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Abstract

Simple and reliable tests are proposed for testing the existence of dynamic and/or
spatial effects in fixed-effects panel data models with small 7" and possibly het-
eroskedastic errors. The tests are constructed based on the adjusted quasi scores
(AQS), which correct the conditional quasi scores given the initial differences to
account for the effect of initial values. To improve the finite sample performance,
standardized AQS tests are also derived, which are shown to have much improved
finite sample properties. All the proposed tests are robust against nonnormality,
but some are not robust against cross-sectional heteroskedasticity (CH). A different
type of adjustments are made on the AQS functions, leading to a set of tests that
are fully robust against unknown CH. Monte Carlo results show excellent finite
sample performance of the standardized versions of the AQS tests.
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1. Introduction

Panel data (PD) model has been an important tool for the applied economics re-
searchers over the past few decades. However, there have been growing concerns on
whether the panel models are dynamic in nature due to the impacts from the past to
the current and future ‘economic’ performance, and whether the models contain spa-
tial dependence caused by the interactions among economic agents or social actors (e.g.,
neighbourhood effects, copy-catting, social network, and peer group effects). In other
words, there have been growing concerns from the applied researchers on whether a spa-
tial dynamic panel data model (SDPD) is more appropriate than a regular PD model, or
a regular dynamic panel data (DPD) model, or a static spatial panel data (SPD) model.
Thus, it is highly desirable to device simple and reliable tests helping applied researchers
to choose the most appropriate model.

*An early version was circulated under the title: Joint Tests for Dynamic and Spatial Effects in Short
Panels with Fized Effects. 1 would like to thank Peter Robinson, Fei Jin, Lung-Fei Lee, James LeSage,
the participants of the 15th International Workshop on Spatial Econometrics and Statistics, Orleans,
27-28 May 2016 and the 2nd Econometrics Workshop at the Chinese University of Hong Kong, 29 April
2017, Guest Editors Qi Li and Vasilis Sarafidis, and two anonymous referees, for their helpful comments.
I am grateful to Singapore Management University for financial support under Grant C244/MSS14E002.
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The spatial dynamic panel data (SDPD) model that our tests concern takes the form:

Y = pY—1 Wiy + Woy + XyB+ Zy + o+ ou sy 4wy, (1.1)
Ut:)\3W3ut+’Ut, t:1,2,...,T,

where v, = (Y1, Y2ty - - Yne) and vy = (vig, Voy, ..., V) are m X 1 vectors of response
values and idiosyncratic errors at time ¢, and {v;} are independent across ¢ and ¢ with
mean zero and possibly cross-sectional heteroskedasticity (CH) of unknown form; the
scalar parameter p characterizes the dynamic effect, A\; the spatial lag (SL) effect, Ay the
space-time lag (STL) effect, and A3 the spatial error (SE) effect; {X;} are n x p matrices
containing values of p time-varying exogenous variables, Z is an n X ¢ matrix containing
the values of ¢ time-invariant exogenous variables; 3 and =+ are the usual regression
coefficients; W,.,r = 1,2, 3 are the given n x n spatial weight matrices; and p is an n x 1
vector of unobserved individual-specific effects, {«;} are the time-specific effects, and 1,
is an n x 1 vector of ones.

Model (1.1) is fairly general, embedding several important submodels popular in the
literature. As T is fixed and small, the time specific effects {o; } are always treated as fixed
effects and are merged into the time-varying regressors X;. The individual specific effects
i can be treated as fixed effects (FE), random effects (RE) or correlated random effects
(CRE). Yang (2018a) present a unified, initial conditions free, M-estimation and inference
method for the FE-SDPD model, Li and Yang (2020b) extend this M-estimation and
inference strategy to allow for unknown CH in the model, and Li and Yang (2020a) present
an M-estimation and inference method for the CRE-SDPD (or RE-SDPD) model.*

A question arises naturally: in practical applications, do we really need such a general
and complicated model, or does a simpler model suffice as it gives easier interpretations
of the results? This suggests that before applying this general model, it is helpful to carry
out some specification tests to identify a suitable model based on the data. To be exact,
the tests of interest concern the dynamic and spatial parameters § = (p, A1, A2, A3) =
(p, N')'. They may be marginal or joint tests (under null, one or more elements of ¢ are
set to zero and the rest are treated as free parameters), or conditional tests (under the
null, one or more element of § are to zero, given the rest already being set to zero).

In this paper, we tackle this general testing problem by focusing on the SDPD model
with small T, fixed effects, and unknown CH. The specific tests of interest are as follows.

Joint test H{®: 6 =0, the reqular FE panel data (FE-PD) model suffices.

When HEP is not rejected, then one proceeds with the regular panel data model with
FE and the decision is clear. When H{P is rejected, at least one element of § is not zero
and one does not know the exact cause of rejection and hence it would be necessary to
carry out some sub-joint or marginal tests to identify the cause of such a rejection.

Joint test HY™®: A =0, the reqular FE dynamic panel data (FE-DPD) model suffices.

If HJ™ is not rejected, then the cause of rejecting HiP is due to p being non-zero and
the FE-DPD model is chosen; otherwise, one needs to proceed with the following test.

Marginal test H™: p = 0, the space-time spatial panel data (STPD) model suffices.

If H§™P is not rejected, then the cause of rejecting HEP is that at least one element of

1Other works on short SDPD models include Elhorst (2010), Su and Yang (2015), Qu, et al. (2016),
and Kuersteiner and Prucha (2018). However, most of the research on SDPD models focuses on long
panels (with large n and large T'), see, e.g., Yang, et al. (2006), Mutl (2006), Yu, et al. (2008), Yu and
Lee (2010), Lee and Yu (2010, 2012, 2014); Bai and Li (2015), and Shi and Lee (2017).



A is not zero. In this case, one may proceed further to identify which element of X is not
zero by carrying out conditional tests on one or two elements of A, given p = 0.

If H™ is rejected after HYP has been rejected, it is clear that at least one element of
A is non-zero when p is treated as a free parameter, and the marginal tests on A, should
be carried out, respectively, for r = 1,2, 3:

Marginal test H™": \; =0, the FE-SDPD model without A\, suffices.
Marginal test H™ % \y =0, the FE-SDPD model without Ay suffices.
Marginal test H™3: \3 =0, the FE-SDPD model without A3 suffices.

Note that the marginal test HS™ is quite interesting as the general model (1.1)
reduces to a SDPD model with SL and STL effects under the null, which is the model con-
sidered by Lee and Yu (2008) under large n and large T set-up, allowing fixed individual
and time effects. The marginal test H5”? is also interesting as the null model becomes
a SDPD model with both SL and SE effects, popular in practical applications. Another
pair of joint tests of particular interest are,

Joint test HS™™*: \; = \y =0, the FE-SDPD model with only SE effect suffices.
Joint test HS™®: \y = \3 =0, the FE-SDPD model with only SL effect suffices.

When HEPP* is true, the general model given in (1.1) reduces to a SDPD model with
only the SE effect. This model is extensively studied by Su and Yang (2015) under large n
and small T set-up, with either random or fixed individual effects. However, specification
test from Model (1.1) to this reduced model has not been considered. When H§PP® is
true, the general model reduces to a SDPD model with only the SL effect. This is perhaps
the most popular SDPD model among the applied researchers. However, a test for its
adequacy is not available. The last test that we would like to highlight is:

Joint test HS™: p = \y =0, the FFE spatial panel data (FE-SPD) model suffices.

Under H§P, the model reduces to a static spatial panel data model with SL and SE
(or SARAR) effects. QML estimation and inference for this model were given by Lee and
Yu (2010), LM tests for the spatial effects are given by Debarsy and Ertur (2010), and
LM-type tests robust against unknown CH are given by Baltagi and Yang (2013b).

More conditional tests might be of interest besides the ones discussed after the in-
troduction of H§™P. By conditional tests we mean tests for certain types of effects, give
some other effect(s) are removed from the model. For example, given H§P? is not re-
jected, i.e., Ay is set to zero, one might be interested in testing further whether p = 0, i.e.,
whether the static SARAR model suffices; given H5™ is not rejected, i.e., p = 0, one might
be interested in testing further whether \s = 0 and if so a static SARAR model suffices.

However, methods for testing the above hypotheses do not seem to be available, in
particular, when 7" is small. Two related works, GMM gradient tests (Taspinar et al.,
2017) and robust LM tests (Bera et al., 2019), require a large panel, concern mostly
the parametric misspecifications, and do not allow for unknown CH. In contrast, the
literature on statistical tests for spatial regression models or static spatial panel data
models is much bigger. See, among others, Anselin et al. (1996), Anselin and Bera
(1998), Anselin (2001), Kelejian and Prucha (2001), Yang (2010, 2015, 2018¢), Born and
Breitung (2011), Baltagi and Yang (2013a,b), Robinson and Rossi (2014, 2015a), Jin
and Lee (2015, 2018), Liu and Prucha (2018) for spatial regression models; Baltagi et
al. (2003), Baltagi et al. (2007), Debarsy and Ertur (2010), Baltagi and Yang (2013a,b),
Robinson and Rossi (2015b), and Xu and Yang (2020) for static panel data models.



In this paper, we propose a general and yet simple method, the adjusted quasi score
(AQS) method, for constructing test statistics for various hypothesis concerning the
SDPD models with fixed-effects, small T" and possibly heteroskedastic errors. A score-
type test is preferred as it requires only the estimation of the null model. The initial
constructions of the tests are based on the unified M-estimation method of Yang (2018a):
first adjusting the conditional quasi score functions given the initial differences to achieve
unbiasedness and consistency, and then developing a martingale difference representation
of the AQS function to give a consistent estimate of the variance-covariance matrix of
the AQS functions. The resulting AQS tests are shown to have standard asymptotic null
behavior and are free from the specifications of the initial conditions. Further corrections
are made on the concentrated AQS functions, giving a set of standardized AQS (SAQS)
tests with much better finite sample properties. All the proposed tests are robust against
nonnormality. Certain tests are fully robust against unknown CH; the others are not and
for this alternative modifications are made by following the M-estimation strategy of Li
and Yang (2020b) to give tests that are fully robust against unknown CH. Monte Carlo
results show excellent performance of the SAQS tests and full robustness of the last test.

The rest of the paper is organized as follows. Section 2 presents the AQS and stan-
dardized AQS tests under homoskedasticity. Section 3 presents the AQS tests fully robust
against cross-sectional heteroskedasticity. Section 4 present Monte Carlo results. Section
5 concludes the paper. Some necessary technical details are given in Appendix.

2. Adjusted Quasi Score Tests

In this section, we introduce that AQS and standardized AQS tests under the as-
sumptions that the idiosyncratic errors {v;;} are independent and identically distributed
(iid). We identify that some of these tests are automatically robust against unknown CH
due to the fact that the spatial weights matrices have zero diagonal elements.

2.1. The AQS function

The methodology we adopt in constructing tests statistics for testing various hypothe-
ses requires the estimation of the null models. In certain cases, e.g., H{?, the null models
are very simple, but in other cases they are not as the null models may still contain the
dynamic parameter p and/or some of the spatial parameters. Also, the construction of
the AQS tests requires the AQS function for the full model. Thus, it is necessary to
outline the unified M-estimation method of Yang (2018a). As the current paper focuses
on the fixed effects model with small 7', the time specific effects are absorbed into the
time-varying regressors X;. First-differencing Model (1.1) to eliminate u, we have,

Ayt = PAyt—l + AlWlAyt + /\QWQAyt_l + AXtﬁ + Aut, Aut = )\3W3Aut + A'Ut, (21)

for t =2,3,...,T. The parameters left in Model (2.1) are ¢ = {’, 02, p, \'}. Note that
Ay, depends on both the initial observations g, and the first period observations y;. Thus,
even if g is exogenous, y; and hence Ay, is not. Letting 1)y be the true value of ¢ and E(-)
correspond to vy, Yang’s (2018a) M-estimation strategy goes as follows: formulate the
conditional quasi likelihood function as if Ay; is exogenous to give the conditional quasi
score vector S(1), then adjust S(¢) to give the AQS vector S*(¢g) = S(¢y) — E[S(¢0)],
and then estimate ¢ by solving the AQS equations S*(¢)) = 0.2 Some details follow.

ZInterestingly, this method finds root in Neyman and Scott (1948) on modified likelihood equations.
Chudik and Pesaran (2017) use similar ideas to give a bias-corrected method of moments estimation.
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Let AY = {Ayh, ..., AvhY, AY ;1 = {Ay}, ..., Ay Y, AX = {AX], ..., AXLY,
and Av = {Avh, ..., Avh}. Let W, = Ip_y @ Wy,r =1,2,3; B.(\) = I, — AW, and
B,(\.) = Ir—1 ® B,(\.), for r = 1 and 3; and By(p, A2) = pl,, + AaW5 and Ba(p, Ag) =
Ir—1 ® Bs(p, A2), where ® denotes the Kronecker product and I,,, an m x m identity
matrix. Denote By = Bi(A\1) and Byg = By(\1g), etc. Assume (i) the errors {v;} are iid
across ¢ and ¢t > 0, (i7) the regressors {X;} are exogenous with respect to {v;}, (i7i) both
B;y and Byg exist; and (iv) the following ‘knowledge’ about the process in the past:

Assumption A. Under Model (1.1), (i) the processes started m periods before the
start of data collection, the Oth period, and (ii) if m > 1, Ayq is independent of future
errors {v,t > 1}; if m = 0, yo is independent of future errors {v;,t > 1}.

Yang (2018a) shows: E(AY_;Av') = —02,D_1,B3; and E(AY Av') = —0%DB3, , where

I, 0, ... 0, 0

B—2I, I, 0, 0 1
D—l - . . . . . Bl_ 3

BI-4(I, — B)?, B'3(I,— B, ... B—2I, I,

B—2I,, I, 0

(I, — B2, B-2I, 0 1

BI-3(I, — B)2, B'-4(I,— B2, ... B—2I,

and B = B(p, M1, A2) = By (A1) Ba(p, A2). These immediately lead to E[S(v)], the AQS
vector at g: S*(1o) = S(1y) — E[S(¢0)], and the AQS vector at a general 1:

( LAX'Q 1 Au(B),

e Au(0) Q7 Au(0) — £,
() AY ., + tr(C'D_y),
()" YW, AY + tr(C~'DW,),
(9)/ IWQAY +tI‘(CilD_1W2),
(©)

Q-
0)(C™' @ A)Au(f) — (T — 1)tr(G3),

S*(¥)

N\

(2.2)

Au
Au
Au
| sAu

where 6 = (', p, A1, A2)’, Au
A = 5(W3B; + BiWs), Q =

1’
o2
L
a3
1
_2
X
o2
’U
C

0) = Bi(\ )AY Bay(p, o)AY_ | — AXS, G3 = WsB3!,
X (B Bg) DOtll’lg Bg Bg()\g) and

2 -1 0
-1 2 -1

. OO

0 .- -1 2 -1
0 -~ 0 -1 2

o O
oSO

(T-1)x(T-1)

Solving S*(¢) = 0 leads to the M-estimator 1y of 1. This root-finding process can be
simplified by first solving concentrated AQS equations, S*(8) = 0, with 3 and o2 being
concentrated out from (2.2), to give the M-estimator dy of §, where

L AGBYQTTAY. ) + tr(CTID_y),
A(SYQ'WLAY + tr(CIDW,),

AG(S)QTWLAY_ + tr(C™'D_ W),
a(0)'(C7' @ A)Aa(0) — (T — 1)tr(Gs),

» 52(5
S =4 "

(2.3)




AU(8) = Au(B(8), p, A1, \2), B(6) = (AX'QIAX)TAX'QH(B,AY — B,AY ), and
52(6) = LAUG)Q'Au(s). The M-estimators of 3 and o? are thus By = B(0n) and
Gy = 52 (o). Yang (2018a) show that under regularity conditions the M-estimator
o = (B, o3 s &) is v/ N-consistent and asymptotically normal, where N = n(T — 1).
The M-estimators under the constraints imposed by various hypotheses will remain to be
v/N-consistent and asymptotically normal. It is important to note that the adjustments
(non-stochastic terms in (2.2)) are free from the initial conditions, and hence the resulting

AQS function and the M-estimators are free from the initial conditions.

2.2. Construction of the AQS test

The AQS functions given in (2.2) are the key elements in the construction of the AQS
tests. In this section, we first formulate the AQS test in a unified manner, and then
present some details for the tests defined in Sec. 1. Let diag(A) form a diagonal matrix
by the diagonal elements of a square matrix A and blkdiag(Ay) form a block-diagonal
matrix by matrices {A}. The subscript ‘,’ is often dropped shall no confusion arise.

The construction of the joint and marginal AQS tests depends critically on the avail-
ability of the variance covariance (VC) matrix of the AQS function S*(¢)y) given in (2.2),
ie., I(¢o) = +Var[S*()]. The dynamic nature of Model (1.1) makes such an esti-
mation very difficult, as the derivation of the expression of I'*(1y) runs into a similar
problems as the full QML estimation of the model — initial differences need to be spec-
ified or modeled when T is fixed and small. To overcome this difficulty, Yang (2018a)
propose a martingale difference (M.D.) method, i.e., decompose the joint AQS function
into a sum of M.D. sequences so that the outer-product-of-martingale-differences (OPMD)
gives a consistent estimate of I'"*(¢g). As a result, the OPMD estimate of I'*(¢)y) is free
from the specification of initial conditions. This together with the same feature of the
AQS functions lead to the AQS tests that are free from the initial conditions.

Yang (2018a) developed the representations: AY = R Ay; +n + SAv and AY_; =
R_1Ay; +n_1 +S_1Aw, leading to the expression for the AQS vector at v as:

(1T} Av,
Av CI)lAU o 2 ,
S*(¢O> — A’U \IleYI + AU H2 + AU/¢2AU -+ tr(CilD_lo), (24)

Av' Uy Ay; + AV'TI; + Av'®3Av + tr(CTDyW) ),

AU,\Ingyl + AU’H4 + AU/(I)4AU + tI‘(CilD_l()WQ),
\ AUI®5AU - (T - 1)tI‘(G30)
Cbn 1, 3= 2 CyWin, Ily= 2 CyWan_1, ‘I)r— (C_l ® In),
P3= OCbWIS @4— CbWQS 1, P5= % [C 1®(G/0+G30)] \Ifl—%%(ch_l,
R, U3=—1-C,WsR_;, and Cp=C"' ® Bsp. Furthermore, Ay = 171 ® Ay,
’UO 950
R = blkdiag(Bo,BO,.. BT—l) _, = blkdiag(l,,Bo,...,Bi?), n = BB AXf,

where TT;=- =
(I’Q— 2

I, 0 ... 00 0 0 ... 00
By I, .. 00 I, 0 ... 00
B=1. : D - , and By = | . : S
B~ B ... By I, B B ... I, 0

The expression (2.4) is the key to the proof of asymptotic normality of \/LNS*(%),
and to the development of OPMD estimate of the VC matrix of S*(¢y), so that an AQS
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test can be constructed. Note that S*(1)g) contains three types of stochastic elements:
II'Av, AV®Av, and AvPAy;,

where I, ® and ¥ are nonstochastic matrices (depending on 1y) with II being N x p or
N x 1, and ® and ¥ being N x N. As noted in Yang (2018a), the closed form expressions
for variances of I’ Av and Av'®Av, and their covariance can readily be derived, but the
closed-form expressions for the variance of Av'WAy; and its covariances with II'’Av and
Av'®Av depend on the knowledge of the distribution of Ay;, which is unavailable. Yang
(2018a) went on to give a unified method of estimating the VC matrix of AQS function,
the OPMD estimate, which is summarized as follows.

For a square matrix A, let A%, A" and A? be, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = A" + A’ + A9 Denote by II;, ®;, and
U,, the submatrices of II, & and W partitioned according to t,s = 2,...,T. Define
Uy = Estz Ui, © = ‘I’2+(330310)_1, Ayt = BsoB1oAy, and Ayy, = Wy Ay Define

i = Y4y Ay, (2:5)
go; = EtT:Q(AUitAéit + AvyAv, — UzQ;Odit)v <2'6)
93 = AvgiAG + O3 (AvyiAys, + 0%) + S0y Ava Ay, (2.7)

where for (2.6), & = 3.7 (®% +®L ) Av,, Avy = 32T &% Av,, and {dy} are the diagonal
elements of C®; for (2.7), {A¢} = A = (0% + ©Y)AyS, and diag{O;;} = ©¢. Then,

MAv = 37" gu, (2.8)
AV @AV — E(AVOAV) = D7 g, (2.9)
AV'UAy, — E(AV'TAy,) = Y0 g3, (2.10)

and {(g1;, 92i, 93i)'s Fni}tioy form a vector martingale difference (MD) sequence, where
Foi = Fno @ G, with {G,,;} being an increasing sequence of o-fields generated by
(vj1,.. . v, j=1,...,i),i=1,...,n, and F, the o-field generated by (vo, Ayp).

Now, following these results, for each II,.,r = 1,2,3,4, defined in (2.4), define gy,
according to (2.5); for each ®,.,7 = 1,...,5, defined in (2.4), define go,; according to
(2.6); and for each ¥,,r = 1,2, 3, defined in (2.4), define gs,; according to (2.7). Define

g = (g1 9216, 9310 + G120 + G220, 932i + G13i + G23ir 33i + G1ai + Goai, Gosi) . (2.11)

Then, S*(¢0) = >, &, where {g;, F,,;} form a vector MD sequence. It follows that
™ (o) = Var[S*(¢o)] = Y i, E(g:g}), and therefore its sample analogue,

=37 &8, (2.12)
gives a consistent OPMD estimator of I'*(¢)y), i.e., plimn_,oo% S lgig — T ()] = 0,
where g; is obtained by replacing ¢y in g; by zﬁM and Awv by its observed counterpart ﬁv,
noting that Ay, is observed. To construct the AQS tests, the estimates (@M, ﬁv) of the
full model are replaced by the constrained estimates at the null, @M, zv)

To develop the AQS test in a unified manner, let § = (7’,¢’)" and the null hypoth-
esis specifies p = 0. Let ¥ = (#,0% 7') and therefore ¢p = (¥, ¢')'. Let ¥*(¢by) =
—E[a%,S*(wo)]. Partition 3*(¢) and I'*(¢)) according to ¥ and ¢, and denote their sub-
matrices by X5, (¢) and Iy (v), a = ¥,p, b = 9, . Let S*(¢) = (S;;’(w),Sj;’(w))’ and
g = (gi4,8i,) Clearly, the construction of the test of ¢ = 0 depends on S;(@, 0) and
its variance, where ¥ is the null estimate of 9. Under mild conditions, a Taylor expansion



leads to the following asymptotic MD representation:
5550, 0) = =55(00,0) — F=X705%55" S50, 0x) + 0,(1)
= \/LN Z?:l (gi,ga - Agi,l‘}) + Op(l)a (213)
where A = 2?@1921*951’ and k = dim(p). Clearly {g;, — Ag; s} form a vector MD sequence

with respect to F,, ;. Therefore, Var[%ﬁss’;(@, 0)] = & Yory (8o — A8iw) (8o — A8iw)'] +
o(1). An AQS-based test for testing the hypothesis Hy : ¢ = 0 is thus,

*1 (0 n o Ao O A& Lo
Ty = S7(0,00){ Yol (8ip — M8iw)(&io — A&iw)'} S5V, 01), (2.14)
where M = PD, DPD, SDPD1, ---, SDPD5, and SPD, associated with the null hypotheses
defined in Sec. 1, A = ;192;;51 is the null estimate of A*, and g; 9 and g; , are the null

estimates of g; y and g;,. The asymptotic distribution of Ty, i.e., X3, can be proved
under some additional regularity conditions generic to all tests, and some additional
regularity conditions specific for a given test. The generic conditions are as follows.

Assumption B: The idiosyncratic errors {vy} are independent across i = 1,...,n
and t =0,1,...,T, with E(vy) =0, Var(vy) = 0%, and Elvy|[*"™ < oo for some € > 0.

Assumption C: The time-varying regressors {X;, t = 0,1,...,T} are exogenous,
their values are uniformly bounded, and limy_, %AX’AX exists and is nonsingular.

Assumption D: (i) For r = 1,2,3, the elements w,;; of W, are at most of order
1 uniformly in all i and j, and w.; = 0 for all i; (i) t,/n — 0 as n — oo; (iii)
{W,,r=1,2,3} are uniformly bounded in both row and column sums.

L

Assumption D allows the degree of spatial dependence, e.g., the number of neighbors
each spatial unit has, to grow with the sample size but in a lower speed. As a result,
the convergence rate of certain parameter estimators may need to be adjusted down to
/N/t,.> When homoskedasticity is in question, Assumption B is relaxed to:

Assumption B*: The idiosyncratic errors {vy} are independent acrossi=1,...,n
and t = 0,1,...,T, with E(vy) = 0, Var(vy) = 02yhy; such that 0 < h,; < ¢ < oo and
%2?21 hpi = 1, and Elvg|*T < oo for some €y > 0.

Additional conditions on the initial differences are necessary when the null model
contains the dynamic term, and additioal conditions on B; and Bjs are necessary when the
null model contains A\; and A3 terms. These are summarized in the following assumptions.

Assumption E: For ®, n x n, uniformly bounded in either row or column sums

with elements of uniform order 1;*, and ¢, n x 1, with elements of uniform order L;I/Z,

(1) 2Dy PAy1 = Op(1), Ay PAvy = Oy(1); (i) 2[Ayr — E(Ay)]'¢ = 0,(1); (i)
2[Ay1 @Ay — E(Ay;@Ay1)] = 0,(1); and (iv) 2 [Ay;®Av, — E(Ay; @Avs)] = 0,(1).

Assumption F: B;' and By*' exist, and are uniformly bounded in both row and
column sums in absolute value, for (A1, A3) in a neighborhood of (Ao, Aso)-

Theorem 2.1. Under Assumptions A-F, zf@ is VN -consistent, we have under HY,

Ty L, X2, as n — oo, where M denotes a null model specified in Sec. 1.

Note that in a special case where ['* &~ ¥* at the null, i.e., the information matrix
equality (IME) holds (asymptotically), the AQS test is asymptotically equivalent to

3This typically occurs to the estimator of the spatial error parameter; see Lee (2004), Liu and Yang
(2015), Su and Yang (2015), and Yang (2018a). However, this feature is not explicitly reflected in the
subsequent developments as the implementations of the tests do not require ¢.



Tyo = S*/(&)(Zz 1 gig;)~ IS*(Q/’) (2.15)

where ¢ = (¥',0,,)’. The cases under which the above can be true are those with the null
model being a static panel data model (i.e., p = Ay = 0) and the errors are Gaussian.

To facilitate the practical applications of the AQS tests, we now present details for
each of the hypothesis postulated in Sec. 1 so that a specific test can directly be applied
without going through the complicated general case. More interestingly, we show that
certain tests are valid under Assumption B*| i.e.; robust against unknown CH.

Joint test H{: 0 = 0. Under H{, the model SDPD(0) is reduced to the simplest
PD model, and the estimation of the model at the null is simply the ordinary least squares
(OLS) estimation, i.e., 3 = (AX'CT'AX)T'AX'CTAY and 67 = FAT'CTAD, where
Ab = AY — AX B, leading to ¢ = (§,62,0,). Under H®, By = B3 = I,,, and B, = 0,

where 0,, denotes an n x n matrix of zeros. It is easy to see that E[S*(¢)|mz] = 0 and

that 3 and 52 are robust against unknown CH.

Corollary 2.1. Under Assumptions A, B*, C and D, TpD’HgD 2, X3, as n — oo.

The very attractive feature of this joint test is that it is robust against unknown
CH as specified in Assumption B*, besides being robust against nonnormality of the
idiosyncratic errors v;. The same goes to the conditional tests where under the null and
the given ‘condition’ the model becomes a pure panel data model.

Joint test HJ™: A = 0. Under HJ, By = B3 = I,,, and By = pI,,. The estimation
of the null model goes as follows. The constramed M-estimators of 3 and 02, given p, are
B(p) = (AX'CTAX)TAX'CHAY — pAY_,) and 62(p) = A (p)C ' Av(p), where
Ad(p) = AY — pAY_; — AX((p). The constrained M-estimator of p under HP™ is

p = arg {&%Af/(p)cflmf_l + (s — ) = 0} : (2.16)

2(p) T(1—p)

leading to the constrained M estimators of 3 and o) as 3 = (p) and 62 = 52(p). The
constrained M-estimator of ¥ is thus J = (ﬂ’ 02, ,6) The following lemma shows that
the restricted M-estimator p defined in (2.16) is robust against unknown CH.?

Lemma 2.1. Under Assumptions A, B*, and C-E, if py is in the interior of a compact

parameter space, then for the DPD model, we have, as n — oo, U = (ﬁ’, a2, p) AN

and VN (09 — ) L, N(0,W), for a suitably defined V.

Corollary 2.2. Under the assumptions of Lemma 2.1, TDPD|H8pD D, X3, as n — oo.

Corollary 2.2 presents another interesting result: Tppp is robust against both nonnor-
mality and unknown CH, which applies to all tests with a pure DPD model at null.

Marginal test HE™: p = 0. Under the null, B, = A\W,. The constrained M-
estimator A of A solves the following estimating equations:
%AQ(A)’Q_IV\/}AY + tr(C™'DW,) = 0,
5_21()\) Aa()\)/Q_1W2AY_1 + tI‘(C_lD_1W2) - 0,

LAG(A)(C™ @ AAGN) — (T — 1)tr(Gs) = 0,

55(N)

4The concentrated AQS function for p contained in (2.16) clearly shows that the M-estimator is not
only consistent when 7 is fixed but also eliminates the bias of order O(T~!). In contrast, the estimator
based on the unadjusted score is inconsistent when 7 is fixed and has a bias of order O(T~!) when T
grows with n. See Hahn and Kuersteiner (2002), and Yang (2018a,b) for more discussions.
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where Au(\) = B1AY — MWL AY; — AXB( ), and 3(\) and & 2(A\) are those given
below (2.3) by setting p = 0. Let 3 = B(\), 62 = 62(\), and 9 = {ﬁ’, 52, N}, Based on

the result of Li and Yang (2020b), it is easy to see that phmneoo" *(0)]p=0 # 0 under

unknown CH. Therefore 9 cannot be consistent under unknown CH and Tsrep is generally
not robust against unknown CH. Sec. 3 presents a CH-robust version of this test.

Marginal test H5™: )\, = 0, where r can be 1, or 2 or 3, giving three marginal
tests corresponding one specific type of spatial effects. Among these three marginal tests,
the test of H§P™2: Ay = 0 is the most interesting one as under H§"? the model is reduced
to the popular SDPD model with SL and SE effects. We consider only this case as the
others can be handled in the similar manner. Under H§2, By = pI,. The constrained
M-estimators (j, A1, As) of (p, A1, A3) solve the following estimating equations:

iy A, A, A QT AYL, + tr(CID_y) = 0,
At(p, A\, A3)'QTWAY + tr(CT'DW,) = 0,
2oy Al A A) (C7H @ A)Ad(p, A, As) — (T = 1)tr(Gs) =0,
where Adi(p, A1, \s) = B1AY —pAY_; — AX3(p, A1, A3), and 3(p, >\1,>\3) and 2(p, A1, \3)

are those glven below (2.3) by setting Ay = 0. Let § = B(p, M, As), 62 = 62(p, A1, \s),
and w {ﬁ G2, D, A1, 0, )\3} We obtain the AQS test statistic Tgpppo from (2 14).

Joint test H5™*: X\; = Ay = 0. This is an interesting test as under the null the
model reduces to a popular SDPD model with spatial error only, which was studied by
Su and Yang (2015) under fixed 7" with initial observations being modeled. In this case,
By =1, and By = pl,, and the constrained M-estimators p and 5\3 solve:

{ MAQ(/), A3)QTAY ) + tr(C7'D_4) = 0,

1
52(pA1,A3)

s Ali(p, M) (O™ @ A)Adi(p, Ag) — (T — 1)tx(Gy) =

where Adi(p, A\3) = AY — pAY_1 — AXB(p, A1, \s), and B(f), As) and 7 (p, As) are those
given below (2.3) by setting Ay = XAy = 0. Let § = ((p,\s), 6. = G2(p, A3), and

v

Y ={F,52 5,0,0,\3}. We obtain from (2.14) the AQS test Tippps for testing HSPPP2.

Joint test H{PP%: Xy = A3 = 0. Under the null hypothesis, the model reduces to
another popular model, the SDPD model with only the spatial lag effect. In this case,
By = pl,, and B3 = I,,, and the constrained M-estimators p and A; solve:

ﬂ/\l A/U(pa )\1),9 IAY 1 -+ tr(C_IDil) = 0’
52(p Al)AU(pa M) QTTWLAY + tr(CT'DW,) = 0,

where Ad(p, A1) = B1AY — pAY_; — AXB(,O, A1), and ﬁ~(~p, A1) and &3(p, )\1) are those
given below (2.3) by setting Ay = A3 = 0. Let § = §(p,\1), 6. = G2(p, M), and
b= {6’, 52,0, A1,0,0}. We obtain from (2.14) the AQS test Tsppps for testlng HEPPPS,

Joint test H3™: p = Ay = 0. Under the null, B, = 0 and D = —CBy ! and the
model becomes the static SARAR model. The constrained M-estimators \; and )\3 of \
and A3 solve the following estimating equations (see also Lee and Yu (2010)):

520uy AL As) QTTWIAY — (T = Dte(By ' Wh) =0,
o AT A (C @ A)AT(A, As) — (T — 1)tx(Gs) =

where Aii(Ar, A3) = BIAY — AX ()1, \s), a and <)‘1~7 A3) and 7(A1, Ag) are those given
below (2.3) by setting p = Ay = 0. Let 8 = B(A,A\3), 62 = 62(\,A\3), and ¢ =

v
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{3,52,0, 11,0, \3}. We obtain from (2.14) the AQS test Typp for testing HF.

Conditional tests are those for testing whether the model can be further reduced,
given that it has already been reduced. For example, H{*: \; = 0, given Ay = A3 = 0;
H{P3: A3 =0, given A\ = Ay = 0; H{P: p = 0, given Ay = 0. The last conditional test
says that based on the model without Ay, we want to see if p = 0, i.e., if the model full
SDPD model can be reduced to a regular SPD model. The conditional tests conditional
upon p = Ay = 0 are the tests of model reduction for the regular SPD model, and the LM-
type of tests have been developed by, e.g., Debarsy and Erther (2010) and Baltagi and
Yang (2013a) for models with homoskedastic models, and Born and Breitung (2011) and
Baltagi and Yang (2013b) for models with heteroskedastic errors. All these conditional
tests can be easily developed based on the general methodology presented above. Some
conditional tests are robust against unknown CH in light of Corollaries 2.1 and 2.2, and
some can be made to be robust against unknown CH in light of Baltagi and Yang (2013b).
Given the fact that the OPMD estimator of the VC matrix of AQS functions are robust
against unknown CH, any AQS or SAQS test can be made to be CH-robust, provided
the AQS function is made so. Instead of discussing this for the individual AQS or SAQS
test, a general CH-robut method is given in Sec. 3.

All the tests developed above can be implemented in a unified manner based on the
general expressions of the AQS function given in (2.2) or (2.4), and the general OPMD
estimate of its VC matrix given in (2.12). £* can be X*(¢)) or —%S*(zﬂ)w:%. For each
specific test, all it is necessary is to change the definitions of the matrices B,,r = 1,2, 3
according to the null hypothesis, and modify the user-supplied function that does root-
finding. Matlab codes are available from the author upon request.

2.3. Finite Sample Improved AQS Tests

The joint and marginal AQS tests presented above are simple but may not be satisfac-
tory when n is not large enough. The reason is that the variability from the estimation of
[ and o2 are not taken into account when constructing the test statistics. It is thus desir-
able to find simple ways to improve the finite sample performance of these tests. Clearly,
after By and o2 being replaced by 3(dy) and &,(d) in the last four components of S* (1)
given in (2.2), the concentrated AQS functions no longer have mean zero, although they
do asymptotically. Furthermore, the variance of the concentrated AQS functions may
also be affected. Thus, re-adjustments on the mean and variance may help improving the
finite sample performance of the AQS tests (see Baltagi and Yang 2013a,b).

Rewrite the numerator, 62(§)S%(d), of the concentrated AQS function in (2.3) as
Au(§)YQTAY | + ¢ Aa(8) Q2T AG(S),
AG(S)QIWLAY + ¢ AG(6) Q2 AG(S),

(o)’
(o)

Sen(0) = (2.17)

AG(S)QIWLAY | + ¢3AG(5)QLAG(S),
Aw(5) (C-1 & AAUS) — paAa(5) QT AU(S),

where qbl = %tr(C_lD_l), ¢2 = %tr(C_lle), ¢3 = %tr(c_lD_1W2) and ¢4 =
Ltr(Gs). The ideas are: finding the mean of S¥y(dg) and recentering, and then finding
the variance estimate of the recentered S;(do) and restandardizing.

Letting 02 be the symmetric square root matrix of €2, and AX™* = O 3AX , we have
Q2 AA(5) = MQ 2 (B,AY — BoAY.),
where M = Iy — AX*(AXYAX*)"'AX* is a projection matrix. Noting that MAX* =
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1 _1
0, and that at the true dy, Q2 (B1oAY — BoAY_ 1) = AX*Gy + Q, 2 B3, Av, we obtain

AVBy MEAY. | + ¢1oAv'M* Av,

AVBi 'MW AY + oo Av'M*Av,
AVBi ' MEWLAY | + 3o Av'ME* Aw,
AVME(C & G30) M Av — ¢pgo Av' M Aw,

where M* = Q>MQ~2 and M* = B, 'M*B;", and thus E[S; (%) with elements:
fpo = Tootr[(BioBso) "Mi(¢10C — D_1o)], for = 0optr[(B3gBao) ' Mg (¢20C — WD),
Hxzo = Uzotr[(BgOB%)ilMa(qﬁiﬁOC - W2D—10)]7 and Hxzo = Uzotr[MB*(O ® G3p — ¢4OC)]'5
Thus, the recentered AQS function takes the form:

Sen(0) = Seu(0) = (o hiass 1ras xg)" (2.19)
To develop an OPMD estimate of the VC matrix of S¢(do), similar to (2.4) we have,

AV Ay + AV 4+ AP Av — py,
AU Ay + AV'ILy + Av' Py Av — iy,
Av' U3 Ay, + Av'Tls + AV P3AV — iy,
AV PLAY — i)y,

where I} = Byy'Min_q, Il = B! M;Win, I3 = B! MiW,yn_q; & = By MES_; +
ProM*, @y = Bl MEW,S + dogMy*, ®3 = B! MEW,S_ | + ¢3oMy*, &4 = M3 (C ®
Gs0) M5 — dyoM; U = B! MER 1, Uy = B! MW R, U3 = B,/ MiW,R .
Similar to {g;} defined based on (2.4), we define {g7} based on (2.20). Now, {g7} are
functions of unknown parameters dp and unobserved errors Av. Replacing dy by 4 and
Av by Av in {g7} to give {g]}, one obtains an OPMD estimate of I'°(dy) = Var[Sg y(do)]:

=YL, ey (221)
Again, to develop the standardized AQS tests in a unified manner, recall § = (7', ¢")
and the null hypothesis specifies ¢ = 0. Let X°(0g) = —E[%5°(dy)]. Partition £°(5) and
I'°(9) according to 7 and ¢, and denote their submatrices by 3¢, () and I'?,(5), a = 7, ¢,
b=m,p. Let S°(6) = (57(0),S(0)) and gf = (g7, 8;",)"- Now, the construction of the
test of ¢ = 0 depends on S} (7,0) and its variance, where 7 is the null estimate of .
Similar to (2.13), a Taylor expansion leads to the following asymptotic MD representation:

887, 00) = 52 (mo, 00) — =32, 2271 5%(m0, 01) + 0,(1)

S y(do) = (2.18)

S2uldo) = (220)

Ny
= \/LN Z?Zl(gf’@ — Aogzﬂ) + 0,(1), (2.22)
where A® = ¥¢ %21 Therefore, the standardized AQS (SAQS) test statistic for testing
Hy : ¢ = 0 takes a similar form as the AQS test:
~ n ~ o~ ~ Ao~ —1 ~
Ty = Sg(7, 00){ 2201 (87, — A8, (87, — A°88)' ) Sa(7, On), (2.23)

where M corresponds to PD, DPD, SDPDr, etc., for testing the hypotheses HEP, HY®, HEPPPr,
etc., postulated in Sec. 1. As in (2.15), if IME holds asymptotically, i.e., ¥° = I'* +
o(N), the test can be simplified to Ty, = S()(3_1; &7&) ' S°(d), where 0 = (7', 0})".
Furthermore, if null specifies 0 = 0, Ty, reduces to Ty, , and there is no need of (2.22).

Theorem 2.2. Under Assumptions A-D, if 7 is v/ N-consistent, we have under H},

Tiias L2, Xz, as n — oo, where M denotes a null model specified in Sec. 1.

SAs M* = Q1 — O LAX(AX'QTAX)TAX'Q !, calculations of 22 and Q™2 are avoided.
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Monte Carlo results show that the SAQS tests can offer much improvements over the
AQS tests when n is not large, particularly when spatial dependence is heavy. In each
SAQS test, the null estimate 7 can be obtained in the same way as that for the AQS test
or solving a subset of equations obtained from S?y(d), and Ty is implemented similarly.

All the conditional AQS tests discussed in Sec. 2.2 have their counterparts based on
the standardized AQS function. Similar to the case of the regular AQS tests presented in
Sec. 2.2, the standardized AQS tests can also be implemented in a unified manner based
on the general expressions (2.19) or (2.20), the VC matrix estimate defined in (2.21),
and 2° = —gSZvN(d)] 5—s,- Similar to the AQS tests Tpp and Tppp, the two standardized
AQS tests, T3, and Ty, are also robust against both nonnormality and unknown CH.
Others are in general robust only against nonnormality as the corresponding AQS tests.
Therefore, it is desirable to have AQS tests fully robust against unknown CH.

3. CH-Robust AQS Tests

As indicated in the early section, when the null model involves both dynamic and
spatial parameters, the AQS tests may not be robust against the unknown CH, and there
is no simple way to further adjust the AQS function to make it CH-robust. In this section,
we introduce an alternative CH-robust AQS method, to give a set of CH-robust tests.

3.1. The CH-robust M-estimation

Li and Yang (2020b) extend Yang (2018a) to propose CH-robust estimation and in-
ference method for Model (2.1), using an alternative way of adjusting the conditional QS
functions to give a set of CH-robust AQS functions:

C LAXO Au(6),
QLAU(H)’Q*AU(G) 2
* TAu(OYQIAY s + 4 Au(@)’EpAu(Q),
W= Taupyotwiay £ 4 (0B, Au(0), (3-1)
L Au(BY QT W2AY. + L Au(6) Ey, Au(h),
| T Au(8) (O @ (A Er)] Au(6).

where (E,, Ey,, Ey,) = Q'1C{(D_;, W,D,W,D_,), and E\, = Bidiag(Gs)[diag(B;")] "

Solving the estimating equations, S (1)) = 0, gives the CH-robust M-estimator vy.
This can be done by first solving the equations for 3 and o2, given § = (p, \')', to give
Ge(6) = (AX'QTAX)TAX'Q H(BIAY — BoAYLy), and 62,4(6) = +AG(6)QAu(d),
where Ad(5) = Au(B(5), p, A1, \2). Then, substituting 3x(5) and 2,(6) back into the
last four components of (3.1) gives the concentrated AQS functions:

0?,}14 Au(§)YQTAY ; + ﬁAﬁ(é)’EpAﬂ(é),

Au(é)’Q "W, AY + 21(5 AU(5)Ey, Au(9),
A (6)Q 'WLAY_ | + 021 Au(é)’E,\2Aa(5),

Ad(S) [C' @ (A~ E)] Aa(s).

Q

2
v,

5:°(0) = (3:2)

2
v,

@

()

Solving S;¢(0) = 0 gives the CH-robust M- estlmator SH of ¢, and then the CH-robust
M-estimators of 3 and 02: By = Ba(ds) and 62, = 62 4(dx).
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3.2. The CH-robust AQS tests

By the representations for AY and AY_; used in Sec. 2.1 and using the relationship
Au = B3y Av, the AQS function at 1 can be written as

(11} Av,
AV D Av — 1),
g — ) AUVT, Ay, + H’ Av + Av' Py Aw, 3.3
x(%o) Av/\Ileyl + H/ Av + Av'P3Av, (3:3)
Av'U3Ay; + HQAU + Av' P AW,
L AU/(I)g,AU,
where II; = —CboAX H2 %Cbo’ﬂ—la I3 = %Cbowlﬂa I, = L(CI;OVV277 1
vO UO v0
O = 5-C71 @y = - (CuS-1 + By BBy ), 05 = ((CbovvlS + B3 'Ex,, By ),

(I)4 = a%w(CbOWQS 1 + B30 EA20B:;01)7 (I)S = %30[0_1 ® ( (Ao E)\so)B )],
Uy = 5-CyR_y, Uy = 5-CpoWiR, and U3 = U%Cbosz,l.
00 v0 v0

The similarity between (2.4) and (3.3) immediately leads to an MD representation
for the CH-robust AQS function, i.e., Si(¥y) = > i, 8w, referring to (2.5)-(2.10). The
vectors S (1) and gy, and the matrix 3} (v) = —E[az, Sy ()] are partitioned in the
same way according to ¥ and ¢. A similar asymptotic MD representation, as in (2.13)and
(2.22), holds for Sy, (Jg, 01,), where dy is the constrained estimator under the null. An

AQS-based and CH-robust test for testing the hypothesis Hy : ¢ = 0 is thus,

T = 53 (O, 00) L 0 (e — Miinio) (Brine — Milinio)' ) Sip o (O, Op), (3.4)

where M = PD, DPD, SDPD1, SDPD5, and SPD, associated with the null hypotheses
defined in Sec. 1, A = Z;; WZ; 19}9, and gy » and gy; , are the null estimates of gy; » and

ghio- We take X = 8‘15*( N yp=gy with 8%5’*(17&) being given in Appendix B.

Theorem 3.1. Under Assumptions A, B*, C and D, if Oy is VN -consistent, we have

under H{, TJ L, Xz, as n — oo, where M denotes a null model specified in Sec. 1.

Working with the numerator of S;¢(d) given in (3.2), one may be able to obtain
finite sample improved tests that are fully robust against unknown CH. However, this
does not seem to be an easy task, as the existence of unknown CH renders the simple
recentering method followed in Sec. 2.3 for the homoskedastic case unapplicable. This is
seen from the results given in Li and Yang (2020b): E(AY_;Av') = —02,D_;,B3y H and
E(AYAvV') = —02,DoB3y H, where H = I+ ® H,, and H,, = diag{hp;,i =1,...,n}.

4. Monte Carlo Simulation

Monte Carlo experiments are carried out to investigate the finite sample performance
of the proposed AQS test Ty, standardized AQS (SAQS) test Ty, and the CH-robust
AQS test TJ , in terms of size and size-adjusted power of the tests. The following data
generating process (DGP) is followed:

Y = pYi—1 + Wiy + MaWayi1 + Botn + X B + Zy + o+ wy, up = MsWauy + vy,

with certain parameter(s) being dropped corresponding to each specific test, for generat-
ing observations at the null. The elements of X; are generated as in Yang (2018a), and
the elements of Z are randomly generated from Bernoulli(0.5).
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The spatial weight matrices are generated according to Rook contiguity, Queen contigu-
ity, or group interaction schemes: Group-I or Group-II.° The values of (3, 51,7, 0u, 0y)
are set to (5,1,1,1,1), T = 3 or 6, and n = (50, 100, 200, 500). Each set of Monte Carlo
results is based on 5000 samples (for T = 3) or 2000 (for 7' = 6). The error (v;) dis-
tributions can be (¢) normal, (i7) normal mixture (10% N(0,4) and 90% N(0,1)), or
(ii7) lognormal.” The fixed effects p are generated according to %Zthl X; + e, where
e ~ (0,Iy). The cross-sectional heteroskedasticity (CH) is generated according to: CH-1:
R X %Zthl |AX,|; CH-2: hy,; o< ny for ith unit in gth group of size n,; and CH-3:
hyi o< ng if ng < ny; and o< 1/ nf] otherwise, where ny is the average group size. The case
of homoskedasticity is denoted as CH-0. Group-I gives strongest spatial interaction and
CH-3 gives the most severe cross-sectional heteroskedasticity. Under Group-I1I, variation
in number of neighbors for each spatial unit stays constant as n increases; in all other
spatial layouts, it vanishes as n increases although slower for Group-I (see Yang, 2010).

We report in Tables la-1c partial results for testing Hi®: § = 0. When n is not large,
the AQS test Tpp and the CH-robust AQS (RAQS) test TPTD can be severely oversized,
whereas the standardized AQS (SAQS) test T, can be slightly undersized. As n increases,
the empirical sizes of 15, quickly approach to their nominal values corresponding to the
X3 distribution. As T increases from 3 (Table la) to 6 (Table 1b), all tests improve
significantly. As shown by Corollary 2.1 and Theorem 3.1, these tests are all robust
against unknown CH. The results given in Table 1b confirm this. The results further
reveal that the severity of CH has a much greater impact on the AQS and RAQS tests
than on the SAQS test in finite sample performance. As all three tests are asymptotically
valid, it is important to compare their finite sample performance in terms of the power
of the tests. This has to be done with sizes being adjusted. The results in Table 1c¢ show
that the size-adjusted power is the highest for 75, and the lowest for TPTD, as expected.

Tables 2a-2c present partial results for testing Hg™: A = 0, allowing p to be present
in the model as a free parameter. The results show an excellent performance of the SAQS
test with its empirical sizes being very close to their nominal values even when n = 50. In
contrast, the regular and robust AQS tests can have sever size distortions when n is not
so large, which get smaller in a significantly slower speed than those of the SAQS test, in
particular under CH. While all three tests are robust against unknown CH as shown by
Corollary 2.2 and Theorem 3.1, their finite sample properties differ (from both reported
and unreported results), with Tppp and T; DTPD being affected by the severity of CH much
more than the SAQS test T5,;. When T increases from 3 to 6, the AQS and RAQS tests
improve significantly. The SAQS test is in general slightly more powerful than the AQS
and RAQS tests. The true value of p does not have a significant effect on both tests.

We now turn to the tests of H§PP*: \; = Ay = 0, allowing p and A3 to be present in
the model as free parameters. As this is a case under which the null model contains both
spatial and dynamic parameters and the AQS and SAQS tests are non-robust against
unknown CH, we therefore focus on the two main issues: the performance of the tests
when the spatial parameters approach to the boundary of parameter space,® and the
severity of CH that would lead to RAQS to perform better than AQS and SAQS.

6The Rook and Queen schemes are standard. For Group-I, we first generate k = \/n groups of sizes
ng ~ U(.5A,1.50), g =1,--- .,k and 7 = n/k, and then adjust n, so that 25:1 ngy = n. For Group-II,
we first generate 6 groups of fixed sizes (3,5,7,9,11,15), and replicate these groups r times to give
n =1 x 50. See Lin and Lee (2010) and Yang (2018a) for details in generating these spatial layouts.

"In both (i) and (iii), the generated errors are standardized to have mean zero and variance o2.

8See Lee and Yu (2016) for a detailed discussion on parameter identification of the SDPD model.
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Table 3a presents results with A3 = £.9, close to the upper or lower boundaries of the
parameter space for \3 with W3 being row-normalized. The results show that the value
of A3 does not affect much on the performance of the tests. The results (reported and
unreported) further show that under the homoskedasticity, these tests perform reasonably
well, although not as well as the SAQS tests for the first two cases and some unreported
cases. Table 3b presents partial results based on Group-I and Group-II spatial layouts,
and under CH-1, CH-2 and CH-3. The results show that the empirical sizes of the RAQS
test generally converge to their nominal levels no matter how severe the CH is, showing
the full robustness of the RAQS test. For AQS and SAQS tests, the results show that
they can be quite robust against mild CH, but under the most severe CH (CH-3 with
Group-II) their size distortions do not get smaller when sample size becomes larger. In
contrast, the size distortions of the RAQS test almost vanishes at n = 500.

Additional Monte Carlo results for the three reported cases and several unreported
cases are given in a Supplementary Appendix to this paper available at author’s website:
http://www.mysmu.edu/faculty/zlyang/. All results suggest that if a test has a PD
or a DPD as its null model, the SAQS test is recommended as it has a much better finite
sample performance than the other two, given that all three tests are robust against
unknown CH. The results also show that in many situations the AQS and SAQS tests are
quite robust against mild departure from homoskedasticity of the errors, and the SAQS
tests compare favorably against the RAQS tests. In a situation under which the AQS
and SAQS are more sensitive to CH and/or when heteroskedasticity is truly in doubt,
the fully robust version of the tests may be used. Finally, when the null model involves
spatial and/or dynamic parameters with their true values being close to the boundary of
the parameter space, how do the corresponding tests perform? Our results suggest that
A3 may have a bigger impact on the performance of the tests than the other three.

5. Conclusions and Discussions

General methods for constructing tests for the existence/nonexistence of dynamic
and/or spatial effects in the fixed effects panel data model are introduced, based on the
adjusted quasi scores (AQS) and their martingale difference representations. Standard-
ized versions of the AQS tests are also introduced, by adjusting the concentrated quasi
scores, for an improved finite sample performance. The standardized versions of the tests
are shown to be as simple as the non-standardized versions but are more reliable in finite
samples and are quite robust against the unknown CH in general, hence are recommended
for the empirical applications. In case of severe cross-sectional heteroskedasticity (CH)
and when the regular AQS tests are non-robust, the AQS tests fully robust against un-
known CH are also introduced. Monte Carlo results show excellent performance of the
standardized AQS tests and the full robustness of the robust versions of the AQS tests
under severe CH. The results presented in the paper show that the general methodology
for constructing tests of this nature are promising — it overcomes the difficulty faced by
the short (spatial) dynamic panel models.

Appendix A: Some Useful Lemmas

The development and the proofs of theoretical results reported in this paper depend
critically on the following lemmas.
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Lemma A.1l. (Kelejian and Prucha, 1999; Lee, 2002). Let {A,} and {B,} be two
sequences of n xn matrices that are uniformly bounded in both row and column sums. Let
C, be a sequence of conformable matrices whose elements are uniformly O(t'). Then

(i) the sequence {A,B,} are uniformly bounded in both row and column sums,
(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and
(iii) the elements of A,C, and C,A, are uniformly O(:;").

Lemma A.2. (Lee, 2004, p.1918). For W, and B,, r = 1,3, defined in Model (1.1),
if |W|| and || B3| are uniformly bounded, where || - || is a matriz norm, then ||B;Y|| is
uniformly bounded in a neighborhood of \.q.

Lemma A.3. (Lee, 2004, p.1918). Let X, be an n X p matriz. If the elements
X, are uniformly bounded and lim,,_, %X{an exists and is nonsingular, then P, =
X (X! X,)7YX! and M,, = I, — P, are uniformly bounded in both row and column sums.

Lemma A.4. (Liand Yang, 2020b) Let {A,} be a sequence of n xn matrices that are
uniformly bounded in either row or column sums. Suppose that the elements a,;; of A, are
O(™1) uniformly in all i and j. Let v, be a random n-vector of inid elements satisfying
Assumption B, and b, a constant n-vector of elements of uniform order O(:=/?). Then

(i) E(v,Apv,) = O(2), (ii) Var(v, A,v,) = O(2),
(ii1) Var(v), Apvy + 0,v,) = O(3), (iv) v, Ay, = Op(2),

(v) v Anvn = E(vp Agon) = Op(2)2), (i) v Auba = Op((2)?),

and (vii), the results (iii) and (vi) remain valid if b, is a random n-vector independent
of v, such that {E(b2.)} are of uniform order O(u;}).

Lemma A.5. (Li and Yang, 2020b): Let {®,} be a sequence of n x n matrices with
row and column sums uniformly bounded, and elements of uniform order O(1;'). Let v,
be a random n-vector satisfying Assumption B. Let b, = {b,;} be an n x 1 random vector,
independent of v, such that (i) {E(b%,)} are of uniform order O(:;%), (it) sup; E|by|>T <
00, (#41) 23" | [dni(bni — Ebpi)] = 0,(1) where {¢n i} are the diagonal elements of @y,
and (iv) 237" b2, — BE(b2;)] = 0p(1). Let Hyp= diag(hni, ..., huy). Define the bilinear-
quadratic form:

Qn = b v, + 0, ®pv, — otr(P,H,),

1+2/€0/n —

and let 03y be the variance of Q. If limy, o tn 0 and {03, } are bounded

away from zero, then Q,/oq, 4, N(0,1).

The following lemma extends the formulations in Sec. 2.2 to allow for unknown CH.
Its proof follows the results of Theorems 3.2 and 3.3 of Li and Yang (2020b). Recall: A"
Al and A? denote the upper-triangular, lower-triangular, and diagonal matrix of a square
matrix A; Il;, &, and ¥,y the submatrices of I, ® and ¥ partitioned according to t, s =
2, T Wy = ZSTZQ Wy, © = Usy (B3oBig) ', Ay; = B3gBioAyi, and Ayj, = Uy Ay,

Lemma A.6. Suppose Assumptions A, B*, C-E hold for Model (2.1). Consider the
linear, quadratic and bilinear forms, Qo) = {(IIA'v), Av'®Av, (Av'UAy,)'}, associ-
ated with the model. Assume the elements of Il (N x 1) are uniformly bounded, and the
matrices ® and ¥ (N x N ) are uniformly bounded in both row and column sums. Define

g1i = Z;:Q IT;, Av;t,
Qo = EtZZ(AUitAgit + AvitAU;kt - Ugodit)a
gsi = AvyuAG + O (Avy Ay, + 02hn) + 23:3 Avit Ay,
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where & = 3.1 (®Y+ D) Av,, Av; =1, & Av,, and {dy} are the diagonal elements
of D(C @ H,), {AG = Al = (0% + OHY Ays, and diag{©;;} = ©. Then, we have,

(1) Qo) — E[Q(¢0)] = Z? 1 8i, where g = (g1is 92i» 93i)'
(i1) +[Q(0) — BQ())] == N(0,lim,, o £T), where T = Var(Q(t)).
(4ii) Var[Q(vo)] = Z?:l E(gigi), and (w) N Zi:l[gigi — E(gigi)] = 0,(1).

Appendix B: Some Technical Details

We sketch the proofs of the theorems, corollaries, and lemmas. Details are given in
Supplementary Appendix available at http://www.mysmu.edu/faculty/zlyang/, in-
cluding the detailed expressions for the derivative matrices of the three AQS functions,
which is referred to loosely as the Hessian matrix in this paper.

Proof Theorem 2.1: The proof of Theorem 2.1 follows closely the proofs of Theo-
rems 3.2 and 3.3 of Yang (2018a), and is typically simpler as under H{} the model becomes
simpler. The Hessian matrix B%,S *(1) used to estimate ¥*(1)y) can be easily derived based
on the expression of S*(¢) given in (2.2). It can found in Yang (2018a, Proof of Theo-
rem 3.2), and also in the Supplementary Appendix to this paper containing additional
‘asymmetric components’ that did not appear in Yang (2018a).

Proof of Corollary 2.1. The quantities needed for evaluating the AQS function de-
fined in (2.4) become: II; = = C_lAX, I, = +-C'B_|AX}3, I3 = --C'W,;AX3,
920 920
1_14 = 5 C'W,B_ 1AX5, ‘1)1 = 5 ‘P2=U§ C'B_y, &3 = G%Cflwl, ¢, =
v v0
! 4 C- 1W2]B 1, Py = [C 1®(W3+W3)] \111 1]R_1, Yy = 0, Uy = 071W2]R_1,
vO O
R_l = blkdlag(]n,o 50),B_y =1I;_,®1I,, and IT yisa(T—1)x (T — 1) matrix with
elements 1 on the posmons immediately below the diagonal elements, and zero elsewhere.
Further, By = 0,,, and hence Dy = —C ® I,, and D_1g = —C_; ® I,,, where

-1 0 0 -~ 00 0
2 -1 0 -~ 00 0
c.-| -1 2-1- 00 0
0 0 0 - 02 —1

(T—1)x(T-1)
These show that with g = (5}, 040,0,0,0,0)’, all the & and ¥ matrices are either of the
form A® I, or AQ W for some (T'—1) x (T'— 1) matrix A and a spatial weight matrix W
satisfying Assumption D. Thus, E[S*(1)0)] = 0 even when the errors are heteroskedastic.
Hence by Lemma A.5, we have —=S*(¢) L, N[0, limy, oo £ F*(wo)]

By the mean value theorem (MVT), one easily shows that — [55 (1) —=Si(1o)] = 0,(1),

where ¢ = (3, 62%,,0,0,0,0) and we note that the OLS estlmators 3 and 2, are robust
against unknown heteroskedasticity {h,;}. Now, since by (2.12) S*(¢0) = >, &, where
{gi, Fn;} form a vector MD sequence, we have + > 7, [2:8; — E(g:ig})] = 0,(1) by Lemma
A.6. By MVT and the consistency of 3 and #2,, one shows that N D l(gzgl gigl) =
0p(1) under heteroskedasticity. Finally, it is easy to show that plim A— A) =0, using

the simplified expression of H*(¢)) and MVT.

Proof of Lemma 2.1. Consider the AQS vector S*(3,02, p) for the DPD model,
and the concentrated AQS function which defines p under Hg'™:

'I’L—>OO(
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Siin(p) = 525 AV (p)CTIAYy +n(ih — 7s),

1—p  T(1-p)?

where Ad(p) = AY —pAY_; — AXB(p), B(p) = (AX'CTAX)TAX'C(AY — pAY_))
and &3 (p) = AT (p)C~AD(p). i
_ Define S*(8,07, p) = B[S*(8,03,p)]. Given p, S*(8,07,p) = 0 is partially solved at
B(p) = (AX'C'AX)'AX'C Y (EAY — pEAY_;) and 77(p) = +E[Av(p)'C ' Av(p)],
where Av(p) = AY —pAY_;—AXfS(p). Substituting 3(p) and 52(p) back into S*(3, 02, p)
gives the population counter part of Sy5(p) as

= _ _ _,T

Siin(p) = 725 EIAV (0) CTAY ] + (s — 7).

By Theorem 5.9 of van der Vaart (1998),  will be consistent if (i) inf ,,— > | Sgsp ()| >

0 for every € > 0, and (i7) sup ey \/—%]SS}SD(/)) — Sz (p)| -2 0, which are straightforward.
The asymptotic normality can be proved using Lemma A.5.

Proof of Corollary 2.2. First, with ¢y = (8y, 0%, po,03)" it is easy to show that
E[S*(1)0)] = 0 under the general heteroskedasticity {h,;}. By Lemma A.5, one shows

that \/LNS*(@ZJO) L, N(0,T*(¢)). By Lemma A.6, one shows that = >." | [gnig; —

E(g;g))] - 0. By the mean value theorem, and v/N consistency and robustness of 8,

62 and p against unknown heteroskedasticity {h,;} as shown in Lemma 2.1, we have

F85(1) = S3(vo)] == 0 where ¢ = (5,62, ,05)', and % D7, (&n.i; — 8i87) —— 0.
A—A)=0.

Proof of Theorem 2.2: The proof is similar to that of Theorem 2.1. The partial
derivatives of S°(d) required to estimate the components of 32 _(dp) and ¥ (do) can be

easily obtained from the expression S°(§) given in (2.19). The full expression of 22.5°(6)
is given in the Supplementary Appendix to this paper.

Finally, using the simplified expression of H*(¢)) and MVT, we show plim

7’L*>OO<

Proof of Theorem 3.1: The proof of Theorem 3.1 follows closely the proofs of
Theorems (3.2) and (3.3) of Li and Yang (2020b). The Hessian matrix 8%,5{;(@0) used
to estimate Yj(¢)g) is given in Li and Yang (2020b, Proof of Theorem 3.2), and can
also be found in the Supplementary Appendix to this paper, where the ‘asymmetric

components’ that did not appear in Li and Yang (2020b) are also given.

Compliance with Ethical Standards:

Conflict of Interest: The author declares that he has no conflict of interest.
Ethical approval: This article does not contain any studies with human participants
or animals performed by the author.

References

[1] Anselin, L., Bera, A. K., Florax, R., Yoon, M. J., 1996. Simple diagnostic tests for spatial
dependence. Regional Science and Urban Economics 26, 77-104.

[2] Anselin, L., 2001. Rao’s score test in spatial econometrics. Journal of Statistical Planning
and Inference 97, 113-139.
[3] Anselin L., Bera, A. K., 1998. Spatial dependence in linear regression models with an

introduction to spatial econometrics. In: Handbook of Applied Economic Statistics, Edited
by Aman Ullah and David E. A. Giles. New York: Marcel Dekker.

19



Bai, J., Li, K., 2015. Dynamic spatial panel data models with common shocks. Working
paper, Columbia University, New York.

Baltagi, B. H., Song, S. H., Koh W., 2003. Testing panel data regression models with
spatial error correlation. Journal of Econometrics 117, 123-150.

Baltagi, B. H., Song, S. H., Jung, Koh W., 2007. Testing for serial correlation, spatial
autocorrelation and random effects using panel data. Journal of Econometrics 140, 5-51.
Baltagi, B., Yang, Z. L., 2013a. Standardized LM tests for spatial error dependence in
linear or panel regressions. The Econometrics Journal 16, 103-134.

Baltagi, B., Yang, Z. L., 2013b. Heteroskedasticity and non-normality robust LM tests of
spatial dependence. Regional Science and Urban Economics 43, 725-739.

Bera, A. K., Dogan, O., Taspinar, S., Leiluo Y., 2019. Robust LM tests for spatial dynamic
panel data models. Regional Science and Urban Economics 76, 47-66.

Born, B., Breitung, J., 2011. Simple regression based tests for spatial dependence. Econo-
metrics Journal 14, 330-342.

Chudik, A., Pesaran, M. H., 2017. A bias-corrected method of moments approach to esti-
mation of dynamic short-7" panels. CESifo Working Paper Series No. 6688.

Debarsy, N., Ertur, C., 2010. Testing for spatial autocorrelation in a fixed effects panel
data model. Regional Science and Urban Economics 40, 453-70.

Elhorst, J. P., 2010. Dynamic panels with endogenous interaction effects when 7' is small.
Regional Science and Urban Economics 40, 272-282.

Hahn J., Kuersteiner, G., 2002. Asymptotically unbiased inference for a dynamic panel
model with fixed effects when both n and T' are large. Econometrica 70, 1639-1657.

Jin, F., Lee, L. F., 2015. On the bootstrap for Moran’s I test for spatial dependence.
Journal of Econometrics 184, 295-314.

Jin, F.,| Lee, L. F., 2018. Outer-product-of-gradients tests for spatial autoregressive models.
Regional Science and Urban Economics 72, 35-57.

Kelejian, H. H., Prucha, I. R., 1999. A generalized moments estimator for the autoregressive
parameter in a spatial model. International Economic Review 40, 509-533.

Kelejian H. H., Prucha, I. R., 2001. On the asymptotic distribution of the Moran I test
statistic with applications. Journal of Econometrics 104, 219-257.

Kuersteiner, G. M., Prucha, I. R., 2018. Dynamic panel data models: networks, common
shocks, and sequential exogeneity. Working Paper, University of Maryland, College Park.
Lee, L. F., 2002. Consistency and efficiency of least squares estimation for mixed regressive
spatial autoregressive models. Econometric Theory 18, 252-277.

Lee, L. F., 2004. Asymptotic distributions of quasi-maximum likelihood estimators for
spatial autoregressive models. Econometrica 72, 1899-1925.

Lee, L. F., Yu, J., 2010. A spatial dynamic panel data model with both time and individual
fixed effects. Econometric Theory 26, 564-597.

Lee, L. F., Yu, J., 2012. Spatial panels: random components vs. fixed effects. International
Economic Review 53, 1369-1412.

Lee, L. F., Yu, J., 2014. Efficient GMM estimation of spatial dynamic panel data models
with fixed effects. Journal of Econometrics 180, 174-197.

Lee, L. F., Yu, J., 2016. Identification of spatial Durbin panel models. Journal of Applied
Econometrics 31, 133-162.

Li, L. Y., Yang, Z. L. 2020a. Spatial dynamic panel data models with correlated random
effects. Journal of Econometrics, forthcoming.

20



[27]

Li, L. Y., Yang, Z. L. 2020b. Estimation of fixed effects spatial dynamic panel data models
with small 7" and unknown heteroskedasticity. Regional Science and Urban FEconomics,
forthcoming.

Lin, X., Lee, L. F., 2010. GMM estimation of spatial autoregressive models with unknown
heteroskedasticity. Journal of Econometrics 157, 34-52.

Liu, S. F., Yang, Z. L., 2015. Asymptotic distribution and finite sample bias correction of
QML estimators for spatial error dependence model. Econometrics 3, 376-411.

Liu, X., Prucha, I. R., 2018. A robust test for network generated dependence. Journal of
Econometrics 207, 92-113.

Mutl, J., 2006. Dynamic panel data models with spatially correlated disturbances. PhD
Thesis, University of Maryland, College Park.

Neyman, J., Scott, E. L., 1948. Consistent estimates based on partially consistent obser-
vations. Econometrica 16, 1-32.

Qu, X., Wang, X., Lee, L. F., 2016. Instrumental variable estimation of a spatial dynamic
panel model with endogenous spatial weights when T' is small. Econometrics Journal 19,
261-290.

Robinson, P.M., Rossi, F., 2014. Improved Lagrange multiplier tests in spatial autoregres-
sions. Fconometrics Journal 17, 139-164.

Robinson, P.M., Rossi, F., 2015a. Refined tests for spatial correlation. Econometric Theory
31, 1249-1280.

Robinson, P.M., Rossi, F., 2015b. Refinements in maximum likelihood inference on spatial
autocorrelation in panel data. Journal of Econometrics 189, 447-456.

Shi, W., Lee, L. F., 2017. Spatial Dynamic Panel Data Models with Interactive Fixed
Effects. Journal of Econometrics 197, 323-347.

Su, L. J, Yang, Z. L., 2015. QML estimation of dynamic panel data models with spatial
errors. Journal of Econometrics 185, 230-258.

Taspinar, S., Dogan, O., Bera, A. K., 2017. GMM gradient tests for spatial dynamic panel
data models. Regional Science and Urban Economics 65, 65-88.

van der Vaart, A. W., 1998. Asymptotic Statistics. Cambridge University Press.

Xu, Y. H., Yang, Z. L. (2019). Specification tests for temporal heterogeneity in spatial
panel data models with fixed effects. Regional Science and Urban Economics, forthcoming.
Yang, Z. L., Li, C., Tse, Y. K., 2006. Functional form and spatial dependence in dynamic
panels. Economics Letters 91, 138-145.

Yang, Z. L., 2010. A robust LM test for spatial error components. Regional Science and
Urban Economics 40, 299-310.

Yang, Z. L., 2015. LM tests of spatial dependence based on bootstrap critical values.
Journal of Econometrics 185, 33-59.

Yang, Z. L., 2018a. Unified M-estimation of fixed-effects spatial dynamic models with short
panels. Journal of Econometrics 205, 423-447.

Yang, Z. L., 2018b. Supplement to “Unified M-estimation of fixed-effects spa-
tial dynamic models with short panels. Journal of FEconometrics 205, 423-447",
http://www.mysmu.edu/faculty/zlyang/

Yang, Z. L., 2018c. Bootstrap LM tests for higher order spatial effects in spatial linear
regression models. Empirical Economics 55, 35-68.

Yu, J., de Jong, R., Lee, L. F., 2008. Quasi-maximum likelihood estimators for spatial
dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics
146, 118-134.

Yu, J., Lee, L. F., 2010. Estimation of unit root spatial dynamic panel data models.
Econometric Theory 26, 1332-1362.

21



Table la Empirical Size of Tests of H{? : 6 = 0; Group-I, T =3

T, TS Tl
PD PD PD
CH n dgp | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
CH-0 50 11530 808 1.22|10.78 428 046 | 15.54 820 1.16
2192280 14.18 3.90 | 846 3.20 0.22 | 2576 16.60 5.18
311648 946 216 | 878 3.44 0221824 1054 2.64
1001|1260 648 1.28|1042 5.08 0.60 | 13.30 7.38  1.56
2117.22 1034 3.16 | 9.78 4.16 0.72 | 19.68 12.16 3.94
311400 7.96 2.10| 9.80 4.54 080 |16.04 8.98  2.50
200 1]11.14 6.52 1261|1056 530 0.90 | 12.66 6.84 1.50
2114.08 7.74 1.90| 922 418 0.58|16.34 9.18  2.80
3113.70 720 1.76 | 10.78 5.12 0.78 | 1460 8.14 1.96
500 1]10.78 558 1.32 | 10.34 4.94 1.28|11.80 6.22 1.46
2112.66 6.96 1.44 |10.38 516 0.80 | 13.30 7.16  2.00
311198 6.40 1.62]10.82 550 1.08|13.22 7.14 1.56
CH-1 50 11940 11.52 296 ] 9.86 3.82 030 ] 19.44 11.92 2.90
212720 1852 6.98| 818 296 0.16 | 29.78 21.16 9.34
3192242 1394 464 | 826 328 0222426 1510 4.94
100 1]15.70 912 246 |10.12 452 052 | 1546 942  2.30
2192214 1434 498 | 886 3.74 0.32]2544 16.30 6.18
311852 11.10 3.50 | 9.66 4.28 0.64 | 20.50 13.00  4.30
200  1]14.00 7.54 172 |11.08 534 0.76 | 14.10 7.78 2.14
2117.08 9.8 264 | 950 3.94 0.56|19.02 11.32 3.74
3011472 824 2.10| 9.86 4.56 090 | 1578 8.94  2.38
500 1| 11.44 594 1421|1054 524 1.16 | 12.30  6.52  1.50
211284 698 1.44| 912 418 0.60 | 14.84 866 2.42
301132 6.04 120| 974 470 0.74 | 1348 720 1.70
CH-2 50 1] 15.08 842 1.74]10.74 472 058 ] 16.08 9.02 2.18
212158 13.04 4.10| 858 3.40 0.20|23.90 1506 5.36
301744 994 264| 916 3.58 0.40|19.04 1098 2.98
100 1]1226 6.68 1.58|10.42 4.86 0.90 | 13.72 7.04 1.82
211752  9.96 298| 952 418 0.52|20.08 12.68 4.06
301442 794 2181032 442 0.62| 1576 922 226
200 1]11.36 594 1.18 | 10.08 4.86 0.74 | 12.44 6.72 1.24
21 14.48 898 226 |10.12 4.78 0.74 | 1578 948  2.58
301374 780 1921120 578 0.78| 1552 872  2.00
500 11074 556 1.02|10.26 5.06 0.86 | 12.58 6.68 1.30
2111.34 582 1.40| 960 4.66 0.86|13.52 7.66 1.94
3011.04 584 1.56|10.04 496 1.24|12.68 7.02 1.74
CH-3 50 12394 14.86 4.80] 7.74 2.64 0.18 | 26.34 16.88 5.80
213368 24.62 1216 | 6.26 1.94 0.00 | 39.92 30.00 15.90
31092844 1960 826 | 7.06 2.18 0.02|32.94 23.00 10.14
100 1]2280 1476 532| 9.64 3.78 0.10 | 26.88 1824 7.14
2 131,50 22.62 11.42| 7.40 2.72 0.08 | 40.06 30.60 16.96
312626 18.16 7.78 | 7.90 2.84 0.20 | 33.40 24.02 11.40
200 11544 9.04 272 | 1042 4.56 0.72 | 17.18 10.80  3.50
2192270 14.42 544 | 948 3.64 0.28]26.18 18.00 7.62
3119.08 11.78 3.88|10.28 4.82 0.54 | 21.08 13.38  4.70
500 1] 13.48 7.48 1.92 | 10.96 526 0.94 | 14.90 834 2.34
211676 9.84 296 | 9.10 4.02 0.58|19.86 12.16  4.52
301432 820 2261014 452 0.86 | 17.74 11.04 3.44

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1b Empirical Size of Tests of H{® : 6 = 0; Group-I, T =6

T TS Tl
PD PD PD
CH n dgp | 10% 5 1% | 10% 5% 1% | 10% 5% 1%
CH-0 50 1| 11.00 545 070 | 9.00 405 045 |10.00 5.10 0.90
21 17.05 1020 220 | 9.00 3.50 0.35|17.60 11.05 2.55
311345 6.80 1.60| 925 4.35 0.60 | 14.45 7.30 1.85
100 1]11.20 575 1.25]10.15 525 090 |11.65 560 1.20
211355 7.65 1.55| 9.75 4.35 0.55 | 12.65 6.55 1.90
311225 6.15 1.30| 9.60 4.50 0.70 | 12.75  6.50 1.25
200 11040 495 065| 9.85 455 0.60 | 1040 455 0.70
211310 7.30 1.60 | 11.00 5.00 0.95 | 13.00 7.50 1.75
311065 495 0.95| 930 415 0.50 | 11.65 4.90 1.10
500 11025 515 0.85|10.10 4.90 0.80 | 11.05 5.85 1.05
2111.25 6.30 1.30|10.35 550 1.00 | 11.65 6.35 1.15
3] 985 470 0.95| 920 430 0.70 | 10.55 550 1.00
CH-1 50 11340 6.90 1.90| 835 450 025]13.65 7.00 1.80
2119.25 1230 3.10| 825 3.05 0.10 | 21.00 13.25 4.00
311595 920 1.75| 855 3.55 0.05]|17.45 10.10 2.90
100 1]1020 560 1.05| 820 3.85 0.60|12.30 6.95 1.25
211570 9.05 245 | 9.70 425 0.50 | 16.95 10.75 3.25
311390 825 220| 955 455 0.65]15.10 820 2.00
200 1|11.85 580 1.00|10.20 4.65 0.75 | 11.50 6.00 1.15
2113.00 7.00 170 | 9.15 4.15 0.70 | 14.30 7.80 2.25
311175 630 145 | 9.75 420 1.00 | 12.65 6.65 1.85
500 11065 4.90 1.00| 9.65 475 0.75|10.95 560 1.25
2112.05 645 1551005 510 1.00 | 13.60 7.60 1.55
311060 550 1.05| 9.60 4.60 0.70 | 11.25 6.30 1.95
CH-2 50  1]10.10 490 0.70| 9.30 4.15 055 | 11.45 560 1.00
211465 775 1.35| 9.15 3.55 0.50 | 17.30  9.70 2.55
311325 6.60 0.95|10.10 4.05 0.30 | 13.75 6.60 1.35
1001|1140 550 0.90 | 10.60 4.85 0.75 | 11.25 4.90 1.25
2114.00 710 1.75| 9.05 4.35 0.65|13.00 7.75 2.10
311205 6.35 1.20|10.05 5.00 0.80 | 13.35 7.20 1.30
200 11085 505 0.75|10.10 4.65 0.55 | 12.20 5.80 0.90
211260 6.35 1.85| 9.75 455 1.20 | 13.90 7.30 1.90
311150 585 1.25|10.85 4.95 0.70 | 11.75  6.00 1.60
500 1] 11.15 6.20 1.40 |11.00 5.85 1.30|12.15 6.05 1.10
211085 520 1.15| 9.70 4.65 0.80 | 11.25 6.30 1.15
311035 565 1.60| 9.75 525 1.40| 1145 595 1.30
CH-3 50  1]19.10 10.65 3.05| 860 3.45 0.10| 18.30 10.60 2.85
212645 18.00 7.10 | 7.35 2.95 0.10 | 31.80 21.15 7.65
312315 1530 475 | 830 270 0.15|23.70 1520 5.15
100 1]1645 970 2.35| 9.65 3.90 0.55| 16.70 10.20 3.50
212440 1525 575 | 890 3.75 0.35|25.90 17.85 7.45
3119.35 11.05 3.90 | 9.15 3.30 0.10 | 20.70 12.80 4.30
200 1]1240 6.30 1.35| 9.15 4.10 0.60 | 13.25 7.35 1.85
211570 9.35 320 | 9.30 4.00 0.65 | 17.50 10.55 3.20
311380 7.80 1.70 | 9.35 4.00 0.55 ]| 15.05 800 1.95
500 11215 655 1.60 | 10.50 5.55 1.20 | 12.90 7.20 2.00
2113.00 7.00 1.95| 940 485 0.75|13.85 7.40 2.00
311075 585 145 | 920 420 0.75| 1225 7.05 1.60

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1c Size-Adjusted Power of Tests of H{® : § = 0; Group-I

T; TS TT
PD PD PD
n dgp | 10% 5% 1% 10% 5% %] 10% 5% 1%
T =3, H® : § = (.06,.06,.06,.06), CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 31.60  22.16 9.04 31.72 21.22 8.12 31.16 20.44  9.70
2 28.10 18.30 4.58 40.30  29.90 12.20 26.62 16.88  5.00
31 3048 19.78 6.66 34.80  23.30 8.26 26.70 17.40 5.48
100 1 44.38  31.48 13.58 43.52 29.92 12.82 39.44 28.46 11.56
2 39.06 25.02 8.46 51.62 38.44 14.44 33.60 21.14 7.66
3 43.00 28.96 10.46 48.28 34.12 12.74 37.20 25.78 8.64
200 1 69.44  56.70  31.42 68.96 56.36  31.90 61.18 46.86 24.82
2 64.40 50.90 26.14 72.16 61.94 40.02 49.26 36.44 16.38
3] 6536 53.18  26.60 69.20 57.04  34.50 55.24 42.54 21.24
500 1 98.24 96.40 85.24 98.20 96.38  84.60 95.02 90.84 74.78
2 96.56  92.98 78.96 97.76  95.74  87.26 83.16 74.48 53.64
31 9786 95.08 84.28 98.22  96.22  87.18 91.92 86.20 71.82
50 1 33.08  21.38 7.50 31.90 20.42 5.74 31.60 20.24 6.38
2 29.14 17.90 4.74 40.36  29.32 11.24 26.24 15.84 4.46
3] 30.50 19.30 6.36 34.52 23.20 8.88 26.84 17.32 5.52
100 1 40.48 27.70 9.64 40.44 27.94 10.04 35.76  24.20 7.56
2 34.92 22.44 8.08 43.94  31.72 13.30 27.62 17.52 6.68
3 36.72 24.66 8.24 40.06 28.14 11.44 29.82 19.98 7.66
200 1] 68.80 56.16 33.44 68.58  55.72  33.00 59.64 47.14 26.54
2 60.18 46.66  23.88 69.28 57.38  36.46 48.94 37.10 17.30
3| 6250 50.28 28.74 66.80 54.68  32.78 50.22 38.42 20.86
500 1] 96.76 94.24  83.50 96.84 94.28  83.52 91.54 85.50 67.94
2 94.62 89.36 73.20 96.56  92.92 81.06 74.86 62.48 39.32
31 96.48 93.00 76.98 97.12 94.76  81.48 88.02 79.56 58.14
T =6, HY : § = (.05,.05,.05,.05)", CH-0 (1st panel below); CH-2 (2nd panel below)
50 1 63.00 49.45 26.85 62.05  47.40 24.70 55.90 42.50 20.40
2 56.60  41.90 14.25 72.20  56.30  29.80 43.70 30.85 11.60
3] 6240 48.75  20.20 66.75  55.50  28.55 51.85 37.05 15.15
100 1 80.15 70.05  46.85 79.95 70.15  43.30 64.85 51.65 25.20
2 74.70  63.30  34.95 83.25 74.70  52.55 53.70 38.55 16.50
3] 76.25 65.85 39.35 78.75  69.25  44.60 54.00 37.60 16.20
200 1 98.00 96.50  85.60 98.10 96.60 84.45 92.85 86.65 67.75
2 96.95 93.85 81.50 98.40 96.40 89.65 80.95 72.30 45.25
31 98.15 95.80 85.50 98.90 96.95 89.65 87.25 T78.75 55.10
500 1| 100.00 100.00 99.90 | 100.00 100.00 99.90 99.80 99.30 96.70
21 9990 99.85 99.45 99.95 99.90 99.80 96.15 92.85 82.20
31 100.00 9990 99.90 | 100.00 99.90  99.90 99.10 9790 91.90
50 1] 50.80 3545 11.70 50.45  36.50 11.85 37.95 24.00 6.80
2 43.35 28.85 12.05 56.25 43.90 22.40 27.25 16.60 4.25
3| 46.10 32.90 14.25 51.80  37.90 18.65 31.15 20.25 6.45
100 1] 74.60 64.75  40.45 74.55 64.25  40.95 59.85 46.75 25.80
2 72.25 57.95 30.05 79.05 70.35  45.95 46.05 31.70 14.50
3 75.55 62.85 38.80 78.70  68.05 43.65 51.50 36.30 15.60
200 1] 98.15 96.30 89.75 98.30  96.30  90.00 90.20 85.75 67.75
2 96.25 93.35 76.35 97.70  96.00 87.50 78.10 65.45 44.05
31 9760 9510 85.60 98.25 96.35  88.45 83.80 75.35 54.85
500 1| 100.00 100.00 100.00 | 100.00 100.00 100.00 99.75 99.55 98.10
2 99.95 99.90 99.75 | 100.00  99.95 99.85 96.30 92.50 78.65
31 9995 99.80 99.70 | 100.00 99.85  99.75 99.00 97.60 90.85

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2a Size and Size-Adjusted Power of Tests of HJ*® : A = 0; Rook, p = 0.5, T' =3

T T3 T
DPD DPD DPD
n dgp 10% 5% 1% 10% 5% 1% [ 10% 5% 1%
Size, CH-0 (1st panel below); CH-1 (2nd panel below)
50 1 12.42 6.20 1.30 9.56 4.42 0.52 12.38 6.40 1.44
2 16.50 9.90 2.44 8.74 3.56 0.28 16.36 10.00 2.38
3 15.40 8.50 2.06 9.86 4.10 0.46 15.30 8.48 2.08
100 1 11.12 5.88 1.32 10.02 4.82 0.82 11.32 5.96 1.38
2 14.36 7.66 1.92 9.10 3.84 0.70 14.32 7.96 2.00
3 13.00 6.46 1.60 9.34 4.40 0.68 12.98 6.78 1.62
200 1 10.90 5.42 1.20 10.16 4.86 1.04 11.14 5.46 1.20
2 12.14 6.34 1.54 9.40 4.24 0.88 12.38 6.50 1.56
3 11.36 5.64 1.22 9.68 4.50 0.74 11.08 5.66 1.24
500 1 10.04 5.00 1.14 9.84 4.82 1.00 10.28 5.26 1.08
2 10.80 5.54 1.44 9.52 4.74 1.02 10.86 5.82 1.42
3 11.00 5.58 1.02 10.08 4.96 0.68 10.84 5.60 1.02
50 1 16.56 9.80 2.60 9.40 3.92 0.32 16.46 9.78 2.70
2 21.92 13.68 4.66 8.60 2.90 0.14 | 21.66 13.36 4.76
3 18.82 11.44 3.44 8.60 3.46 0.30 18.60 11.06 3.50
100 1 13.06 7.20 1.56 10.16 4.80 0.66 13.28 7.12 1.52
2 15.96 9.24 2.20 9.04 3.40 0.48 15.96 9.24 2.36
3 14.22 8.06 2.30 9.68 4.10 0.58 14.38 8.30 2.30
200 1 12.02 6.18 1.42 10.58 4.80 0.82 12.44 6.32 1.56
2 13.50 6.92 1.80 9.00 4.08 0.52 13.34 6.96 1.72
3 12.26 6.86 1.30 9.72 4.80 0.56 12.48 7.00 1.26
500 1 10.12 4.80 1.20 9.38 4.24 0.96 9.88 5.04 1.10
2 12.08 6.34 1.20 9.76 4.62 0.64 12.10 6.34 1.38
3 11.00 6.00 1.10 9.68 4.84 0.70 11.24 6.04 1.04
Power, H> : \ = (.05,.05,.05); CH-0 (1st panel below); CH-1 (2nd panel below)
50 1 79.54  67.08  35.26 77.56  63.34  31.76 78.96 66.92  35.16
2 64.46 48.44 24.30 82.54 71.86 50.42 64.16 49.84 22.08
3| 7244 5854 2984 | 7784 66.70 3880 | 71.36 58.04 30.14
100 1 94.30 88.04 67.72 94.00 87.32 65.46 | 93.92 87.98 65.54
2 85.78 75.86  43.16 | 93.68  89.14 72.50 | 85.62 76.22  44.40
31 90.10 8228 57.58 | 93.26 87.56 67.10 | 89.94 81.78  57.50
200 1 99.90 99.48 97.10 | 99.82 99.46 96.34 | 99.80 99.42  96.88
2 99.12 97.82 88.42 99.68 99.32 96.66 | 99.04 97.66  88.12
31 9958 9894 9458 | 99.80 99.40 97.12 | 99.56 99.02  94.20
500 1| 100.00 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00 100.00
2 | 100.00 100.00  99.98 | 100.00 100.00 100.00 | 100.00 100.00 100.00
3 | 100.00 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00 100.00
50 1 67.86  52.94  24.86 74.34 60.24 32.82 | 67.40 51.80 24.02
2 56.30  39.72 14.12 80.36 71.98 50.06 55.50  38.96 12.90
3 63.60 46.88  20.98 78.78  66.76  40.44 | 64.00 46.58 21.70
100 1] 88.40 79.98 57.34 | 91.64 84.58 65.10 | 88.64 80.06 58.16
2 78.62 66.98 38.48 | 93.78  89.48 74.62 79.08 67.06 36.82
3 84.82 73.38  44.44 | 92.12 87.28  68.92 | 84.88 73.46  46.70
200 1] 99.60 98.80 9344 | 99.78 99.36 9596 | 99.52 98.54  93.26
2 97.34  93.92 79.36 | 99.44 98.86 96.38 | 97.26  93.56 79.40
31 9842 96.70 88.26 | 99.48 98.90 96.60 | 98.52 96.86  89.08
500 1| 100.00 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00 100.00
2 | 100.00 100.00 99.82 | 100.00 100.00 100.00 | 100.00 99.98  99.82
3 | 100.00 100.00  99.98 | 100.00 100.00 100.00 | 100.00 100.00 100.00

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2b Empirical Size of Tests of HJ™® : A = 0; Group-I, p = 0.5

Topp T5ep Tep

n dgp | 10% 5% 1% 10% 5% 1% 10% 5% 1%

T =3, CH-0 (1st panel below); CH-2 (2nd panel below)

50 111418 7.26 1.52 11.30 4.76 0.48 14.08 7.46 1.58
212052 12.00 3.24 10.52 4.48 0.28 20.74 12.14 3.42
311580 9.22 2.36 10.50 4.26 0.46 16.14  9.14 2.26

100 111210 6.44 1.36 10.54 5.38 0.86 12.28  6.58 1.26
211544 864 2.32 10.14 4.62 0.74 15.46  8.44 2.40
311452 796 2.08 11.24 5.46 0.66 14.60 8.26 2.16

200 1]12.04 6.06 1.54 10.90 546 1.38 11.96 6.28 1.60
21 14.04 8.02 2.36 11.04 5.16 1.12 14.32 8.28 2.42
31 11.88 6.38 1.40 10.18 5.12 0.94 11.80 6.44 1.38

500 111120 582 1.12 10.88 5.70 0.88 11.32 5.84 1.10
211238 644 1.64 11.06 5.16 1.12 12.52  6.50 1.66
311144 582 1.24 10.86 5.14 0.88 11.54 6.00 1.18
111530 8.16 1.54 12.04 5.40 0.60 15.22  8.20 1.52
2118.96 11.00 3.14 9.82 3.62 0.30 18.96 10.98 2.98
311728 924 230 10.78 4.58 0.38 16.86  9.42 2.42

100 111246 6.46 1.36 11.26 540 0.86 12.68 6.52 1.26
2 116.00 8.84 2.50 10.24 4.82 0.78 16.18  8.98 2.48
311446 834 2.12 11.74 590 0.96 1490 8.36 2.14

200 111162 6.02 1.38 10.92 5.62 0.98 12.28  6.26 1.52
2113.02 6.74 1.78 9.78 4.74 0.84 13.68 7.22 1.72
311258 694 1.60 10.80 5.44 0.96 13.16  7.18 1.76

500 1111.68 5.84 1.34 11.36 5.50 1.20 11.86 5.90 1.30
21 11.68 578 1.38 9.88 4.78 1.02 11.80  5.90 1.46
311196 640 1.48 11.18 5.66 1.22 12.04 6.60 1.46

T =6, CH-0 (1st panel below); CH-2 (2nd panel below)

50 111095 5.55 0.85 9.95 4.80 0.45 11.30  5.60 1.00
211465 795 1.40 9.15 3.20 0.35 14.35 7.50 1.40
311355 715 1.75 10.90 5.35 0.6 13.90 7.60 1.70
1111.60 5.70 1.25 11.05 5.30 1.10 11.80 5.70 1.20
2113.15 690 1.65 10.20 4.80 0.90 13.15  6.75 1.50
311245 5.60 1.50 10.30 4.35 0.90 11.90 540 1.50

200 1110.65 6.00 1.45 10.60 5.30 1.40 10.95 5.70 1.55
211235 645 1.35 10.70 5.25 0.45 12.65 6.45 1.35
3110.10 540 1.75 9.00 4.85 1.40 9.75 5.60 1.75

500 11105 5.85 1.40 10.80 5.75 1.45 11.25 5.80 1.55
211160 630 1.25 10.95 5.35 1.20 11.55 6.10 1.40
311055 5.15 0.90 10.20 4.70 0.80 10.30 490 0.95
111085 5.60 0.75 10.10 4.50 0.40 11.05 5.60 0.80
21380 7775 1.20 8.20 3.60 0.00 1410 7.85 1.30
31 15.15 815 1.45 11.50 545 0.70 14.80 7.85 1.35

100 111095 5.70 0.65 10.60 5.25 0.55 10.75  5.65 0.70
2]13.8 810 2.00 11.55 5.70 0.75 14.00 790 2.15
311205 585 1.25 10.50 4.55 0.75 12.25  5.70 1.45

200 11 915 540 1.10 9.00 5.15 0.8 935 5.15 1.30
211150 5.15 1.00 9.75 4.25 0.65 11.35  5.70 1.10
311025 555 1.25 9.60 5.20 1.00 10.50  5.70 1.20

500 11 985 5.00 0.95 9.95 4.85 0.85 9.95 5.25 1.00
2|11.65 5.55 0.8 10.90 4.65 0.35 11.45 5.45 0.65

w

11.15 550 1.15 10.75 5.10 1.15 10.80  5.55 1.20

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 2c Size-Adjusted Power of Tests of Hy™> : A = 0; Group-I, p = 0.5

Topp T5ep Tiep

n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%

T =3, HPP: X\ = (.05,.05,.05)', CH-0 (1st panel below); CH-2 (2nd panel below)

20 1| 959.82 46.54 25.02 57.32 4542 22.90 08.92 46.72 24.46

2| 48.36 34.16 14.86 66.44 54.58 32.40 47.40 33.96 14.40
3| 54.62 40.20 16.68 61.98 50.00 24.54 55.18 40.46 16.36
100 1| 69.88 56.76 31.34 69.48 55.16 30.88 69.72 56.52 32.46
2| 60.64 47.26 19.60 72.06 61.60 37.08 60.54 47.82 19.98
3| 64.48 50.74 26.08 69.44 56.46 35.08 63.36 50.78 25.44
200 1] 61.34 46.90 21.04 61.20 46.80 21.38 60.62 46.84 21.48
2| 55.38 41.00 18.00 62.50 50.56 26.18 54.56 40.16 17.44
3| 60.64 48.02 23.50 63.68 50.68 27.06 60.78 48.12 23.38
500 1] 9756 95.06 86.28 97.58 95.14 86.10 97.58 94.84 86.46
2| 96.12 9290 78.62 97.20 94.74 84.90 96.00 92.78 78.62
3| 96.88 94.18 83.80 97.16 94.96 86.20 96.74 93.76 83.22
1] 59.18 47.28 24.16 57.58 44.86 20.52 59.16 46.48 23.78
2| 51.02 3548 13.20 67.60 56.32 36.08 50.60 35.48 13.24
3| 55.06 41.18 17.44 63.64 51.16 26.60 55.38 40.52 17.80
100 1| 7248 59.06 33.26 73.64 60.84 35.66 72.22  59.16 33.06
2| 6332 47.32 22.80 76.66 66.86 43.26 62.62 46.90 22.12
3| 66.66 52.52 25.72 73.62 61.54 36.66 66.56 52.34 25.54
200 1| 6248 4870 26.00 62.70 48.88 27.46 61.98 47.82 25.92
2| 60.30 46.80 23.62 67.56 55.86 33.86 60.42 46.54 23.64
3| 6238 49.02 26.40 64.60 52.74 30.48 61.72 48.68 24.90
500 1| 96.82 93.88 82.16 96.86 93.92 81.86 96.82 93.82 82.74
2| 95.60 91.v8 78.30 96.68 94.08 83.72 95.46 92.22 77.70
3| 96.12 92.74 80.22 96.60 93.52 82.28 96.18 92.54 80.12

T =6, H*P: X =(.03,.03,.03)', CH-0 (1st panel below); CH-2 (2nd panel below)

20 1| 90.35 82.10 59.25 89.40 81.40 56.60 89.30 81.70 56.95
2| 79.70 68.75 42.25 91.45 85.70 65.15 79.00 69.30 39.55

3| 8385 T71.50 43.75 88.00 77.85 957.40 83.05 71.60 45.15

100 1| 94.10 88.80 69.00 93.90 88.70 69.20 93.70 88.45 70.65
2| 90.60 83.75 57.00 95.00 90.75 76.20 91.10 82.80 58.40

31 95.00 89.85 63.20 96.00 93.75 73.75 94.85 90.55 65.15

200 1| 99.50 98.60 94.20 99.55 98.55 94.35 99.60 98.30 93.60
2] 99.00 97.70 90.60 99.35 98.90 95.70 99.10 97.40 90.35

31 9945 9795 89.20 99.50 98.70 93.10 99.40 98.25 88.80

500 11100.00 99.95 99.00 | 100.00 99.95 99.00 | 100.00 99.90 98.95
2| 100.00 99.85 98.00 | 100.00 99.95 98.75 | 100.00 99.70 97.55

31 9995 99.95 99.50 99.95 99.95 99.65 | 100.00 99.95 99.10

20 1| 88.50 80.50 59.90 87.55 7890 54.00 87.90 80.45 58.90
2| 7810 6540 42.05 88.65 82.55 70.50 76.75 63.70 38.30

3| 79.40 69.15 46.05 84.80 75.65 ©54.35 80.85 70.10 46.95

1| 97.05 93.20 81.80 97.15 93.90 83.30 96.90 92.80 81.95

2| 91.30 81.65 56.35 96.00 92.85 83.20 90.65 81.80 57.70

100 31 9580 91.25 69.90 96.85 94.50 79.95 95.85 92.00 68.50
1| 99.60 98.85 94.60 99.60 98.90 95.20 99.60 99.05 93.95

200 2| 9885 9790 91.90 99.30 98.70 96.40 98.95 97.80 90.10
31 99.40 98.60 93.40 99.65 98.90 95.10 99.45 9840 93.15

500 11100.00 99.95 99.25 | 100.00 99.95 99.25 | 100.00 99.90 99.10
2| 100.00 99.90 99.05 | 100.00 99.95 99.75 99.95 99.85 99.10

w

99.95 99.90 99.05 99.95 99.95 99.20 99.95 99.90 98.80

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 3a Empirical Size of Tests of HS?™* : \; = X\g = 0; Queen, T'=3

Tspppa Tsbeoa TSTDPD4

(p, A\3) n dgp | 10% 5% 1% 10% 5% 1% \ 10% 5% 1%
Homoskedasticity, CH-0

(-.5,.9) 50 111224 6.00 1.18 10.14 430 0.58 11.34  6.00 1.32

211434 792 220 8.40 3.26 0.48 16.78  9.66 2.66

311254 6.56 1.30 8.90 3.88 0.46 1398 746 1.94

100 111042 526 1.06 9.48 4.60 0.72 10.34 530 1.04

211336 7.22 2.00 9.50 4.74 0.68 1394 778 1.90

3]111.88 594 1.06 9.76 4.44 0.56 11.68 6.16 1.48

200 1110.16 4.74 1.08 9.50 4.28 0.92 11.06  6.06 1.34

2| 11.68 5.60 1.32 9.30 4.38 0.76 1294 6.76 1.52

3|11.16 6.08 1.46 10.12 5.02 0.88 12.22  6.56 1.60

(.5,-.9) 50 111126 558 1.24 9.68 4.12 0.74 10.80  5.86 1.04

211530 838 240 9.24 390 0.34 1540  8.20 2.20

31218 6.64 1.42 9.78 4.52 0.56 12.32  6.64 1.32

100 1111.34 548 1.06 10.04 4.82 0.80 10.80  5.72 1.02

211288 7.14 1.60 9.42 426 0.40 13.22 7.38 1.66

3110.82 5.60 1.10 8.90 3.98 0.72 12.06 6.10 1.42

200 1] 962 490 0.92 9.18 4.48 0.68 10.16  4.88 0.84

211154 6.22 1.22 10.06 4.62 0.64 11.90 6.56 1.50

3110.84 568 1.18 9.72 472 0.84 11.64 5.96 1.08

(-.9,.9) 50 111232 5.38 0.80 9.50 3.66 0.42 10.18  4.38 0.62

2116.32 858 2.02 8.38 3.10 0.16 1266  6.70 1.12

311374 690 1.34 8.96 3.56 0.20 1196 580 1.14

100 111042 5.02 0.70 9.28 4.12 0.42 9.02 4.12 0.50

211640 9.14 2.02 10.96 4.56 0.44 10.90  5.32 1.06

311322 698 0.96 10.16 4.44 0.38 10.54  4.84 0.76

200 1] 994 4.64 0.80 9.36 4.22 0.64 9.88 4.70 0.42

2113.16 6.76 1.46 10.28 4.54 0.62 10.38  5.40 0.70

3111.80 6.08 0.98 1044 4.78 0.58 11.06  5.18 1.00
Heteroskedasticity, CH-1

(-.5,.9) 50 1114.02 7.58 1.98 9.44 4.12 0.50 14.24  8.04 1.94

2| 17.56 10.78 3.28 9.34 3.40 0.28 18.14 11.06 3.80

3| 1546 9.20 2.74 8.70 3.96 0.64 16.88 10.36 2.96

100 1111.88 590 1.26 9.94 464 0.64 12.06  6.52 1.36

2|14.60 832 248 9.88 4.70 0.66 1582 894 2.84

311332 712 2.00 10.38 4.38 0.92 13.74 7.64 1.78

200 1110.78 5.40 1.08 9.50 4.44 0.64 12.12  6.40 1.32

211266 724 1.70 9.24 4.36 0.68 13.74 778 2.02

31 12.08 6.02 0.96 9.80 4.30 0.44 13.20  7.30 1.68

(.5,-.9) 50 1] 14.12 818 2.12 9.74 4.28 042 14.74  7.88 2.16

211992 12.14 4.40 9.46 3.80 0.50 20.34 12.32 4.28

311624 9.62 2.72 9.50 4.04 0.48 15.16 8.74 2.14

100 111178 6.54 1.28 10.20 4.78 0.64 12.34  6.38 1.34

211490 842 2.04 9.76 3.96 0.54 15.08  8.00 2.12

311282 6.86 1.68 9.70 4.46 0.64 1348 6.86 1.74

200 1110.38 5.62 1.32 9.52 4.78 0.94 10.86  5.80 1.36

211194 6.26 1.46 8.84 3.82 0.58 13.00 6.56 1.58

3|11.86 6.28 1.46 9.80 4.66 0.76 1242  6.56 1.56

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal



Table 3b Empirical Size of Tests of HS?™* : \; = X = 0; (p, A3) = (.5,.3), T =3

Tspppa Tspeoa TSTDPD4
CH n dgp| 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
Group-I

CH-3 50 111154 6.06 188 | 652 298 0.30]| 1446 830 2.18
21576 878 2.60 | 630 228 0.10 | 17.90 10.60 3.18
311338 748 216| 632 226 0.22] 1582 894 2.34

100 111512 9.08 248 |11.32 5.80 0.76 | 12.76 7.52 1.88
2| 19.60 1230 4.52 | 10.84 4.50 0.46 | 16.16 9.66 3.22

3 117.24 11.00 3.56 | 11.38  5.82 0.78 | 13.82  7.66 2.00

200 111050 530 1.12| 838 3.86 0.56 | 10.68 5.40 1.16
211284 708 1.70 | 790 3.20 0.48 | 1430 792 2.00
3111.88 624 150 | 856 3.30 040 | 12.80 6.56 1.80

500 11112 632 1401036 548 0.92|11.22 5.76 1.20
211144 634 152| 890 398 0.58 | 1210 644 1.50
311168 624 1.78 | 996 470 0.92 ] 1040 528 1.28

Group-II

CH-1 50 111302 6.74 120 | 982 430 0621278 6.26 0.88
211690 960 270 | 9.06 3.40 0.34 | 15.64 8.58 2.42
311518 782 158 | 9.00 3.76 032 ] 13.46 7.02 1.36

100 111020 480 0.82| 858 348 042 |10.62 520 1.10
211388 776 2.02| 890 380 0.44 |13.08 6.92 1.74

31 11.00 548 1.08| 826 3.56 0.42]11.42 532 1.14

200 1] 998 532 1.04| 916 460 0.82]| 1046 544 1.20
2111.28 586 1.30| 9.02 396 0.60 | 11.22 5.86 1.56
311046 514 1.14| 9.04 388 0.62|11.16 546 1.14

500 1| 880 416 058 | 844 3.88 046 | 10.44 4.62 0.84
2| 9.7 482 096 | 8.62 410 0.58 | 10.76 5.38 0.96

31 936 432 0.84| 828 354 0.50|10.44 518 1.12

CH-2 50 111292 6.44 128 |11.70 5.06 0.82| 1040 5.18 0.96
2116.12 9.06 228 | 984 414 044 |13.76 7.00 1.64
311452 832 1.82|11.44 550 0.56 | 1230 6.32 1.32

100 1]1266 6.76 144 |11.8 590 1.18 | 11.06 5.82 1.18
211512 870 236 |11.60 5.66 0.86|12.32 6.48 1.54
311240 6.26 1.32 |10.60 494 0.86| 1042 532 1.06

200 1118 6.30 1.24 | 1140 598 1.16 | 10.10 4.88 0.68
211372 740 1.80|11.28 554 0.98 | 10.92 5.54 1.06
311248 6.86 1.42|11.60 6.12 1.20 | 10.72 5.30 1.16

500 111302 724 1801292 710 1.76 | 10.12 4.72 1.00
2| 1322 746 2201248 6.66 1.78 | 10.52 544 0.86
311354 716 148 |13.04 6.76 134 | 9.66 522 0.90

CH-3 50 11]21.82 14.70 5.70 | 1342 6.22 0.68 | 18.92 11.40 3.24
212692 1862 860 | 9.46 390 0.26 | 22.56 14.38 5.36
312266 15.02 594 |11.10 4.74 0.44 | 19.64 11.86 4.22

100 11]16.88 11.10 4.02 | 11.64 6.48 0.98 | 16.30 9.50 2.74
22188 1462 592 | 976 428 042 |19.24 1218 4.26
312018 1346 5.26 | 12.28 5.30 0.80 | 16.90 10.14 3.36

200 11]18.68 10.84 3.06 | 17.96 10.08 2.24 | 11.68 6.04 1.24
212062 1312 4421592 864 160 | 1312 7.38 1.90
311930 11.62 3.40 | 16.42 9.10 1.76 | 11.44 6.20 1.60

500 112778 1832 6.76 | 27.52 17.86 6.54 | 10.72  5.42 1.52
2287 1796 5.84 |2594 15.12 3.86 | 11.50 5.96 1.40
312810 19.00 7.02|26.74 1758 5.52 | 11.46 5.68 1.14

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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