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a b s t r a c t

In the presence of heteroskedastic disturbances, the MLE for the SAR models without taking into
account the heteroskedasticity is generally inconsistent. The 2SLS estimates can have large variances
and biases for cases where regressors do not have strong effects. In contrast, GMM estimators obtained
from certain moment conditions can be robust. Asymptotically valid inferences can be drawn with
consistently estimated covariance matrices. Efficiency can be improved by constructing the optimal
weighted estimation.
The approaches are applied to the study of county teenage pregnancy rates. The empirical results show

a strong spatial convergence among county teenage pregnancy rates.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many economic processes, for example, housing decisions,
technology adoption, unemployment, welfare participation, price
decisions, etc., exhibit spatial patterns. Recently, spatial models
that have a long history in regional science and geography have
received substantial attention in various areas of economics, in-
cluding urban, environmental, labor, developmental and others.
However, the allowance of dependence between observations
complicates the estimation procedure and calls for some special-
ized techniques.
The most popular spatial econometric model is the spatial au-

toregressive (SAR) model (e.g., (1) in Section 2). For a standard SAR
modelwhere the error terms are assumed to followanormal distri-
bution N(0, σ 2), the most conventional estimation method is the
maximum likelihood (ML). Since there is a Jacobian term, the de-
terminant of the Sn(λ) in the likelihood function,1 the ML method
entails significant computational complexities. Even though some
simplification or approximation techniques have been suggested,2
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1 Sn(λ) = In − λWn , where Wn is the spatial weights matrix. Note that its
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2 See, for example, Ord (1975), Smirnov and Anselin (2001).
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the computation involved may still be demanding, especially
for large sample sizes and general spatial weights matrices. An-
other estimation procedure is the two stage least square (2SLS)
for the mixed regressive, spatial autoregressive model (Kelejian
and Prucha, 1998; Lee, 2003). The 2SLS estimator (2SLSE) has the
virtue of computational simplicity but it is inefficient relative to
the maximum likelihood estimator (MLE) since it focuses only on
the deterministic part of the model, leaving the information con-
tained in the (reduced form) error terms unexplored. Furthermore,
it will be inconsistent when all the exogenous regressors are irrel-
evant. Kelejian and Prucha (1999) propose a Method of Moment
(MOM) method for the regression model with spatial autoregres-
sive disturbances based on correlations of sample observations.
However, their estimator is inefficient as compared to theMLE. Lee
(2001) generalizes theMOMmethod into a systematic generalized
method of moments (GMM) procedure based on quadratic mo-
ment functions and shows the existence of the best GMM estima-
tor (GMME), which can be asymptotically as efficient as the MLE.
In Lee (2007a), a GMM procedure that combines both advantages
of computational simplicity and efficiency is introduced for the es-
timation of the mixed regressive, spatial autoregressive model. It
is shown that the GMME can be asymptotically more efficient than
the 2SLSE and that the best GMME exists and it has the same limit-
ing distribution as the MLE. The basic idea is to combine quadratic
moments with the linear moments, where the latter are based on
the orthogonality of the exogenous regressors with the model dis-
turbances that generates the 2SLSE. All these ML, MOM and GMM
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estimators are, however, designed for models with homoskedastic
disturbances.
The homoskedastic assumption may be restrictive in practice.

In certain applications, we would expect the variances of the er-
ror terms to be different. For instance, consider the analysis of the
spatial dependence in the unemployment or crime rates of con-
tiguous states in the United States. As a rate variable is a result
of aggregation, heteroskedasticity may be present. In the pres-
ence of social interactions, the variance of the aggregated level
data will be inflated, the extent depending on the strength and
structure of the interactions. In a study of cross-city crime rates,
Glaeser et al. (1996) show that the high variance of cross-city crime
rates is largely caused by social interactions among individuals.
Therefore, the presence of social interactions could complicate the
variance structure of aggregated data, especially when social in-
teraction patterns depend not only on the population size in the
city, but also on the distribution and composition of the popula-
tion. LeSage (1999) illustrates how themean and variance of home
selling prices change as we move across observations with differ-
ent distances from the central business district. More discussions
on spatial heteroskedasticity can be found in Anselin (1988).
In this paper, we consider the case when the error terms in

the model are independent but with an unknown heteroskedas-
ticity. If variances of the disturbances or the exact structure of
heteroskedasticity are known, wemay get rid of the heteroskedas-
ticity by some appropriate transformations and then apply the
conventional MLE or GMM techniques to the transformed model.
However, one may not have accurate information about the na-
ture of the heteroskedasticity in a model and may be unsure of
the specific structural form of the variances. With an unknown
heteroskedasticity, we would like to know the consequences for
various estimators if the SAR model were estimated as if the dis-
turbances were i.i.d. As will be shown without taking into account
the heteroskedasticity, the MLE is generally inconsistent. In con-
trast, the GMME obtained from certain carefully designedmoment
conditions can be robust against an unknown heteroskedasticity.
Furthermore, one may improve the efficiency by constructing op-
timal weighting for the GMM estimation even when the form of
heteroskedasticity is unknown.
Section 2 discusses the possible inconsistency property of the

MLE and derives its asymptotic bias for some special case. Ro-
bust GMM estimation under unknown heteroskedasticity is con-
sidered in Section 3. Its consistency and asymptotic distribution are
derived. Section 4 considers the optimal weighting of the robust
GMM estimation. Some extensive Monte Carlo studies illustrate
possible degrees of bias for the various estimators in finite samples
in Section 5. Section 6 presents specification tests on the testing of
unknown heteroskedasticity, and someMonte Carlo results on lev-
els of significance and powers of the Hausman-type and Lagrange
Multiplier (LM) test statistics. An empirical application on county
teenage pregnancy rates is provided in Section 7. Conclusions are
drawn in Section 8. The technical details are given in the Appendix.

2. Inconsistency of the MLE in the presence of heteroskedastic
disturbances

The model considered is the mixed regressive, spatial autore-
gressive model

Yn = λ0WnYn + Xnβ0 + εn, (1)

where Xn is an n× kmatrix of nonstochastic exogenous variables,
Wn is an n×n spatial weightsmatrix of known constants with zero
diagonal elements, and the elements εni’s of the n-dimensional
vector εn are independent with a mean 0 and variances σ 2ni, i =
1, . . . , n. The spatial effect coefficient λ0 measures the average
influence of neighboring observations on Yn, which usually lies
between (−1, 1)whenWn is row-normalized such that the sum of
elements of each row is unity. For a generalWn which is not row-
normalized, the λ0 will usually be assumed to be in a parameter
space which guarantees that the determinant of (In − λ0Wn) is
positive. There will be more discussion on the parameter space of
λ0 later on. The reduced formof themodel is Yn = S−1n Xnβ0+S

−1
n εn,

where Sn = In − λ0Wn.
For the SARmodel in (1), under the assumption of i.i.d.N(0, σ 20 )

disturbances, the log likelihood for this standard model is

ln Ln(δ) = −
n
2
ln(2π)−

n
2
ln σ 2

+ ln |Sn(λ)| −
1
2σ 2

ε
′

n(θ)εn(θ), (2)

where δ = (λ, β ′, σ 2), θ = (λ, β ′), Sn(λ) = In − λWn, and
εn(θ) = Sn(λ)Yn − Xnβ .
Given aλ, (1) becomes a regression equation of Sn(λ) on Xn, and,

the MLE of β is

β̂n(λ) = (X ′nXn)
−1X ′nSn(λ)Yn (3)

and the MLE of σ 2 as σ̂ 2n (λ) =
1
n [Sn(λ)Yn − Xnβ̂n(λ)]

′
[Sn(λ)Yn −

Xnβ̂n(λ)] = 1
nY
′
nS
′
n(λ)MnSn(λ)Yn,, whereMn = In − Xn(X

′
nXn)

−1X ′n.
Then, we can get the concentrated log likelihood function of λ,

which is

ln Ln(λ) = −
n
2
(ln(2π)+ 1)−

n
2
ln σ̂ 2n (λ)+ ln |Sn(λ)|. (4)

The first order condition for the concentrated log likelihood
function is
∂ ln Ln(λ)
∂λ

=
1

σ̂ 2n (λ)
Y ′nW

′

nMnSn(λ)Yn − tr(WnS
−1
n (λ)). (5)

For consistency of the MLE λ̂n, the necessary condition is
plimn→∞

1
n
∂ ln Ln(λ0)

∂λ
= 0. However, with heteroskedastic distur-

bances, this condition may not be satisfied. Consequently, the con-
sistency of the MLE is not guaranteed.
In the presence of heteroskedasticity, at the true parameter λ0,

σ̂ 2n (λ0) =
1
n
[SnYn − Xnβ̂n(λ0)]′[SnYn − Xnβ̂n(λ0)]

=
1
n
ε′nMnεn =

1
n

n∑
i=1

σ 2ni + op(1). (6)

So, σ̂ 2n (λ0) and the average of σ
2
ni, σ

2 are asymptotically
equivalent.3 Let Gn = WnS−1n . Then, from Eqs. (5) and (6), we have,
at λ0,
1
n
∂ ln Ln(λ0)

∂λ
=
1
n

[
1

σ̂ 2n (λ0)
Y ′nW

′

nMnSnYn − tr(WnS
−1
n )

]
=

1
nε
′
nG
′
nMnεn

1
nε
′
nMnεn

+

1
n (Xnβ0)

′G′nMnεn
1
nε
′
nMnεn

−
1
n
tr(Gn)

=

n∑
i=1
Gn,iiσ 2ni

n∑
i=1
σ 2ni

− Gn + op(1)

=

1
n

n∑
i=1
[Gn,ii − Gn](σ 2ni − σ

2)

σ 2
+ op(1)

=
COV(Gn,ii, σ 2ni)

σ 2
+ op(1), (7)

3 The asymptotic arguments can follow from the law of large numbers in the
Appendix. In this section, we do not provide the rigorous analysis in order to save
space.
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where Gn = 1
n tr(Gn) =

1
n

∑n
i=1 Gn,ii. Therefore, the limit of

1
n
∂ ln Ln(λ0)

∂λ
will be zero if and only if the covariance between the

diagonal elements of the matrix Gn,Gn,ii, i = 1, . . . , n, and the
individual variances σ 2ni, i = 1, . . . , n, is zero in the limit. In the
heteroskedastic case, this condition will be satisfied if almost all
the diagonal elements of the matrix Gn are equal.4
It is of interest to see when we would have constant diagonal

elements in the Gn matrix for some special cases. Consider a
‘‘circular’’ world where the units are arranged on a circle such that
the last unit yn has neighbors y1 and yn−1, y1 has neighbors y2 and
yn, and so forth.5 If we assign an equal weight to each neighbor
of the same unit, the diagonal elements of the resulting Gn matrix
will be constant. The units in a ‘‘circular’’ world can have more
neighbors, as long as each unit has the same numbers of neighbors
and with half of the neighbors lead and the rest lag, the diagonal
elements of the Gn matrix will be the same. Another special case is
thatWn is a block-diagonal matrix with an identical submatrix in
the diagonal blocks and zeros elsewhere. This corresponds to the
group interactions scenario where all the group sizes are equal,
and each neighbor of the same unit is assigned equal weight.
When these special spatial weightsmatrices are used, theMLEwill
still be consistent in the presence of unknown heteroskedasticity.
However, for general spatial weights matrices, the consistency is
not ensured.
Following the inconsistency of the MLE of λ0, a consequence is

the inconsistency of the MLE of β0. Because from (3), we have

β̂n(̂λ) = β0 + (λ0 − λ̂)(X ′nXn)
−1X ′nGnXnβ0 + op(1), (8)

which will not converge to β0 in the limit if λ̂ is not consistent.
Thus, besides the computational burden it entails, the MLE for

the SARmodel with an unknown heteroskedasticity is inconsistent
as long as the diagonal elements of the matrix Gn are not all equal.
Because of the nonlinearity of λ in the concentrated log

likelihood function, it is hard to make any general conclusion
about the asymptotic bias of λ̂. For the asymptotic bias of β̂n(̂λ)
from (8), it is (λ0 − λ̂)(X ′nXn)

−1X ′n(GnXnβ0). Thus, given the bias
of λ̂, the asymptotic bias of β̂n(̂λ) is determined by the term
(X ′nXn)

−1X ′n(GnXnβ0), which is the OLSE of the coefficient in the
artificial regression of GnXnβ0 on Xn. Thus, given the bias of λ̂, the
relative asymptotic bias of β̂n(̂λ) depends on the properties of Xn
and Wn. Consider a special case, which is often used in empirical
social interaction studies. This is the case of group interactions,
where Wn is assumed to be a block-diagonal matrix, and in each
block, Wr = 1

mr−1
(lmr l

′
mr − Imr ), r = 1, . . . , R, where R is

the number of groups, mr is the group size for group r, lmr is
the mr -dimensional vector of ones, and Imr is the mr -dimensional
identity matrix. Note that the group sizes are not all equal, and
for the asymptotic properties, we let the number of groups R go
to infinity while maintaining {mr} is bounded. This interaction
patternmeans that there are no cross group interactions and a unit
is equally affected by all the other members in the same group.
A group could be village or a class, etc. This group interaction
setting has been studied by Case (1991), Lee (2004, 2007c), among
others. Let’s assume for all the groups, the x’s are i.i.d. with mean
µ and variance Σx for all observations. In particular, in group r ,
let X(r) = (lmr , z(r)), X (r) = (1, z(r)), µ = (1, µz), and Σx =(
0 0
0 Σz

)
,where z(r) = (z ′1r , . . . , z

′
mr ,r)

′ is the matrix of regressors

excluding the intercept term and z̄(r) = 1
mr

∑mr
i=1 zir . Then after

some calculations we can get the equation in Box I and (X ′nXn)
−1
=

4 It will be zero if εni ’s are i.i.d., since in that case σ 2ni = σ
2 , Eq. (7) will converge

to zero regardless of the diagonal elements of the matrix Gn.
5 Kelejian and Prucha (1999) use this type of weights matrix in their Monte Carlo
study.
[∑R
r=1

(
mr

∑mr
i=1 zir∑mr

i=1 z
′
ir

∑mr
i=1 z

′
ir zir

)]−1
. Note that

lim
R→∞

{
E
(
1
n
X ′nGnXn

)
−

[
µ′µ

1− λ0
+

1
1− λ0

R
n
Σx

−
1
n

R∑
r=1

(
mr − 1

mr − 1+ λ0

)
Σx

]}
= 0 (9)

and (E( 1nX
′
nXn))

−1
=

(
1+ µzΣ−1z µ′z −µzΣ

−1
z

−Σ−1z µ′z Σ−1z

)
. Thus, we can get

the equation in Box II.
Therefore, in this group interaction setting with randomly

distributed x’s, if all the elements in x except the constant term
have a zero mean, i.e., µz = 0, the relative asymptotic bias of
the intercept β10 will be 1

1−λ0
times the bias of the MLE of λ0.

Also, except the intercept β10, the MLE for all the other β0’s have
the same magnitude of relative asymptotic bias, which is the term
( Rn

1
1−λ0
−

1
n

∑R
r=1

mr−1
mr−1+λ0

) times the bias of the MLE of λ0. As

( Rn
1

1−λ0
−
1
n

∑R
r=1

mr−1
mr−1+λ0

) is less than Rn
1

(1−λ0)
and nR is the average

group size, the relative asymptotic bias of the intercept will be
larger than those of the other regression coefficients in β0. In
particular, if the average group size is moderately large, the biases
of the coefficients of regressors (rather than the intercept term) can
be small.
The preceding paragraph has considered the asymptotic bias of

the MLE under heteroskedasticity. Likewise, the MOM estimator
suggested by Kelejian and Prucha (1999) is not consistent in
the presence of unknown heteroskedasticity since the moment
conditions they proposed do not have a zero mean at the true
parameters. The following section discusses the feature of GMM
estimation and possible robust estimation.

3. GMM estimation against unknown heteroskedasticity

3.1. A brief overview

The consistency of the GMME in Lee (2001, 2007a) with Pn from
P1n which is a class of constant n× nmatrices Pn with tr(Pn) = 0;
or P2n, a subclass of P1n with Diag(Pn) = 0, is based on the
fundamental moment property that E(ε

′

nPnεn) = 0. If the εni’s
have heteroskedastic variances, E(ε

′

nPnεn) = tr[PnE(εnε
′

n)]will not
necessarily be zero if Pn is from P1n \ P2n. Consider the ith com-
ponent of Pnεn,

∑n
j=1 Pn,ijεnj, which is clearly correlated with the

corresponding component εni of εn if Pn,ii 6= 0. With homoskedas-
tic disturbances, the correlations of Pnεn and εn can be canceled
out as long as tr(Pn) = 0. In the presence of heteroskedastic er-
ror terms, letting tr(Pn) = 0 may not guarantee the correlations
between each component of Pnεn and the corresponding compo-
nents of εn are exactly canceled out. Therefore, when Pn is from
P1n but not P2n, Pnεn may be correlated with εn and thus loses
its validity as an instrumental variable (IV) vector. In contrast,
if Pn is from P2n, E(ε

′

nPnεn) = 0 is true since tr[PnE(εnε
′

n)] =

tr[Diag(Pn)E(εnε
′

n)] = 0. We successfully maintain the uncorre-
lation between Pnεn and εn by excluding each component of εn
from the corresponding term of Pnεn. Thus, in the presence of un-
known heteroskedasticity, the GMM estimation for the SAR model
will be based on P2n but not P1n. Lee (2001) has noticed this pos-
sible robust property of using quadratic moments with the matrix
Pn’s fromP2n but has not provided any rigorous theory. This paper
follows up on this observation and will provide a rigorous theory
and investigate finite sample properties in Monte Carlo studies for
the SAR model.
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X ′nGnXn =
R∑
r=1


mr
1− λ0

mr
1− λ0

z(r)

mr
1− λ0

z ′(r)
mr
1− λ0

z ′(r)z(r) −
1

mr − 1+ λ0

mr∑
i=1

(zir − z(r))′(zir − z(r))


Box I.
lim
R→∞

(E(X ′nXn))
−1E(X ′nGnXn)

= lim
R→∞


1

1− λ0

(
1

1− λ0
−
R
n

1
1− λ0

+
1
n

R∑
r=1

mr − 1
mr − 1+ λ0

)
µz

0

(
R
n

1
1− λ0

−
1
n

R∑
r=1

mr − 1
mr − 1+ λ0

)
Iz

 ,
where Iz is the (k− 1)-dimensional identity matrix.

Box II.
TheMOMmethod suggested in Kelejian and Prucha (1999) uses
essentially the twomoments ε′nWnεn and ε

′
n(W

′
nWn−

tr(W ′nWn)
n In)εn.

While Wn has a zero diagonal and the moment ε′nWnεn is robust
against unknown heteroskedasticity, the other moment is not, as
the diagonal of [W ′nWn −

tr(W ′nWn)
n In] may not be zero. A robust

version of this MOM method may replace the second moment
function by ε′n(W

′
nWn−Diag(W

′
nWn))εn, whereDiag(A) for a square

matrix A denotes the diagonal matrix formed by the diagonal
elements of A.6

3.2. Robust GMM estimation

To analyze rigorously the robust property of GMM estimation
with P2n, we adopt most regularity assumptions for GMM esti-
mation in Lee (2001, 2007a) with proper modifications to fit into
the heteroskedasticity setting. Interested readers may refer to Lee
(2001, 2007a) for detailed discussions on related assumptions for
the i.i.d. disturbances case.7

Assumption 1. The εni’s are independent (0, σ 2ni) with finite mo-
ments larger than the fourth order such that E|εni|4+η for some
η > 0 are uniformly bounded for all n and i.
This assumption implies the uniform boundedness of the vari-

ances σ 2ni, the third moments, µni,3 and the fourth moments µni,4
of εni are also uniformly bounded for all n and i.

Assumption 2. The elements of the n × k regressor matrix Xn
are uniformly bounded constants, Xn has the full rank k, and
limn→∞ 1

nX
′
nXn exists and is nonsingular.

Assumption 3. The spatial weights matrices {Wn} and the matrix
{S−1n } are uniformly bounded in absolute value in both row and col-
umn sums.
This uniformboundedness assumption limits the spatial depen-

dences among the units to a tractable degree and is originated by
Kelejian and Prucha (1999). It rules out the unit root case (in time
series as a special case).

6 After the completion of this paper, we realize that Kelejian and Prucha (2010)
has extended their approach in Kelejian and Prucha (1999) to cover the estimation
of the SAR model with spatial SAR process with unknown heteroskedaticity. Their
approach for the SAR disturbance process has used the two moments ε̂′nWn̂εn
and ε̂′n(W

′
nWn − Diag(W

′
nWn))̂εn , where ε̂n is an estimated residual. For the SAR

regression equation, they suggest the use of generalized two stage least squares.
7 In this paper, we do not consider the large group interactions case so as to
simplify the presentation.
Let Qn be an n × k∗ matrix, where k∗ ≥ k + 1, of IV’s
constructed from Xn and Wn, such as Xn, WnXn, W 2n Xn, etc. The
moment functions corresponding to the orthogonality conditions
of Xn and εn are Q ′nεn(θ). However, these linear moments reflect
only the information in the deterministic part of WnYn, leaving
those in the stochastic part unexplored. This can be seen from the
reduced form of the model. If ‖ λWn ‖< 1 where ‖ · ‖ is a matrix
norm, we have (In − λWn)−1 = In + λWn + λ2W 2n + · · ·, and the
reduced-form equation becomes

Yn = S−1n Xnβ0 + S
−1
n εn

= Xnβ0 + λ0WnXnβ0 + λ20W
2
n Xnβ0 + · · · + S

−1
n εn. (10)

It is obvious from (10) that forming IV vectors from functions of
Wn and Xn focuses only on the information in the nonstochastic
part E(WnYn|Xn) of WnYn. Lee (2007a) suggests the use of the
moment conditions (Pjnεn(θ))′εn(θ) in addition to Q ′nεn(θ). These
additional moments capture the correlations across the spatial
units. They serve as the IV for Gnεn, the other component ofWnYn.8
The matrices in P2n (more generally, P1n) are assumed to have a
similar uniform boundedness property as inWn and S−1n .

Assumption 4. The matrices Pjn’s with Diag(Pjn) = 0 are uni-
formly bounded in both row and column sums, and elements of
Qn are uniformly bounded.

The set of moment functions for the GMM estimation is as
follows

gn(θ) = (P1nεn(θ), . . . , Pmnεn(θ),Qn)′εn(θ)

= (ε′n(θ)P1nεn(θ), . . . , ε
′

n(θ)Pmnεn(θ), ε
′

n(θ)Qn)
′. (11)

Denote Var(gn(θ)) = Ωn and, for any square matrix An, Asn
= An + A′n is the sum of An and its transpose. Let Σn = Diag
{σ 2n1, . . . , σ

2
nn}, where σ

2
ni = E(ε

2
ni), i = 1, . . . , n.

Assumption 5. Either (a) limn→∞ 1
nQ
′
n(GnXnβ0, Xn) has the full

rank (k+ 1), or
(b) limn→∞ 1

nQ
′
nXn has the full rank k, limn→∞

1
n tr(ΣnG

s
nPjn) 6=

0 for some j, and limn→∞ 1
n (tr(ΣnG

s
nP1n), . . . , tr(ΣnG

s
nPmn))

′ and
limn→∞ 1

n (tr(ΣnG
′
nP1nGn), . . . , tr(ΣnG

′
nPmnGn))

′ are linearly inde-
pendent.

8 Note thatWnYn = GnXnβ0 + Gnεn.
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This assumption assures the identification of θ0 from the
moment equations E(gn(θ0)) = 0 for a sufficiently large n. If
GnXnβ0 and Xn are linearly dependent, which includes the case
when all exogenous variables Xn are irrelevant, the additional
moments in (b) will help to identify θ0.
And the parameter space Θ of θ is assumed to have the

following property:

Assumption 6. The θ0 is in the interior of the parameter space Θ ,
which is a bounded subset of Rk+1.9

The parameter space of λ is usually taken to be (−1, 1) when
Wn is a row-normalized matrix. For the cases in which Wn is not
normalized but its eigenvalues are real with its largest eigenvalue
µn,max > 0 and its smallest eigenvalue µn,min < 0, the
parameter space can be the interval (− 1

|µn,min|
, 1
|µn,max|

) (Anselin,
1988). Kelejian and Prucha (2010) allow complex eigenvalues for
Wn and suggest the parameter space (− 1

τn
, 1
τn
) where τn is the

spectral radius of Wn. These parameter spaces are designed to
guarantee that the determinant of (In − λWn) is positive. Kelejian
and Prucha (2010) also allow the parameters, including λ, to
depend on n as they are the resulted parameters after Wn being
rescaled by a normalized factor which depends on n. If Wn is
rescaled by the divisionwith τn, the coefficient λn(= τnλ) can then
be taken as (−1, 1). For our GMM estimation, one does not need
to impose a specific parameter space for the minimization of the
GMMobjective function because it is simply a polynomial function
of θ . So the regularity condition in the preceding assumption on
the parameter space is solely for the theoretical purpose of proving
consistency of the GMM estimator. As we do not emphasize on any
scale normalization ofWn, we simply consider θ0 being a constant
parameter vector.
The following proposition concerns about the asymptotic

property of a GMM estimator in the general Hansen GMM setting
with a linear transformation angn(θ) of the moment functions
gn(θ), where an is a matrix with a full row rank greater than or
equal to the number of parameters in θ . The a′nan in the GMM
objective function g ′n(θ)a

′
nangn(θ) is a nonnegative definitematrix,

which represents a weighting matrix in this distance function.
This general frameworkmotivates the issue of optimumweighting
matrix. Proposition 1 is a generalization of Proposition 2.1 in Lee
(2001) to the heteroskedastic case.

Proposition 1. Suppose that diag(Pjn) = 0 for j = 1, . . . ,m, and
Qn is a n× k∗ IV matrix so that limn→∞ anE(gn(θ)) = 0 has a unique
root at θ0 in Θ . Then, under the stated Assumptions 1–6 and that
limn→∞ 1

nanDn exists and has the full rank (k + 1), the RGMME θ̂n
derived from minθεΘ g

′

n(θ)a
′
nangn(θ) is a consistent estimator of θ0,

and
√
n(̂θn − θ0)

D
→N(0,Γ ), where

Γ = lim
n→∞

1
n
(D′na

′

nanDn)
−1D′na

′

nanΩna
′

nanDn(D
′

na
′

nanDn)
−1, (12)

Ωn = Var(gn(θ0))

=


tr[ΣnP1n(ΣnP1n)s] tr[ΣnP1n(ΣnP2n)s] . . . 0
tr[ΣnP2n(ΣnP1n)s] tr[ΣnP2n(ΣnP2n)s] . . . 0

...
...

...

0 0 . . . Q
′

nΣnQn



9 For nonlinear extremum estimation methods, such as the ML method,
compactness on the parameter space Θ is usually needed in order to apply some
uniform laws of large numbers to demonstrate consistency of extremum estimates
(Amemiya, 1985). However, for our GMM approach with linear and quadratic
functions, θ appears nonlinearly in moment conditions in terms of polynomials.
For S−1n (λ), only its value evaluated at consistent estimates of λ0 will be used. So for
asymptotic analysis, the boundedness ofΘ will be sufficient.
=



n∑
i=1

n∑
j=1

P1n,ij(P1n,ij + P1n,ji)σ 2niσ
2
nj . . . 0

n∑
i=1

n∑
j=1

P2n,ij(P1n,ij + P1n,ji)σ 2niσ
2
nj . . . 0

...
...

0 . . . Q
′

nΣnQn


, (13)

Dn = −
∂E(gn(θ0))

∂θ
′
=


tr(ΣnP s1nGn) 0

...
...

tr(ΣnP smnGn) 0
Q
′

nGnXnβ0 Q
′

nXn

 . (14)

The proof is similar to the i.i.d. case once we realize that
the uniform convergence of sample averages of relevant moment
functions can hold in the presence of heteroskedasticity and the
central limit theorem for linear-quadratic forms by Kelejian and
Prucha (1999) allows for heteroskedastic disturbances. The details
of the proofs of all propositions are given in the Appendix.
From Proposition 1, the RGMME obtained from an arbitrary

weighting matrix (with moment functions constructed from P2n)
can be consistent (robust) against an unknown heteroskedasticity.
In particular, if we construct the optimal GMM as in the i.i.d. case
without taking into account the presence of heteroskedasticity,
i.e., if we replace theweightingmatrix a′nan by (Ω̃n)

−1, where Ω̃n is
an estimator ofΩn based on an initial estimate of θ as if εni’s were
i.i.d., the resulting GMME will still be consistent and asymptoti-
cally normal. However, the correct asymptotic covariance matrix
will not be the one, (limn→∞ 1

nD
′
nΩ
−1
n Dn)

−1, in the i.i.d. case. In-
stead, it will take the messier form of

lim
n→∞

1
n
(D′nΩ

−1
n Dn)

−1D′nΩ
−1
n ΩnΩ

−1
n Dn(D

′

nΩ
−1
n Dn)

−1, (15)

where 1nΩn is the probability limit of
1
n Ω̃n, whose value depends on

the specific formula of 1n Ω̃n. Furthermore, as a special case of the
GMM estimation, the 2SLS estimation with an = (0, (Q ′nQn)

−1/2)

and angn(θ) = (Q ′nQn)
−1/2Q ′nεn(θ) can be consistent from Proposi-

tion 1.10 It can also serve as the initial consistent estimator in our
GMM estimation.
In order to make asymptotically valid inferences from the

RGMME, we need to find a consistent estimator of the asymptotic
variance as given in (12). As in White (1980), we can consistently
estimate the part 1nQ

′

n
∑
n Qn in Ωn in (13) without being able to

estimate
∑
n, which involves n unknowns, consistently. The tricky

part is the estimation of the other elements associated with the
quadratic moment functions. Those elements consist of 1n times a
sumof n2 terms. However, the uniformboundedness property of Pn
ensures the convergence of these sums. The following proposition
can be used to provide a consistent estimator for the covariance
matrixΩn.

Proposition 2. Under the assumed regularity conditions, 1n (̂Dn −
Dn) = oP(1) and 1

n (Ω̂n − Ωn) = oP(1), where 1n D̂n and
1
n Ω̂n

are, respectively, estimators of 1nDn and
1
nΩn with θ0 replaced by

a consistent initial estimator θ̂n and Σn by Σ̂n, where Σ̂n =
Diag{̂ε2n1, . . . , ε̂

2
nn} and ε̂ni’s are the residuals of the model with θ0

estimated by θ̂n.

10 Assumption 5(a) is crucial for the consistency of the 2SLSE.
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4. ‘‘Optimal’’ RGMM estimator

From the preceding section, we see that the consistency of the
RGMME is, in general, not affected by the choice of the weighting
matrix, but its asymptotic variance is. By using a ‘‘wrong’’ weight-
ingmatrix, we’ll still get the consistent estimator but the estimator
may not be efficient. By the generalized Schwartz inequality, the
optimal weighting matrix for the GMM estimation with the mo-
ment functions gn(θ) isΩ−1n , the inverse of the covariance matrix
for the moment functions gn(θ0). Proposition 3 shows that, with a
consistent estimator Ω̂−1n , the feasible ‘‘optimal’’ RGMME obtained
fromminθεΘ g

′

n(θ)Ω̂
−1
n gn(θ)will be consistent and asymptotically

normal with variance (limn→∞ 1
nD
′
nΩ
−1
n Dn)

−1.
The variancematrixΩn is assumed to satisfy some conventional

regularity conditions.

Assumption 7. The limn→∞ 1
nΩn exists and is nonsingular.

Proposition 3. Suppose that ( 1n Ω̂n)
−1
−( 1nΩn)

−1
= op(1), then the

feasible ‘‘optimal’’ ORGMME θ̂o,n derived from minθεΘ g
′

n(θ)Ω̂
−1
n gn

(θ) has the asymptotic distribution

√
n(̂θo,n − θ0)

D
→N

(
0,
(
lim
n→∞

1
n
D′nΩ

−1
n Dn

)−1)
. (16)

Similarly, a consistent estimator for the asymptotic covariance matrix
is ( 1n D̂

′
nΩ̂
−1
n D̂n)

−1.

The ‘‘optimal’’ ORGMME here refers to the RGMME based on
the optimal weighting with specified moment functions.11 In the
i.i.d. disturbances case, the best choices Pn from P2n and Qn are
available, which are respectively known as (Gn − Diag(Gn))
and (GnXnβ0, Xn). However, for the case with an unknown het-
eroskedasticity, the best selection of Pn and Qn may not be avail-
able. This is so because

Dn =


tr(P s1nGnΣn) 0

...
...

tr(P smnGnΣn) 0
Q
′

nGnXnβ0 Q
′

nXn


and

Ωn =



tr(ΣnP1n(ΣnP1n)s) tr(ΣnP1n(ΣnP2n)s) . . . 0
tr(ΣnP2n(ΣnP1n)s) tr(ΣnP2n(ΣnP2n)s) . . . 0

.

.

.
.
.
.

.

.

.

tr(ΣnPmn(ΣnP1n)s) tr(ΣnPmn(ΣnP2n)s) . . . 0
0 0 . . . Q

′

nΣnQn

 (17)

involve the unknown Σn. If a best selection were available, they
would involve the matrixΣn but the latter has an unknown form.
In practice, the selection of consistently estimated (Gn−Diag(Gn))
and (GnXnβ0, Xn)might be a desirable strategy.

Remark. The results in Propositions 1 and 3 are derived for the
spatial scenario where each of the spatial units interacts with only
a few neighboring ones. This is the typical case in spatial models.
However, some models with social interactions, in particular,
involving all members in a group setting, involve large group

11 If the Pn and Qn used involve the unknown parameters λ0 and β0 , the feasible
RGMM estimation will be carried out with λ0 and β0 replaced by some initial
consistent estimators λ̂, β̂ . The resulting feasible RGMME will have the same
limiting distribution. The proof is similar to the i.i.d. case thus is omitted here.
Details can be found in Proposition 2.3 in Lee (2001).
interactions. The large group interactions case has been studied in
Lee (2004) for the ML estimation, and Lee (2007c) for a conditional
ML approach. For the GMM estimation, it is in Lee (2007a) for
the SAR model with homoskedastic disturbances. To simplify
presentations, we have not considered the large group interactions
case in this paper. However, it will be of interest to have some
remarks on this scenario.

In the large group interactions scenario (Lee, 2004, 2007b,c), a
spatial unitmay be influenced bymany neighboring units, but each
of its neighbors’ influence will be uniformly small in the sense that
elements ofWn = (wn,ij) are of an order O( 1hn ) uniformly in all n, i
and j, where hn →∞ as n→∞. Similar results of Propositions 1
and 3 can hold with some proper modifications and additions of
the assumed regularity conditions. For the large group interactions
case, while hn → ∞, it shall be assumed that limn→∞ hn

n = 0
in order to obtain consistent estimates. Assumption 4 needs to be
strengthened in that elements of Pjn’s are of order O( 1hn ) uniformly
in i, j and n so that their magnitudes are compatible with those of
elements ofWn.WithAssumption 5(a) in addition to the (modified)
Assumptions 1–4, the results in Proposition 1 will be valid. The
results in Proposition 3will also be valid if Assumption 6 is replaced
by that limn→∞ hn

n Ωn exists and nonsingular. Note that under
Assumption 5(a), the quadratic moments will be dominated by the
linear moments in the GMM estimation and the GMM estimates
will be asymptotically equivalent to the 2SLS estimates under the
large group interactions (Lee, 2007b).
However, when Assumption 5(a) fails in that GnXnβ0 and

Xn are linearly dependent, the quadratic moments will be use-
ful. When GnXnβ0 and Xn are multicollinear, there would be
no (extra) IV variable available for WnYn or linear moments.
Then λ0 can only be estimated via the quadratic moments un-
der the modified Assumption 5(b): limn→∞ hn

n tr(ΣnG
s
nPjn) 6= 0

for some j, and limn→∞[ hnn tr(ΣnG
s
nP1n), . . . ,

hn
n tr(ΣnG

s
nPmn)]

′ and
limn→∞[ hnn tr(ΣnG

′
nP1nGn), . . . ,

hn
n tr(ΣnG

′
nPmnGn)]

′ are linearly in-
dependent. The divergent rate of hn to infinity shall satisfy the con-

dition limn→∞
h
1+ 2

δ
n
n = 0 for some δ > 0 such that E|εn,i|4+2δ

are uniformly bounded in all n and i. This strengthened condi-
tion is needed in order to apply the generalized CLT for linear and
quadratic form in Lee (2004). For this case, while the GMM esti-
mates can be consistent, their rates of convergence will be of the
order O(

√
n
hn
), which is lower than the

√
n order of the case with-

out multicollinearity. Interested readers can consult Lee (2007b)
for more details.

5. Monte Carlo study

SomeMonte Carlo experiments are designed to study the finite
sample properties of the various robust and non-robust estimators.
We focus on the case of group interactions. The data generating
process is as follows. There are two regressors in addition to the
intercept term, which are generated as xir,1 ∼ N(3, 1) and xir,2 ∼
U(−1, 2). The size of each group is determined by a uniform
U(3, 20) variable (round to the closest integer), so the mean
group size is about 11. The error terms are normally distributed
with a mean of zero and their variances vary across groups. We
consider several variance structures with special attention on this
particular design: for each group, if the group size is greater than
10, then the variance is constructed to be the same as group size,
otherwise, the variance is the square of the inverse of the group
size (V-D1). This design V-D1 emphasizes a nonlinear variance
structure. The variance function is decreasing and then increasing.
Another simpler variance design assumes that the variance is
the inverse of group size (V-D2). For the purpose of comparison,
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the corresponding baseline homoskedastic case has disturbances
being i.i.d. N(0, σ 2), where σ 2 is the mean of the variances of the
heteroskedastic errors.
For each of the variance designs, several sets of true para-

meters are considered. Parameter design 1 (P-D1) has θ0 = (λ0,
β10, β20, β30) = (0.2, 0.8, 0.2, 1.5), and design 2 (P-D2) has θ0 =
(λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1). The stochastic part of the
model with P-D2 becomes relatively more dominant than that of
P-D1, since the deterministic regression part of the model has the
smaller coefficients on the Xn’s.We expect that it would be difficult
to deal with P-D2 by the 2SLS approach as its regressors havemuch
smaller effects on Yn. In addition for λ0 = 0.2, we also consider a
stronger interaction effectmodelwithλ0 = 0.6. Theparameter de-
sign P-D3 has θ0 = (λ0, β10, β20, β30) = (0.6, 0.8, 0.2, 1.5), and
P-D4 has θ0 = (λ0, β10, β20, β30) = (0.6, 0.2, 0.2, 0.1).12

The models are estimated by the method of maximum li-
kelihood (ML); the non-robust GMM (GMM) with Pn = (Gn −
tr(Gn)
n In) and IV matrix (GnXnβ, Xn); the robust GMM (RGMM) with
Pn = (Gn − Diag(Gn)) and IV matrix (GnXnβ, Xn).13 Both the
GMM and RGMM approaches will require an initial estimate in the
evaluation of Gn (and β in GnXnβ). The initial estimate used can be
from a simple 2SLS or a simple first step GMM. The simple first step
GMM(SGMM)uses Pn = Wn and the linearly independent columns
of (WnXn, Xn) as IV’s without a weighting matrix. For the simple
2SLS (2SLS), the IV’s used are simply the linearly independent
columns of (WnXn, Xn). Also, for the weighting matrices in the
GMMand RGMMapproaches, we use the variance formulas for the
i.i.d. case. For the RGMMapproach, the optimalweighting based on
the robust variance formula under an unknown heteroskedasticity
will also be considered, which is the ORGMM. When the IV matrix
W 2n Xn in addition to (WnXn, Xn) are used in a 2SLS estimation,
it is noted as an 2SLS-2 estimation. The feasible best 2SLS with
the IV matrix (GnXnβ, Xn), evaluated at the simple 2SLSE, will be
denoted by B2SLS. For the feasible GMM and RGMM, the SGMME
is usually used as the initial estimate of Gn. When the simple 2SLSE
is used instead, the corresponding approaches will be denoted as
GMM(2sl) and RGMM(2sl).
For each case, the results reported are based on 1000 Monte

Carlo replications. The numbers of groups R are 100 and 200.14
For the estimates of each coefficient, we report the empirical mean
(Mean), the corresponding bias (Bias), the empirical standard error
(SD), and the root mean square error (RMSE).
Table 1 summarizes the results from V-D1 with P-D1. The case

with small coefficients ofβ0’s in P-D2 is reported in Table 2. The es-
timates reported in these two tables focus on the MLE, non-robust
GMME, RGMME, ORGMME, and 2SLSE.We compare the finite sam-
ple biases of these robust and non-robust estimates, and their rel-
ative efficiency in terms of SD and RMSE. Table 3 supplements the
results in Tables 1 and 2 with additional estimators, such as the
2SLS-2, B2SLS, SGMM, GMM(2sl) and RGMM(2sl) estimators, for
the purpose of comparison. To economize the presentation, only
results for R = 100 are reported in Tables 3–5. Table 4 presents
the results with P-D3 and P-D4, where λ0 = 0.6. Results for the
variance design V-D2 with the four parameter sets are reported in

12 In addition to λ0 , we also pay attention to x and its coefficients. We are
interested in comparing the 2SLS and the robust GMM estimates. The 2SLS
estimates might be sensitive to x and its coefficients, since the 2SLS forms
estimation based only on the deterministic part of the model, which is determined
by the importance of x.
13 The matrices correspond to the best Pn and Qn in the i.i.d. case.
14 We have also experimented with R = 50. Because of space limitation, those
results are not reported here but they can be found in the working paper version of
this paper.
Table 5. The salient features of results for various estimators are
summarized in the following list:

• For the i.i.d. disturbances case, the MLE has some biases in λ0
and the intercept term β10 when R = 100. These biases be-
come small when R increases to 200. With heteroskedastic dis-
turbances, theMLE can be biased in λ0 and β10 even in the large
sample R = 200. The bias of the estimate of λ0 is downward.
However, those biases are not statistically significant evenwith
R = 200. The estimate of the intercept term is biased upward.
The estimates of the regression coefficients β20 and β30 are un-
biased even for the heteroskedastic cases. These patterns hold
in Tables 1 and 2 for both P-D1 and P-D2 with large or small co-
efficients β0’s for V-D1. The features of the biases of the MLE of
λ0 hold with P-D3 and P-D4 in Table 4 under the same design
V-D1.

With V-D2 (and all P-D1, P-D2, P-D3, and P-D4) in Table 5, the
MLE’s are essentially unbiased for all the parameters, even when
there are heteroskedastic disturbances.

• In terms of bias, the GMME has similar patterns as the MLE. In
terms of magnitudes of the biases, some may be slightly better
than those of the MLE but are mostly similar.
• For the RGMM, the RGMME’s are essentially unbiased for all the
cases (in Tables 1, 2, 4 and 5).
• The 2SLSE’s are consistent in theory. However, its finite sample
performance in terms of bias can vary, depending on the pattern
of variances of the disturbances and the parameter values.With
P-D2 and P-D4 under V-D1, where β0’s are small, the 2SLSE’s for
λ0 and β10 can have large biases even for R = 200 (in Tables 2
and 4). These are also accompanied by relatively large SD’s.
This is so regardless of whether the disturbances are i.i.d. or
heteroskedastic. For the other parameter designs with larger
β0’s (P-D1 in Table 1, P-D3 in Table 4 or V-D2 in Table 5), the
performance of the 2SLSE’s in terms of bias is satisfactory. This
2SLS uses (WnXn, Xn) as IV’s. For the design P-D2with V-D1, the
2SLS-2 uses additional IV’s W 2n Xn may reduce the bias only a
little in Table 3.
• The 2SLSE’s for λ0 and β10 have the largest SD and RMSE
compared with those of the MLE’s and the various GMME’s
(under V-D1 in Tables 1, 2 and 4, and under V-D2 in Table 5,
for all parameter designs). With the additional IV’s W 2n Xn in
2SLS-2 (in Table 3), the SD and RMSE can be slightly reduced.
In these finite samples, the SD and RMSE of the B2SLSE can
even be larger than those of the 2SLSE. Under V-D1, when the
coefficients β0’s are small, the biases and SD’s of the various
2SLSE’s for λ0 and β10 are too large to be acceptable.
• When the 2SLSE is poor, it has consequences for the GMM
and RGMM approaches if it is used as an initial estimate for
Gn and GnXnβ . In Table 3 with P-D2 in V-D1, the GMME(2sl)
and RGMME(2sl) are poor as they have large biases and SD’s
in λ0 and β10. When the 2SLSE’s are satisfactory for P-D1, the
GMME(2sl) and RGMME(2sl) in Table 3 are comparablewith the
corresponding GMME and RGMME in Table 1 (in bothMean and
SD).
• In terms of SD and RMSE, the GMME andMLE are similar under
all the designs (as reported in Tables 1, 2, 4 and 5). The SD’s of
the GMME and MLE of λ0 under heteroskedasticity are slightly
larger than those under i.i.d. disturbances for V-D1. With V-D1,
the RMSE’s of the MLE and GMME of λ0 under heteroskedastic
misspecification are larger than those of the correctly specified
i.i.d. cases. The corresponding RMSE’s for the intercept term are
larger but to a smaller degree. For V-D2 (in Table 5), those SD’s
and RMSE’s are mostly similar for all parameter designs.
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Table 1
Estimates under Designs V-D1 and P-D1. V-D1: If group size > 10, variance = group size, else variance = 1/(groupsize)2 . True parameters P-D1: (λ0, β10, β20, β30) =
(0.2, 0.8, 0.2, 1.5).

R Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

ML 100 λ 0.1917 (−0.0083) 0.0542 0.0549 0.1614 (−0.0386) 0.0617 0.0728
β1 0.8217 (0.0217) 0.3577 0.3584 0.9081 (0.1081) 0.3651 0.3808
β2 0.2000 (−0.0000) 0.1010 0.1010 0.1974 (−0.0026) 0.1020 0.1021
β3 1.4960 (−0.0040) 0.1184 0.1184 1.4939 (−0.0061) 0.1155 0.1157

200 λ 0.1950 (−0.0050) 0.0386 0.0389 0.1659 (−0.0341) 0.0435 0.0553
β1 0.8123 (0.0123) 0.2541 0.2544 0.8915 (0.0915) 0.2559 0.2717
β2 0.2003 (0.0003) 0.0699 0.0699 0.2003 (0.0003) 0.0724 0.0724
β3 1.4988 (−0.0012) 0.0812 0.0812 1.4971 (−0.0029) 0.0851 0.0852

GMM 100 λ 0.1951 (−0.0049) 0.0543 0.0545 0.1679 (−0.0321) 0.0592 0.0673
β1 0.8137 (0.0137) 0.3575 0.3578 0.8921 (0.0921) 0.3609 0.3725
β2 0.1997 (−0.0003) 0.1008 0.1008 0.1972 (−0.0028) 0.1019 0.1020
β3 1.4947 (−0.0053) 0.1183 0.1184 1.4924 (−0.0076) 0.1155 0.1158

200 λ 0.1967 (−0.0033) 0.0387 0.0388 0.1707 (−0.0293) 0.0419 0.0511
β1 0.8083 (0.0083) 0.2539 0.2541 0.8794 (0.0794) 0.2532 0.2654
β2 0.2002 (0.0002) 0.0698 0.0698 0.2002 (0.0002) 0.0724 0.0724
β3 1.4981 (−0.0019) 0.0811 0.0811 1.4962 (−0.0038) 0.0850 0.0851

2SLS 100 λ 0.1995 (−0.0005) 0.2400 0.2400 0.1886 (−0.0114) 0.2124 0.2127
β1 0.8098 (0.0098) 0.7184 0.7184 0.8425 (0.0425) 0.6576 0.6590
β2 0.1982 (−0.0018) 0.1004 0.1004 0.1962 (−0.0038) 0.1019 0.1020
β3 1.4868 (−0.0132) 0.1197 0.1204 1.4868 (−0.0132) 0.1176 0.1184

200 λ 0.1987 (−0.0013) 0.1604 0.1604 0.2033 (0.0033) 0.1238 0.1239
β1 0.8069 (0.0069) 0.4930 0.4931 0.7943 (−0.0057) 0.3914 0.3914
β2 0.1996 (−0.0004) 0.0696 0.0696 0.1998 (−0.0002) 0.0721 0.0721
β3 1.4943 (−0.0057) 0.0815 0.0817 1.4931 (−0.0069) 0.0850 0.0853

RGMM 100 λ 0.1952 (−0.0048) 0.0544 0.0547 0.1906 (−0.0094) 0.0686 0.0692
β1 0.8135 (0.0135) 0.3575 0.3578 0.8321 (0.0321) 0.3716 0.3730
β2 0.1997 (−0.0003) 0.1008 0.1008 0.1971 (−0.0029) 0.1019 0.1019
β3 1.4947 (−0.0053) 0.1183 0.1184 1.4918 (−0.0082) 0.1155 0.1158

200 λ 0.1969 (−0.0031) 0.0387 0.0389 0.1936 (−0.0064) 0.0479 0.0484
β1 0.8080 (0.0080) 0.2539 0.2540 0.8182 (0.0182) 0.2596 0.2602
β2 0.2002 (0.0002) 0.0698 0.0698 0.2002 (0.0002) 0.0723 0.0723
β3 1.4981 (−0.0019) 0.0811 0.0811 1.4954 (−0.0046) 0.0850 0.0851

ORGMM 100 λ 0.1935 (−0.0065) 0.0535 0.0539 0.1943 (−0.0057) 0.0702 0.0704
β1 0.8033 (0.0033) 0.3565 0.3565 0.8334 (0.0334) 0.3851 0.3866
β2 0.2050 (0.0050) 0.1012 0.1014 0.1946 (−0.0054) 0.1015 0.1017
β3 1.5033 (0.0033) 0.1209 0.1210 1.4943 (−0.0057) 0.1196 0.1197

200 λ 0.1976 (−0.0024) 0.0391 0.0391 0.1976 (−0.0024) 0.0497 0.0497
β1 0.8161 (0.0161) 0.2408 0.2414 0.8028 (0.0028) 0.2616 0.2616
β2 0.1960 (−0.0040) 0.0709 0.0710 0.2008 (0.0008) 0.0718 0.0718
β3 1.5080 (0.0080) 0.0825 0.0829 1.5015 (0.0015) 0.0846 0.0846

Note: For GMM estimation with the matrix Gn , an initial consistent GMM estimate is used in the evaluations of Gn and GnXnβ .
• As for a comparison of the SGMME in Table 3 with the GMME in
Tables 1 and 2, the SGMME’s are less efficient in λ0 and β10.15
• The RGMMEdoes not seem to lose efficiency comparedwith the
GMME as their SD’s and RMSE’s are similar under i.i.d. distur-
bances in these finite samples, even though the RGMME might
be theoretically less asymptotically efficient than the GMME.
This is so for all the results in Tables 1, 2, 4 and 5 with all the
variance and parameter designs.
• Under heteroskedaticity, there is no obvious dominated pattern
in terms of SD comparison of the RGMME with the GMME. In
terms of RMSE, with R = 200, the RMSE’s of the RGMME’s of
λ0 and β10 are slightly smaller than those of the GMME’s (in
Tables 1, 2 and 4).16 For V-D2 in Table 5, there is no difference
between these two estimators.
• The ORGMM is the RGMMwhich uses the robust heteroskedas-
tic variance of the moments as the optimal weighting matrix.

15 Additional results of the SGMME in the settings of Tables 4 and 5 can be found
in the working paper version.
16 For R = 50, there are a few cases where the MLE or GMME have smaller RMSEs
than those of RGMME. These occurwhenRGMMEhappens to have a relatively larger
SD.
Comparing the results of ORGMME with those of RGMME, the
results are similar overall. It does not seem that optimalweight-
ingwith a robust variance under an unknown heteroskedaticity
would improve efficiency in these finite samples.

6. Tests for heteroskedasticity

6.1. The LM test for heteroskedasticity

The possible presence of heteroskedasticity can be tested with
the Breusch–Pagan LM test (Breusch and Pagan, 1979), using
estimated residuals ε̂ni’s of the model from MLE or GMME. The
Breusch–Pagan LM test assumes the alternative hypothesis σ 2ni =
f (α1 + ziα2), where zi is a vector of p-dimensional exogenous
variables and f is a continuously differentiable function. However,
due to the local nature of the LM test, one does not need to specify
the functional form of f . So the functional restriction on this test is
simply a linear index structure α1 + ziα2 on the form of unknown
heteroskedasticity. Under the null hypothesis H0, α2 = 0. Let Zn be
the n × (p + 1)matrix of observations on (1, zi) and let dn be the

n-dimensional vector of dni =
ε̂2ni

ε̂′n ε̂n/n
− 1. Then the LM test statistic

is 12d
′
nZn(Z

′
nZn)

−1Z ′ndn, which is asymptotically χ
2(p) under H0.
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Table 2
Estimates under Designs V-D1 and P-D2. V-D1: if group size > 10, variance = group size, else variance = 1/(groupsize)2 True parameters P-D2: (λ0, β10, β20, β30) =
(0.2, 0.2, 0.2, 0.1).

R Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

ML 100 λ 0.1913 (−0.0087) 0.0559 0.0566 0.1589 (−0.0411) 0.0650 0.0769
β1 0.2084 (0.0084) 0.3318 0.3319 0.2481 (0.0481) 0.3322 0.3357
β2 0.2000 (0.0000) 0.1010 0.1010 0.1974 (−0.0026) 0.1020 0.1020
β3 0.0963 (−0.0037) 0.1183 0.1184 0.0932 (−0.0068) 0.1155 0.1157

200 λ 0.1948 (−0.0052) 0.0397 0.0400 0.1621 (−0.0379) 0.0465 0.0600
β1 0.2044 (0.0044) 0.2327 0.2327 0.2405 (0.0405) 0.2367 0.2402
β2 0.2003 (0.0003) 0.0699 0.0699 0.2004 (0.0004) 0.0725 0.0725
β3 0.0989 (−0.0011) 0.0812 0.0812 0.0963 (−0.0037) 0.0852 0.0852

GMM 100 λ 0.1952 (−0.0048) 0.0562 0.0564 0.1664 (−0.0336) 0.0630 0.0714
β1 0.2051 (0.0051) 0.3316 0.3317 0.2410 (0.0410) 0.3309 0.3334
β2 0.1998 (−0.0002) 0.1009 0.1009 0.1972 (−0.0028) 0.1020 0.1020
β3 0.0962 (−0.0038) 0.1182 0.1183 0.0932 (−0.0068) 0.1154 0.1156

200 λ 0.1968 (−0.0032) 0.0396 0.0397 0.1665 (−0.0335) 0.0452 0.0563
β1 0.2025 (0.0025) 0.2325 0.2326 0.2361 (0.0361) 0.2364 0.2391
β2 0.2002 (0.0002) 0.0698 0.0698 0.2003 (0.0003) 0.0724 0.0724
β3 0.0989 (−0.0011) 0.0812 0.0812 0.0962 (−0.0038) 0.0851 0.0852

2SLS 100 λ 0.7743 (0.5743) 0.7099 0.9131 0.8026 (0.6026) 0.7260 0.9436
β1 −0.4052 (−0.6052) 0.8281 1.0256 −0.4337 (−0.6337) 0.8765 1.0815
β2 0.1990 (−0.0010) 0.1091 0.1091 0.2003 (0.0003) 0.1067 0.1067
β3 0.0983 (−0.0017) 0.1257 0.1257 0.0971 (−0.0029) 0.1208 0.1208

200 λ 0.6648 (0.4648) 0.8130 0.9365 0.6138 (0.4138) 1.6272 1.6790
β1 −0.2941 (−0.4941) 0.9153 1.0401 −0.2450 (−0.4450) 1.8081 1.8621
β2 0.2005 (0.0005) 0.0732 0.0732 0.2018 (0.0018) 0.0842 0.0842
β3 0.0996 (−0.0004) 0.0875 0.0875 0.0958 (−0.0042) 0.0890 0.0890

RGMM 100 λ 0.1953 (−0.0047) 0.0564 0.0566 0.1917 (−0.0083) 0.0743 0.0748
β1 0.2050 (0.0050) 0.3316 0.3316 0.2147 (0.0147) 0.3325 0.3328
β2 0.1998 (−0.0002) 0.1009 0.1009 0.1971 (−0.0029) 0.1019 0.1019
β3 0.0962 (−0.0038) 0.1182 0.1182 0.0932 (−0.0068) 0.1154 0.1156

200 λ 0.1970 (−0.0030) 0.0397 0.0398 0.1924 (−0.0076) 0.0526 0.0532
β1 0.2023 (0.0023) 0.2325 0.2325 0.2091 (0.0091) 0.2369 0.2370
β2 0.2002 (0.0002) 0.0698 0.0698 0.2001 (0.0001) 0.0724 0.0724
β3 0.0989 (−0.0011) 0.0812 0.0812 0.0961 (−0.0039) 0.0850 0.0851

ORGMM 100 λ 0.1935 (−0.0065) 0.0557 0.0560 0.1948 (−0.0052) 0.0972 0.0973
β1 0.1926 (−0.0074) 0.3323 0.3324 0.2239 (0.0239) 0.3434 0.3442
β2 0.2048 (0.0048) 0.1009 0.1010 0.1944 (−0.0056) 0.1012 0.1014
β3 0.1050 (0.0050) 0.1209 0.1210 0.0965 (−0.0035) 0.1193 0.1193

200 λ 0.1979 (−0.0021) 0.0404 0.0404 0.1971 (−0.0029) 0.0540 0.0541
β1 0.2117 (0.0117) 0.2275 0.2278 0.1994 (−0.0006) 0.2334 0.2334
β2 0.1960 (−0.0040) 0.0710 0.0712 0.2006 (0.0006) 0.0717 0.0717
β3 0.1087 (0.0087) 0.0824 0.0828 0.1024 (0.0024) 0.0846 0.0847

Note: For GMM estimation with the matrix Gn , an initial consistent GMM estimate is used in the evaluations of Gn and GnXnβ .
Σ1n =

tr
[(
Gn −

tr(Gn)
n
In

)s
Gn

]
+
1
σ 20
(GnXnβ0)′(GnXnβ0)

1
σ 20
(GnXnβ0)′Xn

1
σ 20
X ′n(GnXnβ0)

1
σ 20
X ′nXn


Box III.
6.2. The Hausman-type tests

Alternative statistics may be based on the comparison of robust
estimates against estimates which are asymptotically efficient
under H0. These are the Hausman-type test statistics (Hausman,
1978), which seem natural as the 2SLSE and RGMME are robust
and the MLE and GMME are asymptotically efficient under H0 for
our model. The Hausman-type test does not need the assumption
of a linear index form for the variance function.
The main idea of the Hausman-type test is to compare two

estimators θ̂n and θ̃n, with θ̂n being asymptotically efficient under
the null hypothesis H0, but inconsistent under the alternative H1,
while θ̃n is consistent under both H0 and H1. The Hausman-type
test statistic is
(̂θn − θ̃n)
′Var(̂θn − θ̃n)−(̂θn − θ̃n)

= (̂θn − θ̃n)
′
[Var(̃θn)− Var(̂θn)]−(̂θn − θ̃n)

D
∼χ2(m),

where [Var(̃θn) − Var(̂θn)]− is a generalized inverse of the matrix
[Var(̃θn) − Var(̂θn)] with m being its rank (see, e.g., Ruud, 2000).
Asymptotically, this statistic is invariant with respect to the choice
of a generalized inverse.
When εni’s are i.i.d. normal, the MLE is asymptotically efficient.

So is the best GMME θ̂n obtained by setting Pn = (Gn − tr(Gn)
n In)

and Qn = (GnXnβ0, Xn), as it is asymptotically equivalent to the
MLEwhen εni’s are i.i.d. normal. UnderH0, the asymptotic variance
matrix of the MLE (or GMME) is Var(̂θn) = Σ−11n , whereΣ1n is as in
Box III. The corresponding RGMME θ̃n has Qn = (GnXnβ0, Xn) but
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Table 3
Miscellaneous 2SLSE and GMME. V-D1, true parameters P-D1 and P-D2, R = 100.

P-D1 Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

2SLS-2 λ 0.1787 (−0.0213) 0.2349 0.2359 0.2058 (0.0058) 0.1839 0.1840
β1 0.8499 (0.0499) 0.7114 0.7132 0.8054 (0.0054) 0.5890 0.5890
β2 0.2037 (0.0037) 0.1008 0.1008 0.1942 (−0.0058) 0.1019 0.1021
β3 1.4965 (−0.0035) 0.1220 0.1221 1.4907 (−0.0093) 0.1212 0.1216

B2SLS λ 0.1384 (−0.0616) 0.3048 0.3109 0.1462 (−0.0538) 0.2155 0.2222
β1 0.9728 (0.1728) 0.9019 0.9183 0.9556 (0.1556) 0.6673 0.6852
β2 0.1986 (−0.0014) 0.1009 0.1010 0.1962 (−0.0038) 0.1017 0.1018
β3 1.4861 (−0.0139) 0.1215 0.1223 1.4872 (−0.0128) 0.1174 0.1180

SGMM λ 0.1928 (−0.0072) 0.0564 0.0569 0.1546 (−0.0454) 0.0775 0.0898
β1 0.8260 (0.0260) 0.3800 0.3809 0.9519 (0.1519) 0.4492 0.4742
β2 0.1978 (−0.0022) 0.1060 0.1061 0.1899 (−0.0101) 0.1131 0.1136
β3 1.4960 (−0.0040) 0.1188 0.1188 1.4930 (−0.0070) 0.1161 0.1163

GMM(2sl) λ 0.1933 (−0.0067) 0.0549 0.0553 0.1628 (−0.0372) 0.0742 0.0830
β1 0.8155 (0.0155) 0.3680 0.3683 0.9024 (0.1024) 0.3916 0.4048
β2 0.2029 (0.0029) 0.1041 0.1042 0.1998 (−0.0002) 0.1011 0.1011
β3 1.4954 (−0.0046) 0.1196 0.1197 1.4983 (−0.0017) 0.1177 0.1177

RGMM(2sl) λ 0.1936 (−0.0064) 0.0542 0.0546 0.1916 (−0.0084) 0.0702 0.0707
β1 0.8145 (0.0145) 0.3669 0.3671 0.8263 (0.0263) 0.3792 0.3801
β2 0.2029 (0.0029) 0.1041 0.1041 0.1997 (−0.0003) 0.1010 0.1010
β3 1.4955 (−0.0045) 0.1196 0.1197 1.4969 (−0.0031) 0.1177 0.1177

P-D2

2SLS-2 λ 0.4245 (0.2245) 0.7650 0.7973 0.7576 (0.5576) 0.6991 0.8942
β1 −0.0465 (−0.2465) 0.9003 0.9334 −0.3795 (−0.5795) 0.8800 1.0536
β2 0.2025 (0.0025) 0.1041 0.1041 0.1982 (−0.0018) 0.1101 0.1101
β3 0.1039 (0.0039) 0.1230 0.1231 0.0970 (−0.0030) 0.1245 0.1245

SGMM λ 0.1926 (−0.0074) 0.0566 0.0571 0.1536 (−0.0464) 0.0782 0.0909
β1 0.2142 (0.0142) 0.3507 0.3509 0.2526 (0.0526) 0.3402 0.3443
β2 0.1980 (−0.0020) 0.1060 0.1060 0.1978 (−0.0022) 0.1031 0.1031
β3 0.0960 (−0.0040) 0.1187 0.1188 0.0933 (−0.0067) 0.1154 0.1156

GMM(2sl) λ 0.6338 (0.4338) 0.7609 0.8759 0.5280 (0.3280) 0.8385 0.9004
β1 −0.3063 (−0.5063) 0.8683 1.0051 −0.1971 (−0.3971) 1.0062 1.0817
β2 0.2138 (0.0138) 0.1112 0.1120 0.2155 (0.0155) 0.1064 0.1075
β3 0.1026 (0.0026) 0.1330 0.1331 0.1072 (0.0072) 0.1273 0.1275

RGMM(2sl) λ 0.6136 (0.4136) 0.7673 0.8717 0.5517 (0.3517) 0.7100 0.7924
β1 −0.2862 (−0.4862) 0.8900 1.0141 −0.2113 (−0.4113) 0.8635 0.9564
β2 0.2141 (0.0141) 0.1115 0.1124 0.2126 (0.0126) 0.1053 0.1060
β3 0.1021 (0.0021) 0.1331 0.1331 0.1052 (0.0052) 0.1256 0.1257

Note: 1. The 2SLS uses Qn = [WnXn, Xn] as IV’s. 2. The 2SLS-2 uses IV’s [W 2n Xn,WnXn, Xn]. 3. RGMM(2sl): Robust GMM estimation with the matrix Gn , and 2SLSE used as
initial consistent estimate in the evaluations of Gn and GnXnβ . 4. P-D1: (λ0, β10, β20, β30) = (0.2, 0.8, 0.2, 1.5). 5. P-D2: (λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1).
Σ2n =

tr[(Gn − Diag(Gn))
sGn] +

1
σ 20
(GnXnβ0)′(GnXnβ0)

1
σ 20
(GnXnβ0)′Xn

1
σ 20
X ′n(GnXnβ0)

1
σ 20
X ′nXn


Box IV.
Pn = (Gn − Diag(Gn)), which is consistent under both H0 and H1,
but is not asymptotically efficient under H0. So is the B2SLSE with
Qn = (GnXnβ0, Xn). The RGMME θ̃n has the asymptotic variance
matrix Var(̃θn) = Σ−12n where Σ2n is as in Box IV, and the B2SLSE
θ̃n,b has its asymptotic variance Var(̃θn,b) = Σ−1b,n where

Σb,n =
1
σ 20

(
(GnXnβ0)′(GnXnβ0) (GnXnβ0)′Xn
X ′n(GnXnβ0) X ′nXn

)
. (18)

Under the alternative H1 of heteroskedasticity, as the MLE and
GMME θ̂n are inconsistent but the B2SLSE θ̃n,b and RGMME θ̃n are
consistent, these estimators can be used to form theHausman-type
test statistics.
The difference in variance matrices, [Var(̃θn) − Var(̂θn)], may

or may not have a full rank. To investigate the rank of [Var(̃θn)
− Var(̂θn)] and/or [Var(̃θn,b) − Var(̂θn)], the expression Var(̃θn)
− Var(̂θn) = Var(̂θn)[Var(̂θn)−1 − Var(̃θn)−1]Var(̃θn) is use-
ful as Var(̂θn) and Var(̃θn) are invertible. The rank of this dif-
ference in variance matrices is that of [Var(̂θn)−1 − Var(̃θn)−1],
i.e., the rank of the matrix of the difference in the precision
matrices. From equations given in Boxes III and IV, Var(̂θn)−1

− Var(̃θn)−1 =
(
tr[(Diag(Gn)−

tr(Gn)
n
In)sGn] 0

0 0

)
, and, with (18),

Var(̂θn)−1−Var(̃θn,b)−1 =
(
tr[(Gn −

tr(Gn)
n
In)sGn] 0

0 0

)
, both of which

have rank one. Therefore, a generalized inverse of the difference in
variance matrices of MLE (or GMME) vs RGMME can be

[Var(̃θn)− Var(̂θn)]− = Var(̃θn)−1
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Table 4
Estimates under Designs V-D1 and P-D3, P-D4. V-D1: If group size>10, variance= group size, else variance = 1/(groupsize)2 . True parameters P-D3: (λ0, β10, β20, β30) =
(0.6, 0.8, 0.2, 1.5) P-D4: (λ0, β10, β20, β30) = (0.6, 0.2, 0.2, 0.1)R = 100.

Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

ML P-D3 λ 0.5950 (−0.0050) 0.0292 0.0296 0.5515 (−0.0485) 0.0370 0.0610
β1 0.8256 (0.0256) 0.3619 0.3628 1.0571 (0.2571) 0.3833 0.4615
β2 0.2001 (0.0001) 0.1010 0.1010 0.1985 (−0.0015) 0.1025 0.1025
β3 1.4967 (−0.0033) 0.1185 0.1186 1.5020 (0.0020) 0.1160 0.1160

P-D4 λ 0.5950 (−0.0050) 0.0302 0.0306 0.5481 (−0.0519) 0.0393 0.0651
β1 0.2094 (0.0094) 0.3333 0.3334 0.3104 (0.1104) 0.3398 0.3573
β2 0.2001 (0.0001) 0.1010 0.1010 0.1987 (−0.0013) 0.1025 0.1025
β3 0.0964 (−0.0036) 0.1184 0.1184 0.0936 (−0.0064) 0.1159 0.1161

GMM P-D3 λ 0.5975 (−0.0025) 0.0282 0.0284 0.5560 (−0.0440) 0.0362 0.0570
β1 0.8138 (0.0138) 0.3591 0.3594 1.0356 (0.2356) 0.3790 0.4463
β2 0.1998 (−0.0002) 0.1008 0.1008 0.1981 (−0.0019) 0.1023 0.1024
β3 1.4950 (−0.0050) 0.1185 0.1186 1.4995 (−0.0005) 0.1161 0.1161

P-D4 λ 0.5975 (−0.0025) 0.0292 0.0293 0.5521 (−0.0479) 0.0392 0.0618
β1 0.2050 (0.0050) 0.3321 0.3322 0.3030 (0.1030) 0.3378 0.3532
β2 0.1998 (−0.0002) 0.1009 0.1009 0.1983 (−0.0017) 0.1023 0.1024
β3 0.0962 (−0.0038) 0.1182 0.1183 0.0936 (−0.0064) 0.1158 0.1160

2SLS P-D3 λ 0.6002 (0.0002) 0.1273 0.1273 0.5938 (−0.0062) 0.1205 0.1206
β1 0.8073 (0.0073) 0.7393 0.7393 0.8447 (0.0447) 0.7156 0.7169
β2 0.1982 (−0.0018) 0.1005 0.1005 0.1963 (−0.0037) 0.1020 0.1021
β3 1.4869 (−0.0131) 0.1204 0.1211 1.4874 (−0.0126) 0.1180 0.1187

P-D4 λ 0.8941 (0.2941) 0.3437 0.4524 0.9014 (0.3014) 0.3844 0.4885
β1 −0.4048 (−0.6048) 0.7736 0.9820 −0.4155 (−0.6155) 0.9210 1.1078
β2 0.1944 (−0.0056) 0.1053 0.1054 0.1949 (−0.0051) 0.1045 0.1046
β3 0.0957 (−0.0043) 0.1217 0.1217 0.0944 (−0.0056) 0.1182 0.1183

RGMM P-D3 λ 0.5975 (−0.0025) 0.0286 0.0287 0.5950 (−0.0050) 0.0355 0.0359
β1 0.8137 (0.0137) 0.3596 0.3598 0.8326 (0.0326) 0.3723 0.3737
β2 0.1998 (−0.0002) 0.1009 0.1009 0.1972 (−0.0028) 0.1018 0.1019
β3 1.4950 (−0.0050) 0.1185 0.1186 1.4924 (−0.0076) 0.1157 0.1160

P-D4 λ 0.5976 (−0.0024) 0.0296 0.0297 0.5956 (−0.0044) 0.0383 0.0386
β1 0.2051 (0.0051) 0.3320 0.3321 0.2152 (0.0152) 0.3325 0.3328
β2 0.1998 (−0.0002) 0.1009 0.1009 0.1971 (−0.0029) 0.1019 0.1020
β3 0.0962 (−0.0038) 0.1182 0.1183 0.0933 (−0.0067) 0.1154 0.1156

ORGMM P-D3 λ 0.5966 (−0.0034) 0.0282 0.0284 0.5969 (−0.0031) 0.0364 0.0365
β1 0.8040 (0.0040) 0.3583 0.3583 0.8352 (0.0352) 0.3858 0.3874
β2 0.2050 (0.0050) 0.1013 0.1014 0.1944 (−0.0056) 0.1015 0.1017
β3 1.5038 (0.0038) 0.1211 0.1212 1.4951 (−0.0049) 0.1199 0.1200

P-D4 λ 0.5966 (−0.0034) 0.0293 0.0295 0.5960 (−0.0040) 0.0389 0.0391
β1 0.1928 (−0.0072) 0.3325 0.3326 0.2266 (0.0266) 0.3395 0.3406
β2 0.2049 (0.0049) 0.1009 0.1010 0.1943 (−0.0057) 0.1009 0.1011
β3 0.1051 (0.0051) 0.1210 0.1211 0.0966 (−0.0034) 0.1192 0.1192
×

tr−1 [(Diag(Gn)− tr(Gn)n In

)s
Gn

]
0

0 0

Var(̂θn)−1,(19)
and that of the MLE (or GMME) vs B2SLSE is
[Var(̃θn,b)− Var(̂θn)]− = Var(̃θn,b)−1

×

tr−1 [(Gn − tr(Gn)n In

)s
Gn

]
0

0 0

Var(̂θn)−1. (20)

Another generalized inverse can be derivedwith the eigenvalue
and eigenvector decomposition of the matrix [Var(̃θn)− Var(̂θn)].
As this matrix has a rank of one from our preceding analysis, let
µ > 0 be the single nonzero eigenvalue and let the corresponding
orthonormal eigenvector matrix be Γn. The corresponding gener-
alized inverse of [Var(̃θn)− Var(̂θn)] is Γ ′nΛ

−
n Γn whereΛ

−
n is a di-

agonal matrix consisting of 1
µ
and zeros on the diagonal elements.

This generalized inverse is numerically non-negative definite and
is the Moore–Penrose generalized inverse.17

17 On the other hand, the generalized inverses in (19) and (20) are not symmetric.
With a finite sample, the generalized inverse based on the eigenvalue and
The Hausman-type tests by comparing MLE (or GMME) vs
RGMME, and MLE (or GMME) vs B2SLSE are both asymptotically
χ2(1).

6.3. Monte Carlo results for the tests

Table 6 presents the results of the Hausman-type and LM
tests for heteroskedasticity in the SAR model. The Monte
Carlo experimental designs are V-D1 with P-D1 and P-D2. The
correspondingML,GMMandRGMMestimates are those in Tables 1
and 2, and the B2SLSE is in Table 3. The left panel of the table shows
the results for the homoskedasticity cases, and the right panel
shows those for the heteroskedasticity cases. In eachpanel, the first
two columns present, respectively, the results for the Hausman-
type tests, usingMLE vs B2SLSE andMLE vs RGMME. The results for
the two LM tests, one based onMLE, the other onGMME, are shown
in the last two columns of each panel. The alternative hypothesis
for the LM tests is σ 2ni = f (α0 + ziα), with zi being the group

eigenvector has the numerical advantage in that the derived asymptotic χ2 test
statistics will always be non-negative.



X. Lin, L.-f. Lee / Journal of Econometrics 157 (2010) 34–52 45
Table 5
Estimates under Design V-D2 and various parameters. V-D2: variance= 1/(group size). True parameters: P-D1, P-D2, P-D3 and P-D4; R = 100.

Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

ML P-D1 λ 0.1994 (−0.0006) 0.0173 0.0173 0.1984 (−0.0016) 0.0167 0.0168
β1 0.8016 (0.0016) 0.0533 0.0534 0.8046 (0.0046) 0.0513 0.0515
β2 0.2000 (0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0084 0.0084
β3 1.4996 (−0.0004) 0.0100 0.0100 1.4996 (−0.0004) 0.0097 0.0097

P-D2 λ 0.1946 (−0.0054) 0.0495 0.0498 0.1920 (−0.0080) 0.0490 0.0497
β1 0.2058 (0.0058) 0.0585 0.0587 0.2088 (0.0088) 0.0580 0.0587
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0084 0.0084
β3 0.0997 (−0.0003) 0.0100 0.0100 0.0996 (−0.0004) 0.0097 0.0097

P-D3 λ 0.5996 (−0.0004) 0.0088 0.0088 0.5992 (−0.0008) 0.0086 0.0086
β1 0.8018 (0.0018) 0.0535 0.0536 0.8046 (0.0046) 0.0517 0.0520
β2 0.2000 (0.0000) 0.0085 0.0085 0.1999 (−0.0001) 0.0084 0.0084
β3 1.4997 (−0.0003) 0.0101 0.0101 1.4997 (−0.0003) 0.0099 0.0099

P-D4 λ 0.5967 (−0.0033) 0.0265 0.0267 0.5951 (−0.0049) 0.0267 0.0272
β1 0.2068 (0.0068) 0.0605 0.0608 0.2104 (0.0104) 0.0609 0.0618
β2 0.2000 (0.0000) 0.0086 0.0086 0.1999 (−0.0001) 0.0085 0.0085
β3 0.0997 (−0.0003) 0.0100 0.0100 0.0996 (−0.0004) 0.0097 0.0097

GMM P-D1 λ 0.1993 (−0.0007) 0.0172 0.0172 0.1984 (−0.0016) 0.0166 0.0167
β1 0.8019 (0.0019) 0.0531 0.0532 0.8047 (0.0047) 0.0510 0.0512
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0085 0.0085
β3 1.4995 (−0.0005) 0.0100 0.0100 1.4995 (−0.0005) 0.0097 0.0097

P-D2 λ 0.1969 (−0.0031) 0.0494 0.0495 0.1960 (−0.0040) 0.0602 0.0604
β1 0.2038 (0.0038) 0.0585 0.0586 0.2051 (0.0051) 0.0685 0.0687
β2 0.1998 (−0.0002) 0.0085 0.0085 0.1996 (−0.0004) 0.0084 0.0085
β3 0.0996 (−0.0004) 0.0100 0.0100 0.0995 (−0.0005) 0.0097 0.0097

P-D3 λ 0.5996 (−0.0004) 0.0090 0.0090 0.5991 (−0.0009) 0.0087 0.0087
β1 0.8021 (0.0021) 0.0541 0.0542 0.8048 (0.0048) 0.0519 0.0521
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0085 0.0085
β3 1.4996 (−0.0004) 0.0101 0.0101 1.4996 (−0.0004) 0.0099 0.0099

P-D4 λ 0.5984 (−0.0016) 0.0257 0.0258 0.5973 (−0.0027) 0.0259 0.0261
β1 0.2038 (0.0038) 0.0591 0.0592 0.2064 (0.0064) 0.0592 0.0596
β2 0.1998 (−0.0002) 0.0085 0.0085 0.1997 (−0.0003) 0.0085 0.0085
β3 0.0996 (−0.0004) 0.0100 0.0100 0.0995 (−0.0005) 0.0097 0.0097

2SLS P-D1 λ 0.2002 (0.0002) 0.0180 0.0180 0.1993 (−0.0007) 0.0176 0.0176
β1 0.7993 (−0.0007) 0.0550 0.0550 0.8020 (0.0020) 0.0531 0.0532
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0084 0.0084
β3 1.4996 (−0.0004) 0.0100 0.0100 1.4996 (−0.0004) 0.0097 0.0097

P-D2 λ 0.2069 (0.0069) 0.1091 0.1093 0.1993 (−0.0007) 0.1159 0.1159
β1 0.1937 (−0.0063) 0.1168 0.1170 0.2020 (0.0020) 0.1243 0.1243
β2 0.1997 (−0.0003) 0.0086 0.0086 0.1995 (−0.0005) 0.0085 0.0085
β3 0.0995 (−0.0005) 0.0100 0.0100 0.0994 (−0.0006) 0.0097 0.0097

P-D3 λ 0.6001 (0.0001) 0.0095 0.0095 0.5996 (−0.0004) 0.0093 0.0093
β1 0.7993 (−0.0007) 0.0562 0.0562 0.8020 (0.0020) 0.0543 0.0544
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0084 0.0084
β3 1.4996 (−0.0004) 0.0101 0.0101 1.4996 (−0.0004) 0.0099 0.0099

P-D4 λ 0.6036 (0.0036) 0.0576 0.0577 0.5996 (−0.0004) 0.0614 0.0614
β1 0.1936 (−0.0064) 0.1198 0.1200 0.2022 (0.0022) 0.1280 0.1280
β2 0.1996 (−0.0004) 0.0087 0.0087 0.1995 (−0.0005) 0.0086 0.0086
β3 0.0995 (−0.0005) 0.0100 0.0100 0.0995 (−0.0005) 0.0097 0.0097

RGMM P-D1 λ 0.1993 (−0.0007) 0.0172 0.0172 0.1984 (−0.0016) 0.0166 0.0167
β1 0.8019 (0.0019) 0.0532 0.0532 0.8047 (0.0047) 0.0510 0.0512
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0085 0.0085
β3 1.4995 (−0.0005) 0.0100 0.0100 1.4995 (−0.0005) 0.0097 0.0097

P-D2 λ 0.1969 (−0.0031) 0.0495 0.0496 0.1960 (−0.0040) 0.0602 0.0603
β1 0.2038 (0.0038) 0.0585 0.0586 0.2050 (0.0050) 0.0685 0.0686
β2 0.1998 (−0.0002) 0.0085 0.0085 0.1996 (−0.0004) 0.0084 0.0085
β3 0.0996 (−0.0004) 0.0100 0.0100 0.0995 (−0.0005) 0.0097 0.0097

P-D3 λ 0.5996 (−0.0004) 0.0090 0.0090 0.5991 (−0.0009) 0.0087 0.0087
β1 0.8021 (0.0021) 0.0542 0.0543 0.8048 (0.0048) 0.0518 0.0520
β2 0.2000 (−0.0000) 0.0085 0.0085 0.1998 (−0.0002) 0.0085 0.0085
β3 1.4996 (−0.0004) 0.0101 0.0101 1.4996 (−0.0004) 0.0099 0.0099

P-D4 λ 0.5984 (−0.0016) 0.0260 0.0261 0.5973 (−0.0027) 0.0260 0.0261
β1 0.2038 (0.0038) 0.0596 0.0597 0.2063 (0.0063) 0.0592 0.0595
β2 0.1998 (−0.0002) 0.0085 0.0085 0.1997 (−0.0003) 0.0085 0.0085
β3 0.0996 (−0.0004) 0.0100 0.0100 0.0995 (−0.0005) 0.0097 0.0097

ORGMM P-D1 λ 0.1988 (−0.0012) 0.0162 0.0162 0.2000 (−0.0000) 0.0164 0.0164
β1 0.8023 (0.0023) 0.0506 0.0507 0.8008 (0.0008) 0.0521 0.0521
β2 0.2004 (0.0004) 0.0085 0.0085 0.1997 (−0.0003) 0.0085 0.0085
β3 1.5003 (0.0003) 0.0102 0.0102 1.4997 (−0.0003) 0.0100 0.0100

P-D2 λ 0.1956 (−0.0044) 0.0580 0.0581 0.1965 (−0.0035) 0.0486 0.0487
(continued on next page)
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Table 5 (continued)

Homoskedasticity Heteroskedasticity
Mean Bias SD RMSE Mean Bias SD RMSE

β1 0.2040 (0.0040) 0.0672 0.0673 −0.2049 (0.0049) 0.0590 0.0592
β2 0.2003 (0.0003) 0.0086 0.0086 0.1996 (−0.0004) 0.0085 0.0085
β3 0.1003 (0.0003) 0.0102 0.0102 0.0997 (−0.0003) 0.0100 0.0100

P-D3 λ 0.5994 (−0.0006) 0.0085 0.0085 0.6000 (−0.0000) 0.0085 0.0085
β1 0.8023 (0.0023) 0.0515 0.0515 0.8009 (0.0009) 0.0528 0.0528
β2 0.2004 (0.0004) 0.0085 0.0085 0.1997 (−0.0003) 0.0085 0.0085
β3 1.5004 (0.0004) 0.0103 0.0103 1.4997 (−0.0003) 0.0101 0.0101

P-D4 λ 0.5972 (−0.0028) 0.0254 0.0256 0.5982 (−0.0018) 0.0254 0.0254
β1 0.2050 (0.0050) 0.0582 0.0584 0.2049 (0.0049) 0.0597 0.0599
β2 0.2003 (0.0003) 0.0086 0.0086 0.1996 (−0.0004) 0.0085 0.0085
β3 0.1004 (0.0004) 0.0102 0.0102 0.0998 (−0.0002) 0.0100 0.0100

Note: P-D1: (λ0, β10, β20, β30) = (0.2, 0.8, 0.2, 1.5); P-D2: (λ0, β10, β20, β30) = (0.2, 0.2, 0.2, 0.1); P-D3: (λ0, β10, β20, β30) = (0.6, 0.8, 0.2, 1.5); P-D4:
(λ0, β10, β20, β30) = (0.6, 0.2, 0.2, 0.1).
Table 6
Tests for Heteroskedasticity. V-D1; Two sets of true parameters: P-D1 and P-D2.

R Empirical level Power
MLE vs B2SLSE MLE vs RGMME LM via MLE LM via GMME MLE vs B2SLSE MLE vs RGMME LM via MLE LM via GMME

P-D1

50 1% 6.9 33.7 0.7 0.7 2.4 99.4 (19.5) 100 100
5% 10.1 43.7 5.0 5.0 4.2 99.6 (91.9) 100 100
10% 12.5 50.2 9.3 9.3 6.0 99.7 (97.0) 100 100

100 1% 6.1 32.9 1.1 1.1 2.4 100 (68.8) 100 100
5% 10.3 43.5 3.8 3.8 4.6 100 (99.5) 100 100
10% 12.5 51.1 8.5 8.5 7.5 100 (99.8) 100 100

200 1% 3.4 33.4 1.1 1.1 0.9 100 (100) 100 100
5% 6.9 44.6 6.0 6.0 2.6 100 (100) 100 100
10% 11.0 52.2 11.9 11.9 5.4 100 (100) 100 100

P-D2

50 1% 11.7 33.5 0.7 0.7 11.5 99.8 (6.8) 100 100
5% 15.1 44.0 5.2 5.1 15.3 99.8 (85.5) 100 100
10% 18.7 49.6 9.4 9.5 17.0 99.9 (98.4) 100 100

100 1% 12.3 32.7 1.1 1.1 14.8 99.7 (46.8) 100 100
5% 16.7 45.3 3.9 3.8 16.9 99.8 (99.3) 100 100
10% 19.3 52.5 8.2 8.2 19.8 99.9 (99.5) 100 100

200 1% 17.2 35.0 1.3 1.3 15.6 100 (99.7) 100 100
5% 21.9 46.4 5.9 5.9 18.4 100 (99.8) 100 100
10% 24.9 53.1 11.9 12.0 21.5 100 (99.9) 100 100

Note: 1. The Hausman-type tests are χ2(1) under the null hypothesis of homoskedasticity. 2. The LM tests are χ2(1) under the null hypothesis of homoskedasticity. 3. The
table shows the percentages of rejecting the null hypothesis in all the 1000 Monte Carlo replications, for nominal sizes 1%, 5%, 10%. 4. The numbers in parentheses for the
powers of the Hausman-type test with MLE vs RGMME are the bias-adjusted empirical powers.
size.18 As discussed in the previous subsection, it is not necessary
to specify the functional form of f . The Hausman-type tests use
both the Moore–Penrose generalized inverse and the generalized
inverses in (19) and (20). The corresponding results are similar.19
The Hausman-type test using MLE vs B2SLSE has no power for

the sample sizes R = 50 to 200. Even though its empirical levels
are higher than the theoretical ones, its powers are not even larger
than the empirical levels. For the Hausman-type test of MLE vs
RGMME, its empirical levels are very large, showing over-rejection
of the null hypothesis. It does have power even after adjusting
the proper level of significance, but its large empirical levels will
render this test useless. These phenomena can be understood by
investigating the generalized inverse formulas in (19) and (20) and
the small biases of the corresponding estimates. For the Hausman-
type test using MLE vs RGMME, the test statistic is inflated by the
variance difference term tr[(Diag(Gn)− tr(Gn)n In)

sGn]. In the samples

18 In the variance design V-D1, the group size variable in the variance function is
nonlinear and complicated. So the linear index specification of the variance for the
LM test provides only an approximation of the true variance function. Our intention
is to see whether a linear index approximation can capture the alternative in its
power function, since in practice we may not know the exact variance function.
19 The results of the Hausman-type tests reported in Table 6 are those with the
Moore–Penrose generalized inverse.
for theMonte Carlo study, this term happens to be very small, with
amean ranging from 0.26 to 1.06 for all cases. These are small even
though the trace operation is a summation over n terms. Thus, it
might produce a big number when its inverse is involved, which is
explicit in (19). On the contrary, for the Hausman-type test using
MLE vs B2SLSE, the corresponding variance difference term has
mean value ranging from 150 to 670, which would give a small
number after inversion. Overall, the Hausman-type tests are not
reliable.
In contrast, the LM tests perform very well. The empirical levels

are close to the theoretical ones and they have excellent powers.20

7. Application to county teenage pregnancy rates

Teenage pregnancy is one of the contexts where social interac-
tion effects are believed to be most important. Jencks and Mayer
(1990), for example, conclude that, ‘‘neighborhoods and class-
mates probably have a stronger effect on sexual behavior than
on cognitive skills, school enrollment decisions, or even criminal

20 Thismay indicate that the linear index approximation of the nonlinear variance
function is valuable. The linear approximation does capture the group size variable
in the variance function.
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activity’’. Many studies, including Hogan and Kitagawa (1985),
Crane (1991), Case and Katz (1991) and Evans et al. (1992), analyze
neighborhood effects in teenage pregnancy by using micro-data.
It would be of interest to study the spatial effects at more aggre-
gated levels and see how county teenage pregnancy rates are af-
fected by each other.We suspect the possible presence of unknown
heteoskedasticity in this aggregated data. Therefore, we apply the
RGMM estimation procedures and compare them to other estima-
tion methods.
The model considered is the SAR model in (1), by which we

related a county’s teenage pregnancy rate to those of its neigh-
bors and its own characteristics. Following Kelejian and Robinson
(1993), we focus on counties in the 10 Upper Great Plains States,
including Colorado, Iowa, Kansas, Minnesota, Missouri, Montana,
Nebraska, North Dakota, South Dakota, and Wyoming, which con-
sist of 761 counties. A county’s neighbors are referred to its geo-
graphically neighboring counties.
The data used are from ‘‘Health and Healthcare in the United

States— County and Metro Area Data’’ (Thomas, 1999), and the
1990 US Census (US Census Bureau, 1992). The specific model is
given by

Teeni = λ
760∑
j=1

wijTeenj + β1 + Eduiβ2 + Incoiβ3

+ FHHiβ4 + Blackiβ5 + Phyiβ6 + εi,

where Teeni is the teenage pregnancy rate in county i, which is
the percentage of pregnancies occurring to females of 12–17 years
old. wij is the entry in the spatial weights matrix Wn, which
will be zero if two counties are not neighboring counties. The
neighbors of the same county are assigned an equal weight in the
row-normalized spatial weights matrix. The term,

∑760
j=1wijTeenj,

is simply the average of the teenage pregnancy rates of county
i’s neighbors. Edui is the education service expenditure (divided
by 100), Incoi is median household income (divided by 1000),
FHHi is the percentage of female-headed households, Blacki is the
proportion of black population and Phyi is the number of physicians
per 1000 population, all in county i.21 We assume that the εni’s
have zero mean and variances σ 2ni’s, and are independent across
counties.
The model is estimated by 2SLS, B2SLS, ML, non-robust GMM,

robust RGMM and optimal weighting RGMM procedures. The re-
sults are reported in Table 7. Consistent with the Monte Carlo re-
sults, most of the differences among the estimators are for λ0 and
the intercept, with the 2SLSE λ̂2SLS = 0.409 being larger than those
of the others: λ̂B2SLS = 0.358, λ̂ML = 0.339 and all three GMME’s
are 0.343 or 0.344. Thus, relative to the RGMME, the 2SLSE overes-
timates λ0, and the B2SLSE improves upon the 2SLSE by decreas-
ing the relative bias. For the intercept term, the 2SLSE is relatively
smaller than the others. The estimates obtained from all the other
methods are similar. For the t-statistics, we can see that those for
the MLE and all the three GMME’s procedures are similar, while
those for 2SLSE and the B2SLSE are smaller for the estimates of
λ0 and the intercept, which reflects the inefficiency of the 2SLSE’s.
Furthermore, the differences between the robust and non-robust
standard errors for the 2SLS’s and the robust GMM estimators are
notable. In particular, for all the three procedures, the non-robust
standard errors for the coefficient on female-headed households
are only about 60% as large as the robust ones, which is striking.
Also, the larger non-robust standard errors of the coefficient on ed-
ucation service expenditure make it become marginally insignifi-
cant, although it should be statistically significant at the 5% level

21 Some variables, such as the percentage of high school graduates, are
insignificant in the preliminary study thus are dropped.
Table 7
Estimation of spatial effects for county teenage pregnancy rates.

2SLS B2SLS ML GMM RGMM ORGMM

λ 0.409 0.358 0.339 0.343 0.343 0.344
(4.92) (3.98) (7.53) (7.64) (7.64) –
[4.83] [4.09] – – [6.86] [6.92]

Cons 7.179 7.879 8.140 8.096 8.091 8.076
(4.77) (4.73) (6.81) (6.78) (6.77) –
[4.24] [4.89] – – [6.54] [6.57]

Edu −0.011 −0.011 −0.011 −0.011 −0.011 −0.011
(−1.63) (−1.72) (−1.75) (−1.74) (−1.74) –
[−2.37] [−2.50] – – [−2.52] [−2.53]

Inco −0.197 −0.204 −0.206 −0.206 −0.206 −0.206
(−4.90) (−4.80) (−5.20) (−5.20) (−5.20) –
[−4.59] [−4.94] – – [−5.39] [−5.39]

FHH 0.751 0.763 0.763 0.766 0.766 0.768
(11.83) (11.92) (11.92) (12.43) (12.43) –
[7.71] [7.86] – – [8.18] [8.25]

Black 0.138 0.145 0.145 0.147 0.147 0.147
(2.42) (2.58) (2.58) (2.64) (2.64) –
[2.79] [2.88] – – [2.89] [2.89]

Phy −0.512 −0.523 −0.523 −0.526 −0.526 −0.527
(−2.74) (−2.80) (−2.80) (−2.81) (−2.81) –
[−2.30] [−2.69] – – [−2.72] [−2.72]

Note: 1. The explanatory variables are: Cons = intercept term, Edu = education
service expenditure (divided by 100), Inco = median household income (divided
by 1000), FHH = percentage of female-headed households, Black = proportion of
black population, and Phy=number of physicians per 1000 population. 2. 2SLS uses
(WnXn, Xn) as IV’s; B2SLS uses (GnXnβ, Xn) as IV’s and 2SLSE as initial estimate. 3. All
GMM’s use an initial SGMME in the evaluations ofGn andGnXnβ . 4. The t-statistics in
parentheses are those under i.i.d. disturbances assumption. The t-statistics for the
2SLS, B2SLS and RGMMandORGMMestimators calculated from the robust variance
formula are in square brackets. 5. The LM test statistic (viaMLE) is 18.506 and the LM
test statistic (via GMME) is 18.557. 6. The Hausman-type test statistic with MLE vs
B2SLSE is 0.054 and the Hausman-type test statistic with MLE vs RGMME is 18.315.

based on the robust standard errors. These distinctions could have
an impact on the inferences, especially when the estimates are on
the margin of being significant.
Based on the various GMM and MLE results, we see that

the county teenage pregnancy rates in these 10 states exhibit a
strong spatial convergence, with an estimated spatial coefficient
of around 0.34. Thus, about 34% of the changes in the teenage
pregnancy rates of neighboring counties will be absorbed by a
county’s own teenage pregnancy rate.22 All the other parameters
have the expected signs. From Table 7we can see that other signifi-
cant and important determinants of county teenage pregnancy rate
include median household income, proportion of female-headed
households, fraction of black population and the number of physi-
cians per 1000 population. Generally speaking, other things be-
ing equal, the larger the percentage of female-headed households
or the higher the proportion of black population, the higher the
county teenage pregnancy rate. As well as the number of physi-
cians per 1000 population, household income and education ser-
vice expenditure all help to reduce county teenage pregnancy rate.
We perform two Hausman-type tests using MLE vs B2SLSE and

also MLE vs RGMME, and two LM tests based on MLE and non-
robust GMME, using county population size as zi in the variance

22 Our result is consistent with previous studies which also find significant
neighborhood effects in teenage pregnancy. In particular, Hogan and Kitagawa
(1985) find that the probabilities of becoming pregnant were about 1/3 higher
for teenagers from low-quality neighborhoods and living in the West Side
ghetto increased the chances by about 2/5. Crane (1991) also finds significant
neighborhood influences in teenage pregnancy, especially in the very worst
neighborhoods. However, in our case, county teenage pregnancy rates are
aggregated from individual outcomes and are treated as continuous. Other
studies, including Case and Katz (1991) and Evans et al. (1992), find insignificant
neighborhood effects in teenage pregnancy.
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function. The LM test statistics based on the MLE is 18.506, the
one based on the GMME is 18.557, both reject the null hypothesis
of homoskedasticity. However, the Hausman-type test statistics
using the MLE vs B2SLSE is as small as 0.054, and the other one
with the MLE vs RGMME is 18.315. From the Monte Carlo study,
we observe that the Hausman-type test by comparing theMLE and
B2SLSE does not have power, and the one using theMLE vs RGMME
tends to over-reject the null. Thus, the Hausman-type tests might
have the same weakness as in the Monte Carlo cases. Even though
the LM tests may reject the null of homoskedastic errors, our
overall conclusion is that even if there was any heteroskedasticity
in this sample, it does not have noticeable effects on the ML
and GMM coefficient estimates in this application. However, the
presence of heteroskedasticity does affect the estimates of the
standard errors, and consequentially, the statistical inferences.

8. Conclusion

This paper considers the GMMestimation in the presence of un-
known heteroskedasticity in a SAR model where the disturbances
are independent but may have heteroskedastic variances.
In the presence of heteroskedastic disturbances, the ML ap-

proach for the SAR model would in general provide an incon-
sistent MLE if the disturbances were treated as i.i.d. Method of
Moments or GMM approaches would theoretically suffer from the
inconsistency if the moment functions are designed for i.i.d. dis-
turbances, and thus, ignore the unknown heteroskedaticity in the
disturbances. In this paper, we analyze a general systematic frame-
work in GMM estimation where the moment functions take into
account the possible presence of unknown heteroskedastic dis-
turbances. The resulted estimator RGMME is shown to be consis-
tent and asymptotically normal. Asymptotically valid inferences
can be drawnwith consistently estimated covariancematrices.We
also consider the optimal RGMM estimation which can improve
asymptotic efficiency by the construction of a feasible optimal
weightingmatrix under an unknownheteroskedasticity. Statistical
procedures for testing the presence of unknown heteroskedaticity
are investigated.
Monte Carlo experiments are designed to study the finite sam-

ple properties of theML, GMM, 2SLS, robustGMMand some related
estimators, and the test statistics. The Monte Carlo results show
that even though 2SLSE’s shall be consistent in the presence of
unknown heteroskedaticity, they may have large variances and
biases in finite samples for cases where regressors do not have
strong effects. The robust GMMEhas desirable propertieswhile the
biases associatedwith theMLE and non-robust GMMEmay remain
in large samples, especially, for the spatial effect coefficient and
the intercept term. However, the magnitudes of biases are only
moderate. With moderately large sample sizes, those biases may
be statistically insignificant. The Hausman-type test statistics are
shown to be unreliable, but the LM test statistics have good finite
sample properties.
The various approaches are applied to the study of county

teenage pregnancy rates. The empirical results show a strong spa-
tial convergence among county teenage pregnancy rates with a
significant spatial effect. The LM test statistics confirm the pres-
ence of heteroskedasticity, but it has no impact on the coefficient
estimates of this empirical model. However, the presence of het-
eroskedasticity does affect the estimates of the standard errors, and
consequentially, the statistical inferences.
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Appendix. Some useful lemmas and proofs of main results

Lemma A.1. For any two square matrices An = [an,ij] and Bn =
[bn,ij] of dimension n with zero diagonals, assume that εni’s have zero
mean and are mutually independent. Then,

(1) E(Anεn · ε′nBnεn) = 0,
(2) E(Anεn(Bnεn)′) = AnΣnB′n, and
(3) E(ε′nAnεn · ε

′
nBnεn) =

∑n
i=1
∑n
j=1 an,ij(bn,ij + bn,ji)σ

2
niσ

2
nj =

tr[ΣnAn(B′nΣn +ΣnBn)];

where Σn = Diag{σ 2n1, . . . , σ
2
nn} with σ

2
ni = E(ε

2
ni) and εn =

(εn1, . . . , εnn)
′.

Proof. (1) Because εni’s are mutually independent and bn,ii = 0,

E(Anεn · ε′nBnεn) = An
n∑
i=1

n∑
j=1

bn,ijE(εniεnjεn)

= An
n∑
i=1

bn,iiE(ε3ni) = 0.

(2) E(Anεn(Bnεn)′) = AnE(εnε′n)B
′
n = AnΣnB

′
n.

(3) As ε′nAnεnε
′
nBnεn =

∑n
i=1
∑n
j=1
∑n
k=1

∑n
l=1 an,ijbn,klεni

εnjεnkεnl, the mutual independence of εnis implies that E(εniεnjεnk
εnl) 6= 0 only if (i = j = k = l), (i = j, k = l), (i = k, j = l), or
(i = l, j = k). It follows that

E(ε′nAnεn · ε
′

nBnεn) =
n∑
i=1

an,iibn,iiE(ε4ni)+
n∑
i=1

n∑
j6=i

(an,iibn,jj

+ an,ijbn,ij + an,ijbn,ji)E(ε2ni)E(ε
2
nj)

=

n∑
i=1

n∑
j=1

(an,iibn,jj + an,ijbn,ij + an,ijbn,ji)σ 2niσ
2
nj

= tr[ΣnAn(ΣnBn + B′nΣn)],

because an,ii = bn,ii = 0 for all i. �

The expressions in Lemma A.1 provide the formula for Ωn in
(13).

Lemma A.2. For any square matrices An = [an,ij] of dimension n,
assume that εni’s have a zero mean and are mutually independent.
Then,

(1) E(ε′nAnεn) =
∑n
i=1 an,iiσ

2
ni = tr(ΣnAn),

(2)

E(ε′nAnεn)
2
=

n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni] +

(
n∑
i=1

an,iiσ 2ni

)2

+

n∑
i=1

n∑
j=1

an,ij(an,ij + an,ji)σ 2niσ
2
nj

=

n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni] + tr

2(ΣnAn)

+ tr[ΣnAn(A′nΣn +ΣnAn)],

and
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(3)

Var(ε′nAnεn) =
n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni]

+

n∑
i=1

n∑
j=1

an,ij(an,ij + an,ji)σ 2niσ
2
nj

=

n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni]

+ tr[ΣnAn(A′nΣn +ΣnAn)];

where Σn = Diag{σ 2n1, . . . , σ
2
nn} with εn = (εn1, . . . , εnn)

′ and
σ 2ni = E(ε

2
ni).

Proof. (1) E(ε′nAnεn) =
∑n
i=1
∑n
j=1 an,ijE(εniεnj) =

∑n
i=1 an,iiσ

2
ni =

tr(ΣnAn).
(2) From the proof of part (3) of Lemma A.1, one has

E(ε′nAnεn)
2
=

n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni] +

(
n∑
i=1

an,iiσ 2ni

)2

+

n∑
i=1

n∑
j=1

an,ij(an,ij + an,ji)σ 2niσ
2
nj

=

n∑
i=1

a2n,ii[E(ε
4
ni)− 3σ

4
ni]

+ tr2(ΣnAn)+ tr[ΣnAn(A′nΣn +ΣnAn)].

(3) The result follows from (1) and (2) because Var(ε′nAnεn) =
E(ε′nAnεn)

2
− E2(ε′nAnεn). �

Lemma A.3. Suppose that {An} are uniformly bounded in both row
and column sums and εni’s have a zero mean and are mutually
independent where its sequence of variances {σ 2ni} is bounded, and,
in addition, if an,ii 6= 0 for some i, the sequence four moments
{µni,4} is bounded. Then, E(ε′nAnεn) = O(n), var(ε

′
nAnεn) = O(n),

ε′nAnεn = OP(n), and
1
nε
′
nAnεn −

1
nE(ε

′
nAnεn) = oP(1).

Proof. As σ 2ni’s are bounded, the variance matrix Σn = Diag
{σ 2n1, . . . , σ

2
nn} is bounded in both row and column sum norms. The

product of two matrices which are uniformly bounded in the row
(column) sumnorm is uniformly bounded in the row (column) sum
norm. Furthermore, elements of uniformly bounded in the row (or
column) sum matrices are uniformly bounded.
AsΣnAn are uniformly bounded in row (or column) sum norm,

E(ε′nAnεn) = tr(ΣnAn) = O(n).
From Lemma A.2, the variance of ε′nAnεn is

∑n
i=1 a

2
n,ii(µni,4 −

3σ 4ni)+ tr[ΣnAn(A
′
nΣn +ΣnAn)]. AsΣnAn is uniformly bounded in

row or column sums, it implies tr(ΣnAnA′nΣn) and tr(ΣnAnΣnAn)
areO(n). In addition, if an,ii’s are not zero, the uniformboundedness
of σ 2ni and µni,4 will guarantee that

∑n
i=1 a

2
n,ii(µni,4 − 3σ

4
ni) is O(n).

Hence, var(ε′nAnεn) = O(n) follows.
As E(ε′nAnεn)

2
= var(ε′nAnεn) + E

2(ε′nAnεn) = O(n2), the
generalized Chebyshev inequality implies that P( 1n |ε

′
nAnεn| ≥

M) ≤ 1
M2
( 1n )

2E(ε′nAnεn)
2
=

1
M2
O(1) and, hence, 1nε

′
nAnεn = OP(1).

Finally, because var( 1nε
′
nAnεn) = O( 1n ) = o(1), the Chebyshev

inequality implies that 1nε
′
nAnεn −

1
nE(ε

′
nAnεn) = oP(1). �

Lemma A.4. Suppose that An is an n × n matrix with its column
sums being uniformly bounded, elements of the n × k matrix Cn
are uniformly bounded, and elements εni of εn = (εn1, . . . , εnn)

′

are mutually independent with zero mean and finite third absolute
moments, which are uniformly bounded for all n and i.
Then, 1√nC
′
nAnεn = OP(1) and

1
nC
′
nAnεn = oP(1). Furthermore,

if the limit of 1
nC
′
nAnΣnA

′
nCn exists and is positive definite, then

1
√
nC
′
nAnεn

D
→N(0, limn→∞ 1

nC
′
nAnΣnA

′
nCn).

Proof. Let an,j denote the jth column of An. It follows that
1
√
nC
′
nAnεn =

1
√
n

∑n
j=1 qnjεj where qnj = C ′nan,j. The first result

follows from Chebyshev’s inequality because {qnj} and {σ 2nj} are
uniformly bounded and var( 1√nC

′
nAnεn) =

1
n

∑n
j=1 σ

2
njqnjq

′

nj. The
second result follows from the Liapounov double array CLT and
the Cramer-Wold device (Billingsley, 1995, Theorem 27.3 and
Theorem 29.4). To check the Liapounov condition, let α be a
non-zero row vector of constants and B2n = var(αC ′nAnεn) =
σ 2αC ′nAnΣnA

′
nCnα

′. The assumptions imply that limn→∞ 1
nB
2
n > 0

and there exist constants c1 and c2 such that |αqnj| < c1 and
E|εni|3 < c2, for all n and j. Hence, the Liapounov condition∑n
j=1

1
B3n
E(|αqnjεj|3) ≤

c31 c2

( 1n B
2
n)
3
2 n
1
2
→ 0 holds. �

Lemma A.5. Suppose that {An} is a sequence of symmetric n×nma-
trices with row and column sums uniformly bounded and bn = [bni] is
a n-dimensional column vector such that supn

1
n

∑n
i=1 |bni|

2+η1 <∞
for some η1 > 0. The εn1, . . . , εnn are mutually independent, with a
zero mean and moments higher than four exist such that E(|εni|4+η2)
for some η2 > 0, for all n and i, are uniformly bounded.
Let σ 2Qn be the variance of Qn where Qn = ε′nAnεn + b

′
nεn −

tr(AnΣn). Assume that 1
nσ
2
Qn is bounded away from zero. Then,

Qn
σQn

D
−→N(0, 1).

Proof. See Kelejian and Prucha (2001). �

Proof of Proposition 1. For consistency of an extremumestimate,
a standard approach can follow, for example, the setting in
Theorem 4.1.1 of Amemiya (1985). Let sn(θ) = 1

nangn(θ). The
essential ingredients in that theorem are (i) a compact parameter
space Θ of θ , (ii) sn(θ) is continuous in θ , (iii) sn(θ) converges in
probability to s(θ), where s(θ) = limn→∞ 1

nangn(θ), uniformly in
θ ∈ Θ , and (iv) s(θ)has the unique global extremumat θ0 inΘ . The
(iv) is an identification condition, which will be satisfied under our
identification assumptions. For our case, the compactness ofΘ can
be replaced by boundedness because sn(θ) is simply a polynomial
function of θ . The continuity of sn(θ) in (ii) is obvious. So it remains
to demonstrate the uniform convergence of sn(θ) to s(θ) in (iii).
Let an = (an1, . . . , anm, anx), where anj is jth column of the matrix,
anx is a submatrix. Then let ai,n be the ith row of the matrix an.
Furthermore, explicitly, denote ai,n = (ai,n1, . . . , ai,nm, ai,nx)where
ai,nj, j = 1, . . . ,m, are scalars, and ai,nx is a row subvector with its
dimension k∗ as the number of rows ofQn. It is sufficient to consider
the uniform convergence of ai,ng(θ) for each i. Then ai,ngn(θ) =
ε′n(θ)(

∑m
j=1 ai,njPjn)εn(θ) + ai,nxQ

′
nεn(θ). Because Sn(λ) = Sn +

(λ0 − λ)Wn, by expansion, εn(θ) = dn(θ) + εn + (λ0 − λ)Gnεn
where dn(θ) = (λ0 − λ)GnXnβ0 + Xn(β0 − β). It follows that
ε′n(θ)(

∑m
j=1 ai,njPjn)εn(θ) = d′n(θ)(

∑m
j=1 ai,njPjn)dn(θ) + ln(θ) +

qn(θ),where ln(θ) = d′n(θ)(
∑m
j=1 ai,njP

s
jn)(εn + (λ0 − λ)Gnεn) and

qn(θ) = (ε′n+ (λ0−λ)ε
′
nG
′
n)(
∑m
j=1 ai,njPjn)(εn+ (λ0−λ)Gnεn). The

term ln(θ) is linear in εn. By expansion,

1
n
ln(θ) = (λ0 − λ)

1
n
(Xnβ0)′G′n

(
m∑
j=1

ai,njP sjn

)
εn

+ (β0 − β)
′
1
n
X ′n

(
m∑
j=1

ai,njP sjn

)
εn
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+ (λ0 − λ)
2 1
n
(Xnβ0)′G′n

(
m∑
j=1

ai,njP sjn

)
Gnεn

+ (λ0 − λ)(β0 − β)
′
1
n
X ′n

(
m∑
j=1

ai,njP sjn

)
Gnεn

= oP(1),

by Lemma A.4, uniformly in θ ∈ Θ . The uniform convergence in
probability follows because ln(θ) is simply a quadratic function of
λ and β andΘ is a bounded set. Similarly,

1
n
qn(θ) =

1
n
ε′n

(
m∑
j=1

ai,njPjn

)
εn + (λ0 − λ)

1
n
ε′nG
′

n

(
m∑
j=1

ai,njP sjn

)
εn

+ (λ0 − λ)
2 1
n
ε′nG
′

n

(
m∑
j=1

ai,njPjn

)
Gnεn

= (λ0 − λ)
1
n

m∑
j=1

ai,njtr(ΣnG′nP
s
jn)

+ (λ0 − λ)
2 1
n

m∑
j=1

ai,njtr(ΣnG′nPjnGn)+ oP(1),

uniformly in θ ∈ Θ , by Lemmas A.2 and A.3, and E(ε′nPjnεn) =
tr(ΣnPjn) = tr(Σn · Diag{Pjn}) = 0 for all j = 1, . . . ,m because
Diag{Pjn} = 0 by design. Consequently,

1
n
ε′n(θ)

(
m∑
j=1

ai,njPjn

)
εn(θ) =

1
n
d′n(θ)

(
m∑
j=1

ai,njPjn

)
dn(θ)

+ (λ0 − λ)
1
n

m∑
j=1

ai,njtr(ΣnP sjnGn)

+ (λ0 − λ)
2 1
n

m∑
j=1

ai,njtr(ΣnG′nPjnGn)+ oP(1),

uniformly in θ ∈ Θ . The consistency of the GMME θ̂n follows from
this uniform convergence and the identification condition.
For the asymptotic distribution of θ̂n, by Taylor’s expansion of

∂g ′n (̂θn)
∂θ
a′nangn(̂θn) = 0 at θ0,

23

√
n(̂θn − θ0)

= −

[
1
n
∂g ′n(̂θn)
∂θ

a′nan
1
n
∂gn(θ̄n)
∂θ ′

]−1
1
n
∂g ′n(̂θn)
∂θ

a′n
1
√
n
angn(θ0).

As ∂εn(θ)
∂θ ′
= −(WnYn, Xn), it follows that

∂gn(θ)
∂θ ′
= −(P s1nεn(θ), . . . ,

P smnεn(θ),Qn)
′(WnYn, Xn). Explicitly, 1nε

′
n(θ)P

s
jnWnYn =

1
nε
′
n(θ)P

s
jn

GnXnβ0 + 1
nε
′
n(θ)P

s
jnGnεn. By Lemmas A.3 and A.4,

1
n
ε′n(θ)P

s
jnGnXnβ0 =

1
n
d′n(θ)P

s
jnGnXnβ0 +

1
n
ε′nP

s
jnGnXnβ0

+ (λ0 − λ)
1
n
ε′nG
′

nP
s
jnGnXnβ0

=
1
n
d′n(θ)P

s
jnGnXnβ0 + oP(1),

and
1
n
ε′n(θ)P

s
jnGnεn

23 Note that the Taylor’s expansion of ∂g
′
n(θ̂n)
∂θ
a′nangn(θ̂n) is only to expand the

component g(θ̂n) at θ0 but not the component
∂g ′n(θ̂n)
∂θ
. So the second order derivative

of gn(θ)would not be needed. This simplifies our analysis.
=
1
n
d′n(θ)P

s
jnGnεn +

1
n
ε′nP

s
jnGnεn +

1
n
(λ0 − λ)ε

′

nG
′

nP
s
jnGnεn

=
1
n
tr(ΣnP sjnGn)+ (λ0 − λ)

1
n
tr(ΣnG′nP

s
jnGn)+ oP(1),

uniformly in θ ∈ Θ . Hence,

1
n
ε′n(θ)P

s
jnWnYn =

1
n
d′n(θ)P

s
jnGnXnβ0 +

1
n
tr(ΣnP sjnGn)

+ (λ0 − λ)
1
n
tr(ΣnG′nP

s
jnGn)+ oP(1),

uniformly in θ ∈ Θ . At θ0, dn(θ0) = 0 and, hence, 1nε
′
n(θ0)

P sjnWnYn =
1
n tr(ΣnP

s
jnGn) + oP(1). At θ0,

1
nε
′
n(θ0)P

s
jnXn = oP(1).

Finally, 1nQ
′
nWnYn =

1
nQ
′
nGnXnβ0 +

1
nQ
′
nGnεn =

1
nQ
′
nGnXnβ0 +

oP(1). In conclusion, 1n
∂gn (̃θn)
∂θ

= −
1
nDn + oP(1) with Dn in

(14). On the other hand, Lemma A.5 implies that 1
√
nangn(θ0) =

1
√
n [ε
′
n(
∑m
j=1 anjPjn)εn + anxQ

′
nεn]

D
→N(0, limn→∞ 1

nanΩna
′
n). The

asymptotic distribution of
√
n(̂λn − λ0) follows. �

Proof of Proposition 2. A. The consistency of 1n Ω̂n:We shall show
that each element in 1n Ω̂n −

1
nΩn is of the order of op(1).

(a) The consistency of some elements: One generic form of
the elements in the matrix 1nΩn is

1
n

∑n
i=1
∑n
j=1 P∆n,ijσ

2
niσ

2
nj, with

P∆n,ij = Pan,ij(Pbn,ij + Pbn,ji), note that P∆n,ii = 0. We shall first
show that 1n

∑n
i=1
∑n
j=1 P∆n,ijε

2
niε
2
nj −

1
n

∑n
i=1
∑n
j=1 P∆n,ijσ

2
niσ

2
nj =

op(1), then we establish that this convergence holds when εni’s are
replaced by the residuals ε̂ni’s.
(i) Show that 1n

∑n
i=1
∑n
j=1 P∆n,ijε

2
niε
2
nj −

1
n

∑n
i=1
∑n
j=1 P∆n,ij

σ 2niσ
2
nj = op(1).
Define the n× nmatrix P∆n = [P∆n,ij]. Because Pbn is uniformly

bounded in either the row or column sum norms, its elements
are uniformly bounded, i.e., there exists a constant c such that
|Pbn,ij + Pbn,ji| ≤ c for all i, j and n. Therefore |P∆n,ij| ≤ c|Pan,ij|.
Because Pan is uniformly bounded in both the row and column
norms, it follows that P∆n is uniformly bounded in both the row
and colum sum norms.
As ε2niε

2
nj − σ

2
niσ

2
nj = (ε2ni − σ

2
ni)(ε

2
nj − σ

2
nj) + σ

2
ni(ε

2
nj − σ

2
nj) +

σ 2nj(ε
2
ni − σ

2
ni), one has

1
n

n∑
i=1

n∑
j=1

P∆n,ij(ε2niε
2
nj − σ

2
niσ

2
nj) = Qn + Ln1 + Ln2,

where Qn = 1
n

∑n
i=1
∑n
j=1 P∆n,ij(ε

2
ni − σ 2ni)(ε

2
nj − σ 2nj), Ln1 =

1
n

∑n
i=1
∑n
j=1 σ

2
njP∆n,ij(ε

2
ni − σ

2
ni), and Ln2 =

1
n

∑n
i=1
∑n
j=1 σ

2
niP∆n,ij

(ε2nj−σ
2
nj). Define vectors un = (un1, . . . , unn)where uni = ε

2
ni−σ

2
ni,

and Cσn = (σ 2n1, . . . , σ
2
nn). It follows that Qn =

1
nu
′
nP∆nun, Ln1 =

1
nu
′
nP∆nC

′
σn, and Ln2 =

1
nCσnP∆nun. As E(u

′
nP∆nun) = tr(P∆nΛn)

where Λn = E(unu′n) = Diag{µn1,4 − σ
4
n1, . . . , µnn,4 − σ

4
nn} is

a diagonal matrix, E(u′nP∆nun) = tr(Diag(P∆n)Λn) = 0 because
P∆n,ii = 0 for all i. It follows by Lemma A.3 that Qn = oP(1). On the
other hand, Lemma A.4 gives Ln1 = op(1) and Ln2 = op(1). Hence,
we conclude the convergence in (i). Next, we’ll show that the εni’s
can be replaced by the residuals ε̂ni’s.
(ii) Show that 1n

∑n
i=1
∑n
j=1 P∆n,iĵε

2
nîε
2
nj −

1
n

∑n
i=1
∑n
j=1 P∆n,ijε

2
ni

ε2nj = op(1). Now

1
n

n∑
i=1

n∑
j=1

P∆n,iĵε2nîε
2
nj −

1
n

n∑
i=1

n∑
j=1

P∆n,ijε2niε
2
nj = Bn1 + Bn2 + Bn3,

where Bn1 = 1
n

∑n
i=1
∑n
j=1 P∆n,ijε

2
nj(̂ε

2
ni − ε

2
ni), Bn2 =

1
n

∑n
i=1
∑n
j=1

P∆n,ijε2ni(̂ε
2
nj−ε

2
nj), and Bn3 =

1
n

∑n
i=1
∑n
j=1 P∆n,ij(̂ε

2
ni−ε

2
ni)(̂ε

2
nj−ε

2
nj).
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From the model, we get

ε̂n = Sn(̂λ)Yn − Xnβ̂ = εn + (λ0 − λ̂)Gnεn
+ Xn(β0 − β̂)+ (λ0 − λ̂)GnXnβ0

In a scalar form, ε̂ni = εni+bni+cni, where bni = (λ0− λ̂)(ei,nGnεn)
and cni = ei,nXn(β0 − β̂) + (λ0 − λ̂)ei,nGnXnβ0, where ei,n is the
ith row in the n × n identity matrix. Thus ε̂2ni = ε

2
ni + b

2
ni + c

2
ni +

2εnibni+2εnicni+2bnicni.We shall consider that all the three terms
Bnl, l = 1, 2, 3, converge to zero in probability. Let’s consider Bn1

Bn1 =
1
n

n∑
i=1

n∑
j=1

P∆n,ijε2nj(̂ε
2
ni − ε

2
ni)

=
1
n

n∑
i=1

n∑
j=1

P∆n,ijε2nj[b
2
ni + c

2
ni + 2εnibni + 2εnicni + 2bnicni].

We want to show this is op(1). We shall pay special attention to
those terms with the higher orders in ε’s. The other remaining
terms are simpler. An example of such a term is

1
n

n∑
i=1

n∑
j=1

P∆n,ijε2njεnibni = (λ0 − λ̂)
1
n

n∑
i=1

n∑
j=1

n∑
l=1

P∆n,ijGn,ilεniε2njεnl.

As λ̂ − λ0 = op(1), this will be op(1) if 1n
∑n
i=1
∑n
j=1
∑n
l=1 P∆n,ij

Gn,ilεniε2njεnl is stochastically bounded. By Cauchy’s inequality,

E|εniεnlε2nj| ≤ [E(εniεnl)
2
]
1
2 E

1
2 (ε4nj) ≤ E

1
4 (ε4ni)E

1
4 (ε4nl)E

1
4 (ε4nj) ≤ c

for some constant c, for all i, j, l, and n because {µni,4} is a bounded
sequence. It follows that

E

∣∣∣∣∣1n
n∑
i=1

n∑
j=1

n∑
l=1

P∆n,ijGn,ilεniε2njεnl

∣∣∣∣∣
≤ c
1
n

n∑
i=1

(
n∑
j=1

|P∆n,ij|

)(
n∑
l=1

|Gn,il|

)
= O(1),

because P∆,n and Gn are uniformly bounded in row and column
sums. By the Markov inequality, it implies that 1n

∑n
i=1
∑n
j=1
∑n
l=1

P∆n,ijGn,ilεniε2njεnl = Op(1).
Another term with high order ε’s is

1
n

n∑
i=1

n∑
j=1

P∆n,ijε2njb
2
ni

= (λ0 − λ̂)
2 1
n

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

P∆n,ijGn,ikGn,ilε2njεnkεnl = op(1),

because

E

∣∣∣∣∣1n
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

P∆n,ijGn,ikGn,ilε2njεnkεnl

∣∣∣∣∣
≤ c
1
n

n∑
i=1

(
n∑
j=1

|P∆n,ij|

)(
n∑
k=1

|Gn,ik|

)(
n∑
l=1

|Gn,il|

)
= O(1).

The remaining terms in Bn1 are simpler and the same arguments
with the Markov inequality shall be applicable. Thus Bn1 = op(1).
Bn2 has a similar structure as Bn1, because i is replaced by j and vice
versa. So Bn2 = op(1).
It remains to consider Bn3, which is

Bn3 =
1
n

n∑
i=1

n∑
j=1

P∆n,ij[b2ni + c
2
ni + 2εnibni + 2εnicni + 2bnicni]

× [b2nj + c
2
nj + 2εnjbnj + 2εnjcnj + 2bnjcnj].

The highest order term with ε’s is
1
n

n∑
i=1

n∑
j=1

P∆n,ijb2nib
2
nj

=
1
n

n∑
i=1

n∑
j=1

P∆n,ij(ei,nGnεn)(ej,nGnεn)(λ0 − λ̂)2

= (λ0 − λ̂)
2Kn,

where Kn = 1
n

∑n
i=1
∑n
j=1
∑n
k1=1

∑n
k2=1

∑n
l1=1

∑n
l2=1
P∆n,ijGn,ik1

Gn,ik2Gn,jl1Gn,jl2εnk1εnk2εnl1εnl2 . The Cauchy inequality implies that
E|εnk1εnk2εnl1εnl2 | ≤ µnk1,4µnk2,4µnl1,4µnl2,4 ≤ c, for some
constant c for all n. By the uniformboundedness in rowand column
sums for P∆,n and Gn,

E|Kn| ≤
c
n

n∑
i=1

(
n∑
j=1

|P∆n,ij|

)(
n∑

k1=1

|Gn,ik1 |

)(
n∑

k2=1

|Gn,ik2 |

)

×

(
n∑
l1=1

|Gn,jl1 |

)(
n∑
l2=1

|Gn,jl2 |

)
= O(1),

which implies that Kn = Op(1) by the Markov inequality. Other
terms in Bn3 can similarly be analyzed. Thus, we conclude that
Bn3 = oP(1).
Therefore, 1n

∑n
i=1
∑n
j=1 P∆n,iĵε

2
nîε
2
nj−

1
n

∑n
i=1
∑n
j=1 P∆n,ijε

2
niε
2
nj =

op(1). Combining (i) and (ii), we have 1n
∑n
i=1
∑n
j=1 P∆n,iĵε

2
nîε
2
nj −

1
n

∑n
i=1
∑n
j=1 P∆n,ijσ

2
niσ

2
nj
p
→ 0.

(b) The consistency of the other elements: The other elements
in the matrix 1nΩn are of the form

1
nQ
′

n
∑
n Qn =

1
n

∑n
i=1 σ

2
niq
′

iqi.
With similar arguments in (a) or arguments as in White (1980),
1
n

∑n
i=1 ε̂

2
niq
′

iqi
P
→

1
n

∑n
i=1 σ

2
niq
′

iqi.

In conclusion, we’ve shown that 1n Ω̂n
P
→

1
nΩn.

B. The consistency of 1n D̂n :One generic form for the elements of
1
nDn is

1
n

∑n
i=1(P

s
jnGn)iiσ

2
ni. Since P

′
ns,G

′
ns are all uniformly bounded

in both the row and column sums, so are the matrices (P sjnGn)
′s.

Thus 1n
∑n
i=1(P

s
jnGn)iîε

2
i −

1
n

∑n
i=1(P

s
jnGn)iiσ

2
ni
p
→ 0 can be shown

with the same arguments in part (a) above.
Together, these prove the validity of Proposition 2. �

Proof of Proposition 3. The generalized Schwartz inequality im-
plies that the optimal weighting matrix for a′nan in Proposi-
tion 1 is ( 1nΩn)

−1. For consistency, consider 1ng
′
n(θ)Ω̂

−1
n gn(θ) =

1
ng
′
n(θ)Ω

−1
n gn(θ) +

1
ng
′
n(θ)(Ω̂

−1
n − Ω−1n )gn(θ). With an = ( 1n

Ωn)
−1/2 in Proposition 1, Assumption 6 implies that a0 =

(limn→∞ 1
nΩn)

−1/2 exists. Because a0 is nonsingular, the iden-
tification condition of θ0 corresponds to the unique root of
limn→∞ E( 1ngn(θ)) = 0 at θ0, which is satisfied by Assumption 5.
Hence, the uniform convergence in probability of 1ng

′
n(θ)Ω

−1
n gn(θ)

to a well defined limit uniformly in θ ∈ Θ follows by a similar ar-
gument in the proof of Proposition 1. So it remains to show that
1
ng
′
n(θ)(Ω̂

−1
n − Ω

−1
n )gn(θ) = oP(1) uniformly in θ ∈ Θ . Let ‖ · ‖

be the Euclidean norm or the maximum row sum norm for vectors
and matrices. Then, ‖ 1ng

′
n(θ)(Ω̂

−1
n −Ω

−1
n )gn(θ) ‖≤ (

1
n ‖ gn(θ) ‖

)2 ‖ ( Ω̂nn )
−1
−(Ωnn )

−1
‖. From the proof of Proposition 1, 1n [gn(θ)−

E(gn(θ))] = oP(1) uniformly in θ ∈ Θ . On the other hand, as

1
n
d′n(θ)Pjndn(θ) = (λ0 − λ)

2 1
n
(Xnβ0)′G′nPjnGn(Xnβ0)

+ (λ0 − λ)
1
n
(Xnβ0)′G′nP

s
jnXn(β0 − β)

+ (β0 − β)
′
1
n
X ′nPjnXn(β0 − β) = OP(1),
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uniformly in θ ∈ Θ , 1nE(ε
′
n(θ)Pjnεn(θ)) =

1
nd
′
n(θ)Pjndn(θ) +

(λ0 − λ)
1
n tr(ΣnP

s
jnGn) + (λ0 − λ)

2 1
n tr(ΣnG

′
nPjnGn) = O(1), uni-

formly in θ ∈ Θ . Similarly, 1nE(Q
′
nεn(θ)) =

1
nQ
′
ndn(θ) = (λ0 −

λ) 1nQ
′
nGnXnβ0 +

1
nQ
′
nXn(β0 − β) = O(1) uniformly in θ ∈ Θ .

These imply that ‖ 1nE(gn(θ)) ‖= O(1) uniformly in θ ∈ Θ . Conse-
quently, by the Markov inequality, 1n ‖ gn(θ) ‖= OP(1) uniformly
in θ ∈ Θ . Therefore, ‖ 1ng

′
n(θ)(Ω̂

−1
n − Ω

−1
n )gn(θ) ‖ converges in

probability to zero, uniformly in θ ∈ Θ . The consistency of the
feasible optimum GMME θ̂o,n follows.
For the limiting distribution, as 1n

∂gn (̂θn)
∂θ
= −

Dn
n + oP(1) from

the proof of Proposition 1,

√
n(̂θo,n − θ0) = −

[
1
n
∂g ′n(̂θn)
∂θ

(
Ω̂n

n

)−1 1
n
∂gn(̂θn)
∂θ

]−1

×
1
n
∂g ′n(̂θn)
∂θ

(
Ω̂n

n

)−1 1
√
n
gn(θ0)

=

[
D′n
n

(
Ωn

n

)−1 Dn
n

]−1
D′n
n

(
Ωn

n

)−1 1
√
n
gn(θ0)+ oP(1).

The limiting distribution of
√
n(̂θon − θ0) follows from this

expansion. �
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