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Abstract

We propose quasi maximum likelihood (QML) estimation of dynamic panel models with spatial
errors when the cross-sectional dimension n is large and the time dimension T is fixed. We consider
both the random effects and fixed effects models, and prove consistency and derive the limiting
distributions of the QML estimators under different assumptions on the initial observations. We
propose a residual-based bootstrap method for estimating the standard errors of the QML estimators.
Monte Carlo simulation shows that both the QML estimators and the bootstrap standard errors
perform well in finite samples under a correct assumption on initial observations, but may perform

poorly when this assumption is not met.
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1 Introduction

Recently, there has been a growing interest in the estimation of panel data models with cross-
sectional or spatial dependence after Anselin (1988). See, among others, Elhorst (2003), Baltagi et al.
(2003), Baltagi and Li (2004), Chen and Conley (2001), Pesaran (2004), Kapoor et al. (2007), Baltagi et
al. (2007), Lee and Yu (2010a), Mutl and Pfaffermayr (2011), Parent and LeSage (2011), and Baltagi et
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al. (2013) for an overview on the static spatial panel data (SPD) models.! Adding a dynamic element
into a SPD model further increases its flexibility, which has, since Anselin (2001), attracted the attention
of many econometricians. The spatial dynamic panel data (SDPD) models can be broadly classified into
two categories (Anselin, 2001, Anselin et al., 2008): one is that the dynamic and spatial effects both
appear in the model in the forms of lags (in time and in space) of the response variable, and the other
allows the dynamic effect in the same manner but builds the spatial effects into the disturbance term.
The former has been studied by Yu et al. (2008), Yu and Lee (2010), Lee and Yu (2010b), and Elhorst
(2010), and the latter by Elhorst (2005), Yang et al. (2006), Mutl (2006), and Su and Yang (2007). Lee
and Yu (2010c) provide an excellent survey on the spatial panel data models (static and dynamic) and
report some recent developments.

In this paper, we consider the latter type of SDPD model, in particular, the dynamic panel data model
with spatial error. We focus on the more traditional panel data where the cross-sectional dimension n is
allowed to grow but the time dimension T is held fixed (usually small), and follow the quasi-maximum
likelihood (QML) approach for model estimation.? Elhorst (2005) studies the maximum likelihood es-
timation (MLE) of this model with fixed effects, but the asymptotic properties of the estimators are
not given. Mutl (2006) investigates this model using the method of three-step generalized method of
moments (GMM). Yang et al. (2006) consider a more general model where the response is subject to an
unknown transformation and estimate the model by MLE. There are two well-known problems inherent
from short panel and QML estimation, namely the assumptions on the initial values and the incidental
parameters, and these problems remain for the SDPD model that we consider.® In the early version of
this paper (Su and Yang, 2007), we derived the asymptotic properties of the QML estimators (QMLEs)
of this model under both the random and fixed effects specifications with initial observations treated
as either exogenous or endogenous, but methods for estimating the standard errors of the QMLEs were
not provided. The main difficulty lies in the estimation of the variance-covariance (VC) matrix of the
score function, where the traditional methods based on sample analogues, outer product of gradients, or
analytical expressions fail due to the presence of error components in the original model and in the model
for the initial observations. This difficulty is now overcome by a residual-based bootstrap method.

For over thirty years of spatial econometrics history, the asymptotic theory for the (Q)ML estimation
of spatial models has been taken for granted until the influential paper by Lee (2004), which establishes
systematically the desirable consistency and asymptotic normality results for the Gaussian QML estimates
of a spatial autoregressive model. More recently, Yu et al. (2008) extend the work of Lee (2004) to spatial
dynamic panel data models with fixed effects by allowing both T and n to be large. While our work
is closely related to theirs, there are clear distinctions. First, unlike Yu et al. (2008) who consider

only fixed effects model, we shall consider both random and fixed effects specifications of the individual

IFor alternative approaches to model cross-sectional dependence, see Phillips and Sul (2003), Andrews (2005), Pesaran
(2006), Bai (2009), Pesaran and Tosetti (2011), Su and Jin (2012), Moon and Weidner (2013), among others.

2A panel with large n and small T, called a short panel, remains the prevalent setting in the majority of empirical
research involving many geographical regions or many economic agents, and evidence from the standard dynamic panel
data models (Hsiao et al., 2002; Hsiao, 2003; Binder et al., 2005) and SDPD model with spatial lag (Elhorst, 2010) shows

that QML estimators are more efficient than GMM estimators.
3See, for regular dynamic models, Balestra and Nerlove (1966), Nerlove (1971), Maddala (1971), Anderson and Hsiao

(1981, 1982), Bhargava and Sargan (1983); Hsiao et al. 2002, Hsiao (2003), and Binder et al. (2005); and for spatial models,
Su and Yang (2007), Elhorst (2010), and Parent and LeSage (2011).
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effects. Second, we shall focus on the case of small T, and deal with the problems of initial conditions
and incidental parameters. In contrast, neither problem arises under the large-n and large-T setting as
considered in Yu et al. (2008). Third, spatial dependence is present only in the error term in our model
whereas Yu et al. (2008) consider spatial lag model. It would be interesting to extend our work to the
SDPD model with both spatial lag and spatial error.

To summarize, our paper provides a complete set of statistical inferences methodology to the small-
T SDPD model with spatial errors, accommodating different types of space-specific effects (random or
fixed) and different ways that initial observations being generated (exogenously or endogenously). The
proposed methods, including the bootstrap method for robust standard error estimation, are relatively
easy to apply and thus greatly facilitates the empirical researchers. Yet, the main ideas are quite general
and can be generalized to other types of SDPD models.

The rest of the paper is organized as follows. Section 2 introduces the basic model and discusses
its extensions. Section 3 presents the QML estimation of the models with random or fixed effects, and
exogenous or endogenous initial observations. The cases of endogenous initial observations are paid a
specific attention where ‘predictive’ models are developed to ensure the information conveyed from the
past are captured. Section 4 derives the asymptotic properties of the QMLEs. Section 5 introduces the
bootstrap method for robust standard error estimation. Section 6 presents Monte Carlo results for the
finite sample performance of the QMLEs and their estimated standard errors. Section 7 concludes the
paper. All the proofs are relegated to the appendix.

Notation. For a positive integer k, let I denote a k X k identity matrix, ¢t a k x 1 vector of ones,
0r a k x 1 vector of zeros, and Jj, = ¢jt), where ’ denotes transpose. Let A; ® A denote the Kronecker
product of two matrices A; and As. Let |- |, || - ||, and tr(-) denote, respectively, the determinant, the
Frobenius norm, and the trace of a matrix. We use Apax(A) and Apin(A) to denote the largest and

smallest eigenvalues of a real symmetric matrix A.

2 Model Specification
We consider the SDPD model of the form
Yit = pYit—1 + Ty B+ ziy+ui, i=1,---,n, t=1,---,T, (2.1)

where the scalar parameter p (|p| < 1) characterizes the dynamic effect, 2+ is a p x 1 vector of time-
varying exogenous variables, z; is a ¢ X 1 vector of time-invariant exogenous variables that may include
the constant term, dummy variables representing individuals’ gender, race, etc., and § and  are the
usual regression coefficients. The disturbance vector us = (u1s, -+, unt)’ is assumed to exhibit both

non-observable individual effects and a spatially autocorrelated structure, i.e.,

N (2.2)
et = AWpe + g, (2.3)
where H = (Ml, e ,,U/n)/a &t = (Elta e ,Ent)/? and Ut = (Ult, e 7U7Lt)/7 with 1% representing the unobserv-

able individual or space-specific effects, ¢; representing the spatially correlated errors, and v; representing

the random innovations that are assumed to be independent and identically distributed (iid) with mean
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zero and variance 2. The parameter \ is a spatial autoregressive coefficient and W, is a known n x n
spatial weight matrix whose diagonal elements are zero.
Denoting v+ = (Y1t, "+ s Ynt)’, Tt = (X14, -+, Tne)’, and z = (21, -+, z,)’, the model has the following

reduced-form representation,
Ui = pyi_1 + 2B+ 2y +ug, withuy = p+ By lvy, t=1,---,T, (2.4)

where B,, = I,, — A\W,,. The following specifications are essential for the subsequent developments.

We focus on short panels where n — oo but T is fixed and typically small. Throughout the paper,
the initial observations designated by yg are considered to be available, which can be either exogenous
or endogenous; the individual or space-specific effects p can be either ‘random’ or ‘fixed’, giving the
so-called random effects and fixed effects models. To clarify, we adopt the view that the fundamental
distinction between random effects and fixed effects models is not whether p is random or fixed, but
rather whether p is uncorrelated or correlated with the observed regressors.

To give a unified presentation, we adopt a similar framework as Hsiao et al. (2002): () data collection
starts from the Oth period; the process starts from the —mth period, i.e., m periods before the start of
data collection, m =0, 1, - - -, and then evolves according to the model specified by (2.4); (ii) the starting
position of the process y_,, is treated as exogenous; hence the exogenous variables (x¢, z) and the errors
us start to have impact on the response from period —m + 1 onwards; (4ii) all exogenous quantities
(Y—m, 1, ) are considered as random and inferences proceed by conditioning on them, and (iv) variances
of elements of y_,, are constant. Thus, when m = 0, yo = y_,, is exogenous, when m > 1, yg becomes
endogenous, and when m = oo, the process has reached stationarity.

It is worth mentioning, in passing to model estimation, that although our model specified by (2.1)-
(2.3) with random effects allows spatial dependence to be present only in the random disturbance term
g+ as in the static models considered by, e.g., Anselin (1988), Baltagi and Li (2004), and Baltagi et al.
(2007), it can be easily extended to allow i to be spatially correlated in the same manner as &; (Kapoor
et al., 2007), or to allow u to follow a different spatial process (Baltagi et al., 2013). See Section 3.1 for
details. For ease of exposition we focus on the model specified by (2.1)-(2.3). When p represents fixed
effects, as a referee kindly points out, these extensions do not make a difference in model estimation as

fixed effects are wiped out by first differences.

3 The QML Estimators

In this section we develop quasi maximum likelihood estimates (QMLE) based on Gaussian likelihood
for the SDPD model with random effects as well as the SDPD model with fixed effects. For the former,
we start with the case of exogenous 1y, and then generalize it to give a unified treatment on the initial

values. For the latter, a unified treatment is given directly.

3.1 QMLESs for the random effects model

As indicated above, the main feature of the random effects SDPD model is that the state-specific

effect 1 is assumed to be uncorrelated with the observed regressors. Furthermore, it is assumed that pu

2

4> and is independent of v;.

contains iid elements of mean zero and variance o
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Case I: yy is exogenous (m = 0). In case when y is exogenous, it essentially contains no information
with respect to the structural parameters in the system, and thus can be treated as fixed constants. In
this case, xg is not needed, and the estimation of the system makes use of T periods of data (t =1,---,T).

Conditional on the observed (exogenous) yo, the distribution of y; can be easily derived, and hence the
Gaussian quasi-likelihood function based on the observations yi1,y2,---,yr. Define Y = (i, -+, y57),
Y=, v ), X=(, - ,25), Z=1r®z and v = (v}, ,v}). The SDPD model specified

by (2.1)-(2.3) can be written in matrix form:
Y =pY 1 + XB+ Zy+u, with u= (17 @ L,)u+ (Ir ® B~ )v. (3.1)
Assuming ;1 and v follow normal distributions leads to u ~ N(0, 02Q), where
Q=00 ¢p) = ¢u(Jr@L,)+ Ir @ (BB) ", (3.2)

Gy = ai/a%, Jr = tptlp, and B = B, = I, — A\W,,. Note that the dependence of B on n and A is
suppressed. The same notational convention is applied to other quantities such as Y, X, €, etc., unless
confusion arises.

The distribution of u leads to the distribution of ¥ — pY_1, and hence the distribution of Y as the
Jacobian of the transformation is one. Let 0 = (3',7/,p)", 6 = (\,¢,)’, and ¢ = (6,02,4’)’. Denoting
u(@) =Y — pY_1 — X — Z~, the quasi-log-likelihood function of 1 is

. T T 1 1
Lr(y) = —”7 log(2) — ”7 log(03) — 5 log || - ﬁu(e)’srlu(e). (3.3)
If the errors {u;} and {v;;} are normally distributed, maximizing (3.3) gives the maximum likelihood
estimator (MLE) of ¢. If they are not, but iid with mean zero, constant variances and, more importantly,
finite fourth moments, maximizing (3.3) gives the QMLE of . See Sections 4.1 and 4.2 for detailed
regularity conditions. Given §, (3.3) is partially maximized at the concentrated QMLEs of 6 and o2,

000) = (X'Q 1 X)"'X'Q7'Y  and  62(8) = La(6)Qta(s), (3.4)

nT

respectively, where X = (X, Z,Y_1) and @(8) = Y — X0(5). Substituting 6(5) and 62(5) given in (3.4)

back into (3.3) for § and o2, we obtain the concentrated quasi-log-likelihood function of &:
' T T 1
£1(6) = - [log(2m) + 1] — = log[52(6)] — 5 log €. (3.5)

The QMLE 6§ = (A, (iu)’ of & maximizes £7,(§) given in (3.5). The QMLEs of # and o2 are given by 6 = 0(5)
and 62 = 62 (9), respectively. Further, the QMLE of ai is given by &Z = (ﬁu&i.‘* Let ¢ = (0, 62, 5.
The QML estimation of the random effects SDPD model is seen to be very simple under exogenous
yo- The numerical maximization involves only two parameters, namely, the spatial parameter A and
the variance ratio ¢,. The dynamic parameter p is estimated in the same way as the usual regression

coeflicients and its QMLE has an explicit expression given A and ¢,,.

4As discussed at the end of Section 2, our results can easily be extended to allow p to be spatially correlated. For
example, for Kapoor et al. (2007) model where u; = pWuy + €4 and e = p + v¢, all results go through with Q = ¢, (Jr ®
(B'B)™1Y) + Iy ® (B'B)~1; for Baltagi et al. (2013) model where u; = uy + ug, u1 = p1 Wi + p, and ugy = pa Waugy + vy,
one simply replaces 2 above by Q = ¢, (Jr ® (B{B1)™!) + I ® (B}B2)~! where By = I, — p1Wj and By = I, — paWa.
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Case II: gy, is endogenous (m > 1). The log-likelihood function (3.3) is derived under the assump-
tion that the initial observation yg is exogenously given. If this assumption is not satisfied, maximizing
(3.3) generally produces biased or inconsistent estimators (see Bhargava and Sargan, 1983, and Section
4.2 of this paper for details). On the other hand, if the initial observation yo is taken as endogenous in
the sense that it is generated from the process specified by (2.4), which starts m periods before the Oth
period, then yg contains useful information about the model parameters and hence should be utilized in
the model estimation. In this case, zq is needed, and the estimation makes use of T' 4 1 periods of data.
We now present a unified set-up for a general m and then argue (see Remark II below) that by letting

m = 0 it reduces to the case of exogenous yy. By successive backward substitutions using (2.4), we have

m—1 n n m—1
=" +n2pjx Byt 1_pn+n§:pj3‘1v : (3.6)
Yo=p Y-m —j 71—,0 'ul—p -5+ .
Jj=0 j=0

Letting 19 and (y be, respectively, the exogenous and endogenous components of yy, we have

m—1
, . 1 _ p7ﬂ

m=p"Yym+ Y Pr B+ 2y =, ~mt zof + zm(p)7, (3.7)

j=0
where 1, = p"Yy_m + Z:":_ll pz_;B and z,(p) = z%; and
1 _ pm m—1 ] .
o= TS e, 3)
j=0

_,m

where E(¢o) = 0 and Var((p) = 07, (%)2 I, + ang__p:;(B’B)_l. Clearly, both the mean and variance
of yo are functions of the model parameters and hence yq is informative to model estimation. Treating
1o as exogenous will lose such information and causes bias or inconsistency in model estimation.
However, both {z_;,j=1,--- ,m—1} for m > 2 and y_,, for m > 1 in 7,, are unobserved, rendering
that (3.7) cannot be used as a model for ny9. Some approximations are necessary. In this paper, we follow
Bhargava and Sargan (1983) (see also Hsiao, 2003, p.76) and propose a model for the initial observations

based on the following fundamental assumptions. Let x = (2o, z1, -, 2T).

Assumption RO: (i) Conditional on the observables x and z, the optimal predictors for x_;,j > 1,
are x and the optimal predictors for E(y_m),m > 1, are x and z; and (ii) The error resulted from

predicting Ny, using X and z is ¢ such that ¢ ~ (0, agln) and is independent of u, x and 2.’
These assumptions lead immediately to the following model for 7,,:
Nm = LpT1 + X7 + 273 + ( = X7 + (, (3.9)
where X = (tn,%,2) and m = (w1, 75, 74)’. Clearly, the variability of ¢ comes from two sources: the

variability of y_,, and the variability of the prediction error from predicting E(y—_.,) and Z;":_ll P

by x and z. Hence, we have the following model for yo based on (3.6)-(3.9):

Yo = X7+ 200 + 2m(p)y + uo, wo = ¢ + (o- (3.10)

5As a referee thoughtfully points out, it is possible to allow for additional spatial structure to characterize the initial

observations. But this will surely complicate the asymptotic analysis and will add in more parameters to be estimated; we
leave it for future work. Similarly remark holds for Assumption FO in Section 3.2.
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The ‘initial’ error vector ug is seen to contain three components: (, ,ulT__%, and Z;":_Ol PP B lu_ j, being,
respectively, the prediction error from predicting the unobservables, the cumulative random effects up to
the Oth period, and the ‘cumulative’ spatial effects and random shocks up to the Oth period. The term
zm(p)y = z%v represents the cumulative impact of the time-invariant variables z up to period 0 and
needs not be predicted. However, the predictors for 7, still include z, indicating that (¢) the mean of
y—m is allowed to be linearly related to z and (i) p™ may not be small such that the effect of y_,, on
Nm s not negligible. If p™ is small which occurs when either m is large or p is small, the impact of y_,,
to M can be ignored, and the term zms involved in (3.10) should be omitted. Some details about the
cases with small p™ are given latter. For the cases where p™ is not negligible, one can easily show that,
under strict exogeneity of x and z, E(ug) = 0,

E(uoug) = 021y + onap I + 0abm(B'B) ™, and E(ugu') = o5am (v ® 1),

m 2m
where a,, = am(p) = 1{_% and by, = bi(p) = 1T__9L2 Let u* = (ug, «’)’. Under the normality assumption
for the original error components y and v, and the ‘new’ prediction error ¢, we have u* ~ N(0,02Q*),

where Q* is n(T' + 1) x n(T' + 1) and has the form:

3.11
(buam(l’T ® In) Q ( )

I7l " 2 I7l b7 B/B -1 LT / I7l
Q*EQ*(pa)\,(blu(bC): ( (bC +¢/am + n( ) (b/an(LT@ ) ) )
e = 02/03, and  is given by (3.2). This leads to the joint distribution of (yj, (Y — pY_1)’)’, and hence
the joint distribution of (y),Y”)" or the likelihood function. Again, the arguments of Q* are frequently
suppressed should no confusion arise.
Now let § = (8,7, 7)., 6 = (p, N\, du, ¢¢)'s and ¢ = (0',02,4"). Based on (2.4) and (3.10), the
Gaussian quasi-log-likelihood function of 1 has the form:
n(T +1)
2

n(T+1)

() = -

1 * 1 * *— *
log(2r) — log(0?) — 5 log|2°| — 5 (6, )1 (0,p),  (3.12)
v

where u* (0, p) = {(yo — 08 — zm(p)y —%x7), (Y —pY_1 — XB —Z7)'} =Y* — X*6,

v* — Y*(p) _ Yo and X* — X*(p) _ Lo Zm(p) X )
Y — pY_1 X Z 0nT><k

Maximizing (3.12) gives MLE of ¢ if the error components are truly Gaussian and the QMLE otherwise.
Similar to Case I, we work with the concentrated quasi-log-likelihood by concentrating out the parameters
6 and o2. The constrained QMLEs of § and o2, given J, are

v

0(0) = (X" IX")TIXTQ YT and  52(0) = sy 07 () A (), (3.13)
where @*(8) = u*(0(6), p) = Y* — X*(8), and 0(5) = (3(5)',5(8)’,#(5)")’. Substituting §(5) and 52(5)
back into (3.12) for § and 02, we obtain the concentrated quasi-log-likelihood function of 4:

n(T + 1)
2

- n(T+1

L) =~ [log(27) +1] T) log 73(9) — %log €27 (3.14)

4) gives the QMLE of §, denoted by 6 = (5, A, (iu, ¢¢)’. The QMLEs of
0(6

6) and 62 = 62(9), respectively, and these of oy, and o are given by

Maximizing £77(§ given in (3.1

6 and o2 are thus given by 6=
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6% = $,62 and 6% = $c62, respectively.S Let o = (¢',02,8").

Remark I: To utilize the information contained in the n initial observations yg, we have introduced
k=p(T+1)+ g+ 1 additional parameters (, ag) in the model (3.9). Besides the bias issue, efficiency
gain by utilizing additional n observations is reflected by n — k. Apparently, the condition n > k has to
be satisfied in order for 7 and ag to be identified. If both T and p are not so small (T' =9 and p = 10,
say), one may consider replacing the regressors x in (3.9) by the most relevant ones (to the past), 2o and
x1, say, or simply by T = (T +1)~* Ztho z;. In this case k =2p+ ¢+ 1, and p+ ¢ + 1, respectively. See
Elhorst (2010) for similar remarks for an SDPD model with a spatial lag.

Remark IT: When yq is exogenous, model (3.10) becomes yo = X7 + ug, where ug ~ (0,031,,) and is
independent of u. In this case, we have Q* = diag(021,,). Model estimation may proceed by letting
m = 0 in (3.14), and the results are almost identical to those from maximizing (3.5). A special case
of this is the one considered in Hsiao (2003, p.76, Case IIa) where y},s are simply assumed to be iid
independent of y;. If y},s are allowed to be correlated with u; (Case IIb, Hsiao, 2003, p.76), the model

becomes a special case of endogenous yg as considered above.

Remark ITI: In general, m is unknown. In dealing with a dynamic panel model with fixed effects
but without spatial dependence, Hsiao et al. (2002) recommend treating m or a function of it as a free
parameter, which is estimated jointly with the other model parameters. However, we note that their
approach requires p # 0, as when p = 0, m disappears from the model and hence cannot be identified.
Elhorst (2005) recommends that an appropriate value of m should be chosen in advance. We concur with
his view for two reasons: (i) an empirical study often tells roughly what the m value is (see, e.g., the
application considered by Elhorst), and (i7) the estimation is often not sensitive to the choice of m unless
it is very small (m < 2), and |p| is close to 1, as evidenced by the Monte Carlo results given in Section 6.

While the results given above are under a rather general set-up, some special cases deserve detailed
discussions, which are (a) m = 1, (b) m = oo, and (¢) p = 0.

(a) m=1. When the process starts just one period before the start of data collection, the model

(3.10) becomes yo = py_1 + xof + 27 + p+ B~ Lvg, 2, (p) = 2z, and
0 = ((bC + (b;L)In + (B/B>_17 (bu(b'/r & In) -
bu(ty @ L), Q

In this case, p becomes a linear parameter again and the estimation can be simplified by putting p
together with (3, v and 7 which can be concentrated out from the likelihood function. Now, denoting the

response vector and the regressor matrix by:

</ < 07l X
Vv — Yo and X = To % x1 X :
Y X Z Y, OnTxk
the estimation proceeds with 6 = (8,7, p,7) and 6 = (X, ¢p, P¢)'.
(b) m=o00. When the process has reached stationarity (m — oo and |p| < 1), the model for the initial

observations becomes yg = Z;io pPr_iB+ 1_7;, + T_Lp +Z;’;O PP B u_j. As e = Z;io pz_ ;3 involves

6Unlike the case of exogenous 3, the dynamic parameter p now becomes a nonlinear parameter that has to be estimated,
together with A, ¢, and ¢, through a nonlinear optimization process. Similar to the case of exogenous yp, our model and
estimation can easily be extended to allow p to be spatially correlated as in Kapoor et al. (2007), or Baltagi et al. (2013).
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only the time-varying regressors, its optimal predictors should be (i5,,x). The estimation proceeds by
letting zm, (p) = 200 (p) = 1%#, O, = Qoo = 1Tlp’ b = boo = #, x = (1,%x), and ® = (71, 7h)’.

(c) p = 0. When the true value of the dynamic parameter is zero, the model becomes static with
ye = xS+ 2y +p+B 1y, t=0,1,---,T. At this point, the true values for all the added parameters,

m and o¢, are automatically zero.

3.2 QMLEs for the fixed effects model

In this section, we consider the QML estimation of the SDPD model with fixed effects, i.e., the vector
of unobserved individual-specific effects p in model (2.4) is allowed to correlate with the time-varying
regressors x;. Due to this unknown correlation, u acts as if they are n free parameters, and with T
fixed the model cannot be consistently estimated due to the incident parameter problem. Following the

standard practice, we eliminate p by first-differencing (2.4) to give
Ay, = pAyi_1 + Az S+ Auy, Aug = B Avy, t=2,3,---,T. (3.15)

Clearly, (3.15) is not defined for ¢t = 1 as Ay; depends on Ay and the latter is not observed. Thus, even
if yo (hence Ayyp) is exogenous, one cannot formulate the likelihood function by conditioning on Ayy as
in the early case. To obtain the joint distribution of Ayy, Ays,---, Ayr or the transformed likelihood
function for the remaining parameters based on (3.15), a proper approximation for Ay; needs to be made
so that its marginal distribution can be obtained, whether g is exogenous or endogenous. We present a
unified treatment for the fixed effects model where the initial observations yy can be exogenous (m = 0)
as well as endogenous (m > 1).

Under the general specifications given at the end of Section 2, continuous backward substitutions to

the previous m(> 1) periods leads to

m—1 m—1
Ayl = pmAy_7n+1 + Z ijxl—jﬂ + Z ij_lAvl_]‘. (316)
7=0 7=0

Note that (i) Ay_m+1 represents the changes after the process has made its first move, called the initial
endowment; (i1) while the starting position y_,, is assumed exogenous, the initial endowment Ay_,, 11
is endogenous, and (ii4) when m = 0, Ay_,,,+1 = Ay, i.e., the initial endowment becomes the observed
initial difference. The effect of the initial endowment decays as m increases. However, when m is small,
their effect can be significant, and hence a proper approximation to it is important. In general, write

Ay = Any + Ay, where An; and Ay, the exogenous and endogenous components of Ay;, are given as

m—1
Am = PrEAY-mi1)+ Y P AT B = nm + Axa B, (3.17)
3=0
m—1
AG = P it — BAymn)]+ S B Avr, (3.18)
§=0
where 0, = P E(AYy_m41) + Z;":_ll o Azi_;3. Note that when m = 0, the summation terms in (3.17)
and (3.18) should vanish, and as a result Ay = E(Ay;) and A = Ayy — E(Ay).
Clearly, the observations Azi_j;, j = 1,---,m — 1, m > 2, are not available, and the structure

of E(Ay_m+1), m > 1, is unknown. Hence 7, is completely unknown. Furthermore, as 7, is an
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n X 1 vector, it cannot be treated as a free parameter vector to be estimated; otherwise the incidental
parameters problem will be confronted again.” Hsiao et al. (2002) remark that to get around this problem,
the expected value of An;, conditional on the observables, has to be a function of a finite number of
parameters, and that such a condition can hold provided that {z;;} are trend-stationary (with a common
deterministic linear trend) or first-difference stationary processes. Letting Ax = (Azy, -, Azr), we
have the following fundamental assumptions.

Assumption FO: (i) The optimal predictors for Ax1_;, j=1,2,--- and E(AYy_m41),m=0,1,---,
conditional on the observables, are Ax; (ii) Collectively, the errors from using Ax to predict 1y, is
e~ (0,021,), and (iii) Yy—m = E(y_m) + e, where e ~ (0,021,) independent of €.

Assumption FO(i) and Assumption FO(ii) lead immediately to a ‘predictive’ model for ny,:

N =Tiin +Ax T +e=Ax 46, m=0,1,---,

where Ax = (1, Ax) and 7 = (w1, 75)". Thus, An; defined in (3.17) can be predicted by: An =
Ax 7+ Az + €. The original theoretical model (2.4) and Assumption FO(iii) lead to
Ay—ﬂl-‘rl - E(Ay—"H‘l) = B_1U—7ﬂ+1 - (1 - p)e? m=0,1,---,
which gives A(; = —p™(1—p)e+p™ B 1v_, 11 +Z;"=_01 B~ Avi_; when m > 1, and —(1—p)e+B~1v;
when m = 0. We thus have the following model for the observed initial difference,
Ayp = Axm+ Az + e + AG = Axr + Az 8+ Ay, (3.19)
where Aty = € + Al = € — p™(1 — ple + p"B 0 i1 + 3.7 0B Av . Let ¢ = e — p™(1 — p)e.

7=0
By assumption, the elements of ¢ are iid with mean zero and variance ag =02 +o2p*(1—p)28

By construction, we can verify that under strict exogeneity of z;, i.e., E((|Az;q1,---,Ax;r) = 0,
and independence between ¢ and {Avi_;,j =0,1,---,m — 1},

E(AuAw)) = oily+ 0iem(B'B) =0.B  (¢¢BB' + cpln)B' ™", and (3.20)

E(AtAu,) = —02(B'B)™! fort=2, and0fort=3,4,---,T, (3.21)

2m
where ¢, = cm(p) = % - %_:;—") and ¢, = 02/03. Note that cg = 1, coo = ﬁ—p and ¢,,(0) = 2.

Letting Au = (A@}, Aub, -+, Aul), we have Var(Au) = 02Qf, where
QT EQT(p?)‘a(bC) = (IT®3_1>HE(IT®B/_1>? (322)

E = ¢¢BB’ + ¢;p1,,, and Hg is an nT x nT matrix defined as

E -I, 0 - 0 0
~I, 2I, —-I, -~ 0 0
0 -I, 2, -~ 0 0
He=| & & 1| (3.23)
0 oI, —I, 0
0 I, 2I, -I,
0 0 —I, 2I,

7An exception occurs when Model (2.4) does not contain time-varying variables as in Anderson and Hsiao (1981).
8Note that when m = 0, A@i; = ¢ — (1 — p)e + B~ v;. The approximation (3.19) is associated with Bhargava and

Sargan’s (1983) approximation for the standard dynamic random effects model with endogenous initial observations. See
Ridder and Wansbeek (1990) and Blundell and Smith (1991) for a similar approach.
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The expression for Qf given in (3.22) greatly facilitates the calculation of the determinant and inverse of
QO as seen in the subsequent subsection. Derivations of score and Hessian matrix requires the derivatives

of Qf, which can be made much easier based on the following alternative expression
Of =¢c(ty @ 1,) + he,, @ (B'B)7Y, (3.24)

where ¢1 is a T x T matrix with 1 in its top-left corner and zero elsewhere, and h._ is hy defined at the

Cm
end of Section 3.3 with s replaced by c¢,,.

In the following, we simply refer to the dimension of 7 to be k. Now let 8 = (&', 7'), 6 = (p, A, é¢)’,
and ¢ = (0',02,0’)". Note that ¢ is a (p+ k +4) x 1 vector of unknown parameters. Based on (3.15) and

(3.19), the Gaussian quasi-log-likelihood of 1 has the form:
T T 1 1
L) = —% log(27) — % log(o?) — 3 log |QT| - 2—2Au(9,p)’QT_1Au(9,p), (3.25)
O-'U

where Au(6,p) = AYT(p) — AXT,

Ayl A.Il AX

AyQ - PAyl A-TQ 0n><k
AYT(p) =1 . , and AXT = )

Ayr — pAyr_1 Azp Opxk

Maximizing (3.25) gives the Gaussian MLE or QMLE of ¢. First, given § = (p, A, ¢¢)’, the constrained
MLEs or QMLEs of § and o2 are, respectively,

6(6) = (AXTQIIAXHIAXVQIIAYT(p)  and  62(5) = - Au(6)Q L Au(s), (3.26)

v nT

where Au(8) equals Au(6, p) with 6 being replaced by 6(5). Substituting (6) and 62(8) back into (3.25)

for § and 02, we obtain the concentrated quasi-log-likelihood function of :
T T 1
£f(s) = —”7 log(27) + 1] — ”7 log % (8) — 5 log |2. (3.27)

A, é¢) of 6 maximizes ££(J) given in (3.27). The QMLEs of § and o? are given
by 6 = 6(6) and 62 = 63(3), respectively. Further, the QMLE of Og are given by &g = (ﬁc&i.g Let

Remark IV: We require that n > pT'+1 for the identification of the parameters in (3.19). When this
is too demanding, it can be addressed in the same manner as in the random effects model by choosing
variables AX with a smaller dimension. For example, replacing Ax in (3.19) by Az = T! Zthl Axy
gives AX = (1, Az), and dropping Ax in (3.19) gives Ax = 1,. In each case, the variance-covariance

structure of Awu remains the same.

Remark V: Hsiao et al. (2002, p.110), in dealing with a dynamic panel data model without spatial
effect, recommend treating ¢, (p) as a free parameter to be estimated together with other model param-

eters. This essentially requires that p # 0 and m be an unknown finite number. Note that ¢,,(0) = 2

9Model (3.15) can be estimated by a simpler three-step IV-GMM type procedure suggested by Mutl (2006). When T'
is small the QMLE may be more efficient as it uses an extra period data, but the three-step procedure is free of initial
conditions. Nevertheless, it should be interesting, as a future research, to conduct a formal comparison of the two models.

11
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and coo(p) = 2/(1 + p), which become either a constant or a pure function of p. Our set-up allows p =0
or m = oo so that a test for the existence of dynamics can be carried out or a stationary model can be
fit. As in the case of the random effects model, we again treat m as known, chosen in advance based on

the given data (see Remark III given in section 3.2).

3.3 Some computational notes

Maximization of L% (5), L7 (5) and £ () involves repeated evaluations of the inverse and determinants
of the nT x nT matrices  and QF, and the n(T + 1) x n(T + 1) matrix Q*. This can be a great burden
when n or T or both are large. By Magnus (1982, p.242), the following identities can be used to simplify
the calculation involving € defined in (3.2):

Q] = [(B'B)"' + ¢, T B>, (3.28)
O = T (BB +6,T1) " + (Ir — T~ 'Jr)® (B'B). (3.29)

The above formulae reduce the calculations of the inverse and determinant of an nT" x nT matrix to the
calculations of those of several n x n matrices, where the key element is the n x n matrix B. By Griffith
(1988), calculations of the determinants can be further simplified as:

n n

Bl = [](1 = Mwi), and [(B'B)~" + ¢uT1La| = [JI(1 = Mwi) =2 + 6,7, (3.30)

i=1 i=1
where w}s are the eigenvalues of W. The above simplifications are also used in Yang et al. (2006).
For the determinant and inverse of Q* defined in (3.11), let wi1 = ¢¢cly + ¢pa2, I, + by (B'B)~1,
wa1 = Wiy = Gpam(tr ® 1), and D = wyq — w129 twoq. We have by using the formulas for a partitioned
matrix (e.g., Magnus and Neudecker, 2002, p.106), |Q*| = || - | D|, and

D! —D w0t
Q1= 5 o oo _ (3.31)
-0 rwo1 D™ Q4+ 0~ wng_lqu_l

Thus, the calculations of the determinant and inverse of the n(T + 1) X n(T + 1) matrix Q* are reduced
to the calculations of those of the n x n matrix D, and those of © given in (3.28) and (3.29).

For the determinant and inverse of Q' defined in (3.22), by the properties of matrix operation,
Q7| = [(Ir©B ") |Hel |(Ir @ B = |B|"*"|Hgl,
O = (IreB Y 'Hy'(Ir® B! = (Ir ® B)H;' (Ir ® B),
where |Hg| = |TE — (T — 1)1,,| = [}, [Té¢(1 — Mw;)* + Tep, — T + 1] as in (3.30), and
Hy'=(1-T)(hg' @ E* ) + (' — (1 = T)hy ") @ (B* '), (3.32)

where E* = TE — (T — 1)I,,, and the T x T matrices hs, s =0, 1, are

s =1 0 --- 0 0 0
-1 2 -1 --- 0 0 0
hs = : : A : : .
6o o0 0 - -1 2 -1
6o 0 0 - 0 -1 2

as in Hsiao et al. (2002, Appendix B), who also give |hs| =1+ T(s — 1) and the expression for h;!.

12
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4 Asymptotic Properties of the QMLEs

In this section we study the consistency and asymptotic normality of the proposed QML estimators for
the dynamic panel data models with spatial errors. We first state and discuss a set of generic assumptions
applicable to all three scenarios discussed in Section 3. Then we proceed with each specific scenario
where, under some additional assumptions, the key asymptotic results are presented. To facilitate the
presentation, some general notation (old and new) is given.

General notation: (i) recall v = (¢',02,6')', where § and o2 are the linear and scale parameters
and can be concentrated out from the likelihood function, and § is the vector of nonlinear parameters
left in the concentrated likelihood function. Let 1o = (6}, 02,,d4)" be the true parameter vector. Let ¥
be the parameter space of ¥, and A the space of §. (i) A parametric function, or vector, or matrix,
evaluated at 1)y, is denoted by adding a subscript o, e.g., Bo = B|a=x,, and similarly for Qg, QF, Qg, ete.

(#44) The common expectation and variance operators ‘E’ and ‘Var’ correspond to t)g.

4.1 Generic assumptions

To provide a rigorous analysis of the QMLEs, we need to assume different sets of conditions based
on different model specifications. Nevertheless, for both the random and fixed effects specifications we

first make the following generic assumptions.

Assumption G1: (i) The available observations are: (yi,Tit,2),4 = 1,---,n, t = 0,1,---,T,
with T > 2 fized and n — oo; (ii) The disturbance vector uy = (uit, -+ ,unt) exhibits both individual
effects and spatially autocorrelated structure defined in (2.2) and (2.3) and vy are iid for alli and t with
E(vit) = 0, Var(vit) = 02, and Elv;|*T¢ < oo for some eg > 0; (iti) {wi,t = -+ ,—1,0,1,---} and {z}
are strictly exogenous and independent across i; (i) |p| <1 in (2.1); and (v) The true parameter &y lies

in the interior of A, a convexr compact set.

Assumption G1(i) corresponds to traditional panel data models with large n and small T. One can
consider extending the QMLE procedure to panels with large n and large T'; see, for example, Phillips
and Sul (2003). Assumption G1(ii) is standard in the literature. Assumption G1(iii) is not as strong
as it appears in the spatial econometrics literature, since in most spatial analysis regressors are treated
as being nonstochastic (e.g., Anselin, 1988; Kelejian and Prucha, 1998, 1999, 2010; Lee, 2004; Lin and
Lee, 2010; Robinson, 2010; Su and Jin, 2010; Su, 2012). One can relax the strict exogeneity condition
in Assumption G1(iii) like Hsiao et al. (2002) but this will complicate our analysis in case of spatially
correlated errors. Assumption G1(iv) can be relaxed for the case of random effects with exogenous initial
observations without any change of the derivation. It can also be relaxed for the fixed effects model with
some modification of the derivation as in Hsiao et al. (2002). Assumption G1(v) is commonly assumed
in the literature but deserves some further discussion.

For QML estimation, it is required that A lies within a certain space to guarantee the non-singularity
-1, -1

min>? wmax) where Wmin and Wmax

of I, — A\W. If the eigenvalues of W are all real, then such a space is (w
are, respectively, the smallest and the largest eigenvalues of W if, further, W is row normalized, then

—1
min

< —1, and the parameter space of A becomes (w_ . 1) (Anselin, 1988). In general,

Wmax = 1 and w min’

the eigenvalues of W may not be all real as W can be asymmetric. LeSage and Pace (2009, p. 88-89)
argue that only the purely real eigenvalues can affect the singularity of I, — AW. Consequently, for W

13
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with complex eigenvalues, the interval of A that guarantees non-singular I,, — AW is (w; !, 1) where wj
is the most negative real eigenvalue of W. Kelejian and Prucha (2010) suggest the parameter space be

(=7, 1,7, 1) where 7, is the spectral radius of W, which is normalized to (—1,1) by a single factor 7, 1.

For the spatial weight matrix, we make the following assumptions.

Assumption G2: (i) The elements w;; of W are at most of order h;;t, denoted by O(h,; 1), uniformly
in all i and j. As a normalization, w;; = 0 for all i; (it) The ratio h,/n — 0 as n goes to infinity; (i)
The matriz By is nonsingular; (iv) The sequences of matrices {W} and {By '} are uniformly bounded in
both row and column sums; (v) {B~1} are uniformly bounded in either row or column sums, uniformly

in A in a compact parameter space A, and cy < infyeaAmax(B'B) < Supyep Amax(B'B) < éx < 00.

Assumptions G2(i)-(iv) parallel Assumptions 2-4 of Lee (2004). Like Lee (2004), Assumptions G2(i)-
(iv) provide the essential features of the weight matrix for the model. Assumption G2(ii) is always satisfied
if {h,} is a bounded sequence. We allow {h,} to be divergent but at a rate smaller than n as in Lee
(2004). Assumption G2(iii) guarantees that the disturbance term is well defined. Kelejian and Prucha
(1998, 1999, 2001) and Lee (2004) also assume Assumption G2(iv) which limits the spatial correlation to
some degree but facilitates the study of the asymptotic properties of the spatial parameter estimators. By
Horn and Johnson (1985, p. 301), that limsup,|[AoW|| < 1 guarantees that B; ' is uniformly bounded in
both row and column sums. By Lee (2002, Lemma A.3), Assumption G2(iv) implies { B~!} are uniformly
bounded in both row and column sums uniformly in a neighborhood of Ag. Assumption G2(v) is stronger

than Assumption G2(iv) and is required in establishing the consistency results.

4.2 Random effects model

We now present detailed asymptotic results for the SDPD model with random effects. Beside the

generic assumptions given earlier, some additional assumptions specific for this model are necessary.

Assumption R: (i) p;’s are iid with E(u;) = 0, Var(p:) = o5, and E|u;|*T% < oo for some o > 0;
(i) pi and v, are mutually independent, and they are independent of xis and zy for all i, j, k,t,s; (iii)
All elements in (x4, z;) have 4 + eg moments for some ey > 0.

Assumption R(i) and the first part of Assumption R(ii) are standard in the random effects panel
data literature. The second part of Assumption R(ii) is for convenience. Alternatively we can treat the

regressors as being nonstochastic.

Case I: yy is exogenous. To derive the consistency of the QML estimators, we need to ensure that
d = (X, ¢,) is identifiable. Then, the identifiability of other parameters follows. Following White (1994)
and Lee (2004), define £*(§) = maxg o> E[L"(6, 07, d)], where we suppress the dependence of L7*(6) on
n. The optimal solution to maxy ;2 E[L"(0, 02,8)] is given by

00) = [EX'Q X)) 'EX'Q'Y) and (4.1)
52(0) = pEu(0(5) Q2 u(8(5))). (4.2)

Consequently, we have
£04(5) =~ llog(2m) + 1] - "L 10g[62(9)] — 5 log |9, (43)

14
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Noting that 6 (5p) = 6y + [E(X'Q ' X)] ' E(X'Qy u) = 6 by Lemma B.6, we can readily show that

52 (80) = 02,. We impose the following identification condition.

Assumption R: (iv) lim, . -3 {log|02,Q0| — log |52 (6) Q2 (8) |} # 0 for any § # do, and - X'X
is positive definite almost surely for sufficiently large n.

The first part of Assumption R(iv) parallels Assumption 9 in Lee (2004). It is a global identification
condition related to the uniqueness of the variance-covariance matrix of w. With this and the uniform
—=[L£5(8) — L*(5)] to zero on A proved in the Appendix C, the consistency of & follows.

The consistency of 6 and 62 follows from that of & and the second part of Assumption R(iv).

convergence of —=

Theorem 4.1 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations y;o are exogenously
given, then 1& 2, Po.-

To derive the asymptotic distribution of qﬁ, we need to make a Taylor expansion of %Er(iﬁ) =0
at 1y, and then to check that the score function and Hessian matrix have proper asymptotic behavior.
First, the score function S"(v)) = %Er(w) has the elements

aﬁaéw) — %X/Q_lu(e)

oL™(Y)  _ U4u(9) 01 (9) _ nT

2 2
do? 202

8L8Tww) = 202 u(e) F, u(e) - %tl‘ (PWQ) , W= )\a (b;u

l\D

where P, = Q71Q,Q7! and Q, = %Q (0) for w = A, ¢,. One can easily verify that Qy = I ® A and
Q4, = Jr ® I, where A = 2 (B'B)~! = (B'B)"Y(W'B + B'W)(B'B)~!. At ¢ = vy, the last three
components of the score function are linear and quadratic functions of u = u(fp) and one can readily
verify that their expectations are zero. The first score component contains UI—QYL 127 1u(0), and some
additional algebra is needed to prove E[Y” Q5 u(f)] = 0, which is given in Lemma B.6.

Asymptotic normality of the score, proved in Lemma B.8, is essential for the asymptotic normality of
the QMLEs. Note that the elements in u are not independent and that X contains the lagged dependent
variable Y_1, thus the standard results, such as the central limit theorem (CLT) for linear and quadratic
forms in Kelejian and Prucha (2001) cannot be directly applied. For the last three components, we need
to plug u = (17 ® L)+ (It @ By ' )v into S™(v) and apply the CLT to linear and quadratic functions
of 11 and v separately. For the first component, a special care has to be given to Y_; (see Lemma B.8).

Let H, () = 8waw,ET(w) be the Hessian matrix, and I, ,(¢p) = [iﬁr(w)a‘z),ET(w)] be the
VC matrix of the score vector, both are given in Appendix A. Lemma B.7 shows that nT[ H, . (Yo) —
EH, ,(¢0)] = 0p(1). The asymptotic normality of the QMLE thus follows from the mean value theorem:
0= oA S7(8) = —A=5" (1) + 2 Hyn () - VAT (3 — o), provided that =4 [Hyn($) — Hyn (1)) = 0p(1)
where 1 lies between 1 and 1)y (see Appendix C for details). We have the following theorem.

Theorem 4.2 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations yo are exogenously

given, then
VT (i = o) == N (0, H, 'T,H, ),
where Hy = lim,,_ oo — = E[H, n(Y0)] and T = lim,, . ULTFT.m(wO), both assumed to exist, and (—H,) is

assumed to be positive definite. When errors are normally distributed, v/nT (1) — 1) 4, N(0,H ).

15
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As in Lee (2004), the asymptotic results in Theorem 4.2 is valid regardless of whether the sequence

{hy} is bounded or divergent. The matrices I, and H,. can be simplified if h,, — oo as n — co.10

Case II: y is endogenous. In this case, define L7 (5) = maxp 52 E[L" (0, 02,8)], where we suppress

the dependence of £7"*(d) on n. The optimal solution to maxg 52 E[L"" (6,07, 8)] is now given by

000) = [EXYQ 1o)X EXTQ ()Y (p)], and (4.4)
520) = s Blut(0(6), p) 1 (8)ur (6(5), ). (4.5)

Consequently, we have
£ (0) = - "D pog(am) 41 - "D 10g52(6) - Liogjer, (1.6)

We make the following identification assumption.

Assumption R: (iv*) lim, o n(T%l) {log|o2,%| — log |52 (6) Q*(8)|} # 0 for any & # do. Both
%5&’5& and HLT(X, 2) (X, Z) are positive definite almost surely for sufficiently large n.

The following theorem establishes the consistency of QMLE for the random effects model with en-
dogenous initial observations. Similarly, the key result is to show that n(Tl—_H)[CZT'((S) — L77*(0)] converges
to zero uniformly in § € A, which is given in Appendix C.

Theorem 4.3 Under Assumptions G1, G2, R0, R(i)-(iii) and R(iv*), if the initial observations yo are

endogenously given, then 1& AT

Again, to derive the asymptotic distribution of 1&, one starts with a Taylor expansion of the score
function, S (¢p) = %E”’ (v), of which the elements are given below:
Pt = X (0.),
aLrr # w1, % T+1
agéw) = ﬁu (eap)/Q lu (eap) - n(gg—g )a
8[17‘7‘ * *— * * * * * *
BT = —Lus(9,p)' Q0 (6, p) + sEzut (0, p) Pyut (6, p) — Str(P0%),

%w—) = %u*(@,p)’Pju*(@,p) — %tr(PjQ*), for w = A, ¢, and ¢,

where u} (0, p) = 8%u*(é‘,p), Pr =101 and QF = %Q*(é) for w = p, A, ¢, and ¢¢, given as

P

% am 2y * 2¢ua7ndmln + bm(B/B>_1 (budm (L/ 0 In)
U/p(e, p) = — ) Q5 = . ’
Y—l (buam(l’ ® In) 0nT><nT

b7 0/ 2 . / 1 0/
Q,,;\ _ n T ® A, Q:; _ a/m a nLT ® In, and Q:; — T ® In,
Or It " amtr Jr ¢ Or Orxr
where a,, = d%am (p) and by = d%bm(p), and their expressions can easily be obtained. One can readily

verify that E[%E”’(wo)] = 0. The asymptotic normality of the score is given in Lemma B.13. The

107t can be shown, by some algebra similar to these for proving Lemma B.6 but using (B.2) instead of (B.3), that when
T is also large the results of Theorems 4.1 and 4.2 remain valid under an endogenous yg, although issues such as the exact
rate of convergence and the magnitude of bias remain. Nevertheless, it shows that when T is also large one can indeed
ignore the endogeneity of yo, as it was done in Yu et al. (2008) for a fixed effects spatial lag SDPD model with both large
n and large T'. However, a detailed study along this line is clearly beyond the scope of the paper.
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asymptotic normality of the QMLE thus follows if the Hessian matrix, H,,,(¢) = %;WUT'(W given in

Appendix A, possesses the desired stochastic convergence property as those for the case of exogenous .
Let Dypn () = E[%E”’ (¥) ai' L7"(1))] be the variance-covariance matrix of the score vector with its
detail given in Appendix A. We now state the asymptotic normality result.

Theorem 4.4 Under Assumptions G1, G2, RO, R(i)-(iii) and R(w*), if the initial observations are
endogenously given, then

S d _ _

nT(w - w()) - N(O» HT‘T‘1F7'7'HT‘T‘1>’
where H,, = lim,_ o n(T%l)E[HT.Tm(wO)] and Ty = limy,_ oo n(T1—+1)FT.T.7n(w0), both assumed to exist,

and (—H,,) is assumed to be positive definite. When errors are normal, v/nT (1) — ) 4, N(0,HL).

4.3 Fixed effects model

For the fixed effects model, we need to supplement the generic assumptions, Assumptions G1 and
G2, made above with the following assumption on the regressors.

Assumption F: (i) The processes {x;s,t = ---,—1,0,1,---} are trend-stationary or first-differencing
stationary for all i = 1,--- ,n; (ii) All elements in Ax;; have 4 + €9 moments for some g > 0; (iii)

7%TAXT’AXT is positive definite almost surely for sufficiently large n.

Define £{*(§) = maxg o2 E[L7(0,02,6)], where we suppress the dependence of £f*(6) on n. The

optimal solution to maxg 52 E[Lf (0,02, 6)] is now given by

6(6) = {E[(AXTYQi'axt]} T E(AXTYQTTAYT(p)] and (4.7)
52(0) = FFE[Au(8(5), p) A Au(8(5), p)]- (4.8)

Consequently, we have
£1(5) = "L loa(2m) + 1] — " 1ogo2(9)] ~ 3 los 0. (19)
The following identification condition is needed for our consistency result.
Assumption F: (i) lim, HLT{ log |U§OQ$| —log|62(8)2T(8)|} # 0 for any & # do.

With this identification condition, the consistency of § follows if = [£1(8) — £1*(6)] converges to zero
uniformly on A. The consistency of § and 62 then follows from the consistency of § and the identification

condition given in Assumption F(iii). We have the following theorem.

Theorem 4.5 Under Assumptions G1, G2, F0, and F, we have for either exogenous or endogenous o,
P = 1.
To derive the asymptotic distribution of ), one needs the score function S/ (1) = %Ef (¥):
act _
ﬁw—) = ;—iAXT’QT LAu(8, p),
f
2~ L A0, p)y QU A0, p) - 25,

)
0o2

f
2EW = L Au, (6, )2 Au(0, p) + 552 Au(0, p) PfAu(D, p) — Str(Q110),

28— L A0, p) PiAu(h, p) — $tr(@17100) forw =\, é,
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where Au, (6, p) = a%Au(@,p) = —(0x1, AYL, -+, Ayfp_y), and Qf, = ZQT (6) and Pf = QI-1Qf 01!
for w = p, A, and ¢c. From (3.24), it is easy to see that Qf = he, @ (B'B)™", Q; = he,, ® A, and
QLC = {1 ® I,, where ¢, = 8%cm(p). Again, one can readlly verify that E[%Ef(wo)] = 0. The
asymptotic normality of the score is given in Lemma B.15. The asymptotic normality of ¢ thus follows
if the Hessian matrix, Hy,(¢) = %{;w,ﬁf (v), given in Appendix A, possesses the desired stochastic
convergence properties as those for random effects model. Let 'y, (¢) = E [%Ef (¥) 8?/)’ L7 (1)] be the
VC matrix of the score vector, given in Appendix A. We now state the asymptotic normality result.

Theorem 4.6 Under Assumptions G1, G2, FO and F, we have for either exogenous or endogenous o,
~ d _ _
v nT(¢—¢0) - N(OaHflerfl)?

where = lim;, 0o 0)] and I, = limy,— 0), both assumed to exist, and (—
here Hy = li nT E[Hy¢p darl li nTFﬁ both d t 5t d(—Hy

is assumed to be positive definite. When errors are normally distributed, \/nT (¢ — 1bo) 4, N(0, Hf_l)

5 Bootstrap Estimate of the Variance-Covariance Matrix

From Theorems 4.2, 4.4 and 4.6, we see that the asymptotic variance-covariance (VC) matrices of the
QMLEs of the three models considered are, respectively, H, 'T'.H ', H_'T'..H_,! and Hf_lffo_l.
Practical applications of the asymptotic normality theory depend upon the availability of a consis-
tent estimator of the asymptotic VC matrix. Obviously, the Hessian matrices evaluated at the QMLEs
provide consistent estimators for H,, H,,, and Hy, i.e., H, = HLTHT.m(qﬁ),flT.r = n(T1—+1)H7.7.7n(1ﬁ), and
Hy = nT —=H; ., (). The formal proofs of the consistency of these estimators can be found in the proofs
of Theorems 4.2, 4.4, and 4.6, respectively. However, consistent estimators for I'y,I';., and I'f, the
asymptotic VC matrices of the scores (normalized), are not readily available due to the presence of error
components in the original model and in the model for the initial observations.!

As indicated in the introduction, the traditional methods based on sample-analogues, outer product of
gradients (OPG), or closed form expressions, do not provide an easy solution. First, from the expressions
of the score functions, S (1), S™" (1)) and S¥ (1), given in Section 4, we see that it is very difficult, if
possible at all, to find sample analogues of E[S” (10)S" (10)’], E[S™ (10)S™ (0)'] and E[S¥ (1) Sf (10)'],
bearing in mind that S7 (<)), ™" (¢)) and S/ (4)) are all zero by the definition of the QMLESs. Second, OPG
method typically requires that the score function be written as a single summation of n uncorrelated
terms. This cannot be done in our framework as our score function has the form of a second order V'
statistic instead. Third, although the closed form expressions for the VC matrices can be derived (see
Appendix D), these expressions typically contain the third and fourth moments of the error components
in models (3.1), (3.10), (3.15) and (3.19). Some elements of the VC matrices cannot be consistently
estimated due to the complicated interaction of the error terms with the lagged dependent variable and
the fact that only a short panel data is available. Thus, an alternative method is desired.

In this section, we introduce a residual-based bootstrap method for estimating the VC matrices of

the scores, with the bootstrap draws made on the joint empirical distribution function (EDF) of n

M This is not a problem for the exact likelihood inference (Elhorst, 2005, Yang et al., 2006) as in this case the VC matrix
of the score function equals the negative expected Hessian. Hence, the asymptotic VC matrices of the MLEs in the three
models considered reduce to —H,~ 1, —H;! and —Hf_l7 respectively, of which sample analogues exist.
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transformed vectors of residuals. While the general principle for our bootstrap method is the same for
all the three models considered above, different structures of the residuals and the score functions render

them a separate consideration.

5.1 Random effects model with exogenous initial values

Write the model as: y: = poyt—1+ T+80 + 270 + ue, ur = i +BO_111t, t=1,2,---,T, now viewed as a
real-world data generating process (DGP). We have, Var(u:) = 02((¢.0l + (B Bo) ™) = 020Z (Mo, ¢uo)-

Define the transformed residuals (t-residuals):
Tt:z_%()\()?(b;t())ut? t=1,--- aTa

where E%()\,(bu) is a square-root matrix of (A, ¢,). Then, E(r;) = 0 and Var(ry) = o2(I,. Thus,
the elements of r; are uncorrelated, which are iid if p and vy are normal satisfying the conditions given
in Assumptions G1 and R. As our asymptotics depend only on n, these uncorrelated errors lay out the
theoretical foundation for a residual-based bootstrap method. Let #; be the QML estimate of r;, and ]:'n’t
be the empirical distribution function (EDF) of the centered #, for ¢t = 1,2,---,T. Let S™(Y_1,u, o)
be the score function given below Theorem 4.1, now written in terms of the lagged response Y_i, the
disturbance vector u and the true parameter vector 1y. The bootstrap procedure for estimating I';, (o)

is as follows.

1. Compute the QMLE qﬁ, the QML residuals 4y = y; — pyr—1 — xtﬁ — 2%, and the transformed QML

residuals 7, = $72 (), (iu)ﬁt, fort =1,2,...,T. For each ¢, center 7; by its mean.

2. Make n random draws from the rows of (71, . .., 77) to give T matched bootstrap samples, {7}, ... 75},

of the transformed residuals.

3. Conditional on yg, x, z, and the QMLE 1&, generate the bootstrap data according to

P = pyo+aif+ 2y +2ER b
W= PR B AN G, =23, T,

The bootstrapped values of u and Y_; are given by 4% = vec[27 (X, ¢,) (7%, -, 7)) and Y2, =

vec(yo, 94, - - -, 9%_1), respectively.
4. Compute ST‘(Y_bl, ab, 1&), the score function in the bootstrap world.

5. Repeat steps 2-4 B times, and the bootstrap estimate of T',, ,(10) is given by

1

B
Fi)z,r: EZST(Y—bl?ub?w)S (Y—bl?ub?w)/__ S (Y—bl?ub?w)'ﬁ S (Y—bl?ub?w)/' (51)
b=1

B

e
e

An intuitive justification for the validity of the above bootstrap procedure goes as follows. First, note
that the score function can be written as S™(Y_1, u, ¢g), viewed as a function of random components and
parameters. Note that u; = u + Bo_lvt,t =1,...,T. If ¥y and the distributions of u; and v;; were all

known, then to compute the value of I';, -(1g), one can simply use the Monte Carlo method: (i) generate
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Monte Carlo samples p™ and vj*,t =1,---,T, to give a Monte Carlo value u™, (i) compute the Monte
Carlo value Y™ based on u™,{z1,...,z7}, and z, through the real-world DGP, (ii7) compute a Monte
Carlo value S™™(¢g) = S" (Y™, u™, 1)) for the score function, and (iv) repeat (i)-(iii) M times to give

a Monte Carlo approximation to the value of T, (10) as

Lo Z S™™ (40) 8" (o) — Z S™™ (%o) - Z S"™ (o) (5:2)
m=1 m=1 m=1
which can be made to an arbitrary level of accuracy by choosing an arbitrarily large M. Note that
=3 (Ao, ¢uo)re. The step (i) above is equivalent to draw random sample 7" from the joint distribution
.7-} of 74, and compute ul* = X7 (X, Puo)ry .12
However, in the real world, 1y is unknown. In this case, it is clear that a Monte Carlo estimate of

T',.»(1)0) can be obtained by plugging ¢ into (5.2),

m Tm rm (7T LM Tm Tm
. o nzl ST () ST (1)) 2 S Vi nzl S (5.3)
In the real world the distributions of u; and v;, and hence F;, are also unknown. However, we note
that the only difference between fi’w given in (5.1) and I'™ ', given in (5.3) is that 7 for the former is from
the EDF ]:-nﬂg, but r* for the latter is drawn from the true joint distribution F;. The bootstrap DGP that
mimics the real-world DGP must be 40 = pyo +xlﬁ+z&+ﬂ’{, and 90 = pgb_, —i—xtﬁ—i—z&—i—ﬂf, t=2,...,T.
Thus, if {F,;} are able to produce {#?} that mimic {r*} drawn from {F;} up to the fourth moments,
which is typically the case as 1& is consistent for 19 and the spatial weight matrix is typically sparse (see
Appendix D for details), then f’;w. and I n.r are asymptotically equivalent. The extra variability caused
by replacing F; by ]:'n’t is of the same order as that from replacing vy by 1& This justifies the validity of
the proposed bootstrap procedure in a heuristic manner.
Formally, let Var® (ST'(Y_bl, av, 1&)) be the true bootstrap variance of ST'(Y_bl, al, 1&) where the variance
operator Var® corresponds to the EDFs {F, ;}7_,. Alternatively, we can understand that Var®(-) is the
variance conditional on the observed sample. Note that by choosing an arbitrarily large B, the feasible

bootstrap variance I . defined in (5.1), gives an arbitrarily accurate approximation to the true bootstrap

n,r?

variance Var’[S(Y?,, @?, w . We have the following proposition.
1

Proposition 5.1 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations yo are exoge-
nously given, then 7%T[Varb (ST(Y_}’D@[’,@)) Ly (th0)] = 0p(1).

5.2 Random effects model with endogenous initial values

When the initial observations gy are endogenously given, the disturbance vector now becomes

(ug, w1, us, . .., ur) such that Var(ug) = o2qwi1 and Var(us) = 0205(Xo, ¢po),t = 1,..., T, where wy; is
1
defined above (3.31) and X(\, ¢,,) is defined in Section 5.1. Define the transformed residuals: ro = wy1>uo,
1
and r; = E_%(Ao,(buo)ut, t =1,...,T, where w{, is a square-root matrix of w;;. Now, denote the

QML estimates of the transformed residuals as {7g,71,...,77}, and the EDF of the centered 7 by

12 Although the elements {r;;} of r¢ are uncorrelated with constant mean and variance, they may not be totally independent
and may not have constant third and fourth moments, unless both p and v+ are normal.
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]:-nﬂg,t =0,1,...,7. Draw T + 1 matched samples of size n each from {F, +}1_,, to give bootstrap
residuals {8, 7%, ..., 75}, Let wu be the plug-in estimator of wu The bootstrap values for the response

variables are thus generated according to
1 ~ PN
o = XF +Of, and §f = pgi_y + x4+ 24 + 52X G, t = 1,2, T,
The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure. Formally, we have the result for S™ (Y_1, ug, u, ¢g) defined below Theorem 4.3, now

written in terms of the lagged response Y_q, the disturbance vectors uy and u, and the true parameter

vector .

Proposition 5.2 Under Assumptions G1, G2, RO, and R(i)-(iv*), if the initial observations yo are
endogenously given, then n(T+1) [Var (S”(Ybl,ﬂg, Ab,w)) Ly (10)] = 0p(1).

5.3 Fixed effects model with endogenous initial values

When the individual effects are treated as fixed, and the initial differences are modelled by (3.19), the
disturbance vector becomes after first-differencing: (Aty, Aug,- -, Aur), where Aay is defined in (3.19)
and Au; = By lv; as in (3.15) such that Var(Ady) = 02o(¢coln + cm(ByBo) ') = 02qw and Var(Au,) =
202,(ByBy)~ ", t = 2,...,T. Define the transformed residuals: r = w 2Ad; and r; = \/LEBOAut,

t = 2,---,T, where w? is square-root matrix of w. Denote the QML estimates of the transformed
residuals as {f1,79, -+, 71}, and the EDF of the centered #; by ﬁnﬂg, t=1,...,7. Draw T matched
samples of size n each from {F,, ;}7_,, to give bootstrap residuals {7}, 75, ..., 7%}, Let &? be the plug-in

estimator of w?. The bootstrap values for the response variables are thus generated according to
AP = Az B+ AxF+ 0770, and AGP = pAYY | + Az S+ V2B t =23, T

The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure. Let S7(AY_y, Au, 1)) be the score function given below Theorem 4.5, now written
in terms of AY_; = {Ay;, ..., Ayl 1}, Au= {Ad], Aul ..., Aul}, and 1. We have the following.

Proposition 5.3 Under Assumptions G1, G2, F0, and F(i)-(iv), for either exogenous or endogenous
initial observations yo, we have — [Varb (Sf(AY_bl, Aﬁb,ﬁ)) —Tyn(t0)] = 0p(1).

6 Finite Sample Properties of the QMLESs

Monte Carlo experiments are carried out to investigate the performance of the QMLEs in finite
samples and that of the bootstrapped estimates of the standard errors. In the former case, we investigate
the consequences of treating the initial observations as endogenous when they are in fact exogenous, and
vice versa. In the latter case we study the performance of standard error estimates based on only the
Hessian, or only the bootstrapped variance of the score, or both, when errors are normal or nonnormal.

We use the following data generating process (DGP):

Yo = pyi—1+ Boin + 201 + 2y + us
Uy = ptet
e = MWper + vy
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where y;,y:—1, ¢, and z are all n x 1 vectors. The elements of z; are generated in a similar fashion as
in Hsiao et al. (2002),'® and the elements of z are randomly generated from Bernoulli(0.5). The spatial
weight matrix is generated according to Rook or Queen contiguity, by randomly allocating the n spatial
units on a lattice of k x m (> n) squares, finding the neighbors for each unit, and then row normalizing.
We choose By = 5,61 = 1,7 = 1,0, = 1,0, = 1, a set of values for p ranging from —0.9 to 0.9, a set
of values for A in a similar range, 7' = 3 or 7, and n = 50 or 100. Each set of Monte Carlo results
(corresponding to a combination of the p and A values) is based on 1000 samples. For bootstrapping
standard errors, the number of bootstrap samples is chosen to be B = 999 + |n°75| where |-| denotes
the integer part of -. Due to space constraints, only a subset of results are reported. The error (v;)
distributions can be () normal, (i7) normal mixture (10% N(0,4) and 90% N (0, 1)), or (éii) centered
x2(5) or x?(3). For the case of random effects model, ;1 and v; are generated from the same distribution.

Random effects model. Table 1 reports the Monte Carlo mean and rmse for the random effects
model when the data are generated according to either m = 0 or m = 6, but the model is estimated
under m = 0,6, and 200. The results show clearly that a correct treatment on the initial values leads to
excellent estimation results in general, but a wrong treatment may give totally misleading results.

Some details are as follows. When the true m value is 0, i.e., yo is exogenous, estimating the model
as if m = 6 or 200 can give very poor results when p is large. When p is not large or when p is negative
(not reported for brevity), the estimates under a wrong m value improve but are still far from being
satisfactory. In contrast, when the true m value is 6 but are treated as either 0 or 200, the resulted
estimates are in general quite close to the true estimates except for the case of m = 0 under a large
and positive p. This shows that the model estimates are not sensitive to the exact choice of m when
3o is endogenous and is treated as endogenous. Comparing the results of Table 1a and 1b, we see that
non-normality does not deteriorate the results of a wrong treatment of the initial values in terms of mean,
but it does in terms of rmse. We note that, when the true m value is 0 but is treated as 6 or 200, the
poor performance of the estimates when p is large and positive may be attributed to the fact that the
quantities z,,(p) and an,(p), given below (3.7) and above (3.11), have 1 — p as their denominators.

Table 2 reports the standard errors of the estimates based on (1) only the bootstrapped variance of the
score (seSCb), (2) only the Hessian matrix (seHS), and (3) both the bootstrapped variance of the score
and the Hessian (seHSb). The results show that when errors are normal, all three methods give averaged
standard errors very close to the corresponding Monte Carlo SDs; but when errors are non-normal, only
the seHSb method gives standard errors close to the corresponding Monte Carlo SDs; see in particular the
standard errors of ¢, and o2. More results corresponding to other choices of the spatial weight matrices,
and other values of p and A are available from the authors upon request.

Fixed effects model. The fixed effects u are generated according to either % Zthl r¢+e or e, where
e is generated in the same way as p in the random effects model. The reported results correspond to
the former. Table 3 reports the Monte Carlo mean and rmse for the fixed effects model when the data
are generated according to either m = 0 or m = 6, but the model is estimated under m = 0, 6, and 200.
The results show again that a correct treatment on the initial values leads to excellent estimation results
in general, and that a wrong treatment on the initial values may lead to misleading results though to

a much lesser degree as compared with the case of random effects model. The results corresponding to

13 The detail is: ¢ = pz + gtln + Cty (1 — 1L)¢ = et + doet—1, et ~ N(0,021,), pio = e + ﬁ Zf:—m ¢, and
e~ N(0,02). Let 0 = (g,$1,b2,01,02). Alternatively, the elements of ; can be randomly generated from N(0,4).
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uncorrelated fixed effects (unreported for brevity) further reveal that whether the individual effects are
correlated with the regressors or not does not affect the performance of the fixed-effects QMLEs.

Some details are as follows. When the true m value is 0, i.e., yg is exogenous, estimates of the model
parameters as if m = 6 or 200 can be poor when p is negative and large. When p is not large or when p
is positive (not reported for brevity), the estimates under a wrong m are quite satisfactory. This shows
that the model estimates are less sensitive to the treatment on yo when it is endogenous. Comparing
the results of Table 3a and 3b, we see that non-normality does not deteriorate the results of a wrong
treatment of the initial values in terms of mean, but it does in terms of rmse.

Contrary to the case of random effects model, when the true m value is 0 but is treated as 6 or 200
the estimates of the fixed effects model are poor when p is large but negative. This may be attributed to
the quantity ¢, (p) defined below (3.21) which has 14 p as its denominator. Comparing the results for
the fixed effects model with those for the random effects model, it seems that the fixed effects model is
less sensitive to the treatment of the initial values.

Table 4 reports seSCb, seHS, and seHSb along with the Monte Carlo SDs for comparison. The results
show that when errors are normal, all three methods give averaged standard errors very close to the
corresponding Monte Carlo SDs; but when errors are non-normal, the standard errors of 62 from the
seHSb method are much closer to the corresponding Monte Carlo SDs than those from the other two
methods. More results corresponding to other choices of the spatial weight matrices, and other values of

p and A are available from the authors upon request.

7 Concluding Remarks

The asymptotic properties of the quasi maximum likelihood estimators of dynamic panel models with
spatial errors are studied in detail under the framework that the cross-sectional dimension n is large and
the time dimension T is fixed, a typical framework for microeconomics data. Both the random effects
and fixed effects models are considered, and the assumptions on the initial values and their impact on the
subsequent analyses are investigated. The difficulty in implementing the robust standard error estimates,
due to the existence of higher order moments of error components in the variance of the score function,
is overcome by a simple residual-based bootstrap method. Monte Carlo simulation shows that both
the QML estimators and the bootstrap standard errors perform well in finite samples under a correct
assumption on initial observations, but the QMLEs can perform poorly when this assumption is not met.

A referee raised a concern that the current paper did not consider the SDPD model with spatial lag
dependence, and another referee raised similar concerns on the possible existence of additional spatial
structure in the model and on the assumptions made on the processes starting positions. We are fully
aware of those intriguing issues. In particular, we recognize that the presence of a spatial lagged dependent

variable will complicate the study to a great extent, which certainly demands separate future research.
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Appendix A: Hessian and VC Matrix of Score

Random effects model with exogenous yg. The Hessian matrix H,.,(¢) has the elements:

82LT(1/)) . 1 < 1% 82£T(1/;) B 1o .
0600" = _g{(n X, 90957 = —gX’Q u(6),

S =~ X Paul®), w =X Gt = —gu(6) (O} + 37,

8855(‘%5) = _ﬁu(e)/Pwu(e)) w = )\7 (b;lﬁ 8858(1;/}) = qu[u(e)], fOI' W, = )\) (b/“’

where g (u) = $tr(PoQy — Q' Que) — 5020/ (2PoQy — Q71 Quw)Q u for w, @ = A, ¢p; P, is defined
below Theorem 4.1; and Qo = ) (0) for w,@w = A, ¢, It is easy to see that Q) = I7 ® A where

Owiw

A= %A =2(B'B)"'[((W'B +B'W)A — W'W], and all other ., matrices are 0,7xn7-
The VC matrix of the score, Ty, (1) = E[%Cr(wo)iﬁr(wo)], has the elements, for w, @ = X, @,

Y7
Lo = %%E(X/le)?), Ly002 = 2;—60E(X’Qaluu’ﬂalu),
Fr,@w = F%E(X’Qaluu’Pwou), Fna%o% = rlog(ﬂal, Qal),
Fr,ogw = J%%()g(ﬂala PwO)a Fr,ww = g(PwO, PwO),

where g(C1,Co) = 2 E(u/'Crun/Cou) — itr(0190>tr(0290>. The explicit form of g can be obtained

4030
from Lemma B.4(1). The other elements can be evaluated using Y_1 = n_; +(J,, ® I,)u detail of which
can be found in the proof of Proposition 5.1 in Appendix D.

Random effects model with endogenous yo. The Hessian matrix H,,. (1) has the elements:

L) 1 yeroypr—1yx
090" - ogX X,

82[:7‘7‘ % — %
aeao(gw) = _éX " (0, p),

82£7‘T * *k — * * *k — * * * *
aeaf;w) = 01—5Xp’Q Ly (9,p)+éX "Q 1up(9,p) — 01—3X "Pyu*(0,p),

82[,7‘7‘ % I
ﬁw—) = —%X 'Piu*(0,p), forw=A\ ¢, and ¢,

2L () _ _U_lgu*(e)p)/g*—lu*(e)p) + n(T—i—l),

2952 )
002002 2073

2 prr
Dok = Zus(6,p)' (0, p) — skt (0) Py (6, p),

PLUW) —#u*(@,p)’Pju*(@,p), for w =X, ¢, and ¢¢,

0020w
2 prr
S5 = s (6, p)' (0, p) — Zrun(8, p) Q0 us 6, p) + Zus (6, p) Pyt (9, p) + g, w6, p)

82[]%("/)) 1 ,,% ! D%, % * *
T Opdw = Eup(eap) Pwu (eap) + qu[u (eap)]a for w = )‘7 (b;u and (bC’

2 prr
%ﬂw—) = ¢ ou*(0,p)], forw,w=A\ ¢, and ¢c.

where ¢}, (u*) = $tr(PLQ; — Q15 ) — gzu™ (2PLQ; — 1% ) u* for w, @ = p, A, ¢y, and
2 v 2

b, X,y = (%X*, uy,(0,p) = aa—‘ﬂu*(é',p), and 7, = a;?WQ* for w = p, A, ¢, and ¢¢. The second-order

partial derivatives of 2* are

[ 2‘%(“% + &m)ln + Bm(B/B>_1, (bu&m(b/ & In) QO*. = bmAa 0n><nT
re (buém (l/ ® In) 0nT><nT ’ PA 0nT><n 0nT><nT ’

x 20 Gm In, dm(b/®ln> x by 0 i
Qp(b“ B < dm(l,® In) 0nT><nT ’ Q)\)\ h 0 IT ® A,

and all other €27  matrices are Op(ry1)xn(T+1), Where d,, = a%dm and b = (%l')m and their ex-
act expressions can be easily derived. Finally, X has a sole non-zero element d,,z, and uy, 0, p) =

(_dm’)/z/a 01 ><7LT>/'
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The VC matrix of the score, 'y, (¢g) = E[%CT'T'(wo)aiw,Ew(wo)], has the elements, for w and
w = )"(bxu or ¢¢:

Lrroo = 2= E(X7Q571X), Drrgo2 = U%O O,
Ty = f1< b = 3070 Prvgw = 61 (P0),
Trotor = o (% 1057, Prrozp = [0 (P, 0571) — g3(057, 05 74),
Dot = 20 (2 Plo). Covo = b BI04 g3 (Pl Biy) — 203(2%5 ", Pl
Lrrpw = 91 (P;Zko, Pjo) — 93(98_1a Po), Irrwe = QT(Pf:o, PZo),
where f7(A4) = 214 E(X*’Q*_1 u* Au*), f5(A) = BE(X¥Q5 uy' Au*), P is defined below The-

orem 4.3, g7 (A, B) = 404 E(u* Au*u* Bu*) — tr(AQ )tr(BQ*), and ¢g5(A, B) = ﬁE(u;’Au*u*’Bu*).
As X* is exogenous, the explicit forms of ff and g7 can be obtained from Lemma B.4. The functions
f3 and g3 can be evaluated using uj, = —(amy' 2", Y. ;) = —n*; — (jp*' ® I,)u* given in the proof of
Proposition 5.2 in Appendix D.

Fixed effects model with exogenous or endogenous yy. The Hessian matrix Hy (1) has the

elements:

0000’

u;g;;f) = —;TAXT’QT_lAu(Q, 0,

oLt —
st = ZAXVQITAu(6, p) — ZAXTPIAU(, p),

2pf
88‘%8&/)) = —LAXT/PTAU/(Q p) for w = )\ (bC?

2pf

G = —arhu(0py T Au(b,p) + 5%,

2LiwW) 014 Aup(e,p) Q-1 Au(d, p) — 204Au(9 p) PTAU(Q p),
L) —LAU(G p)' PIAu(0, p), for w =X\, ¢,

92L7 (v) _ —;—QAXT’QT—lAXT,

0020p
802f8w
ZLW = L Auy(0, ) QT Ay (0, p) + Z (6, p) PIAu(b, p) + af, [ (6, p),

2 fg
88‘;}84:'/}) = _Auﬂ(e p) PTAU(Q,p) + qu [Au(eap)]a for w = )‘7 (bCa

2,f
88585;/}) = qu[Au(e p)] for w,w = )‘7 (bCa

where ¢f _(Au) = 1tr(PT Qf — Q=101 ) — LAu’(QPT Qf — Q=107 QT-1Ay for w, @ = p, A, and

¢¢. The second derivatives Qo of Q are: Qpp = hs, ® (B'B)~! where é,, = a%ém, Qo = he,, ® A,

Q= he, ® A, and the remaining are all zero matrices.
The VC matrix of the score, I's,,(¢o) = E[%Ef(wo) 8?/)’ L/ ()], has the elements, for w,w = \, ¢¢:
100 = +E(AXTQI ' AXT), Troo: = 74 f1 fbh,
Lrop=f if( J) fQ(Q(T)_IZ’ Ffﬂw—fl( 0)s ) ) )
Ff,ogog = ;}l_ J{(QT QJ(r)_ )a Ff,oﬁp = [ (PJOaQT ) g;(QT_ QT_ )]
1 1 -1
Lfo2w (QT PTO>’ ) Lrpp = 53 E[(A“T/QT A“T) ]+gl(PpO?PT ) — 295(93 ,Pjo),
Fﬁpw _gl(P,aO’PJr ) T(QJ{)_ ’PJO)’ Ff,ww —gl(PwO’PJr )

where f](A) = TerE(AXT/Qg—lAuAu/AAu) ) = ﬁ;E(AXT’QT_lAuAu’AAu), gi(A,B) =
T B(Au' AAuAW'BAw) — Lr(AQ))tr(BQY), gh(A, B) = 2-E(AY, AAuAu’BAu) and P} is defined

below Theorem 4.5. As AXT is exogenous, the explicit forms of f1 and g1 can be obtained from

_44

Lemma B.4. The functions fj and g} can be evaluated using Au, = —(0, 1, At -, Aylyp_}) =

—An_, — (\7;; ® I,)Au given in the proof of Proposition 5.3 in Appendix D.
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Appendix B: Some Useful Lemmas

We introduce some technical lemmas that are used in the proofs of the main results. The proofs of
all lemmas are provided in a supplementary material that is made available online at
http://www.mysmu.edu/faculty/ljsu/Publications/Panel _gmle_supp.pdf.

We first state five lemmas that greatly facilitate the proof of subsequent lemmas and some results in

the main theorems.

Lemma B.1 Let P, and Q, be two n X n matrices that are uniformly bounded in both row and column
sums. Let R, be a conformable matriz whose elements are uniformly O(o,) for a certain sequence o,.
Then we have:

(1) P,Q., is also uniformly bounded in both row and column sums;

(2) any (i,7) elements P, ;; of P, are uniformly bounded in i and j and tr(P,) = O(n);

(3) the elements of PR, and R, P, are uniformly O(oy).

Lemma B.2 Suppose that Assumption G2 holds.

(1) B'B,(B'B)~1,0Q,0%,Q A, and A are all uniformly bounded in both row and column sums.

(2) 1tr(D1QD,) = O(1) for D1, Do = Q71 Q7 (Ir @ Q™Y Q7N (Jr ® 1,)Q7Y, and Q71 (Ir ® A).
The same conclusion holds when Q is replaced by Q* or QF, and Dy and Do are replaced by their analogs
corresponding to the case of * or QF.

(3) Ltr(B'""*RB~') = O(1) where R is an n x n nonstochastic matriz that is uniformly bounded in

both row and column sums.

Lemma B.3 Let {a;}!, and {b;}; be two independent iid sequences with zero means and fourth mo-
ments. Let 02 = E(a?), o7 = E(b%). Let g, and p, be n x n nonstochastic matrices. Then

(1) E[(a'gna)(a'pna)] = Ko 35— GniiPnii + 05 [tr(gn)tr(pn) + tr(gn(pn + p)))],

(2) El(@/40a) (V'pab)] = 0203tr(gn)tr(pn),

(3) E[(agnb)(a'pnd)] = oioptr(qnpy,),
where t, = E(a?) — 3[E(a?)]?, and, e.g., qn.ij denotes the (i,5)th element of qy.

Lemma B.4 Recall u = (17 @ L))+ (Ir @ By ")v. Let a =+ pu(1— pft) /(1 — po) + Zm 01 4By tv_j,
where ¢, wu, and v are defined in the text. In particular, (/s are #id and independent of j and v. Let
Gny, P> Tny Snstn be nT X nT, nT x nT, n x n, n X nT" and n X nT' nonstochastic matrices, respectively.

Further, qn, pn, and r, are symmetric. Then

(1) El(W' qnu)(u'ppu)] = Ky Z:L:l Gy, 1iiGp, 1ii + Ko Z:L:Tl Gy, .2iiGp, 2ii

+03[t7’(q7;90>t7a(pn90) + 2tr(Q7LQOP7LQO)]»
(2) E[(v'qnu)(a'rpa)] = % S Ganniitn,ii + o [tr(rawin) tr(gnQo) + 2tr(wi2gnw21pn)],

my2 n

(3) E[(a/snu) (a/t"u)] = %7‘,(‘132) Zz 1(5n(LT & In))zz(tn(bT & In))zz

o [tr(spwor)tr(tnwar) + tr{spwartnwar) + tr(s,Qotl,wir)],
(4) B[(W'gnu)(u'spa)] = K’i;pﬁ)— > iy Gop1ii((Vp @ 1) s )i + 0y [tr(gnQo) tr(swiz) + 2tr(Qosy,w12¢0)],
(5) El(a'rna)(a’spu)] = ﬁﬁis— Sty Tnsii(8n (b1 @ 1) )ia + 0 [(rawin) tr(spwa1) + 2tr(rpwiispwan )],

where Gy, 1 = (U @ L)qn(tr @ I,), Gy, 2 = (It @ By Ygn(Ir @ By1), and, e.g., G, 1i; denotes the
(i,7)th element of Gy, 1
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Lemma B.5 Suppose that {P1,} and {Pay,} are sequences of matrices with row and column sums uni-
formly bounded. Leta = (ay,- -+ ,ay,)’, wherea;’s are independent random variables such that sup; E|a;|? <
< 00 for some €g > 0. Let b= (by,--- ,by,), where bys are iid with mean zero and (4 + 2¢o)th finite mo-
ments, and {b;} is independent of {a;}. Let a3, be the variance of Qn = @/ Pinb 4 V' Popb — optr(Pay).
Assume that the elements of Pi,, P, are of uniform order O(1/v/h,) and O(1/h,), respectively. If
limn—oohn 2/ /. = 0, then Qn /o, —— N(0,1).

Now, for ease of exposition we assume that both x;; and z; are scalar random variables (p =1, ¢ = 1)
in this Appendix. For the proofs of Theorems 2 and 4 for the SDPD model with random effects, the

following presentations are essential. By continuous backward substitutions, we have for t =0,1,2,---,
Y = XyBo + Cpo,t270 + Cpo et + Vi + Yo o, (B.1)
where for fixed yo, X; = 3202 phwe—j, Vi = 350 P)By "vi—y, Yo = phyo and ¢pp = (1= p')/(1 = p);

 —ttm—1 _oxttm=1l o _ _t+m _
and for endogenous 3y, X; = ijo poxi—j, Vi = ijo PoBy vi—j, Yo = py " Y—m, and ¢, =

(1= p**™) /(1 = p). Now, define Yo = (Y0, Y1, Yo 1) Then
Yo =X pBo + (lpy @ In)zyo + (lpy ® In)p + V(1) + Yo, (B.2)

where X(_1) = (0, X}, -, X0 _), ViCy = (0, V], -, Vi), and [, = (0,¢p1,- -+, ¢pr—1) When yp is
fixed, and X(—1) = (XE),X/D T ’X/T—l)/’ V(—1) = ( 6,V/1, T ,V’/T—l)/)’ and lﬂ = (6070’6071’ e ’CﬂhT—l)/

when 3, is endogenous. Notice that when gy is exogenous, Y_1 can also be expressed as
Yo1=A4.XpBo + (lﬂo ® In)zyo + (lﬂo ® In)p + Ayv + Yo, (B.3)

where A, = \740 ® I, and A, = \740 ® BO_1 with

0 1 P pT—Q
00 1 =
= ; (B.4)
oo o0 --- 1
o o0 o0 --- 0

Lemmas B.6-B.8 given below are used in the proof of Theorem 4.2.

Lemma B.6 Under the assumptions of Theorem 4.2, E(X'Qq " u) = 0.

Lemma B.7 Under the assumptions of Theorem 4.2, n% {8&;(%),) -F [agiéﬁ‘?)} } = 0,(1).

Lemma B.8 Under the assumptions of Theorem of 4.2, ﬁ%&;ﬁ‘)) 4, N(0,T,).

Lemmas B.9-B.13 are used in the proof of Theorem 4.4, for the SDPD model with random effects and

endogenous yo. Let R:s be an n x n symmetric and positive semidefinite (p.s.d.) nonstochastic square

matrix for ¢, s =0,1,---,T — 1. Assume that R;s are uniformly bounded in both row and column sums.
Recall for this case, X; = Z;i?_l phay_j and V, = Z;i?_l Py By toe_j.
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Lemma B.9 Suppose that the conditions in Theorem 4.4 are satisfied. Then
(1) B(V;RyVy) = o2te(By R By ) S ooy o072,
m—1 1
(2) E(X{R:X,) = (520" ZH'” PRy (xS—th—k»;
(3) E(X|R:sV,) =0.

Lemma B.10 Suppose that the conditions in Theorem 4.4 are satisfied. Then

(1) Coo(ViResVo, VyRonVi) = pragna{in 5511 BroiBanii + 20 3trBrs(Ban + Bon)])
+prsgh 20 tr[ By Res(B) Bo)—lehB_ ]
+prsghs0aotrl By Res(ByBo) "' R., By '],

(2) Cov(XjResVo, Xy Rgn Vi) = oot 0™ Y00~ 12;"*12&,3(05 ) pB*’“*h T2 Ry

x(ByBo)~ 1R;h (z ;—kxt i)l

(3) Cov(X} R X, X, Ry Xp,) = O(n),

t+m—1 (5+g+h 3t+4])
j=max(0,t—s,t—g,t—h)

t+m—1 —t+21 + 1 s+27 . . t+ 1
Ptsgh,2 = Zi—Zax(O t—g) g ZZ; zax(o s—h) Po TG # i+s—t), and prsgns = P Zax(o t—h) po
+m—1 2 .
Y max(0.5—) P ST #i+s—t).

where By ;i denotes the (i,1)th element of Bys = B’_lRtsBo_l, Ptsghl =

Lemma B.11 Suppose that the conditions in Theorem 4.4 are satisfied. Then
(U%‘TZQW%NFMW%MWLQ
( ) nT t 0 ZZ 01 X/RtsVs L’ 0;

( ) nT t 0 ZT 01 [X/Rtsxs - E(XéRtsXSH - 0.

Lemma B.12 Under the assumptions of Theorem 4.4, n(T1+1) {8§;g$?) _E [ag;’;a(://j?)}} = 0,(1).

Lemma B.13 Under the assumptions of Theorem 4.4, L 9L () ¢, N(O,I‘T.T.).

vn(T+1) oy

Lemmas B.14-B.15 are used in the proof of Theorem 4.6 for the fixed effects model.

Lemma B.14 Under the assumptions of Theorem 4.6, n% {%ﬁ/iéﬁe) - F [8§Jéﬁ9)}} = 0,(1).

Lemma B.15 Suppose that the conditions in Theorem 4.6 are satisfied. Then \/:L—T oL’ (w‘)) N(O Ty).

Appendix C: Proofs of the Theorems in Section 4

Proof of Theorem 4.1. By Theorem 3.4 of White (1994), it sufﬁces to show that: (%) *(0) —

1
nT

L2
Lr(6)] 5 0 uniformly in 6 € A, and (i) limsup,, . maxse e (s,) 77 [L57(6) — LL*(60)] < 0 for any
e > 0, where NZ(do) is the complement of an open neighborhood of dy on A of radius e. By (3.5) and
(4.3), Z5[L7%(8) — L5(5)] = —In62(6) + In62(8). To show (i), it is sufficient to show
62(8) — 52(8) = 0p(1) uniformly in 6 € A (C.1)

and 62(d) is uniformly bounded away from zero on A. The latter will be checked in the proof of
(#4). So we focus on the proof of (C.1) here. By the definition of @(d) below (3.4), we have u(0) =
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Y - X(X'Q ' X)"IX'Q7Y = QY2MQY2Y where M = L,y — Q Y2X(X'Q'X)"1X'Q"1/2 is a
projection matrix. This, in conjunction with the fact that MQ~1/2X = 0, implies that
62(8) = La(6)Qtu(0) = LY'QV2MOT2Y = Lu/QT2MO T 2y (C.2)

By (4.1) and the fact that Y = X6 + u, 0(6) = 6 + 6*(5) where 9*(6) = [E(X’ Q_lX)]_lE(f(’Q_lu).
Then u(6(8)) =Y — X0(8) = u — X6*(5). By (4.2) and using the expression for 6*(8), we have

53(8) = %E{[u — X0 (0))'Q Y u — X6*(9)]}
= FEWQ ) + 507 (6) B(X'Q7IX)0" (5) — 6" (8) E(X'Q 'u)
= olt(Q710) - HEXQ W] [E(X'QLD) BRI ), (©.3)

where recall Qy = Q(dy) and Q(9) is defined in (3.2). Combining (C.2)-(C.3) yields
62(6) = 62(86) = =/ u—oZptr (Q71Q)] — Fu/QTY2POTY2y

+LT[ (X'Q W) [E(X'Q X)) ' E(X'Q )

e[ (un — 0200)]

~{Q2u(0)' Q0 (0) "' Quu () — E[Quu(0) H{E[Qua(0)]} ' E[Quu(0)] }
= Hnl((S) - Hn2(6)7 say,
where P =I,7 — M, Q..(8) = anX Q11X and Qu(0) = anX Oty
For I,,1(§), we can show that E[Il,,1(6)] = 0 and E[IL,1(d)]* = O(n‘l) as in the proof of Lemma B.5.

So the pointwise convergence of II,,1(4) to 0 follows by Chebyshev inequality. The uniform convergence

of I1,,1 () to 0 holds if we can show that II,1(4) is stochastic equicontinuous. To achieve this, we first

show that infsea Amin (2(5)) is bounded away from 0:
i : i . / -1
nf Awin (20)) = ik Amin{6(Jr © [n) + I @ [BOY BV ™'}
> : . ! -1 > i . ! -1
2 inf Amin(I7 @ [BO)'BY] ™) 2 inf Amin ([BOY)'B(A)] ™)

Y

{ SUp Amax[BOA) B} F > 61 >0 (C.4)
AEA

by Facts 8.16.20 and B.14.20 in Bernstein (2005) and Assumption G2(v). Now, let §, § € A. By
Cauchy-Schwarz inequality,
Ma1(8) = 1 (0)] = |57 tr{8) 1 [Q(8) — Q0)]S) ~ (ur” — 50 0)}|
< [t {Q00)7HQ(8) — Q(8)]2(8) T2 [2(8) — OIS M2 [Jun — 5o 0|
< Do QO] [19200) — Q)| A ' — 0282
Straightforward moment calculations and Chebyshev inequality lead to \/% |lun” — 026Q0]| = Op(1). In
addition, \/% |2(6) —
Theorem 21.10 in Davidson (1994).
For I1,,2(8), we decompose it as follows
M2(0) = {Quu() — E[Quu(0)]} Qua (6)™" Quu(9)
+{E [Quu(8)]} Quz(6) " {E [Qu (8)] = Qua(6)} {E [Qua(D)]} " Quu (9)
+{E [Quu(8)]} {E [Qua(O)]} " {Quu(8) = E [Quu(9)]}
n2 1(6) + 7;2,2(6) + Hn2,3(6)7 say.

Q(6)|| — 0 as |6 —6|| — 0. Thus, {IL,1(6)} is stochastically equicontinuous by
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By Assumption G1(v), sup |¢,| < ¢y for some ¢y < 0o. Noting that by G2(v)

Sélg )\max(Q((s)) < Sélg )\max{(bu(JT ® In) +1Ir® [B()‘)/B()‘)]_l}
< sup {(bu)\max(JT 0 In) + )‘max{[B()‘)/B()‘)]_l}}
< cpT 4 {jnf Amin [BAYBW)} < coT +c,' < o0, (C.5)

. - =, 5 1yt =) 5
we have infsea Amin(Qzz(9)) > [Supsca Amax (£2(0))] ! Amin (75 X' X) > (coT + ") Amin (5 X' X).
This implies that supsea [|Qze(0) 71| = Op(1) by Assumption R(iv). It is straightforward to show that
Quu(0) — E[Qzu(d)] = 0p(1) uniformly in ¢ by Chebyshev inequality and the arguments for stochastic

equicontinuity. In addition, E[Q,(d)] = O(1) and Q4 (6) = Op(1) uniformly in §. Consequently,

IN

Tn2,1(0)] 1Qau(8) = E[Qau(9)][ | Qaa(8) ™ || [ Quu ()l

0p(1)0,(1)Op(1) = 0,(1) uniformly in .

By the same token, we can show that II,2 s(§) = 0,(1) uniformly in § for s = 2,3. It follows that
II,,2(6) = 0p(1) uniformly in §. Hence supgsea |62(8) — 62(0)| = 0p(1) as desired.

To show (i7), we follow Lee (2002) and Yu et al. (2008) and first define an auxiliary process
Y=pYY + X8+ Zy+ U, (C.6)

where U ~ N(0,0202) with Q = Q(d) and is independent of (X, Z), Y%, and Y* are analogously defined
as Y_; and Y, and the superscript a signifies that the process is an auxiliary one. Apparently, if u were
normally distributed in (3.1), then one could simply set U as u, in which case (Yfl, Y“) would reduce to
(Y_1,Y). As before, the true value of (6,02, ) is given by (6y, 02, ). The exact log-likelihood function

of the above auxiliary process is given by

1

553 U 0)yQ-tue() (C.7)

: T T 1
log L1 (0,02,6) = —% log(27) — % log(o?) — 3 log |2 —
where U%(0) = Y% —pY* — XB—Z~. Let E* denote expectation under this auxiliary process. By Jensen

N 10 N WO O O 7/ ()
-8 =B Th (00, 020, 00) ) |

L:’;a (907 0’307 60)
That is, E* [log L;;* (6, 07,6)] < E* [log Lj;* (6o, 029, %) |- Observe that £7*(6) = maxg 2 E*[log Lj;* (6,
02,9)] and

inequality,

, nT nT 1 1 _
Ea []OgL;’a (90, 0'50, (50)] = —7 10g(27’(’) — 7 10g(0’50> — 5 10g |Qo| — Ftr (QO 1E [U“(HO)U“(HO)/])
v0

nT 1 -
log(2m) 4+ 1] — > log(aio) —5 log [Qo] = L7 (o)

o7,

where we have used the fact that 62 () = Z’i‘TO tr (Q5'Q0) = 02, by (C.3) and Lemma B.6 (see also the
remark after (4.3)). It follows that

LI(8) < E* [log Ly* (60,020, 00)] = L1*(d0) for any § € A. (C.8)
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Next we show that - ET*((S ) is uniformly equicontinuous on A by showing the uniform equicontinuity
of —=log|Q(9)| and log[ 2(5)] on A. Let 6; and 2 be in A. By the mean value theorem, log |Q(d1)| —
log |Q((52)| = (5% 1og|(d)]) (61 — J2), where & = (A, éu)/ lies elementwise between d; and d2. Note that

nT 8)\ 1Og |Q( )l = antI' [Q(S)_l(IT ® A(j‘))]

where A (5\) is A = A()\) evaluated at A\. By (C.4) and the fact that tr(C1Cs) < Apax(C1)tr(Cy) for any

symmetric matrix C7 and positive semidefinite matrix Cs,
HLT |tr ( HIr ® A) )| < n—T [Amin (Q)]_1 tr (Ir ® A) < é)\%tr (A) = O(1) uniformly on A.

It follows that —2=-2-log|Q(5)| = O(1). Similarly, and -1 a¢ log [(8)| =tr(Q() N (Jr® I,)) < ¢
O(1). Thus log|2(§)| is uniformly equicontinuous in 6 on A.
To show that log[52(d)] is uniformly equicontinuous on A, it suffices to show that &2(§) is uniformly

equicontinuous and uniformly bounded away from zero on A. Observing that

) = FBLGE)ao)
= FBWQ ) + Fl0(0) — 06 (X' K)I0(6) — b0] + Z[0(5) — o) B(X'Q M)
= 601(0) +53,(0) + 673(0), say,

the uniform equicontinuity of 52(4) follows from that of the three terms on the right hand side of the last

equation. Note that

1 262,0)] = ZHE[WQ ! (Ir®A)Q ] = Zotr [(Ir © A) Q7 1QeQ !
< 0Zohmax (271207Y) Lty (I ® A)
< 02 Pmin ()] 2 Amax (Q0) =tr(A) = O(1) uniformly in 6

y (C.4), (C.5), and the fact that 1tr(A) = O(1) uniformly in A under Assumption G2. Similarly,

526%40)| = FHEWQ T (JroL) 0] = Bt [(Jr © 1) 271000
< v )\max ( _IQOQ_I) n_Ttr(JT & In)

o2y Q
020 [Amin (Q)]_2 Amax(20) = O(1) uniformly in 6.

Then by the mean value argument, we can show that G2;(§) is uniformly equicontinuous in § on A.
Analogously, we can show that (5) and E(X'Q~'X) are uniformly equicontinuous on A, which implies
that 62,(8) and 525(8) are uniformly equicontinuous on A. Thus we can conclude that 62(§) is uniformly
equicontinuous on A. To show that 62(d) is uniformly bounded away from zero, we make its dependence
on n explicit and write it as 57 ,(6). We establish the claim by a counter argument. Suppose that 2 ,(0)
is not uniformly bounded away from zero on A. Then there exists a sequence {d,} in A such that
limy, 00 62 ,,(6,) = 0. By (C.8), we have —=[L1*(6) — LL*(0p)] < 0 for all 6, i.e.,

—log[73(0)] < —log|&3(do)] + 777 {log [22(8)] — log ||} -

By (C.4) and (C.5) and the mean value theorem, we can readily show that — {log|€(8)| — log ||} =
O(1) uniformly on A. This implies that —log [63 (6)] is bounded above, a contradiction. Therefore we

can conclude that 2 ,(0) is uniformly bounded away from zero on A.
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Now, the identification uniqueness follows by contradiction. Using 52(dy) = 02, again we have
ArlLe(0) = Li7(00)] = zug {log || —log|Q(5 I} +3 {log (57 (60)] —log [53(9)] }
= gu7 1108 |05000| —log|53(8)Q(0)| } - (C.9)

Suppose that the identification uniqueness condition does not hold. Then there exists an € > 0 and a
sequence {4, } in N&(dp) such that

. 1 % %
lim —[£7%,(50) — £75,(80)] =

n—oo n
where we write L£%,(-) for £7*(-) to make its dependence on n explicit. By the compactness of N¢(do),
there exists a convergent subsequence {0y, } of {J,,} with the limit 4 of d,,, being in N¢(dy). This implies
that d+ # dp. Furthermore, lim, oo MT[EZ*M((L) L%, (60)] = 0 by the uniform equicontinuity of
—=L7%.(5). But this contradicts to Assumption R(iv) as it is equivalent to that lim, e = [£5%,(6) —

L%, (00)] # 0 for any ¢ # do. This completes the proof of the theorem. B

nT

Proof of Theorem 4.2. By Taylor series expansion,

1 oLr(d) 1 9L (o) | 1 9*L"(¥) -
Ny TR~ R VR e R CEA Ul

where elements of ¢ = (6,52, )’ lie in the segment joining the corresponding elements of @ and ¥ and

§= (N ¢,)". Thus
) L L)) 1 9L ()
VT () — o) = — |— :
1w =) [nT Y ] N
By Theorem 4.1, ¢) == 109, and thus ¢ -~ ¢)o. It suffices to show that: (i) - FLUY) 1 L (o) _

0=

nT OYoy’ nT OOy’
op(1), (i7) an%a(:ﬁ?) — H,, and (ii7) \/:L_Taﬁagp%) N(0,T,). (4) and (i3i) follow from Lemmas
B.7 and B.8, respectively. We are left to show (i).

2pr 7 2 pr
With the expression of 8858%) given in Appendix A, it suffices to show that an aafag/}) HLT aaﬁ a(;/’?)

= 0p(1) for w, w =6, o2, A, and ¢,,. We do this only for the cases of (w, @) = (6,6), (0,02), and (02, 0?)
as the other cases can be shown analogously. First, write
1 [02L7 () OL7 () 1 1\ X'Q(6)'X 1 o, s
- == - X))t - QX C.10
nT | 0600’ 8006’ o2 o2, nT nTo?, [20) ) ( )
Noting that 52 — 02, = 0,(1) by Theorem 4.1 and (nT)~'X'Q(5)"'X = O,(1), the first term on the

right hand side of the last expression is 0,(1). For the second term, we first show that

Amax[Q20 — Q(0)] :OP(HS_(SOH)' (C.11)

To see this, write Qg — Q(6) = (b0 — (E;L)(JT ® I,) + rn(N), where 7, (\) = I ® {[B(\o)'B(X\o)] ™! —
[B(A)B(N)] 7'} is a symmetric matrix. By the repeated use of the fact that

Amax(A ® C) < Amax(A) Amax (C) (C.12)
for any two real symmetric matrices [see, e.g., Fact 8.16.20 of Bernstein (2005)], we have
Amax[rn(V] < Amax{[B(X) B(Xo)] " = [B(\)B(V)] ™'}
Amax([B(Xo) B(Ao) " [B(X)' B(X) = B(X)' B(Ao)|[B(A) BV ™)
{inf Amin[BOY' B} *Amax[BA) B(V) = B(%)'B(Xo)] = Op(A = o)

IN
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where the last equality follows from Assumption G2 and the fact that

Amax[B(A)'B(A) = B(Xo)' B(Xo)] Amax[(No = XN (W' + W) + (X = XN )W'W]
IA = X0 Amax (W' + W) + (A2 = A3) Amax (W'W)

Op(X = Xo)

IN

under Assumption G2. Noting that Apax(J7 ® I,) = T, we can apply the fact that
Amax (4 + C) < Apax(A) + Amax(C) (C.13)

to obtain Amax[Q0 — Q(8)] < Tlduo — dpl + Amax(rn(A)) = Op(||6 — do||). Thus (C.11) follows. Let ¢ be
an arbitrary column vector in RPT4t1. Then by Cauchy-Schwarz inequality, (C.4), and (C.11)

S XQ6) 7 - Q51 Xl

L1/ X'(8) Q0 — 2(8)]% ' Xl

LLXQ(5) 71 Q0 — Q(6)][Q0 — Q(6)]QS) T X}/ 2 X'y 1y X ]2

Amax[20 = Q8)] Panin (2(8)] ™ Pmin (20)] 7 11 X = Op (16 = doll) = 0p(1).  (C.14)

IN

IN

2,107
It follows that the second term on the right hand side of (C.10) is 0,(1). Consequently, -t aagagf’) -
1 9L (o) = 0,(1)
nT 0000’ p :

Next we consider —T%T%% + HLT%;%—O). This term is equal to
L X006) (@) - —— X0 '
nTcd nTot, = = °
1 1 X'Q0) (@) 1 X[~ —Q u@) 1 X'Q5 u(d) —u]
= |z~ +— L e a—
Oy Opo nT T30 nT T30 nT

Using u(f) = Y — X0 = u+ X (6 — ), we can readily show that H%X’Q(S)_lu(é) = Op(1), which implies

that the first term in the last expression is 0,(1) by Theorem 4.1. The second term is 0,(1) by arguments
analogous to those used above. The third term is o3 (nT) "' X'Q(8) ' X (0o —0) = 0,(1)||60 —0|| = 0,(1).
AL 22LT(W) 1 2L () _

It follows that —= 575 — aaa52~ = 0p(1). Now, write
1 [9%2L7(v)  O%L"(3o) 1 =g = 1, 1/ 1 1
B —— — = —u(0)' Q) 'u(d)——=u'Q; ! [ -=.
nT | 0o200?2 002002 ] <ag“( VU™ u(®) a%u 0 u> + 2 <030 aﬁ)

Clearly, the second term is 0,(1) by Theorem 4.1. We can use the decomposition u(f) = u 4+ X (6 — 0)
and the consistency of 1) to show the first term is also 0p(1). This completes the proof. B

Proof of Theorem 4.3. As in the proof of Theorem 4.1, we prove the theorem by showing that

(1) anl [£o(8) — £57(8)] 2 0 uniformly in § € A, and (ii) limsup,, maxse Ne (5y) ﬁ[[ﬂzr*(é) -

LI™(8p)] < 0 for any € > 0, where T} =T + 1.
By (3.14) and (4.6), —2-[L%*(8) — L77(8)] = In62(6) — In&2(5). To show (i), it suffices to show

Y nTy

62(8) — 5%(0) = 0,(1) uniformly on A (C.15)

provided that 2(§) is uniformly bounded away from zero. By the definition of @*(§) below (3.13), we
have @*(6) = Y*(p) — X*(X*'Q LX) 1LXQ 1Y *(p) = Q1 2M*Q*~1/2Y*(p) where M* = L1, —
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Q2 X (XX ) TLX Q7 1/2 is a projection matrix. Observe that Y*(p) = Y*(po) + [Y*(p) —
Y*(po)] = X*0p + u* + (po — p)Y*; where Y*; = (014, Y”;)’. This, in conjunction with the fact that
M*Q*=1/2X* = 0, implies that

5’3(5) — n,; ”‘((5) Q*—l *((5) — nLTlY*(p)/Q*—l/QM*Q*—l/Qy*(p)
= e+ (po — p) YT EMIQ T 2wt 4 (po — p)Y ) (C.16)

By (4.4) and the above expression for Y*(p), we have
6(6) = [E (X" ' X*)] T E [X7Q Y (p)] = b0 — 67 (9),
where 6%(8) = (p — po) [E (X*’Q*_lX*)]_1 E (X*Q*~'Y*)). Then by the definition of u*(6, p) after

(3.12),
W (0(8).p) = Y™ (p) — X*0(5) = X0 (8) +u" + (po — p) V7.

By (4.5),
5,0) = anlE {[X*O*((S) +ut + (po — p)Y QX% (S) + ut + (po — p) Y]}
- nT1 E[v*(8)] + 70" (8) B(X* Q" 71X*)6* (8) + 2506% (5) B(X "~ 1Y™)
= PO+ ﬁ"xT"e*( VE(XQ Y, (C.17)

where v*(8) = [u* + (po — p)Y*, )V~ u* + (po — p)Y*,]. Using (C.16)-(C.17), and Q*~1/2M*Q*—1/2 =
Q- XX QLX) LX) we have
G3(8) — 2(9)
= a0 (0) = B (O]} + Q3. (8) Q54 (0) 7' Q5u(8) + 2 (po — p) Q3. (6)' Q3. (8) 71 Q3 _, (9)
+ (po —p)2{Q;‘cy,l(é)’Q;‘;x(é)‘lQ;‘;y,l(5) ~ E[Q;,_, () I{E Qs 0} ElQs,_ 1(5)]}
= 10, (8) + 15(6) + 2(po — p)IL;5(8) + (po — p)*10;,4(8), say,

where Q7,(0) = = X7 1 X", Q1,(0) = = XY@ u*, and Q3 | (0) = A= X*Q* 'Y, We prove
(C.15) by shovvlng that I (9) = op( ) uniformly in § for s = 1,2,3, and 4.

We can decompose IT%(9) as follows

H*

nl

) = sy [ B )] g [y, - B (v )
+ ﬁ/’() p) |: */Q*—ly_*l _E(u*/Q*—ly_*l)]

nTy

= 10,1 1(0) + 1074 5(6) + IT74 3(6), say.

For IT;;, (0), we can show that E[IT}; 1(6)] = 0 and E[IT},; ;(6)]* = O(n~") as in the proof of Lemma B.5.
So the pointwise convergence of Il 1(d) to 0 follows by Chebyshev inequality. The uniform convergence

holds if we can show that II};; ;(d) is stochastic equicontinuous. Let 4, 5 € A. By Cauchy-Schwarz

inequality,
IHnu() T151.2.(0)]
- {2 0) 19 (0) — 202 (@) [wrw — Bluru)]}|
< A {u[Qe)! (Q*(S)—Q*((S))Q*(S)—Q (Q*((S)—Q*((S)) Q0 (5) "} lwrw — B (uwu)|

IN

Pasa (2 @) 72 17 (8) = 2 0| gy e = B (wru)
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Straightforward moment calculations and Chebyshev inequality lead to \/7171 |lu*u* — E (u*u*)|| =

0O,(1). In addition, ﬁ | (6) = (6)|| — 0 as |6 —6|| — 0. Thus, {II;, ,(6)} is stochastically
equicontinuous by Theorem 21.10 in Davidson (1994). Consequently, IT};; ;(d) = o,(1) uniformly in 4.
Similarly, IT},; ((6) = 0,(1) uniformly in ¢ for s = 2, 3. It follows that IT},; (§) = 0,(1) uniformly in é.

To show II%,(0) = 0p(1) uniformly in d, we first argue that Q*(9) is positive definite uniformly in 6,

i.e., infsea Amin (2(0)) > ¢* for some ¢* > 0. Let * = (am,u’,u’)/. We have,
_ L 2r (b a (L/ @1 )
Q* 6 — E * =/ — (buam n pYUm\bm n

( ) (U (% ) < (buam(bT ® In) 0 y

which is positive semidefinite uniformly in §. By Theorem 8.4.11 in Bernstein (2005) and (C.4), Amin (¢¢c In+
b (B'B)™1) > ¢¢ + biAmin (B'B)™1) > ¢¢ + me;2 > 0 uniformly in § as ¢ is positive and bounded
away from 0 and by, > 0, implying that ¢¢I, + b, (B'B)~! is positive definite uniformly in 6. Noting

Q*(0) is equal to Q*(8) with its upper-left (n,n)-submatrix added by a uniformly positive definite matrix
é¢In+by(B'B)~1, we can apply Fact 8.9.19 in Bernstein (2005) to conclude that Q* () is positive definite

uniformly in §. Similarly, we can readily show that

SUP Amax (2°(8)) < sup Amax(Q27(6)) + Sug Amax (¢¢In + b (B'B) 1))
€

fEA fEA
< SUP Amax(Q°(9)) + sup ¢¢ + bm()\min(B/B))_1 < c*, say.
fEA fEA
Next, write
1 / 1 X'X X'z Opxk 1 X0 zm(p) xHX i
n—'I'lX* X* = n—T'l 7'X 7'7 quk + 7’7,—1—'1 zm(p)/xo Zm(p)/zm(p) Zm(p)X

</ S/ =15
X'zo X'zm (p) X'x Ok xp Okxq Ok xk

= Ai(p) + A2(p), say.

Noting that A;(p) is a block triangular matrix, its eigenvalues are those of the square matrices on the
diagonal direction. By Assumption R*(iv), the minimum of these eigenvalues are bounded away from 0,
say by ¢,., uniformly in p. Similarly, the minimum eigenvalues of As(p) is 0 uniformly in p. It follows

that inf, )\min(ﬁX*’X*) > inf, [Amin (A1(p)) + Amin (A2(p))] > ¢, > 0. Consequently,

inf Amin (Q%(6)) = inf Amin ( L X*’Q*—lx*) > 2 inf ) A (LX*/X*) > l¢

fEA SEA nTy nT: Con > 0. (C18)

Next, noting that E[Q%,(6)] = 0 and Var(Q%,(8)) = O(n™1), we have Q%,(d) = 0,(1) by Chebyshev in-
equality. In addition, it is straightforward to show that Q% (9) is stochastic equicontinuous. So Q%,(0) =

0p(1) uniformly in 6. We have, |I1%5(5)| < [infsea Amin (Q%,(0))] 71 |Q%.(8)]|> = 01(1) uniformly in 4.

TT

For IIf4(d), we have ITI%4(8) < HQ;U((S)HHQ;x(é)_lHHQ;yfl(é)H = 0p(1) uniformly in ¢ as one can
readily show that Q3  (6) = O,(1) uniformly in 9.
For II7 4 (0), we have

,0) = {Qh, , () —EQ;, (0]} Q6)'Qk, , ()

+E[Q, (0] Q5. (0) " {E[Q5,.(0)] — Q1. (0)} {EQ5 ()]} Q3 (0)
+E[Q, , O E Q5. ()] {Q5,_, (6) — E[Q;, ,(8)]}

07,4 1(0) + 154 5(8) + 1154 5(6), say.
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We can readily show that Q3,  (6) — E[Q}, ,(6)] = o0p(1) uniformly in ¢ by Chebyshev inequality

TY—1
and the arguments of stochastic equicontinuity. This, in conjunction with (C.18) and the fact that

*
TY—1

that 1T}, (0) = o0,(1) uniformly in ¢ for s = 2,3. Thus II} () = 0,(1) uniformly in . This completes
the proof of (i).

(6) = Op(1) uniformly in ¢, implies that 1T}, ;(0) = 0,(1) uniformly in ¢. Similarly, we can show

The proof of (i) is analogous to that of part (i¢) in the proof of Theorem 4.1 and we only sketch
the major differences. First, by the use of an auxiliary process Y® that has the error term U® being
N(0,020%(5)) and independent of (X,Z), we can apply Jensen inequality and the fact that 62(5) =

anlE[u*’Qg_lu*] = n“TOtr (2571) = 02, by (C.17) to show that

LI™(8) < L™ (8g) for any § € A. (C.19)

As before, we show that - 1 E”*((S) is uniformly equicontinuous on A by showing the uniform equicon-
tinuity of - log |Q2*(0)] and log [62(6)] on A. Let 6; and 62 be in A. By the mean value theorem,
log [ (61) | — log |Q* (62) | = (81og |2* (0) |/8(5)/ (61 — d2), where § lies elementwise between d; and do.

ote that 1 01 |Q*(5)| 1 89*(5)
0og * —1
— Y= = Q I
n21 8(50‘) nllt < (6) 8(50‘) >

where d;) denotes the jth element of ¢, j = 1,2, 3,4. We can use the explicit expression of 2*(§) in (3.11)

1 9log|Q"(9)]
and show that WIL 00,

equicontinuous in § on A. As in the proof of Theorem 4.1, we can readily verify by contradiction that

2
v

on A by showing that 62(9) is uniformly equicontinuous on A. By (C.17), we have

= O(1) uniformly in ¢ for each j. This implies that log|Q2*(d)]| is uniformly

52(6) is uniformly bounded away from zero on A, and prove that log[2(§)] is uniformly equicontinuous

6’5(6) — n’}l E(u*/Q*—l *) n,} 9*(6) (X*’Q*_lX*)Q* (5) + ME(Y*/ Q*—ly_* )
n? 9*(6) (X*/Q*—l *>+ fﬂo )U E(Y*/Q*_lu) 2 9*(6) (X*/Q*—ly*)

We can show the uniform equicontinuity of 2(§) by showing that of each of the six terms on the right

hand side of the last equation. Using 62(dp) = 02, again, we have

T LT (0) — LI (80)] = gnTl {log [©25] — log [©27(0 |} +3 {10g (60)] —log[2(8)] }
= 2nT {log |2, | — log|a2(0)2*(6)|} -

We can show that the identification uniqueness condition holds by using the uniform equicontinuity of

LI7(6) and a counter argument under Assumption R(iv*). B

Proof of Theorem 4.4. The proof is analogous to that of Theorem 4.2, but follows mainly from
Lemmas B.12-B.13. &

Proof of Theorem 4.5. As in the proof of Theorem 4.1, we prove the theorem by showing that (¢)
T L1 (0) = L1 (d0)] < 0

nTl [£5(8)— £ (6)] 2> 0 uniformly in § € A, and (ii) limsup,, . MaXse Ne (50) 7

for any € > 0.
By (3.26) and (4.9)

, nTl [L1*(8) — LL(0)] = log 62(5) — log52(5). To show (4), it suffices to show

62(8) — 52(8) = 0p(1) uniformly on A (C.20)
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provided 2(6) is uniformly bounded away from 0. By the definition of Au(8) below (3.25), we have
Au(d) = AYT(p) — AXT(AXVQI-TAXT)TTAXTQI-TAYT(p) = QFV2MTQT-1/2AYT(p) where MT =
L= 12AXTAXTQITAXT) "TAXTQT~1/2 is a projection matrix. Observe that AYT(p) = AYT(pg)+
[AYT(p) — AYT(po)] = AXT0y + Au+ (po — ,O)AY_T1 where AY_Tl = (01xn, AY), ..., Aylp_y)’. This, in
conjunction with the fact that MTQI~1/2A Xt = 0, implies that

62(8) = nTl - Au(5) QT Au(d) = =AY T (p) QF12MTQT12AY T (p)
= o [Aut(po — p)AYT Q2 MIQT2[Au + (po — p)AYT]. (C.21)

By (4.7) and the above expression for AYT(p), we have §(8) = [E(AXVQITAXH] T E[AXTQI-1AY T (p)]
= 0y — 67(0), where 81(8) = (p — po)[E(AXTQITAXT) 1 E(AXVQI"'AYT,). Then by the definition
of Au(f, p) after (3.24), Au(6(3), p) = AYT(p) — AXTA(8) = AXT0T(8) + Au+ (po — p)AY,. By (4.8),

52(8) = LE[uf (6)] + L2220 (6) E(AXT'QITAYT)). (C.22)

nT

where vt (8) = [Au+(po—p)AY T, QT [Au+ (po — p)AY T, ]. Using (C.21), (C.22), and QI—1/2p1Q1—1/2
= Q-1 - QI IAXT(AXTQTTAXT)TLAXTQT-1 | we have

G3(6) — 02(5)
= 77 {v'() 0)} + QL.(0) QL.(6) "1 QL.L(0) + 2(po — p)QL.(0)' QL) QL , (9)

+(po = p {Qxy L0)QL.(5)7'QL, (0) — E[QL, ,(O)H{EIQL.()]}E[QL, ()]}
= 10, (6) + IT15(6) + 2(po — p)II}5(8) + (po — p)?II4(6), say,

where Q1 (8) = 1 CAXVOITIAXT QT (6 ) == = AXTQT Au, and me (0) = HLTAXT’QT_lAY_Tl. We
prove (C.20) by showmg that II},,(6) = 0,(1) unlformly in § for s = 1,2,3, and 4. Analogously to the
analysis of II%, (6) in the proof of Theorem 4.3, we can show that I (§) = 0,(1) uniformly in 6. By
Assumptions G2 and F(iii),

‘Hng ‘ < [1nf5€A )\mm(Q ] ||Q || [ max >]—1 )\mm( AXT/AXT) ||QT ||2

= 0(1)0p(1)op(1) = op(l) uniformly in §
as we can readily show that Q1 (8) = 0, (1) uniformly in 8. For II! 4(4), we have

I1},5(8) < 1QL.(G) QL (8) " 1Q%, _, (8)II = 0p(1) uniformly in §

as one can readily show that QI (6) = O,(1) uniformly in d. The analysis of II! ,(§) is analogous to

TY-—1

that of IT%, (). This completes the proof of (4).

The proof of (i) is analogous to that of part (i7) in the proofs of Theorem 4.1 and 4.3 and we only
sketch the major differences. First, by the use of an auxiliary process, Jensen inequality, and the fact
that 62(dp) = 2= E[Aw'QT T Au] = 2, by (C.22), we can show that

LI*(8) < LI*(8) for any 6 = (A, p, 6¢)' € A

As before, we show that —=L£/*(§) is uniformly equicontinuous on A by showing the uniform equicon-

nT

tinuity of —=log|Q(6)| and log[62(5)] on A. Noting that an% ;tr(QT(é)_l%T—)) where
J
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d(j) denotes the jth element of 6, j = 1,2,3, we can use the explicit expression of QF(8) in (3.23) and

1 9log |Q1(5)]
show that WT 00,

equicontinuous in § on A. As in the proof of Theorem 4.1, we can readily verify by contradiction that

2
v

on A by showing that 62(d) is uniformly equicontinuous on A. Now, by (4.8) and (C.22) we have

= O(1) uniformly in § for each j. This implies that log|Q'(§)| is uniformly

52(6) is uniformly bounded away from zero on A, and prove that log[52(§)] is uniformly equicontinuous

52(0) = ZE(AuQt1Au) + L0t (6)EAXTQIAXTH(5) + Ll pavTat-tay)

n T

+-2.01(0) E(AX QI Au) + 22022 BAY T Q1 Au) + 2,01 (5) E(AXTQITTAYT ).

We can show the uniform equicontinuity of 62(8§) by showing that of each of the six terms on the right

hand side of the last equation. Using 52(dy) = 02, again, we have

HRLI0) = LI (00)] = 5o {log|Qh| — log |01 (0) |}+ {10g (00)] — log[a3(8)] }
= QnT{lO‘glavOQ | _1Og|0 |}

Then we can show the identification uniqueness condition by using the uniform equicontinuity of £1*(9)

and a counter argument under Assumption F. l

Proof of Theorem 4.6. The proof is analogous to that of Theorem 4.2, but follows mainly from
Lemmas B.14-B.15. &

Appendix D: Proofs of the Propositions in Section 5

Proof of Proposition 5.1
Decompose the score component for 6y according to (3, ~;) and po: o, 2XQ uw and 0,2V’ Qg L,
where X = (X, Z). Write (B.3) as Y_1 = n_; +(J,, ® In)u, where n_, is the exogenous part of Y_; and

Jp, is given in (B.4). The score vector S" (1) is thus expressed in terms of ¢ and u,
%X’Qalu
§"(%0) = 4 g0 u+ ! (T, @ 1)
ﬁu’Pwu - %tr(PwQO), for w = 02, \o, b0,

where P, = U%Qal, Qal(IT ® Ao)le, and QEI(JT ® In)Qal, or in terms of 1y and r through r =
v0

(i, rh) =Ur ® Z_%)u where ¥ = 3(Xo, ¢u0). The score vector is seen to contain three types of
terms quadratlc r'Qr, linear R'r and constant C The result follows if - L [Var® (R'#")—Var(R'r)] = 0,(1),
. [Var® (Y Qi) — Var(r'Qr)] = op(1), and nT [Cov® (R'#, #¥' Q#) — Cov(R’r,r’Qr)] = 0p(1), where R
and Q are the QMLEs of R and Q. Similarly, Y and S used latter are the QMLESs of ¥ and S.
Without loss of generality, let 7' = 2. Thus, r = (r},75)’ and © = (7#},75)’. Note that #¢ and 7}
are two matched bootstrap samples, corresponding to n random draws from the rows of {7, 72}. Note
also that r; = Ea%ut = 20 l,u + E 230 vy and the matrices g and By depend malnly on the spatial
weight matrix W. Let w;; and w;; be, respectively, the elements of ¥ =3 and X, , and let w;; be the
diagonal elements of X L We Con51der standard W matrices so that the following results maintain: (7)
for k > 3»21’,]‘ ~ > Wk andzww o~ Y wik and (i) for k > 3, s2(wh) = o(1) and 82 (w}F) = o(1),

and (#44) SQ(WH) = o(1), where, e.g., s?(wk) denotes the sample variance of {wk}.

38



To Appear in Journal of Econometrics 185 (2015) 230-258
DOI: http://dx.doi.org/10.1016/j.jeconom.2014.11.002

Letting R = (R}, R})’, we have for the linear terms, Var(R'r) = 02,(R}R1 + R, R2) + 20301%’12511%2,
and Var’(R'#*) = 62(R, R, + R,Ry) + 25 2tr( YR Ry. It follows that

LT[Varb(l?l’f‘b) — Var(R'r)] = nT MOR’ [Z_ — —tr( hr, n]Ra + 0p(1) = 0,(1),

for R/ = %X’Qal(IT ® Zé), or U—%On’_lﬁal(IT ® Zé), by Assumption G1(iii) and the result (4ii) above.
For the quadratic terms, partitioning @ as {Q:s} according to t,s = 1,2, we have, Var(r'Qr) =
Var(ri Q1171 + 15Q22r2 + r1 Q1212 + 15Q2171) = Var(riQ11r1) + - - - + 2Cov(ri Q1171, r5Q2272) + - - -, and
similarly, Var® (3?' Q%) = Var®(#Y' Q117%) +- - -4+2Cov? (7 Q1178 78 Q2278)+- - - . It boils down to show that
%[Varb(f[f,@nf[f) — Var(riQuir1)] = Op(l), %[Covb(flfléllflf,fg’@w?ﬁg) — Cov(riQi171, r5Q22r2)] = Op(l),
etc. We formally prove these two terms, and others follow in a similar fashion. It is easy to show that

VaI‘b(TAll)I@HTAzl)) = l‘%rl qA/H(jll + 631tr[§3§11§](§11 + S’\il)], and
Var(riQuir1) = Kusii811 + KesTist + onotr[Z0S1150(S11 + Sty

1 1 R
where S11 = X, Q1% 2, s11 = diagv(S11), s§; = diagv(Bé_lsuBO_l), ¢11 = diagv(Q11), and 62 and
Ry, are the 2nd and 4th sample cumulants of 7#1. It follows that

L [Var® (7% Qu1}) — Var(u) Siiwn)] = 2 [frdiydun — ushysin — kosihsiy] + op(1)
Furthermore, 1¢{,G11 = Lq¢{,q11 + 0,(1), and the results (i)-(iii) above lead to the following:
"%T‘ = %Z?:lféllz_g&é = E&ZZ]wZ] +JZZ]wZ] +OIJ( )

#q/lqu Zi,j w?j 1511511 = nz 411911 Z w L Z Q11 zzwzz + o(1) = o(1), and
#q{ﬂ]ll Zi,j wi] - lsﬁsu = nz 411911 Ziwu Z q11 zzw t 4+ o(1) = o(1).
It follows that L [Var® (7' Q117}) — Var(u}S11u1)] = o,(1).
Now, Cov(riQii71,r5Q20r2) = KuSi S22 + aﬁotr[Sll(ng + S%5)], and Covb(f’{'Qufl{,fngggfg) =

(b2 = 03 — 2p7) 411022 + ﬁ%tr[@u(@w + Q)] where p1 = EP(#)h) = o7o(5 30, @ii) + o0p(1), and
p2 = EP((7};75,)2) = k(£ wi;) + oo+ 2000(% 32, @) + 0p(1). Thus, by the results (i)-(iii) above,

l[COVb(TAzl),@HTA[f, f‘SIQ\QQTAg) — COV(U&SHul, U//QSQQU/Q)]
4
= (g1 gaor Do s Wiy — $11822) + TE0tr[(@2Qu1 — Bg ' QuiSg ) (Qaz + Qba)] 4 0p(1) = 0p(1),

where @ = %Ziw“.
Finally, the proof of nLT[Covb(fA{'f'b, Qtb) — Cov(R'r,r'Qr)] = 0p(1) can be carried out in the same
manner but is simpler. We give detail below for the most complicate term, and others follow.
Covb( R Qurl) Cov(Ryr1,m1Q11m1) = Y RiG11 — R1%, (%811 + 7By s,
where 4, is the 3rd sample cumulant of 71, and +y,, and v, are the 3rd cumulants of 1; and vy, respectively.

It is easy to show that 4, = L 3. 7% = L3773 + 0, (1) = y.(% Wi+ (i i;wi%), and that,

D -1 DI A * -1 — *
%[R/ﬂjll(% i.7 wg,y) R1Y ?s11] = 0p(1), and %[R/ﬂhl(% i.j wi,?])‘) — R1%, B, 1511] = 0p(1).

The result thus follows. B
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Proof of Proposition 5.2. From (3.10), yo = 1o + up where 1y denotes the exogenous part of yy. The
key element uy = —(a,,7'Z’, Y )" in the score function S™ (¢)9) can be expressed as —n*; — (Jp*' @I, )u*,

T=1 pT=2 .. 1,0)" on its right and a row of zeros at its

where 7 extends J, by adding a column (p
bottom, and —n*; is the exogenous part of u;(f, po). Thus, S™ (1)) is expressed in terms of 1o, and

linear and quadratic forms of u*. The proof proceeds as that of Proposition 5.1. H

Proof of Proposition 5.3. From (3.19), Ay; = An; + Ad; where An; denotes the exogenous part of
Ayy. The key element Au, = —(0), 1, Ay;, -+, Ayfp_;) in the score function S/ (1) can be expressed
as —An_; — (J, ® I,)Au, where —An_, denotes the exogenous part of Au,. Subsequently, Sf (ahg) is
expressed in terms of ¥y, and linear and quadratic forms of Au. The proof proceeds as that of Proposition
5.1. 1
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Table 1a. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Errors

true m =0 true m =6
P m =20 m =26 m = 200 m=20 m==6 m = 200
n=>50,T =3
5.0 5.0266[0.334] 4.9604[0.338] 5.0030[0.328] | 4.5591[0.378] 4.9940[0.411] 5.0988[0.411]
1.0 1.0011[0.040] 0.9917[0.045] 0.9981[0.045] | 0.9626[0.041] 0.9980[0.040] 1.0057[0.039]
1.0 0.9951[0.345] 0.9852[0.350] 0.9927[0.352] | 0.7418[0.365] 0.9384[0.391] 0.9790[0.395]
0.8 0.7991[0.023] 0.8071[0.024] 0.8018[0.022] | 0.8238[0.015] 0.8015[0.017] 0.7963[0.016]
0.5 0.4827[0.099] 0.3023[0.115] 0.2868[0.114] | 0.4732[0.101] 0.4886[0.098] 0.4868[0.098]
1.0 0.9681[0.147] 0.1469[0.116] 0.0214[0.055] | 0.8648[0.145] 0.9528[0.158] 0.9280[0.161]
1.0 0.9834[0.072] 1.2563[0.087] 1.2805[0.088] | 1.0056[0.076] 0.9880[0.073] 1.0019[0.076]
5.0 4.9785[0.357] 4.9683[0.400] 4.9719[0.400] | 4.7922[0.353] 5.0164[0.352] 5.0162[0.352]
1.0 1.0003[0.040] 0.9964[0.045] 0.9967[0.045] | 0.9780[0.041] 0.9981[0.039] 0.9981[0.039]
1.0 0.9937[0.323] 1.0022[0.328] 1.0028[0.328] | 0.8910[0.352] 0.9374[0.360) 0.9370[0.361]
0.4 0.4015[0.034] 0.4025[0.044] 0.4019[0.044] | 0.4271[0.032] 0.4009[0.030] 0.030]
0.5 0.4799[0.103] 0.3694[0.141] 0.3690[0.142] | 0.4765[0.104] 0.4912[0.093] 0.4911[0.093]
1.0 0.9609[0.146] 0.6380[0.229] 0.6364[0.231] | 0.9141[0.155] 0.9725[0.148] 0.9712[0.149]
1.0 0.9838[0.074] 1.1272[0.137] 1.1280[0.138] | 1.0056[0.080] 0.9960[0.074] 0.9964[0.074]
5.0 5.0096[0.337] 4.9719[0.352] 4.9719[0.352] | 4.9061[0.328] 5.0103[0.328] 5.0103[0.328]
1.0 0.9987[0.040] 0.9947[0.042] 0.9947[0.042] | 0.9872[0.040] 0.9991[0.039] 0.9991[0.039]
1.0 0.9944[0.336] 0.9805[0.337] 0.9805[0.337] | 0.9481[0.356] 0.9897[0.361] 0.9897[0.361]
0.0 -0.0014[0.041] 0.0069[0.047) 0.0069[0.047] | 0.0199[0.043] -0.0021[0.042] -0.0021[0.042]
0.5 0.4783[0.106] 0.3977[0.114] 0.3977[0.114] | 0.4815[0.102] 0.4929[0.091] 0.4929[0.091]
1.0 0.9659[0.151] 0.7313[0.178] 0.7313[0.178] | 0.9342[0.157] 0.9691[0.148] 0.9691[0.148]
1.0 0.9808[0.076] 1.0741[0.102] 1.0741[0.102] | 0.9945[0.079] 0.9624[0.066] 0.9624[0.066]
n=100,T7 =3

5.0 4.9921[0.252] 4.9129[0.258] 4.9423[0.248] | 4.5604[0.270] 5.0174[0.299] 5.1460[0.300]
1.0 0.9995[0.029] 0.9892[0.034] 0.9932[0.033] | 0.9655[0.029] 0.9997[0.029] 1.0090[0.029]
1.0 1.0019[0.243] 0.9822[0.242] 0.9916[0.242] | 0.9112[0.227] 1.0126[0.240] 1.0414[0.244]
0.8 0.8003[0.017] 0.8092[0.018] 0.8058[0.016] | 0.8200[0.009] 0.7993[0.010] 0.7935[0.010]
0.5 0.4852[0.074] 0.2674[0.086] 0.2500[0.085] | 0.4857[0.068] 0.4872[0.067] 0.4865[0.067]
1.0 0.9788[0.101] 0.1828[0.094] 0.0279[0.056] | 0.9083[0.101] 0.9806[0.115] 0.9719[0.120]
1.0 0.9941[0.052] 1.2885[0.062] 1.3150[0.060] | 1.0075[0.053] 0.9940[0.052] 1.0025[0.053]
5.0 4.9941[0.247] 4.9271[0.305] 4.9318[0.306] | 4.7258[0.277] 4.9982[0.273] 4.9982[0.273]
1.0 0.9991[0.031] 0.9899[0.040] 0.9904[0.040] | 0.9730[0.031] 1.0012[0.030] 1.0012[0.030]
1.0 1.0055[0.242] 0.9888[0.245] 0.9897[0.245] | 0.9384[0.240] 1.0127[0.250] 0.250]
0.4 0.4004[0.025] 0.4104[0.037] 0.4098[0.037] | 0.4316[0.023] 0.3996[0.022] 0.3996[0.022]
0.5 0.4916[0.069] 0.3706[0.099] 0.3701[0.100] | 0.4885[0.074] 0.4859[0.069] 0.4858[0.069]
1.0 0.9885[0.103] 0.6050[0.175] 0.6033[0.177] | 0.9141[0.104] 0.9808[0.101] 0.9798[0.101]
1.0 0.9926[0.053] 1.1742[0.118] 1.1752[0.118] | 1.0120[0.054] 0.9948[0.051] 0.9951[0.051]
5.0 5.0098[0.265] 5.0200[0.271] 5.0200[0.271] | 4.8775[0.257] 5.0054[0.254] 5.0054[0.254]
1.0 1.0011[0.032] 1.0023[0.033] 1.0023[0.033] | 0.9845[0.032] 0.9997[0.030] 0.9997[0.030]
1.0 0.9923[0.232] 0.9930[0.233] 0.9930[0.233] | 0.9819[0.240] 1.0086[0.244] 1.0086[0.244]
0.0 0.0000[0.031]  -0.0021[0.033] -0.0021[0.033] | 0.0236[0.033] -0.0010[0.031] -0.0010[0.031]
0.5 0.4860[0.069] 0.4257[0.073] 0.4258[0.073] | 0.4866[0.072] 0.4942[0.063] 0.4942[0.063]
1.0 0.9771[0.107] 0.8260[0.117] 0.8261[0.117] | 0.9505[0.109] 0.9851[0.101] 0.9851[0.101]
1.0 0.9957[0.054] 1.0535[0.068] 1.0535[0.068] | 1.0015[0.054] 0.9778[0.045] 0.9778[0.045]
Note: ¥ = (70, 8,71, P, X\, 0, 00)’. Parameters values for generating @¢: 6, = (.01,.5,.5,2,1) (see Footnote 13).
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Table 1b. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Mixture

true m =0

true m =6

P m =20 m =26 m = 200 m=20 m==6 m = 200
n=2>50,T=3
5.0 5.0194[0.342]  4.9734[0.350] 5.0140[0.340] | 4.5754[0.416]  4.9935[0.429] 5.0941[0.430]
1.0 1.0005[0.039] 0.9948[0.047] 1.0006[0.047] | 0.9656[0.041] 0.9984[0.039] 1.0057[0.039]
1.0 0.9874[0.335] 0.9778[0.339]  0.9858[0.340] | 0.7650[0.383] 0.9558[0.405] 0.9981[0.410]
0.8 0.7992[0.022] 0.8047[0.024]  0.7998[0.022] | 0.8225[0.017] 0.8011[0.016] 0.7960[0.016]
0.5 0.4788[0.100] 0.2652[0.130]  0.2489[0.129] | 0.4766[0.099] 0.4916[0.097] 0.4902[0.096]
1.0 0.9544[0.249] 0.1551[0.120]  0.0283[0.061] | 0.8470[0.228] 0.9330[0.259] 0.9101[0.260]
1.0 0.9792[0.145] 1.2519[0.163] 1.2776[0.167] | 0.9984[0.147] 0.9821[0.143] 0.9954[0.147]
5.0 4.9914[0.340]  4.9151[0.373]  4.9190[0.374] | 4.8085[0.368] 5.0216[0.361] 5.0215[0.361]
1.0 0.9990[0.042] 0.9887[0.047]  0.9891[0.047] | 0.9814[0.040] 1.0002[0.038] 1.0002[0.038]
1.0 1.0152[0.332] 1.0061[0.333] 1.0067[0.333] | 0.8921[0.357] 0.9384[0.361] 0.9381[0.361]
0.4 0.4003[0.033] 0.4120[0.041]  0.4114[0.041] | 0.4265[0.033] 0.4016[0.030] 0.4016[0.030]
0.5 0.4784[0.099] 0.3775[0.115]  0.3770[0.116] | 0.4804[0.097] 0.4914[0.090] 0.4913[0.090]
1.0 0.9488[0.256] 0.5328[0.299]  0.5307[0.302] | 0.8779[0.250] 0.9387[0.249] 0.9375[0.249]
1.0 0.9799[0.144] 1.1476[0.183] 1.1485[0.184] | 0.9895[0.148] 0.9770[0.138] 0.9774[0.138]
5.0 5.0179[0.343] 5.0602[0.344] 5.0602[0.344] | 4.9083[0.343] 5.0085[0.339] 5.0085[0.339]
1.0 0.9990[0.044] 1.0016[0.044] 1.0016[0.044] | 0.9884[0.040] 1.0000[0.038] 1.0000[0.038]
1.0 0.9981[0.343] 1.0043[0.344] 1.0043[0.344] | 0.9497[0.346] 0.9928[0.349] 0.9929[0.349]
0.0 -0.0009[0.043]  -0.0094[0.043]  -0.0094[0.043] | 0.0197[0.045] -0.0017[0.042] -0.0017[0.042]
0.5 0.4822[0.097] 0.4484[0.096]  0.4484[0.096] | 0.4808[0.100] 0.4926[0.089] 0.4926[0.089]
1.0 0.9469[0.259] 0.8501[0.259]  0.8500[0.259] | 0.9081[0.247] 0.9435[0.246] 0.9434[0.246]
1.0 0.9784[0.144] 1.0170[0.162] 1.0170[0.162] | 0.9871[0.145] 0.9475[0.124] 0.9475[0.124]
n =100, =3

5.0 4.9975[0.265]  4.9224[0.276]  4.9695[0.262] | 4.6100[0.278] 5.0438[0.335] 5.1446[0.290]
1.0 1.0003[0.029] 0.9916[0.034]  0.9974[0.033] | 0.9662[0.029] 1.0024[0.029] 1.0118[0.029]
1.0 1.0089[0.239] 0.9960[0.239] 1.0040[0.240] | 0.9023[0.226] 0.9941[0.242] 1.0155[0.245]
0.8 0.8005[0.017] 0.8086[0.019]  0.8035[0.016] | 0.8197[0.010] 0.7981[0.013] 0.7931[0.010]
0.5 0.4880[0.072] 0.2826[0.083]  0.2658[0.084] | 0.4787[0.072] 0.4749[0.072] 0.4735[0.072]
1.0 0.9621[0.180] 0.1625[0.098]  0.0201[0.048] | 0.8933[0.157] 0.9873[0.248] 0.9648[0.190]
1.0 0.9945[0.107] 1.2741[0.115] 1.2990[0.118] | 1.0052[0.107] 0.9896[0.104] 0.9969[0.105]
5.0 4.9962[0.258]  4.8481[0.297]  4.8535[0.298] | 4.7778[0.262] 5.0177[0.259] 5.0181[0.259]
1.0 1.0009[0.031] 0.9813[0.038]  0.9820[0.038] | 0.9755[0.032] 1.0003[0.030] 1.0003[0.030]
1.0 1.0026[0.239] 0.9616[0.240]  0.9630[0.240] | 0.9453[0.225] 0.9933[0.231] 0.9934[0.231]
0.4 0.4002[0.026] 0.4229[0.034]  0.4221[0.035] | 0.4277[0.023] 0.3989[0.022] 0.3989[0.022]
0.5 0.4878[0.073] 0.3309[0.089]  0.3308[0.090] | 0.4867[0.072] 0.4825[0.069] 0.4824[0.069]
1.0 0.9746[0.183] 0.4723[0.195]  0.4706[0.197] | 0.9108[0.178] 0.9695[0.188] 0.9687[0.188]
1.0 0.9943[0.103] 1.1997[0.125] 1.2001[0.126] | 1.0052[0.100] 0.9887[0.096] 0.9890[0.096]
5.0 4.9946[0.270] 5.0102[0.279] 5.0103[0.279] | 4.9119[0.266] 5.0339[0.264] 5.0339[0.264]
1.0 0.9998[0.032] 0.9996[0.034]  0.9996[0.034] | 0.9865[0.032] 1.0016[0.031] 1.0016[0.031]
1.0 1.0004[0.249] 0.9802[0.249]  0.9802[0.249] | 0.9565[0.238] 0.9816[0.242] 0.9816[0.242]
0.0 0.0001[0.033]  -0.0008[0.036] -0.0008[0.036] | 0.0208[0.033] -0.0032[0.031] -0.0032[0.031]
0.5 0.4877[0.071] 0.4050[0.090]  0.4050[0.090] | 0.4912[0.072] 0.5024[0.062] 0.5024[0.062]
1.0 0.9638[0.186] 0.8049[0.194]  0.8050[0.194] | 0.9518[0.182] 0.9871[0.182] 0.9872[0.182]
1.0 0.9864[0.105] 1.0428[0.128] 1.0427[0.128] | 0.9942[0.108] 0.9641[0.092] 0.9641[0.092]

Note: ¥ = (70, 8,71, P, X\, 0pu,00)’. Parameters values for generating x4: 6, = (.01,.5,.5,2,1) (see Footnote 13).
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Table 2a. Monte Carlo Mean and

SD, and Bootstrap Standard Errors, m =0

Mean SD  seSCb seHS seHSb | Mean SD  seSCb seHS  seHSb
n P T+1=4 T+1=8
Normal Errors
50 5.0 | 5.0155 0.3595 0.3257 0.3428 0.3759 | 5.0040 0.2736 0.2436 0.2695 0.3149
1.0 | 1.0003 0.0422 0.0373 0.0403 0.0443 | 0.9999 0.0229 0.0203 0.0222  0.0246
1.0 | 0.9949 0.3462 0.3321 0.3291 0.3288 | 0.9996 0.3017 0.2981 0.2978  0.2988
0.5 | 0.4987 0.0332 0.0312 0.0321 0.0342 | 0.4995 0.0150 0.0140 0.0149 0.0162
0.5 | 0.4775 0.1035 0.1037 0.1003 0.1104 | 0.4973 0.0608 0.0632 0.0588  0.0631
1.0 | 0.9998 0.3622 0.3885 0.3543 0.3692 | 0.9734 0.2657 0.2727 0.2543  0.2621
1.0 | 09775 0.1441 0.1416 0.1455 0.1686 | 0.9883 0.0822 0.0821 0.0837  0.0981
100 5.0 | 5.0021 0.2634 0.2421 0.2571 0.2797 | 5.0014 0.1860 0.1591 0.1806  0.2145
1.0 | 1.0000 0.0287 0.0270 0.0285 0.0305 | 1.0000 0.0155 0.0148 0.0160 0.0175
1.0 | 0.9949 0.2412 0.2360 0.2350 0.2351 | 1.0109 0.2168 0.2141 0.2161 0.2190
0.5 | 0.5000 0.0223 0.0211 0.0216 0.0226 | 0.4999 0.0105 0.0098 0.0105 0.0113
0.5 | 0.4896 0.0726 0.0750 0.0715 0.0766 | 0.4976 0.0398 0.0466 0.0425 0.0444
1.0 | 1.0040 0.2540 0.2636 0.2495 0.2589 | 0.9866 0.1889 0.1871 0.1815 0.1885
1.0 | 0.9899 0.1027 0.0964 0.1038 0.1227 | 0.9966 0.0602 0.0560 0.0596  0.0710
Normal Mixture Errors
50 5.0 | 5.0105 0.3450 0.3340 0.3389 0.3735 | 4.9986 0.2828 0.2555 0.2685 0.3100
1.0 | 1.0005 0.0394 0.0368 0.0398 0.0441 | 1.0001 0.0208 0.0190 0.0205 0.0224
1.0 | 0.9972 0.3300 0.3244 0.3215 0.3220 | 1.0029 0.3045 0.2977 0.2945  0.2928
0.5 | 0.4997 0.0331 0.0308 0.0316 0.0345 | 0.4998 0.0159 0.0143 0.0149 0.0161
0.5 | 0.4887 0.1011 0.0984 0.0985 0.1178 | 0.4928 0.0575 0.0584 0.0590 0.0719
1.0 | 1.0376 0.6779 0.3104 0.3636 0.5621 | 1.0135 0.5932 0.1917 0.2625  0.4643
1.0 | 0.9813 0.2916 0.0897 0.1464 0.2867 | 0.9964 0.1770 0.0413 0.0844  0.1923
100 5.0 | 5.0098 0.2541 0.2313 0.2420 0.2676 | 4.9899 0.1900 0.1671 0.1842  0.2175
1.0 | 1.0002 0.0293 0.0272 0.0290 0.0316 | 0.9997 0.0154 0.0139 0.0151 0.0164
1.0 | 0.9842 0.2397 0.2344 0.2310 0.2290 | 1.0070 0.2189 0.2115 0.2151 0.2197
0.5 | 0.5004 0.0240 0.0208 0.0218 0.0236 | 0.5002 0.0106 0.0101 0.0106 0.0114
0.5 | 0.4900 0.0696 0.0730 0.0713 0.0834 | 0.4972 0.0421 0.0440 0.0425 0.0502
1.0 | 1.0239 0.4462 0.1898 0.2532 0.4188 | 1.0078 0.3683 0.1162 0.1850  0.3578
1.0 | 0.9927 0.2081 0.0569 0.1042 0.2177 | 0.9901 0.1289 0.0265 0.0592  0.1416
Chi-Square Errors, df=5
50 5.0 | 4.9959 0.3544 0.3414 0.3420 0.3756 | 5.0178 0.3216 0.3135 0.3190 0.3535
1.0 | 0.9994 0.0408 0.0373 0.0403 0.0443 | 1.0006 0.0236 0.0220 0.0231 0.0246
1.0 | 0.9942 0.3366 0.3318 0.3287 0.3285 | 0.9943 0.3363 0.3330 0.3286  0.3258
0.5 | 0.5017 0.0334 0.0307 0.0320 0.0350 | 0.4982 0.0154 0.0148 0.0153 0.0163
0.5 | 0.4758 0.1012 0.1026 0.1005 0.1133 | 0.4959 0.0582 0.0615 0.0588  0.0651
1.0 | 1.0195 0.4533 0.3659 0.3601 0.4293 | 0.9649 0.3417 0.2488 0.2527  0.3186
1.0 | 0.9806 0.1876 0.1208 0.1460 0.2072 | 0.9895 0.1166 0.0631 0.0838  0.1273
100 5.0 | 4.9997 0.2478 0.2430 0.2455 0.2691 | 4.9919 0.1903 0.1788 0.1885  0.2209
1.0 | 0.9997 0.0286 0.0262 0.0282 0.0308 | 0.9993 0.0156 0.0143 0.0155  0.0169
1.0 | 0.9981 0.2343 0.2359 0.2352 0.2357 | 1.0062 0.2157 0.2116 0.2126  0.2143
0.5 | 0.5002 0.0216 0.0204 0.0214 0.0229 | 0.5002 0.0110 0.0104 0.0110 0.0118
0.5 | 0.4889 0.0673 0.0744 0.0716 0.0787 | 0.4974 0.0426 0.0455 0.0425 0.0458
1.0 | 1.0103 0.3043 0.2381 0.2501 0.3066 | 0.9824 0.2466 0.1653 0.1810  0.2397
1.0 | 0.9917 0.1391 0.0799 0.1040 0.1536 | 0.9946 0.0838 0.0421 0.0595 0.0934

Note: 1 = (70,871, 0, A\, u, 02). Parameters values for generating z¢
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Table 2b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD  seSCb seHS seHSb | Mean SD  seSCb seHS  seHSb
n P T+1=4 T+1=8
Normal Errors
50 5.0 | 5.0006 0.3692 0.3683 0.3677 0.3947 | 5.0104 0.2857 0.2931 0.2770 0.3033
1.0 | 0.9989 0.0371 0.0364 0.0378 0.0408 | 1.0014 0.0247 0.0253 0.0251 0.0264
1.0 | 0.9489 0.3510 0.3637 0.3626 0.3732 | 0.9917 0.3106 0.3047 0.2986  0.3001
0.5 | 0.5014 0.0275 0.0289 0.0277 0.0281 | 0.4990 0.0151 0.0206 0.0153 0.0121
0.5 | 0.4972 0.0907 0.0953 0.0906 0.1004 | 0.4832 0.0601 0.0616 0.0583 0.0637
1.0 | 0.9905 0.3505 0.3737 0.3424 0.3635 | 0.9678 0.2583 0.2832 0.2534  0.2584
1.0 | 0.9805 0.1439 0.1381 0.1425 0.1687 | 0.9900 0.0872 0.0828 0.0835  0.0989
100 5.0 | 5.0276 0.2902 0.2687 0.2739 0.2910 | 5.0036 0.2046 0.2037 0.1966  0.2126
1.0 | 1.0017 0.0297 0.0285 0.0296 0.0314 | 1.0005 0.0163 0.0163 0.0163 0.0170
1.0 | 1.0203 0.2406 0.2402 0.2351 0.2331 | 0.9996 0.2197 0.2158 0.2128 0.2130
0.5 | 0.4973 0.0212 0.0209 0.0203 0.0203 | 0.4997 0.0109 0.0140 0.0112 0.0094
0.5 | 0.4898 0.0681 0.0714 0.0676 0.0718 | 0.4966 0.0412 0.0451 0.0414 0.0436
1.0 | 1.0103 0.2643 0.2666 0.2537 0.2649 | 0.9836 0.1796 0.1915 0.1816  0.1877
1.0 | 0.9879 0.1020 0.0946 0.1015 0.1203 | 0.9948 0.0579 0.0559 0.0594  0.0710
Normal Mixture Errors
50 5.0 | 5.0188 0.3582 0.3763 0.3684 0.4236 | 5.0123 0.2804 0.3036 0.2777 0.3024
1.0 | 1.0003 0.0383 0.0364 0.0378 0.0434 | 1.0013 0.0259 0.0252 0.0250 0.0263
1.0 | 0.9170 0.3839 0.3591 0.3579 0.3835 | 0.9963 0.2960 0.3064 0.2996  0.3004
0.5 | 0.5010 0.0282 0.0287 0.0281 0.0324 | 0.4991 0.0155 0.0205 0.0152 0.0121
0.5 | 0.4941 0.0903 0.0922 0.0907 0.1096 | 0.4856 0.0567 0.0571 0.0581 0.0732
1.0 | 1.0256 0.6788 0.3003 0.3543 0.5729 | 1.0370 0.5664 0.2124 0.2691 0.4816
1.0 | 0.9938 0.2765 0.0843 0.1461 0.3087 | 0.9911 0.1791 0.0416 0.0836  0.1925
100 5.0 | 5.0199 0.2863 0.2722 0.2734 0.2941 | 4.9971 0.1975 0.2075 0.1960 0.2116
1.0 | 1.0014 0.0295 0.0283 0.0294 0.0316 | 1.0003 0.0161 0.0163 0.0162 0.0170
1.0 | 1.0066 0.2531 0.2387 0.2336 0.2319 | 1.0082 0.2109 0.2147 0.2116  0.2116
0.5 | 0.4983 0.0206 0.0207 0.0202 0.0208 | 0.4997 0.0113 0.0139 0.0111 0.0094
0.5 | 0.4905 0.0672 0.0695 0.0675 0.0795 | 0.4969 0.0397 0.0428 0.0415 0.0496
1.0 | 1.0475 0.4597 0.2037 0.2626 0.4341 | 1.0091 0.4092 0.1281 0.1855  0.3568
1.0 | 0.9837 0.2014 0.0537 0.1014 0.2178 | 0.9943 0.1302 0.0270 0.0593  0.1416
Chi-Square Errors, df=5
50 5.0 | 5.0165 0.3750 0.3859 0.3697 0.3991 | 5.0351 0.2870 0.3065 0.2770 0.3015
1.0 | 0.9984 0.0383 0.0365 0.0378 0.0411 | 1.0013 0.0255 0.0251 0.0250  0.0263
1.0 | 0.9227 0.3595 0.3633 0.3621 0.3754 | 0.9583 0.3014 0.3049 0.2985  0.2996
0.5 | 0.5008 0.0277 0.0289 0.0278 0.0288 | 0.4992 0.0148 0.0205 0.0152 0.0120
0.5 | 0.5031 0.0877 0.0938 0.0900 0.1028 | 0.4849 0.0584 0.0601 0.0582  0.0662
1.0 | 0.9992 0.4431 0.3510 0.3446 0.4179 | 0.9925 0.3520 0.2700 0.2590  0.3251
1.0 | 0.9906 0.1940 0.1202 0.1441 0.2107 | 0.9833 0.1181 0.0638 0.0829  0.1281
100 5.0 | 5.0307 0.2801 0.2807 0.2744 0.2908 | 5.0081 0.1999 0.2133 0.1967 0.2119
1.0 | 1.0016 0.0296 0.0285 0.0296 0.0315 | 1.0004 0.0169 0.0163 0.0163 0.0170
1.0 | 1.0172 0.2419 0.2405 0.2358 0.2343 | 0.9989 0.2137 0.2157 0.2128  0.2130
0.5 | 0.4969 0.0203 0.0208 0.0203 0.0205 | 0.4996 0.0112 0.0140 0.0112 0.0094
0.5 | 0.4888 0.0689 0.0709 0.0677 0.0741 | 0.4960 0.0426 0.0443 0.0415 0.0452
1.0 | 1.0304 0.3157 0.2479 0.2584 0.3169 | 0.9949 0.2548 0.1757 0.1833  0.2396
1.0 | 0.9867 0.1323 0.0791 0.1015 0.1512 | 0.9932 0.0810 0.0430 0.0593  0.0931

Note: 1 = (70,871, 0, A\, u, 02). Parameters values for generating z¢
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Table 2c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD  seSCb seHS seHSb | Mean SD  seSCb seHS  seHSb
n P T+1=4 T+1=8
Normal Errors
50 5.0 | 5.0283 0.3738 0.3745 0.3731 0.3958 | 5.0117 0.2852 0.2966 0.2834 0.3117
1.0 | 1.0012 0.0392 0.0387 0.0397 0.0423 | 1.0003 0.0250 0.0248 0.0237  0.0243
1.0 | 0.9720 0.3411 0.3339 0.3321 0.3369 | 1.0028 0.3041 0.3033 0.3046  0.3130
0.5 | 0.4970 0.0275 0.0280 0.0265 0.0263 | 0.4993 0.0157 0.0217 0.0162 0.0129
0.5 | 0.4778 0.0907 0.0981 0.0934 0.1017 | 0.4922 0.0599 0.0611 0.0575 0.0627
1.0 | 1.0255 0.3967 0.3912 0.3602 0.3833 | 0.9842 0.2643 0.2863 0.2576  0.2646
1.0 | 0.9742 0.1484 0.1380 0.1424 0.1685 | 0.9898 0.0817 0.0825 0.0835  0.0991
100 5.0 | 5.0121 0.2733 0.2740 0.2727 0.2849 | 5.0113 0.2131 0.2116 0.2059  0.2254
1.0 | 1.0001 0.0305 0.0287 0.0298 0.0316 | 1.0006 0.0177 0.0176 0.0176  0.0185
1.0 | 1.0020 0.2423 0.2421 0.2418 0.2448 | 0.9853 0.2247 0.2155 0.2137  0.2149
0.5 | 0.4988 0.0213 0.0218 0.0205 0.0199 | 0.5000 0.0120 0.0150 0.0117 0.0095
0.5 | 0.4963 0.0663 0.0707 0.0667 0.0707 | 0.4989 0.0408 0.0452 0.0417 0.0438
1.0 | 1.0026 0.2702 0.2679 0.2535 0.2638 | 0.9747 0.1845 0.1934 0.1813 0.1854
1.0 | 0.9865 0.1024 0.0938 0.1015 0.1212 | 0.9985 0.0605 0.0564 0.0597  0.0711
Normal Mixture Errors
50 5.0 | 5.0122 0.3683 0.3803 0.3677 0.4082 | 5.0039 0.2902 0.3019 0.2799 0.3079
1.0 | 0.9986 0.0412 0.0385 0.0395 0.0437 | 1.0001 0.0238 0.0247 0.0235 0.0241
1.0 | 09767 0.3368 0.3274 0.3248 0.3312 | 1.0178 0.3164 0.2979 0.2987  0.3066
0.5 | 0.4993 0.0263 0.0275 0.0263 0.0285 | 0.4995 0.0161 0.0214 0.0160 0.0130
0.5 | 0.4707 0.0960 0.0948 0.0938 0.1130 | 0.4945 0.0585 0.0566 0.0573 0.0711
1.0 | 1.0508 0.7028 0.3138 0.3660 0.5834 | 1.0052 0.5478 0.2101 0.2621 0.4621
1.0 | 0.9808 0.2897 0.0855 0.1438 0.2965 | 0.9855 0.1855 0.0417 0.0832  0.1900
100 5.0 | 4.9976 0.2751 0.2757 0.2705 0.2861 | 5.0239 0.2076 0.2165 0.2058  0.2248
1.0 | 1.0018 0.0304 0.0286 0.0296 0.0316 | 1.0000 0.0178 0.0176 0.0176  0.0185
1.0 | 0.9985 0.2392 0.2392 0.2390 0.2422 | 0.9823 0.2159 0.2151 0.2127  0.2136
0.5 | 0.5004 0.0208 0.0216 0.0204 0.0203 | 0.4992 0.0118 0.0150 0.0117 0.0096
0.5 | 0.4933 0.0670 0.0690 0.0669 0.0781 | 0.5003 0.0408 0.0429 0.0416  0.0495
1.0 | 1.0146 0.4514 0.2034 0.2555 0.4149 | 0.9902 0.3572 0.1302 0.1840  0.3490
1.0 | 0.9863 0.1955 0.0547 0.1017 0.2159 | 1.0014 0.1294 0.0272 0.0599  0.1440
Chi-Square Errors, df=5
50 5.0 | 5.0403 0.3978 0.3932 0.3732 0.3927 | 5.0213 0.2890 0.3071 0.2811 0.3075
1.0 | 0.9996 0.0405 0.0386 0.0396 0.0423 | 1.0007 0.0238 0.0247 0.0236  0.0242
1.0 | 0.9744 0.3420 0.3345 0.3317 0.3358 | 1.0090 0.3283 0.2997 0.3014  0.3098
0.5 | 0.4972 0.0264 0.0280 0.0264 0.0263 | 0.4983 0.0162 0.0216 0.0161 0.0128
0.5 | 0.4766 0.0912 0.0976 0.0935 0.1041 | 0.4931 0.0586 0.0595 0.0574  0.0648
1.0 | 1.0448 0.4633 0.3701 0.3627 0.4375 | 0.9824 0.3657 0.2678 0.2568  0.3208
1.0 | 0.9703 0.1867 0.1194 0.1414 0.2023 | 0.9853 0.1162 0.0651 0.0831 0.1257
100 5.0 | 4.9983 0.2807 0.2860 0.2728 0.2836 | 5.0051 0.2098 0.2210 0.2059  0.2244
1.0 | 1.0023 0.0299 0.0287 0.0298 0.0316 | 1.0001 0.0178 0.0176 0.0176  0.0185
1.0 | 1.0055 0.2416 0.2425 0.2418 0.2443 | 0.9941 0.2150 0.2161 0.2139  0.2147
0.5 | 0.4996 0.0212 0.0218 0.0205 0.0200 | 0.4998 0.0119 0.0150 0.0117 0.0095
0.5 | 0.4995 0.0647 0.0700 0.0666 0.0725 | 0.4989 0.0400 0.0444 0.0417 0.0454
1.0 | 1.0081 0.3351 0.2480 0.2542 0.3083 | 0.9862 0.2441 0.1769 0.1835  0.2393
1.0 | 0.9921 0.1389 0.0798 0.1021 0.1514 | 0.9965 0.0805 0.0429 0.0596  0.0942

Note: 1 = (70,871, 0, A\, u, 02). Parameters values for generating z¢
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Table 3a. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Errors

true m =0 true m = 6
P m =20 m =26 m = 200 m=20 m==6 m = 200
n=>50,T =3
1.0 0.9957[.090] 0.9702[.088] 0.9589[.087] 1.0006[.127] 0.9983].126] 0.9891].125]
-0.9 -0.8966[.045]  -0.8390[.038] -0.8139[.029] | -0.8976[.037] -0.8934[.034] -0.8744[.026]
0.5 0.4764[.105] 0.4471[.100] 0.4584[.100] 0.4912[.104] 0.4889].088] 0.4837[.088]
1.0 0.9775[.141] 0.8568][.113] 0.8747[.116] 0.9934[.132] 0.9632[.131] 0.9521[.131]
1.0 0.9989].089] 0.9969].089] 0.9969[.089] 0.9934[.135] 0.9926].133] 0.9926].133]
-0.5 -0.4996[.048]  -0.4926[.048] -0.4925[.048] | -0.4943[.074] -0.4924[.068] -0.4923[.068]
0.5 0.4852[.102] 0.4092[.117] 0.4091[.117] 0.5149[.114] 0.4893[.095] 0.4893[.095]
1.0 0.9662[.142] 0.9493[.142] 0.9493[.142] 0.9734[.153] 0.9410].136] 0.9410].136]
1.0 0.9991[.090] 0.99901.090] 0.9990[.090] 0.9904[.139] 1.0012[.136] 1.0012[.136]
0.0 0.0004[.055]  -0.0004[.055]  -0.0004[.055] 0.0280[.103]  -0.0059[.087]  -0.0059[.087]
0.5 0.4925[.100] 0.4780[.097] 0.4780[.097] 0.5281[.101] 0.4903].089] 0.4903].089]
1.0 0.9673[.149] 0.9619[.147] 0.9619[.147] 1.0134[.176] 0.93401.130] 0.9340].130]
1.0 0.9988].095] 0.9989[.095] 0.9988[.095] 1.0031[.135] 1.0049[.134] 1.0050[.134]
0.5 0.4976[.040] 0.4977[.040] 0.4977[.040] 0.5155[.096] 0.4983][.089] 0.4982[.089]
0.5 0.4772[.108] 0.4675[.107] 0.4675[.107] 0.5081[.102] 0.4826[.098] 0.4826[.098]
1.0 0.9610[.144] 0.9586].144] 0.9586[.144] 0.9973[.174] 0.9703][.156] 0.9702[.156]
1.0 1.0035[.089] 1.0037[.089] 1.0037[.089] 0.9977[.133] 0.9976[.133] 0.9976[.133]
0.9 0.8991[.025] 0.8993][.025] 0.8993[.025] 0.9004[.044] 0.9002[.044] 0.9002[.044]
0.5 0.4704[.112] 0.4695[.112] 0.4692[.112] 0.4862[.104] 0.4859[.103] 0.4858].103]
1.0 0.9682[.149] 0.9682[.149] 0.9681[.149] 0.9803].151] 0.9803].151] 0.9803].151]
n=100,T7 =3

1.0 1.0025[.074] 0.9882[.074] 0.9750[.073] 0.9986[.071] 0.9985[.071] 0.9935[.071]
-0.9 -0.8996[.026] -0.8753[.023] -0.8528[.017] | -0.8996[.026] -0.8994[.024] -0.8858[.019]
0.5 0.4937[.077] 0.3917[.075] 0.4014[.073] 0.5001[.076] 0.4876][.068] 0.4753[.068]
1.0 0.9848][.104] 0.9411].089] 0.9410[.091] 1.0177[.093] 0.9847[.102] 0.9765[.098]
1.0 0.9972[.075] 0.9951[.075] 0.9950[.075] 0.9994[.071] 1.0007[.070] 1.0006[.070]
-0.5 -0.5026[.038]  -0.4977[.037] -0.4976[.037] | -0.4951[.050] -0.4983[.047] -0.4983[.047]
0.5 0.4892[.076] 0.4289[.078] 0.4289[.078] 0.5302[.081] 0.4977[.065] 0.4977[.065]
1.0 0.9790[.107] 0.9696].106] 0.9696[.106] 0.9984[.107] 0.9792[.098] 0.9792[.098]
1.0 0.9992[.076] 0.9997[.075] 0.9997[.075] 0.9941[.072] 1.0022[.071] 1.0022[.071]
0.0 0.0022[.041] 0.0011[.041] 0.0011[.041] 0.0223[.064] -0.0072[.056] -0.0072[.056]
0.5 0.4989[.073] 0.4848].068] 0.4848[.068] 0.5472[.075] 0.4977[.063] 0.4977[.063]
1.0 0.9944].106] 0.9916].105] 0.9916[.105] 1.0225[.119] 0.9584[.091] 0.9584[.091]
1.0 0.9989][.075] 0.9989][.075] 0.9989[.075] 0.9997[.069] 1.0001[.069] 1.0001[.069]
0.5 0.5014[.031] 0.5012[.030] 0.5012[.030] 0.5188][.062] 0.5036[.057] 0.5036[.057]
0.5 0.5001[.077] 0.4969].076] 0.4969[.076] 0.5193[.070] 0.4957[.067] 0.4957[.067]
1.0 0.9829].106] 0.9827[.106] 0.9827[.106] 1.0224[.122] 1.0056[.113] 1.0056[.113]
1.0 0.9952[.071] 0.9952[.071] 0.9952[.071] 0.9990].068] 0.9991].068] 0.99911.068]
0.9 0.9003].021] 0.9001[.021] 0.9002[.021] 0.9018].028] 0.9020].028] 0.9020].028]
0.5 0.4952[.077] 0.4954[.077) 0.4954[.077] 0.4864][.076] 0.4857[.075] 0.4855[.075]
1.0 0.9844].108] 0.9843][.108] 0.9843[.108] 0.9834[.104] 0.9836[.104] 0.9835[.104]

Note: ¢ = (8,p, A, 0v)’. Parameters values for generating z¢: 0, = (.01,.5,.5,1,.5) (see Footnote 13).
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Table 3b. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Mixture

true m =0 true m = 6
P m =20 m =26 m = 200 m=20 m==6 m = 200
n=>50,T =3
1.0 1.0021[.092] 0.9906].091] 0.9826[.090] 0.9981].126] 0.9980].125] 0.9954[.125]
-0.9 -0.8987[.041]  -0.8648[.040] -0.8416[.033] | -0.8956[.038] -0.8924[.038] -0.8770[.033]
0.5 0.4862[.103] 0.4035[.098] 0.4113[.097] 0.4829[.105] 0.4850[.092] 0.4770[.091]
1.0 0.9822[.300] 0.9147[.252] 0.9238[.262] 1.0121[.264] 0.9540].268] 0.9473][.271]
1.0 1.0026[.091] 1.0013[.091] 1.0013[.091] 0.9923[.128] 0.9905[.127] 0.9905[.127]
-0.5 -0.5009[.050]  -0.4969[.049] -0.4969[.049] | -0.4926[.079] -0.4881[.072] -0.4880[.072]
0.5 0.4894[.103] 0.4415[.103] 0.4415[.103] 0.5164[.103] 0.4934][.089] 0.4934[.089]
1.0 0.9802].285] 0.9687[.278] 0.9687[.278] 0.9807[.291] 0.9301[.247] 0.9301[.247]
1.0 0.9986].089] 0.9986].089] 0.9986[.089] 0.9936].139] 1.0045[.134] 1.0045[.134]
0.0 0.0017[.062] 0.0005[.062] 0.0005[.062] 0.0254[.106]  -0.0110[.091] -0.0110[.091]
0.5 0.4917[.102] 0.4733[.098] 0.4733[.098] 0.5371[.099] 0.5045[.088] 0.5045[.088]
1.0 0.9761[.305] 0.9731[.302] 0.9731[.302] 1.0100[.309] 0.9057[.235] 0.9057[.235]
1.0 1.0004[.090] 1.0004[.090] 1.0004[.090] 1.0033[.129] 1.0051[.128] 1.0051[.128]
0.5 0.5001[.041] 0.5000].041] 0.5000[.041] 0.5068].100] 0.4911[.094] 0.4911[.094]
0.5 0.4826][.105] 0.4761[.104] 0.4761[.104] 0.5054[.097] 0.4809[.094] 0.4808][.094]
1.0 0.9865[.303] 0.9844].301] 0.9844[.301] 0.9824].313] 0.9551[.287] 0.9550].286]
1.0 0.9968][.094] 0.9970[.094] 0.9970[.094] 0.9971[.128] 0.9970[.128] 0.9970[.128]
0.9 0.8991].026] 0.8993].026] 0.8993[.026] 0.9006].049] 0.9004][.049] 0.9004][.049]
0.5 0.4797[.107) 0.4789[.107] 0.4786[.107] 0.4884[.106] 0.4881[.105] 0.4880][.105]
1.0 0.9760[.279] 0.9760[.279] 0.9759[.279] 0.9649].285] 0.9648].284] 0.9649].284]
n=100,T7 =3

1.0 0.9986].076] 0.9712[.075] 0.9564[.074] 1.0022[.072] 1.0028[.072] 0.9979[.072]
-0.9 -0.9005[.030] -0.8549[.029] -0.8303[.023] | -0.8964[.026] -0.8972[.025] -0.8853[.021]
0.5 0.4909].078] 0.4299[.071] 0.4398[.072] 0.4938].074] 0.4864][.068] 0.4744][.068]
1.0 0.9833].205] 0.8850[.164] 0.8978[.173] 1.0367[.177] 0.9845[.200] 0.9779[.198]
1.0 0.9976[.074] 0.9964[.074] 0.9964[.074] 0.9971[.073] 0.9971[.072] 0.9971[.072]
-0.5 -0.4987[.039]  -0.4963[.039] -0.4963[.039] | -0.4922[.055] -0.4926[.052] -0.4925[.052]
0.5 0.5002[.080] 0.4672[.074] 0.4672[.074] 0.5262[.076] 0.4967[.062] 0.4967[.062]
1.0 0.9862[.204] 0.9742[.200] 0.9742[.200] 0.9994[.219] 0.9641].188] 0.9641].188]
1.0 1.0016[.077] 1.0017[.077] 1.0017[.077] 0.9930[.073] 1.0011[.072] 1.0011[.072]
0.0 -0.0014[.038]  -0.0015[.038]  -0.0015[.038] 0.0229[.067] -0.0072[.059] -0.0072[.059]
0.5 0.4921[.073] 0.4694[.071] 0.4694[.071] 0.5428][.074] 0.4998].064] 0.4998].064]
1.0 0.9892[.208] 0.9864].207] 0.9864[.207] 1.0143[.224] 0.9344][.175] 0.9344][.175]
1.0 1.0003[.074] 1.0005[.074] 1.0005[.074] 1.0005[.070] 1.0010[.069] 1.0010[.069]
0.5 0.5012[.033] 0.5005[.032] 0.5005[.032] 0.5201[.067] 0.5050[.062] 0.5050].062]
0.5 0.5131[.076] 0.5162[.073] 0.5162[.073] 0.5174[.067] 0.4941[.063] 0.4941[.063]
1.0 0.9912[.218] 0.9912[.218] 0.9912[.218] 1.0245[.222] 1.0047[.204] 1.0047[.204]
1.0 1.0019[.073] 1.0019[.073] 1.0019[.073] 0.9976[.076] 0.9977[.076] 0.9977[.076]
0.9 0.9005[.021] 0.9003].021] 0.9003[.021] 0.9011[.028] 0.9013][.028] 0.9013][.028]
0.5 0.4976[.079] 0.4979[.079] 0.4980[.079] 0.4853[.076] 0.4846][.075] 0.4843][.075]
1.0 0.9816].205] 0.9814[.204] 0.9815[.204] 0.9801[.202] 0.9803][.202] 0.9802[.202]

Note: ¢ = (8,p, A, 0v)’. Parameters values for generating z¢: 0, = (.01,.5,.5,1,.5) (see Footnote 13).
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Table 4a. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 0

Mean SD  seSCb seHS  seHSb Mean SD  seSCb seHS  seHSb
n P T=3 T="T7
Normal Errors
50 1.0 | 0.9986 0.0971 0.1001 0.0981 0.0982 | 1.0003 0.0559 0.0545 0.0532 0.0549
0.5 | 0.4988 0.0348 0.0380 0.0326 0.0437 | 0.4995 0.0241 0.0259 0.0241 0.0363
0.5 | 0.4888 0.1055 0.1016 0.1044 0.1127 | 0.4917 0.0612 0.0571 0.0597 0.0639
1.0 | 0.9650 0.1489 0.1713 0.1411 0.1339 | 0.9861 0.0806 0.0990 0.0841 0.0794
100 1.0 | 1.0024 0.0720 0.0744 0.0737 0.0790 | 1.0005 0.0340 0.0343 0.0337 0.0342
0.5 | 0.5012 0.0266 0.0288 0.0273 0.0417 | 0.5005 0.0167 0.0173 0.0170 0.0266
0.5 | 0.4922 0.0759 0.0742 0.0749 0.0782 | 0.4986 0.0408 0.0419 0.0428 0.0443
1.0 | 0.9889 0.1044 0.1219 0.1022 0.0980 | 0.9948 0.0592 0.0673 0.0600 0.0576
Normal Mixture Errors
50 1.0 | 0.9979 0.0967 0.0996 0.0971 0.0973 | 1.0016 0.0530 0.0550 0.0533 0.0563
0.5 | 0.4976 0.0338 0.0385 0.0320 0.0461 | 0.4994 0.0252 0.0278 0.0249 0.0408
0.5 | 0.4847 0.1017 0.1001 0.1046 0.1153 | 0.4953 0.0585 0.0542 0.0595 0.0671
1.0 | 0.9586 0.2841 0.1207 0.1401 0.2372 | 0.9881 0.1855 0.0637 0.0844 0.1610
100 1.0 | 1.0027 0.0733 0.0742 0.0733 0.0791 | 0.9971 0.0328 0.0342 0.0336 0.0341
0.5 | 0.5000 0.0269 0.0287 0.0262 0.0431 | 0.4994 0.0168 0.0173 0.0169 0.0275
0.5 | 0.4933 0.0718 0.0731 0.0748 0.0794 | 0.4995 0.0435 0.0406 0.0428 0.0457
1.0 | 0.9860 0.2121 0.0833 0.1019 0.1860 | 0.9894 0.1291 0.0408 0.0596 0.1198
Chi-Square, df=3
50 1.0 | 0.9942 0.1022 0.1001 0.0983 0.0995 | 1.0034 0.0544 0.0549 0.0534 0.0557
0.5 | 0.4999 0.0361 0.0376 0.0333 0.0471 | 0.4991 0.0251 0.0265 0.0242 0.0369
0.5 | 0.4785 0.1046 0.1015 0.1060 0.1171 | 0.4966 0.0588 0.0554 0.0595 0.0654
1.0 | 0.9646 0.2141 0.1377 0.1409 0.1860 | 0.9908 0.1365 0.0741 0.0845 0.1218
100 1.0 | 1.0012 0.0734 0.0744 0.0737 0.0792 | 1.0010 0.0328 0.0344 0.0338 0.0345
0.5 | 0.4999 0.0312 0.0290 0.0284 0.0487 | 0.5003 0.0175 0.0168 0.0169 0.0263
0.5 | 0.4935 0.0771 0.0735 0.0755 0.0804 | 0.4976 0.0441 0.0414 0.0428 0.0449
1.0 | 0.9918 0.1604 0.0971 0.1024 0.1425 | 0.9962 0.0971 0.0486 0.0600 0.0897

Note: ¢ = (8,p, A, 02)’. Parameters values for generating x;

50

: 0, = (.1,.5,.5,5,1) (see Footnote 13).
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Table 4b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD  seSCb seHS  seHSb Mean SD  seSCb seHS  seHSb
n P T=3 T="T7
Normal Errors
50 1.0 | 1.0000 0.0182 0.0189 0.0184 0.0183 | 1.0004 0.0095 0.0098 0.0096 0.0117
0.5 | 0.5010 0.0198 0.0188 0.0190 0.0229 | 0.5001 0.0070 0.0073 0.0070 0.0089
0.5 | 0.5000 0.1037 0.0999 0.1016 0.1058 | 0.4956 0.0603 0.0565 0.0594 0.0633
1.0 | 0.9744 0.1450 0.1602 0.1427 0.1358 | 0.9914 0.0814 0.0907 0.0836 0.0809
100 1.0 | 0.9998 0.0150 0.0151 0.0149 0.0148 | 0.9999 0.0064 0.0068 0.0066 0.0075
0.5 | 0.4992 0.0108 0.0117 0.0112 0.0121 | 0.5000 0.0052 0.0051 0.0051 0.0060
0.5 | 0.4954 0.0701 0.0735 0.0728 0.0730 | 0.4991 0.0433 0.0418 0.0425 0.0437
1.0 | 0.9805 0.1040 0.1082 0.1013 0.0990 | 0.9916 0.0638 0.0619 0.0591 0.0581
Normal Mixture Errors
50 1.0 | 1.0004 0.0186 0.0187 0.0180 0.0179 | 0.9996 0.0093 0.0098 0.0095 0.0117
0.5 | 0.4999 0.0196 0.0185 0.0187 0.0235 | 0.4999 0.0067 0.0073 0.0069 0.0089
0.5 | 0.4993 0.1029 0.0978 0.1019 0.1090 | 0.4977 0.0572 0.0537 0.0592 0.0662
1.0 | 0.9558 0.2840 0.0986 0.1400 0.2405 | 0.9857 0.1872 0.0471 0.0832 0.1677
100 1.0 | 0.9993 0.0156 0.0151 0.0149 0.0149 | 1.0000 0.0067 0.0067 0.0066 0.0074
0.5 | 0.4997 0.0119 0.0117 0.0112 0.0128 | 0.4998 0.0049 0.0051 0.0051 0.0060
0.5 | 0.4948 0.0719 0.0726 0.0729 0.0741 | 0.4976 0.0438 0.0407 0.0426 0.0451
1.0 | 0.9906 0.2015 0.0647 0.1024 0.1908 | 0.9897 0.1301 0.0317 0.0590 0.1243
Chi-Square, df=3
50 1.0 | 0.9991 0.0187 0.0189 0.0183 0.0182 | 1.0001 0.0100 0.0099 0.0096 0.0118
0.5 | 0.4994 0.0195 0.0186 0.0189 0.0232 | 0.4998 0.0072 0.0074 0.0070 0.0089
0.5 | 0.4958 0.0998 0.0997 0.1022 0.1071 | 0.4981 0.0569 0.0552 0.0593 0.0646
1.0 | 0.9691 0.2161 0.1221 0.1418 0.1884 | 0.9995 0.1353 0.0615 0.0844 0.1269
100 1.0 | 1.0007 0.0146 0.0151 0.0149 0.0148 | 1.0000 0.0067 0.0068 0.0066 0.0075
0.5 | 0.4999 0.0115 0.0117 0.0112 0.0124 | 0.4998 0.0049 0.0051 0.0051 0.0060
0.5 | 0.4919 0.0704 0.0734 0.0732 0.0740 | 0.4977 0.0425 0.0414 0.0426 0.0443
1.0 | 0.9811 0.1476 0.0803 0.1014 0.1418 | 0.9959 0.0955 0.0415 0.0594 0.0912

Note: ¢ = (8,p, A, 02)’. Parameters values for generating x;
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: 0, = (.1,.5,.5,5,1) (see Footnote 13)
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Table 4c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD  seSCb seHS  seHSb Mean SD  seSCb seHS  seHSb
n P T=3 T="T7
Normal Errors
50 1.0 | 1.0004 0.0210 0.0213 0.0208 0.0210 | 1.0000 0.0097 0.0096 0.0093 0.0100
0.5 | 0.4999 0.0197 0.0199 0.0197 0.0231 | 0.5000 0.0070 0.0072 0.0069 0.0081
0.5 | 0.4866 0.0974 0.1011 0.1009 0.1027 | 0.4991 0.0626 0.0562 0.0588 0.0622
1.0 | 0.9624 0.1422 0.1573 0.1406 0.1349 | 0.9909 0.0881 0.0914 0.0837 0.0800
100 1.0 | 1.0001 0.0139 0.0140 0.0138 0.0154 | 0.9990 0.0337 0.0339 0.0333 0.0358
0.5 | 0.5001 0.0117 0.0117 0.0116 0.0144 | 0.4986 0.0201 0.0195 0.0206 0.0370
0.5 | 0.4977 0.0736 0.0726 0.0745 0.0775 | 0.4991 0.0409 0.0397 0.0409 0.0430
1.0 | 0.9886 0.1064 0.1091 0.1019 0.0993 | 0.9938 0.0585 0.0673 0.0601 0.0582
Normal Mixture Errors
50 1.0 | 1.0005 0.0208 0.0213 0.0207 0.0210 | 0.9996 0.0092 0.0095 0.0092 0.0100
0.5 | 0.4999 0.0204 0.0200 0.0196 0.0244 | 0.4997 0.0069 0.0072 0.0069 0.0082
0.5 | 0.4796 0.1010 0.0994 0.1017 0.1064 | 0.5014 0.0566 0.0534 0.0586 0.0653
1.0 | 0.9685 0.2847 0.1000 0.1414 0.2444 | 0.9937 0.1837 0.0474 0.0840 0.1685
100 1.0 | 1.0001 0.0138 0.0139 0.0137 0.0153 | 0.9994 0.0328 0.0339 0.0333 0.0360
0.5 | 0.5000 0.0117 0.0117 0.0115 0.0148 | 0.5006 0.0209 0.0194 0.0205 0.0403
0.5 | 0.4988 0.0743 0.0714 0.0743 0.0785 | 0.4967 0.0408 0.0387 0.0410 0.0445
1.0 | 0.9835 0.2065 0.0642 0.1013 0.1879 | 0.9933 0.1339 0.0430 0.0600 0.1200
Chi-Square, df=3
50 1.0 | 1.0002 0.0214 0.0213 0.0208 0.0211 | 1.0000 0.0094 0.0096 0.0093 0.0099
0.5 | 0.4995 0.0203 0.0199 0.0197 0.0238 | 0.5001 0.0069 0.0072 0.0070 0.0081
0.5 | 0.4835 0.1009 0.1003 0.1014 0.1048 | 0.4990 0.0549 0.0550 0.0587 0.0634
1.0 | 0.9662 0.2116 0.1220 0.1411 0.1879 | 0.9944 0.1367 0.0614 0.0840 0.1255
100 1.0 | 1.0002 0.0144 0.0139 0.0137 0.0153 | 1.0009 0.0335 0.0338 0.0333 0.0359
0.5 | 0.5005 0.0113 0.0117 0.0115 0.0145 | 0.4999 0.0207 0.0193 0.0205 0.0375
0.5 | 0.4987 0.0732 0.0721 0.0744 0.0780 | 0.5004 0.0407 0.0392 0.0408 0.0435
1.0 | 0.9807 0.1505 0.0796 0.1011 0.1432 | 0.9922 0.0961 0.0508 0.0600 0.0894

Note: ¢ = (8,p, A, 02)’. Parameters values for generating x;
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: 0, = (.1,.5,.5,5,1) (see Footnote 13)





