 6.84 1.50
2 14.08 7.74 1.90 9.22 4.18 0.58 16.34 9.18 2.80
3 13.70 7.20 1.76 10.78 5.12 0.78 14.60 8.14 1.96

500 1 10.78 5.58 1.32 10.34 4.94 1.28 11.80 6.22 1.46
2 12.66 6.96 1.44 10.38 5.16 0.80 13.30 7.16 2.00
3 11.98 6.40 1.62 10.82 5.50 1.08 13.22 7.14 1.56

CH-1 50 1 19.40 11.52 2.96 9.86 3.82 0.30 19.44 11.92 2.90
2 27.20 18.52 6.98 8.18 2.96 0.16 29.78 21.16 9.34
3 22.42 13.94 4.64 8.26 3.28 0.22 24.26 15.10 4.94

100 1 15.70 9.12 2.46 10.12 4.52 0.52 15.46 9.42 2.30
2 22.14 14.34 4.98 8.86 3.74 0.32 25.44 16.30 6.18
3 18.52 11.10 3.50 9.66 4.28 0.64 20.50 13.00 4.30

200 1 14.00 7.54 1.72 11.08 5.34 0.76 14.10 7.78 2.14
2 17.08 9.88 2.64 9.50 3.94 0.56 19.02 11.32 3.74
3 14.72 8.24 2.10 9.86 4.56 0.90 15.78 8.94 2.38

500 1 11.44 5.94 1.42 10.54 5.24 1.16 12.30 6.52 1.50
2 12.84 6.98 1.44 9.12 4.18 0.60 14.84 8.66 2.42
3 11.32 6.04 1.20 9.74 4.70 0.74 13.48 7.20 1.70

CH-2 50 1 15.08 8.42 1.74 10.74 4.72 0.58 16.08 9.02 2.18
2 21.58 13.04 4.10 8.58 3.40 0.20 23.90 15.06 5.36
3 17.44 9.94 2.64 9.16 3.58 0.40 19.04 10.98 2.98

100 1 12.26 6.68 1.58 10.42 4.86 0.90 13.72 7.04 1.82
2 17.52 9.96 2.98 9.52 4.18 0.52 20.08 12.68 4.06
3 14.42 7.94 2.18 10.32 4.42 0.62 15.76 9.22 2.26

200 1 11.36 5.94 1.18 10.08 4.86 0.74 12.44 6.72 1.24
2 14.48 8.98 2.26 10.12 4.78 0.74 15.78 9.48 2.58
3 13.74 7.80 1.92 11.20 5.78 0.78 15.52 8.72 2.00

500 1 10.74 5.56 1.02 10.26 5.06 0.86 12.58 6.68 1.30
2 11.34 5.82 1.40 9.60 4.66 0.86 13.52 7.66 1.94
3 11.04 5.84 1.56 10.04 4.96 1.24 12.68 7.02 1.74

CH-3 50 1 23.94 14.86 4.80 7.74 2.64 0.18 26.34 16.88 5.80
2 33.68 24.62 12.16 6.26 1.94 0.00 39.92 30.00 15.90
3 28.44 19.60 8.26 7.06 2.18 0.02 32.94 23.00 10.14

100 1 22.80 14.76 5.32 9.64 3.78 0.10 26.88 18.24 7.14
2 31.50 22.62 11.42 7.40 2.72 0.08 40.06 30.60 16.96
3 26.26 18.16 7.78 7.90 2.84 0.20 33.40 24.02 11.40

200 1 15.44 9.04 2.72 10.42 4.56 0.72 17.18 10.80 3.50
2 22.70 14.42 5.44 9.48 3.64 0.28 26.18 18.00 7.62
3 19.08 11.78 3.88 10.28 4.82 0.54 21.08 13.38 4.70

500 1 13.48 7.48 1.92 10.96 5.26 0.94 14.90 8.34 2.34
2 16.76 9.84 2.96 9.10 4.02 0.58 19.86 12.16 4.52
3 14.32 8.20 2.26 10.14 4.52 0.86 17.74 11.04 3.44

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1b Empirical Size of Tests of HPD
0 : δ = 0; Group-I, T = 6

TPD T �
PD T †

PD

CH n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
CH-0 50 1 11.00 5.45 0.70 9.00 4.05 0.45 10.00 5.10 0.90

2 17.05 10.20 2.20 9.00 3.50 0.35 17.60 11.05 2.55
3 13.45 6.80 1.60 9.25 4.35 0.60 14.45 7.30 1.85

100 1 11.20 5.75 1.25 10.15 5.25 0.90 11.65 5.60 1.20
2 13.55 7.65 1.55 9.75 4.35 0.55 12.65 6.55 1.90
3 12.25 6.15 1.30 9.60 4.50 0.70 12.75 6.50 1.25

200 1 10.40 4.95 0.65 9.85 4.55 0.60 10.40 4.55 0.70
2 13.10 7.30 1.60 11.00 5.00 0.95 13.00 7.50 1.75
3 10.65 4.95 0.95 9.30 4.15 0.50 11.65 4.90 1.10

500 1 10.25 5.15 0.85 10.10 4.90 0.80 11.05 5.85 1.05
2 11.25 6.30 1.30 10.35 5.50 1.00 11.65 6.35 1.15
3 9.85 4.70 0.95 9.20 4.30 0.70 10.55 5.50 1.00

CH-1 50 1 13.40 6.90 1.90 8.35 4.50 0.25 13.65 7.00 1.80
2 19.25 12.30 3.10 8.25 3.05 0.10 21.00 13.25 4.00
3 15.95 9.20 1.75 8.55 3.55 0.05 17.45 10.10 2.90

100 1 10.20 5.60 1.05 8.20 3.85 0.60 12.30 6.95 1.25
2 15.70 9.05 2.45 9.70 4.25 0.50 16.95 10.75 3.25
3 13.90 8.25 2.20 9.55 4.55 0.65 15.10 8.20 2.00

200 1 11.85 5.80 1.00 10.20 4.65 0.75 11.50 6.00 1.15
2 13.00 7.00 1.70 9.15 4.15 0.70 14.30 7.80 2.25
3 11.75 6.30 1.45 9.75 4.20 1.00 12.65 6.65 1.85

500 1 10.65 4.90 1.00 9.65 4.75 0.75 10.95 5.60 1.25
2 12.05 6.45 1.55 10.05 5.10 1.00 13.60 7.60 1.55
3 10.60 5.50 1.05 9.60 4.60 0.70 11.25 6.30 1.95

CH-2 50 1 10.10 4.90 0.70 9.30 4.15 0.55 11.45 5.60 1.00
2 14.65 7.75 1.35 9.15 3.55 0.50 17.30 9.70 2.55
3 13.25 6.60 0.95 10.10 4.05 0.30 13.75 6.60 1.35

100 1 11.40 5.50 0.90 10.60 4.85 0.75 11.25 4.90 1.25
2 14.00 7.10 1.75 9.05 4.35 0.65 13.00 7.75 2.10
3 12.05 6.35 1.20 10.05 5.00 0.80 13.35 7.20 1.30

200 1 10.85 5.05 0.75 10.10 4.65 0.55 12.20 5.80 0.90
2 12.60 6.35 1.85 9.75 4.55 1.20 13.90 7.30 1.90
3 11.50 5.85 1.25 10.85 4.95 0.70 11.75 6.00 1.60

500 1 11.15 6.20 1.40 11.00 5.85 1.30 12.15 6.05 1.10
2 10.85 5.20 1.15 9.70 4.65 0.80 11.25 6.30 1.15
3 10.35 5.65 1.60 9.75 5.25 1.40 11.45 5.95 1.30

CH-3 50 1 19.10 10.65 3.05 8.60 3.45 0.10 18.30 10.60 2.85
2 26.45 18.00 7.10 7.35 2.95 0.10 31.80 21.15 7.65
3 23.15 15.30 4.75 8.30 2.70 0.15 23.70 15.20 5.15

100 1 16.45 9.70 2.35 9.65 3.90 0.55 16.70 10.20 3.50
2 24.40 15.25 5.75 8.90 3.75 0.35 25.90 17.85 7.45
3 19.35 11.05 3.90 9.15 3.30 0.10 20.70 12.80 4.30

200 1 12.40 6.30 1.35 9.15 4.10 0.60 13.25 7.35 1.85
2 15.70 9.35 3.20 9.30 4.00 0.65 17.50 10.55 3.20
3 13.80 7.80 1.70 9.35 4.00 0.55 15.05 8.00 1.95

500 1 12.15 6.55 1.60 10.50 5.55 1.20 12.90 7.20 2.00
2 13.00 7.00 1.95 9.40 4.85 0.75 13.85 7.40 2.00
3 10.75 5.85 1.45 9.20 4.20 0.75 12.25 7.05 1.60

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1c Size-Adjusted Power of Tests of HPD
0 : δ = 0; Group-I

TPD T �
PD T †

PD

n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 3, HPD

a : δ = (.06, .06, .06, .06)′, CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 31.60 22.16 9.04 31.72 21.22 8.12 31.16 20.44 9.70

2 28.10 18.30 4.58 40.30 29.90 12.20 26.62 16.88 5.00
3 30.48 19.78 6.66 34.80 23.30 8.26 26.70 17.40 5.48

100 1 44.38 31.48 13.58 43.52 29.92 12.82 39.44 28.46 11.56
2 39.06 25.02 8.46 51.62 38.44 14.44 33.60 21.14 7.66
3 43.00 28.96 10.46 48.28 34.12 12.74 37.20 25.78 8.64

200 1 69.44 56.70 31.42 68.96 56.36 31.90 61.18 46.86 24.82
2 64.40 50.90 26.14 72.16 61.94 40.02 49.26 36.44 16.38
3 65.36 53.18 26.60 69.20 57.04 34.50 55.24 42.54 21.24

500 1 98.24 96.40 85.24 98.20 96.38 84.60 95.02 90.84 74.78
2 96.56 92.98 78.96 97.76 95.74 87.26 83.16 74.48 53.64
3 97.86 95.08 84.28 98.22 96.22 87.18 91.92 86.20 71.82

50 1 33.08 21.38 7.50 31.90 20.42 5.74 31.60 20.24 6.38
2 29.14 17.90 4.74 40.36 29.32 11.24 26.24 15.84 4.46
3 30.50 19.30 6.36 34.52 23.20 8.88 26.84 17.32 5.52

100 1 40.48 27.70 9.64 40.44 27.94 10.04 35.76 24.20 7.56
2 34.92 22.44 8.08 43.94 31.72 13.30 27.62 17.52 6.68
3 36.72 24.66 8.24 40.06 28.14 11.44 29.82 19.98 7.66

200 1 68.80 56.16 33.44 68.58 55.72 33.00 59.64 47.14 26.54
2 60.18 46.66 23.88 69.28 57.38 36.46 48.94 37.10 17.30
3 62.50 50.28 28.74 66.80 54.68 32.78 50.22 38.42 20.86

500 1 96.76 94.24 83.50 96.84 94.28 83.52 91.54 85.50 67.94
2 94.62 89.36 73.20 96.56 92.92 81.06 74.86 62.48 39.32
3 96.48 93.00 76.98 97.12 94.76 81.48 88.02 79.56 58.14

T = 6, HPD
a : δ = (.05, .05, .05, .05)′, CH-0 (1st panel below); CH-2 (2nd panel below)

50 1 63.00 49.45 26.85 62.05 47.40 24.70 55.90 42.50 20.40
2 56.60 41.90 14.25 72.20 56.30 29.80 43.70 30.85 11.60
3 62.40 48.75 20.20 66.75 55.50 28.55 51.85 37.05 15.15

100 1 80.15 70.05 46.85 79.95 70.15 43.30 64.85 51.65 25.20
2 74.70 63.30 34.95 83.25 74.70 52.55 53.70 38.55 16.50
3 76.25 65.85 39.35 78.75 69.25 44.60 54.00 37.60 16.20

200 1 98.00 96.50 85.60 98.10 96.60 84.45 92.85 86.65 67.75
2 96.95 93.85 81.50 98.40 96.40 89.65 80.95 72.30 45.25
3 98.15 95.80 85.50 98.90 96.95 89.65 87.25 78.75 55.10

500 1 100.00 100.00 99.90 100.00 100.00 99.90 99.80 99.30 96.70
2 99.90 99.85 99.45 99.95 99.90 99.80 96.15 92.85 82.20
3 100.00 99.90 99.90 100.00 99.90 99.90 99.10 97.90 91.90

50 1 50.80 35.45 11.70 50.45 36.50 11.85 37.95 24.00 6.80
2 43.35 28.85 12.05 56.25 43.90 22.40 27.25 16.60 4.25
3 46.10 32.90 14.25 51.80 37.90 18.65 31.15 20.25 6.45

100 1 74.60 64.75 40.45 74.55 64.25 40.95 59.85 46.75 25.80
2 72.25 57.95 30.05 79.05 70.35 45.95 46.05 31.70 14.50
3 75.55 62.85 38.80 78.70 68.05 43.65 51.50 36.30 15.60

200 1 98.15 96.30 89.75 98.30 96.30 90.00 90.20 85.75 67.75
2 96.25 93.35 76.35 97.70 96.00 87.50 78.10 65.45 44.05
3 97.60 95.10 85.60 98.25 96.35 88.45 83.80 75.35 54.85

500 1 100.00 100.00 100.00 100.00 100.00 100.00 99.75 99.55 98.10
2 99.95 99.90 99.75 100.00 99.95 99.85 96.30 92.50 78.65
3 99.95 99.80 99.70 100.00 99.85 99.75 99.00 97.60 90.85

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2a Size and Size-Adjusted Power of Tests of HDPD
0 : λ = 0; Rook, ρ = 0.5, T = 3

TDPD T �
DPD T †

DPD

n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
Size, CH-0 (1st panel below); CH-1 (2nd panel below)
50 1 12.42 6.20 1.30 9.56 4.42 0.52 12.38 6.40 1.44

2 16.50 9.90 2.44 8.74 3.56 0.28 16.36 10.00 2.38
3 15.40 8.50 2.06 9.86 4.10 0.46 15.30 8.48 2.08

100 1 11.12 5.88 1.32 10.02 4.82 0.82 11.32 5.96 1.38
2 14.36 7.66 1.92 9.10 3.84 0.70 14.32 7.96 2.00
3 13.00 6.46 1.60 9.34 4.40 0.68 12.98 6.78 1.62

200 1 10.90 5.42 1.20 10.16 4.86 1.04 11.14 5.46 1.20
2 12.14 6.34 1.54 9.40 4.24 0.88 12.38 6.50 1.56
3 11.36 5.64 1.22 9.68 4.50 0.74 11.08 5.66 1.24

500 1 10.04 5.00 1.14 9.84 4.82 1.00 10.28 5.26 1.08
2 10.80 5.54 1.44 9.52 4.74 1.02 10.86 5.82 1.42
3 11.00 5.58 1.02 10.08 4.96 0.68 10.84 5.60 1.02

50 1 16.56 9.80 2.60 9.40 3.92 0.32 16.46 9.78 2.70
2 21.92 13.68 4.66 8.60 2.90 0.14 21.66 13.36 4.76
3 18.82 11.44 3.44 8.60 3.46 0.30 18.60 11.06 3.50

100 1 13.06 7.20 1.56 10.16 4.80 0.66 13.28 7.12 1.52
2 15.96 9.24 2.20 9.04 3.40 0.48 15.96 9.24 2.36
3 14.22 8.06 2.30 9.68 4.10 0.58 14.38 8.30 2.30

200 1 12.02 6.18 1.42 10.58 4.80 0.82 12.44 6.32 1.56
2 13.50 6.92 1.80 9.00 4.08 0.52 13.34 6.96 1.72
3 12.26 6.86 1.30 9.72 4.80 0.56 12.48 7.00 1.26

500 1 10.12 4.80 1.20 9.38 4.24 0.96 9.88 5.04 1.10
2 12.08 6.34 1.20 9.76 4.62 0.64 12.10 6.34 1.38
3 11.00 6.00 1.10 9.68 4.84 0.70 11.24 6.04 1.04

Power, HDPD
a : λ = (.05, .05, .05); CH-0 (1st panel below); CH-1 (2nd panel below)

50 1 79.54 67.08 35.26 77.56 63.34 31.76 78.96 66.92 35.16
2 64.46 48.44 24.30 82.54 71.86 50.42 64.16 49.84 22.08
3 72.44 58.54 29.84 77.84 66.70 38.80 71.36 58.04 30.14

100 1 94.30 88.04 67.72 94.00 87.32 65.46 93.92 87.98 65.54
2 85.78 75.86 43.16 93.68 89.14 72.50 85.62 76.22 44.40
3 90.10 82.28 57.58 93.26 87.56 67.10 89.94 81.78 57.50

200 1 99.90 99.48 97.10 99.82 99.46 96.34 99.80 99.42 96.88
2 99.12 97.82 88.42 99.68 99.32 96.66 99.04 97.66 88.12
3 99.58 98.94 94.58 99.80 99.40 97.12 99.56 99.02 94.20

500 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

50 1 67.86 52.94 24.86 74.34 60.24 32.82 67.40 51.80 24.02
2 56.30 39.72 14.12 80.36 71.98 50.06 55.50 38.96 12.90
3 63.60 46.88 20.98 78.78 66.76 40.44 64.00 46.58 21.70

100 1 88.40 79.98 57.34 91.64 84.58 65.10 88.64 80.06 58.16
2 78.62 66.98 38.48 93.78 89.48 74.62 79.08 67.06 36.82
3 84.82 73.38 44.44 92.12 87.28 68.92 84.88 73.46 46.70

200 1 99.60 98.80 93.44 99.78 99.36 95.96 99.52 98.54 93.26
2 97.34 93.92 79.36 99.44 98.86 96.38 97.26 93.56 79.40
3 98.42 96.70 88.26 99.48 98.90 96.60 98.52 96.86 89.08

500 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 100.00 100.00 99.82 100.00 100.00 100.00 100.00 99.98 99.82
3 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 100.00

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2b Empirical Size of Tests of HDPD
0 : λ = 0; Group-I, ρ = 0.5

TDPD T �
DPD T †

DPD

n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 3, CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 14.18 7.26 1.52 11.30 4.76 0.48 14.08 7.46 1.58

2 20.52 12.00 3.24 10.52 4.48 0.28 20.74 12.14 3.42
3 15.80 9.22 2.36 10.50 4.26 0.46 16.14 9.14 2.26

100 1 12.10 6.44 1.36 10.54 5.38 0.86 12.28 6.58 1.26
2 15.44 8.64 2.32 10.14 4.62 0.74 15.46 8.44 2.40
3 14.52 7.96 2.08 11.24 5.46 0.66 14.60 8.26 2.16

200 1 12.04 6.06 1.54 10.90 5.46 1.38 11.96 6.28 1.60
2 14.04 8.02 2.36 11.04 5.16 1.12 14.32 8.28 2.42
3 11.88 6.38 1.40 10.18 5.12 0.94 11.80 6.44 1.38

500 1 11.20 5.82 1.12 10.88 5.70 0.88 11.32 5.84 1.10
2 12.38 6.44 1.64 11.06 5.16 1.12 12.52 6.50 1.66
3 11.44 5.82 1.24 10.86 5.14 0.88 11.54 6.00 1.18
1 15.30 8.16 1.54 12.04 5.40 0.60 15.22 8.20 1.52
2 18.96 11.00 3.14 9.82 3.62 0.30 18.96 10.98 2.98
3 17.28 9.24 2.30 10.78 4.58 0.38 16.86 9.42 2.42

100 1 12.46 6.46 1.36 11.26 5.40 0.86 12.68 6.52 1.26
2 16.00 8.84 2.50 10.24 4.82 0.78 16.18 8.98 2.48
3 14.46 8.34 2.12 11.74 5.90 0.96 14.90 8.36 2.14

200 1 11.62 6.02 1.38 10.92 5.62 0.98 12.28 6.26 1.52
2 13.02 6.74 1.78 9.78 4.74 0.84 13.68 7.22 1.72
3 12.58 6.94 1.60 10.80 5.44 0.96 13.16 7.18 1.76

500 1 11.68 5.84 1.34 11.36 5.50 1.20 11.86 5.90 1.30
2 11.68 5.78 1.38 9.88 4.78 1.02 11.80 5.90 1.46
3 11.96 6.40 1.48 11.18 5.66 1.22 12.04 6.60 1.46

T = 6, CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 10.95 5.55 0.85 9.95 4.80 0.45 11.30 5.60 1.00

2 14.65 7.95 1.40 9.15 3.20 0.35 14.35 7.50 1.40
3 13.55 7.15 1.75 10.90 5.35 0.65 13.90 7.60 1.70
1 11.60 5.70 1.25 11.05 5.30 1.10 11.80 5.70 1.20
2 13.15 6.90 1.65 10.20 4.80 0.90 13.15 6.75 1.50
3 12.45 5.60 1.50 10.30 4.35 0.90 11.90 5.40 1.50

200 1 10.65 6.00 1.45 10.60 5.30 1.40 10.95 5.70 1.55
2 12.35 6.45 1.35 10.70 5.25 0.45 12.65 6.45 1.35
3 10.10 5.40 1.75 9.00 4.85 1.40 9.75 5.60 1.75

500 1 11.05 5.85 1.40 10.80 5.75 1.45 11.25 5.80 1.55
2 11.60 6.30 1.25 10.95 5.35 1.20 11.55 6.10 1.40
3 10.55 5.15 0.90 10.20 4.70 0.80 10.30 4.90 0.95
1 10.85 5.60 0.75 10.10 4.50 0.40 11.05 5.60 0.80
2 13.80 7.75 1.20 8.20 3.60 0.00 14.10 7.85 1.30
3 15.15 8.15 1.45 11.50 5.45 0.70 14.80 7.85 1.35

100 1 10.95 5.70 0.65 10.60 5.25 0.55 10.75 5.65 0.70
2 13.85 8.10 2.00 11.55 5.70 0.75 14.00 7.90 2.15
3 12.05 5.85 1.25 10.50 4.55 0.75 12.25 5.70 1.45

200 1 9.15 5.40 1.10 9.00 5.15 0.85 9.35 5.15 1.30
2 11.50 5.15 1.00 9.75 4.25 0.65 11.35 5.70 1.10
3 10.25 5.55 1.25 9.60 5.20 1.00 10.50 5.70 1.20

500 1 9.85 5.00 0.95 9.95 4.85 0.85 9.95 5.25 1.00
2 11.65 5.55 0.85 10.90 4.65 0.35 11.45 5.45 0.65
3 11.15 5.50 1.15 10.75 5.10 1.15 10.80 5.55 1.20

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2c Size-Adjusted Power of Tests of HDPD
0 : λ = 0; Group-I, ρ = 0.5

TDPD T �
DPD T †

DPD

n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 3, HDPD

a : λ = (.05, .05, .05)′, CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 59.82 46.54 25.02 57.32 45.42 22.90 58.92 46.72 24.46

2 48.36 34.16 14.86 66.44 54.58 32.40 47.40 33.96 14.40
3 54.62 40.20 16.68 61.98 50.00 24.54 55.18 40.46 16.36

100 1 69.88 56.76 31.34 69.48 55.16 30.88 69.72 56.52 32.46
2 60.64 47.26 19.60 72.06 61.60 37.08 60.54 47.82 19.98
3 64.48 50.74 26.08 69.44 56.46 35.08 63.36 50.78 25.44

200 1 61.34 46.90 21.04 61.20 46.80 21.38 60.62 46.84 21.48
2 55.38 41.00 18.00 62.50 50.56 26.18 54.56 40.16 17.44
3 60.64 48.02 23.50 63.68 50.68 27.06 60.78 48.12 23.38

500 1 97.56 95.06 86.28 97.58 95.14 86.10 97.58 94.84 86.46
2 96.12 92.90 78.62 97.20 94.74 84.90 96.00 92.78 78.62
3 96.88 94.18 83.80 97.16 94.96 86.20 96.74 93.76 83.22
1 59.18 47.28 24.16 57.58 44.86 20.52 59.16 46.48 23.78
2 51.02 35.48 13.20 67.60 56.32 36.08 50.60 35.48 13.24
3 55.06 41.18 17.44 63.64 51.16 26.60 55.38 40.52 17.80

100 1 72.48 59.06 33.26 73.64 60.84 35.66 72.22 59.16 33.06
2 63.32 47.32 22.80 76.66 66.86 43.26 62.62 46.90 22.12
3 66.66 52.52 25.72 73.62 61.54 36.66 66.56 52.34 25.54

200 1 62.48 48.70 26.00 62.70 48.88 27.46 61.98 47.82 25.92
2 60.30 46.80 23.62 67.56 55.86 33.86 60.42 46.54 23.64
3 62.38 49.02 26.40 64.60 52.74 30.48 61.72 48.68 24.90

500 1 96.82 93.88 82.16 96.86 93.92 81.86 96.82 93.82 82.74
2 95.60 91.78 78.30 96.68 94.08 83.72 95.46 92.22 77.70
3 96.12 92.74 80.22 96.60 93.52 82.28 96.18 92.54 80.12

T = 6, HDPD
a : λ = (.03, .03, .03)′, CH-0 (1st panel below); CH-2 (2nd panel below)

50 1 90.35 82.10 59.25 89.40 81.40 56.60 89.30 81.70 56.95
2 79.70 68.75 42.25 91.45 85.70 65.15 79.00 69.30 39.55
3 83.85 71.50 43.75 88.00 77.85 57.40 83.05 71.60 45.15

100 1 94.10 88.80 69.00 93.90 88.70 69.20 93.70 88.45 70.65
2 90.60 83.75 57.00 95.00 90.75 76.20 91.10 82.80 58.40
3 95.00 89.85 63.20 96.00 93.75 73.75 94.85 90.55 65.15

200 1 99.50 98.60 94.20 99.55 98.55 94.35 99.60 98.30 93.60
2 99.00 97.70 90.60 99.35 98.90 95.70 99.10 97.40 90.35
3 99.45 97.95 89.20 99.50 98.70 93.10 99.40 98.25 88.80

500 1 100.00 99.95 99.00 100.00 99.95 99.00 100.00 99.90 98.95
2 100.00 99.85 98.00 100.00 99.95 98.75 100.00 99.70 97.55
3 99.95 99.95 99.50 99.95 99.95 99.65 100.00 99.95 99.10

50 1 88.50 80.50 59.90 87.55 78.90 54.00 87.90 80.45 58.90
2 78.10 65.40 42.05 88.65 82.55 70.50 76.75 63.70 38.30
3 79.40 69.15 46.05 84.80 75.65 54.35 80.85 70.10 46.95
1 97.05 93.20 81.80 97.15 93.90 83.30 96.90 92.80 81.95
2 91.30 81.65 56.35 96.00 92.85 83.20 90.65 81.80 57.70

100 3 95.80 91.25 69.90 96.85 94.50 79.95 95.85 92.00 68.50
1 99.60 98.85 94.60 99.60 98.90 95.20 99.60 99.05 93.95

200 2 98.85 97.90 91.90 99.30 98.70 96.40 98.95 97.80 90.10
3 99.40 98.60 93.40 99.65 98.90 95.10 99.45 98.40 93.15

500 1 100.00 99.95 99.25 100.00 99.95 99.25 100.00 99.90 99.10
2 100.00 99.90 99.05 100.00 99.95 99.75 99.95 99.85 99.10
3 99.95 99.90 99.05 99.95 99.95 99.20 99.95 99.90 98.80

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 3a Empirical Size of Tests of HSDPD4
0 : λ1 = λ2 = 0; Queen, T = 3

TSDPD4 T �
SDPD4 T †

SDPD4

(ρ, λ3) n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
Homoskedasticity, CH-0

(-.5, .9) 50 1 12.24 6.00 1.18 10.14 4.30 0.58 11.34 6.00 1.32
2 14.34 7.92 2.20 8.40 3.26 0.48 16.78 9.66 2.66
3 12.54 6.56 1.30 8.90 3.88 0.46 13.98 7.46 1.94

100 1 10.42 5.26 1.06 9.48 4.60 0.72 10.34 5.30 1.04
2 13.36 7.22 2.00 9.50 4.74 0.68 13.94 7.78 1.90
3 11.88 5.94 1.06 9.76 4.44 0.56 11.68 6.16 1.48

200 1 10.16 4.74 1.08 9.50 4.28 0.92 11.06 6.06 1.34
2 11.68 5.60 1.32 9.30 4.38 0.76 12.94 6.76 1.52
3 11.16 6.08 1.46 10.12 5.02 0.88 12.22 6.56 1.60

(.5, -.9) 50 1 11.26 5.58 1.24 9.68 4.12 0.74 10.80 5.86 1.04
2 15.30 8.38 2.40 9.24 3.90 0.34 15.40 8.20 2.20
3 12.18 6.64 1.42 9.78 4.52 0.56 12.32 6.64 1.32

100 1 11.34 5.48 1.06 10.04 4.82 0.80 10.80 5.72 1.02
2 12.88 7.14 1.60 9.42 4.26 0.40 13.22 7.38 1.66
3 10.82 5.60 1.10 8.90 3.98 0.72 12.06 6.10 1.42

200 1 9.62 4.90 0.92 9.18 4.48 0.68 10.16 4.88 0.84
2 11.54 6.22 1.22 10.06 4.62 0.64 11.90 6.56 1.50
3 10.84 5.68 1.18 9.72 4.72 0.84 11.64 5.96 1.08

(-.9, .9) 50 1 12.32 5.38 0.80 9.50 3.66 0.42 10.18 4.38 0.62
2 16.32 8.58 2.02 8.38 3.10 0.16 12.66 6.70 1.12
3 13.74 6.90 1.34 8.96 3.56 0.20 11.96 5.80 1.14

100 1 10.42 5.02 0.70 9.28 4.12 0.42 9.02 4.12 0.50
2 16.40 9.14 2.02 10.96 4.56 0.44 10.90 5.32 1.06
3 13.22 6.98 0.96 10.16 4.44 0.38 10.54 4.84 0.76

200 1 9.94 4.64 0.80 9.36 4.22 0.64 9.88 4.70 0.42
2 13.16 6.76 1.46 10.28 4.54 0.62 10.38 5.40 0.70
3 11.80 6.08 0.98 10.44 4.78 0.58 11.06 5.18 1.00

Heteroskedasticity, CH-1
(-.5, .9) 50 1 14.02 7.58 1.98 9.44 4.12 0.50 14.24 8.04 1.94

2 17.56 10.78 3.28 9.34 3.40 0.28 18.14 11.06 3.80
3 15.46 9.20 2.74 8.70 3.96 0.64 16.88 10.36 2.96

100 1 11.88 5.90 1.26 9.94 4.64 0.64 12.06 6.52 1.36
2 14.60 8.32 2.48 9.88 4.70 0.66 15.82 8.94 2.84
3 13.32 7.12 2.00 10.38 4.38 0.92 13.74 7.64 1.78

200 1 10.78 5.40 1.08 9.50 4.44 0.64 12.12 6.40 1.32
2 12.66 7.24 1.70 9.24 4.36 0.68 13.74 7.78 2.02
3 12.08 6.02 0.96 9.80 4.30 0.44 13.20 7.30 1.68

(.5, -.9) 50 1 14.12 8.18 2.12 9.74 4.28 0.42 14.74 7.88 2.16
2 19.92 12.14 4.40 9.46 3.80 0.50 20.34 12.32 4.28
3 16.24 9.62 2.72 9.50 4.04 0.48 15.16 8.74 2.14

100 1 11.78 6.54 1.28 10.20 4.78 0.64 12.34 6.38 1.34
2 14.90 8.42 2.04 9.76 3.96 0.54 15.08 8.00 2.12
3 12.82 6.86 1.68 9.70 4.46 0.64 13.48 6.86 1.74

200 1 10.38 5.62 1.32 9.52 4.78 0.94 10.86 5.80 1.36
2 11.94 6.26 1.46 8.84 3.82 0.58 13.00 6.56 1.58
3 11.86 6.28 1.46 9.80 4.66 0.76 12.42 6.56 1.56

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 3b Empirical Size of Tests of HSDPD4
0 : λ1 = λ2 = 0; (ρ, λ3) = (.5, .3), T = 3

TSDPD4 T �
SDPD4 T †

SDPD4

CH n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%
Group-I

CH-3 50 1 11.54 6.06 1.88 6.52 2.98 0.30 14.46 8.30 2.18
2 15.76 8.78 2.60 6.30 2.28 0.10 17.90 10.60 3.18
3 13.38 7.48 2.16 6.32 2.26 0.22 15.82 8.94 2.34

100 1 15.12 9.08 2.48 11.32 5.80 0.76 12.76 7.52 1.88
2 19.60 12.30 4.52 10.84 4.50 0.46 16.16 9.66 3.22
3 17.24 11.00 3.56 11.38 5.82 0.78 13.82 7.66 2.00

200 1 10.50 5.30 1.12 8.38 3.86 0.56 10.68 5.40 1.16
2 12.84 7.08 1.70 7.90 3.20 0.48 14.30 7.92 2.00
3 11.88 6.24 1.50 8.56 3.30 0.40 12.80 6.56 1.80

500 1 11.12 6.32 1.40 10.36 5.48 0.92 11.22 5.76 1.20
2 11.44 6.34 1.52 8.90 3.98 0.58 12.10 6.44 1.50
3 11.68 6.24 1.78 9.96 4.70 0.92 10.40 5.28 1.28

Group-II
CH-1 50 1 13.02 6.74 1.20 9.82 4.30 0.62 12.78 6.26 0.88

2 16.90 9.60 2.70 9.06 3.40 0.34 15.64 8.58 2.42
3 15.18 7.82 1.58 9.00 3.76 0.32 13.46 7.02 1.36

100 1 10.20 4.80 0.82 8.58 3.48 0.42 10.62 5.20 1.10
2 13.88 7.76 2.02 8.90 3.80 0.44 13.08 6.92 1.74
3 11.00 5.48 1.08 8.26 3.56 0.42 11.42 5.32 1.14

200 1 9.98 5.32 1.04 9.16 4.60 0.82 10.46 5.44 1.20
2 11.28 5.86 1.30 9.02 3.96 0.60 11.22 5.86 1.56
3 10.46 5.14 1.14 9.04 3.88 0.62 11.16 5.46 1.14

500 1 8.80 4.16 0.58 8.44 3.88 0.46 10.44 4.62 0.84
2 9.76 4.82 0.96 8.62 4.10 0.58 10.76 5.38 0.96
3 9.36 4.32 0.84 8.28 3.54 0.50 10.44 5.18 1.12

CH-2 50 1 12.92 6.44 1.28 11.70 5.06 0.82 10.40 5.18 0.96
2 16.12 9.06 2.28 9.84 4.14 0.44 13.76 7.00 1.64
3 14.52 8.32 1.82 11.44 5.50 0.56 12.30 6.32 1.32

100 1 12.66 6.76 1.44 11.86 5.90 1.18 11.06 5.82 1.18
2 15.12 8.70 2.36 11.60 5.66 0.86 12.32 6.48 1.54
3 12.40 6.26 1.32 10.60 4.94 0.86 10.42 5.32 1.06

200 1 11.86 6.30 1.24 11.40 5.98 1.16 10.10 4.88 0.68
2 13.72 7.40 1.80 11.28 5.54 0.98 10.92 5.54 1.06
3 12.48 6.86 1.42 11.60 6.12 1.20 10.72 5.30 1.16

500 1 13.02 7.24 1.80 12.92 7.10 1.76 10.12 4.72 1.00
2 13.22 7.46 2.20 12.48 6.66 1.78 10.52 5.44 0.86
3 13.54 7.16 1.48 13.04 6.76 1.34 9.66 5.22 0.90

CH-3 50 1 21.82 14.70 5.70 13.42 6.22 0.68 18.92 11.40 3.24
2 26.92 18.62 8.60 9.46 3.90 0.26 22.56 14.38 5.36
3 22.66 15.02 5.94 11.10 4.74 0.44 19.64 11.86 4.22

100 1 16.88 11.10 4.02 11.64 6.48 0.98 16.30 9.50 2.74
2 21.88 14.62 5.92 9.76 4.28 0.42 19.24 12.18 4.26
3 20.18 13.46 5.26 12.28 5.30 0.80 16.90 10.14 3.36

200 1 18.68 10.84 3.06 17.96 10.08 2.24 11.68 6.04 1.24
2 20.62 13.12 4.42 15.92 8.64 1.60 13.12 7.38 1.90
3 19.30 11.62 3.40 16.42 9.10 1.76 11.44 6.20 1.60

500 1 27.78 18.32 6.76 27.52 17.86 6.54 10.72 5.42 1.52
2 28.76 17.96 5.84 25.94 15.12 3.86 11.50 5.96 1.40
3 28.10 19.00 7.02 26.74 17.58 5.52 11.46 5.68 1.14

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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