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Abstract

It is well established that the quasi maximum likelihood (QML) estimation of the spatial
regression models is generally inconsistent under unknown cross-sectional heteroskedasticity
(CH) and the CH-robust methods have been developed. The same issue remains for the
spatial panel data (SPD) models but the similar studies based on QML approach do not
seem to have been carried out. This paper focuses on the SPD model with fixed effects
(FE). We argue that under unknown CH the QML estimator for the SPD-FE model is
inconsistent in general, but there are ‘special cases” where it may remain consistent although
the exact conditions may not be possible to check, as in practice the type of CH is generally
unknown. Thus, we introduce a new set of estimation and inference methods based on the
adjusted quasi scores (AQS), which are fully robust against unknown CH. Consistency and
asymptotic normality of the proposed AQS estimators are established. Robust standard
error estimates are provided and their consistency is proved. To improve the finite sample
performance, a set of AQS methods based on concentrated quasi scores is also introduced
and its asymptotic properties examined. Extensive Monte Carlo results show that the new

estimator outperforms the QML estimator even when the latter seems robust.

Key Words: Spatial dependence; Spatial panel data; Fixed effects; Unknown heteroskedas-
ticity; Non-normality, AQS estimator; Robust standard error.

1. Introduction

Exploring how correlation in space extends to and interacts over time is a long standing
question since the onset of the literature relating to spatial econometrics such as Anselin (1988).
Spatial panel data (SPD) models have the versatility of allowing a location related dependence
structure to be attached to the conventional panel model in terms of spatial dependence or
spatial heterogeneity (Anselin et al., 2008). With a fast evolving literature (see surveys in Lee
and Yu, 2010b, 2015), panel models with fixed effects (FE) and spatial or social interactions
remain popular due to its wide practical applicability. Examples of recent empirical studies
include Baltagi et al. (2016), Hsieh & Lee (2014), Kelejian & Piras (2016), and Millimet & Roy
(2016). In this paper, we consider SPD models with FE and cross-sectional heteroskedasticity
(CH) of unknown form, where a spatial autoregressive (SAR) process is built on both dependent

variable and disturbance term, and introduce CH-robust estimation and inference methods.
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SPD models with homoskedastic disturbances have been well studied (see, e.g., Baltagi et
al. 2003, 2013; Baltagi and Yang 2013; Fingleton 2008; Kelejian and Prucha 2007; Lee & Yu
2010a, 2012; Robinson & Rossi 2015; and Yang et al. 2016). The literature on CH-robust
estimation of cross-sectional spatial models is fairly comprehensive as well; See LeSage (1997)
for Bayesian estimation; Badinger & Egger (2011), Lin & Lee (2010), and Kelejian & Prucha
(2010) for GMM estimation; and Jin & Lee (2012), and Liu & Yang (2015) for QML based
estimation. However, the study on SPD models with unknown CH has been limited to Moscone
and Tosetti (2011) who extend the robust GMM estimation methods for a cross-sectional spatial
model, given in Kelejian & Prucha (2010) and Lin & Lee (2010), to the SPD framework where
they consider only spatial error dependence, and Badinger and Egger (2015) who consider CH-
robust 2SLS estimation of a higher order spatial panel model by extending the methods in
Kapoor et al. (2007), where the individual-specific effects are treated using the Mundlak (1978)
approach. However, the individual-specific effects may correlate with time-varying regressors
in an arbitrary manner and in this case they have to be treated as fixed parameters. Also, the
2SLS estimator may lack efficiency compared to a general GMM or an ML-based estimator, as
it focuses only on the deterministic part of the model based on linear moments and ignores the
reduced form model that incorporates the information contained in the disturbances.

Since ML methods provide the most efficient estimates, QML-based methods may also pro-
vide more efficient estimates compared with GMM and 2SLS methods, in particular the latter.
Therefore, QML-based methods for FE-SPD models that are simple to implement and robust
to unknown CH would be very useful. When the disturbances are homoskedastic, Lee and Yu
(2010a) show that a direct QML estimation yields consistent estimators for all parameters in the
FE-SPD model (including the FE parameters), when the number of spatial units (n) and time
periods (T') are both large. When T is fixed, the QML estimators (QMLEs) for error variance
and FEs are inconsistent. Upon transformation of the model to wipe out the FEs, QMLEs of
all the structural parameters become consistent irrespective of the size of T'. However, Lee and
Yu (2010a) does not consider unknown CH. This paper aims to fill this gap in the literature.

In a cross-sectional SAR model with unknown CH, Lin and Lee (2010) show that the usual
QMLE of the spatial parameter is inconsistent in general. A similar phenomenon is observed in
the FE-SPD models. We argue that under unknown CH the QMLEs for the SPD-FE model are
inconsistent in general, but there are ‘special cases’ where they may remain consistent although
the exact conditions may not be possible to check, as in practice the type of CH is generally
unknown. We therefore propose a new set of estimation and inference methods based on the
adjusted quasi scores (AQS), fully robust against unknown CH. Consistency and asymptotic
normality of the proposed AQS estimators (AQSEs) are established. To conduct CH-robust
inferences, we propose an outer-product-of-martingale-difference (OPMD) method for estimat-
ing the variance-covariance matrix of the AQSEs, first under normality, and then generalized
to allow for non-normality. Consistency of this OPMD-based estimate is also established. To

capture the extra variability coming from the estimation of the regression coefficients and the



average of error variance, a set of AQS methods based on concentrated quasi score is also pro-
posed, which may offer finite-sample improvements. The AQS estimation is easy to implement
and is effective in attaining consistency under unknown CH while limiting the compromise on
efficiency of the usual QMLE. The AQS estimation and inference generally perform very well
under CH, but the regular QML estimation and inference do not, even when they are valid
under CH, as demonstrated by the extensive Monte Carlo results.

AQS estimators broadly fall into the umbrella of estimators known as M-estimators in the
literature, which can be either a maxima of an objective function or a root of an estimating
equation. The proposed robust estimator falls into the latter which is also known as the Z(ero)-
estimator in van der Vaart (1998). Very interestingly, this idea finds its root in Neyman and
Scott (1948) on Modified Equations of Maximum Likelihood, but it was only recently that
the idea was picked up by Baltagi and Yang (2013) to give CH-robust LM tests for spatial
dependence, Liu and Yang (2015) to give CH-robust estimation of spatial cross-sectional model,
and Yang (2018) to give initial condition free estimation of spatial dynamic panel data (SDPD)
models with FE, which is extended by Li and Yang (2020) to allow for unknown CH, Xu and
Yang (2020) to give tests for temporal heterogeneity in FE-SPD models, and Li and Yang (2019)
to give initial condition free estimation of SDPD models with correlated random effects.

The rest of the paper is organized as follows. Section 2 outlines the transformation-based
QML estimation of the FE-SPD model and examines its robustness. Section 3 introduces
the CH-robust AQS estimators for the SPD model with individual FE, presents asymptotic
properties and introduces CH-robust inference methods. Section 4 extends the AQS methods
to the SPD model with both individual and time FE. Section 5 presents the Monte Carlo results.

Section 6 concludes the paper. All technical details are given in Appendix B.

2. QML Estimation of FE-SPD Model and its Robustness

The spatial panel data (SPD) model with individual and time specific fixed effects (FE),
containing a spatial autoregressive (SAR) process in responses and a SAR process in errors,
called the FE-SPD model in this paper, has the form:

Ynt == )\OwlnYnt + Xnt/BO + Cpo + atOZn + Unt7 Unt - pOWQnUnt + Vntv t= 17 cee 7T7 (21)

where Y, = (y1t,Y2t5--->Ynt) is an n x 1 vector of observations on the responses, X, is
an n X k matrix containing the values of k non-stochastic but time varying regressors, V,; =
(v1t, Vat, - - -, Upt)" 18 the vector of idiosyncratic errors, fy is a kx 1 vector of regression coefficients,
Ao and pg are the spatial lag and error parameters, Wy, and Ws,, are the respective n x n non-
stochastic spatial weights matrices, c,g is the n x 1 time invariant vector of individual-specific
FE, and {4} are the time-specific FE with [,, being an n x 1 vector of ones.

The fixed effects in a panel data model induce the so-called incidental parameters problem of

Neyman and Scott (1948). The existence of unknown heteroskedasticity might induce another



set of incidental parameters. The standard way of dealing with FE problem is to eliminate the
FE by some transformation, such as first-difference, demean, and orthonormal transformation.
However, there seems no standard solution to the problem of unknown heteroskedasticity.

In this section, we first outline the transformation-based QML estimator (QMLE) of the FE-
SPD model, where the idiosyncratic errors {v;} are first set to be independent and identically
distributed (iid) with mean 0 and variance o3, as in Lee and Yu (2010a). Then, we examine
the properties of the QMLE when the errors are independent but with unknown cross-sectional
heteroskedasticity (CH). We show that under unknown CH, the necessary conditions for QMLE
to be consistent can be violated and therefore QMLE cannot be consistent in general.

Notation. Some notation and convention would be helpful in the theoretical developments.
Let tr(-), |- |, and || - || be, respectively, the trace, determinant and Frobenius norm of a square
matrix. The operator diag(-) forms a diagonal matrix based on a vector or the diagonal elements
of a square matrix, and diagv(-) forms a column vector by the diagonal elements of a square
matrix. Let 6y = (3,03, Mo, po)’ be the true parameter vector and § = (3,02, \,p)’ be any
value of it. The usual expectation, variance and covariance operators, E(-), Var(-), and Cov(-),
correspond to 6y. However, for two non-stochastic vectors a and b of the same length, Var(a)

denotes the sample variance of a, and Cov(a,b) the sample covariance between a and b.

2.1. The one-way FE-SPD model

Consider first the SPD model with only individual-specific FE (FE;), i.e., dropping «; from
(2.1). For an identity matrix I and a vector of ones Ip, let Jp = Ip — %lTli_p, the time demean
operator, which is idempotent with rank 7" — 1, and thus has 7' — 1 eigenvalues of 1 and one
eigenvalue of 0. Let Fr7_; be the first T'— 1 eigenvectors of Jr corresponding to eigenvalue 1.
The last eigenvector is ﬁlT, orthogonal to Frr_1. Now, for an n x T matrix [Z,1, ..., Zy7],

defined [Z}4,. .., ZZ,T—J = [Zn1, ..., Znr)Frr—1. We have the transformed FE;-SPD model:

Yﬁkt = >\0W1nyrft + X:;tﬁo + U;’:v U;;t = POW2nU;t + Vn*ta t=1,...,T -1, (2-2)

where the individual-specific fixed effects c,¢ are transformed away and the effective sample
size post transformation is N = n(7 — 1). Stack the transformed vectors to give Yy =
(Y1, Y ), similarly Uy and Vi, Xy = (X754,
and Xy = [Xqn, ..., Xgn]. Let Wy = Ip_1 @ Wy, ¥ = 1,2, where ® denotes the kronecker

product. Model (2.2) is written as,

"’X%7T—1)/ for the jth regressor

Yy =AMWinYy +XnGBo+ Uy, Uy =poWonUyn + V. (2.3)

The transformed errors, {v};}, are iid N(0,08) if the original errors, {v;:}, are iid N(0,03), as
The (quasi) Gaussian loglikelihood of 6, as if {v},} are iid N(0,03), is,

In(0) = =5 In(270”) + In [A1n (A)| + In |Aan (p)| — 552 Vi (8, 0) Vv (8, 6), (2.4)

where VN (8,0) = Aan(p)[A1iN(AN)Y N — XN0], Ain(A) = In =AW 1N, Aon(p) = In — pWan,



and 0 = (A, p)’. Given ¢, {n(0) is partially maximized at:
B (8) = (X (p)Xn ()] ' Xiy(p)Yn(0) and 63(8) = F Yy (5)Mn(p)YN(6),  (2.5)

where Y (6) = Aan(p)Ain(N)Y N, My (p) = In — Xn(p) Xy (0)Xn (p)] 7' Xy (p), and Xy (p) =
Asn(p)Xpn. The concentrated quasi Gaussian loglikelihood function of § is, upon substitution:

£50(8) = =X (In(2m) + 1)+ In [A 1y (V)] + In [Agw ()] — ¥ n63(6). (2.6)

Maximizing (2.6) gives the unconstrained QMLE dgq of §, and thus the unconstrained QMLEs
of f and 02: furi = On(dgui) and Oty = 5']2\7(5QML1)- Under the assumptions that the
errors are iid and some additional regularity conditions, Lee and Yu (2010a) show that 9QML1 =
(Bl{,lMLiv (%MM, 62y1) is V/N-consistent and asymptotically normal.

To examine the robustness of the transformation-based QMLE of the FE;-SPD model,

consider the quasi score function derived from (2.4) under homoskedasticity assumption:

X (p) VN (B,9),

_1 [ _ 2

SV (B,0)Aan (p)Win Yy — tr(Gin (M),
LVN(B,8)Gan(p)VN(B,8) — tr(Gan(p)),
where GlN(A) = WINAI]%](/\) and GQN(p) = WQNA.;]\l[(p).

Suppose now the errors are independent but not identically distributed (inid), i.e., vy ~

inid(0,08h;), where % Yoy hi =1and h; > 0 so that o3 represents the average of Var(v;;) over
i for any t. A necessary condition for the consistency of an extremum estimator is that the
probability limit of the average objective function at the true parameter is zero. In the present
QMLE case, this surmounts to, plimNHw%%ﬁN(Go) = 0 (Amemiya, 1985). It is evident that
this condition is still satisfied by the 3- and o?-components under unknown CH. However, it
may not be always true for the A\- and p-components. Let h,, = (hq,...,h,)’, H, = diag(h,)
and Hy = It ® Hy,. Note that under CH, Var(Vy) = a%HN. It is easy to see that,

v (0) = 7 VNGInViy = {tr(Gin) + op(1)
= 35z Vv (Giv — 3 tx(Giv)In) Vv + 0p(1)
= % (tr(HyGin) — +tr(Gin)tr(Hy)) + 0,(1)
= Cov(gin, hn) + 0p(1),

Lon(6o) = N#C%VA,GQNV — +t1(Gan) + 0p(1)
= N%gv& (Gaon — +tr(Gon)In) Vv + 0p(1)
= % (tr(HNGgN) — %tr(GgN)tr(HN)) + 0p(1)
= Cov(gan, hn) + 0p(1),

Sl
2

where Gin = Ir—1 @ Gin, Gon = Ir—1 ® Gon, Gin = diagv(Gi,) and go, = diagv(Gap);



Gin = A2, G1n4s,, Gin = Wi AL and G, = Wan Ay, Ay = A1n(No) = I, — AoWi, and

in 2n

Agp = Aon(po) = In — poWan. 1t follows that plimy .o+ 254N (6p) = 0 if,
Cov(gin,h,) — 0 and Cov(gap,hy,) — 0. (2.8)

Therefore, (2.8) constitutes two necessary conditions for QMLEs to remain consistent. Ob-
viously, these conditions would hold if (i) Var(gi,) — 0 and Var(ge,) — 0, where g1, and gay,
relate to the spatial layouts, or (i7) CH, h,, arises due to reasons unrelated to spatial layouts.
See Liu and Yang (2015, Sec. 2.2) for a detailed discussion. Assessing whether these conditions
are satisfied in practice may not be feasible as CH is of unknown form, and thus makes the
QML estimator rather unappealing when CH is suspected.

Furthermore, for 5QML1 to be consistent under the unknown CH, sufficient conditions (van
der Vaart 1998, Theorem 5.7) are much more than those in (2.8): supsea + |04 (8) — 05 (6)]| 250
and SUDs.q(5,50)>< 05,(8) < £5;(6o) for every e > 0, where £%(6) = maxg 52 E[(x(6)] and d(6, &p) is
a measure of distance between ¢ and dg. The latter condition, called the identification uniqueness

condition, boils down to the following two conditions:

Condition I. FEither (a) limy_ oo %{XN,GlNXNBO}/A’QN(p)AQN(p){XN, GlNXNﬁO} 18
nonsingular Vp, and lim,, . & (In[0345, A3} | — In |02 (Ao, p) A, () A (0)]) # 0 for p # po,

or (b) limy,oc 1 (In |03 D}y 1D; | — In 02(5) D} (5)D; 1 (8)]) # O for & # do,
where Dy, (8) = Aon(p)A1n(N), Dy = Dy (80), and 02(8) = Lodtr(H, D 1D (8)Dy(6) Dy 1),

Condition II. lim, ., Cov|diagv(4,),diagv(H,)] = 0, for A, = Gin, Gon, G1,G1n,

bnGon, GonGin, GG, GonGin, Gb, GonGin, Gb,G1n, and G, Go,G1y,.

Condition I extends the identification uniqueness conditions of Lee and Yu (2010a) to allow
for unknown CH and guarantees that limsupy_. 4 [(%(6) — 5 (0)] # 0, and Condition II
extends those given in (2.8) and guarantees that it is less than or equal zero. Moreover, the
uniform convergence, supsen 65 (8) — 5 (6)] 2.0, also requires Condition II. Appendix B
(the beginning part) provides some details on how these conditions arise.

Clearly, these conditions cannot be met in general, and even if some key conditions are met,
e.g., those in (2.8), it is difficult to verify the remaining. One such a situation may be when
spatial layouts are contiguity-based such as Rook, Queen, and group interactions, where the
number of neighbors for each spatial unit ‘does not vary much’, or the unknown CH depends
only on the exogenous regressors (see Liu and Yang 2015, and Monte Carlo results in this
paper). However, practical applications often use spatial weight matrices constructed base on
‘economic’ or ‘financial’ distances, and in these cases even the necessary conditions (2.8) might
be violated. Furthermore, this simple solution may not extend to the more general two-way FE

model as discussed below. A more general approach is therefore called for.

2.2. The two-way FE-SPD model

When T is small, the above discussions extend in a straightforward manner to the SDP
model with two-way FE (FE2-SPD), by adding the time-specific FE, {a;}1_; into the model



in the form of dummy variables. When T is large, however, {a;}]_; constitute another set of

incidental parameters and it is customary to apply another transformation to eliminate them.
Let F}, ,—1 be the first n—1 eigenvectors of the individual demean operator, J,, = I, — %lnl%.

Lee and Yu (2010a) show that this transformation is valid as long as the spatial weights matrices

are row-normalized (i.e., each row sums to 1), since it ensures J, Wy, = J, Wy J,. By Spectral

Theorem, J, = n,n—lFr/L,nfl- Now, for an n x T matrix [Zp1,- -, Z,r|, define its transformed
version as [Z), ..., Z:L,T—l] = F,’w_1 [Zn1s -y Znr|Frr—1. This gives the transformed variables
(upon stacking): Yy = (Y1, ... ,Y;”T_l)’, Uy = (U}, .. .,U;fT_l)’, Vy =(VY,.. .,V;ﬂ’T_l)’,

Xjn = (Xjn1s---s Xjp_q), for the jth regressor, j = 1,...,k, and Xy = {Xyn,..., Xgn}.

Define W,y = Ip_1 QW

o

FE>-SPD model, identical in form to Model (2.3):

where W) = FAnlean’n_l. We have the following transformed

Yy =AMWinYy +XnGBo+ Uy, Uy =psWonUyn + V. (2.9)

The effective sample size now becomes N = (n — 1) x (T'— 1). It is easy to see that Vy =
(Frr—1 @ F ) (Vin -, V). Then, E(Vy V) = UZ(F%,TA ®Fy, 1) (Frr-1® Fpo1) =
02Ty under homoskedasticity. Hence, {v};} are iid N(0,0?) if the original errors {v;;} are iid
N(0,02). Given the similarity between (2.9) and (2.3), QML estimation proceeds in the same
way. When {v;} are iid but may not be normal, Lee and Yu (2010a) show that, under some
regularity conditions, the resulting QMLE fgquo = (B(SMLzaS(JMLQa&%MLz), is v/N-consistent and
asymptotically normal. Finally, for simplifications in calculating the determinant terms in the
concentrated loglikelihood functions, see Lee & Yu (2010a) and Griffith (1988).

Robustness of QMLE of FE,-SPD model. When T is also large, the results above for
the FE;-SPD model are invalid as {a;}7_; induce another set of incidental parameters. While
the transformed FE9-SPD model given in (2.9) takes an identical form as the transformed FE;-
SPD model given in (2.3), and the corresponding quantities also take the same forms as those
given in equations (2.5), written in terms of the new transformed variables, the major difference
is that in the presence of unknown CH the transformed errors in the FEo-SPD model are no

longer uncorrelated across ¢ as seen below,
E(VyVY) = 03(Fpry ® F 1) (I © Ho)(Frr-1 ® Fopn-1) = o5 (Ir @ Hy),
where H; = (F},_,

necessary conditions for the QMLESs of the FEo-SPD model to be robust against CH become:

H,F, —1), which no longer is a diagonal matrix. In addition, the two

%(tr(Hq’;Gln) — %tr(@ln)tr(H}Q)) — 0 and %(tr(H:LGQn) — %tr(GQn)tr(H:{)) — 0,
which are even more difficult to verify and more unlikely to be satisfied in practical applications
compared to (2.8). Therefore, it may not be of practical interest to pursue further in this direc-
tion. However, the study of this section sends a clear message: the standard QML estimation
is not robust against unknown CH in general and effort should be diverted to the development

of new estimation and inference methods that are generally robust against unknown CH.



3. Robust Estimation and Inference for FE;-SPD Model

Note that CH of completely unknown form may induce another set of incidental parameters
besides the fixed effects and this problem is even more profound for smaller T'. In case of classical
linear regression, it posts no problem in terms of point estimation, but does cause problem on
standard error estimation which generates a series of works spurred by White (1980). In cases
of spatial econometric models or models containing ‘non-linear’ structural parameters, it causes
problems on both point estimation and inference. Developing a general method to solve these

problems, for the SPD model with individual-specific FE, is the focus of this section.

3.1. The adjusted quasi score method

We propose an adjusted quasi score (AQS) method for estimating the common parameters
in the FE-SPD model, by adjusting the joint quasi score function of 8. Following the notation
of Sec. 2.1, the quasi score function, Sy (6) = %EN(O) given in (2.7), can be written at 6y as:
(

1

af(Q)XI]VVN,

L (VIWV — Nod),
Sn(g) = 20 Mo 0 i (3.1)
%V&(mv +GinVy) — tr(Gin),

%V?VGQNVN — tr(GQN),

where ny = GinvXnfo. As evident from (3.1), the main cause of inconsistency of the QMLEs
may be the score elements with respect to the spatial parameters, which fail to reach the desired
probability limit of zero under CH. As such, one could naturally look at adjustments to these
score components by brute force so that the resulting AQS functions become unbiased and
have the desired probability limits under unknown CH. From (3.1), it is clear that these can be
achieved by replacing Gy by GSy = Gin—diag(Gin) and Goy by G5y = Goy—diag(Gay):

2 X (p) VN (3,9),

L[‘\// (/67 5)VN(ﬂ75) - NU2]7

en(@) =9 " . (3.2)
52 Vin(8,0) [N (8,6) + Gy (6) Vi (8, 6)],

22 Viv(8,0)GEy (0) Vv (8, 6),

to give an AQS function ¢ (0) with the desired property: E[#)n(6y)] = 0 and plimN_,ooﬁle (00) =
0 under unknown CH. The AQS estimator (AQSE) of the structural parameters 6 is thus

éAQSl = arg{yn () = 0}. (3:3)

The root-finding process can be simplified by first concentrating out 3 and o2 from vy () using
B () and G%(8) given in (2.5) (the constrained QMLEs and AQSEs of 3 and o are the same),
and then solving the concentrated AQS equations to give dpqs; = arg{zﬁf\, (0) = 0}, where



12)0 (5) _ &%1(5)V3V<BN(5)75)[77N(BN(5)’5) +GTN(5)VN(BN(5),(S)], (3 4)
N 5}%1(5) Vi (B (6),0)G5n (p) VN (B (6), ).

Then, the AQS estimators of 3 and o} are BAQS]_ = BN(SAQM) and 62{351 = 6]2\,(51“331). The
concentrated AQS vector 1;10\,(5) is also crucial in establishing the asymptotic properties of

AQSE éAQSl, which are given below.

Asymptotic analyses. Our asymptotic analyses of the AQS estimator éAQSl cover the
cases where n is large and 7' is finite or large. The case of finite n and large T is of less interest
as (7) individual FE and CH can be consistently estimated, and (i¢) the spatial weights matrices
can be estimated non-parametrically using the T' observations for each cross section. Following

is a set of generic assumptions for the asymptotic analyses of the FE-SPD models.

Assumption 1: The true spatial parameters Jp is in the interior of a compact set A.

Assumption 2: The errors {v;} are independent over i = 1,...,nand t = 1,...,7T, with
mean 0 and variances aghi such that %Z?:l h; =1 and h; > 0,Vi, and E|vit\4+7 < ¢ for some
~v > 0 and constant ¢ for all ¢ and ¢.

Assumption 3: The elements of X,,; are non-stochastic and bounded, uniformly in ¢ and
t, and limy_ %X’NX N~ exists and is non-singular.

Assumption 4: The spatial weights matrices W,,, r= 1,2, are uniformly bounded in
absolute value in both row and column sums and are of zero diagonal elements.

Assumption 5: The matrices A,y are non-singular and A;]\l, are uniformly bounded in
absolute value in both row and column sums. Further, A[+()\) and A, (p) are uniformly

bounded in either row or column sums, uniformly in § € A.

Assumption 2 extends Lee and Yu (2010a) to allow for unknown CH. Assumptions 1 and
3-5 are as in Lee and Yu (2010a). Compactness of the parameter space A is needed due to
the non-linearity of ¢ in the reduced form of the model (Lee and Yu, 2010a), and in the AQS
function ¥ (). Consistent estimation of § requires that the difference between %Q/;JCV (0) and its
population counterpart converges in probability to zero, uniformly in § € A and such a uniform
convergence requires the compactness of A (Newey, 1991), as further explained below.

Let ¥y (0) = E[tyn(0)], the population counterpart of ¥ (6). Let 1$(5) be the population
counterpart of 1[153\,((5) obtained by concentrating out 8 and o2 from the ¥ () = 0 (see the
proof of Theorem 3.1 in Appendix B for details). By Theorem 5.9 of van der Vaart (1998),
consistency of dygsy follows from (a) the uniform convergence: SUDsen & 9% (8) — 5 (0)]| & 0,
and (b) the identification uniqueness condition: infs. (s 5,)>< LB ()] > 0= % [E[RS (50)]]l,
for every € > 0, where d(d, dp) is a measure of distance between § and dy. The latter is satisfied
by Assumption 6 given below. Let Dy () = Aan(p)Ain(N) and Dy = Dy (do).

Assumption 6: limy_.s %FN(é) # 0, Vo # &g, where, letting fy = AIJ%,XNQO,
fy Dy (0)Giy (8)Dn ()t + ogtr (HyDYy ' Dy (8)Goy (6)Dn (DY),

FN((S) - 2 /—1 —1
£ D ()G () Dy (8)fy + o3tr(Hy Dy Dy (85)G3x (5D (H)DR).



Once &g is identified, the identification for §y and 08 follows from Assumptions 3-5. In
contrast to §, due to the linearity of 3 and ¢? in the AQS function, the compactness of the
parameter space of # and o2 is not needed.

The joint asymptotic normality of éAQSl is established based on the fact that AQS function
YN (1ho) can be written as linear-quadratic forms in the original error vector so that the central
limit theorem (CLT) of linear-quadratic forms of Kelejian and Prucha (2001, 2010), or Lemma
A.3, can be applied, and that the Hessian and the VC matrix of the AQS function possess

desired properties. We have the following theorem with its proof given in Appendix B.

Theorem 3.1. Under Assumptions 1-6, the AQSE éAQSl is consistent and asymptotically

normal, i.e., as N — 00, éAQSl L, 0y and
A D . _ _
A% N(@AQ51 - 00) — N(O, th—>oo (I’NIQN(I)NI),

where @ = —%E[ai%qﬁ]v(ﬂo)] and Qn = +E[Wn (60)¢)y (00)], both are assumed to ezist for large

enough N and ®n is assumed to be positive definite for large enough N.

Robust inference. The robust inferences for vy depends on the availability of the robust
estimators of & and Qy. The former can be consistently estimated by its sample analog
EI;AQSl = —%%wz\/(ﬁ)b:émm, but the latter may contain second, third and fourth moments of
v;; which vary across ¢ in the presence of CH, making plug-in method infeasible. Here, we
provide a simple remedy on the standard inference methods so that they remain valid even if

there exists unknown CH. Similar to (3.1), we can write ¥)n () as,

;
1 e/
%XNVN?

1 9
= Vy — Noj),

n(B) = 2103( N ) 0) (3.5)
Ung?v(??N + Gy VnN),

%g VGiy VN,

As ¥ (0g) contains linear-quadratic forms of Vi, it can be decomposed into a sum of N
uncorrelated terms (martingale differences) so that its variance can be estimated by the outer
products of the summands (Baltagi and Yang, 2013). Given (_}Cl’ ~ has diagonal elements 0, the
term VQV(_}CI’NVN in ¥ (0p) can be written as,

VGInVy = Viy(GiR + Giy) Vv = Vi (GIN + GiN) Vv = Viv(iy,
where (_}Cl”fv and (_}‘1’5\, are, respectively, the upper triangular and lower triangular matrices of
G({N, and {7y = (G in+ G%V)VN; similarly the term V/\yG$,\ Vv is represented. Therefore,
the AQS function can be written as ¥y (6y) = Zjvzl sN,j, Where,

JLSXN7]VN7]7

1 2 21c

3,1 (Vv — oghj)
210'0 5] 277 (36)
22 VN (g + G )

1 .0
o2 VIV.j CQN,j’
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where X;\/,j is the jth row of Xy, vy ; is the jth element of V and similarly are the other
quantities defined, for j = 1,..., N, a combined index fori=1,...,nand t=1,...,T —1 with
1 being the faster running index, and h; =hy=h;fort=1,...,T —1.

The {sn j, Fn,;} form a vector martingale difference (MD) sequence, with respect to the
increasing sequence of o-fields {Fn ;} generated by {vn1,...,vn;}, if the elements of Vy
are inid normal, which is the case when the original errors are inid normal. It follows that

Qn = +Var[yn(6o)] = + Zjvzl E(sn,;8)v ), and hence can be consistently estimated by,
Ougst = % 20 8,80y (3.7)

which is termed as the outer-product-of-martingale-difference (OPMD) estimate as in Yang

2018), where Sy ; are the estimates of sy ; by plugging éA g1 and VN into sy ; for 5 and V .
] J Q »J
1 T—1 ~x2
(T—1)7s, £t=1 it -
When the original errors are inid non-normal, the elements of V  are independent across 4

Finally, since E(v}?) = o2h;, it is natural to replace h; in (3.6) by hi =

and uncorrelated (but may not be independent) across t. Hence, there may exist higher-order
dependence among the elements of Vy across t, i.e., between v}, and v;2 and v}? and v}2 for
t # s, implying that sy and sy ;s may be correlated and that the above OPMD estimate of

{1y may not be strictly valid. As sy ; or sy are uncorrelated across ¢ for all ¢, we have
Var[ (00)] = Var(3Ziny 02y swvie) = 37y Var(3,21 snvar)
N T—1 -1
= Zj:l E(SNJS/N,J') +23 00 20 22:1 E(SNyitSIN,is%

where we freely switch between the single index j and the double indices (i,t) for convenience.

This immediately suggests the following general estimator fully robust against non-normality:

of _ 1 N o ar 1 nooa
Qpgs1 = w ijl SNSN,; T 7 >ie1 BNy (3.8)
where Ty ; = % Z:zl Zi;ll (8 Nﬂ'té§v,is)' Its sequential limiting behavior is given below.

Theorem 3.2. Under Assumptions 1-6, we have, (i) Zf)AQSl —dy 20 as N — oo;
(14) QI\QM —Qn 250, asn— oo first, and then followed by T — oo;
and (iii) ﬁAQSi — Qpn 2. 0as N — oo, if the skewness and excess kurtosis of vy are both zero.

Intuitively, the higher-order dependence causing the additional term in (3.8) relative to (3.7)
when the errors are non-normal may be asymptotically negligible due to the fact that {f;}, the
columns of Frr_i, are orthonormal. See the proof of Theorem 3.2 in Appendix B for details.
Our Monte Carlo results (unreported for brevity) show that this is indeed the case. When T is
small, the approach of Yang (2018) can be also followed, i.e., first sum the elements of ¥n(6p)

over t, and then decompose over i to give a true MD representation of )5 (y) in n terms.

3.2. Finite sample improved AQS method

While it seems fairly easy to adjust the full score function (2.7) to attain a robust estimator,

with a desired asymptotic performance, the finite sample performance is less than optimal
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by the fact that the full score function does not take into account the variability caused by
estimating the other model parameters 3 and o2. As such modifying the concentrated quasi
score functions are desirable to ensure both asymptotic as well as finite sample performance
in the robust estimator, since the concentrated score function captures the variability coming
from estimating 3 and 2. See Liu and Yang (2015) for more discussions.
The concentrated score function derived by taking the derivatives of the concentrated log-
likelihood function (2.6) with respect to d, or by concentrating (2.7), is,
§5.(6) = %Y/N(CS)MN(P) [C:;IN((S) — 2tr(Ginv(\)IN] YN (),
575 Y (OMN (p) [Gan (p) = 527 (Gan () IN]Y v (9),
where G1n(6) = Aan(p)Gin (A ALy (p) as defined above, and Gan (p) = Gan(p)My(p).
Using S$(), the regular QMLE is defined as, oy = arg{S%(8) = 0}. Clearly, the root-
finding process is independent of % (8) as long as 6% (8) is bounded from below, away from
0 for § in a neighborhood of dg. We therefore adjust the numerators of (3.9) so that the ad-
justed quantities have zero expectation at 8y. Note, E(Y?VI\\/JINC_}TNYN) = o%tr(HNMNC_-}TN) =

(3.9)

oftr(Hydiag(MyG,y)). Hence, a possible way to go is to replace 1tr(G,y) of (3.9) with
diag(MyG,n). However, this introduces an additional My, i.e., E(Yydiag(MyG,N)Yy) =
agtr(HNMNdiag(MN(_}rN)). To cancel out this effect, the final adjustment made is of the
form diag(My) 'diag(MyG,y). The final AQS function is simply,
- Y\ ()M Gy (6)Yn(9),
() = IN( Mr(2) _iN( ¥ (0) (3.10)
Yy (6)Mn (p)G3n (P)Y N (9),
where G\ (6) = G,n(8) — diag(Mn (p)) ' diag[Mn (p) Gy (6)], 7 =1,2.
It can be seen that E[¢% ()] = 0 and plimNﬁm%zﬁj‘v(&)) =0, i.e., ¥} (8) gives a set of unbi-
ased and consistent estimating functions, leading to an AQS estimator of §, possibly consistent

under unknown CH, asymptotically normal, and with a finite sample improved performance:

Onas1 = arg{Yx(6) = 0} (3.11)

Once the CH-robust estimator 5;;5151 is obtained, the CH-robust estimators for 3 and ¢ follow
from BXQSl = BN(SXQM) and G5y = 512\7(5:(151) Denote éXQm = (BX(/JSM&XI%SD 31631),7 called the
AQS* estimator in this paper. Note that the AQS functions (3.10) do not depend on 6']2\,(5).
The asymptotic properties of the AQS* estimators SXQM and BKQSl are studied under the
same set of regularity conditions. In particular, G} () is asymptotically equivalent to G$ (4),
G3y(8) is asymptotically equivalent to Gy (8), and 5% (9) is bounded from below away from
0, uniformly in § € A as shown in the proof of Theorem 3.1 and so is 63,(8) for large enough
N. Thus, it is valid to work with the numerators of (3.9), and the identification uniqueness

condition for dp, given in Assumption 6, remains.
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To establish asymptotic normality of 57&4517 note that,

~n\90) = :
V?VBQNVN—I-CIQNVN,

where B,y = MN(_}:N and ¢,y = MN(_}jNXNﬁO,r = 1,2. Clearly, diag(B,n) = Onxn by
construction. The AQS function LZ}kV (dg) can be further rewritten as a linear-quadratic form of
the original disturbances, {v;;}, and therefore its asymptotic normality can be established by
the CLT for linear-quadratic forms of Kelejian and Prucha (2001) or its multivariate version of
Kelejian and Prucha (2010) extended in Lemma A.3. This together with the proper asymptotic
behavior of the Hessian and VC matrices of 9/%(dp) lead to the asymptotic normality of SXer

Theorem 3.3. Under Assumptions 1-6, the AQS* estimator 81(331 1s consistent and asymp-

totically normal, i.e., as N — oo, 5KQ51 2. 60 and
S D : —1ox F*—
VN (0}qs1 — 60) — N (0, limy_o @5 ' Q52N 1),

where O = %Var[zﬁv(éo)] and ® = —%E[a%{)lﬁfv(ég)], both are assumed to exist, and P is

further assumed to be positive definite for large enough N.
Finally, for the AQS* estimator ﬁ:am = Bn(dags1), we have by a Taylor expansion:
Biast — Bo = Bn(80) — Bo + [Q%)BN(%)](SAQM —60) + Op(+)
= (X Xn) "Xy Vv + E[g5-8n (00)] @' 9 (60) + Op(3)
= (X0 Xn) XN Vi + TIngy (60)] + Op(7),

where Iy = E[ag(,) ﬂAN((SO)]CPZ_\,l, and E[%BBAN(&))] =— [(XQVXN)_IXQV(_}lNXN,BO, kaﬂ because
a%gﬁN@O)] = [(XyXn) XN AN Win Yy, (X3Xn) X (Gl + Giv)My Yy ].
These lead to the asymptotic distribution of BXQSl.

Theorem 3.4. Under Assumptions 1-6, the AQS* estimator BXQSl is consistent and asymp-

totically normal, i.e., as N — oo, BKQSl 2, Bo, and
5 D . _ _
VN (Bigss — Bo) — N[0, lmy—oo (XN Xn) T En (X3 XN) ],
where Xy = %Var(X’NVN + HNz/;}‘V).

The robust inferences for § and 3 are carried out in a similar manner as in Sec. 3.1.
First, to conduct robust inference for ¢, ®% is consistently and robustly estimated by its sample
analog, &’qu = —3%61/;}“\[(50) 50— St Then, the linear-quadratic forms of the elements of 1% (d)
leads to an OPMD estimate of the VC matrix Q% of ¢} (do), similar to Sec. 3.1.

Write B,y = BUy+BLy. Define ¢.n = (BUy+BLy) Vi, andlet sy = (v j+cin, Canj+
cany), r=1,2,5=1,...,N. It follows that zﬁ}‘\,(éo) = Z;Vzl vn,;Sh ;- If the elements {vn;}of

the transformed error vector V y are independent, which is the case if the original errors are inde-
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pendent normal, then it can be shown that {vy ; SN, j} form a sequence of martingale differences
and hence are uncorrelated. It follows that Q} = lVa]r[z;j‘\,(éo)] = %Zj\le E[V?VJS*NJ-S?\I;J].

Therefore, a heteroskedasticity robust estimator of €% is given as

st = W Z] IVNJSN,JSN’], (3.13)

where vy ; and é}} ; are, respectively, the estimates of vy ; and S}kv, ;» based on éjQM.

Now suppose the disturbances are not Gaussian. In this case, {VNJS}kVJ} are no longer
strictly uncorrelated and hence the OPMD estimator given in (3.13) may not be a valid estimator
of the VC matrix of the AQS function. However, similar to Theorem 3.2, an extended estimator

fully robust against non-normality and unknown heteroskedasticity is given as follows:

9:331 - N Z] lijé*N]é%,] i Zz 1 Nz’ (314)

2 T-1 t—1 DEOF &% g%
where 1 er T—1 t=2 Zs 1 ztvszNztSst

Finally, to estimate Xy in Theorem 3.4 for inference on (3, based on the MD decom-
position for 9% (dp) given above under normality, we obtain Yy = %Z;Vﬂ E[V?VJ(XNJ +

Iy jsn,;)(Xn,; + Iy jsn ;)] It follows that a heteroskedasticity robust estimator of Xy is,
EAQ51 =N Z] 1 VN](XN] + HN]SN])(XN] + HN,jSN]) (315)

Under non-normality, one immediately obtain a fully robust estimator:

Shest = Zagst + 2 0 Ay, (3.16)

2 T-1 - / Ak ok A¥/ /
where qN i T—1 t=2 Zs 1(HN ZtvztvzssN ztSN ’LSHN is + QXN itUitVisS N 'LSHN,'L'S)'

Theorem 3.5. Under Assumptions 1-6, we have, (i) 61051 — % 250 as N — oo;
(17) ?22551 —Qy 20 and izqm — Yy 250, as n — oo first and then T — oo;
and (iii) QXQSl - Qy 20 and iAQSl — %Yy 20 as N — oo, if the skewness and excess kurtosis

of vyt are zero.

Similar to the arguments given below Theorem 3.2 and its proof in Appendix B, the ad-
ditional terms in 52551 and izqm do not play much a role due to the fact that the columns
of Frr_1 are orthonormal. Finally, similar steps lead to the asymptotic results for the AQS*
estimator 6}%51, and the CH-robust inference method for inference on o2, As this is not a case
of major interest, and the methods based on the joint AQS function have already covered this

case, we do not present details to conserve space.

4. Robust Estimation and Inference for FE,-SPD Model

The AQS estimation. The AQS estimation method for the FE{-SPD model introduced
above may be extendible to the FE2-SPD model. As the FE2-SPD model (2.9) takes an iden-

tical form as the FE;-SPD model (2.3), the likelihood and quasi score functions remain in the
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same form as well. These motivate that for the robust estimation and inference for the FEo-
SPD Model, the same form of the AQS function (3.2) of the FE;-SPD model may be used.
However, this AQS function may not achieve the desired property for the FE2-SPD model as
~E(VNGo\ V) = ttr(Gy Hy) = +tx(GyF , (HoFrpo1) # 0, r = 1,2, due to the differ-
ence in transformed errors V for the SPD-2F model, which are correlated across ¢ under CH.
This may pose a potential problem in terms of attaining consistency for the AQSE even after

making the adjustments as those for FE{-SPD model. However, it is easy to see that,
%tr(éﬁnFrll,nlenFn,n—l) = % Z?:? Z?;zl é?n,ijfjl'ani = K,

rn,ij denotes the ijth element of GS,. As

fifi =0, for j # i, we have k;, = 0 if H, = clp, Also, note that f;f; = 1. Therefore, it is

reasonable to assume

where f; denotes the i¢th column of F), ,_; and G

krn — 0, asn — oo, 7 =1,2.

We are unable to provide simpler justifications for its validity, but instead we have performed
extensive Monte Carlo experiments and the results show clearly that this is indeed the case.
Thus, under this condition the AQS method inherited from the FE{-SPD model remains asymp-
totically valid for the FEs-SPD model. Therefore, we proceed using the same AQS function
(3.2) to give an AQS estimator, denoted as éAng, of the structural parameters 6 in the FE,-SPD
model, and do not pursue rigorous asymptotic theories in this paper.

Based on the AQS estimator éAng, robust inference for 6 can be carried out in a similar
manner. In particular, the asymptotic variance of éAng is <I>]_\,IQ N<I>]_V1, where ® and Qy are
defined in the same way and estimated in the identical manners as those for the FE{-SPA model.

But again, we do not pursue the rigorous theoretical work in this occasion.

Finite sample improved AQS estimation. Similar to the considerations given in Sec.
3.2, the finite sample improved AQS estimation strategy for the FE;-SPD model may be ex-
tended directly to the FEo-SPD model using the newly defined quantities for the transformed
FE2-SPD model given in Sec. 2.2., due to the fact that the two transformed models and the
corresponding quasi score functions are identical in forms. However, unlike the case of FE;-SPD
model, Var(Vy) is no longer diagonal under CH. Therefore, for the AQS function 1/3}“\, (6) given
in (3.10) to be applicable to the FE5-SPD model, it requires additional minor conditions which
can be seen to be asymptotically equivalent to the conditions given in Sec. 3.1 for AQS esti-
mation of FE9-SPD model: k,,, — 0 as n — oo, r = 1,2. The resulting finite sample improved
AQS estimators are denoted by éKQSQ = (BX&SQ, 6xdsas AX{JSQ)’ .

The results given in Sections 3 and 4 show that the AQS estimators éAQSl, éAng, OAXQSD and
éZQSQ are computationally as simple as the original QML estimators éqMLl and éQMLg, while being
generally consistent under unknown CH and preserving the nature of being robust against non-
normality. Monte Carlo results given in the following section confirm the excellent performance

of these estimators, in particular the pair of finite sample improved AQSEs éXQ51 and éXQSQ.
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5. Monte Carlo Study

Extensive Monte Carlo experiments were conducted to investigate the finite sample perfor-
mance of the original QMLE Sn and the proposed AQSEs 5AQ51 and 310517 and their impacts on
the estimators of Gy and 03, with respect to changes in the sample size, spatial layouts, error
distributions and the model parameters when the disturbances are heteroskedastic. We consider
cases where the original QMLEs may be robust against CH and the cases they are not. The

simulations are carried out based on the following data generation process (DGP):
Ynt = )\OWnYnt + Xl,nt/gl + XQ,nt62 +cn+ Unta Unt = pOWnUnt + Vnta t= 17 27 37

where X1 ,; and X3 ,,¢ are the two fixed regressors, and V;,; = 0 Hy,e,¢. The regression coefficients
Bisset to (1,1), o is set to 1, A and p takes values from {—0.5,—0.25,0,0.25,0.5}, n take values
from {50, 100,250,500} and T is initially set to be 3. The ways of generating the values for
(X1n, Xon), the spatial weights matrix W,,, the CH measure H,,, and the idiosyncratic errors e,

are described below. Each set of Monte Carlo results is based on 5,000 Monte Carlo samples.

Spatial Weights Matrix: We use three different spatial layouts: (i) Circular Neighbors,
(74) Group Interaction and (iii) Queen Contiguity. In (), neighbors occur in the positions
immediately ahead and behind a particular spatial unit. For example, for the ith spatial unit
with 6 neighbors, the ith row of W,, matrix has non-zero elements in the positions: i — 3,7 —
2,1 —1,94+ 1,7+ 2, and ¢ + 3. The weights matrix we consider has 2, 4, 6, 8 and 10 neighbors
with equal proportion. In (i), neighbors occur in groups where each group member is spatially
related to one another resulting in a symmetric W,, matrix. In (iii), neighbors could occur in
the eight cardinal and ordinal positions of each unit. To ensure the CH does not fade as n
increases (so that the regular QMLE is inconsistent), the degree of spatial dependence is fixed
with respect to n. This is attained by fixing the possible group sizes in the Group Interaction
scheme or fixing the number of neighbors behind and ahead in the Circular Neighbors scheme.
The degree of spatial dependence is naturally bounded in the Queen Contiguity weights matrix.
To analyze the performance of the original QMLE when it is likely to be robust against CH, we
use Queen Contiguity scheme and the balanced Circular Neighbors scheme where all spatial

units have 6 peers each.

Heteroskedasticity: For the unbalanced Circular Neighbor scheme, h, ; is generated
as the ratio of the total number of neighbors to the average number of neighbors for each 7 while
for the Group Interaction scheme h,, ; is generated as the ratio of the group size to mean group
size. For the balanced Circular Neighbor and the Queen Contiguity schemes, we generate CH

as hng = n[D27 ([ Xinl + [Xon i) ([ Xn| + [ Xonl)-
Regressors: The regressors are generated according to REG1: {xy 1, X2t} “oN (0,1)/v2.

For the Group Interaction scheme, the regressors can also be generated according to REG2:
{Z1itr, T2ty } ud (2zr + zit,r)/V10, where (2, zit,r) id N(0,1), for the ith observation in the

rth group, to give a case of non-iid regressors taking into account the impact of group sizes on
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the regressors. Both schemes give a signal-to-noise ratio of 1 when 31 = 3 =0 = 1.

Error Distribution: To generate the e,; component of the disturbance term, three DGPs
are considered: DGP1: {e, ;;} are iid standard normal, DGP2: {e,, ;;} are iid standardized normal
mixture with 10% of values from N(0,4) and the remaining from N(0,1) and DGP3: {e, ;} iid
standardized log-normal with parameters 0 and 1. Thus, the error distribution from DGP2 is
leptokurtic, and that of DGP3 is both skewed and leptokurtic.

Tables 1-3 (a,b,c) summarize partial results for the QML and AQS* estimation of ¢ (the
worst and the best among the three estimators), where in each table, the Monte Carlo means,
root mean square errors (rmse) and the standard deviations (sd) of the estimators are reported.
To investigate the finite sample performance of the proposed OPMD-based robust standard error
estimators, we also report the averaged standard errors (sAd) of the AQS* estimator (AQSE*)
based on ﬁj‘;QSl in Theorem 3.5. Table 4 (a,b) gives empirical sizes of the ¢ tests of Hy: f1 = (2
under the Group Interaction scheme, using the QML and AQS* estimators, respectively. The

main observations made from the Monte Carlo results are summarized as follows:

(i) For the case where QMLE is likely to be consistent such as in Queen contiguity given in
Tables la-1c, both estimators perform equally well, consistency of both the estimators is
clearly shown, and the consistency of the OPMD-based standard error estimate for the
AQSE* is also clearly demonstrated.

(ii) For the cases where the original QMLE is inconsistent as in Tables 2-3, AQSE* provides
a useful consistent alternative with significantly less bias and with little or no impact on
the efficiency. The inconsistency of the QMLE and the consistency (robustness) of the
AQSE* are clearly demonstrated by the Monte Carlo results.

(iii) The OPMD-based estimates of the robust standard errors of A\g and po perform well with

their values very close to their Monte Carlo counterparts in general.

(iv) As the theory suggests, the QMLEs for the covariate effects are less affected by CH. The

AQSE* for the covariate effects (unreported for brevity) performs well as well.

(v) The t-statistics based on the AQSE* outperform the ones based on the QMLE in terms of
size. The AQSE*-based test is oversized but not severe, and with the increase of sample
size, its empirical sizes quickly converge to their nominal levels. In contrast, the QMLE-
based test is more severely oversized when sample size is not large, its empirical sizes
depend strongly on the values of the spatial parameters, keep decreasing as sample size
increases, and as sample size becomes large it becomes significantly undersized (see the

lower parts of Tables 4a and 4b).

(vi) The cases with larger T' were also investigated. The results (unreported for brevity) show
that the AQSE* for § and the OPMD-based estimate for the standard errors continue
to perform well, irrespective of whether the errors are normal or non-normal. These

conclusions support the discussions below Theorem 3.5.
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Extensive Monte Carlo experiments were also conducted for the estimators based on the
joint AQS function, corresponding to the results of Theorems 3.1 and 3.2. The results generally
support the theories, in particular, the AQSE performs not as well as AQSE* although generally
consistent. The results (not reported for conserving space) with 61051 or ﬁzgm in VC matrix
estimation do not show significant difference from those using ﬁAQSl or ﬁqur Furthermore,
Monte Carlo experiments were conducted as well for the QMLE, AQSE and AQSE* estimators
of FE2-SPD model, and the results (available from the authors upon requests) show similar
patterns, showing that the assumption on quantities k,,,r = 1,2, defined in Section 4 and the
related discussions are valid. Therefore, the methods developed for the FE;-SPD model can be
directly applied to the FE2-SPD model, although rigorous theories are yet to be developed.

6. Conclusion

In this paper we consider the problem of cross-sectional heteroskedasticity (CH) and non-
normality of the disturbances in a fixed effects spatial panel data (FE-SPD) model with spatial
autoregressive dependent variable and disturbances. CH in particular causes the traditional
QML estimator to be inconsistent in general, and for this we proposed the adjusted quasi
score (AQS) methods, based on joint AQS or concentrated AQS functions, giving AQS and
AQS* estimators that are generally robust against unknown CH. For CH-robust inferences, we
proposed an outer-product-of-martingale-differences (OPMD) method to estimate the variance
of the AQS or AQS* functions, which together with the Hessian matrices of the AQS or AQS*
functions give robust estimator of the variance-covariance (VC) matrix of the AQS or AQS*
estimators. Monte Carlo results reveal excellent performance of the proposed methods.

Motivated by the pioneering research in the cross-sectional spatial econometric literature,
we also give some formal arguments that the traditional QMLE of the FE-SPD model can be
consistent under CH of certain ‘types’. However, the conditions under which the QMLE is robust
against unknown CH are difficult to verify, and even if the conditions were satisfied under some
CH structures, these CH structures may not suit the practical applications well. Therefore, the
proposed set of fully robust AQS-estimation method and OPMD-inference method, which are
computationally as simple as the QML methods, are recommended for practical applications.

The studies given in this paper on SPD models with one-way fixed effects or two-way additive
fixed effects shed much light on the AQS strategy for robust estimation of structural parameters
in the model, and the corresponding OPMD strategy on the VC matrix estimation for robust
inferences, for future studies on more general models or different models. For example, in cases
where the spatial weights matrices changes with time so that the transformation method cannot
be applied, the AQS method may be able to provide a solution. In a situation where the two-
way fixed effects are interactive, the AQS method may be able to provide an alternative, and
perhaps simpler method to estimate the model. A more difficult issue remains on the estimation

of the VC matrix. It would be interesting to pursue these issues in future research.
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Appendix A: Some Useful Lemmas

Following lemmas extend the selected lemmas from Lee (2004), Yu et al. (2008), Lin & Lee

(2010), and Kelejian & Prucha (2010), which are essential in proving our main results.

Lemma A.1: For Xy(p) defined in Sec. 2, under Assumptions 1, 3 and 4, the projection
matrices, Pn(p) = Xy (p)[Xy(0)Xn(p)] 1 X\ (p) and My (p) = In — Pn(p) and are uniformly
bounded in both row and column sums, for each p in its compact parameter space.

Lemma A.2: Let Ay and By be N x N matrices, uniformly bounded in both row and
column sums, and My (p) be defined in Lemma A.1. Then, we have,

(i) the elements of An are uniformly bounded,

(17) tr(A%) =O(N) form >1,

(iii) tr(AlAx) = O(N),

(tv) tr((Mn(p)AN)™) =tr(A) + O(1) for m > 1 and each p,

(v) tr((AyMy(p)An)") = tr((AyAN)™) 4+ O(1) for m > 1 and each p,

(

vi) AnBy is uniformly bounded in both row and column sums.

Lemma A.3: Let Ay be an N x N matriz of uniformly bounded column sums, Cy be an
N x k matriz (k < N ) of uniformly bounded elements, and Vy be an N x 1 random vector of

independent elements with zero mean, and uniformly bounded third absolute moments. Then,

(2) TlﬁCQVANV: 0,(1) and CHyANV = 0,(1),

(i) ﬁCQ\,ANV 24 N(0,limy— %C’NANHNA’NCN), where Hy = Var(V) and the ‘limit’

is assumed to exist and to be positive definite.

Lemma A.4 (Moments and Limiting Distribution for Linear Quadratic forms):
Let B,y be N x N matrices of uniformly bounded row and column sums, and c.y be N x 1
vectors with elements c,; satisfying supy % Zi\il ]cm’|2+E < oo for some € > 0. Let Vy be an
N x 1 random vector with elements: {v;} ~ inid(0,05h;), where h; > 0 such that % Zfil h; =1,
and Elv;|*t¢ < ¢ < oo for all i, for some € > 0 and constant c. Consider the linear-quadratic
forms: Qyn = V'NBTNVN + c;NVN, r = 1,2. Denote the diagonal elements of B,n by by.;.
Let s; and k; be, respectively, the measures of skewness and excess kurtosis of v;. We have,

(i) E(Q,n) = odtr(HyB,n), where Hy = diag(hy,...,hy),

(i1) Var(Q,n) = ogtr[HyB,n(HyB,n + B/ vHy)] + ch;,NHNcTN

+ 301 (0§02, h2ki + 20 Bbricrihi!%si),
(4ii) Cov(Qun, Qan) = 205tr(BinHNBayHy) + odc) yHycan
N 081 b2 sih2 ki 4 o (b sicai + bQ,iiCIi)h?/QSi] ,
(iv) BE(Q;n) = O(N), Var(Q,n)=O(N), and Q,n = Oy(N),
(v) LQuy — LE(Quv) = 0,(N73),

(vi) BA=TEA) 2 N(0,1), and for Qu = (Quw, Qav)'

(vii) ©3*(Qn — E(Qn)) -5 N(0, 1), where Sy = Var(Qy), and SN°SN? =Sy
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Appendix B: Proofs of Theorems

More on the Robustness of QMLE. We continue on the discussion at the end of Sec.
2.1 to give some more useful details on the nature of Condition I and Condition II.

First, given 4, /x5 (0) = E[fx(0)] is partially maximized at

B (8) = (X (0)Xn ()] K (p)D (9)fy, (B-1)
7%(0) = HEA DN (OMy (p)Dy (0)tx + Fer[HyDy Dy (9)Dn (DR, (B-2)

giving the population counterpart of £5,(d) (see (2.6)) upon substitution:
05,(8) = maxg .2 E[ln(0)] = =5 In(27 + 1) + In[Dn (6)| — F In(5%(6)), (B-3)

recalling Dy (6) = Ir—1 ® Dy (6), Dy = Dy (dp) and fy = AleNﬂo. We have 512\,(50) = 03,
and 3,(6) = 02(0)[1 + NU2(5)f’ D'y (6)Mn (p)Dn(0)fn] = 02(6)un(8). Thus,

15(8) = £5(d0) = In Dy (8)] — In[Dy| — 5 (In(07(8)) — n(0)) — 5 Wk (9))-

It can be shown that o2(§) (which is the 2nd part of (B-3)) is bounded from below away from
0 (see the proof of 3.1). By the first part of Condition I(a), & fx D'y (6)Mp(p)Dn(6)fx > 0,
and thus pn(8) > 1 for A # Ao given any p. Now, given Ao, imy_.o0 +[f% (X0, p) — €5 (d0)] #
0 for p # po by the second part of Condition I(a). Hence, dp is identified if further:
limpy 00 %[Zﬁv()\o, p) — £5,(80)] < 0 for p # py, which is a special case of the following.

When Condition I(a) fails, /5(5) — £5(d0) # 0 V6 # & by Condition I(b). To ensure
05,(8) < £5,(80) V8 # o, one needs additional conditions so that £5:(5) < £5,(0) V3 # &p. Note
that py(0o) = exp[¢n(6o)] is the quasi joint pdf of Y under Vi ~ N(0,02Ix). Let pQ(6o) be
the true joint pdf of Yy under Vy ~ (0,02Hy). Let E? denote the expectation with respect
to pn(do), to differentiate from the usual notation E that corresponds to p (fy). Write

Dy (6)Yn =Dn(d)fy + BN(0)Vy, and VN (B3,6) = Bn(6) VN +bn(3,6),
where By (8) = Dy (6)Dy! and by (8,0) = Dy (0)fx — Aan(p)Xn . Then, for £y () in (2.4),
E?[ln(00)] = E[¢n(60)] = =¥ In(270?) + In [Dy| — &, as & tr(Hy) =1, and
E7n(0)] = — § In(2m0?) + In[Dy(6)] — 5oz [07tr(Bi (6)Bn(9)) + biy (8, 6)bn (8, 0)],
Elln(0)] = — % In(2m0?) + In Dy ()] — gz [oftr(HyBYy(8)By(8)) + by (8, 6)bn (5, 0)].

By Jensen’s inequality, E?[In (pN(%e(])))] <In Eq(pN(%o))) =0. If, E¢/n(0)] — E?[ln(0)] = o(N),

then E[lnpy(6)] < E[lnpyn(6p)], for large enough N. Thus, (5 (6) = maxg 2 E[lnpy(0)] <
maxg 2 E[lnpy(6p)] = 05/(80), V6 # 8o, and N large enough. Clearly,

In(
In(

E[(n(8)] — E[(n(8)] = £ [tr(Bly (6B (6)) — tr(HyBi()Bx(9))].
Using AlN(A) = ANy + ()\0 — )\)WlN and AQN(p) = Aoy + (po — p)WzN, we have

By(6) = In + (po — p)Gan + (Mo — N)Gin + (Ao — M) (po — p)GanGin. (B-4)
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Using (B-4) it is easy to see that Condition ITI ensures E[/x(6)] —E?[{n(0)] = o(IN). Therefore,
if Condition I and Condition II are met, sups.q(s, 50)>€€ (8) < £5(8p) for every e > 0, i.e.,
0o are uniquely identified by the QML estimation. Finally, it can be seen that the uniform

convergence, supsea |65 (8) — £5/(0)] £, 0, also requires Condition II.

Proof of Theorem 3.1: Proof of consistency. Let ¢x(6) = E[¢x(0)], the population
counterpart of the joint estimating function ¢ (6) given in (3.2). Given 6, ¥y() is partially
solved at Bx(8) and % (9), given in (B-1) and (B-2). Plugging Bxn(8) and % (8) back into the
M- and p-components (), we get the population counterpart of @ZCV((S)

. SE{V(On(0),0) [nn(Bx(6),0) + GS () V (Bw(8),8)] }
521(5) E{V(BN((D’ 5)/G3N(p)V(BN(5)7 5)}
where V(Bn(8),8) = Yn(8) — Xn(p)Bn (). Working on the numerators of 1(6) and dropping

the terms of smaller order, we arrive at Fy(d) given in Assumption 6, which shows that the

identification uniqueness condition of Theorem 5.9 of van der Vaart (1998) holds, i.e., for every
€ > 0, infs.q(5,5,)>e 5% (8)] > 0 = %[[¥5 (6)]], provided that 5%(5) is bounded from below
away from zero. Then, dpqs; is consistent if the uniform convergence condition of Theorem 5.9
of van der Vaart (1998) holds, i.e., supsea %H&f\,(é) — 5(0)|| = 0p(1). These amount to show

(a) 5%(9) is bounded from below away from zero;

(b) supsea |5%(8) — 33:(0)| = 0p(1), uniformly in 6 € A;

(¢) supsea x| V(Bx(0), ) (B (8),6) — EIV(Bn(8), 6))'nx (Bx (6), 8)] = 0p(1):
(d) supsen 3 [V (Bn(0), ) Gin(8)V(Bn(6),8)~E[V (B (8),0) G () V (Bn(8), 8)]| = 0p(1);
(e) supsea |V (Bx(0),8) 8)'GSx (8) V(B (6),8)]| = 0p(1);

G5y (8)V(On(6),8)—E[V (Bn(9),
);

where V(G (6),8) = Yn(6) — Xn(p)Bn(0) = MN( )Y (6
between (2.4) and (2.6). Similarly, V(8x(9),d) = Yn(8) — [Iny — My (p)]E[Y n (5)].

For condition (a), from (B-2), it is obvious that the first term of %(d) is nonnega-

following the notation defined

tive. It suffices to show that the second term, which is ¢2(§) defined in Condition I, is
uniformly bounded from below away from zero. Consider the model with Gy = 0 and H,, = I,,.
We have the loglikelihood: 67\,(9) = —JIn(2r0?) + In|Dy(8)| — 7z YN (6)Y N (6) and £4(8) =
max,2 B[¢% (0)] = const.—Y (02, (5))+In [Dy(6)], where 02, (8) = Dtr[D/1D/,(8) Dy (5)D;Y).
As D!I71D! (6)D,(6)D; ! is positive semidefinite (p.s.d.), 02,(6) > 0. By Jensen’s inequality,
04 (8) < max,2 E[0%(60)] = £ (o), implying —In(02(8)) < —In(03)+% In|Dy|—% In Dy (0)| =
O(1) by Lemma A.2 and the fact that 2 is bounded away from 0. Thus, — In(02,()) is bounded
from above, implying o2, (5) # 0. Therefore, 2,(5) is bounded from below away from 0. Fi-
nally, 02 (8) = %(Q’tr[HnD;I ID!(8)D,,(8)D; Y] > min(h;)o2,(6) > ¢ > 0,as D71 D! (6) D, (6)D;; "

is p.s.d., and H,, is a diagonal matrix with strictly positive elements.

For condition (b), using Yy (§) = Dy(6)Dy' (AanXn B0 + (F) 7.7-1®1n)Vir), where Vy,r
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is the nT x 1 vector of original errors, we can write 6% (0) = + Y/ (0)Mp(p)Yn(6) as

53(8) = FENDN (O)My (p)Dn(0)fn + F Dy (O)My () D (DN (Ffp_y © L) Vir
+ Vi (Frr-1 @ L) Dy Dy (0)Mn (0) Dy ())Dy (Frpoy @ L) Vaar,

giving 5%,(6) —5%,(6) = Q1+ Q2—03(0), where Q1(8) = %Dy ()M (p)Dn(8)D 3! (Frpq ®
L)Vyr, and Qa(8) = Vi, (Frp-1 ® 1,) Dy "Dy (6)My (p) D (6)D N (Frp_q © In) V.

For Q1(0), it is easy to see that, under Assumptions 3-5 and by Lemma A.2, the elements of
f]’VD§V(5)MN(p)DN(6)DjV1(FﬁT_l ® Ip,) are uniformly bounded for each § € A, the pointwise
convergence, Q1(6) % 0, therefore follows from Lemma A.3. For Q2(0), under Assumptions 3-5
and by Lemma A.2(v), tr[D/y ' Dy (§)My(p)Dn(6)DR'] = tr[D’y ' D (8)Dy(6)Dy'] + O(1).
It follows that, by Lemma A.4(v), Q2(5) — 03,(8) 2 0, for each § € A.

To show that @Q,(d),r = 1,2, are stochastically equicontinuous, let 6; and d2 be two points

in A. We have by the mean value theorem:

Qr(02) = Qr(61) = 55 Qr(6)(02 — 1), 7= 1,2,

where ¢ lies between §; and & elementwise. It is easy to show that supsca |%Qr(5)| = 0,(1),
by Assumptions 1, 3, 4, and 5, and Lemma A.2, as Q,(0) are linear or quadratic in A by the
expression Dy (6)Dy' = In + (po — p)Gan + (Ao — N)G1n + (Ao — M) (po — p)GanGin. Now, p
appears in @),(0) nonlinearly only through My (p). It is easy to show that a%M ~(p) is uniformly
bounded in both row and column sums by Lemma A.2, uniformly in p in its compact space, and
that supsca |8%QT(5)| = Op(1). Therefore, Q,(5),r = 1,2, are stochastically equicontinuous.
The pointwise convergence and stochastic equicontinuity imply that Q,(5) — E[Q,(J)] 2,0,
uniformly in § € A,r = 1,2, leading to condition (b) (Newey, 1991).

For condition (c), we have nn(6y5(6),0) = Gin(6)Pn(p)Yn(6) and nn(Bn(5),8) =
G1n (0)Pn(p)E[YN(8)]. With V(Bx(8),d) = My (p)Yx(6) and Y (6) = Dy (6)Dy' (AanX B0+
(Fpp_1®In)Var), we see that £{V(3x(5),0)nn(Bn(8),6)—E[V(Bn(5),0)nn (Bn(5),6)} is of
the linear-quadratic form: V! A7 (0)Vyr + ¢, 7 (8)Vyp, for suitably defined matrix A,7(d) and
vector ¢, (). Its pointwise convergence follows from Lemma A.4(v), and uniform convergence

is proved in a similar way as that for (b), based on the theorem of Newey (1991).

For condition (d), again with the expressions for V(Gx(6),8) and Yy (8), we can write
V(AN (9),8)G3y (O)V (B (), 6) — EIV(Bn (8),)'G3y (5)V (B (0), 6)]} as a linear-quadratic
form in V,7, and the proof of uniform convergence proceeds similarly.

For condition (e), similar to the proof of (d).

Proof of asymptotic normality. First note that tr(H,) = n. By the mean value theorem,
A -1
VN (bagst — b0) =[x gg¥n(0)] " 5w (%),

where 0 lies element-wise between éAQSl and 6y. It mounts to show that,

(i) tn(00) L. N(0, limy o0 ), where Qy = & Var[yy (60)]
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(i) ~[a5en(0) — ¢N(90)] op(1 ) and

(ii1) + [s97¢n (60) — E(z7¢n (00))] = 0p

As argued above Theorem 3.1, the components of ¥ (6p) are linear or linear-quadratic forms
in the original error vector V,,p since Vy = ( f:’r,T_1 ® I,)V,r. Assumptions 1-5 ensures that
every fixed linear combination of ﬁw ~(0o) satisfies the conditions of the central limit theorem
(CLT) for linear-quadratic (LQ) forms of Kelejian and Prucha (2001) and hence is asymptoti-
cally normal. Therefore, Cramér-Wold device leads to ﬁl/)]\f(g()) =Ny Y (0, limpy 00 Q).

For condition (ii): letting Hy(0) = —%%@/JN(@) and denoting A5 = A, + A}, for a matrix
A,,, we have the expression for No?Hy (6):

Xiv(0)Xn(p), LHXN(p)VN(B,9), Xy (p) iy, X (p)Gsy(P)VN(B,0)
SV (8,0)Xn(p), g4||VN(ﬁ OIIF = 2z, HVN(B,0)MN, HVi(3,0)Hay
Iy X (p), LV (8,0)II3 Hs3(8,9), Hs4(B,9) )
Vi (8,0)Gsx (0)Xn(p), 2 Vi(B,0)II3y, Has (B8, 6), Haa(B,9)

where Hs3(3,0) = TSNSy + Vi (B, 0)ILSy, Has(3,0) = TNIISy + Viv(8,6)Gsi (p) VN (B,8) =
44(B,9), Haa(B,0) = Viy(B,0)G33% (p) VN (3,0), iy = nn(B,6) + Gin(8) VN (B,0), iy = LIy,
My = Gon(p) Vv (8,8), TSy = 0y (8.6) + Gy (9)Viy(8,6), and gy, = G (p)Vi(5.).

By Assumptions 3-5, Lemma A.2-A.3, and the following facts: 6 — 6y = op(1), Vn(3,0) =
AonX N (Bo—B)+No—NAsnWiNY N+ (po— ) Wan AN Y v+ (Mo =) (po— ) Wan Win Yy —
(po—p)WanXnG+Vy, %V?V(B, HVn(B,6) = + V'V +op(1), and the ny and G-quantities
are all smooth functions of # and ¢, it is straightforward but tedious to show that each term in
Hy(0) — Hn (o) is 0,(1). We thus omit the details.

For condition (i), recall @ = E[Hy(0y)]. We have

X{NXNa ~, ~, ~
(I)N _ 1 0, %, tr(HNG‘qN) tI‘(HNGQN)
2 o
Nag Xy 0, NN + Uotr(HNG GlN) ~
0, 0, odtr(HyG33Goy), o2tr(Hy G35, Goy)

By Lemma A.4 and Vy = (Fpp_; ® I,)Vpr, we have, Var[1 (VBN Vi + V)] = o(1) for
any N x N matrix By and N x 1 vector ¢y satisfying the conditions of Lemma A.4. By these
results and Chebyshev inequality, we can show that all the terms in Hy(6y) — ®n are o,(1). ®

Proof of Theorem 3.2: The result (/ISAQSl — &y -2 0 follows from the results (74) and
(7i7) in the proof of asymptotic normality part of the proof of Theorem 3.1. This result holds
irrespective of whether the errors are normal or non-normal, and 7" is small or large.

To show (AZLJSl — Qn 5 0, we first prove the following general result:

% Z;\[zl[éN:jélN,j - E(SN,jSN,j)] 0. (B-5)

Under normality, Qy = Z;Vﬂ E(sy,;s)y ;) and therefore (B-5) already gives the desired result.
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The proof of (B-5) is relatively simple, as in this case the transformed errors v; are inid normal,
and hence {sy j, Fn;} form an MD sequence. See the proof of Theorem 3.5 for details.

Under non-normality, the proof of (B-5) is not trivial, and therefore for the proof of this
theorem we concentrate on the case of non-normal errors. First, we prove (B-5) by showing
+ Z;V:l(éN’jé’NJ —SN,jSN ;) 2,0, and + Z;V:JSN,J‘S?\/J —E(sn,jsly ;)] 2, 0. The proof of the
former is trivial by applying the mean value theorem, due to the consistency of the parameter
estimates. We focus on the proof of the latter result. To facilitate the proofs, we freely switching
between the single index j for the combined unit and time, and the double indices (i, ¢) for unit
¢ and time ¢. Recall vy are the original errors and v}, are the transformed errors, and v; is
the n x 1 vector of transformed errors for period ¢t. As sy,; or sy contains only two types of

quantities: Ily jvy ;j and vy ijVj or II; v}, and v},(;;, it suffices to show

(a) %zj My Ty (v = Ev3 )] 50,

(b) % Zj:l[HNJ (VN,jCN,j E("N,jCN,j))] = 0, and

() & 3hal(ViviCRe)* — E((vivg€ )] = 0.

To show (a), we have 4 S0 [Ty Ty (v3,—E(v& )] = 757 iy {2 Y00 [T, (vj2 —
EW)]} = 75 23:11 Pyt For each ¢, v, are independent over i, and thus {v}? — E(v;?)} form
an MD sequence. The weak law of large numbers (WLLN) for MD arrays of Davidson (1994,
p-299) leads to Py L50. Thus, Tl T ? 11 P, 2, 0, as n — oo and then T" — oo.

To show (b), note that {§, = By 'V y by definition given above (3.6), where B is a strictly
lower triangular matrix. Decompose (3, into {¢/} and By into {By}, t,s =1,...,7 — 2. Note
that Bys is a zero matrix if s > ¢, a strictly lower triangular matrix if s = t and a full n xn matrix
if s <t. We have, + zjv M (VR ¢, — BV S = 75 2 D DN | Ol

E(2¢))) = Tl T t 1 ' Qni. We shall show that for each ¢, Q,; —— 0. First, we have,

=z = M (0 — 05ha)C + 0hiC) — E(0iE¢))] = Q%) +@Qb,.

Let G, ; be the increasing o-field generated by (v1.,...,v;.), where v;. is the T' x 1 vector of the
original idiosyncratic errors corresponding to the ith spatial unit. As ¢} is G, ;—i1-measurable,
E[(vjZ—02hi)¢2|Gn,i—1] = 0. Thus, Q2 = L3 | T (v — 2h-)CZ°1 is the sum of an MD array.
By the WLLN for MD arrays of (Davidson, 1994, p.299), Q%, L, 0. Now, as E(viE¢s)) = 0,
b = % o5 Iinhi¢fy . Then, Qb = ‘%H’lHan = %HﬁHnBllvl — 0, by Assumptmns 2-5,
Lemma A.2 and Chebyshev s WLLN (Serfling, 1980, p.27). Therefore, Q1 2, 0.
Next, to show Qna —— 0, first note that ¢§ = Bajvi+Bagvs = (BY, +Bh, + B, )vi+Bagvi =
C8Y + ¢G5y + €34 + €35 We have, Qua = £ S0 M (vj5C5 — B(v¢5))] = iz, QU where

ng) %Z 1L (v )121] 002?1 o1

@%—%zgﬁh< 2h)Co ] + %0 hiCELy,

QY = L [y (2 ¢, — E(v; 3¢

QYY) = 150 (M1 (02 — 03hi)Coal + 22 S0 hiCoas
1)

The first terms o Q and Q( are like Q%, and their second terms are like Q. thus Q

nls
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op(1) and Q%) =o0p(1). As Cio'y 18 g_n’l-H—measurable, where g‘m is a decreasing o-field generated
by (Viey ..oy vp), 2 300 [ (v — o2hy) 4] is the sum of an MD sequence, shown to be op(1).
That %(2) > i1 hi€iy'y is 0p(1) follows from some similar arguments for QP,. Thus, Qn2 = o0p(1).
Finally, as vg 192651 is measurable w.r.t. v;. and thus are independent. An application of WLLN
for MD arrays shows that QSQ) = 0p(1). Therefore, Qn2 = 0p(1). The proof of Q. 2,0 for
t > 3 follows similar arguments as those for ()2, although more tedious.

To show (c), we have & Y (v, P~ E((vay€5,)2)] = 71 S0 {2 S0 [(065)% -
E((v;¢)H)]} = 75 23:711 Ry¢. Thus, the result follows if each R, is op(1).

First, we have Ry = 230 | (vi2 — o2hi) (02 + %‘2’ S hi(CRE—E(C22)). Obviously, the first
term of Ry is the sum of an MD sequence, which can easily be shown to be o0,(1) by applying
the WLLN for MD arrays. For the second term note that {7, = 22_11 b11,ikv7]},, Where byq i is
the (i, k)th element of By;. Thus, Czl = Z 11 zkvlk + QZk 1 l 1 L by kU] 011,507, Then,

0'2 n o o
0N (€ = E(GD)
o2 n i 202
= ;"Zz L halD - 11 bllzk(vm E(m))} =2 >t [Zk 1 l 1 bllzkbllzl“lk“lz]

ol n— * 202
=32 Zk:1(zz k1 T b11 zk)(vllz E(”m)) =2 Z ke V1ks

where & = f f(ZZ a1 ib11irb11a) vy, and the last equality is obtained by switching the

orders of summations. Both terms are sums of MD sequences as &, is G,, x—1-measurable, which
are shown to be op(1) by applying the WLLN for MD sequences. Therefore, R,1 = 0p(1).
Next, we have R0 = 237 (vi2 — 0dh:)¢5s U—%ZZL 1 ( 22 — E(¢¥)). Applying the
decomposition ¢5 = (5 —i—C +C 132 as used in proving Qp2 2.0, we are able to decompose
R,2 into a sum of a finite number of terms, of which each is 0,(1), and hence R,2 itself is 0,(1).

The detail for this and these for R,,;,t > 3, are very tedious and hence are omitted.

It remains to show that (T ) S tT:_zl ZZ i[sN nsN is — E(sN’itsg\,Js)] 2, 0, and that
ﬁ > tT 21 ZS 11[SN 2tsN is sN,its’Nﬂ-S] 2., 0. The latter is straightforward by applying
the mean value theorem, and the former can proved a long the same line of the proof above.

Finally, we offer a discussion on the magnitude of the additional term in qusr It is asymp-
totically equivalent to £ >, st E(sn,itS)y ;5)- Denote the elements of E(sy,itS)y ;) by
Y pg, Where p,q = 1,2, 3,4, corresponding to /3, o2, )\, and p, respectively. Let f; be the tth col-
umn of Frr_1 and v;. be the T' x 1vector of idiosyncratic errors of the spatial unit ith. We have
vl = f{vi.. It is easy to see that TZ- 11 =0. By Lemma A .4 (iii) and the homoskedasticity of v},
across t given i, we have Y; 99 = Cov( lt , Z*SQ) 4 4h2ml(ft Y 2,70 33 = E,;Cov[vz\/ﬂ<,g(1]]\/7l-,5+
CNis)s VN,is(MNisTCNis) | = = E(U*QU* bts,iiMis) = o 'Yzftf bes,iiMis, and Y 44 = 0, where {bys ;i }
are diagonal elements of Bts, "715 are the (i, s)th element of 77N, and ~; and k; are the measures

of skewness and excess kurtosis of v;;. Thus, + N Dt t o Z Cov(sNﬂ-t, sn,is) = o(1), if

(a) & Sy himi g Z 1(f2) 2 = 0(1), and
(b) % Z?:l Vi Z:_Ql Zs 1 tfzbts iiMis = 0<1)
as for the other terms with p # ¢, we have |T; 5| < |Tippl|Tigql- ]
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Proof of Theorem 3.3: Proof of consistency. Let 9% (5) = E(14(5)). By Theorem 5.9
of van der Vaart (1998), consistency of SKQS1 follows from (a) SuplgeA%H@/}}‘V(é) — %) = 0p(1)
and (b) for every & > 0, infsqss0)>e w0 (0)| > 0 = F[[¢¥*()||. Write the two compo-
nents of the AQS function ¢%(5) as R.n(8) = Ton(6) — Spn(0),r = 1,2, where T,n(d) =
VI, (6) Moy (p) G (8)Y v (8) and. S,v(8) = Yy (6)Miy(p)iag My ()] diag[Moy ()G ()] ¥ (9).

For condition (a), with Yx(6) = Dy (6)Dy' (AenXnfo + (Ffp_y ® In)Var), we see
that T, n(d) and S,y (0) are all linear-quadratic in V, 7. Therefore, for each 4, the pointwise
convergence to zero of +[T,n(6) —E(Tyn(0))] and % [S,n(6) —E(S,n(6))] for 7 = 1,2, can easily
be established along the lines of the proof for Theorem 3.1. For stochastic equicontinuity of the
two types of quantities, note that DN(5)D&1 = In+(po—p)Gan +(Xo—NGin+ (Ao —A)(po —
p)GaonG1y, and the partial derivatives %GlN(d), 8%(_}11\7(5), a%(_}g]v(p), and a%I\\/JI]\;(,O) are all
uniformly bounded in row and column sums, uniformly in § € A by Lemma A.2. Therefore,
T,n(0) and S, (0) are stochastically equicontinuous. The pointwise convergence and stochastic
equicontinuity lead to the uniform convergence results: supsea +|Trn (8) — E(Tn(6))] = op(1)
and supsea x| Srn () — E(Srn(8))| = 0p(1) for r = 1,2, under Assumptions 1-6 and using the
theorem of Newey (1991). Thus, &[R,n () — E[R,n(0)]] = 0p(1).

For condition (b), first, we have E[R,n(d9)] = 0. By Assumption 6 and Lemma A.2,
E[R,n(5)] # 0, for any § # 0. It follows that the conditions of Theorem 5.9 of van der Vaart
(1998) hold, and thus the consistency of 87&1351 follows.

Proof of asymptotic normality. To establish the asymptotic normality of fﬁqsp we have,

by the mean value theorem,
0= ﬁlﬁv(&ﬁqm) = ﬁlﬁv(%) + %%@E(EN)\/N(SKQM - 50), (B‘6)

where dy lies between 52([331 and dp elementwise. It suffices to show that

<z‘> s (50) L, N<o, lim o0 %),

\/N ~
¥ g (On) — 3595 (60)] = 0p(1), and
(iid) [#«L;‘V E(%@Z}k\z(%))] = 0p(1).

To prove (i), note 9% (Jp) can be written in LQ forms in original errors, the CLT for LQ
forms of Kelejian and Prucha (2001) leads to the result.

To prove (ii), let Hy () = —%1;}“\[(5) = [H7V,11(5)7H}k\7,12(5)5 Hiy 21(6), Hi 29(6)], where,

Hiva1(6) = Yy (8)[Bi1n(8) + Giny(NBiy(8) + Bin(9)Gin (MY n(9),

Hiv12(6) = Yy (8)[Bian(8) + Gon (NBiy(8) + Bin(8)Gan(A) + M (p) Gy (8)] Y (5),
Hiv21(6) = Yy(8)[Gy(8)Biy(p) + B2N(P)G1N(5)]YN(5)7

Hiv22(6) = Yiy(8)[Bian (8) + Gon (NB3y (p) + Biy () Gan(A) + M (p) oy (6)] Y v (6),

where By (6) = My (p)Gy (8), By (8) = My (p) G, (), Gy v (0) is the partial derivative
of Gy (0) (r=1,2), wrt. Aand p (s = 1,2), My(p) is the derivative of My (p) w.r.t. p,
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Gy ~(0) = GIx(8) — diag[My (p)] ' diag[Bin (p) Gin (9)],

) —
GE,N( ) = Gin(6)Gan(p) — Gan(p )GlN(5)+diag[MN(P)]_2diag[MN( )]diag[Ban (p)]
| +diag[My(p)] " diag[Mn (p)Gan (p)Gin (6) = BinGan(p) — M (p)Gin (9)];
Go.n(0) = Gan (p)Gan(p) + Gan ()M (p) + diag[Mi (p)]~ leag[MN( )]diag[Ban (p)]
—diag[Mn (p)] ' diag[My (p)Gan (p)Gan (p) + M (p)Gan (p)Mn (p) + My (p)Gan (p)]

M (p) = Mn(p)Gan (p)Pn(p) + P (p)Ghy (p)Mn(p),

B, n(6) = My (p)Grn(0), for r=1,2.

By Assumptions 4, 5 and continuous mapping theorem (CMT), G\ (dn) = Gy + 0,(1)
and éjN(SN) = GjN + 0p(1) for » = 1,2. Thus using a Taylor expansion, terms of the sort
Qin(8) = Y/ (0)Qin(6)Yn () can be written as, Qi + (6 — 60)’%(@1]\;. Together with the
CMT, Lemma A.2, Assumptions 3-5 and some tedious algebra, we have Q1x(0) = Qi + op(1).
Collecting these results we have %1&}*\,(5]\/) - %@Z)}‘V = o0p(1).

To prove (iii), the negative of the expected Hessian, ®%;, is given as:

. 1 ( otr(Hy o1 n) + BoXnoni nXn6, oltr(Hyoian) + BoX y 12 v Xy 3 )

q)N = X7 /) —
N\ odtr(Hndo1n) + BoXnd21 NXnB, ogtr(Hypoo n) + ByXyd2o nXn /3

where ¢11. 8 = BiklN + C_};NB’{N + B’{NC_;UV,
$12v = By + GoyBiy + BiyGan + MyGiy,
P21 N = (_};NBEN + B}y Gy and
$22.8 = By + GoyBiy + BiyGaoy + MyGiy,.
The result of (i) follows by showing Hy s — @y ., = 0p(1), 7,8 = 1,2.
With (B-6), and (¢)-(¢4i), the asymptotic normality follows. [ ]

Proof of Theorem 3.4: The proof is straightforward following the derivations above The-

orem 3.4 in the main text and the proof of Theorem 3.3, and thus is omitted. [ |

Proof of Theorem 3.5: Similarly, the result ‘T’XQM - oy 2, 0 follows from the results
(7i) and (7i7) in the proof of asymptotic normality part of the proof of Theorem 3.3. This result
holds irrespective of whether the errors are normal or non-normal, and 7" is small or large.

To prove the consistency of the OPMD-type estimators of €23, and Xy, we focus on the
case of normal errors for this theorem, i.e., the estimators ﬁjQSi and imsy The case of non-

normal errors can be proved in a similar manner as the proof of Theorem 3.2. It amounts to

show that Z] 1[VNJS}*V]§}‘\’U E(V?V7js}*v7js}‘\’,7j)] = 0p(1), where Sh.; = (CrNj F CrNrm12 =

(sle, S2Nj) and Vy,; and 8} ; are estimates based on éXer The result holds if

N Z; I[VJQV]SNJSN] VJQV,jS}KV,jS%J] = 0p(1) and

N Zj 1[VNJSN]ij E(V]2V,js}k\/,js7\/7,j)] = op(1).

The former is straightforward by using the mean value theorem, and therefore we focus on the
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latter. Denote {A, s}y om12 = + Z;V:l[v]?ws}kv’js%’j —E(v% sk sv,)]- We have, for r,s = 1,2,

N *
Ars=y Y imlsinSan i (Vi — E(VR)]
N
+ 3 2 BV ) (G iCong — B(GrniCsn )]
N _ 3
+ o e (e iCng + esn iGN VBV ) = 2imy Ten-
As s8] Nj and sj N, are Fn,j—1-measurable, where Fy ; is an increasing o-field generated by
{VN1,-- -, VN ), E[SrNJSZN,j(V?V’j - E(VJQ\,J)|.7-"NJ,1] = 0, and thus Ty is the sum of an MD
sequence. The conditions of Theorem 19.7 of Davidson (1994) (the WLLN for MD sequences)
can be easily verified under Assumptions 1-5, and hence 11 = 0p(1).
For Thn, note that (,n; = Zi; brN,jkVN,k, Where b,y ji is the (j, k)th element of By +

BiN' Hence, E(CrN,stN,j) = Z‘Ijg;ll brN,jkbsN,jkE(V]z\f’k) = drsN,j and,

N
oy = % Zj:l E(V%V,j)(CTNJQSNJ — drsn,j)
1 N ji—1
= N Zj:l E(VJQV,j) > k=1 bTN,jkbsNJk(V?V,k - E(V?V,k))
N j—1 k—
e B(VR ) X0 vk vk 2 ben v
1 —N-1 1 ~N-1
= § Ljo1 reng (Vi — E(VR)) + § 2551 s VN,
where, by switching the order of summations, we have ¢sn ; = % Z;@V:j+1 brN’kjbsNykjE(v?Wk),
i—1 N .
Prang = e ErsN gk VL and Eran ik = 231511 brvijbsn ik E(VE ;). Thus Ty is the sum of
two MD sequences and the WLLN for MD sequences implies Ton L, 0. The last term T 3N 1S
simpler than T3y. Thus, similar but simpler arguments show 75y £50.
For the case of non-normal errors, refer to the proof of Theorem 3.2 for details.

A similar line of arguments can be used to show flAQSi — XN =o0p(1). [ ]
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Table 1a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is consistent under heteroskedasticity

T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 1

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .474[.202](.200) | .490[.209](.207){.190} | .452[.239](.234) | .449[.244](.238){.234}
25 | .462[.190](.186) | .470[.195](.191){.180} || .225[.266](.265) | .221[.268](.267){.266}

.00 | .468[.166](.163) | .470[.168](.165){.158} | -.017[.275](.274) | -.021[.273](.272){.279}

25 | .469[.150)(.147) | .472[.151](.148){.149} || -.257[.271](.271) | -.258[.267](.267){.271}

-50 | .472[.138)(.135) | .476[.138](.136){.129} || -.501[.271](.271) | -.500[.267](.267){.270}

-50 .50 | -.469[.225](.223) | -.480[.226](.225){.215} | .450[.211](.205) | .450[.211])(.205){.192}
25 | -.475[.222](.221) | -.480[.224](.223){.220} || .196[.252](.246) | .194[.252](.245){.239}

00 | -.484[.222](.221) | -.485[.223](.223){.219} | -.049[.277](.273) | -.001[.275](.271){.268}

-.25 | -.487[.218](.218) | -.486[.220](.220){.217} || -.288[.286](.284) | -.274[.284](.281){.281}

50 | -.489[.219](.219) | -.490[.221](.221){.221} || -.532[.288](.287) | -.521[.285](.284){.280}

100 .50 .50 | .472[.169](.167) | .470[.169](.166){.151} | .485[.179](.178) | .490[.177](.177){.172}
25 | .A7A[.144](.142) | .474[.143](.140){.150} || .244[.194](.194) | .250[.191](.191){.200}

.00 | .481[.119](.118) | .481[.118](.117){.118} || -.005[.196](.196) | -.003[.192](.192){.195}

25 | .486[.099](.097) | .490[.098](.097){.093} || -.253[.193](.193) | -.249[.190](.190){.192}

50 | .487[.087)(.086) | .490[.087](.086){.083} || -.504[.186](.185) | -.498[.183](.183){.185}

-50 .50 | -.486[.181](.181) | -.485[.180](.179){.174} || .474[.151](.149) | .469[.151](.148){.148}
25 | -.495[.174](.174) | -.500[.172](.172){.169} || .228[.181](.180) | .230[.179)(.177){.177}

00 | -.494[.173](.173) | -.493[.171](.171){.170} || -.022[.202](.201) | -.023[.199](.197){.196}

-25 | -.501[.169](.169) | -.500[.167](.167){.162} || -.263[.212](.212) | -.261[.208](.208){.208}

50 | -.501[.169](.169) | -.500[.167](.167){.160} || -.510[.216](.216) | -.504[.211](.211){.214}

250 .50 .50 | .486[.118](.118) | .490[.121](.120){.119} | .489[.128](.127) | .490[.130](.130){.128}
25 | .486[.098](.097) | .488[.099](.098){.096} || .248[.134](.134) | .250[.135](.135){.133}

.00 | .487[.081](.080) | .490[.081](.080){.078} | .001[.135](.135) | .000[.134](.134){.132}

.25 | .490[.068](.068) | .500[.068](.068){.066} || -.247[.128](.128) | -.250[.128](.128){.127}

-50 | .493[.059](.059) | .500[.059](.059){.058} || -.500[.122](.122) | -.500[.121](.121){.121}

-50 .50 | -.486[.127](.127) | -.491[.128](.127){.127} | .481[.100](.098) | .484[.099](.098){.096}
25 | -.490[.126](.126) | -.493[.126](.126){.126} || .233[.122](.121) | .240[.122](.121){.121}

.00 | -.493[.125](.125) | -.500[.126](.125){.124} || -.014[.141](.140) | -.013[.141](.140){.140}

-.25 | -.497[.123)(.123) | -.497[.123](.123){.121} || -.260[.149](.148) | -.258[.148](.148){.146}

-50 | -.500[.118](.118) | -.500[.118](.118){.118} || -.505[.148](.148) | -.502[.147](.147){.146}

500 .50 .50 | .492[.082](.082) | .500[.083](.083){.083} || .497[.089](.089) | .497[.089](.089){.088}
25 | .494[.066](.066) | .495[.066](.066){.064} | .250[.095](.095) | .250[.095)(.095){.092}

.00 | .496[.052](.052) | .500[.052](.052){.052} | -.001[.093](.093) | .000[.093](.093){.092}

25 | .4970.045)(.045) | .500[.045)(.045){.045} || -.251[.088](.088) | -.250[.088](.088){.088}

-50 | .497[.041)(.041) | .500[.041](.041){.040} || -.501[.086](.086) | -.500[.086](.086){.085}

-50 .50 | -.497[.086](.086) | -.500[.086](.086){.086} || .494[.065](.065) | .500[.065](.065){.065}
25 | -.498[.087](.087) | -.500[.087](.087){.086} || .244[.085](.085) | .243[.085)(.085){.083}

.00 | -.499[.085](.085) | -.499[.084](.084){.084} || -.004[.096](.096) | -.001[.096](.096){.094}

-.25 | -.502[.082](.082) | -.500[.082](.082){.082} || -.252[.102](.102) | -.252[.101](.101){.101}

-50 | -.502[.081](.081) | -.501[.080](.080){.080} || -.502[.101](.101) | -.500[.100](.100){.101}
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Table 1b. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is consistent under heteroskedasticity

T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 2

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .475[.201](.200) | .472[.208](.206){.220} | .451[.239](.234) | .450[.243](.237){.237}
25 | .467[.183](.180) | .467[.187](.184){.173} || .227[.255](.254) | .230[.256](.255){.258}

00 | .469[.165](.162) | .470[.167](.164){.160} || -.016[.268](.267) | -.012[.266](.265){.265}

25 | .469[.152)(.148) | .480[.152](.149){.140} || -.255[.268](.268) | -.255[.264](.264){.260}

-50 | .471[.143)(.140) | .480[.143](.140){.145} || -.503[.269](.269) | -.500[.264](.264){.259}

-50 .50 | -.469[.225)(.223) | -.480[.226](.224){.217} || .448[.211](.205) | .447[.211](.204){.196}
25 | -.481[.223](.222) | -.484[.224](.223){.210} || .201[.251](.246) | .200[.249](.244){.246}

00 | -.487[.217](.216) | -.487[.218](.217){.210} | -.041[.274](.271) | -.042[.271)(.268){.265}

-.25 | -.494[.216](.216) | -.492[.218](.217){.200} || -.279[.282](.281) | -.272[.279](.277){.277}

50 | -.499].216](.216) | -.495[.216](.216){.210} || -.516[.283](.283) | -.512[.278](.278){.274}

100 .50 .50 | .473[.167)(.165) | .473[.165](.163){.148} | .483[.177](.176) | .482[.174](.173){.169}
25 | .473[.144](.141) | .480[.140](.138){.133} || .246[.193](.193) | .250[.189](.189){.189}

.00 | .479[.123](.121) | .480[.121](.119){.110} || -.001[.199](.199) | .000[.194](.194){.191}

25 | .487[.101)(.100) | .487[.100](.099){.092} || -.252[.192](.192) | -.248[.188](.188){.187}

-50 | .487[.091](.090) | .487[.091](.090){.090} || -.501[.185](.185) | -.495[.182](.182){.182}

-50 .50 | -.488[.181](.181) | -.486[.179](.179){.169} || .476[.151](.149) | .480[.150](.147){.143}
25 | -.494[.177](.177) | -.500[.174](.174){.165} || .226[.183](.181) | .223[.180](.178){.173}

.00 | -.499[.174](.174) | -.497[.171](.171){.160} || -.015[.201](.201) | -.012[.197](.196){.192}

-.25 | -.498[.173)(.173) | -.497[.171](.170){.159} || -.264[.213](.213) | -.262[.208](.208){.199}

50 | -.503[.169](.169) | -.500[.167)(.167){.157} || -.506[.214](.214) | -.501[.209](.209){.200}

250 .50 .50 | .485[.119](.118) | .484[.122](.121){.119} | .493[.128](.128) | .500[.130](.130){.127}
25 | .485[.099](.098) | .486[.100](.099){.095} | .251[.132](.132) | .250[.133](.133){.132}

.00 | .489[.080](.079) | .499[.080](.079){.076} | .001[.132](.132) | .000[.132](.132){.130}

25 | .491[.066](.065) | .493[.066)(.065){.065} || -.248[.126](.126) | -.250[.125](.125){.125}

-50 | .492[.060](.059) | .500[.060](.059){.058} || -.498[.124](.124) | -.499[.124](.124){.120}

-50 .50 | -.490[.127](.126) | -.500[.127](.127){.125} | .485[.097](.096) | .490[.097](.096){.094}
25 | -.491[.130](.130) | -.500[.130](.130){.126} || .233[.125](.124) | .240[.125](.124){.120}

.00 | -.498[.126](.126) | -.499[.126](.126){.123} || -.011[.140](.139) | -.010[.139](.139){.136}

-.25 | -.498[.123](.123) | -.498[.123](.123){.120} || -.261[.149](.149) | -.254[.149](.148){.143}

-50 | -.502[.118](.118) | -.500[.118](.118){.117} || -.507[.147](.147) | -.504[.146](.146){.144}

500 .50 .50 | .493[.082](.082) | .500[.083](.082){.080} || .496[.089](.089) | .496[.089](.089){.088}
25 | .494[.066](.065) | .495[.066](.065){.064} | .251[.093](.093) | .250[.093](.093){.092}

.00 | .497[.053](.053) | .500[.053](.053){.052} | -.003[.093](.093) | -.002[.092](.092){.091}

25 | .496[.046](.046) | .500[.046](.046){.045} || -.251[.090](.090) | -.250[.090](.090){.089}

-50 | .498[.040](.040) | .500[.040](.040){.040} || -.503[.085](.085) | -.500[.084](.084){.084}

-50 .50 | -.497[.087](.087) | -.497[.087](.086){.086} | .494[.065](.065) | .493[.066](.065){.065}
25 | -.500[.087](.087) | -.499[.087](.087){.086} | .246[.084](.084) | .250[.083](.083){.083}

.00 | -.500[.084](.084) | -.499[.084](.084){.084} | -.004[.094](.094) | -.005[.093](.093){.093}

-.25 | -.499[.085)(.084) | -.498[.084](.084){.082} || -.255[.103](.103) | -.252[.102](.102){.100}

50 | -.502[.082](.082) | -.501[.081](.081){.080} || -.502[.104](.104) | -.500[.103](.103){.101}
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Table 1c. Empirical Mean[rmse](sd){sd} of Estimators of X and p, FE;-SPD Model
Case when the regular QMLE is consistent under heteroskedasticity

T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 3

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .475[.194](.193) | .480[.200](.198){.195} | .456[.228](.223) | .453[.231](.226){.221}
25 | .466[.182](.179) | .470[.187](.184){.188} || .228[.250](.249) | .230[.251](.249){.252}

00 | .466[.172](.168) | .468[.173](.169){.153} || -.009[.265](.264) | -.011[.261](.261){.263}

25 | .471[.149)(.146) | .473[.149](.146){.140} || -.256].265](.265) | -.255[.260](.260){.263}

-50 | .475[.140)(.138) | .477[.140](.138){.130} || -.500[.258](.258) | -.495[.253](.253){.252}

-50 .50 | -.467[.222](.220) | -.480[.221](.219){.200} | .448[.209](.203) | .450[.208](.201){.190}
25 | -.477[.222](.221) | -.480[.223](.221){.199} || .201[.242](.237) | .199[.241](.236){.234}

00 | -.487[.214](.214) | -.490[.214](.213){.199} | -.036[.268](.265) | -.038[.264](.261){.259}

-25 | -.491[.209](.209) | -.490[.209](.208){.198} || -.285[.273](.270) | -.250[.268](.266){.269}

50 | -.498[.214](.214) | -.500[.213](.213){.197} || -.519[.280](.280) | -.515[.274](.274){.270}

100 .50 .50 | .478[.162](.160) | .480[.158](.156){.144} | .484[.170](.170) | .482[.168](.167){.164}
25 | .475[.145](.143) | .480[.140](.138){.137} || .244[.189](.189) | .250[.184](.184){.184}

.00 | .480[.124](.123) | .480[.122](.120){.107} || .001[.189](.189) | .002[.184](.184){.185}

25 | .486[.104)(.103) | .490[.103](.101){.090} || -.254[.187](.187) | -.249[.182](.182){.179}

-50 | .487[.090](.089) | .486[.091](.089){.084} || -.499[.180](.180) | -.491[.176](.176){.177}

-50 .50 | -.491[.180](.179) | -.490[.174](.173){.160} || .476[.150](.148) | .480[.146](.143){.145}
25 | -.493[.176](.176) | -.490[.171](.171){.155} || .226[.180](.178) | .230[.175)(.173){.174}

00 | -.496[.173](.173) | -.500[.167](.167){.155} | -.019[.198](.197) | -.021[.191)(.190){.187}

-25 | -.500[.171)(.171) | -.498[.164](.164){.150} || -.260[.214](.213) | -.259[.203](.203){.194}

50 | -.501[.170](.170) | -.500[.164](.164){.150} || -.509[.215](.215) | -.500[.205](.205){.199}

250 .50 .50 | .489[.118](.118) | .490[.119](.119){.120} | .489[.127](.126) | .490[.128](.127){.129}
25 | .485[.102](.100) | .486[.102](.101){.100} | .248[.137](.137) | .250[.137)(.137){.137}

00 | .487[.082](.081) | .489[.082](.082){.080} | .003[.133](.133) | .001[.133](.133){.130}

25 | .493[.064](.064) | .495[.064](.063){.063} || -.250[.125](.125) | -.250[.123](.123){.120}

-50 | .493[.058](.058) | .496[.058](.057){.056} || -.500[.120](.120) | -.500[.118](.118){.114}

-50 .50 | -.488[.130](.130) | -.491[.128](.127){.128} | .483[.101](.099) | .485[.099](.098){.098}
25 | -.491[.131](.131) | -.500[.129](.129){.124} || .233[.127](.126) | .235[.125](.124){.120}

.00 | -.501[.128](.128) | -.500[.126](.126){.120} || -.010[.142](.141) | -.010[.140](.140){.140}

-.25 | -.495[.123](.123) | -.500[.122](.122){.117} || -.262[.147](.147) | -.261[.146](.145){.140}

50 | -.502[.123](.123) | -.501[.121](.121){.120} || -.504[.153](.153) | -.501[.150](.150){.149}

500 .50 .50 | .496[.082](.082) | .500[.081](.081){.078} || .494[.089](.089) | .494[.088](.088){.086}
25 | .493[.065](.064) | .494[.064](.064){.063} || .251[.092](.092) | .251[.091](.091){.090}

.00 | .496[.053](.053) | .500[.053](.053){.051} | -.003[.092](.092) | -.002[.092](.092){.089}

25 | .4970.045)(.045) | .497[.044](.044){.044} || -.251[.088](.088) | -.250[.087](.087){.086}

-50 | .498[.041)(.040) | .498[.040](.040){.040} || -.501[.086](.086) | -.499[.085](.085){.082}

-50 .50 | -.498[.088](.088) | -.500[.087](.087){.084} || .495[.067](.067) | .494[.066](.065){.063}
25 | -.498[.087](.087) | -.500[.086](.086){.084} | .243[.085](.084) | .242[.084](.083){.080}

.00 | -.500[.087](.087) | -.499[.085](.085){.082} || -.004[.096](.096) | -.006[.095](.095){.092}

-25 | -.503[.084](.084) | -.500[.082](.082){.080} || -.250[.102](.102) | -.250[.100](.100){.098}

50 | -.499].084])(.084) | -.500[.081)(.081){.080} || -.503[.104](.104) | -.500[.101](.101){.100}
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Table 2a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbors, REG-1, DGP 1

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .486[.124](.123) | .485[.165](.164){.208} | .422[.181](.164) | .444[.220](.213){.218}
25 | .451[123](.112) | .476[.144](.142){.144} || .229[.172](.171) | .213[.236](.233){.239}

00 | .435[.123](.104) | .480[.126](.124){.127} || .043[.179](.174) | -.026[.241](.240){.229}

25 | .418[.129](.100) | .480[.116](.114){.115} || -.142[.198](.166) | -.267[.233](.232){.232}

-50 | .405[.137)(.099) | .479[.112](.110){.115} || -.321[.241](.161) | -.493[.219](.219){.226}

-50 .50 | -.390[.152](.104) | -.481[.117](.115){.117} | .368[.199](.149) | .457[.163)(.157){.157}
25 | -.401[.143](.103) | -.480[.126](.124){.121} || .127[.208](.167) | .202[.207](.201){.201}

.00 | -.421[.128](.100) | -.480[.137](.136){.134} | -.078[.182](.165) | -.047[.233](.228){.207}

-25 | -.443[.117)(.102) | -.478[.151](.149){.171} || -.258[.152](.152) | -.288[.237](.234){.379}

50 | -.478[.106](.104) | -.485[.161](.160){.155} || -.426[.156](.137) | -.523[.226](.225){.282}

100 .50 .50 | .485[.096](.095) | .490[.133](.132){.136} | .447[.129](.117) | .481[.154](.153){.153}
25 | .459[.093](.083) | .483[.106](.105){.109} | .245[.123](.123) | .237[.163](.163){.162}

.00 | .443[.095](.076) | .486[.088](.087){.086} || .053[.134](.123) | -.005[.165](.165){.165}

-25 | .435[.095)(.069) | .490[.075](.074){.073} || -.142[.161](.120) | -.258[.161](.161){.161}

-50 | .428[.097)(.065) | .491[.068](.067){.072} || -.332[.202](.112) | -.495[.148](.148){.101}

-50 .50 | -.359[.166](.088) | -.487[.101](.100){.100} || .364[.174](.108) | .477[.114](.112){.112}
25 | -.381[.144](.082) | -.487[.105](.105){.105} || .121[.175](.118) | .220[.149](.146){.146}

.00 | -.409[.120](.079) | -.489[.110](.110){.107} | -.081[.144](.118) | -.029[.171](.168){.168}

-.25 | -.441[.095)(.075) | -.493[.113](.113){.114} || -.257[.108](.108) | -.269[.175](.174){.174}

50 | -.479.077)(.074) | -.498[.119](.119){.120} || -.421[.125](.097) | -.504[.168](.168){.162}

250 .50 .50 | .490[.059](.058) | .491[.086](.086){.083} | .458[.082](.071) | .494[.099](.099){.100}
25 | .461[.065](.052) | .495[.067](.066){.066} || .255[.078](.077) | .242[.108](.108){.108}

.00 | .441[.076](.048) | .495[.055](.055){.055} || .066[.102](.077) | -.003[.107)(.107){.107}

25 | .427[.086](.045) | .495[.050](.049){.050} || -.124[.148](.076) | -.251[.105](.105){.105}

-50 | .418[.093](.043) | .496[.046](.046){.047} || -.318[.195](.070) | -.497[.093](.093){.093}

-50 .50 | -.370[.141](.053) | -.495[.057](.057){.060} | .374[.143](.068) | .491[.067](.066){.066}
25 | -.384[.127](.051) | -.497[.061](.061){.061} || .129[.143](.075) | .239[.088](.088){.088}

.00 | -.407[.105](.048) | -.497[.066](.065){.065} || -.078[.107](.073) | -.009].103](.103){.103}

-.25 | -.436[.080](.047) | -.495[.073](.073){.073} || -.259[.067](.066) | -.258[.111](.110){.111}

50 | -.476[.053)(.048) | -.497[.084](.084){.084} || -.422[.099](.060) | -.502[.113](.113){.113}

500 .50 .50 | .492[.039](.038) | .497[.054](.054){.054} || .460[.063](.048) | .497[.066](.066){.066}
25 | .464[.050](.034) | .498[.043](.043){.043} | .257[.053](.053) | .246[.072](.072){.072}

.00 | .445[.064](.033) | .498[.038](.038){.038} | .064[.084](.054) | -.003[.076](.076){.076}

-25 | .430[.076](.031) | .498[.034](.034){.034} || -.125[.136](.053) | -.252[.074](.074){.074}

-50 | .419.086](.029) | .497[.032](.032){.032} || -.319[.187](.049) | -.499[.066](.066){.070}

-50 .50 | -.377[.129](.036) | -.497].039](.039){.040} || .380[.129](.048) | .494[.047](.046){.046}
25 | -.389[.116](.035) | -.498[.041](.041){.041} | .136[.126](.052) | .245[.060](.060){.060}

.00 | -.409[.096](.033) | -.497[.043](.043){.043} || -.074[.090](.051) | -.005[.070](.070){.070}

-25 | -.438.070](.033) | -.496[.049](.049){.049} || -.258[.049](.048) | -.257[.079](.078){.078}

50 | -.477[.040](.033) | -.498[.057](.057){.060} || -.422[.088](.042) | -.502[.078](.078){.080}
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Table 2b. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbors, REG-1, DGP 2

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .483[125](.124) | .482[163](.162){.163} | .432[.177](.163) | .454[.215](.210){.211}
25 | .456[.119](.111) | .479[.142](.140){.174} || .230[.171](.169) | .216[.231](.229){.228}

00 | .438[.122](.105) | .482[.126](.124){.123} || .038[.177](.173) | -.029].241](.240){.240}

25 | .420[.132)(.105) | .479[.119](.117){.122} || -.143[.202](.172) | -.264[.237](.237){.232}

-50 | .406[.139)(.102) | .479[.111)(.109){.107} || -.328[.238](.165) | -.500[.218](.218){.276}

-50 .50 | -.396[.151](.110) | -.484[.117](.116){.116} | .376[.196](.152) | .461[.163](.158){.158}
25 | -.406[.144](.109) | -.481[.127](.126){.121} || .135[.203](.167) | .207[.202](.198){.204}

.00 | -.420[.130](.103) | -.476[.135](.133){.131} | -.076[.180](.164) | -.048[.230](.224){.227}

-.25 | -.445[.118](.104) | -.480[.151](.150){.183} || -.257[.151](.151) | -.290[.236](.233){.262}

50 | -.475[.110](.107) | -.483[.164)(.164){.103} || -.425[.161](.143) | -.523[.230](.229){.297}

100 .50 .50 | .486[.095](.094) | .484[.130](.129){.122} | .445[.128](.116) | .477[.151](.149){.115}
25 | .461[.092](.083) | .485[.105](.104){.102} || .240[.125](.125) | .232[.165](.164){.201}

.00 | .446[.094](.077) | .488[.088](.087){.087} || .048[.133](.125) | -.011[.167](.167){.167}

25 | .434[.098](.072) | .487[.076](.075){.075} || -.139[.165](.122) | -.249[.160](.160){.159}

-50 | .430[.097)(.067) | .492[.067](.067){.067} || -.338[.200](.117) | -.502[.144](.144){.144}

-50 .50 | -.363[.167](.096) | -.488[.103](.102){.102} | .365[.177](.114) | .476[.117)(.115){.115}
25 | -.384[.144](.086) | -.487[.105](.104){.104} || .126[.173](.120) | .220[.147])(.144){.144}

.00 | -.411[.120](.081) | -.490[.108](.108){.108} | -.075[.139](.117) | -.024[.166](.164){.160}

-.25 | -.441[.098)(.078) | -.491[.117](.117){.117} || -.257[.109](.108) | -.271[.177](.176){.176}

50 | -.479[.078](.075) | -.497[.120](.120){.124} || -.420[.126](.098) | -.504[.166](.166){.160}

250 .50 .50 | .490[.059](.058) | .491[.086](.085){.103} | .456[.084](.072) | .491[.100](.100){.104}
25 | .460[.067](.054) | .493[.068](.068){.068} | .256[.078](.078) | .244[.108](.108){.108}

00 | .441[.077](.049) | .495[.056](.056){.056} | .064[.102](.079) | -.005[.109](.109){.109}

25 | .427[.087)(.048) | .495[.050](.050){.050} || -.124[.148](.078) | -.252[.104](.104){.104}

-50 | .419[.093](.046) | .496[.046](.046){.046} || -.320[.195](.075) | -.499[.093](.093){.093}

-50 .50 | -.371[.142](.059) | -.496[.058](.058){.060} | .375[.144](.070) | .490[.067](.066){.066}
25 | -.383[.129](.055) | -.494[.063](.063){.063} || .129[.144](.078) | .238[.089](.088){.088}

.00 | -.405[.107](.050) | -.494[.066](.065){.065} | -.080[.108](.073) | -.013[.103](.102){.102}

-.25 | -.435[.081)(.048) | -.493[.073](.073){.074} || -.258[.068](.067) | -.259[.112](.112){.112}

50 | -.4770.053](.048) | -.499].083](.083){.083} || -.422[.099](.060) | -.501[.109](.109){.107}

500 .50 .50 | .491[.040](.039) | .496[.055](.055){.055} || .460[.063](.050) | .497[.067](.067){.067}
25 | .464[.051](.036) | .498[.044](.044){.044} | .256[.053](.053) | .246[.073](.073){.073}

.00 | .445[.064](.033) | .499[.038](.037){.037} | .064[.084](.055) | -.004[.075](.075){.075}

25 | .431[.077)(.033) | .498[.035)(.035){.035} || -.124[.137](.055) | -.250[.074](.074){.074}

-50 | .420[.086](.031) | .498[.032](.032){.032} || -.320[.188](.054) | -.500[.066](.066){.070}

-50 .50 | -.378[.129](.039) | -.498[.039](.039){.040} || .382[.128](.050) | .496[.047](.046){.046}
25 | -.390[.116](.037) | -.498[.041](.041){.041} || .136[.126](.054) | .245[.061](.061){.061}

.00 | -.411[.095](.035) | -.499[.044](.044){.044} || -.072[.088](.051) | -.003[.070](.070){.070}

-25 | -.438[.070](.034) | -.497[.050](.050){.050} || -.256[.048](.048) | -.254[.078](.078){.078}

50 | -.477[.040](.033) | -.498[.057](.057){.060} || -.423[.088](.043) | -.502[.077](.077){.080}
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Table 2c. Empirical Mean[rmse](sd){sd} of Estimators of X and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbors, REG-1, DGP 3

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .480[.129](.128) | .480[.160](.158){.154} || .435[.175](.163) | .459[.204](.200){.208}
25 | .461[.126](.120) | .483[.139](.138){.139} || .224[.177](.175) | .212[.227](.224){.224}

.00 | .439[.131](.116) | .476[.132](.130){.130} | .035[.181](.178) | -.020[.238](.237){.237}

25 | .429[.132)(.111) | .478[.124](.122){.125} || -.155[.203](.180) | -.261[.237](.237){.231}

-50 | .416[.138)(.109) | .478[.124](.122){.183} || -.334[.245](.180) | -.496[.234](.234){.266}

-50 .50 | -.401[.159](.124) | -.480[.128](.126){.124} | .382[.197](.158) | .460[.168](.163){.169}
25 | -.413[.145](.116) | -.481[.126](.125){.125} || .140[.201](.168) | .202[.201](.195){.192}

00 | -.428[.135](.114) | -.479[.137](.135){.135} | -.064[.181](.169) | -.042[.223](.219){.219}

-.25 | -.448[.121](.110) | -.481[.146](.145){.147} || -.252[.162](.162) | -.287[.235](.232){.221}

50 | -.478[.112])(.110) | -.489[.159](.158){.195} || -.419[.171](.151) | -.520[.230](.229){.210}

100 .50 .50 | .486[.097](.096) | .486[.124](.123){.121} | .446[.129](.117) | .476[.146](.144){.140}
25 | .461[.096](.087) | .482[.107](.105){.106} || .243[.125](.125) | .239[.162](.162){.162}

.00 | .451[.093](.079) | .488[.089](.089){.106} || .041[.132](.126) | -.012[.165](.164){.201}

-25 | .436[.103)(.081) | .485[.082](.081){.085} || -.145[.168](.131) | -.249[.161](.161){.160}

-50 | .433[.102)(.077) | .489[.082](.081){.080} || -.341[.208](.134) | -.497[.157](.157){.120}

-50 .50 | -.369[.172](.111) | -.483[.110](.109){.110} || .369[.178](.121) | .472[.120](.117){.114}
25 | -.393[.147](.100) | -.487[.106](.105){.105} || .136[.170](.126) | .223[.145)(.143){.146}

.00 | -.417[.124](.092) | -.490[.111](.110){.109} || -.069][.138](.120) | -.025[.163](.161){.165}

-.25 | -.446[.102)(.087) | -.494[.112](.111){.110} || -.249[.117](.117) | -.265[.170](.169){.169}

50 | -.476[.088](.085) | -.493[.123](.123){.121} || -.422[.133](.108) | -.512[.169](.169){.170}

250 .50 .50 | .488[.063](.062) | .490[.086](.086){.083} | .457[.086](.074) | .492[.099](.098){.100}
25 | .462[.067](.055) | .494[.067](.067){.067} || .255[.077](.076) | .245[.103](.103){.103}

00 | .444[.078](.054) | .495[.056](.056){.056} | .060[.102](.082) | -.005[.106](.106){.106}

25 | .431[.088](.055) | .496[.053](.053){.050} || -.132[.148](.089) | -.254[.107](.107){.107}

-50 | .420[.097)(.055) | .495[.050](.050){.049} || -.324[.201](.096) | -.499[.097](.097){.097}

-50 .50 | -.374[.147](.076) | -.494[.063](.063){.060} | .380[.145](.082) | .491[.070](.069){.069}
25 | -.391[.128](.067) | -.495[.060](.060){.060} || .138[.140](.083) | .240[.086](.086){.086}

.00 | -.410[.109](.062) | -.495[.066](.065){.065} | -.073[.107](.079) | -.011[.101](.100){.099}

-.25 | -.440[.084])(.059) | -.496[.075](.075){.075} || -.256[.072](.072) | -.260[.110](.110){.110}

-50 | -.476[.059)(.053) | -.497[.082](.082){.085} || -.424][.103](.068) | -.505[.111](.111){.116}

500 .50 .50 | .492[.040](.039) | .498[.054](.054){.054} || .458[.065](.049) | .494[.065](.065){.061}
25 | .464[.052](.037) | .497[.044](.044){.044} || .256[.054](.054) | .246[.072](.072){.072}

.00 | .446[.066](.037) | .498[.038](.038){.038} || .062[.085](.058) | -.002[.075](.075){.075}

25 | .432[.078](.039) | .498[.036](.036){.036} || -.128[.138](.064) | -.252[.075](.075){.075}

-50 | .423[.087)(.041) | .498[.032](.032){.032} || -.323[.191](.074) | -.499[.067](.067){.067}

-50 .50 | -.380[.132](.055) | -.498[.040](.040){.040} || .385[.129](.058) | .496[.046](.046){.046}
25 | -.393[.117](.049) | -.498[.041](.041){.041} || .139[.127](.062) | .244[.061](.061){.060}

.00 | -.413[.098](.045) | -.498[.044](.044){.044} || -.070[.090](.056) | -.005[.070](.070){.070}

-25 | -.439[.072](.039) | -.497[.049](.049){.049} || -.254[.049](.048) | -.253[.075](.075){.075}

50 | -.477[.045](.038) | -.498[.058](.058){.059} || -.423[.091](.049) | -.503[.077](.077){.080}

37



Table 3a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 1

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .473[.161](.158) | .482[.184](.165){.173} || .416[.214](.197) | .474[.278](.172){.170}
25 | 431[.169](.154) | .433[.295](.284){.271} | .218[.229](.227) | .253[.239](.237){.250}

00 | .416[.162](.139) | .456[.210](.206){.205} | .030[.243](.241) | -.012[.257](.241){.240}

25 | .409[.156](.126) | .473[.163](.161){.152} || -.150[.272](.253) | -.239[.245](.243){.236}

-50 | .404[.150)(.115) | .479[.139)(.137){.138} || -.316[.310](.249) | -.462[.144](.142){.130}

-50 .50 | -.186[.380](.213) | -.492[.334](.334){.344} || .263[.308](.196) | .484[.231](.228){.236}
25 | -.305[.277](.197) | -.519[.286](.285){.298} | .048[.294](.214) | .229[.236](.234){.239}

00 | -.389[.222](.192) | -.522[.235](.234){.245} || -.144[.266](.224) | -.013[.240](.238){.230}

25 | -.447[.190](.182) | -.515[.211](.211){.228} || -.319[.235](.225) | -.239[.243](.241){.253}

50 | -.498[.178](.178) | -.519[.185](.184){.199} || -.477[.223](.222) | -.503[.230](.209){.205}

100 .50 .50 | .483[.114](.112) | .490[.126](.125){.127} | .445[.144](.133) | .489[.121](.121){.126}
25 | .446[.120](.107) | .464[.170](.167){.163} | .248[.157](.157) | .258[.143](.140){.142}

00 | .431[.119](.097) | .477[.126](.124){.118} || .057[.180](.171) | -.049[.127](.225){.124}

25 | .425[.114)(.085) | .487[.101](.100){.110} || -.127[.216](.177) | -.231[.127](.127){.124}

-50 | .420[.111)(.077) | .500[.089](.089){.090} || -.307[.265](.181) | -.576[.135](.133){.125}

=50 .50 | -.181[.354](.152) | -.503[.235](.235){.247} || .293[.244](.128) | .544[.198](.189){.190}
25 | -.309[.237](.141) | -.503[.266](.254){.253} | .086[.216](.141) | .260[.121](.122){.122}

00 | -.387[.177](.136) | -.502[.248](.247){.251} | -.111[.192](.156) | -.062[.164](.157){.166}

-.25 | -.446[.142)(.132) | -.513[.221](.221){.228} || -.289[.161](.157) | -.232[.190](.181){.170}

50 | -.489[.128](.128) | -.504[.120](.120){.126} || -.454[.168](.162) | -.521[.132](.131){.140}

250 .50 .50 | .489[.068](.067) | .499[.114](.112){.123} | .464[.087](.080) | .492[.115](.115){.121}
25 | .462[.071](.060) | .495[.076](.076){.073} || .259[.093](.093) | .258[.127](.126){.124}

.00 | .453[.069](.051) | .496[.058](.057){.057} || .058[.117](.101) | -.017[.112](.102){.102}

25 | .447[.070)(.045) | .497].049](.049){.049} || -.132[.159](.107) | -.256[.157](.156){.155}

-50 | .442[.071)(.041) | .498[.045](.045){.046} || -.313[.217](.109) | -.502[.108](.106){.102}

-50 .50 | -.240[.276](.091) | -.501[.178](.178){.180} | .348[.168](.071) | .494[.095](.094){.101}
25 | -.340[.181](.085) | -.500[.146](.146){.151} || .126[.150](.084) | .253[.107)(.106){.108}

.00 | -.405[.124](.080) | -.502[.127](.127){.124} | -.076[.121](.095) | -.023[.104](.104){.103}

-.25 | -.453[.091)(.078) | -.503[.114](.114){.111} || -.261[.098](.098) | -.239[.105](.105){.105}

-50 | -.488[.073](.072) | -.502[.102](.102){.104} || -.431[.122](.100) | -.524[.170](.168){.167}

500 .50 .50 | .492[.049](.048) | .499[.077](.077){.078} || .468[.064](.056) | .495[.081](.081){.082}
25 | .466[.054](.042) | .496[.051](.051){.051} || .261[.066](.065) | .249[.087)(.087){.088}

.00 | .457[.057](.036) | .498[.039](.039){.039} || .059[.093](.072) | -.012[.100](.099){.098}

25 | .450[.059](.032) | .498[.033](.033){.033} || -.130[.141](.074) | -.251[.106](.106){.109}

50 | .447[.060](.028) | .500[.030](.030){.031} || -.313[.202](.077) | -.501[.102](.101){.102}

-50 .50 | -.239[.269](.066) | -.500[.132](.132){.135} || .351[.157](.051) | .498[.068](.068){.068}
25 | -.342[.170](.061) | -.502[.107](.107){.109} || .133[.132](.060) | .250[.083](.082){.083}

.00 | -.408[.109](.058) | -.504[.091](.091){.090} || -.067[.095](.067) | -.010[.096](.096){.094}

-.25 | -.452[.072](.054) | -.500[.078](.078){.078} || -.255[.069](.069) | -.256[.106](.105){.105}

-50 | -.488[.054](.053) | -.500[.073](.073){.073} || -.424[.103](.070) | -.501[.117](.117){.118}
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Table 3b. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 2

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .467[.182](.179) | .538[.180](.162){.172} || .419[.221](.206) | .542[.233](.232){.241}
25 | .433[.177](.164) | .443[.185](.175){.155} | .220[.238](.237) | .257[.233](.231){.244}

00 | .417[.170](.148) | .454[.213](.208){.204} || .029[.251](.250) | -.011[.214](.200){.205}

25 | .408[.160](.131) | .472[.159](.156){.144} || -.153[.274](.256) | -.242[.238](.220){.224}

-50 | .404[.154)(.121) | .477[.139)(.137){.148} || -.316[.324](.266) | -.460[.236](.223){.211}

-50 .50 | -.208[.380](.242) | -.494[.272](.271){.270} || .278[.301](.203) | .539[.304](.283){.374}
25 | -.324[.278](.215) | -.521[.279](.278){.286} || .061[.290](.220) | .137[.235)(.233){.255}

.00 | -.402[.227](.205) | -.525[.239](.238){.228} || -.137[.269](.231) | -.013[.239](.237){.267}

-.25 | -.454[.198](.192) | -.520[.213](.212){.230} || -.311[.242](.234) | -.239[.242](.241){.233}

50 | -.495[.186](.186) | -.518[.187](.186){.182} || -.475[.234](.232) | -.463[.243](.240){.244}

100 .50 .50 | .480[.118](.116) | .465[.127](.126){.119} | .449[.143](.134) | .473[.121](.120){.145}
25 | .445[.122](.109) | .466[.171](.167){.158} || .248[.157](.157) | .251[.141](.138){.123}

.00 | .433[.119](.098) | .482[.127](.126){.119} || .055[.178](.169) | -.051[.166](.162){.160}

25 | .428[.114](.088) | .495[.101)(.101){.105} || -.133[.215](.180) | -.232[.206](.198){.193}

-50 | .422[.112)(.080) | .494[.089](.088){.099} || -.305[.271](.187) | -.514[.232](.131){.133}

-50 .50 | -.196[.349](.171) | -.514[.235](.234){.249} | .306[.234](.131) | .451[.187])(.181){.190}
25 | -.312[.244](.156) | -.516[.225](.219){.219} || .088[.221](.151) | .248[.130](.123){.121}

.00 | -.390[.181](.143) | -.513[.247](.247){.250} | -.108[.191](.158) | -.063[.161](.154){.157}

-.25 | -.447[.148)(.138) | -.510[.223](.223){.247} || -.289[.167](.162) | -.224[.195](.186){.176}

-50 | -.489[.131](.131) | -.504[.201](.201){.227} || -.454[.170](.163) | -.517[.171](.164){.168}

250 .50 .50 | .489[.069](.068) | .497[.117](.113){.111} | .464[.088](.080) | .493[.116](.116){.120}
25 | .462[.071](.060) | .497[.075](.074){.073} || .257[.094](.094) | .254[.127)(.126){.124}

.00 | .453[.070](.052) | .499[.057](.057){.057} || .058[.117](.102) | -.017[.141](.140){.138}

25 | .448[.070](.047) | .498[.049](.049){.049} || -.136[.159](.110) | -.257[.109](.108){.105}

-50 | .443[.071)(.042) | .498[.044](.044){.046} || -.316[.217](.114) | -.502[.107](.107){.108}

-50 .50 | -.244[.275](.100) | -.501[.101](.101){.099} || .348[.170](.075) | .489[.097](.095){.101}
25 | -.345[.177](.086) | -.501[.146](.145){.140} || .130[.148](.086) | .253[.118](.117){.116}

.00 | -.406[.124](.081) | -.503[.124](.124){.124} || -.073[.118](.093) | -.019[.134](.132){.131}

-.25 | -.453[.089])(.076) | -.503[.105](.105){.102} || -.260[.100](.100) | -.257[.105](.105){.105}

50 | -.489[.075](.074) | -.504[.103](.103){.104} || -.432[.122](.101) | -.506[.107](.107){.107}

500 .50 .50 | .493[.048](.048) | .499[.076](.076){.077} || .468[.066](.057) | .499[.082](.082){.083}
25 | .467[.054](.042) | .497[.051](.051){.051} || .261[.066](.065) | .254[.088](.088){.088}

.00 | .457[.056](.036) | .499[.039](.039){.039} || .060[.094](.072) | -.011[.099](.098){.098}

25 | .451[.059](.033) | .500[.034](.034){.034} || -.133[.140](.077) | -.256[.108](.107){.107}

-50 | .447[.061)(.029) | .499[.030](.030){.031} || -.313[.203](.079) | -.500[.118](.118){.121}

-50 .50 | -.241[.269](.072) | -.500[.134](.134){.130} || .352[.158](.054) | .497[.069](.068){.065}
25 | -.342[.170](.062) | -.501[.105](.105){.109} | .133[.132](.062) | .254[.084](.083){.083}

.00 | -.407[.109](.058) | -.500[.089](.089){.089} || -.066[.093](.066) | -.001[.094](.094){.094}

-25 | -.453[.072](.054) | -.500[.078](.078){.078} || -.251[.069](.069) | -.251[.104](.104){.104}

-50 | -.487[.053](.052) | -.500[.071](.071){.073} || -.426[.103](.071) | -.501[.117](.116){.117}
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Table 3c. Empirical Mean[rmse](sd){sd} of Estimators of A and p, FE;-SPD Model
Case when the regular QMLE is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 3

n A p| QMLEX | AQSE*-\ | Quie, | AQSE*-p

50 .50 .50 | .444[.253](.247) | .538[.264](.246){.248} | .428[.225](.214) | .543[.231](.230){.236}
25 | .421[.239](.225) | .460[.233](.234){.231} || .218[.257](.255) | .266[.237](.230){.234}

00 | .413[.211](.192) | .452[.224](.219){.234} || .028[.269](.267) | -.088].240](.239){.258}

25 | .409[.195)(.172) | .467[.192](.188){.156} || -.162[.298](.285) | -.258[.244](.243){.245}

-50 | .413[.168)(.144) | .480[.164](.162){.149} || -.349[.333](.297) | -.462[.233](.219){.210}

-50 .50 | -.235[.384](.278) | -.498[.341](.341){.360} || .293[.301](.218) | .540[.228](.225){.230}
25 | -.346[.302](.260) | -.514[.336](.336){.322} | .075[.299](.243) | .244[.233](.232){.248}

00 | -.411[.250](.234) | -.513[.262](.259){.242} | -.127[.275](.244) | -.013[.236](.236){.234}

-.25 | -.464[.219](.216) | -.516[.296](.299){.292} || -.307[.252](.245) | -.282[.240](.237){.231}

50 | -.500[.204](.204) | -.511[.270](.269){.268} || -.473[.257](.255) | -.528[.242](.237){.227}

100 .50 .50 | .462[.204](.200) | .463[.227](.226){.254} | .452[.163](.156) | .472[.121](.121){.125}
25 | .441[.161](.150) | .462[.176](.172){.176} || .247[.172](.172) | .243[.190](.163){.150}

.00 | .433[.145](.129) | .476[.136](.133){.136} || .044[.199](.194) | -.041[.173](.168){.177}

-25 | .432[.123)(.103) | .487[.106](.105){.104} || -.147[.227](.202) | -.233[.204](.198){.196}

-50 | .429[.117)(.093) | .492[.099](.099){.116} || -.329[.275](.216) | -.508[.225](.217){.231}

-50 .50 | -.223[.353](.218) | -.506[.234](.234){.232} | .315[.237](.148) | .463[.192](.184){.187}
25 | -.337[.263](.206) | -.511[.286](.286){.275} | .100[.227](.170) | .287[.133](.125){.120}

00 | -.406[.202](.179) | -.510[.227](.225){.224} | -.099[.199](.173) | -.068[.162](.154){.168}

-.25 | -.454[.171)(.165) | -.506[.176](.174){.161} || -.282[.183](.180) | -.232[.191](.182){.196}

50 | -.492[.155)(.155) | -.501[.135](.134){.147} || -.453[.192](.186) | -.458[.216](.206){.192}

250 .50 .50 | .485[.104](.103) | .487[.115](.114){.124} | .464[.094](.087) | .490[.114](.114){.113}
25 | .464[.080](.071) | .500[.078](.078){.072} || .256[.097](.097) | .257[.108](.107){.103}

00 | .456[.073](.058) | .496[.057](.057){.056} | .052[.129](.118) | -.016[.104](.104){.104}

25 | .449[.073](.052) | .498[.049](.049){.048} || -.140[.162](.120) | -.258[.106](.105){.110}

-50 | .445[.075](.051) | .500[.044](.044){.044} || -.326[.224](.141) | -.506[.107](.107){.107}

-50 .50 | -.263[.274](.137) | -.502[.174](.173){.180} | .357[.168](.089) | .489[.095](.094){.102}
25 | -.356[.186](.118) | -.504[.145](.145){.146} || .135[.151](.097) | .253[.115](.113){.113}

.00 | -.416[.134](.104) | -.505[.126](.126){.126} | -.067[.125](.106) | -.020[.109](.105){.107}

-.25 | -.455[.102](.091) | -.502[.106](.105){.107} || -.256[.108](.108) | -.258[.105](.105){.104}

50 | -.487[.084](.083) | -.502[.103](.103){.106} || -.432[.131](.112) | -.508[.107](.106){.107}

500 .50 .50 | .490[.075](.074) | .498[.077](.077){.078} || .470[.067](.060) | .500[.080](.080){.080}
25 | .467[.057](.046) | .500[.054](.054){.050} | .261[.068](.067) | .254[.088](.088){.087}

.00 | .457[.060](.043) | .500[.043](.043){.040} || .057[.096](.078) | -.010[.098](.097){.096}

25 | .451[.061](.038) | .500[.034](.034){.034} || -.134[.145](.087) | -.251[.108](.108){.108}

50 | .448[.064)(.037) | .500[.030](.030){.031} || -.317[.210](.103) | -.501[.117](.116){.120}

-50 .50 | -.255[.267](.106) | -.500[.131](.131){.135} || .359[.156](.066) | .500[.067](.065){.064}
25 | -.350[.172](.086) | -.500[.106](.106){.108} | .139[.132](.070) | .254[.082](.082){.082}

.00 | -.411[.114](.071) | -.500[.090](.090){.089} || -.063[.095](.071) | -.001[.094](.093){.092}

-25 | -.454[.080](.065) | -.500[.078](.077){.077} || -.251[.074](.074) | -.252[.106](.105){.106}

-50 | -.486[.060](.058) | -.500[.071](.071){.071} || -.426[.106](.076) | -.501[.116](.115){.115}
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Table 4a. Empirical Sizes: Two-Sided Tests of Hy : 81 = B2 in FE{-SPD Model
Group Interaction, REG2, T =3,0=1,A=0.5

n p Test| 10% 5% 1% | 10% 5% 1% [ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors

50 .50 1] .1562 .0926 .0322 | .1596 .0926 .0302 | .1518 .0872 .0260
2| 1156 .0691 .0269 | .1458 .0588 .0247 | .1470 .0838 .0228

.25 11].1634 .0998 .0370 | .1624 .0972 .0332 | .1592 .0936 .0232

2| 1255 .0694 .0303 | .1445 .0903 .0268 | .1476 .0803 .0202

.00 1] .1500 .0844 .0282 | .1646 .0988 .0286 | .1580 .0924 .0280

2| .1246 .0682 .0256 | .1455 .0691 .0226 | .1478 .0648 .0267

-.25 1] .1410 .0822 .0248 | .1430 .0838 .0272 | .1440 .0832 .0246

2 | 1347 .0789 .0245 | .1224 .0804 .0256 | .1406 .0680 .0224

-.50 1] .1376 .0812 .0238 | .1246 .0720 .0200 | .1254 .0654 .0178

2| .1235 .0794 .0204 | .1236 .0722 .0198 | .1238 .0628 .0127

100 .50 1] .1530 .0916 .0290 | .1462 .0900 .0272 | .1478 .0844 .0226
2| .1023 .0732 .0203 | .1026 .0672 .0202 | .1228 .0627 .0145

.25 1] .1468 .0824 .0218 | .1476 .0908 .0264 | .1516 .0838 .0246

2| .1226 .0607 .0146 | .1134 .0570 .0214 | .1208 .0700 .0168

.00 1] .1352 .0780 .0242 | .1252 .0698 .0180 | .1358 .0752 .0190

2| .1126 .0688 .0128 | .1114 .0628 .0168 | .1226 .0646 .0168

-.25 1] .1170 .0654 .0166 | .1206 .0648 .0160 | .1188 .0632 .0134

2| 1138 .0564 .0107 | .1178 .0618 .0144 | .1106 .0622 .0128

-.50 1] .1102 .0624 .0178 | .1128 .0584 .0156 | .1210 .0578 .0122

2| .1146 .0678 .0129 | .1127 .0606 .0167 | .1246 .0626 .0124

250 .50 1] .1162 .0642 .0190 | .1158 .0648 .0164 | .1226 .0638 .0164
2| .1068 .0548 .0158 | .1047 .0507 .0103 | .1016 .0506 .0138

.25 1] .1236 .0634 .0152 | .1174 .0618 .0166 | .1184 .0636 .0144

2| 1122 .0567 .0123 | .1047 .0558 .0136 | .1098 .0507 .0116

.00 1] .1062 .0534 .0140 | .1110 .0590 .0138 | .1078 .0544 .0146

2| .1018 .0502 .0134 | .1047 .0526 .0126 | .1020 .0502 .0124

-.25 1] .1128 .0590 .0150 | .1046 .0502 .0098 | .1026 .0488 .0120

2| 1127 .0634 .0127 | .1007 .0504 .0116 | .1056 .0522 .0102

-.50 11].0924 .0438 .0078 | .0962 .0480 .0078 | .0930 .0454 .0078

2| .1018 .0508 .0108 | .1058 .0506 .0096 | .1024 .0538 .0094

500 .50 1] .1214 .0646 .0150 | .1126 .0578 .0132 | .1176 .0596 .0124
2| .1049 .0588 .0102 | .1004 .0498 .0114 | .1009 .0494 .0101

.25 1] .1184 .0650 .0142 | .1094 .0590 .0138 | .1110 .0588 .0128

2] .1088 .0508 .0118 | .0998 .0526 .0116 | .1002 .0503 .0108

.00 1] .1110 .0614 .0142 | .1118 .0534 .0108 | .1114 .0552 .0124

2| .1026 .0528 .0103 | .1048 .0522 .0098 | .1028 .0536 .0106

-.25 11].0972 .0480 .0100 | .1006 .0520 .0108 | .1076 .0558 .0094

2| .1003 .0508 .0112 | .1005 .0546 .0122 | .1088 .0569 .0106

-.50 11].0894 .0430 .0076 | .0900 .0446 .0082 | .0946 .0442 .0074

2 |.0996 .0514 .0096 | .1014 .0522 .0104 | .1046 .0504 .0102

1000 -.50 1].0890 .0455 .0100 | .0885 .0435 .0045 | .0920 .0465 .0070
2| .1010 .0550 .0135 | .1000 .0540 .0065 | .1020 .0525 .0100

Tests: 1 =t test based on QMLE; 2 =t test based on AQSE*.
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Table 4b. Empirical Sizes: Two-Sided Tests of Hy : 31 = (2 in FE{-SPD Model
Group Interaction, REG2, T'=3,0 =1,A=—-0.5

n p Test| 10% 5% 1% | 10% 5% 1% [ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors

50 .50 1] .1640 .1034 .0378 | .1682 .1008 .0320 | .1636 .0942 .0270
2| .1532 .0908 .0314 | .1514 .0838 .0270 | .1480 .0794 .0222

.25 1] .1680 .1044 .0374 | .1668 .1000 .0314 | .1606 .0944 .0296

2 | .1522 .0940 .0326 | .1546 .0914 .0250 | .1494 .0822 .0260

.00 1| .1472 .0860 .0276 | .1580 .0924 .0276 | .1494 .0812 .0236

2 | .1414 .0836 .0254 | .1476 .0840 .0248 | .1418 .0760 .0192

-.25 1] .1384 .0860 .0226 | .1452 .0806 .0214 | .1484 .0814 .0214

2 | .1390 .0858 .0252 | .1438 .0856 .0234 | .1490 .0808 .0228

-.50 1] .1286 .0766 .0208 | .1262 .0656 .0206 | .1214 .0660 .0160

2 | 1384 .0836 .0250 | .1354 .0744 .0242 | .1334 .0734 .0198

100 .50 1| .1464 .0834 .0248 | .1420 .0780 .0258 | .1492 .0852 .0216
2| .1320 .0726 .0192 | .1262 .0672 .0214 | .1334 .0738 .0190

.25 1] .1352 .0768 .0242 | .1364 .0748 .0226 | .1346 .0704 .0140

2 | .1198 .0698 .0196 | .1246 .0674 .0204 | .1212 .0614 .0130

.00 1] .1256 .0656 .0168 | .1228 .0708 .0180 | .1220 .0630 .0156

2| .1216 .0634 .0176 | .1202 .0668 .0170 | .1168 .0602 .0150

-.25 1] .1184 .0608 .0128 | .1094 .0598 .0164 | .1060 .0540 .0126

2| .1226 .0656 .0160 | .1192 .0670 .0194 | .1134 .0596 .0150

-.50 11| .1014 .0516 .0138 | .1062 .0544 .0118 | .1004 .0516 .0108

21 .1212 .0638 .0184 | .1220 .0680 .0186 | .1186 .0630 .0168

250 .50 1] .1190 .0670 .0156 | .1210 .0634 .0164 | .1180 .0616 .0164
2| . 1112 .0588 .0138 | .1106 .0526 .0128 | .1070 .0510 .0128

.25 1] .1122 .0624 .0178 | .1148 .0572 .0120 | .1200 .0668 .0110

2 | .1086 .0572 .0166 | .1102 .0542 .0104 | .1150 .0598 .0106

.00 1| .1056 .0542 .0126 | .1034 .0542 .0116 | .1096 .0570 .0136

2 | .1088 .0552 .0120 | .1050 .0542 .0130 | .1128 .0556 .0146

-.25 1| .1008 .0510 .0082 | .0974 .0512 .0112 | .1028 .0482 .0086

2| .1130 .0576 .0106 | .1076 .0592 .0132 | .1120 .0550 .0104

-.50 1| .0884 .0448 .0094 | .0896 .0426 .0070 | .0894 .0416 .0072

2 | .1088 .0594 .0136 | .1136 .0564 .0120 | .1090 .0536 .0104

500 .50 1] .1194 .0668 .0168 | .1094 .0566 .0126 | .1174 .0610 .0114
2 | .1088 .0578 .0136 | .1010 .0480 .0104 | .1094 .0538 .0082

.25 1] .1026 .0536 .0136 | .1040 .0526 .0102 | .1046 .0524 .0112

2 .0962 .0480 .0110 | .0988 .0484 .0082 | .0998 .0502 .0096

.00 1] .0974 .0530 .0092 | .1080 .0570 .0108 | .1028 .0550 .0120

2 .0998 .0544 .0096 | .1102 .0604 .0104 | .1038 .0552 .0124

-.25 1] .0966 .0466 .0100 | .0874 .0428 .0094 | .1010 .0494 .0086

2 | .1068 .0532 .0126 | .0978 .0500 .0112 | .1110 .0558 .0112

-.50 1| .0868 .0422 .0080 | .0832 .0404 .0066 | .0802 .0388 .0060

2 | .1096 .0552 .0130 | .1014 .0540 .0100 | .1032 .0504 .0114

1000 -.50 1] .0820 .0380 .0085 | .0810 .0385 .0045 | .0795 .0345 .0085
2 | .1020 .0540 .0135 | .1005 .0535 .0065 | .1005 .0445 .0115

Tests: 1 =t test based on QMLE; 2 =t test based on AQSE*.
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