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Abstract

The quasi-maximum likelihood (QML) method is popular in the estimation and infer-
ence for spatial regression models. However, the QML estimators (QMLEs) of the spatial
parameters can be quite biased and hence the standard inferences for the regression co-
efficients (based on t-ratios) can be seriously affected. This issue, however, has not been
addressed. The QMLESs of the spatial parameters can be bias-corrected based on the general
method of Yang (2015b, J. of Econometrics 186, 178-200). In this paper, we demonstrate
that by simply replacing the QMLEs of the spatial parameters by their bias-corrected ver-
sions, the usual t-ratios for the regression coefficients can be greatly improved. We propose
further corrections on the standard errors of the QMLESs of the regression coefficients, and
the resulted t-ratios perform superbly, leading to much more reliable inferences.
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1. Introduction

The maximum likelihood (ML) or quasi-ML (QML) method is popular in the estimation
and inference for spatial regression models (Anselin, 1988; Anselin and Bera, 1998; Lee, 2004).
However, the ML estimators (MLEs) or quasi-MLEs (QMLESs) of the spatial parameters can be
quite biased (Bao and Ullah, 2007; Yang, 2015b; Liu and Yang, 2015) and hence the standard
inferences for spatial effects and covariate effects, based on LM-statistics or ¢-statistics referring
to the asymptotic standard normal distribution, can be seriously affected. Much effort has been
devoted recently to the development of improved inference methods for the spatial econometrics
models. However, most of the research has been focused on improving inferences for spatial
effects in the form of point estimation (Bao and Ullah, 2007; Bao, 2013; Liu and Yang, 2015;
Yang, 2015b) and testing (Baltagi and Yang, 2013a,b; Robinson and Rossi, 2014a,b; Yang, 2010;
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Yang, 2015a,b). Little or no attention has been paid to the development of improved inferences
for the covariate effects in the spatial regression models.

Yang (2015a) proposed a general method for constructing 2nd-order accurate bootstrap
LM tests for spatial effects, but the issue of improved inferences for covariate effects was not
studied. Yang (2015b) proposed a general method for 3rd-order bias and variance corrections
on nonlinear estimators which are prone to finite sample bias, and argued that once the biases of
nonlinear estimators are corrected, the biases of covariate effects and error standard deviations
become negligible. He demonstrated the effectiveness of the methods using the linear regression
model with spatial lag dependence with results showing that a 2nd-order bias correction is
largely sufficient. He further demonstrated that the 2nd-order or 3rd-order corrected t-statistics
for spatial effect indeed improve upon the standard t-statistics greatly, but again, no study was
carried out to test the performance of the t-statistics for covariate effects, and its improvements.

Evidently, in practical applications of spatial econometrics models, it is central to have
a set of reliable inference methods for the covariate effects. In this paper, we adopt the bias-
correction method of Yang (2015b) to propose methods that ‘correct’ the standard ¢-statistics for
the regression coefficients. We demonstrate that by simply replacing the QMLESs of the spatial
parameters by their bias-corrected versions, the usual t-ratios for the regression coefficients
can be greatly improved. We propose further corrections on the standard errors of the ‘bias-
corrected” QMLEs of the regression coefficients, and the resulted t-ratios perform superbly,
leading to much more reliable inferences. The proposed methods are simple and can be easily
adopted by practitioners. We consider in detail three popular spatial regression models: the
linear regression model with spatial error dependence (SED), that with a spatial lag dependence
(SLD), and that with both SLD and SED, also referred to as the SARAR model in the literature.
See Anselin and Bera (1998) and Anselin (2001) for excellent reviews on these models. Bias-
correction on a single spatial estimator has been considered in detail in Yang (2015b) for the
SLD model, and in Liu and Yang (2015b) for the SED model. Bias-corrections for the SARAR
model have not been formally considered, although briefly discussed in Yang (2015b) under a
general outline for bias corrections for a model with a vector of non-linear parameters.

The line-up for the paper is as follows. Section 2 outlines the general method of bias
correction on nonlinear estimators, and the methods for constructing improved t-statistics for
the linear parameters in the model. Sections 3-5 study in detail the improved inference methods
for the regression coeflicients for, respectively, the SED model, the SLD model, and the SARAR
model. Each of Sections 3-5 is accompanied with a set of Monte Carlo simulation results. Section

6 concludes the paper, and discuss further extensions of the proposed methodology.

2. Method of Bias Correction for Nonlinear Estimation

From the discussions in the introduction, it is clear that the key for an improved inference

for the regression coeflicients is to bias-correct the QMLESs of the spatial parameters in a spatial
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regression model. We now outline the method of bias correction on nonlinear estimators, not
necessarily the QMLEs of the spatial parameters. In studying the finite sample properties of
a parameter estimator, say 0, defined as 6,, = arg{y,(0) = 0} for a joint estimating function
(JEF) ¢,,(0), based on a sample of size n, Rilstone et al. (1996) developed a stochastic expansion
from which a bias-correction on 6,, can be made. The vector of parameters 6 may contain a
set of linear and scale parameters, say «, and a few non-linear parameters, say 9, in the sense
that given ¢, the constrained estimator &, (d) of the vector a possesses an explicit expression
but the estimation of § has to be done through numerical optimization. In this case, Yang
(2015b) argued that it is more effective to work with the concentrated estimating function
(CEF): ¢n(8) = th(@n(6),0), and to perform a stochastic expansion based on this CEF and

hence bias corrections on the non-linear estimators defined by,

bn = arg{¥n(8) = 0}, (1)

which not only reduces the dimensionality of the bias-correction problem (a multi-dimensional
problem is reduced to a single-dimensional problem if § is a scalar parameter), but also takes
into account the additional variability from the estimation of the ‘nuisance’ parameters «.

Let H,,,(0) = V’"@@n(é ),7 = 1,2, 3, be the partial derivatives of &n(é ), carried out sequentially
H. = H,, — E(H.,),r =

1,2,3, and Q,, = —[E(Hy,)]~!. Yang (2015b) presents a set of sufficient conditions under which

0, possesses the following third-order stochastic expansion at g, the true value of ¢:

and elementwise with respect to &, 1y = ¥n(80), Hrn = Hrn(80),

O — 0o = a_1/2 +a—1+a_z/+ Op(n~?), (2)

where, a_,/, represents terms of order Op(n_s/ 2) for s = 1,2, 3, having the expressions,

a_1/2 = Qn%;ny

QpHy,a-1/2 + %QnE(H%)(afl/z ®a_y2),

a_gpy = QuHja 1+ 3Q.Hs, (a1 @ a_yys)
+5Q,E(Han)(a_1)2 ® a_1 + a1 ® a_y o)
+5E(Hsn)(a_1)2 ® a1/ @ a_ys),

a_1

with ® denoting the Kronecker product.

When 4 is a scalar, a_g 5 simplifies to: a_y /5 = anﬂn, a_q] = Qanna_l/g—l—%QnE(Hgn)(a%lm),
and a_gjo = O Hya-1 + %Qann(a’%l/Q) + QnE(H2n)(a—1/2a71) + éQnE(H:Sn)(a?il/g)'

The key difference between the CEF-based and JEF-based expansions is that E[,,(d)] # 0
in general, but E[¢,,(6p)] = 0, which allows a CEF-based bias correction to be derived under a

more relaxed condition. Thus, a third-order expansion for the bias of o, takes the form:

Bias(d,) = b_1 + b_g/o + O(n™?), (3)
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where b_1 = E(a_i/; + a—1) and b_3/5 = E(a_3/), being respectively the second- and third-
order biases of 4. If an estimator b_; of b_ is available such that Bias(b_1) = O(n~3/2), then

a second-order bias-corrected estimator of § is,
5% = 6, —b_;. (4)

If estimators b_; and 5_3/2 of both b_1 and b_3/, are available such that Bias(b_1) = O(n~2?)

and Bias(b_; /2) = O(n™?), we have a third-order bias-corrected estimator of 4 as,

~

52C3 = Sn - 8_1 - b,3/2. (5)

An obvious approach for finding the feasible corrections b_y and 3_3 /2 1s to first find the
analytical expressions for b_; and b_3/, and then plugging in 6, for 6. This approach is
generally not feasible for two reasons: first, it is often difficult to find these analytical expressions
even for known error distributions, and second, even if these expressions are available, it may
involve higher-order moments of the errors if they are nonnormal, for which estimation may be
unstable numerically. To overcome this difficulty, Yang (2015b) proposed a simple and yet very
effective bootstrap method to estimate the relevant expected values.

Suppose that the model under consideration takes the form
g(Zn’ 90) = €n,

and that the key quantities in and H,, can be expressed as &n = &n(en,ﬁo) and H,, =
H,.p(en,00),r = 1,2,3. Let &, = g(Zn,én) be the vector of estimated residuals based on the
original data, and F;, be the empirical distribution function (EDF) of é, (centered). When 4 is

a scalar parameter, the bootstrap estimates of the quantities in the bias terms are:
E(WLHI) = E* [l (&, 0,)HE, (¢5,0,)], i,7=0,1,2,..., r=1,23, (6)

where E* denotes the expectation with respect to F, and ér is a vector of n random draws
from F,,. To make (6) practically feasible, the following procedure can be followed.
Bootstrap Algorithm 1 (BA-1):
. Compute 0,, defined by JEF, é, = g(Zn,én), and EDF F,, of the centered é,;

*

. Draw a random sample of size n from F, and denote the resampled vector by €} ;.

1
2
3. Compute &n(é;,b, 0,) and Hm(é;’b,én), r=1,23;
4

. Repeat steps 2.-3. for B times, to give approrimate bootstrap estimates as,
B [5, (€5, On) Hin (85, 0)] = 45 32320 (85, On) Hn (5 3, On),

fori,j=0,1,2,..., r=1,2,3.
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The approximations in the last step can be made arbitrarily accurate by choosing an arbitrarily

large B. Yang (2015b) shows that under certain conditions:

Bias(0h?) = Bias(dn) — E(b_1)
= —Bias(i),l) + O(n_3/2) = O(n_3/2)7 and

Bias(6,®) = Bias(6n) — E(b_1) — E(b_32)
= —Bias(b_1) — Bias(b_3/2) + O(n"?) = O(n"?).

When 6 becomes a vector, the non-stochastic and stochastic quantities are mixed in b_1
and b_3/5. In this case, Yang (2015b) proposed that instead of going through the algebraic
procedure to separate the two types of quantities so that the expectations of various quantities

can be bootstrapped in one round, the above bootstrap procedure can be revised as follows.

Bootstrap Algorithm 2 (BA-2):
1. Draw B independent random samples, {€},, b=1,2,..., B}, from F,
2. Calculate the bootstrap estimates of E(Hyy,) and E(Hay,),

E(Hin) = 5 S0y Hin(€5 . 0n) and E(Hop) = £ S0y Hon(é%y,0)

3. Based on the bootstrap estimates Q, = —E_l(Hln) and E(Hgn), calculate the bootstrap
estimate of, e.g., B[H3, (a_1/2 ® a_15)], as

~ ~ A~

% 2221 {[HQn(éZ,bv én) - E<H2n)][ﬂn1[]n<é;7b7 én) ® ann(é:;b? Hn)] }

The other quantities can be handled in a similar manner. This is essentially a two-round
bootstrap procedure as it runs the iterations b = 1,2,..., B two times, based on the same
sequence of bootstrap samples. Computationally it is slightly more demanding, but algebraically
it is much simpler and thus easier to code. As noted by Yang (2015b), these procedures are

time-efficient as the reestimation of the parameters in the bootstrap process is avoided.

Inferences following bias-correction. There are mainly two types of inferences that
could benefit from the bias-corrections on the nonlinear estimators: one is the inference for
the nonlinear parameters, and the other for the linear parameters. In the framework of linear
regressions with spatial dependence, the spatial parameters are the nonlinear parameters, and
the regression coefficients are the linear parameters. Improved tests for spatial effects have
been considered by Baltagi and Yang (2013a,b), Robinson and Rossi (2014a,b), Yang (2010),
and Yang (2015a). However, the issue of improved inferences for the regression coefficients has
not been considered, except that it is briefly mentioned in Liu and Yang (2015).

To fix the idea, we focus on the 2nd-order bias-corrected 57;,, the 3202. Let &, = dn(gn) and
abe = @,(6°?), and 0, = (&,,4.,) and 62 = (a0, 6P<?"). Yang (2015b) argued that estimation

n-n



Accepted version for: Regional Science and Urban Economics 55, 55-67, 2015.

of the nonlinear parameter is the main source of bias and once the nonlinear estimator is bias-
corrected the resulting linear estimators would be nearly unbiased. Let €2,,(6p) be the asymptotic
variance-covariance (VC) matrix of é&,,. Then, an asymptotic ¢-statistic for inference for cjap,

a linear contrast of «g, has the familiar form:

Simply replacing én by ég‘:, a possibly improved t-statistic results:
the = (chabe — chap)/\/ chQn(85¢)co.

The statistic t2° is not fully 2nd-order corrected as it uses the asymptotic variance of é,, eval-
uated at ég“. Further, the estimator &2° is also not fully 2nd-order bias-corrected, although it
can easily be made so. Let &2°? be the 2nd-order bias-corrected &, or ab°. Let QP2(6,) be

the 2nd-order variance of &2°%, and QEL& be its consistent estimate. A fully 2nd-order corrected

t-statistic, using a 2nd-order bias-corrected estimator and its 2nd-order variance, is thus:

bc2 ! ~bc2 / /O
£ = (cHG,"" — chan) /1] cp 2.

Typically, QP2(y) does not have an explicit expression, but the bootstrap methods described

above can be extended to give a consistent estimate of it. See the subsequent sections for details.

3. Improved Inferences for the SED Model

In this section, we study the inference methods for the regression coefficients of the SED
model. First, in Section 3.1, we outline the QML estimation for this model and inferences based
on the asymptotic distribution of the QMLESs of the model parameters, then in Section 3.2 we
outline the method of bias-correcting the QMLE of the spatial parameter, and then in Section
3.3 we present the improved inference methods. To assess the finite sample performance of the

asymptotic and improved inferences, Monte Carlo results are presented in Section 3.4.

3.1 QML estimation and asymptotic inference

Consider the following linear regression model with spatial error dependence (SED), where

the SED is specified as a spatial autoregressive (SAR) process:
Y, =XuB+up, up= pPWhty + €p, (7)

where Y,, is an n x 1 vector of observations on the dependent variable corresponding to n spatial

units, X, is an n X k matrix containing the values of k exogenous regressors, W,, is an n x n
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spatial weight matrix that summarises the interactions among the spatial units, ¢, is an n x 1
vector of independent and identically distributed (iid) disturbances with mean zero and variance
o2, p is the spatial parameter, and 3 denotes the k x 1 vector of regression coefficients.

The quasi Gaussian loglikelihood function of # = (8’, 02, p)’ for the SED model is given by,
£u(8) = —210g(270?) + 10g | Ba(p)| — 5% (Vi — XuBY Bl(p) Ba(p)(Ya — X0 B), where Bu(p) =
I, — pW,,. Maximizing ¢,,(0) gives the MLE, 0,, of 0 if the errors are indeed Gaussian, otherwise
the QMLE. Given p, £,(0) is partially maximized at,

Bn(p) = [ X}, BL(p) Br(p)Xn) X, Bly(p)Bn(p) Y, and 62(p) = 1Y Bl (p) My (p)Bu(p)Yn, (8)

where M, (p) = I, — Bn(p)Xn[X!, B (p)Bn(p) X, ' X! B! (p). The concentrated log-likelihood
function for p upon substituting the constrained QMLEs 3, (p) and &2 (p) into £(6):

tn(p) = —g[log(%) + 1] +log | Bn(p)| — glog(f?i(p))‘ 9)

Maximising ¢¢ (p) gives the unconstrained QMLE p,, of p, which in turn gives the unconstrained
QMLEs of 8 and o2 as, fBn = Bn(pn) and 62 = 62(pn). Thus, 6, = (3,62, pn).
Liu and Yang (2015) show that, under regularity conditions, the QMLE 0, is asymptotically

normal with mean 6, and variance-covariance (VC) matrix ¥, 1T, 2! where

G%X,’LB;LB”X” 0 0
Y, = 0 501 Uigtr(Gn) :
0 U—lgtr(Gn) tr(G2G,)
UigXT/lB;LBan flg'YX;LB;LLn U%'YX?/«LB;LQn
r, = ﬁw;Ban é(/’i +2) ﬁ(n +2)tr(Gy) |,
Uiofyg;Ban %(/ﬁ +2)tr(Gr)  Kghgn + tr(GEGY)

tn is an m x 1 vector of ones, v and x are, respectively, the measures of skewness and excess
kurtosis of the idiosyncratic errors e, ;, g, = diag(Gy), Gn = Gn(po) = WoB;, Y(po), and
Gt = G, + G),. Based on these results, it is easy to see that Bn is asymptotically normal with
mean 5y and variance 03 (X! B! B, X,)"!. Thus, the inference for cyBo is carried out based on
the following t-ratio:

chBn — o

tsep = —
\O2h(XLBY B KX)o

: (10)

where c¢g represents a linear contrast of the regression coefficients and B, =1, — onWip. The
t-ratio, tsgp, is asymptotically N (0, 1), and hence inferences concerning Sy are carried out by
referring to the standard normal critical values.

Liu and Yang (2015) demonstrate based on Monte Carlo experiments that p, can be seriously
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downward biased but the bias of p,, does not spillover much to Bn This means that the existence
of spatial dependence in the regression errors does not affect much the point estimation of the
regression coefficients in terms of consistency and finite sample bias. However, it does spill over
to the estimate of Var(8,). First, the downward bias of j, causes 62 to be downward biased

when 7 is not large (e.g., 50). Second, from the expression:
X;B;Ban = X;zBa/anXn — (pn — PO)X;L(W;LBTL + B;Wn)Xn + (Pn — po)erlLWéWan,

we see that the severe bias of p,, may cause X;LBS;LBan to be severely biased for the estimation
of X! B!, B, X,. For example when X! (W! B, 4+ B,W,)X,, > 0 (in matrix sense)," X/ B/ B, X,
tends to overestimate X/ B!, B, X, and hence, 62cj(X}, B’ B, X n) " lco tends to underestimate
Var(cgﬁn), which makes tsgp much more variable than N(0,1) and inferences for 3y based on

tsgp defined in (10) unreliable. Our Monte Carlo results confirm this point.

3.2 Bias correction for the SED model

To improve tggp, it is necessary to first bias-correct p,. The method described in Section 2

can be used with 1, (p) = 5 p@fl( p), where (5 (p) is defined in (9). The following results follow

from Liu and Yang (2015):

Yu(p) = —Ton(p) + Rin(p), (11)
Hin(p) = —Tin(p) + Ranlp) + 2R1,(p), (12)
Han(p) = —2T2a(p) + Ran(p) + 6R1n(p) Ran(p) + 8R3,(p), (13)
H3n(p) = —6T3(p) + Ran(p) + 8R1n(p) R3n(p) + 6R3,(p)

+48R3,(p)Ran(p) + 48R1, (p), (14)

where Ty (p) = Ltr(G7 1 (p)),r = 0,1,2,3, and

Rjn(ﬂ) =

YAA%(p)Mn(p)Dgn(p)f A0 oy 55y (15)

Y AL (p) M (p) An(p)Yn
with D1, (p) = Gn(p), and Djn(p),j = 2,3, 4, being given in Appendix A.

Bootstrap estimates of biases. From (11)-(14), we see that t, and H,, are functions
of only Rj,,j = 1,...,4, which are essentially ratios of quadratic forms. Thus, in order to
estimate the bias, one needs to estimate the expectations of R;,, their powers, cross products,

and cross products of powers. It is easy to see that,

/
enA 'n(pO)en

Rjn = Rjn(en, po) = 22220 (16)
n an s e{ran(pO)en7

'"When W follows the Group Interaction scheme, this occurs as long as (¢}, X;)? > %X’ Xjr,

where n, is the size of the rth group and Xj, contains rth group values of the jth regressor.
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where e, = ao_len, and Ajn(po) = Mn(po)Djn(po)Mn(po). It follows that all the necessary
quantities whose expectations are required can be expressed in terms of e, and pg, and the
general bootstrap procedure described in Section 2 can be followed to give bootstrap estimates
of the bias terms b_; and b_3/5. See Liu and Yang (2015) for details.

3.3 Improved inferences for regression coefficients
First, by simply replacing p in tggp defined in (10) by p22, the second-order bias-corrected

p, we obtain the following potentially improved statistic:
tbc C6ﬁ20 — 0660

SED —
~2b > >
\/O-nv CC{)( X’/ Bch’Bch Xn) 160

; (17)

where ﬁbc = B, (pbe?), o2be = 52(pbe?), and E’ECQ = I, — p®W,.. Obviously, this statistic
is not fully second-order bias-corrected. However, Monte Carlo results presented in the next
subsection show that it offers a huge improvement over tggp. This confirms the point made at
the end of Section 3.1. However, results also show that when n is not so large, there is still
room for further improvement on ¢5g;.

Let Fu(p) = [X7,B1,(p) Ba(p) Xn] ' X}, By, (p) Br(p) such that Bn(ﬂ) = Fn(p)Yy defined in (8)
and denoting 3, = ﬁn(pg), and B,(f) = j,; 3 (po) and F,&’“) = ddga F,.(po) for r = 1,2, we have the

following second-order stochastic expansion for Bn = Bn(ﬁn):

A > (1) o 5(2) _
Bu=Bo = Bu—Bot B (o — po) + 3557 (pn = po)? + Op(n~?) (18)
= bon + E(B)am1j +am1) + brnacy o + FE(B)a, y + Op(n=2),

where bon = Fo By ey, bin = VB E(B) = Py X80, B(BY) = B X, 80, and Fy" are
given in Appendix A. This leads 1mmed1ately to, as a by-product of the bootstrap bias-correction
for py, a fully 2nd-order bias-corrected estimator BbCQ of 5. Similarly, an expansion as (18) can
easily be carried out for 62 = 52(p,), giving a fully 2nd-order bias-corrected estimator 52"
of 02.2 Finally, denoting g(e,, 6o) = bon —i—E(ﬁn Ja_i/2+a-1)+bia_ip+ 1E(Bn )a? ~1/9; the
expansion (18) leads to a second-order variance expansion:

Var($3,) = Var[g(en, 0p)] + O(n=2).

Further it is easy to see Var(32°2) = Var(3,) + O(n~2), and Var(3L¢) = Var(3,) + O(n™2).
Obviously, an explicit expression of the above is difficult to obtain, but is not needed as it can
be easily estimated by the two-stage bootstrap procedure described below. Recalla_; /5 = an/;n,
and a1 = QuHy,a_1)5 + 3QE(Han) (02 ) = Qb + Q2 Hiptn + Q0E(Hzn )47

2As ,Bbc and 62C2 do not differ much, and 62*° and 62°°? also do not differ much, one can simply use BEC

and 62°° in practical applications.
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Stage 1: Compute 0,, and the QML residuals é,, = 6;13n(Yn — XnﬂAn). Resample é,, to
give p?, and hence BBCQ and &,%’b(ﬂ, using the algorithm BA-1 given in Section 2.
Stage 2: Update the QML residuals as é2%? = 6BC2’7132C2(YH - XnB,kl’cz) and compute

Iy = g(AbeQ*,HBCQ) for b=1,..., B, where ebC2 is the bth bootstrap sample drawn from the
EDF of e, and HbC2 (BbCQI AbCQ, phe2y. The bootstrap estimate of Var(BEC2), unbiased up

B B
to O(n~3/2), is thus, Var(ﬁbd) B EY I b9 — 5 Y g;i,b% > b1 I

‘We have a second-order ‘bias-corrected’ ¢-statistic as follows:

c Abc2 c
thet — i oo (19)
¢hVar(8?) ¢

3.4 Monte Carlo results

Finite sample performance of tggp, t35, and 852 is investigated and compared under the

following data generating process (DGP):
Yo = tfBo + X1nB1 + Xonfo + un,  un = pWyty, + €y,

where X1, and Xs, are the n x 1 vectors containing the values of two fixed regressors. The
parameters of the simulation are initially set to be as: 8 = (5,1,1)/, ¢® = 1, p takes values
form {—0.5,—0.25,0,0.25,0.5} and n take values from {50,100, 200,500}. Each set of Monte
Carlo results is based on M = 10,000 Monte Carlo samples, and B = 999 + Ln0'75j bootstrap
samples within each Monte Carlo sample. The methods for generating X,,, W,,, and the errors
are described in Appendix A.

Table 3.1 summarizes some results for tsgp and té’gg used for testing Hy : 51 = [2. From
the results we see that (i) as n increases, all tests converge in terms of rejection rates, (ii) it
is indeed the case that the asymptotic test t, can be very unreliable in the sense it rejects
the true Hy much too often than it supposes to. The test ¢35, offers a huge reduction in size
distortions, and when n = 200 and 500, its rejection rates become very close to their nominal
levels. Nevertheless, when n = 50 or 100, we see from the tables that there is room for further
improvement on t35,. The t-statistic ¢35 based on the second order corrected variance provides
a further improvement on ¢85, with the rejection rates quite close to the nominal levels even
when n is not so large. The results show that the error distribution does not significantly affect
the performance of the three tests. The true value of the spatial parameter has little effect on
the performance of the two improved tests (except when n = 50), but has a significant effect on
the asymptotic test: the size distortion gets larger when p changes from .5 to —.5. Furthermore,
the size distortion for the asymptotic test is seen to be quite persistent, which remains to be at
least 20% even when n = 500. The results (unreported for brevity) show that the tests under

a more sparse spatial weight matrix generally have smaller size distortions.

10
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4. Improved Inferences for the SLD Model

This section concerns the improved inference methods for the regression coefficients of the
SLD model. Section 4.1 outlines the asymptotic results, and Section 4.2 the finite sample
bias-correction results. Section 4.3 presents the improved inference methods, and Section 4.4

presents Monte Carlo results.

4.1 QML estimation and asymptotic inference

The regression model with spatial lag dependence (SLD) takes the form:
Y, = \W,Y, + X,,8 + €, (20)

Letting Ay (X) = I,—AW,,, the log-likelihood function of 0 = (8, 0%, \)" is £, (0) = —% log(270?)+
log |An(N)] — 525 [An (V)Y — X0 B8] [An (V)Y — X, 8]. Given A, £,(6) is maximized at

202

Bn()‘) = (X;Xn)ilX;LAn()‘)Yn and 5'721()‘) = %YT;A;L()\)MHA’R(}\)Y’R? (21)
where M,, = I, — X, (X! X,,) "' X/,. These lead to the concentrated log-likelihood of X as,

c n n 52
600 = ~2flog(2m) + 1] — 21og62(N) + log |4, (V)] (22)

Maximizing £¢ (\) gives the unconstrained QMLE A, of A. The unconstrained QMLEs of 3 and
o? are thus, 3, = Bn(j\n) and 62 =& ()\ ). Write 0, — (B/ 2.\ ).

no n’

Lee (2004) shows that 6,, is asymptotically N(6g, X' T,, 1), where

XX 0 o5 Xnlin
¥, = 0 201 Uigtr(Gn)
(?10777/1Xn gigtr(Gn) N+ tr(G,Gr)

0 2571 Xt =YX 09n
Fn = %’YL;’LXTL 404 ot %’W;ﬂ?n Jr %’itr(Gn) + Ena
7090 Xn 52V + 5,2 htr(Gn) Kgngn + 27900n

tn, v and & are defined as in Section 3.1, g, = diag(Gy), Gn = Gn(po) = WnA, 1 (No), G5 =
G+ Gl and 1, = 0y ' G X fo.

Letting V,,; be the submatrix of ¥ 1T, corresponding to 3 and Vi1 be its estimate, an
asymptotic ¢-statistic for inferences for ¢{f is thus,

-
terp = M, (23)

)7
COanc(]

11
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which is asymptotically N(0,1). Finite sample properties of tgrp is of interest.

As Bn(N) = Bo + (A = N)(XL X)) XL,Gn X, B0 + 0p(1), we see clearly that any estimation
bias of A is quickly passed down to the QMLE of 8y. Thus the ¢-statistic computed using Bn(;\)
and the variance estimate an can be unreliable. This fact is confirmed by the Monte Carlo

results. As such it is desirable to find ways to improve tsrp.

4.2 Bias corrections

As an illustration to his general bias correction method, Yang (2015b) studied the SLD
model in detail. Letting ¢, (\) = %E,’i()\), where £¢(\) is given in (22), we have,

Un(A) = —haTon(A) + hpRin(N), (24)
Hin(\) = —Tin(A\) — Ron(N) + 2R3 (N, (25)
Hon(\) = —2T5,(A) — 6R1, (M) Ron(N) + 8RS (M), (26)
H3,(\) = —6T3,(\) 4+ 6R%,(\) — 48R3, (\)Ran(\) + 48R1, (N, (27)

where T,,(A) = n=lr(GETLH(N)), 7 = 0,1,2,3, Gp(A\) = W, 4,1 (N),

YA NM WY,
YA, (Mo A, (N)Ya

YW, M, W, Y,,

Rin(A) T Y AL (N My A, (V)Y

and  Ran(A)

(28)

Bootstrap estimates of biases. The two key ratios can be written as:

e%MnGnen + e%Mnnn
el Mpyey,
Ron(en ) = en G M,Gyen + 2¢, G, Mpn, + 777/1Mn77n’

/
e, Mpen

)

Rln(en7 90) =

where e, = Uo_len. Hence, v, = Yn(en,00) and Hyp, = Hyp(en,6p) 7 = 1,2,3. In other
words, all the random quantities in the bias term can be expressed in terms of e, and 6. So,
the bias corrections are carried out in a similar manner using an estimate of Ri,(e,,6y) and
Ron(en, o). See Yang (2015b) for details. Let AP be the second-order bias corrected A, and
let AP¢ = B(Ab?) and gibe = G2(Abe2),

4.3 Improved inferences for regression coefficients

Similar to the case of SED model, replacing 5\n by 5\202 in the definition of tg1p, we obtain

a statistic which is expected to have a better finite sample performance:

tbc _ CéﬁBC B C()BO (29)

SLD — b )
[ Al C

12
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where fo is V1 evaluated at )\ELCQ, ﬁﬁc, 6Z’bc, &EC, and /%};’LC. The last two are the estimates of
v and K, the skewness and excess kurtosis of €, ; involved in V.

Now, to further improve 5, note that

Ba—Bo = Bn—Fo— =) (X.Xn) " X GnXnBo — (n — Ao) (X X)L X" G 0
(X3 Xn) 71X, [6" — (a1 +a-1)GnXnfo — a,l/anen] + Op(n_3/2).
This leads immediately to a 2nd-order bias-corrected estimator 3202 of 3, and a second-order

expansion for Var(ﬁn) as,
Var(B,) = (X, X,) " X} Var [e, — (a_1/2 + a-1)GnXnBo — a_12Gnén] Xpn (X, X)) ™ + O(n72).

It is easy to see Var(32°2) = Var(8,) + O(n™2). As in (30), an expansion can be carried out

for 42 in terms of j\n, leading to a 2nd-order bias-corrected estimator oZP? of 523 Similarly, a

two-stage bootstrap procedure can be followed to give a consistent estimate of V' = X/ Var [en —

(a_1/2 +a-1)GnXnfBo — a,l/QGnen] X,,: first, run the algorithm BA-1 to give 2nd-order bias-

2,bc2

corrected estimators 5\2‘32, BBCQ and o3, 7; then update the residuals and run the algorithm

BA-1 again using the updated residuals to give a sequence of bootstrap values for V', and hence
the bootstrap estimate @(52‘72) of Var(8,). The resulted 2nd-order bias-corrected t-statistic

is thus:

fhe2 B2 — chBo (31)
LD = — .
cp Var(8pe?)co

4.4 Monte Carlo results

Finite sample performance of tgrp, tng and tgf% is investigated under the following DGP:
Y, = AWLY, + tnfo + X1nB1 + XonB2 + €n,

where all the quantities are generated in a similar manner to those for the SED model. The

parameters for the Monte Carlo simulation are also set to be the same values as before.

Table 4.1 summarizes some empirical sizes of the tests tgrp, top and 32 when used for

testing Hy : f1 = (B2 under the Group Interaction scheme. From the results we see that (i)
as n increases, all tests converge in terms of sizes, (ii) it is indeed the case that the asymptotic
test tgrp can be very unreliable in the sense that it rejects the true Hy much too often than it
supposes to. The test tgf% offers a huge reduction in size distortions, with the empirical sizes
getting close to their nominal levels faster than in the SED case. Nevertheless, when n = 50,

the results show that ¢3¢, needs further improvements, and indeed the test t3%2 based on the

3Again, the estimators BZC and Bzcz do not differ much, and the estimators 62°° and 62°°? do not differ

much. Hence in practical applications, one can use the simpler versions 82¢ and 2.

13
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second-order corrected variance offers the desired improvements. More results are available

from the authors upon request.

5. Improved Inferences for the SARAR Model

In this section, we study the finite sample bias problem of the general SARAR model and
introduce improved inference methods for the regression coefficients of this model. Neither
issue has been formally considered due to its complexity, and hence the results presented in
this section constitute important contributions to the literature, in particular considering the
fact that the SARAR model is more versatile and hence practically more useful than either the
SLD model or the SED model. Section 5.1 outlines the QML estimation and the asymptotic
inference method. Section 5.2 presents detailed results for bias-correcting the QMLESs of the
spatial parameters. Section 5.3 presents the improved inference methods for the regression

coefficients. Section 5.4 presents Monte Carlo results.

5.1 QML estimation and asymptotic inference

Combining the SED and SLD models considered above, we have the so-called spatial au-

toregressive model with autoregressive errors, also known as the SARAR model:
Y, = WY, + X084+ up, up = pPWontp + €p. (32)

The Gaussian log-likelihood function of § = (8',02, X, p)’ is £,(0) = —% log(2mo?) +log | A, (N)|+
l0g|Bn(p)| = 352 [Ya(8) — Xn(p)B]' [Yn(8) — Xn(p)B], where An(X) = In — AWin, Bn(p) = In —

oWan, Xn(p) = Bn(p) X, and Y, (6) = B,(p)An(A\)Y,. The constrained QMLEs of 3 and o2,
given § = (A, p)’, are

B (6) = [X7,(0) X (p)] T X}, (p)Yn(8) and 67(6) = 1Y;1(8) M (p)Yn(0), (33)

where M, (p) = I, — Byn(p) X[ X!, B (p)Bn(p) Xn] 1 X! B!, (p). Then, the concentrated Gaussian

loglikelihood function for § is,
£,(6) = =5 n(2m) + 1] = ZIn(52(5)) + In[A,(V)] + 1n | Bu ()] (34)

Maximizing (34) gives the QMLE on of 8, and thus the QMLEs of 3 and o2 as 3, = Bn(gn) and

62 = 52(6,). Write 0, = (3,,62,6")". The concentrated score function upon dividing by n is,

1 O <>n<><>
' N Y’() <> <> 2 (0)Ya ()
p O ) T i 0)

(35)

14
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where Gln()\) = WlnAr_Ll()\)u GZn(p) = W2nB1;1(p) and Bn((s) = Bn(p)Gln()\)B;l(p)-
Jin and Lee (2013) shows that under some regularity conditions, 0, is asymptotically normal

with mean 6y and asymptotic VC matrix 31T, %1, where

52 X0 B) B X, 0 2o X}, Bl jin 0
1, ./75 1
En _ 1 0 1 %_ Jfgtr(B?) ) Ufgtr(G%n) 7
?OM;LB’VLXTL ;%tr(Bn) M%Nn + tr(BZBn) tI‘( gan)

0 () w(G,B)  (@5,0m)

0 X! B 2XLBLS, 2 X!, Blgnn
ro_ ﬁL%Ban 4%%‘ %tr(Bn) + %Lgﬂn %tr(G%) s
" Ulol_)ﬁanXn %tr(gn) + %L;un Kbl by, + 20, Kb bn + YGhy tin "
55990 Bn X 507 t1(G2n) KGonbn + VG2, bn KGong2n

tn, 7 and K are defined in the earlier sections, u, = oy 1BnG1anBO, b, = diag(Bn), Jon =
diag(Gay), B = B, + B), and G3,, = Ga,, + G),,.
Letting V;,1 be the submatrix of X IFnZ; I corresponding to /3 and an be its estimate, an

asymptotic t-statistic for inferences for {3y is thus,

CE)Bn - 6660

/
coVnico

tsarar = ~ N(0,1). (36)

As indicated in the introduction, there is no formal treatment in the literature in terms of
the finite sample bias of the QML estimators of the SARAR model. Given the fact that the
QMLEs of the spatial parameters in the SED and SLD models can both be seriously biased,
there is a good reason to believe that they will remain to be biased when the spatial effects are
combined. Hence bias corrections for the QMLEs of the SARAR model would again be useful

in improving the inference methods for the model.

5.2 Bias corrections

Bias correction can be carried out as an application to the general method of bias correction
of Yang (2015b), for a vector of nonlinear estimators. To do so we need the higher-order partial
derivatives of 1, (8), Hyn(8) = V"9, (8),r = 1,2,3, where the partial derivatives are obtained
sequentially and elementwise with respect to ¢'. Define, T}, = tr(G7,,(\)) and K, = tr(G%, (p)),
r=0,1,2,3. Also define the following quantities,

Y2 (0)Ma(p) Ba(8)Ya(0)

Rln(d) - YA(&)MH(P)Yn(é) ’
_ Ya(8) By (6) Ma(p) Ba(8)Ya(9)
Ron(9) = Ya(0)Mu(p)Ya(0)

15
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Y (8) My (p) Drn(p) My (p) Y (6)
) =TT M)
o YI(5)Mu(p) Don (0) Mo () B ()Y (6)

o) = ONARAD whE

Ol = YA(6) M ()Y (0) rebE
where Di,(p) = Gan(p), and D,p(p), 7 = 2,3,4, are given in Appendix A. These quantities
have the following properties,

d)\Rln((S) = 2R%n(6) - RQH(5)7 d)\R2n(5) = 2R1n(5)R2n(5)7

3 5rn(8) = 2R1n(0)Sr(6) = 2Q1, (),  KQL(8) = 2R1n(8)QL,(0) — Q1 ()

(5)
L R1n(0) = 2R1n(8)S12(0) —2Q1,(8), 5 Ran(8) = 2R2n(6)S1(5) — 2Q1,(9),
LS (8) = 251n(8)Srn(8) + Sry1a(8), A5 QL(8) = 251n(5)QF(6) + Q) 11, (6),
£Q1.(0) = 251n(8)Q1,(0) + QF 41, (6)-

Write 1;”(5) = (Qzln((S% 77;271(5))/7 where 1[11”(5) = —Ton(A) + R1,(6) and 7;271(5) = —Kon(p)+
S1,(8). Denote the partial derivatives of 1, (8) by adding superscripts A and/or p sequen-
tially, e.g., PPN(0) = 887;151”(5), and 302(0) = 535 gx¥an(0). Thus, Hin(8) has st row
[03,(6), 94, (6)} and 2nd row {43, (5), ¥4, (5)}, which gives,

~Tin(N) = Ron(6) +2R%,(8).  —2Q1,(8) + 2R1n(8)S1a () )

Hin(6) = ( —2Q1 () + 2R1n(8)S1n(8),  —K1n(p) + Son(8) + 252, (5)

Ho,, (8) has tows {di)(6), 912 (8), ¥4(6), 912(8)} and {43 (8), 157 (6), ¥ (8),14%(6)}, where

n(8) = —2T2n<A> — 6R1,(8) Ron(6) + 8RS, (6),

Y(8) = 2Q%,(8) — 8R1n(0)Q1,(8) — 2R3 (8)S1n(6) + 8R2,,(8)S1n(6),
PP (0) = —2Q%,(8) — 851, (0)Q1,,(8) + 2R1(5)S20(6) + 8R1(8)S3,(6),
W0 (8) = —2K2n(,0)+53n(5)+651n( >Szn< ) + 85 <>

() = DN (8) = PN (6) and PEL(S) = Ul (8) = P (6)

Hs3,(9) is obtained by taking partial derivatives w.r.t. § for every element of Ha,(d). It has

elements:

PIN(6) = —6Tsn () + 613, (8) — 48R3, (8) Ron () + 48R{,, (6),
I’ (8) = 12R0,(8)Q1,,(6) + 12R15(6)Q1,,(8) — 24R1,(8) R2n(8)S1n(8) — 48R3, (8) Q1. (6)
+48R 1 (0)S1,,(9),
Jr2P(8) = 2Q4,(8) + 16Q1 (6) + 8512 (8) @1, (8) — 8R1n(8)Q1,,(8) — 64R1,(8)S1a(5) @1, (6)
~2R3,(8)S2n(8) — 8R2n(8) 53, (6) + 8R3,(8)S24(8) + 48R3, (8)S3,(9),
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W0 (8) = —2QL,(8) — 12524(8)Q1,,(8) — 1251,(8) @1, (6) — 4851n<6>cz W (0)
+24R1n( )Sln< 5271(5) +2R1n( )S?m( )+48R1n( ) (5)7
PP (5) = —6K3(p) + San(8) + 652,(5) + 851,(85)S30(8) + 4852, (8)San(6) + 4854 (5),
(

bial(8) = Ui (6) = BIN(0) = BN(6), P (8) = pl’(8) = a7 (8) = P52 (6) and
JR0P(8) = 0 (0) = U’ (8) = BPPN6) = ol (8) = Ui (0).

Bootstrap estimates of biases. The R-ratios, S-ratios and Q-ratios at 0 = §y defined
above can all be written as functions of 8y and e, = Uglen, given X, and W,n,r = 1,2 and
using the relations M, B, X, = 0 and W1,,Y,, = G1,, (Xnﬁo + Bglen):

eian(,un + Bnen)

Fin(bo,€n) = el Myen, ’

Ron(fo,0n) = (pn + Bn, en,)’]\]\j e(:tn + B €n)

Syn(B0,en) = eﬂi’ﬁ\)ﬂé\fne", r=1,2,3,4,

Qin(eoa er) = e;LMnDTZ{W]\Z(/ZZ + Bnen)7 F=1.2.3,
Qholbp,e) — it nen) e Zf nlin ¥ Bue) |\ _y g

where B,, = B, (8y). As a result, we have Uy = 1;,1(90,6”) and H,, = Hp(0p,e,) r = 1,2,3.
The bias terms, b—1 and b_g/5, can be easily estimated using the general bootstrap procedure
for a vector nonlinear parameters, the Bootstrap Algorithm 2 (BA-2), described in Section 2.

Let SECQ ()\bc2 pLe?)’ be the 2nd-order bias-corrected version of Op. Let B};C = (Skcz) and
gabe = &%(32‘72). As expected, which can also be inferred from the results given in Section 5.4,
the QMLEs can be severely biased and a 2nd-order bias-correction effectively eliminates the
bias. To conserve space, we do not report the Monte Carlo results for the finite sample biases

of the QMLESs and the bias-corrected QMLEs of the SARAR model.

5.3 Improved inferences for regression coefficients

Improved t-statistics t95pap and t52,, can be constructed as for the SED or SLD model.

5bc2

Replacing gn by 4,,°“ in the definition of tsarar, We obtain a statistic which is expected to have

a better finite sample performance:

! Abce /
b coBn’ — cpBo
tShraR = —F— = ) (37)
c{)V?l’fco

where V,ff is Vi1 evaluated at SECQ, BN,E’C A%bc, Abe and AP, The last two are the estimates of

v and K, the skewness and excess kurtosis of €, ; involved in I'j,.
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In order to further improve 25 ,q, note that given £, = 5,(d), let BT(LT) be the rth derivative
with respect to &, r = 1,2. Also define F,(p) = [X}, Bl (p)Bn(p)Xn| ' X}, Bl (p)Bn(p) where
we have ,(0) = Fn(p)A,(\)Y, and F" = F,(f)(po) is the rth derivative with respect to
8, = 1,2. Assuming that E(Bg)) exists and that Bff) — E( Nq(f)) =0,(n"Y?), r=1,2,bya

Taylor expansion, we have,

Ba@n) = Bo = Bu—Bo+ B (G — 00) + 3557 [(9n = 00) @ (3 = 80)] + Op(n=*/?),
= bon + E(B)(a 175 +ac1) +bipa_yyp + %E(Bff))(afm ®a_y/3) + Op(n=3/2),

where b, = Fy By, Yen, bin = (—F, Gmelen, VB e ) E(BY) = (—=F\G1aX,B0, F\ X0 f0)
and E(Bg)) = (Ogx1, — ( G1nXnBo, — Gln X, 50, F, n nﬁg). The expressions for FT(L ) and
F? are given in Appendix A. This leads to a second order expansion for Var(3,) or Var(322):

Var(55°2) = Varlbo, + B(B{")(a_1s + a1) + bina_ys + SEB ) (a_1j2 ® a_1 /)] + Op(n2),

where a_j /5 = in/;n anda_q = Qanna,l/g#—%QnE(Hgn)(a,1/2®a,1/2) = n1/~1n+(2 H.,Q nd;n
%QHE(HZn)[(QnQEn) ® (Qn(gn)] = Qn‘ﬁn"‘gn(&Z@HIN)VeC(Qn) + %QHE(H%)( n® )(T/Jn@”‘/’n)
(see Yang, 2015b). As for the two simpler models, one can easily obtain the 2nd-order bias-
corrected estimators B}I’CQ and O'nb 2 but again Monte Carlo results (not reported for brevity)
show that they do not differ much from the corresponding ‘plug-in’ estimators. A similar two
stage bootstrap procedure as given in Section 3, but based on the algorithm BA-2 presented in
Section 2, can be applied to obtain an estimate of this variance term, @(BECZ). We have a

second order bias corrected t-statistic as follows:

! Abc2 /
c —c

2, = 20— oo (38)
¢y Var (L) e

5.4 Monte Carlo results

The methods for bias-correction and for improved inferences introduced above for the

SARAR model are investigated for their finite sample performance under the following DGP:
Y, = AW Y, + 0o + XinB1 + XonfB2 + U,  Up = PWonty + €p,

where all the quantities are generated in a similar manner to those for the SED model. The
two spatial weight matrices are taken to be the same. The parameters are set to be the same
as before, where A and p both take values from {—0.5,—0.25,0,0.25,0.5}.

We focus on the finite sample performance of the three tests tsarar, tospag and t35z,z. The
results for the finite sample bias of the QMLESs are available from the authors upon request.

Tables 5.1-5.3 report empirical sizes of tsapar, t55rar and 1852,z When used for testing Hy : 51 = o,
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under the Group Interaction spatial layouts described in Appendix B. Similar conclusions are
drawn from the Monte Carlo results for the SARAR model as those for the two sub models
considered in the earlier sections: (i) as n increases, all tests converge in terms of sizes, (ii)
the asymptotic test tgyrar remains unreliable in the sense it rejects the true Hyp much too often
than it supposes to, (iii) the test t35z,s offers immediate reduction in size distortions, and (iv)
t2¢2, ¢ generally offers further improvements. Furthermore, like the asymptotic test for the SED
model, tsprar can have a size distortion that is very persistent, having values that are at least
24% even when n = 500. The results (unreported to conserve space) under Rook and Queen
Contiguity show similar patterns, but the differences are of a lesser degree due to the weaker

spatial dependence (less number of neighbours) under these two spatial layouts.

6. Conclusions

This paper considers inference problems for the regression coefficients S in linear regression
models with spatial dependence, where the estimation of the spatial parameters may incur
severe bias. It is shown that while the existence of spatial dependence does not have a big
impact on the point estimation of the regression coefficients in terms of consistency and bias (in
particular after bias-correcting the spatial estimators), it can have a huge impact on the usual
t-statistics for 8. We propose simple ways to correct the t-statistics, and the resulted 2nd-order
corrected t-statistics perform superbly. Considering the effectiveness and the simplicity of the
proposed methods, they are recommended for practical applications.

Central to the proposed inference methods for regression coefficients in this paper is the
general bias-correction methods for nonlinear estimators proposed in Yang (2015b). Thus, the
proposed methods have a great potential to be extended to more advanced models such as
higher-order SARAR models, spatial panel data models, dynamic panel data models, nonlinear
spatial regression models and nonlinear spatial panel data models. They are equally applicable
to non-spatial models as well. Among these, the extension to a higher-order SARAR incurs
only some extra algebra, and all methods go through in a straightforward manner.

The classical approach to the problem considered in this paper is to directly bootstrap the
original t-statistic to give asymptotically refined approximations to the finite sample critical
values, taking advantage of the underlining statistic being asymptotically pivotal. However,
bootstrapping a Wald-type or a likelihood ratio statistic requires the reestimation of all param-
eters in every bootstrap iteration, and thus is computationally much more demanding compared
to our approach, in particular when the model contains more nonlinear parameters that needed
to be estimated through numerical optimization (see Yang 2015a for some related works and
discussions). Nevertheless, it would be interesting as a future research to compare the two

approaches, considering the fact that the direct approach is algebraically simpler.4

“We thank a referee for raising this issue.
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Appendix A: Additional Quantities for Bias Corrections

For the SED model, the full expressions for D;,(p), j = 2, 3,4, required in the expressions

of Rj,(p) in (15), for up to third-order bias corrections are:

Dan(p) = 2Gn(p)Pu(p)Gn(p) + Gn(p)Pu(p)Gi(p) — Gi(p) Mn(p)Gnl(p),

D3n(p) = Dan(p) + Gn(p)Pa(p)D2n(p) + Dan(p)Pu(p)Gi(p)
—G1,(P)Mn(p) D2n(p) — Dan(p) My (p)Grl(p),

Dun(p) = Ds3n(p) + Gn(p)Pn(p)Dsn(p) + Dn(p) Pu(p)Gr(p)
—G1(p) My (p) D3n(p) — D3n(p) My (p)Gn(p),

where P,(p) = I, — My(p) and Dj,(p) = %Djn(p),j = 2,3. Note that a predictable pattern
emerges from Ds,(p) onwards. Using the fact that diprl =Gifl fori=1,2,..., we have,

Dan(p) = 2G2(p)Pu(p)Gnlp) = 2Gn(p)My(p)Gn(p) + 2Gn(p) Pu(p)GE(p)
+G2(p) Pu(p)G,(p) — Gn(p) M (p) G, (p) + Gn(p) Pulp) G2 (p)
—G,2(p) M (p)Gr(p) = G1o(p) My (p) G (p) — Gy (p) Mn(p) G2 (p),

Dsn(p) = G2(p)Mn(p)Gn(p) +2G2(p) 'n(P)G (p) + 2G,2(p) Mo (p)G2(p)
+G1 () My (p)Gr(p) + 2G1, (p) M (p) G (p) + G (0) M (0) G ()
—2G3 () Pu(p)Gn(p) + 4G2 (p) My (p)Gn(p) — 4GE(p) Pu(p) G2 (p)
+2Gn(p) M (p)Gn(p) + 4Gn(p ) 1,(p)G2(p) — 2Gn(p) Pu(p ) 2(p)
—G3(p)Pu(p) Gy, (p) + 2G2(p) My ()G, (p) — 2G2(p) Pu(p)G,2(p)
+G(p) M (p)Gr () + 2Gn(p) Mu(p) G2 (p) — Gn(p) Pu(p)Gr2(p),

Mu(p) = Pa(p)Gr,(p)Mn(p) + Mna(p)Gn(p) Pu(p),
M(p) = 2Pu(p)G,(p)Pu(p)G1(p) Mn(p) + 2Pu(p) G, (0) M ()G (0) P (p)
LM (9)Gon(0) Pa(p)Gon(0) Pap) — 2Mo(0)Gin () Pa(0) Gl (0) M ().
The expressions for " = dr F (po),r =1,2 are:

F = F,B;1G: B, (X, F,, — I,,), where G5 = G,, + G/,
F¥ = FY B71GS By (X Fo — 1)) + Fo B Y (G52 — 26", G) Bu(Xn Fy — 1)) + F B 1 GS B, X, FAY

For the SARAR model, the full expressions for D;,(p),j = 2,3,4 and Fér),r =1,2
follow a similar pattern as in the quantities for the SED model with the exception that G, (p)
in the SED must now be replaced with Ga,(p).
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Appendix B: Settings of Monte Carlo Experiments

Spatial Weight Matrix: We use three different methods for generating the spatial weight
matrix W,: (i) Rook contiguity, (ii) Queen contiguity, and (ii¢) Group Interaction, with
details given in Yang (2015b). The degree of spatial dependence specified by layouts (i) and (i)
are fixed while in (éi7) it grows with the increase in sample size. This is attained by allowing
for the number of groups, k, for each sample to be directly related to n. We have considered
kE = n% and k = n%%, where k is the number of groups for each n and hence the degree of
spatial dependence indicated by the average group size is m = n/k. The actual sizes of the
groups are generated from a discrete uniform distribution from .5m to 1.5m.

Regressors: The fixed regressors are generated by REG1: {z1;,z2;} “oN (0,1)/+/2 when
Rook or Queen contiguity is followed; and according to either REG1 or REG2: {1 iy, Z2,ir} i
(2z,42i) /10, where, (2, zir) YN (0, 1) when group interaction scheme is followed. The REG2
scheme gives non-iid regressors where the group means of the regressors’ values are different,
see Lee (2004). Note that both schemes give a signal-to-noise ratio of 1 when 1 = 2 = 0 = 1.

Error Distribution: To generate €, = oe,, three DGPs are considered: DGP1: {e,;} are
iid standard normal, DGP2: {e, ;} are iid standardized normal mixture with 10% of values from
N(0,4) and the remaining from N(0,1), and DGP3: {e,;} iid standardized log-normal with
parameters 0 and 1. Thus, the error distribution from DGP2 is leptokurtic, and that of DGP3 is
both skewed and leptokurtic.
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Table 3.1 Empirical Sizes: Two-Sided Tests of Hy : 81 = (2 in SED Model

Group Interaction, REG2, o =1; Test:

1 =tgpp,2 = thDa 3= tls)f:%

p Test | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1% | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Normal Errors Normal Mixture Lognormal

n = 50 n = 200
.50 1] .232 .169 .088 | .239 .173 .092 | .237 .167 .086 | .128 .0v3 .020 | .139 .076 .024 | .125 .068 .018
21 .132 .078 .029 | .136 .083 .032 | .132 .079 .029 | .107 .057v .014 | .117 .060 .016 | .109 .059 .014
3| .113 .066 .024 | .116 .072 .028 | .112 .068 .024 | .100 .053 .012 | .108 .057 .014 | .102 .052 .012
.25 1] .252 .185 .102 | .254 .188 .104 | .255 .186 .100 | .153 .092 .030 | .138 .080 .026 | .141 .084 .028
2| .133 .083 .038 | .132 .083 .037 | .136 .082 .035 | .114 .060 .018 | .116 .063 .017 | .109 .058 .015
3| .117 076 .034 | .120 .075 .033 | .121 .073 .031 | .108 .056 .016 | .109 .057 .014 | .101 .053 .013
.00 11].259 .195 .105 | .259 .193 .105 | .265 .194 .104 | .152 .093 .035 | .157 .094 .034 | .13 .098 .034
21 .134 .084 .036 | .136 .08 .040 | .138 .08 .035 | .110 .060 .018 | .114 .062 .017 | .116 .066 .019
3| .125 077 .034 | .125 .079 .037 | .126 .077 .033 | .104 .056 .017 | .108 .058 .016 | .108 .060 .017
-.25 1] .270 .195 .110 | .263 .193 .105 | .267 .196 .108 | .161 .101 .039 | .166 .102 .037 | .160 .099 .039
2| .141 .093 .047 | .140 .091 .042 | .146 .092 .040 | .114 .063 .020 | .114 .064 .018 | .111 .065 .020
3| .135 .088 .044 | .132 .08 .040 | .137 .08 .037 | .109 .060 .018 | .109 .060 .018 | .108 .062 .019
-.50 1] .260 .191 .102 | .258 .189 .098 | .262 .193 .103 | .166 .102 .037 | .167 .107 .038 | .168 .106 .039
2] .142 096 .043 | .145 .094 .044 | .147 .096 .043 | .112 .062 .017 | .119 .064 .020 | .118 .066 .020
31.136 .099 .033 | .139 .099 .031 | .141 .099 .031 | .109 .060 .010 | .104 .060 .011 | .102 .061 .011

n = 100 n = 500
.50 1] .164 .103 .042 | .170 .107 .042 | .172 .106 .041 | .123 .065 .018 | .124 .067 .017 | .120 .066 .017
21 .124 070 .023 | .128 .074 .021 | .129 .072 .018 | .105 .054 .014 | .109 .055 .013 | .108 .055 .013
3| .113 .062 .019 | .115 .064 .017 | .115 .062 .015 | .101 .053 .012 | .104 .051 .012 | .103 .052 .010
.25 1] .190 .126 .054 | .192 .127 .053 | .192 .126 .055 | .132 .074 .022 | .126 .070 .019 | .130 .072 .021
21 .128 076 .023 | .12v .075 .021 | .130 .074 .025 | .107 .056 .015 | .104 .053 .014 | .107 .054 .015
3| .117 .068 .020 | .117v .067 .019 | .119 .067 .020 | .104 .053 .010 | .101 .051 .010 | .102 .052 .011
.00 1] .200 .133 .058 | .197 .128 .056 | .204 .133 .058 | .132 .077 .024 | .136 .077 .024 | .134 .075 .024
21 .124 070 .024 | .123 .072 .023 | .126 .073 .025 | .105 .057 .015 | .107 .056 .014 | .107 .056 .015
31 .116 .064 .021 | .114 .066 .021 | .119 .070 .023 | .103 .050 .011 | .105 .051 .010 | .103 .051 .010
-.25 11].201 .132 .060 | .204 .137 .059 | .199 .129 .057 | .135 .0v7 .023 | .135 .076 .021 | .133 .076 .021
2| .124 072 .027 | .123 .071 .024 | .117 .068 .023 | .104 .056 .014 | .104 .053 .013 | .105 .056 .013
31 .116 .067 .026 | .115 .066 .022 | .109 .063 .022 | .102 .051 .011 | .102 .050 .012 | .102 .054 .013
-.50 1] .198 .137 .058 | .195 .130 .057 | .203 .133 .058 | .137 .0v7 .023 | .134 .077 .024 | .133 .077 .024
2] .118 .068 .024 | .117 .069 .026 | .120 .071 .025 | .105 .058 .014 | .100 .054 .015 | .101 .055 .013
3| .110 .065 .021 | .111 .060 .020 | .115 .068 .021 | .104 .051 .010 | .100 .051 .011 | .101 .051 .010
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Table 4.1 Empirical Sizes: Two-Sided Tests of Hy : 81 = 2 in SLD Model

Group Interaction, REG2, o =1; Test:

1=tgp,2 = t‘s’ED’ 3= tls)ICf)

p Test | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1% | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Normal Errors Normal Mixture Lognormal

n = 50 n = 200
.50 1] .161 .095 .028 | .162 .095 .029 | .174 .120 .058 | .109 .057 .013 | .113 .059 .014 | .125 .068 .019
2| .113 .062 .016 | .117 .068 .017 | .142 .098 .049 | .102 .051 .012 | .104 .052 .011 | .114 .061 .016
31.095 .045 .010 | .100 .045 .010 | .100 .054 .014 | .093 .048 .011 | .098 .048 .011 | .100 .050 .010
.25 1] .156 .095 .028 | .160 .095 .026 | .171 .107 .041 | .115 .060 .013 | .111 .056 .012 | .123 .063 .014
2| .113 .062 .014 | .117 .065 .015 | .139 .08 .033 | .106 .055 .012 | .103 .050 .011 | .112 .054 .012
31.095 .044 .009 | .093 .045 .010 | .098 .050 .012 | .100 .049 .010 | .097 .046 .010 | .100 .047 .010
.00 1] .158 .097 .030 | .157 .090 .028 | .139 .073 .021 | .115 .056 .012 | .115 .061 .014 | .114 .061 .015
2| .115 .065 .018 | .116 .062 .017 | .110 .060 .015 | .106 .051 .010 | .104 .053 .011 | .105 .054 .012
3| .100 .048 .012 | .093 .049 .012 | .099 .053 .015| .099 .046 .009 | .099 .048 .010 | .098 .049 .010
-.25 1] .163 .096 .033 | .161 .099 .032 | .122 .067 .019 | .112 .057 .015 | .112 .058 .012 | .111 .058 .01l1
2| .117 .068 .020 | .124 .069 .020 | .100 .049 .012 | .105 .054 .013 | .105 .053 .010 | .108 .055 .011
31.095 .052 .014 | .102 .053 .015 | .100 .050 .010 | .100 .049 .012 | .100 .050 .010 | .103 .052 .009
-.50 1] .167 .100 .033 | .161 .099 .034 | .113 .062 .017 | .119 .065 .016 | .108 .056 .012 | .105 .057 .014
2] .124 .069 .020 | .126 .074 .022 | .094 .046 .012 | .108 .058 .013 | .107 .056 .013 | .099 .052 .011
31.099 .055 .016 | .106 .051 .015 | .103 .050 .011 | .099 .051 .011 | .099 .049 .011 | .100 .051 .011

n = 100 n = 500
.50 1] .131 .0v0 .018 | .127 .067 .017 | .133 .077 .027 | .106 .053 .011 | .111 .057 .014 | .107 .056 .012
2] .106 .055 .013| .103 .051 .011 | .117 .066 .023 | .101 .048 .009 | .104 .051 .012 | .102 .052 .011
31.098 .04 .010 | .099 .049 .018 | .093 .048 .010 | .099 .050 .010 | .098 .048 .011 | .097 .048 .010
.25 1] .127 .068 .019 | .130 .073 .019 | .145 .087 .024 | .110 .060 .012 | .109 .057 .013 | .109 .054 .011
21 .103 .052 .014 | .109 .056 .014 | .120 .069 .018 | .103 .055 .011 | .100 .051 .010 | .104 .050 .010
31.096 .049 .010 | .093 .050 .010 | .095 .046 .009 | .098 .050 .010 | .099 .050 .009 | .099 .049 .010
.00 11].133 .070 .019 | .130 .0v1 .017 | .128 .073 .018 | .107 .055 .012 | .109 .058 .012 | .108 .055 .013
2| .1056 .054 .013 | .109 .057 .012 | .111 .059 .013 | .101 .051 .011 | .102 .053 .010 | .101 .051 .012
3| .100 .050 .010 | .099 .050 .009 | .099 .052 .011 | .099 .050 .010 | .097 .049 .009 | .100 .049 .011
-.25 1] .133 .0v1 .020 | .134 .077 .021 | .130 .065 .013 | .103 .052 .014 | .107 .054 .012 | .105 .054 .012
2|.109 .054 .014 | .112 .060 .015 | .110 .051 .009 | .097 .048 .012 | .100 .049 .011 | .099 .050 .010
3| .100 .046 .011 | .099 .047 .010 | .103 .049 .010 | .099 .050 .011 | .099 .049 .010 | .099 .050 .010
-.50 1] .128 .0v1 .017 | .132 .074 .018 | .113 .057 .012 | .105 .056 .013 | .108 .056 .011 | .107 .054 .011
2| .106 .057 .013 | .112 .060 .012 | .094 .044 .008 | .098 .052 .011 | .102 .050 .009 | .100 .050 .009
31.099 .050 .010 | .099 .052 .011 | .100 .049 .010 | .099 .050 .010 | .099 .049 .010 | .100 .049 .009
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Table 5.1 Empirical Sizes: Two-Sided Tests of Hy : 81 = 2 in SARAR Model
Group Interaction, REG2, 0 =1,A=0.5; Test:

— __ 4bc _ 4bc2
1 = tsarar; 2 = fsirary 3 = lsanan

p Test | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1% | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Normal Errors Normal Mixture Lognormal

n = 50 n = 200
.50 1] .197 115 .040 | .201 .122 .044 | .197 .122 .040 | .141 .0v8 .022 | .140 .082 .028 | .131 .078 .021
2] .120 .068 .020 | .123 .073 .023 | .146 .084 .028 | .113 .056 .014 | .117v .061 .017 | .116 .061 .015
3| .115 .062 .017 | .119 .068 .023 | .128 .074 .024 | .105 .050 .011 | .107 .056 .016 | .106 .052 .013
.25 1] .191 .109 .031 | .180 .110 .031 | .183 .109 .035 | .147 .085 .025 | .152 .089 .028 | .150 .083 .025
2| .118 .067 .020 | .116 .069 .022 | .120 .066 .021 | .108 .056 .012 | .112 .061 .012 | .111 .058 .012
31.109 .061 .016 | .103 .058 .019 | .103 .055 .017 | .100 .050 .009 | .102 .054 .011 | .101 .051 .010
.00 1] .191 .110 .031 | .177 .099 .028 | .191 .114 .037 | .150 .089 .026 | .137 .075 .016 | .138 .084 .020
2| .111 .054 .015| .100 .054 .016 | .117 .065 .021 | .104 .055 .012 | .116 .061 .014 | .124 .066 .017
3| .098 .047 .012 | .095 .046 .013 | .100 .055 .018 | .097 .050 .010 | .102 .051 .010 | .105 .052 .012
-.25 1] .173 .100 .025 | .170 .096 .027 | .184 .108 .033 | .158 .093 .030 | .131 .074 .018 | .120 .062 .014
2|.094 .048 .011 | .098 .049 .016 | .111 .059 .020 | .108 .054 .013 | .123 .068 .019 | .118 .066 .017
3| .108 .048 .009 | .108 .051 .013 | .090 .047 .016 | .099 .049 .012 | .102 .055 .010 | .095 .054 .010
-.50 1] .182 .104 .030 | .162 .08 .023 | .177 .100 .034 | .127 .0v2 .020 | .120 .061 .013 | .119 .063 .013
21.097 .049 .013 | .085 .043 .010 | .102 .059 .019 | .115 .066 .017 | .122 .063 .015 | .135 .074 .019
3| .100 .048 .011 | .091 .052 .009 | .092 .046 .014 | .105 .060 .013 | .095 .046 .009 | .091 .052 .009

n = 100 n = 500
.50 11].169 .099 .027 | .163 .097 .029 | .171 .103 .031 | .124 .068 .018 | .126 .070 .017 | .124 .073 .018
2] .115 .058 .014 | .122 .064 .017 | .115 .059 .016 | .102 .053 .013 | .107 .053 .011 | .106 .056 .011
3|.101 .049 .013 | .107 .057 .015 | .105 .055 .013 | .098 .049 .012 | .100 .049 .010 | .100 .050 .010
.25 1] .165 .094 .029 | .172 .101 .028 | .163 .095 .030 | .130 .073 .023 | .134 .073 .020 | .130 .074 .018
2| .106 .054 .012| .116 .056 .011 | .111 .056 .013 | .105 .056 .015 | .106 .057 .014 | .101 .053 .012
31.095 .045 .010 | .101 .047 .009 | .098 .049 .011 | .099 .052 .014 | .100 .053 .013 | .099 .049 .010
.00 1| .177 .103 .031 | .176 .098 .032 | .165 .100 .035 | .138 .075 .021 | .135 .072 .019 | .133 .076 .020
21 .106 .054 .012 | .102 .052 .013 | .105 .056 .014 | .106 .055 .013 | .099 .052 .009 | .106 .054 .012
31.093 .046 .011 | .099 .048 .011 | .095 .051 .013 | .103 .053 .011 | .099 .049 .009 | .101 .053 .010
-.25 1] .170 .100 .027 | .164 .095 .029 | .170 .098 .029 | .131 .0v4 .020 | .135 .077 .022 | .132 .075 .022
21.096 .047 .010 | .097 .048 .010 | .102 .048 .011 | .101 .055 .013 | .102 .053 .012 | .098 .053 .011
31.095 .054 .011 | .099 .050 .009 | .099 .052 .010 | .096 .051 .012 | .099 .051 .011 | .100 .051 .010
-.50 1] .158 .091 .026 | .151 .086 .022 | .145 .087 .024 | .128 .071 .018 | .144 .076 .022 | .129 .072 .019
21.090 .046 .010 | .091 .044 .010 | .091 .048 .011 | .094 .046 .011 | .107 .054 .014 | .093 .050 .011
31.090 .054 .009 | .099 .047 .009 | .098 .052 .009 | .092 .045 .011 | .103 .051 .013 | .099 .050 .010




Accepted version for: Regional Science and Urban Economics 55, 55-67, 2015.

9¢

Table 5.2 Empirical Sizes: Two-Sided Tests of Hy : 51 = 2 in SARAR Model
Group Interaction, REG2, 0 =1,A=0.0; Test:

— __ 4bc _ 4bc2
1 = tsarar; 2 = fsirary 3 = lsanan

p Test | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1% | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Normal Errors Normal Mixture Lognormal

n = 50 n = 200
.50 1] .18 .107 .027 | .196 .127 .050 | .188 .114 .037 | .134 .0v9 .020 | .132 .066 .019 | .135 .074 .018
21.130 .073 .020 | .123 .0v6 .027 | .132 .079 .027 | .111 .058 .014 | .107v .055 .013 | .116 .061 .013
3| .128 .068 .017 | .113 .071 .025 | .118 .069 .023 | .101 .052 .012 | .098 .049 .010 | .104 .053 .010
.25 1] .199 .125 .047 | .187 113 .039 | .204 .130 .048 | .140 .083 .023 | .143 .086 .029 | .13 .087 .025
2| .115 .064 .021 | .126 .071 .018 | .111 .065 .020 | .117 .066 .017 | .107 .060 .016 | .108 .058 .015
3| .110 .061 .020 | .112 .061 .015 | .108 .062 .019 | .107 .060 .014 | .098 .053 .014 | .096 .050 .013
.00 1] .184 .110 .034 | .184 .107 .033 | .203 .126 .043 | .157 .093 .029 | .155 .094 .027 | .13 .089 .027
2| .110 .061 .017 | .114 .062 .020 | .127 .074 .022 | .106 .058 .015 | .112 .060 .014 | .110 .056 .014
3|.097 .054 .015 | .095 .054 .017 | .106 .059 .017 | .099 .053 .013 | .103 .054 .013 | .100 .052 .012
-.25 1] .192 .114 .039 | .189 .109 .036 | .194 .122 .039 | .127 .0v2 .016 | .136 .072 .019 | .127 .068 .016
2| .110 .09 .018 | .112 .063 .017 | .117 .067 .021 | .107 .061 .014 | .129 .069 .019 | .128 .072 .019
31.095 .050 .015 | .095 .051 .013 | .099 .055 .017 | .099 .053 .012 | .111 .054 .015 | .092 .049 .012
-.50 1] .194 .114 .038 | .177 .100 .030 | .183 .115 .033 | .156 .095 .028 | .123 .067 .014 | .150 .090 .030
2] .106 .058 .018 | .102 .052 .014 | .112 .062 .016 | .106 .053 .012 | .127 .071 .020 | .105 .056 .014
31.098 .049 .014 | .098 .052 .011 | .099 .047 .012 | .098 .049 .011 | .105 .054 .012 | .096 .050 .013

n = 100 n = 500
.50 1] .172 .105 .030 | .168 .096 .032 | .173 .099 .030 | .129 .0v4 .021 | .129 .068 .016 | .125 .072 .017
2| .122 067 .017 | .122 .065 .017 | .110 .054 .014 | .109 .055 .013 | .107 .053 .011 | .107 .057 .010
3| .10r .060 .014 | .109 .056 .014 | .100 .049 .012 | .102 .051 .012 | .099 .050 .009 | .100 .052 .010
.25 11| .175 .102 .030 | .171 .101 .031 | .171 .110 .036 | .136 .077 .018 | .136 .077 .022 | .128 .075 .019
2| .113 .057 .013 | .108 .055 .013 | .115 .064 .016 | .106 .053 .011 | .103 .057 .014 | .102 .053 .012
31.098 .049 .011 | .096 .049 .010 | .105 .056 .014 | .100 .047 .010 | .099 .052 .012 | .097 .050 .011
.00 1] .173 .103 .030 | .175 .103 .034 | .180 .107 .031 | .137 .079 .021 | .134 .081 .022 | .126 .077 .021
21.098 .051 .014 | .105 .056 .013 | .110 .054 .013 | .111 .053 .012 | .105 .055 .015 | .103 .057 .012
31.097 .052 .013 | .094 .050 .011 | .098 .047 .011 | .105 .050 .012 | .099 .051 .014 | .100 .053 .012
-.25 1] .180 .109 .032 | .159 .094 .028 | .165 .099 .030 | .136 .077 .023 | .142 .082 .021 | .136 .071 .019
21 .104 .052 .011 | .094 .046 .012 | .101 .049 .011 | .101 .053 .011 | .109 .055 .011 | .099 .049 .010
31.093 .046 .010 | .091 .054 .010 | .099 .055 .011 | .098 .050 .010 | .105 .053 .010 | .100 .050 .010
-.50 1] .172 .106 .029 | .159 .093 .026 | .158 .096 .025 | .146 .076 .020 | .134 .078 .017 | .138 .076 .021
2|.101 .048 .011 | .090 .045 .009 | .093 .048 .009 | .103 .050 .010 | .103 .053 .009 | .101 .051 .011
31.096 .054 .010 | .098 .049 .009 | .096 .054 .010 | .100 .047 .010 | .100 .050 .009 | .100 .049 .011
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Table 5.3 Empirical Sizes: Two-Sided Tests of Hy : 81 = 2 in SARAR Model

Group Interaction, REG2, o =1,\A= —.25; Test: 1 = tsrur,2 = t55prs3 = osemn
p Test | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1% | 10% 5% 1% \ 10% 5% 1% \ 10% 5% 1%
Normal Errors Normal Mixture Lognormal Normal Errors Normal Mixture Lognormal
n = 50 n = 200
.50 1] .196 .119 .045 | .203 .126 .047 | .18 .115 .045| .129 .0v3 .020 | .144 .083 .022 | .133 .072 .016
21 .121 .070 .020 | .122 .0v6 .022 | .138 .08 .030 | .112 .063 .014 | .116 .060 .012 | .111 .059 .013
3| .114 .066 .017 | .117 .072 .020 | .122 .074 .022 | .104 .055 .013 | .106 .054 .012 | .093 .046 .009
.25 1] .198 .123 .042 | .205 .128 .043 | .205 .130 .054 | .143 .081 .025 | .150 .085 .022 | .151 .084 .025
21 .108 .059 .018 | .109 .057 .020 | .112 .066 .025 | .122 .062 .018 | .122 .065 .015 | .112 .055 .014
31 .103 .056 .015| .104 .055 .017 | .109 .064 .022 | .110 .056 .016 | .106 .057 .011 | .100 .051 .013
.00 1] .192 .115 .037 | .180 .109 .038 | .199 .127 .051 | .144 .086 .023 | .129 .075 .016 | .16 .091 .028
2| .115 .065 .017 | .118 .065 .017 | .106 .062 .020 | .123 .066 .017 | .114 .065 .015 | .113 .056 .013
3] .103 .058 .014 | .101 .056 .015 | .104 .059 .020 | .110 .059 .014 | .100 .053 .011 | .103 .050 .012
-.25 1] .196 .114 .032 | .18 .108 .038 | .194 .115 .042 | .136 .075 .023 | .125 .065 .018 | .153 .090 .026
2| .107 .052 .016 | .109 .060 .019 | .114 .069 .022 | .123 .068 .018 | .120 .062 .017 | .106 .056 .011
31.099 .060 .013 | .098 .051 .015 | .098 .057 .017 | .112 .060 .015 | .101 .048 .012 | .097 .052 .011
-.50 1] .18 .113 .040 | .188 .111 .037 | .186 .116 .040 | .120 .064 .016 | .114 .055 .011 | .150 .091 .025
2| .111 .061 .018 | .089 .049 .014 | .098 .055 .015 | .117 .063 .015 | .126 .063 .015 | .105 .051 .012
31.095 .051 .015| .093 .055 .013 | .099 .051 .015 | .106 .055 .012 | .099 .045 .009 | .097 .049 .011
n = 100 n = 500
.50 1] .175 .100 .029 | .171 .099 .030 | .167 .098 .033 | .132 .069 .016 | .131 .070 .017 | .133 .072 .021
2| .116 .059 .016 | .126 .067 .018 | .113 .061 .014 | .110 .058 .012 | .108 .055 .010 | .109 .056 .012
3] .100 .051 .013 | .111 .057 .015 | .104 .055 .014 | .104 .053 .011 | .100 .048 .010 | .102 .052 .011
.25 1] .179 .102 .032 | .172 .103 .034 | .170 .099 .031 | .132 .079 .023 | .125 .074 .019 | .138 .076 .020
2| .114 .059 .014 | .111 .063 .015 | .108 .057 .014 | .109 .060 .014 | .106 .055 .012 | .107 .052 .012
31 .102 .052 .012 | .099 .053 .013 | .098 .052 .011 | .104 .056 .013 | .100 .051 .009 | .103 .051 .011
.00 1] .176 .106 .030 | .178 .103 .032 | .158 .093 .029 | .135 .0v7 .025 | .129 .077 .020 | .128 .071 .019
21.099 .04 .012 | .108 .055 .012 | .096 .044 .011 | .105 .056 .015 | .099 .049 .012 | .100 .050 .011
31.099 .055 .010 | .096 .048 .010 | .099 .045 .011 | .101 .053 .013 | .100 .049 .011 | .099 .050 .011
-.25 1] .177 .102 .031 | .165 .098 .031 | .162 .097 .029 | .139 .082 .026 | .139 .079 .022 | .130 .077 .020
21.096 .048 .009 | .101 .050 .013 | .101 .053 .013 | .106 .059 .014 | .104 .053 .011 | .099 .050 .012
31.099 .0562 .010 | .099 .050 .013 | .100 .050 .011 | .101 .056 .014 | .099 .050 .010 | .100 .050 .012
-.50 11].169 .102 .029 | .160 .100 .032 | .159 .100 .035 | .143 .08 .023 | .140 .084 .024 | .126 .074 .023
21 .098 .047 .010 | .095 .049 .012 | .099 .053 .012 | .107 .054 .012 | .111 .059 .014 | .098 .053 .013
31.096 .0561 .009 | .096 .049 .011 | .099 .052 .012 | .105 .053 .011 | .108 .055 .012 | .099 .052 .012






