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This article investigates spatial panel data models with a space–time filter in disturbances. We consider their estima-
tion by both fixed effects and random effects specifications. With a between equation properly defined, the difference
of the random versus fixed effects models can be highlighted. We show that the random effects estimate is a pooling of
the within and between estimates. A Hausman-type specification test and an Lagrangian multiplier test are proposed
for the testing of the random components specification versus the fixed effects specification.

1. INTRODUCTION

Panel data with spatial interactions are of interest as they take into account dynamic and
spatial dependence and also control for unobservable heterogeneity. Anselin (1988) provides a
panel regression model with error components and spatial autoregressive (SAR) disturbances.
Baltagi et al. (2003) consider specification tests for spatial correlation in that spatial panel
regression model. Kapoor et al. (2007) propose a different specification with error components
and an SAR structure in the overall disturbance and suggest a method of moments (MOM)
estimation, and Fingleton (2008) adopts a similar approach to estimate a spatial panel model with
SAR-dependent variables but with random components and a spatial moving average (SMA)
structure in the overall disturbance. In an attempt to nest the Anselin (1988) and Kapoor et al.
(2007) models, Baltagi et al. (2007a) suggest an extended model without restrictions on implied
SAR structures in the error component and the remaining disturbance. As an alternative
to the random effects specification, Lee and Yu (2010) investigate the estimation of spatial
panel models under a fixed effects specification. The fixed effects model has the advantage of
robustness in that fixed effects are allowed to depend on included regressors in the model. It
also provides a unified model framework because different random effects models in Anselin
(1988), Kapoor et al. (2007), and Baltagi et al. (2007a) reduce to the same fixed effects model.

In this article, we are interested in exploring the econometric content of random effects versus
fixed effects spatial panels. As there are various random components specifications in spatial
panels, we put forward a generalized specification in order to nest existing random effects spatial
panels as special cases. Such a generalized model is motivated by Baltagi et al. (2007a) but goes
beyond by including serial correlation and the SMA structure in disturbances. It incorporates
different SAR structures on error components in Kapoor et al. (2007), generalized spatial error
components in Baltagi et al. (2007a), serially correlated disturbances in Baltagi et al. (2007b),
and also SMA disturbances in Fingleton (2008).2 Although Kapoor et al. (2007) and Fingleton
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(2008) consider the MOM estimation and Baltagi et al. (2007a, 2007b) emphasize score tests
of correlation, we investigate the maximum likelihood (ML) and quasi-maximum likelihood
approaches for estimation and testing. Estimation under the fixed effects specification as well as
that with random components will be considered.3 The use of likelihood functions is revealing,
as they can highlight the different econometric content of a random components specification
versus its fixed effects counterpart; also, they can provide the conventional Hausman-type and
Lagrangian multiplier (LM) tests of random versus fixed effects.

For the random effects specification in a linear regression panel data model, it is shown in
Maddala (1971) that generalized least squares (GLS) estimates of regression coefficients are
weighted averages of within and between estimates. Hence, by pooling the within and between
estimators, the GLS estimate will be more efficient relative to the within estimator under the
random effects specification. In this article, we show that, with a properly defined between
equation, the random effects estimate may also be interpreted as a pooling of estimates that
explore spatial units’ within and between sample information.

For the linear regression panel model, the within estimate will be consistent under both
random effects and fixed effects specifications. The random effects estimator is consistent and
can be more efficient than the within estimator under the random effects specification; however,
it would be inconsistent if individual effects were correlated with regressors. Hausman (1978)
has proposed a test of correlation of random effects with regressors for the panel regression
model. For the Kapoor et al. (2007)-type spatial panel model, Mutl and Pfaffermayr (2011)
have considered a Hausman-type test based on two-stage least square (2SLS) estimates. In
the likelihood framework, it is natural to consider the Hausman-type test via ML estimates.
Difference of the log-likelihood functions of the random components and fixed effects models,
where the latter explores only the spatial units’ within sample information (within equation),
is highlighted by the likelihood function of the between equation. The difference of various
random components specifications would also be revealed via the between equation.

We conduct some Monte Carlo experiments to investigate the performances of various es-
timates and testing procedures in this article.4 We find that (i) estimates based on the random
effects information are more efficient than the estimates based only on the spatial units’ within
sample information under the random effects model, and estimates of the random effects model
have some bias under the fixed effects model where individual effects are correlated with re-
gressors, although estimates of within equation are consistent under both specifications; (ii)
omission of serial correlation causes some bias in estimates for either the random effects model
or within equation; (iii) misspecification of different random effects models causes some bias;
and (iv) omission of either SAR disturbances or SMA disturbances causes bias in the estimation
of spatial structures of disturbances.

In empirical applications with spatial panel data, it seems that investigators tend to limit
their focus on some spatial structures and ignore others, and in addition, no serial correlation
is considered. For example, Moscone et al. (2007) study the spatial correlation of public health
expenditures among British counties using a random components panel model without serial
correlation, where either the SAR-dependent variable or spatial disturbances are included
in the regression (but not both). Thus, it is of interest to investigate possible consequences
of misspecifications due to omitting some spatial or serial correlation structures. From our
limited Monte Carlo experiments, we see that incorporating proper spatial and serial correlation
structures into the panel model is important for the estimation and testing.

This article is organized as follows. Section 2 presents the general model specification and
discusses the estimation. We first consider the estimation of the fixed effects model, followed

3 There are studies in the literature on dynamic panel models with spatial interactions. See Elhorst (2005), Su and
Yang (2007), Yu et al. (2008, 2012), Korniotis (2010), and Yu and Lee (2010) among others. However, dynamic models
involve an initial value problem, which needs special treatment when the panel is short. Panel data models without
dynamics do not, in general, have such an issue. Hence, estimation methods and asymptotic properties of estimators
can be different for static and dynamic models.

4 Matlab codes for estimates and tests are available on request.
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by the random effects one. We demonstrate that the random effects model can be decomposed
into a within equation and a between equation, and the estimate of the random effects model
can be regarded as the pooling of estimates of within and between equations. The distinctions
of various random components specifications are captured by the between equation. We focus
on the situation with T being finite as in the literature for the panel regression model.5 Sec-
tion 3 investigates the Hausman and LM tests for the random effects specification. The between
equation provides the role to determine proper degrees of freedom for the Hausman test. Sec-
tion 4 provides some Monte Carlo results on performances of estimates and test statistics. Also,
consequences of misspecifications of omitting spatial and/or serial correlations are reported.
Section 5 concludes. Some algebra and proofs are collected in the Appendix.

2. THE GENERAL SPATIAL PANEL MODEL

Consider the following model:

Ynt = λ10Wn1Ynt + znb0 + Xntβ0 + μn + Unt,

Unt = λ20Wn2Unt + (In + δ20Mn2)Vnt for t = 1, . . . , T,

μn = λ30Wn3μn + (In + δ30Mn3)cn0,

Vnt = ρ0Vn,t−1 + ent for t = 2, . . . , T ,

(1)

where Ynt is an n × 1 column vector, Xnt is an n × kx matrix of nonstochastic time varying
regressors, and zn is an n × kz matrix captures nonstochastic time invariant regressors including
the constant intercept.6 The Wnj and Mnj are n × n nonstochastic spatial weights matrices
that generate the spatial dependence, μn is an n-dimensional vector of individual effects7 with
spatial interactions, Unt is the SAR error, which is also serially correlated, and cn0 and ent are
independent with i.i.d. elements such that cn0,i ∼ i.i.d.(0, σ2

c0) and ent,i ∼ i.i.d.(0, σ2
e0). As in the

literature, we assume stationarity so that Vn1 ∼ (0, (σ2
e0/(1 − ρ2

0))In) and is independent with ent

for t = 2 , . . . , T. In addition, Unt and μn are allowed to incorporate the SMA feature. This is a
generalized spatial panel model that incorporates spatial correlation, heterogeneity, and serial
correlation in disturbances. It nests various spatial panels existing in the literature (where the
abbreviation of models is from Baltagi et al., 2012):

(i) Kapoor et al. (2007) SAR-RE: λ20 = λ30, δ20 = δ30 = 0, ρ0 = 0, and Wn2 = Wn3.
(ii) Fingleton (2008) SMA-RE: λ20 = λ30 = 0, δ20 = δ30, ρ0 = 0, and Mn2 = Mn3.

(iii) Anselin (1988) RE-SAR: λ30 = 0, δ20 = 0, δ30 = 0, and ρ0 = 0.
(iv) Anselin et al. (2008) RE-SMA: λ20 = 0, λ30 = 0, δ30 = 0, and ρ0 = 0.
(v) Baltagi et al. (2007a) Generalized RE-SAR: δ20 = 0, δ30 = 0 and ρ0 = 0.

(vi) Baltagi et al. (2007b) RE-SAR with serial correlation: λ30 = 0, δ20 = 0, and δ30 = 0.
In addition, it also includes

(vii) SARMA-RE, where μn + Unt = (In − λ20Wn2)−1(In + δ20Mn2)(cn0 + Vnt) with λ20 = λ30,
δ20 = δ30, and ρ0 = 0.

5 In footnote 17, we make some brief comments on the situation with T tending to infinity.
6 The exogenous variables Xnt (and also zn) can include spatial features such that the regressor function includes

Xntβ0 and Mn1Xntδ10, where Mn1Xnt can capture the so-called spatial Durbin regressors (LeSage and Pace, 2009).
Although the spatial Durbin regressors may be of interest in empirical applications, it does not introduce additional
complication in theoretical analysis. Thus, for simplicity, we only use Xntβ0 (and znb0) for the regressor function.

7 We may also have time effects in the model. In short panels, time effects will not cause the incidental parameter
problem and they can be treated as regressors. However, for long panels, to avoid the incidental parameter problem,
we may eliminate them before the estimation or allow them in the regression by the random effects specification.
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Parent and LeSage (2008) apply the Markov Chain Monte Carlo method to a linear panel
regression model where spatially and serially correlated disturbances are present. The product
of the quasi-difference over time and the spatial transformation is called the space-time filter
in Parent and LeSage (2008). In this article, the serial correlation in Vnt incorporates the space-
time filter in Unt. We consider the ML estimation under both fixed effects and random effects
specifications on μn. The parameter subvector θ10 = (β′

0, λ10, λ20, δ20, ρ0, σ2
e0)′ can be estimated

from both fixed and random effects models. The remaining parameters in θ20 = (b′
0, λ30, δ30,

σ2
c0)′ can only be estimated under the random effects specification.

2.1. Fixed Individual Effects. With individual effects μn being fixed parameters, the model
is

Ynt = λ10Wn1Ynt + Xntβ0 + μn + Unt,

Unt = λ20Wn2Unt + (In + δ20Mn2)Vnt for t = 1, . . . , T,

Vnt = ρ0Vn,t−1 + ent for t = 2, . . . , T ,

(2)

where the time invariant regression function znb0 has been implicitly absorbed by μn. Because
elements of μn are fixed parameters, their spatial structure would be irrelevant. Thus, the
specifications in Anselin (1988) and Kapoor et al. (2007) would yield the same fixed effects
model once the random effects are conditioned upon. For the linear panel regression model
with or without serial correlation, relevant model specifications and estimation methods are
summarized in Hsiao (2003) and Baltagi (2008). For the panel regression model with serially
correlated disturbances, Kiefer (1980) and Bhargava et al. (1982) investigate the fixed effects
specification and recognize possible inconsistency of estimates when T is finite, in particular,
the serial correlation parameters.8

This section will consider the estimation method by eliminating fixed effects before estimation.
To eliminate individual effects, we suggest the use of first difference rather than the deviation
from time mean. This is so because serial correlation in time series can be better dealt with in a
recursive fashion.9 For any n × 1 vector Znt, denote �Znt = Znt − Zn,t−1 as the first difference.
With the first difference on (2), it gives

�Ynt = λ10Wn1�Ynt + �Xntβ0 + �Unt,

�Unt = λ20Wn2�Unt + (In + δ20Mn2)�Vnt for t = 2, . . . , T,
(3)

where

�Vnt = ρ0�Vn,t−1 + �ent for t = 3, . . . , T,

�Vn2 = en2 − (1 − ρ0)Vn1,

and �ent becomes a moving average (MA) process. Define (T − 1) × (T − 1) matrices QT−1

= QT−1(ρ0) in (A.5). We see that QT−1 is the quasi-difference transformation matrix. Denote
YnT = (Y ′

n1, Y ′
n2, . . . , Y ′

nT )′, Yd
n,T −1 = (�Y ′

n2, . . . ,�Y ′
nT )′, and other variables accordingly. Let

Snj (λj) = In − λjWnj for any possible λj for j = 1, 2, 3 and Bnj(δj) = (In + δjMnj) for any possible

8 The incidental parameter problem is also well known for dynamic panel models with fixed effects (Nickell, 1981).
9 If the time deviation transformation is used, the disturbances in the estimation equation would be

Vnt − V̄n. = ρ0
(
Vn,t−1 − V̄ (−1)

n.

)+ ent − ēn.,(*)

for t = 2 , . . . , T, where V̄n. = 1
T

∑T
t=1 Vnt and V̄ (−1)

n. = 1
T

∑T −1
t=0 Vnt . The process in (*) is no longer a Markov process

and does not process a recursive structure. In particular, we note that Vnt − V̄n. and Vn,t−1 − V̄ (−1)
n. for t = 2 , . . . , T are

not the same random variables. A quasi-difference to eliminate the serial correlation in (*) would not be feasible. Also,
the variance matrix of such random variables over time would be complicated, and so would be its inverse.
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δj for j = 2, 3; correspondingly, let Snj = In − λj0Wnj for j = 1, 2, 3 and Bnj = (In + δj0Mnj) for
j = 2, 3 at true parameter values. Then (3) can be rewritten as

(IT −1 ⊗ Sn1)Yd
n,T −1 = Xd

n,T −1β0 + (
IT −1 ⊗ S−1

n2 Bn2
)
Vd

n,T −1,

where

(QT −1 ⊗ In)Vd
n,T −1 = ed

n,T −1 = (�V ′
n2,�e′

n3, . . . ,�e′
nT )′.

Thus, one has

(QT −1 ⊗ Sn1)Yd
n,T −1 = (QT −1 ⊗ In)Xd

n,T −1β0 + (
IT −1 ⊗ S−1

n2 Bn2
)
ed

n,T −1.

As �Vn2 = en2 − (1 − ρ0)Vn1, we have Var(�Vn2) = (2σ2
e0/(1 + ρ0))In, Cov(�Vn2,�en3) =

−σ2
e0In, and Cov(�Vn2, �ent) = 0 for t = 4 , . . . , T.10 Define HT−1 = HT−1(ρ0) in (A.6). The

σ2
e0HT −1 ⊗ In is the variance matrix11 of ed

n,T −1. The likelihood function (when the disturbances
are normal; otherwise, a quasi-likelihood) of θ1 in terms of Yd

n,T −1 is therefore

Lw,nT (θ1) = (2π)−n(T −1)/2|Sn1(λ1)|T −1|Sn2(λ2)|T −1
∣∣Bn2(δ2)

∣∣−(T −1)

× ∣∣σ2
e HT −1(ρ)

∣∣−n/2|QT −1(ρ)|n exp
(

− 1
2σ2

e
e′d

n,T −1(θ1)
(
H−1

T −1(ρ) ⊗ In
)
ed

n,T −1(θ1)
)

,

(4)

where

ed
n,T −1(θ1) = (

IT −1 ⊗ B−1
n2 (δ2)Sn2(λ2)

)[
(QT −1(ρ) ⊗ Sn1(λ1))Yd

n,T −1 − (QT −1(ρ) ⊗ In)Xd
n,T −1β

]
and |QT−1(ρ)|n = 1.

Alternatively, denoting VnT (θ1) = (IT ⊗ B−1
n2 (δ2)Sn2(λ2)) [(IT ⊗ Sn1(λ1))YnT − XnT β − cn]

with cn being an arbitrary vector for cn0, the likelihood function can be written based
on VnT (θ1). By defining LT−1,T in (A.4) as the first difference transformation ma-
trix, we have the relation ed

n,T −1(θ1) = (QT −1(ρ)LT −1,T ⊗ In)VnT (θ1).12 This implies that
e′d

n,T −1(θ1)(H−1
T −1(ρ) ⊗ In)ed

n,T −1(θ1) in (4) can be written as V′
nT (θ1)(JT (ρ) ⊗ In)VnT (θ1),

where13 JT (ρ) ≡ L′
T −1,T Q′

T −1(ρ)H−1
T −1(ρ)QT −1(ρ)LT −1,T has the explicit expression in (A.8).

The JT (ρ) matrix is to eliminate the individual effects and serial correlation in the disturbances
VnT . When ρ = 0, we have JT (0) = L′

T −1,T H−1
T −1LT −1,T = IT − lT l′T /T as the usual deviation

from time mean operation, where lT is a T × 1 vector of ones. Thus, the log-likelihood (4) can
be rewritten as

10 If Vn1 were assumed to be fixed, Var(�Vn2) = Var(en2) = σ2
e0In , Cov(�Vn2, �en3) = −σ2

e0In , and Cov(�Vn2,

�ent) = 0, for t = 4 , . . . , T. Also, when Vn1 were random, it could be in general (0,
σ2

e0
τ

In) in Baltagi and Li (1991). If
these were the selected specifications, the (1,1) entry of HT−1(ρ) in the following would be modified accordingly.

11 For HT−1(ρ), its inverse and determinant have closed form expressions (see Hsiao et al., 2002, or Appendix A in
this article).

12 Even though cn appears in VnT (θ1), it would be eliminated by the differencing operator LT−1,T . Thus, one may
ignore cn in VnT (θ1) for analysis.

13 The inverse of HT−1(ρ) is needed to derive JT (ρ). As H−1
T −1(ρ) is not uniformly bounded in row and column sums

for a T sequence although JT (ρ) is, it is desirable to work with JT (ρ) in (5) instead of H−1
T −1(ρ) in (4) for analysis.
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ln Lw,nT (θ1) = −n(T − 1)
2

ln
(
2πσ2

e

)+ (T − 1) (ln |Sn1(λ1)| + ln |Sn2(λ2)| − ln |Bn2(δ2)|)

−n
2

ln |HT −1(ρ)| − 1
2σ2

e
V′

nT (θ1)(JT (ρ) ⊗ In)VnT (θ1),

(5)

with its score and information matrix in Appendix B.1. For the evaluation of this log-likelihood
function, it involves inverses of Sn1(λ1), Sn2(λ2), and Bn2(δ2) and their determinants, which
would be the same as those for a conventional SAR model.14

Although the estimation of the equations in (3) is based on the difference of sample obser-
vations, i.e., Yd

n,T −1, one may interpret the estimation via the likelihood function in (5) as a
“within” estimation based on the use of sample observations deviated from time averages, as
in the traditional estimation of a fixed effects panel regression model in Maddala (1971). This
is so as follows. Let y = (y1 , . . . , yT)′ be a vector of random variables of dimension T. Consider
the difference transformation LT−1,T and the deviation from the time average transformation
JT = IT − lT l′T /T . The LT−1,Ty = (y2 − y1, . . . , yT − yT−1)′ is a (T − 1) -dimensional vector
and the JT y = (y1 − ȳ., . . . , yT − ȳ.) is a T-dimensional vector, where random variables of JTy
are linearly dependent. To construct the likelihood function of JTy, it is known that one may
drop any single observation of JTy even though there is serial correlation among y (e.g., Kiefer,
1980). Thus, the likelihood function of JTy can be constructed from (y2 − ȳ., . . . , yT − ȳ.).
There are relations between the time-deviated observations and the observations in differ-
ence: We have the identities yt − ȳ. = ∑T −(t+1)

l=0 (yt+l − yt+1+l) − 1
T

∑T −1
s=1 s(ys − ys+1) for t =

2 , . . . , T, and, conversely, yt − yt−1 = (yt − ȳ.) − (yt−1 − ȳ.) for t = 3 , . . . , T, and y2 − y1 =
(y2 − ȳ.) +∑T

t=2(yt − ȳ.). These provide a one-to-one linear transformation of the random vec-
tor (y2 − y1, ···, yT − yT−1) onto (y2 − ȳ., . . . , yT − ȳ.). Thus, the density function of (y2 − y1,
···, yT − yT−1) is the same as that of (y2 − ȳ., . . . , yT − ȳ.). For the equations of the spatial panel
model in (2), with the time difference, one has the transformed equation

�Ynt = λ10Wn1�Ynt + �Xntβ0 + �Unt,

for t = 2 , . . . , T in (3), but, with time deviation,

Ynt − Ȳn. = λ10Wn1(Ynt − Ȳn.) + (Xnt − X̄n.)β0 + (Unt − Ūn.),(6)

for t = 2 , . . . , T.15 As (�Un2, ···, �UnT) and (Un2 − Ūn., . . . , UnT − Ūn.) have the same density
function, the likelihood functions of these two transformed equation systems are the same. In
the time deviation version, observations Ynt − Ȳn. and Xnt − X̄n. for t = 2 , . . . , T provide explicit
information of variations within each spatial unit. In the time difference version, �Ynt and �Xnt

for t = 2 , . . . , T, have implicitly provided such information. For the panel regression model, the
least squares dummy variable (LSDV) estimator of the regression coefficients has been termed
the within estimator. As in Maddala (1971), this follows from within group regression. For our
case, the within group information is captured in the likelihood function in (5). The estimation
method via such a likelihood function can also be interpreted as a “within” estimation, even
though the estimator is not simply a least square estimator. According to Lancaster (2000), this
likelihood function does not involve individual effects, and it is a partial likelihood function.

For our asymptotic analysis, we make the following assumptions.

14 If Wn1, Wn2, and Mn2 are diagonalizable, they can be evaluated with their eigenvalues and eigenvectors (see, e.g.,
Ord, 1975). For example, as Mn2 = qn�nq−1

n where �n is the diagonal eigenvalue matrix and qn is the corresponding
eigenvector matrix, B−1

n2 = qn(In + δ20�n)−1q−1
n .

15 Note that in the transformed equations with either time difference or time deviation, linear dependence of the
transformed random variables has been removed by ignoring the corresponding t = 1 observation for each spatial unit.
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ASSUMPTION 1. Wnj for j = 1, 2, 3 and Mnj for j = 2, 3 are nonstochastic spatial weights matrices
with zero diagonals.

ASSUMPTION 2. The disturbances {ent,i}, i = 1, 2 , . . . , n and t = 2, 3 , . . . , T, are i.i.d. across i
and t with zero mean, variance σ2

e0, and E|ent,i|4+η < ∞ for some η > 0; also, they are independent
with Vn1 ∼ (0, (σ2

e0/(1 − ρ2
0))In).

ASSUMPTION 3. Snj(λj) for j = 1, 2, 3 and Bnj(δj) for j = 2, 3 are invertible for all λj ∈ �j and
δj ∈ �j, and ρ ∈ P, where �j and �j are compact intervals and P is a compact subset in (−1, 1).
Furthermore, λj0, δj0, and ρ0 are, respectively, in the interiors of �j, �j, and P.

ASSUMPTION 4. Wnj for j = 1, 2, 3 and Mnj for j = 2, 3 are uniformly bounded in both row and
column sums in absolute value (for short, UB).16 Also,S−1

nj (λj ) and B−1
nj (δj ) are UB, uniformly in

λj ∈ �j and δj ∈ �j.

ASSUMPTION 5. n is large, where T is finite.

ASSUMPTION 6. Elements of the n × kx matrix of regressors Xnt are nonstochastic and
bounded, uniformly in n and t. Also, under the asymptotic setting in Assumption 5, the limit
of 1

n(T −1)

∑T
t=1 X′

nT (JT ⊗ S′
n2B′−1

n2 B−1
n2 Sn2)XnT exists and is nonsingular.

The zero diagonal assumption in Assumption 1 helps the interpretation of the spatial effect,
as self-influence shall be excluded in practice. In many empirical applications, each of the rows
of Wnj (and Mnj) sums to 1, which ensures that all the weights are between 0 and 1. In general,
our estimation and analysis for the model do not require the feature of row-normalization on
spatial weights matrices. We note that Wnj’s and Mnj’s may or may not be the same in practice.
Assumption 2 specifies an i.i.d. assumption for ent,i. If there were unknown heteroskedasticity
in ent, the maximum likelihood estimator (MLE) would not be consistent. Methods such as
the generalized method of moments in Lin and Lee (2010) and that in Kelejian and Prucha
(2010) would be designed for that situation. Invertibility of Snj(λj) and Bnj(δj) in Assumption 3
guarantees that we have a valid reduced form for the SAR representation. Also, compactness
of parameter spaces is a convenient condition for theoretical analysis on nonlinear functions.17

When Wnj (and Mnj) is row-normalized, a compact subset of (−1, 1) has often been taken as the
parameter space for λj (and δj ) in theory. Assumption 4 is originated by Kelejian and Prucha
(1998, 2001) and also used in Lee (2004, 2007). That Wnj, Mnj, S−1

nj (λj ), and B−1
nj (δj ) are UB is a

condition to limit the spatial correlation to a manageable degree. Assumption 5 is assumed for
the short-panel data case.18 We note that the serial correlation coefficient ρ0 can be consistently
estimated under large n even when T is small, where the inference of ρ0 is obtained mainly
from the cross-sectional variation of the data.19 The case with a finite n but a large T is of less
interest as spatial models are mainly designed for the large n case. When exogenous variables
Xnt are included in the model, it is convenient to assume that they are uniformly bounded

16 We say a (sequence of n × n) matrix Pn is uniformly bounded in row and column sums in absolute value if
supn≥1 ‖Pn‖∞ < ∞ and supn≥1 ‖Pn‖1 < ∞, where ‖Pn‖∞ = sup1≤i≤n

∑n
j=1

∣∣pij,n
∣∣ is the row sum norm and ‖Pn‖1 =

sup1≤j≤n
∑n

i=1

∣∣pij,n
∣∣ is the column sum norm.

17 Due to the nonlinearity of λj and δj in the reduced form of the model, compactness of �j and �j is needed. However,
the compactness of β and σ2

e is not necessary because the β and σ2
e estimates given λj and δj are least squares-type

estimates.
18 In a previous version of this article, we also consider the large T case where additional time effects are introduced.

We show that the within estimate is asymptotically as efficient as the random effects estimate as one would expect.
19 This is similar to a short dynamic panel data model with a proper treatment of the initial observation for each unit.

Hsiao et al. (2002) have studied MLE estimation of such a model.
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as in Assumption 6. If Xnt is allowed to be stochastic and unbounded, appropriate moment
conditions can be imposed instead.

We also make assumptions to establish the consistency and asymptotic distribution of the
within estimate.

ASSUMPTION 7. Either (a) the conditions (D.3) and (D.4) in Appendix D.1 hold or (b) the
condition (D.5) holds if (a) fails.

ASSUMPTION 8. The limit of the information matrix (B.1) is nonsingular.

Assumption 7 specifies identification conditions of the within equation. Part (a) of Assumption
7 represents the possible identification of λ10 and β0 through the deterministic part of the reduced
form equation in (3), and λ20, δ20, ρ0, and σ2

e0 from the SAR process of �Unt in (3). Part (b)
of Assumption 7 states the identification through the SAR process of the reduced form of
disturbances of �Ynt in (3) in the event that the identification in (a) is not possible. In (2), the
disturbance process of Unt is a spatial autogressive and moving average process in a general
form. As in the time-series literature, a special case with restrictions on coefficients of such a
process would have the autoregressive and moving average operators cancelled out so that the
coefficients are not identifiable. This would also be the case for the spatial process when Mn2 =
Wn2 and δ20 = −λ20. The conditions (D.4) and (D.5) would rule out such an underidentification
case.20 Assumption 8 is for the nonsingularity of the limit of the information matrix for the
within equation.

PROPOSITION 1. Under Assumptions21 1–7(a), or Assumptions 1–6, 7(b), and 8, the within
estimate θ̂w1 of θ10 under the fixed effects specification from (5) is consistent and asymptotically
normal:

√
n(θ̂w1 − θ10)

d→ N
(

0, lim
n→∞ 
−1

w,nT (
w,nT + �w,nT )
−1
w,nT

)
,

where 
w,nT in (B.1) is the information matrix, and �w,nT in (B.2) is related to the third and fourth
moments of ent,i (�w,nT = 0 under normality).

2.2. Random Individual Effects. For the random effects specification of μn, the SAR and
SMA features in μn could be regarded as permanent (global and local) spillover effects as
described in Baltagi et al. (2007a). Hence, the model (1) can be written in the vector form with
nT observations as

YnT = lT ⊗ znb0 + λ10(IT ⊗ Wn1)YnT + XnT β0 + ξnT ,(7)

where ξnT = lT ⊗ S−1
n3 Bn3cn0 + (IT ⊗ S−1

n2 Bn2)VnT is the overall disturbance. The variance matrix
of ξnT is

�nT = σ2
c0

[
lT l′T ⊗ S−1

n3 Bn3B′
n3S′−1

n3

]+ σ2
e0

[

T,ρ0 ⊗ S−1

n2 Bn2B′
n2S′−1

n2

]
,(8)

20 Whenever δ20 = −λ20 and Mn2 = Wn2, we have S−1
n2 (λ2)Bn2(δ2) = In and pn,T −1(λ10, λ2, δ2, ρ0) = σ2

e0 in (D.4) and
(D.5). Thus, the equations in (D.4) and (D.5) would become zero.

21 We do not need j = 3 for Assumptions 1, 3, and 4 under the fixed effects model.
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because E(VnT V′
nT ) = σ2

e0
T,ρ0 ⊗ In with 
T,ρ0 = 
T (ρ0) in (A.1). Hence, the log quasi-
likelihood for (7) is

ln Lr,nT (θ) = −nT
2

ln(2π) − 1
2

ln |�nT (θ)| + T ln |Sn1(λ1)| − 1
2
ξ′

nT (θ)�−1
nT (θ)ξnT (θ),(9)

where ξnT (θ) = (IT ⊗ Sn1(λ1))YnT − XnT β − lT ⊗ znb. The score and information matrix are in
Appendix B.2.

To evaluate the log-likelihood function (9), we need to compute the determinant and inverse
of the nT × nT variance matrix �nT . By Lemma 2.2 in Magnus (1982), |�nT | = |
T,ρ0 |n ·
|σ2

e0S−1
n2 Bn2B′

n2S′−1
n2 |T −1 · |Z−1

n0 | and

�−1
nT = 1

d2(1 − ρ0)2

−1

T,ρ0
lT l′T 
−1

T,ρ0
⊗ Zn0

+
(


−1
T,ρ0

− 1
d2(1 − ρ0)2


−1
T,ρ0

lT l′T 
−1
T,ρ0

)
⊗
(

1

σ2
e0

S′
n2B′−1

n2 B−1
n2 Sn2

)
,

where Zn0 = [d2(1 − ρ0)2σ2
c0S−1

n3 Bn3B′
n3S′−1

n3 + σ2
e0S−1

n2 Bn2B′
n2S′−1

n2 ]−1 with d2 = l′ρT lρT = 1+ρ0
1−ρ0

+
(T − 1) and lρT = (

√
1+ρ0
1−ρ0

, 1, . . . , 1)′. Thus, the computation of the determinant and inverse
of �nT involves only n × n matrices.

ASSUMPTION 9. cn0 ∼ (0, σ2
c0In) and enT are i.i.d. and independent of XnT and zn, where

enT = (
√

1 − ρ2
0V ′

n1, e′
n2, . . . , e′

nT )′. Also, cn0 is independent of enT .

ASSUMPTION 10. Elements of the n × kx matrix of regressors Xnt and the n × kz matrix zn are
nonstochastic and bounded, uniformly in n and t. Also, under the asymptotic setting in Assumption
5, the limit of 1

nT

∑T
t=1 Z′

nT �−1
nT ZnT exists and is nonsingular where ZnT = [lT ⊗ zn, XnT ].

ASSUMPTION 11. Either (a) the conditions (D.7) and (D.8) in Appendix D.2 hold or (b) the
condition (D.9) holds if (a) fails.

ASSUMPTION 12. The limit of the information matrix (B.3) is nonsingular.

Part (a) of Assumption 11 represents the possible identification of λ10, b0, and β0 through
the deterministic part of the reduced form equation of (7) and the identification of the rest of
parameters from overall disturbances in (7). Part (b) of Assumption 11 states the identification
through the SAR process of reduced form disturbances of Ynt in (7) in the event that the
identification via (a) fails. Assumption 12 is a condition for the nonsingularity of the limiting
information matrix for the random effects model.

PROPOSITION 2. Under Assumptions 1–5, 9, 10, 11(a), or Assumptions 1–5, 9, 10, 11(b), and
12, the estimates θ̂r = (θ̂′

r1, θ̂
′
r2)′ of θ0 from (9) of the random effects model are consistent and

asymptotically normal:

√
n(θ̂r − θ0)

d→ N
(

0, lim
n→∞ 
−1

r,nT (
r,nT + �r,nT )
−1
r,nT

)
,

where 
r,nT in (B.3) is the information matrix, and �r,nT in (B.4) is related to the third and fourth
moments of ent,i and cn0,i (�r,nT = 0 under normality).
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2.3. The Between Equation. The likelihood of the random effects model can be written as
a product of two likelihoods—the within likelihood from (3) and the between likelihood as
shown below. The within model has n(T − 1) sample observations as �Ynt for t = 2 , . . . , T.
Consider the remaining Yn1 = znb0 + λ10Wn1Yn1 + Xn1β0 + μn + Un1. The covariance of

its disturbances with those in the within model is Cov(Vn1, e′d
n,T −1) = − σ2

e0
1+ρ0

[e′
T −1 ⊗ In], where

eT−1 = (1, 0 , . . . , 0)′. As e′
T −1H−1

T −1 = [1 + (T − 1) 1−ρ0
1+ρ0

]−1(T − 1, T − 2, . . . , 1), we have

Vn1 = − σ2
e0

1 + ρ0

(
e′

T −1

(
σ2

e0HT −1
)−1 ⊗ In

)
ed

n,T −1 + Ṽn1

= − 1
T − (T − 2)ρ0

(
(T − 1)�Vn2 +

T∑
t=3

(T + 1 − t)�ent

)
+ Ṽn1,

with Ṽn1 being the residual vector uncorrelated with �Vn2 and �ent for t = 3 , . . . , T, E(Ṽn1) = 0,
and

Var(Ṽn1) = σ2
e0

1 − ρ2
0

In −
(

σ2
e0

1 + ρ0

)2

(e′
T −1 ⊗ In)

((
σ2

e0HT −1
)−1 ⊗ In

)
(e′

T −1 ⊗ In)′

= σ2
e0

1 − ρ2
0

In − σ2
e0

(1 + ρ0)2

(
e′

T −1H−1
T −1eT −1

)
In = σ2

1In,

(10)

where σ2
1 = σ2

e0
(1−ρ0)(T −(T −2)ρ0) . Thus, the conditional likelihood of Vn1, conditional on ed

n,T −1

(under normality), can be constructed. By rearranging conditioned elements, we have

Sn1 �YnT = znb0 + �XnT β0 + μn + S−1
n2 Bn2 �VnT ,(11)

where �VnT = Ṽn1 can be simplified into �VnT = [T − (T − 2)ρ0]−1[Vn1 + (1 − ρ0)
∑T −1

t=2 Vnt +
VnT ] and similarly for �YnT and �XnT . We may interpret (11) as a “between” equation, which
captures the cross-sectional variation across spatial units, because outcomes for each unit have
been properly aggregated over time. When ρ0 = 0, �YnT = ȲnT , �XnT = X̄nT , and �VnT = V̄nT

are time averages, and (11) becomes Sn1ȲnT = znb0 + X̄nT β0 + μn + S−1
n2 Bn2V̄nT in the familiar

form. Any spatial structure on μn is captured in this between equation. As the within equation
does not involve μn, identification of the spatial structure of μn will solely depend on the between
equation. This between equation highlights the main distinction of the random components
model and the within equation.

The variance matrix of the overall disturbances in (11) is

�n1 = Var
(
μn + S−1

n2 Bn2 �VnT
∣∣Yd

n,T −1

) = σ2
c0S−1

n3 Bn3B′
n3S′−1

n3 + σ2
1S−1

n2 Bn2B′
n2S′−1

n2 ,

and the likelihood function is Lb,n(θ) = (2π)−n/2|�n1(θ)|−1/2|Sn1(λ1)| exp(− 1
2ξ′

n(θ)�−1
n1 (θ)ξn(θ)),

where ξn(θ) = Sn1(λ1) �YnT (ρ) − �XnT (ρ)β − znb. Hence, the log-likelihood of the between
equation is

ln Lb,n(θ) = −n
2

ln(2π) − 1
2

ln |�n1(θ)| + ln |Sn1(λ1)| − 1
2
ξ′

n(θ)�−1
n1 (θ)ξn(θ),(12)

with its score and information matrix in Appendix B.3. For parameters’ identification, b0, β0,
λ10, and ρ0 can be identified from the main equation in (11), but the variance matrix �n1 will be
the sole source for the identification of λ20, λ30, δ20, δ30, σ2

e0, and σ2
c0.
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As �n1 is the sum of two variance matrices, i.e., those of the spatial individual effects compo-
nent and the remaining disturbance, the identification of its parameters would crucially depend
on distinctive structures of the two processes. For the error components in Kapoor et al. (2007)
and Fingleton (2008), the two spatial processes are similar and have S−1

n3 Bn3 = S−1
n2 Bn2. Under

such a specification, �n1 will be reduced into a single piece, and it is apparent that only the
sum, σ2

c0 + σ2
1, can be identified but not the separate parameters σ2

c0 and σ2
e0. However, the

identification of σ2
c0 in the random effects model is possible, as the identification of σ2

e0 can be
from the within equation. That is, σ2

e0 can be identified from the within equation as well as
the random effects model but may not be identified solely from the between equation. Such a
kind of irregularity will have implications on the Hausman-type specification test (Section 3.1)
for random versus fixed effects specifications. For the general model with two different spatial
processes, one for the individual effects and the other for the remaining disturbance, due to the
implied complicated variance in �n1, those parameters might not be easily estimated from the
between equation, which is essentially a cross-sectional spatial one.

The relative complexity under different specifications might be seen from matrix expansions
of �n1 below with some heuristic arguments. We shall consider the specifications without
the SMA in disturbances in order to understand the distinction, in particular the Anselin
(1988) versus Kapoor et al. (2007) specifications via the between equation (in the following, we
denote the two specifications as Anselin and KKP, respectively). Without SMA disturbances,
�n1 = σ2

c0S−1
n3 S′−1

n3 + σ2
1S−1

n2 S′−1
n2 .

(i) General random specification with Wn3 = Wn2(= Wn): From �n1, all the four parameters
λ20, λ30, σ2

c0, and σ2
1 can be identified as long as λ2 �= λ3, but its nonlinearity might reveal a

“weak” identification scenario. Assume that |λj| < 1 for j = 2, 3 and Wn is row-normalized.
Thus, inverse of Snj(λj) can be expanded into S−1

nj (λj ) = In + λj Wn + λ2
j W2

n + λ3
j W3

n + O(λ4
j ). It

follows that

�n1(θ) = (
σ2

c + σ2
1

)
In + (

σ2
cλ3 + σ2

1λ2
)
(Wn + W ′

n) + (
σ2

cλ
2
3 + σ2

1λ
2
2

)(
W2

n + W ′2
n + WnW ′

n

)
+ (σ2

cλ
3
3 + σ2

1λ
3
2

)(
W3

n + W ′3
n + WnW ′2

n + W2
nW ′

n

)+ O((|λ3| + |λ2|)4).

Because we have four parameters in (λ2, λ3, σ
2
c , σ

2
1), at least the coefficients of four leading

terms are needed in order to identify them. However, if values λ2 and λ3 are small, high-
order coefficients of those leading terms would also be small, and these parameters would be
intuitively difficult to estimate. In addition, there is difficulty in the identification if λ2 and λ3

are close to each other because the above expansion can be rewritten as

�n1(θ) = σ2
∗In + (

σ2
c (λ3 − λ2) + σ2

∗λ2
)
(Wn + W ′

n) + (
σ2

c

(
λ2

3 − λ2
2

)+ σ2
∗λ

2
2

)(
W2

n + W ′2
n + WnW ′

n

)
+ (σ2

c

(
λ3

3 − λ3
2

)+ σ2
∗λ

3
2

)(
W3

n + W ′3
n + WnW ′2

n + W2
nW ′

n

)+ O((|λ3| + |λ2|)4),

where σ2
∗ = σ2

c + σ2
1. When the difference of λ2 and λ3 is small, σ2

c would not be easily estimated,
and so would be σ2

1 in consequence. From these, the estimates of λ3 and σ2
c could be possible in

the random effects likelihood simply due to the fact that λ2 and σ2
1 can be consistently estimated

from the within equation.

(ii) General random specification with Wn3 �= Wn2: For such a general case, we have

�n1(θ) = (
σ2

c + σ2
1

)
In + σ2

cλ3(Wn3 + W ′
n3) + σ2

1λ2(Wn2 + W ′
n2) + σ2

cλ
2
3

(
W2

n3 + W ′2
n3 + Wn3W ′

n3

)
+ σ2

1λ
2
2

(
W2

n2 + W ′2
n2 + Wn2W ′

n2

)+ O((|λ3| + |λ2|)3).

Here, the four parameters can be identified from the expansion up to the second order. Thus,
when Wn2 and Wn3 can be distinguished from each other, the estimation of the between equation
is easier.
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(iii) Anselin’s specification: For this specification, �n1(θ) = σ2
c In + σ2

1S−1
n2 (λ2)S′−1

n2 (λ2) can be
written as

�n1(θ) = (
σ2

c + σ2
1

)
In + (

σ2
cλ3 + σ2

1λ2
)
(Wn + W ′

n) + (
σ2

cλ
2
3 + σ2

1λ
2
2

)(
W2

n + W ′2
n + WnW ′

n

)
+ (σ2

cλ
3
3 + σ2

1λ
3
2

)(
W3

n + W ′3
n + WnW ′2

n + W2
nW ′

n

)+ O((|λ3| + |λ2|)4).

Hence, the expansion is needed for up to the second order only.

(iv) KKP’s specification: Here, we have λ2 = λ3 and �n1(θ) = σ2
∗In + σ2

∗λ2(Wn + W ′
n) +

O(λ2
2). Hence, λ2 and σ2

∗ can be identified from the expansion up to the first order (although
σ2

c0 and σ2
1 cannot be separately identified). Therefore, the between equation of the KKP model

would be easier to be estimated than Anselin’s specification and generalized ones.

2.4. Pooling of Estimates. The likelihood function of the random effects model has the whole
parameter vector θ0 = (θ′

10, θ
′
20)′, but that of the fixed effects model has only the subvector θ10.

The excluded parameters in θ20 would appear in the likelihood function of the between equation.
Without loss of generality, assume that θ10 can be identified from both the within and between
equations.22 In order to compare the efficiency of estimates of the two models, one simple
approach is to use the concentrated likelihood function Lc

r,nT (θ1) of the random effects model
with θ2 concentrated out and compare it with Lw,nT(θ1) of the within equation. Similarly, one
can have the concentrated likelihood Lc

b,n(θ1) of the between equation. Those concentrated
likelihood functions of the random effects model and the between equation have the same
common θ1 as that of the within equation. The random effects estimate of θ10 can be interpreted
as an asymptotically weighted average of the within and between estimates, closely analogous
to Maddala (1971) for the panel regression model as shown below.

For the case where T is finite, the within estimate θ̂w1 would be
√

n-consistent and
√

n(θ̂w1 −
θ10) = (− 1

n
∂2 ln Lw,nT (θ10)

∂θ1∂θ′
1

)−1 1√
n

∂ ln Lw,nT (θ10)
∂θ1

+ op (1), and the between estimate θ̂b1 would have
√

n(θ̂b1 − θ10) = (− 1
n

∂2 ln Lc
b,n(θ10)

∂θ1∂θ′
1

)−1 1√
n

∂ ln Lc
b,n(θ10)
∂θ1

+ op (1). On the other hand, the ML estimate

of the random components model has
√

n(θ̂r1 − θ10) = (− 1
n

∂2Lc
r,nT (θ10)

∂θ1∂θ′
1

)−1 1√
n

∂ ln Lc
r,nT (θ10)
∂θ1

+ op (1).
Because the nT sample observations in the random components model consist of n(T − 1)
sample observations in the within equation and n sample observations in the between equation,
we have the likelihood decomposition

Lc
r,nT (θ1) = Lw,nT (θ1)Lc

b,n(θ1).

Thus,

1√
n

∂ ln Lc
r,nT (θ1)

∂θ1
= 1√

n
∂ ln Lw,nT (θ1)

∂θ1
+ 1√

n

∂ ln Lc
b,n(θ1)

∂θ1

and

1
n

∂2 ln Lc
r,nT (θ1)

∂θ1∂θ′
1

= 1
n

∂2 ln Lw,nT (θ1)
∂θ1∂θ′

1
+ 1

n

∂2 ln Lc
b,n(θ1)

∂θ1∂θ′
1

.

Hence,

√
n(θ̂r1 − θ10) = AnT,1

√
n(θ̂w1 − θ10) + AnT,2

√
n(θ̂b1 − θ10) + op (1),(13)

22 If some of them can only be identified and estimated in one equation but not the other, we may consider the subset
of common parameters that can be identified in both equations. In that case, relevant concentrated within and between
likelihood functions will be used instead.
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where

AnT,1 =
(

1
n

∂2 ln Lc
r,nT (θ10)

∂θ1∂θ′
1

)−1
1
n

∂2 ln Lw,nT (θ10)
∂θ1∂θ′

1

and

AnT,2 =
(

1
n

∂2 ln Lc
r,nT (θ10)

∂θ1∂θ′
1

)−1
1
n

∂2 ln Lc
b,n(θ10)

∂θ1∂θ′
1

are weights because AnT,1 + AnT,2 = Ikθ1
with kθ1 being the dimension of θ1. Hence, the random

effects estimate of θ10 can be interpreted as pooling within and between estimates. We note that
the weighting above is valid even though those likelihood functions are quasi ones. However,
when the likelihoods are only quasi-likelihoods, AnT,1 and AnT,2 are not necessarily interpreted
as ratios of precision matrices of the within and between estimates relative to that of the random
effects estimate.

From the relation of second-order derivatives of a concentrated log-likelihood function with
those of the original log-likelihood (see, e.g., Amemiya, 1985), an alternative expression is23

√
n(θ̂r1 − θ10) = BnT,1

√
n(θ̂w1 − θ10) + BnT,2

√
n(θ̂b1 − θ10) + op (1),(14)

where

BnT,1 =
[

∂2 ln Lr,nT

∂θ1∂θ′
1

− ∂2 ln Lr,nT

∂θ1∂θ′
2

(
∂2 ln Lr,nT

∂θ2∂θ′
2

)−1
∂2 ln Lr,nT

∂θ2∂θ′
1

]−1 [
∂2 ln Lw,nT

∂θ1∂θ′
1

]

and

BnT,2 =
[

∂2 ln Lr,nT

∂θ1∂θ′
1

− ∂2 ln Lr,nT

∂θ1∂θ′
2

(
∂2 ln Lr,nT

∂θ2∂θ′
2

)−1
∂2 ln Lr,nT

∂θ2∂θ′
1

]−1

×
[

∂2 ln Lb,n

∂θ1∂θ′
1

− ∂2 ln Lb,n

∂θ1∂θ′
2

(
∂2 ln Lb,n

∂θ2∂θ′
2

)−1
∂2 ln Lb,n

∂θ2∂θ′
1

]
.

3. TESTING

3.1. The Hausman Specification Test.

3.1.1. The Hausman test under normality. The likelihood decomposition provides a useful
device for a Hausman-type test of random effects specification against the fixed effects specifi-
cation where the individual effects could be correlated with exogenous regressors. Under the
null hypothesis that cn0 is independent of regressors, the MLE θ̂r1 of the random effects model is
consistent and asymptotically efficient (assuming the likelihood function is correctly specified,
in this case, normal disturbances). However, under the alternative that cn0 is correlated with
the regressors, θ̂r1 is inconsistent, although the within estimator θ̂w1 is consistent under both the
null and alternative hypotheses. The Hausman-type statistic is

n(θ̂r1 − θ̂w1)′�̂+
n (θ̂r1 − θ̂w1),

23 Again, we note that this is valid even for quasi-likelihoods.
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where �̂n is a consistent estimate of the limiting variance matrix of
√

n(θ̂r1 − θ̂w1) under the
null hypothesis, and �̂+

n is its generalized inverse. This test statistic will be asymptotically χ2

distributed, and its degrees of freedom is the rank of the limiting matrix of �n (see, e.g., Ruud,
2000).24 Here, the rank of �n needs special attention.

Suppose that B−1 is the limiting variance matrix of
√

n(θ̂w1 − θ10). As θ̂r1 is asymptotically
efficient relative to θ̂w1, the limiting variance matrix of

√
n(θ̂r1 − θ10) can be written as (B + C)−1

for some nonnegative definite matrix C. If C happens to be positive definite, B−1 − (B +
C)−1 = B−1(B−1 + C−1)−1B−1 is positive definite. In this case, the degrees of freedom of the χ2

test is kθ1 . However, if C is only positive semidefinite but not positive definite, the degrees of
freedom could be smaller. Suppose that C is a positive semidefinite matrix of dimension kθ1 with
rank m, where 0 < m < kθ1 . Let � = diag{λ1, . . . , λkθ1

} be the diagonal matrix of eigenvalues
of C in the metric of B. That is, B = QQ′ and C = Q�Q′ for a nonsingular matrix Q, where
eigenvalues in � are nonnegative and the number of positive eigenvalues corresponds to the

rank of C (see, e.g., Proposition 62 in Dhrymes, 1978). 25 Let � = (�1 0
0 0), where �1 consists of

the positive eigenvalues of C with m entries. Then,

B−1 − (B + C)−1 = (QQ
′
)−1 − (QQ

′+Q�Q′)−1 = Q
′−1diag

{
λ1

1 + λ1
, . . . ,

λm

1 + λm
, 0, . . . , 0

}
Q−1

with rank m.
As

⎛
⎜⎜⎜⎝

∂2 ln Lr,nT

∂θ1∂θ′
1

∂2 ln Lr,nT

∂θ1∂θ′
2

∂2 ln Lr,nT

∂θ2∂θ′
1

∂2 ln Lr,nT

∂θ2∂θ′
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂2 ln Lw,nT

∂θ1∂θ′
1

+ ∂2 ln Lb,n

∂θ1∂θ′
1

∂2 ln Lb,n

∂θ1∂θ′
2

∂2 ln Lb,n

∂θ2∂θ′
1

∂2 ln Lb,n

∂θ2∂θ′
2

⎞
⎟⎟⎟⎠(15)

from the likelihood decomposition, the asymptotic variance of θ̂r1 from the random
effects likelihood under normality would be {E(− ∂2 ln Lw,nT

∂θ1∂θ′
1

) + E(− ∂2 ln Lb,n

∂θ1∂θ′
1

) − E(− ∂2 ln Lb,n

∂θ1∂θ′
2

)

[E(− ∂2 ln Lb,n

∂θ2∂θ′
2

)]−1E(− ∂2 ln Lb,n

∂θ2∂θ′
1

)}−1 and that of θ̂w1 is [E(− 1
n

∂2 ln Lw,nT

∂θ1∂θ′
1

)]−1. The matrix C would be
the limit of

E
(

− 1
n

∂2 ln Lb,n

∂θ1∂θ′
1

)
− E

(
1
n

∂2 ln Lb,n

∂θ1∂θ′
2

)[
E
(

− 1
n

∂2 ln Lb,n

∂θ2∂θ′
2

)]−1

E
(

1
n

∂2 ln Lb,n

∂θ2∂θ′
1

)
.(16)

Thus, the Hausman test statistic can be computed as

n(θ̂r1 − θ̂w1)′Qdiag
{

1 + λ1

λ1
, . . . ,

1 + λm

λm
, 0, . . . , 0

}
Q′(θ̂r1 − θ̂w1),(17)

where Q is the eigenvector of C in the metric of B = limn→∞ E(− 1
n

∂2 ln Lw,nT

∂θ1∂θ′
1

). In general, if
θ10 can be identified and estimated from the between equation, C would have full rank kθ1 .
However, the KKP random components specification needs special attention, as a component
of θ10 cannot be identified from the between equation.

24 Asymptotically, this test is also equivalent to test the difference of the within and between estimates, because (13)
implies that

√
n(θ̂r1 − θ̂w1) = AnT,2

√
n(θ̂b1 − θ̂w1) + op (1).

25 To obtain Q, we can follow the following four steps: (i) Let R be the Cholesky decomposition of B−1 such that
R′R = B−1; (ii) let A = RCR′; (iii) find eigenvector matrix P and eigenvalues matrix � of A such that P′AP = �; (iv)
let Q = R−1P. By doing so, we see that QQ′ = R−1PP′(R′)−1 = R−1(R′)−1 = B and Q�Q′ = R−1PP′APP′(R′)−1 =
R−1A(R′)−1 = R−1RCR′(R′)−1 = C.
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3.1.2. The KKP model specification under normality. The likelihood function for the KKP
type model has λ2 = λ3 and δ2 = δ3 with Wn2 = Wn3 and Mn2 = Mn3 imposed. It is convenient
to consider the reparameterization σ2

∗ = σ2
c + σ2

1. Thus, σ2
∗ is used instead of σ2

c in the likelihood
of the between equation. For this model, θ1 = (β′, λ1, λ2, δ2, ρ, σ2

e )′ and θ2 = (b′, σ2
∗)′. Note that

the parameter σ2
e is in Lw,nT but not in Lb,n; on the other hand, σ2

∗ is in Lb,n but not in Lw,nT .
Thus, by denoting θ∗

1 = (β′, λ1, λ2, δ2, ρ)′, the B matrix is the limit of

E
(

− 1
n

∂2 ln Lw,nT

∂θ∗
1∂θ∗′

1

)
− E

(
∂2 ln Lw,nT

∂θ∗
1∂σ2

e

)[
E
(

− 1
n

∂2 ln Lw,nT

∂2σ2
e

)]−1

E
(

∂2 ln Lw,nT

∂∂∂θ∗′
1

)

and C = limn→∞(E(− 1
n

∂2 ln Lb,n

∂θ∗
1∂θ∗′

1
) − E( ∂2 ln Lb,n

∂θ∗
1∂θ′

2
)[E(− 1

n
∂2 ln Lb,n

∂θ2∂θ′
2

)]−1E( ∂2 ln Lb,n

∂θ2∂θ∗′
1

)). The rank of this C is
(kθ1 − 1), the number of parameters of θ∗

1. This is intuitively understandable because there are
no two separate estimates for σ2

e from the within and between equations to be compared with.

3.1.3. The Hausman test under nonnormality. When the disturbances are not normally
distributed, the random effects estimate is no longer efficient; hence, the variance of the dif-
ference of θ̂r1 and θ̂w1 will not necessarily equal the difference of the variances of θ̂r1 and
θ̂w1. Therefore, we need to compute the variance of

√
n(θ̂r1 − θ̂w1) explicitly and set up a cor-

responding Wald-type robust test (Arellano, 1993). By using the relation ln Lr,nT = ln Lw,nT

+ ln Lb,n, as is derived in Appendix C,
√

n(θ̂r1 − θ̂w1) = 1√
n A′

nT ( ∂ ln Lw,nT

∂θ′
1

,
∂ ln Lb,n

∂θ′ )′ + op (1),

where A′
nT = [(
w,nT + C)−1 − 
−1

w,nT , J ′
−1
r,nT ] and J = (Ikθ1

, 0kθ1 ×kθ2
)′. Hence, when the dis-

turbances are not normal, the asymptotic variance of
√

n(θ̂r1 − θ̂w1) would be �nT , where

�nT = (B−1 − (B + C)−1) + A′
nT [ �w,nT �wb,nT

�′
wb,nT �b,n

]AnT . Here, �b,n in (B.6) is the part due to the

third and fourth moments of disturbances for the variance matrix of the score of the between
equation, and �wb,nT in (B.6) is for the covariance matrix of the scores of the within and between
equations. The Hausman test statistic can be calculated as H = n(θ̂r1 − θ̂w1)′�+

nT (θ̂r1 − θ̂w1).

3.1.4. The KKP model specification under nonnormality. For the KKP model, we com-
pare estimates of θ∗

1 under the within and random specifications. Let J ∗ = (Ikθ∗1
, 0k∗

θ1
×(kθ2 +1))′.

As is derived in Appendix C,
√

n(θ̂∗
r1 − θ̂∗

w1) = 1√
n A∗′

nT ( ∂ ln Lw,nT

∂θ′
1

,
∂ ln Lb,n

∂θ′ )′ + op (1), where A∗′
nT =

[(
w,nT + C)−1 − 
−1
w,nT , J ∗′
−1

r,nT ]. Thus, the asymptotic variance of
√

n(θ̂∗
r1 − θ̂∗

w1) is26

A∗′
nT

([

−1

w,nT 0kθ∗1 ×(kθ∗1 +kθ2 )

0(kθ∗1 +kθ2 )×kθ∗1

b,n

]
+
[

�w,nT �wb,nT

�′
wb,nT �b,n

])
A∗

nT .

3.2. LM Test. Mutl and Pfaffermayr (2011) consider the Hausman test of fixed effects versus
random effects in the KKP spatial panel with 2SLS estimates. In order to investigate the power
of the test, they specify a model similar to Mundlak (1978), where an individual effect depends
on the time average of regressors. For the general spatial panel model, we can have the similar
specification

cn0 = X̄nT π0+ζn,(18)

where ζn is independent of X̄nT and is assumed to be i.i.d. N(0, σ2
ζ In).

26 For the KKP model, the information matrix of the between equation would be simpler than the general model, as
well as the covariance matrix of the between and within scores. Its detailed formulae can be induced from the general
model.
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With the specification in (18), an alternative test can be based on the LM approach. The
between equation will become

Sn1 �YnT = znb0 + �XnT β0 + S−1
n3 Bn3X̄nT π0 + S−1

n3 Bn3ζn + S−1
n2 Bn2 �VnT .(19)

If π0 = 0, this between equation would be the one in (11). This suggests that we may
consider π0 = 0 as the null hypothesis, and (19) will be useful for the construction of
the LM test from the random effects log-likelihood or, equivalently, the sum of the log-
likelihood functions of the within and between equations. The log-likelihood function for the
between equation is ln Lb,n(θ) = − n

2 ln(2π) − 1
2 ln |�n1(θ)| + ln |Sn1(λ1)| − 1

2ξ′
n(θ)�−1

n1 (θ)ξn(θ),
where ξn(θ) = Sn1(λ1) �YnT (θ) − �XnT (θ)β − znb − S−1

n3 Bn3X̄nT π with θ extended to include π. For
the random effects model, its likelihood is similar to (9), where ξnT (θ) = (IT ⊗ Sn1(λ1))YnT −
XnT β − lT ⊗ (znb + S−1

n3 Bn3X̄nT π).
The first-order derivatives of the random effects log-likelihood evaluated at the restricted θ̂r

are zero except that with respect to π. The LM test statistic would be

∂ ln Lr,nT (θ̂r)
∂π′

⎡
⎣(−E

∂2 ln Lr,nT (θ̂r)
∂θ∂θ′

)−1
⎤
⎦

π,π

∂ ln Lr,nT (θ̂r)
∂π

,(20)

where ∂ ln Lr,nT (θ̂r)
∂π

= ∂ ln Lb,n(θ̂r)
∂π

= (S−1
n3 (λ̂3,r)Bn3(δ̂3,r)X̄nT )′�−1

n1 (θ̂r)ξn(θ̂r) and [(−E ∂2 ln Lr,nT (θ̂r)
∂θ∂θ′ )−1]π,π

is the diagonal block in (−E ∂2 ln Lr,nT (θ̂r)
∂θ∂θ′ )−1 corresponding to the π entry. The E ∂2 ln Lr,nT (θ̂r)

∂θ∂θ′ would
be similar to (B.3) but with additional derivatives involving π in Lb,n.

Here, one would be interested in comparing the type I error and power of this LM test with
those of the Hausman-type test. The comparison is reported in Section 4 (see Tables 7 and 8).

4. MONTE CARLO

We conduct small Monte Carlo experiments to evaluate the performance of estimates under
different settings. We have different data generating processes (DGPs) depending on spatial
structures as well as correlated individual effects or serial correlation; correspondingly, we have
different likelihoods. For notational purpose, we use, e.g., θB B, to denote estimates where the
first subscript is for the DGP and the second subscript is for the estimation method. We first focus
on models without SMA structures in disturbances. We have totally 12 DGPs: A, B, K, AF, BF,
KF, AI, BI, KI, AFI, BFI, and KFI, where A denotes the (restricted λ30 = 0) model in Anselin
(1988), B the generalized random components DGP in Baltagi et al. (2007a), K the (restricted
λ20 = λ30) model in Kapoor et al. (2007), F the above cases with fixed individual effects, and I
the cases without serial correlation. We have totally eight estimation methods: A, B, K, W, AI,
BI, KI, and WI, where A, B, K denote corresponding estimates of random components models,
W the within estimate, and I corresponding estimates without serial correlation.

4.1. Estimation. The following items summarize the purpose of the simulation on those
methods and specifications:

• Comparing the within and random approach estimates (Table 1)

– Robustness of within estimates against those of the random components models
(θAF W , θBF W , and θKF W against θAF A, θBF B, and θKF K)

– Efficiency of the estimates of the random components models against the within
estimates (θA A, θB B, and θK K against θA W , θB W , and θK W )

• Misspecification of serial correlation (Tables 2 and 3)
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TABLE 1
COMPARING WITHIN AND RANDOM ESTIMATES

θ1 θ2

β λ1 λ2 ρ σ2
e λ3 σ2

c b

Robustness of within estimates
(1) θBF B Mean 1.0082 0.2089 0.1894 0.1986 0.9919 0.3069 1.1105 0.9828

E-SD 0.0319 0.0619 0.0761 0.0380 0.0481 0.1513 0.1854 0.1930
RMSE 0.0329 0.0626 0.0768 0.0380 0.0487 0.1776 0.2158 0.1938

θKF K Mean 1.0083 0.2007 0.1980 0.2009 0.9934 1.0872 0.9952
E-SD 0.0319 0.0605 0.0717 0.0377 0.0482 0.1780 0.1574
RMSE 0.0329 0.0605 0.0717 0.0378 0.0487 0.1982 0.1575

θAF A Mean 1.0083 0.1985 0.2052 0.2062 0.9962 1.0687 0.9992
E-SD 0.0319 0.0572 0.0705 0.0425 0.0492 0.1895 0.1353
RMSE 0.0329 0.0572 0.0707 0.0429 0.0493 0.2016 0.1353

θBF W Mean 0.9998 0.1994 0.2015 0.2010 0.9928
E-SD 0.0319 0.0619 0.0743 0.0376 0.0482
RMSE 0.0319 0.0619 0.0743 0.0377 0.0488

Efficiency of random estimates
(2) θB B Mean 1.0002 0.2080 0.1898 0.1977 0.9913 0.3026 1.0160 0.9825

E-SD 0.0318 0.0615 0.0771 0.0373 0.0483 0.1460 0.1756 0.1880
RMSE 0.0318 0.0620 0.0778 0.0374 0.0491 0.1755 0.1764 0.1888

θK K Mean 1.0000 0.1995 0.1992 0.2009 0.9932 0.9869 0.9955
E-SD 0.0317 0.0612 0.0723 0.0377 0.0483 0.1632 0.1532
RMSE 0.0317 0.0612 0.0723 0.0377 0.0487 0.1637 0.1533

θA A Mean 0.9999 0.1962 0.2077 0.2065 0.9962 0.9681 1.0012
E-SD 0.0318 0.0583 0.0711 0.0416 0.0490 0.1709 0.1326
RMSE 0.0318 0.0584 0.0715 0.0421 0.0491 0.1739 0.1326

θB W Mean 0.9998 0.1994 0.2015 0.2010 0.9928
E-SD 0.0319 0.0619 0.0743 0.0376 0.0482
RMSE 0.0319 0.0619 0.0743 0.0377 0.0488

NOTE: (i) The DGPs for the three models considered (A, B, and K) differ only on the specification of individual effects,
which are wiped out by the first difference. Therefore, the within estimates for all three models are the same.
(ii) For DGP of B or BF, (β0, λ10, λ20, ρ0, σ2

e0, λ30, σ
2
c0, b0) = (1, 0.2, 0.2, 0.2, 1, 0.4, 1, 1).

(iii) For DGP of K or KF, (β0, λ10, λ20, ρ0, σ2
e0, λ30, σ

2
c0, b0) = (1, 0.2, 0.2, 0.2, 1, 0.2, 1, 1).

(iv) For DGP of A or AF, (β0, λ10, λ20, ρ0, σ2
e0, λ30, σ

2
c0, b0) = (1, 0.2, 0.2, 0.2, 1, 0, 1, 1).

– Efficiency of correct restrictions on serial correlation (θAI AI , θBI BI , θKI KI , and θBFI WI

against θAI A, θBI B, θKI K, and θBFI W )
– Misspecification of ignoring serial correlation (θA A, θB B, θK K, and θBF W against θA AI ,

θB BI , θK KI , and θBF WI)

• Comparing random components models (Tables 4 and 5)
– Sensitivity of random components misspecifications (θB B against θB K and θB A; θK K

against θK A; θA A against θA K )
– Efficiency of correctly restricted random components specifications (θK K against θK B;

θA A against θA B)

We first generate samples from (1), where the exogenous variable is from a standard normal
distribution, and we include an intercept term in the model. The disturbances ent are generated
from independent standard normal distribution (σ2

e0 = 1), and Wn1 = Wn2 = Wn3 are all rook
matrices. For the DGPs of Baltagi et al. (2007a), we have λ10 = λ20 = 0.2 and λ30 = 0.4; for the
DGPs of Kapoor et al. (2007), λ10 = λ20 = λ30 = 0.2; for the DGPs of Anselin (1988), λ10 =
λ20 = 0.2 and λ30 = 0. Under all these cases, b0 = 1, β0 = 1, and ρ0 = 0.2 when serial correlation
is present. Under the random effects specification, individual effects are generated from a
standard normal distribution (σ2

c0 = 1) independent of XnT . Under the fixed effects model,
individual effects are generated from a standard normal distribution plus the time average of
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TABLE 2
SERIAL CORRELATION SPECIFICATIONS: ESTIMATES

θ1 θ2

β λ1 λ2 ρ σ2
e λ3 σ2

c b

Efficiency of correct specification
(1) θBI B Mean 0.9995 0.1988 0.2034 0.0034 0.9942 0.3658 0.9778 0.9934

E-SD 0.0329 0.0649 0.0782 0.0381 0.0485 0.1470 0.1572 0.1891
RMSE 0.0329 0.0649 0.0783 0.0383 0.0489 0.1509 0.1587 0.1893

θBI BI Mean 0.9995 0.1951 0.2078 0.9945 0.3907 0.9677 0.9980
E-SD 0.0329 0.0632 0.0753 0.0476 0.1417 0.1517 0.1879
RMSE 0.0329 0.0634 0.0757 0.0479 0.1420 0.1551 0.1879

(2) θKI K Mean 0.9999 0.1997 0.1987 0.0005 0.9929 0.9899 0.9951
E-SD 0.0328 0.0633 0.0736 0.0373 0.0481 0.1572 0.1530
RMSE 0.0328 0.0633 0.0736 0.0373 0.0487 0.1576 0.1530

θKI KI Mean 0.9999 0.1999 0.1987 0.9939 0.9882 0.9947
E-SD 0.0328 0.0631 0.0738 0.0478 0.1543 0.1523
RMSE 0.0328 0.0631 0.0738 0.0481 0.1547 0.1523

(3) θAI A Mean 0.9998 0.1962 0.2047 0.0011 0.9931 0.9880 1.0009
E-SD 0.0328 0.0594 0.0728 0.0369 0.0482 0.1561 0.1309
RMSE 0.0328 0.0595 0.0730 0.0369 0.0487 0.1566 0.1309

θAI AI Mean 0.9998 0.1963 0.2044 0.9938 0.9891 1.0007
E-SD 0.0328 0.0595 0.0730 0.0479 0.1545 0.1309
RMSE 0.0328 0.0596 0.0732 0.0483 0.1549 0.1309

(4) θBFI W Mean 0.9997 0.1998 0.2010 0.0009 0.9925
E-SD 0.0330 0.0641 0.0764 0.0365 0.0481
RMSE 0.0330 0.0641 0.0764 0.0366 0.0487

θBFI WI Mean 0.9997 0.1998 0.2010 0.9934
E-SD 0.0330 0.0641 0.0763 0.0478
RMSE 0.0330 0.0641 0.0763 0.0482

Misspecification of serial correlation
(5) θB B Mean 1.0002 0.2080 0.1898 0.1977 0.9913 0.3026 1.0160 0.9825

E-SD 0.0318 0.0615 0.0771 0.0373 0.0483 0.1460 0.1756 0.1880
RMSE 0.0318 0.0620 0.0778 0.0374 0.0491 0.1755 0.1764 0.1888

θB BI Mean 0.9996 0.1951 0.2080 0.9857 0.3820 1.0183 0.9988
E-SD 0.0327 0.0640 0.0768 0.0486 0.1447 0.1612 0.1932
RMSE 0.0327 0.0642 0.0772 0.0506 0.1458 0.1622 0.1932

(6) θK K Mean 1.0000 0.1995 0.1992 0.2009 0.9932 0.9869 0.9955
E-SD 0.0317 0.0612 0.0723 0.0377 0.0483 0.1632 0.1532
RMSE 0.0317 0.0612 0.0723 0.0377 0.0487 0.1637 0.1533

θK KI Mean 1.0001 0.1997 0.1992 0.9851 1.0381 0.9953
E-SD 0.0326 0.0632 0.0743 0.0485 0.1624 0.1550
RMSE 0.0326 0.0632 0.0743 0.0507 0.1668 0.1550

(7) θA A Mean 0.9999 0.1962 0.2077 0.2065 0.9962 0.9681 1.0012
E-SD 0.0318 0.0583 0.0711 0.0416 0.0490 0.1709 0.1326
RMSE 0.0318 0.0584 0.0715 0.0421 0.0491 0.1739 0.1326

θA AI Mean 1.0000 0.1976 0.2034 0.9851 1.0401 0.9993
E-SD 0.0327 0.0593 0.0734 0.0486 0.1626 0.1334
RMSE 0.0327 0.0593 0.0734 0.0508 0.1675 0.1334

(8) θBF W Mean 0.9998 0.1994 0.2015 0.2010 0.9928
E-SD 0.0319 0.0619 0.0743 0.0376 0.0482
RMSE 0.0319 0.0619 0.0743 0.0377 0.0488

θBF WI Mean 0.9999 0.1996 0.2015 0.9846
E-SD 0.0329 0.0642 0.0767 0.0485
RMSE 0.0329 0.0642 0.0768 0.0508

NOTE: (i) The DGPs for the three models considered (A, B, and K) differ only on the specification of individual effects,
which are wiped out by the first difference. Therefore, the within estimates for all three models are the same.
(ii) The value of (β0, λ10, λ20, ρ0, σ2

e0, λ30, σ
2
c0, b0) are the same as Table 1.
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TABLE 3
SERIAL CORRELATION SPECIFICATIONS: LR TESTS

(1) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test with the B random effects specification 0.017 0.073 0.132

(2) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test with the K random effects 0.006 0.045 0.087

(3) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test with the A random effects 0.006 0.044 0.094

(4) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test with the fixed effects model 0.005 0.046 0.092

(5) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test with the B random effects specification with serial correlation 0.991 0.997 0.998

(6) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test with the K random effects with serial correlation 0.996 1.00 1.00

(7) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test with the A random effects with serial correlation 0.991 0.999 1.00

(8) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test with the fixed effects model with serial correlation 0.996 0.999 1.00

XnT . We use n = 100, T = 10, and the repetition is 1,000. We report the mean (Mean), empirical
standard deviation (E-SD), and corresponding root mean square error (RMSE).

From item (1) in Table 1, we see that the within estimate is robust to different DGPs; given
the fixed effects DGPs, random effects estimates have a larger bias in β. From item (2) where
the DGP is under the random effects specification, we see that random effects estimates are
more efficient than the within estimates for β, λ1, and λ2 (but not always for ρ and σ2

e ).27

From items (1)–(4) in Table 2, correctly restricted estimates without serial correlation are
more efficient on average than unrestricted ones, both for random effects and within estimates;
however, the improvement in efficiency is not obvious. From items (5)–(8), the RMSE is higher
for estimates under misspecifications, and biases of estimates of σ2

e are larger for all the cases.
From Table 3 for the likelihood ratio (LR) test of serial correlation, we see that the type I error
is close to the theoretical value and the power of the LR test is high.

From items (1)–(3) in Table 4, we see that MSEs are larger with the misspecification of
random components; however, it is not apparent for item (3). From items (4) and (5), we see
that correctly restricted random components models yield more efficient estimates; however,
it is not necessarily for σ2

e and σ2
c in item (5). From Table 5 for the random specification test,

we see that the type I error is close to the theoretical value. The power is moderate for testing
the Anselin specification against the generalized Baltagi specification, but the power is low to
detect the misspecification of the KKP specification against the generalized Baltagi specification
unless the λ30 takes a large value.28

27 From (13), the between estimate is important for the efficiency of random effects estimates versus the fixed effects
estimates. The difficulty for the estimates of ρ0 and σ2

0e might be due to their hidden roles in the between equation.
Similar to the classical linear panel data model, the role of the information in the between equation would be more
important when T is smaller, the variance of individual effects is smaller, and the cross-variation of �XnT is larger. In
subsequent analysis, we consider an additional model design where it has a smaller σ2

0c and larger variation of �XnT .
The corresponding results are reported in Tables 9 and 10. Comparing the estimates from Tables 7 and 8 with those
from Tables 9 and 10, the efficiency of the random effects estimates is more apparent.

28 When we have a larger λ30 = 0.7, the power increases to 0.75.
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TABLE 4
COMPARING RANDOM EFFECTS MODELS: ESTIMATES

θ1 θ2

β λ1 λ2 ρ σ2
e λ3 σ2

c b

Sensitivity of random misspecifications
(1) θB B Mean 1.0002 0.2080 0.1898 0.1977 0.9913 0.3026 1.0160 0.9825

E-SD 0.0318 0.0615 0.0771 0.0373 0.0483 0.1460 0.1756 0.1880
RMSE 0.0318 0.0620 0.0778 0.0374 0.0491 0.1755 0.1764 0.1888

θB K Mean 1.0000 0.1994 0.2172 0.2010 0.9914 1.0345 0.9932
E-SD 0.0318 0.0614 0.0721 0.0377 0.0482 0.1716 0.1894
RMSE 0.0318 0.0614 0.0741 0.0377 0.0490 0.1750 0.1895

θB A Mean 1.0015 0.2540 0.1556 0.2106 0.9978 1.0389 0.9253
E-SD 0.0318 0.0598 0.0752 0.0442 0.0500 0.1932 0.1783
RMSE 0.0318 0.0806 0.0873 0.0454 0.0500 0.1970 0.1933

(2) θK K Mean 1.0000 0.1995 0.1992 0.2009 0.9932 0.9869 0.9955
E-SD 0.0317 0.0612 0.0723 0.0377 0.0483 0.1632 0.1532
RMSE 0.0317 0.0612 0.0723 0.0377 0.0487 0.1637 0.1533

θK A Mean 1.0010 0.2229 0.1839 0.2084 0.9970 0.9740 0.9664
E-SD 0.0317 0.0592 0.0729 0.0421 0.0492 0.1763 0.1497
RMSE 0.0317 0.0635 0.0747 0.0430 0.0493 0.1782 0.1534

(3) θA A Mean 0.9999 0.1962 0.2077 0.2065 0.9962 0.9681 1.0012
E-SD 0.0318 0.0583 0.0711 0.0416 0.0490 0.1709 0.1326
RMSE 0.0318 0.0584 0.0715 0.0421 0.0491 0.1739 0.1326

θA K Mean 1.0000 0.1993 0.1835 0.2010 0.9951 0.9989 0.9973
E-SD 0.0318 0.0616 0.0733 0.0377 0.0483 0.1663 0.1336
RMSE 0.0318 0.0616 0.0751 0.0377 0.0485 0.1663 0.1337

Efficiency of correctly restricted random specification
(4) θK K Mean 1.0000 0.1995 0.1992 0.2009 0.9932 0.9869 0.9955

E-SD 0.0317 0.0612 0.0723 0.0377 0.0483 0.1632 0.1532
RMSE 0.0317 0.0612 0.0723 0.2044 0.0487 0.1637 0.1533

θK B Mean 1.0001 0.2033 0.1972 0.2049 0.9950 0.1596 0.9676 0.9908
E-SD 0.0318 0.0611 0.0751 0.0390 0.0483 0.1467 0.1655 0.1523
RMSE 0.0318 0.0611 0.0751 0.0393 0.0486 0.2816 0.1686 0.1526

(5) θA A Mean 0.9999 0.1962 0.2077 0.2065 0.9962 0.9681 1.0012
E-SD 0.0318 0.0583 0.0711 0.0416 0.0490 0.1709 0.1326
RMSE 0.0318 0.0584 0.0715 0.0421 0.0491 0.1739 0.1326

θA B Mean 0.9998 0.1998 0.2018 0.2093 0.9972 0.0049 0.9460 0.9968
E-SD 0.0318 0.0625 0.0753 0.0413 0.0489 0.1692 0.1627 0.1358
RMSE 0.0318 0.0625 0.0753 0.0423 0.0490 0.4298 0.1714 0.1358

NOTE: The value of (β0, λ10, λ20, ρ0, σ2
e0, λ30, σ

2
c0, b0) are the same as Table 1.

TABLE 5
COMPARING RANDOM EFFECTS MODELS: LR TESTS

(a) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test for model K against B 0.051 0.140 0.199

(b) The power under different significance levels
Significance level 0.01 0.05 0.1
LR test for model A against B 0.352 0.585 0.690

(c) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test for model K against B 0.010 0.036 0.074

(d) The type I error under different significance levels
Significance level 0.01 0.05 0.1
LR test for model A against B 0.032 0.083 0.129

NOTE: (i) The powers in (a) and (b) are obtained from item (1) in Table 4.
(ii) The type I errors in (c) and (d) are obtained from items (4) and (5) in Table 4, respectively.
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We then investigate models with SMA errors. We have three DGPs with Mn2 = Mn3 = Wn1:
(i) the general random model with λ10 = λ20 = 0.2, λ30 = 0.4, and δ20 = δ30 = 0.3; (ii) the KKP
random model with λ10 = λ20 = λ30 = 0.2 and δ20 = δ30 = 0.3; and (iii) the Anselin random
model with λ10 = λ20 = 0.2, λ30 = 0, δ20 = 0.3, and δ30 = 0. We use n = 100 and T = 10 where
the repetition is 1,000. Similar to previous simulations, we assign b0 = 1 for the constant term
in the DGP and β0 = 1 for the Xnt. For each DGP, we report corresponding random estimates
with both SAR and SMA disturbances, with SAR disturbances only, and those with relevant
SMA disturbances only. Also, within estimates for the three DGPs are reported.

From Table 6, when the true DGP is a general random effects model with both SAR and SMA
disturbances, the random effects estimate in item (1) has small bias for the common parameter
θ1, although it has some bias for λ3 and δ3. For the within estimate in item (4), we see that the
bias is small. When we have the model misspecification where the relevant SMA disturbances
are omitted, it results in an upward bias for the estimate of λ2 for both random and within
estimates; when we have the model misspecification where the relevant SAR disturbances are
omitted, it results in an upward bias for the estimate of δ2 for both random and within estimates.
Similar results are found for both the KKP and Anselin models in items (2) and (3).29

4.2. Testing. We also conduct simulations to check the performance of the Hausman and
LM tests for the KKP and Anselin DGPs. We use n = 100 and T = 5, where the number of
repetitions is 1,000. We assign b0 = 1 for the intercept term in the DGP and β0 = 1 for Xnt as
before. The spatial effects coefficients are λ10 = λ20 = λ30 = 0.3 for the KKP model, and λ10 =
λ20 = 0.3 with λ30 = 0 for the Anselin model. For the KKP model in Table 7, we first use the
random effects DGP and obtain the within, random, and between equations estimates. From
the within and/or random effects estimates, we obtain the LM and Hausman tests and their
type I errors. We then use fixed effects DGP where individual effects are generated by (18)
with standard normally distributed ζn and π0 = √

5. From corresponding within and random
estimates, we obtain the LM and Hausman tests and their power. Similarly, we obtain those
estimates and test statistics for the Anselin model in Table 8. We also estimate the between
equation in order to investigate the quality of the between estimate, which might provide us
an intuitive view on the performance of these tests because the Hausman test, by comparing
random and within estimates, is asymptotically equivalent to comparison of within and between
estimates.

From Table 7 for the KKP model, we see that within estimates are unbiased under both
DGPs of random and fixed effects. When the true DGP is a random effects model, the random
effects estimate has a smaller bias, a smaller (empirical) standard deviation, and thus a smaller
RMSE; also, biases of between estimates are not large, except for that of ρ0. The type I errors
for the LM and Hausman tests are close to the theoretical values at the conventional 1%, 5%,
and 10% levels of significance. When the true DGP is a fixed effects model, the random effects
estimate has a larger bias and a larger RMSE, and the estimate of σ2

c0 is not reliable; also, the
between estimate has large bias, large standard deviation, and large RMSE. The powers of the
LM and Hausman tests at the three conventional levels of significance are 1.

From Table 8 for the Anselin model, we have the same within estimate as the KKP model
because underlying processes are different only in the specification of individual effects (which is
eliminated in the within equation). When the true DGP is a random effects model, the random
effects estimate has a smaller (empirical) standard deviation and a smaller RMSE, but, the
between estimate has a large bias, a large standard deviation, and a large RMSE, especially
for variance parameters σ2

c and σ2
e (for comparison, although in the KKP model in Table 7,

29 We see that estimates of λ2 and δ2 have large standard deviations for the general model under both random and
fixed effects DGPs. This implies difficulty in the numerical search for (λ20, δ20) as B−1

n2 (δ2)Sn2(λ2) might not be easily
separated especially when Mn2 = Wn2. When the sample size increases along with a larger λ20 and δ20, the empirical
standard deviations of estimates for λ20 and δ20 would be smaller from our Monte Carlo results (which are not reported
in the table to save space).
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TABLE 6
SPATIAL PANELS WITH SMA ERRORS

θ1 θ2

β λ1 λ2 δ2 ρ σ2
e λ3 δ3 σ2

c b

(1) DGP is a general random model with SMA errors
θB B Mean 1.0057 0.2358 0.1962 0.2476 0.1912 0.9800 0.1398 0.3322 1.0980 0.9462

E-SD 0.0326 0.0717 0.2208 0.2150 0.0418 0.0683 0.2652 0.2891 0.2213 0.2360
RMSE 0.0331 0.0801 0.2209 0.2213 0.0427 0.0712 0.3716 0.2909 0.2421 0.2420

θB B SAR Mean 1.0064 0.2407 0.4237 0.1968 0.9281 0.4960 0.9570 0.9397
E-SD 0.0312 0.0598 0.0694 0.0386 0.0470 0.1720 0.1859 0.2262
RMSE 0.0319 0.0723 0.2342 0.0387 0.0859 0.1970 0.1908 0.2341

θB B SMA Mean 1.0086 0.2475 0.4285 0.1964 1.0286 0.5176 1.1278 0.9316
E-SD 0.0312 0.0601 0.0659 0.0400 0.0552 0.1920 0.1975 0.2270
RMSE 0.0323 0.0767 0.1444 0.0401 0.0621 0.2902 0.2353 0.2371

(2) DGP is a KKP random model with SMA errors
θK K Mean 1.0011 0.2043 0.1596 0.3260 0.1997 1.0482 1.0548 0.9882

E-SD 0.0328 0.0621 0.1684 0.1440 0.0386 0.0700 0.1880 0.1916
RMSE 0.0329 0.0622 0.1732 0.1463 0.0386 0.0850 0.1958 0.1920

θK K SAR Mean 1.0047 0.2245 0.4403 0.2010 0.9287 0.9245 0.9632
E-SD 0.0311 0.0501 0.0526 0.0378 0.0462 0.1547 0.1802
RMSE 0.0314 0.0557 0.2460 0.0378 0.0850 0.1722 0.1839

θK K SMA Mean 1.0069 0.2329 0.4433 0.2009 1.0859 1.0757 0.9526
E-SD 0.0321 0.0547 0.0547 0.0377 0.0621 0.1785 0.1828
RMSE 0.0328 0.0639 0.1533 0.0377 0.1060 0.1939 0.1888

(3) DGP is an Anselin random model with SMA errors
θA A Mean 1.0002 0.2015 0.2104 0.2773 0.1971 0.9871 1.0043 0.9955

E-SD 0.0319 0.0596 0.1756 0.1567 0.0381 0.0625 0.1662 0.1405
RMSE 0.0319 0.0597 0.1759 0.1584 0.0382 0.0638 0.1663 0.1405

θA A SAR Mean 1.0033 0.2169 0.4475 0.2014 0.9278 0.9888 0.9761
E-SD 0.0311 0.0498 0.0538 0.0386 0.0465 0.1660 0.1314
RMSE 0.0313 0.0526 0.2533 0.0386 0.0858 0.1664 0.1336

θA A SMA Mean 1.0055 0.2260 0.4503 0.2017 1.0395 0.9863 0.9649
E-SD 0.0311 0.0525 0.0548 0.0390 0.0541 0.1635 0.1323
RMSE 0.0316 0.0586 0.1600 0.0390 0.0670 0.1641 0.1369

(4) Within estimates for above models
θB W Mean 0.9999 0.2001 0.1821 0.3118 0.2008 0.9969

E-SD 0.0323 0.0619 0.1762 0.1534 0.0375 0.0642
RMSE 0.0323 0.0619 0.1771 0.1539 0.0375 0.0643

θB W SAR Mean 1.0041 0.2223 0.4440 0.2010 0.9278
E-SD 0.0314 0.0519 0.0547 0.0376 0.0463
RMSE 0.0317 0.0565 0.2501 0.0377 0.0857

θB W SMA Mean 1.0065 0.2320 0.4455 0.2008 1.0368
E-SD 0.0314 0.0552 0.0562 0.0377 0.0541
RMSE 0.0321 0.0638 0.1560 0.0377 0.0654

NOTE: (i) θB B SAR denotes estimates for models with only SAR disturbances.
(ii) θB B SMA denotes estimates for models with only SMA disturbances.
(iii) For all the DGPs, (β0, λ10, λ20, δ20, ρ0, σ2

e0, σ
2
c0, b0) = (1, 0.2, 0.2, 0.3, 0.2, 1, 1, 1). For the DGP of B, (λ30, δ30) =

(0.4, 0.3); for DGP of K, (λ30, δ30) = (0.2, 0.3); for DGP of A, (λ30, δ30) = (0, 0).

estimates of σ2
c and σ2

e under random effects DGP perform better).30 The type I error for the
LM test is slightly higher than the theoretical value, although that for the Hausman test is much
larger than the theoretical value. When the true DGP is a fixed effects model, the random effects
estimate has a larger bias, but not necessarily larger standard deviation or RMSE, although the
between estimate has a large bias, a large standard deviation, and a large RMSE, and they are

30 This can be seen from the matrix expansion of �n1(θ) in Section 2.3, where the estimation for the KKP model is
easier than that for the Anselin model.
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TABLE 7
KKP MODEL SPECIFICATION: TESTS FOR RANDOM VERSUS FIXED EFFECTS

θ1 θ2

β λ1 λ2 ρ σ2
e σ2∗ σ2

c b

(1) DGP with random effects
θw Mean 0.9974 0.2984 0.2936 0.3032 0.9902

E-SD 0.0473 0.0898 0.1109 0.0794 0.0802
RMSE 0.0474 0.0898 0.1111 0.0795 0.0808

θr Mean 0.9976 0.2978 0.2914 0.3022 0.9914 0.9591 1.0035
E-SD 0.0468 0.0871 0.1039 0.0780 0.0797 0.2071 0.2021
RMSE 0.0468 0.0871 0.1043 0.0781 0.0801 0.2111 0.2022

θb Mean 0.9955 0.2835 0.2630 0.2102 1.2697 1.0265
E-SD 0.2659 0.2448 0.2548 0.4390 0.1949 0.3952
RMSE 0.2659 0.2587 0.2625 0.4391 0.2102 0.3961

The type I error under different significance levels
Significance level 0.01 0.05 0.10
LM test 0.010 0.048 0.100
Hausman test 0.024 0.071 0.118

(2) DGP with fixed effects
θw Mean 0.9974 0.2984 0.2936 0.3032 0.9902

E-SD 0.0473 0.0898 0.1109 0.0794 0.0802
RMSE 0.0474 0.0898 0.1111 0.0795 0.0808

θr Mean 1.0382 0.3064 0.2817 0.2994 0.9918 1.9197 0.9988
E-SD 0.0481 0.0868 0.1062 0.0810 0.0808 0.3445 0.2476
RMSE 0.0614 0.0871 0.1077 0.0811 0.0812 0.9821 0.2476

θb Mean 3.1956 0.4605 0.0955 0.0312 1.2539 0.7719
E-SD 0.2719 0.1236 0.1875 0.2256 0.1904 0.2266
RMSE 2.2124 0.2883 0.2147 0.2818 0.2126 0.3216

The power under different significance levels
Significance level 0.01 0.05 0.10
LM test 1.00 1.00 1.00
Hausman test 1.00 1.00 1.00

NOTE: (i) For the KKP DGP, (β0, λ10, λ20, ρ0, σ2
e0, σ

2
c0, b0) = (1, 0.3, 0.3, 0.3, 1, 1, 1).

(ii) For the between estimates θb, the implied parameter σ2∗ = σ2
c + σ2

1 has true value 1.3484. Also, the initial search
value for θ1 is from the within estimates.

not reliable. We see that the power of the LM and Hausman tests of the three conventional
significance levels are high.

For Tables 7 and 8, we see that the LM and Hausman tests for the KKP and Anselin models
are different, and the performance of the tests are better in the KKP model setting. This might
be due to the weak identification of π0 in the (extended) between equation (19) for the Anselin
model. In the Anselin model, λ30 = δ30 = 0 so that S−1

n3 Bn3X̄nT is reduced to X̄nT , which is
highly multicollinear with �XnT , especially T is not small. However, in the KKP model, λ30 =
δ30 = 0.3 �= 0 so that �XnT and S−1

n3 Bn3X̄nT are not multicollinear. This might explain the better
performance of LM tests for the KKP model than that for the Anselin model. For the Hausman
test, as explained in footnote 26, the random effects estimates would be more efficient with a
smaller σ2

c0 and a larger cross-sectional variation of �XnT , which might also help its performance.
To confirm those possibilities, we use a different DGP, where σ2

c0 = 0.5 and the exogenous
variables are generated from xit = ξi + zit, where ξi and zit are independent standard normal
random variables. The estimates and tests based on this model design are reported in Tables 9
and 10. With a smaller σ2

c0 and a larger variation of �XnT , we see that the efficiency of the random
estimates are more apparent for both KKP and Anselin models, and the performance of the
Hausman test for the Anselin model is improved. However, due to the weak identification of π0

under the Anselin model, the LM test for the KKP model still outperforms that in the Anselin
model even though the Hausman’s test is now good for both the KKP and Anselin models.



1392 LEE AND YU

TABLE 8
ANSELIN MODEL SPECIFICATION: TESTS FOR RANDOM VERSUS FIXED EFFECTS

θ1 θ2

β λ1 λ2 ρ σ2
e σ2

c b

(1) DGP with random effects
θw Mean 0.9974 0.2984 0.2936 0.3032 0.9902

E-SD 0.0473 0.0898 0.1109 0.0794 0.0802
RMSE 0.0474 0.0898 0.1111 0.0795 0.0808

θr Mean 0.9977 0.2945 0.2947 0.2986 0.9897 0.9684 1.0080
E-SD 0.0466 0.0796 0.1053 0.0773 0.0796 0.2130 0.1692
RMSE 0.0467 0.0798 0.1054 0.0773 0.0802 0.2154 0.1694

θb Mean 0.9990 0.2124 0.1650 0.2081 3.8826 0.3116 1.1270
E-SD 0.2712 0.2393 0.3426 0.4423 4.4705 0.3625 0.3751
RMSE 0.2712 0.2548 0.3682 0.4517 5.3193 0.7780 0.3960

The type I error under different significance levels
Significance level 0.01 0.05 0.10
LM test 0.028 0.096 0.161
Hausman test 0.064 0.114 0.160

(2) DGP with fixed effects
θw Mean 0.9974 0.2984 0.2936 0.3032 0.9902

E-SD 0.0473 0.0898 0.1109 0.0794 0.0802
RMSE 0.0474 0.0898 0.1111 0.0795 0.0808

θr Mean 1.0388 0.3074 0.2831 0.3006 0.9938 1.9140 0.9950
E-SD 0.0472 0.0697 0.0973 0.0752 0.0784 0.3260 0.1896
RMSE 0.0611 0.0701 0.0987 0.0752 0.0787 0.9704 0.1896

θb Mean 3.2215 0.2841 0.0930 0.0324 4.0085 0.4445 1.0238
E-SD 0.2759 0.1432 0.3466 0.2270 2.8255 0.3734 0.2530
RMSE 2.2386 0.1440 0.4037 0.3509 4.1273 0.6693 0.2541

The power under different significance levels
Significance level 0.01 0.05 0.10
LM test 1.00 1.00 1.00
Hausman test 1.00 1.00 1.00

NOTE: (i) For the Anselin DGP, (β0, λ10, λ20, ρ0, σ2
e0, σ

2
c0, b0) = (1, 0.3, 0.3, 0.3, 1, 1, 1).

(ii) For the between estimates θb, the initial search value for θ1 is from the within estimates.

4.3. Consequences of Omitting Various Spatial and/or Serial Correlations. Finally, we inves-
tigate more consequences of misspecifications with reference to an empirical study of a spatial
panel model. In empirical applications of spatial panel models, it seems typical for investigators
to impose only some limited spatial structures, e.g., Moscone et al. (2007), who study spatial
dependence of heath expenditure in British counties. Moscone et al. (2007) estimate a random
effects spatial panel model without serial correlation, where it includes either a spatial lag or a
spatial error, but not both. It is of interest to see with a general model, where spatial lag, spatial
error, and also serial correlation are present, whether a certain omission of spatial or serial
correlation would have significant misspecification effects on estimates of included variables.
In generating data for such a general model, we use n = 148 and T = 6 following the panel
dimensions in Moscone et al. (2007). The spatial weights matrix is their contiguity matrix after
row-normalization, and relevant variables are generated from standard normal distributions.
The repetition is 1,000. Table 11 presents the results where the DGP is a random effects Anselin
model whereas Table 12 has the results under a fixed effects DGP, where the fixed individual
effects are generated by (18) with standard normally distributed ζn and π0 = √

6. Instead of
only estimating a random effects model as in Moscone et al. (2007), we will investigate how the
following various misspecifications would cause estimation and testing problems: misspecifica-
tions of omitting spatial lag or spatial error, misspecifications of omitting serial correlation, and
misspecifications of omitting both. Under correct specification, we see that both random effects
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TABLE 9
KKP MODEL SPECIFICATION: TESTS FOR RANDOM VERSUS FIXED EFFECTS

θ1 θ2

β λ1 λ2 ρ σ2
e σ2∗ σ2

c b

(1) DGP with random effects
θw Mean 0.9988 0.3035 0.2913 0.2982 0.9865

E-SD 0.0463 0.0907 0.1133 0.0792 0.0756
RMSE 0.0463 0.0907 0.1136 0.0792 0.0768

θr Mean 0.9990 0.3006 0.2918 0.2963 0.9893 0.4803 0.9985
E-SD 0.0405 0.0795 0.0998 0.0780 0.0755 0.1383 0.1702
RMSE 0.0405 0.0795 0.1001 0.0781 0.0762 0.1397 0.1702

θb Mean 0.9935 0.2909 0.2658 0.2054 0.8142 1.0126
E-SD 0.0852 0.1599 0.2023 0.3768 0.1155 0.2664
RMSE 0.0854 0.1840 0.2128 0.3769 0.1205 0.2667

The type I error under different significance levels
Significance level 0.01 0.05 0.10
LM test 0.007 0.047 0.102
Hausman test 0.030 0.072 0.123

(2) DGP with fixed effects
θw Mean 0.9988 0.3035 0.2913 0.2982 0.9865

E-SD 0.0463 0.0907 0.1133 0.0792 0.0756
RMSE 0.0463 0.0907 0.1136 0.0792 0.0768

θr Mean 1.0705 0.5407 0.4348 0.4812 0.9886 6.1297 0.9066
E-SD 0.0444 0.0819 0.1145 0.0917 0.0794 1.1094 0.4974
RMSE 0.0833 0.2543 0.1768 0.2031 0.0802 5.7380 0.5061

θb Mean 3.1528 0.7541 0.1496 0.0800 1.0141 0.4907
E-SD 0.0978 0.0356 0.1382 0.1885 0.1430 0.1380
RMSE 2.1550 0.5552 0.1471 0.2234 0.2189 0.5277

The power under different significance levels
Significance level 0.01 0.05 0.10
LM test 1.00 1.00 1.00
Hausman test 1.00 1.00 1.00

NOTE: (i) For the KKP DGP, (β0, λ10, λ20, ρ0, σ2
e0, σ

2
c0, b0) = (1, 0.3, 0.3, 0.3, 1, 0.5, 1).

(ii) For the between estimates θb, the implied parameter σ2∗ = σ2
c0 + σ2

1 has true value 0.8484. Also, the initial search
value for θ1 is from the within estimates.
(iii) The exogenous variables are generated from xit = ξi + zit , where ξi and zit are independent standard normal
random variables.

and fixed effects estimates perform well with small biases and small standard deviations; also,
the Hausman test has an accurate size.

When we omit the spatial error while keeping the spatial lag and serial correlation in the
model, biases for the estimates of β increase slightly, which results in a higher RMSE. The
estimates of λ1 would be biased upward by about 50% for both random and fixed effects
estimates. Also, the type I error of the Hausman test remains accurate. When we omit the spatial
lag and still include the spatial error and serial correlation in the regression, the estimates of β

are biased downward by 10% and the estimates of λ1 are biased upward by about 30%. For the
Hausman test, there is an overrejection because the type I error is very high. For the above two
misspecifications, the estimates of b are not reliable for either of them.

If we include both spatial lag and spatial error in the model but omit the serial correlation,
the consequences for the estimates are not substantial, as there are only slight increases in the
RMSEs, but, the Hausman test has an overrejection of random effects DGP. However, if we
omit either spatial error or spatial lag, while at the same time omitting the serial correlation,
we find that the increases in the biases of β and λj for j = 1, 2 are larger than those of omitting
spatial error only or spatial lag only.

When the DGP is a fixed effects model, as we see from Table 12, there are similar mis-
specification consequences of estimates and testings due to omitting spatial structures or serial
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TABLE 10
ANSELIN MODEL SPECIFICATION: TESTS FOR RANDOM VERSUS FIXED EFFECTS

θ1 θ2

β λ1 λ2 ρ σ2
e σ2

c b

(1) DGP with random effects
θw Mean 0.9988 0.3035 0.2913 0.2982 0.9865

E-SD 0.0463 0.0907 0.1133 0.0792 0.0756
RMSE 0.0463 0.0907 0.1136 0.0792 0.0768

θr Mean 0.9991 0.2976 0.2957 0.2950 0.9884 0.4840 1.0025
E-SD 0.0403 0.0737 0.0999 0.0767 0.0751 0.1379 0.1507
RMSE 0.0403 0.0737 0.1000 0.0769 0.0760 0.1388 0.1507

θb Mean 0.9942 0.2791 0.1412 0.2044 2.1963 0.2476 1.0292
E-SD 0.0859 0.1573 0.3611 0.3769 2.4083 0.2431 0.2540
RMSE 0.0861 0.1587 0.3945 0.3889 2.6891 0.3504 0.2557

The type I error under different significance levels
Significance level 0.01 0.05 0.10
LM test 0.020 0.072 0.125
Hausman test 0.030 0.063 0.102

(2) DGP with fixed effects
θw Mean 0.9988 0.3035 0.2913 0.2982 0.9865

E-SD 0.0463 0.0907 0.1133 0.0792 0.0756
RMSE 0.0463 0.0907 0.1136 0.0792 0.0768

θr Mean 1.0703 0.5281 0.4565 0.4750 0.9883 6.0779 0.9390
E-SD 0.0442 0.0595 0.0905 0.0934 0.0795 1.0724 0.2929
RMSE 0.0831 0.2358 0.1808 0.1983 0.0803 5.680 0.2992

θb Mean 3.2301 0.4960 0.3971 0.0845 3.1404 0.3491 1.0062
E-SD 0.0987 0.0605 0.2558 0.1903 2.0477 0.3080 0.2076
RMSE 2.2323 0.2051 0.2736 0.2876 2.9622 0.3430 0.2077

The power under different significance levels
Significance level 0.01 0.05 0.10
LM test 1.00 1.00 1.00
Hausman test 1.00 1.00 1.00

NOTE: (i) For the Anselin DGP, (β0, λ10, λ20, ρ0, σ2
e0, σ

2
c0, b0) = (1, 0.3, 0.3, 0.3, 1, 0.5, 1).

(ii) For the between estimates θb, the initial search value for θ1 is from the within estimates.
(iii) The exogenous variables are generated from xit = ξi + zit , where ξi and zit are independent standard normal
random variables.

correlations. However, we see that the powers of the Hausman test are high even under various
misspecifications.

Thus, we recommend running various specifications on given data including the general
model with spatial lag, spatial error, and serial correlation. When different specifications yield
different empirical results so that robustness is a priority over efficiency, the result from a
general specification should be preferable.

5. CONCLUSION

This article investigates spatial panel data models with a space–time filter in disturbances.
We estimate the model by both fixed effects and random effects specifications. With a between
equation properly defined, the random effects model can be decomposed into a within equation
and a between equation. The within equation corresponds to the fixed effects model with
individual effects eliminated for estimation, the between equation illustrates differences of
various random components specifications, and the random effects estimate is the pooling of the
within and between estimates. A Hausman-type specification test and an LM test are proposed.
Monte Carlo experiments are conducted to investigate the performance of the ML estimation
and tests of various model specifications. Consequences of misspecifications of omitting spatial
and/or serial correlations are also investigated via Monte Carlo experiments.
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TABLE 11
CONSEQUENCES OF VARIOUS MODEL MISSPECIFICATIONS: DGP IS A RANDOM EFFECTS MODEL WITH SPATIAL LAG, SPATIAL ERROR,

AND SERIAL CORRELATION

θ1 θ2

β λ1 λ2 ρ σ2
e σ2

c b

(1) Correct specification
θr Mean 0.9993 0.4952 0.4984 0.4937 0.9904 0.9999 1.0142

E-SD 0.0320 0.0588 0.0714 0.0503 0.0580 0.1970 0.1972
RMSE 0.0320 0.0590 0.0715 0.0507 0.0588 0.1970 0.1977

θw Mean 0.9991 0.4956 0.4993 0.4953 0.9904
E-SD 0.0324 0.0636 0.0741 0.0535 0.0584
RMSE 0.0324 0.0638 0.0741 0.0537 0.0592

Type I error of Hausman test (theoretical 0.01, 0.05, 0.10) 0.020 0.051 0.084
(2) Misspecification omitting spatial error

θr Mean 0.9717 0.7221 0.4832 1.0235 0.9706 0.5566
E-SD 0.0329 0.0241 0.0545 0.0592 0.1955 0.0980
RMSE 0.0434 0.2234 0.0570 0.0636 0.1977 0.4541

θw Mean 0.9703 0.7313 0.4816 1.0177
E-SD 0.0332 0.0256 0.0558 0.0589
RMSE 0.0446 0.2327 0.0588 0.0615

Type I error of Hausman test 0.012 0.047 0.091
(3) Misspecification omitting spatial lag

θr Mean 0.8913 0.8213 0.5174 0.9907 0.7969 2.0087
E-SD 0.0292 0.0200 0.0551 0.0591 0.2016 0.3038
RMSE 0.1126 0.3219 0.0578 0.0598 0.2861 1.0534

θw Mean 0.8904 0.8205 0.4757 0.9648
E-SD 0.0295 0.0211 0.0540 0.0574
RMSE 0.1135 0.3212 0.0592 0.0674

Type I error of Hausman test 0.270 0.437 0.558
(4) Misspecification omitting serial correlation

θr Mean 1.0026 0.5297 0.4674 0.9664 1.3851 0.9434
E-SD 0.0356 0.0577 0.0785 0.0612 0.1860 0.1882
RMSE 0.0357 0.0649 0.0850 0.0698 0.4276 0.1965

θw Mean 0.9980 0.4931 0.4997 0.9648
E-SD 0.0366 0.0749 0.0861 0.0611
RMSE 0.0366 0.0753 0.0861 0.0705

Type I error of Hausman test 0.182 0.233 0.263
(5) Misspecification omitting serial correlation and spatial error

θr Mean 0.9697 0.7341 0.9885 1.3204 0.5320
E-SD 0.0365 0.0256 0.0612 0.1765 0.0969
RMSE 0.0474 0.2355 0.0623 0.3659 0.4779

θw Mean 0.9680 0.7447 0.9826
E-SD 0.0369 0.0270 0.0607
RMSE 0.0488 0.2462 0.0632

Type I error of Hausman test 0.002 0.024 0.057
(6) Misspecification omitting serial correlation and spatial lag

θr Mean 0.8904 0.8345 0.9479 1.4339 2.0054
E-SD 0.0326 0.0227 0.0608 0.2420 0.3149
RMSE 0.1143 0.3353 0.0801 0.4969 1.0536

θw Mean 0.8902 0.8176 0.9391
E-SD 0.0331 0.0231 0.0601
RMSE 0.1146 0.3185 0.0856

Type I error of Hausman test 0.745 0.837 0.864

NOTE: For the DGP, (β0, λ10, λ20, ρ0, σ2
e0, σ

2
c0, b0) = (1, 0.5, 0.5, 0.5, 1, 1, 1).
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TABLE 12
CONSEQUENCES OF VARIOUS MODEL MISSPECIFICATIONS: DGP IS A FIXED EFFECTS MODEL WITH SPATIAL LAG, SPATIAL ERROR,

AND SERIAL CORRELATION

θ1 θ2

β λ1 λ2 ρ σ2
e σ2

c b

(1) Misspecification as a random effects model
θr Mean 1.0231 0.5065 0.4875 0.4925 0.9908 1.9885 0.9926

E-SD 0.0321 0.0542 0.0701 0.0536 0.0585 0.3339 0.2053
RMSE 0.0396 0.0546 0.0712 0.0542 0.0592 1.0433 0.2055

Power of Hausman test 1 1 1
(2) Additional misspecification omitting spatial error

θr Mean 0.9976 0.7164 0.4838 1.0277 1.9436 0.5689
E-SD 0.0330 0.0242 0.0553 0.0595 0.3175 0.1078
RMSE 0.0331 0.2178 0.0577 0.0656 0.9956 0.4444

Power of Hausman test 1 1 1
(3) Additional misspecification omitting spatial lag

θr Mean 0.9102 0.8250 0.5360 1.0001 1.7460 2.0124
E-SD 0.0296 0.0199 0.0638 0.0623 0.3945 0.3634
RMSE 0.0946 0.3256 0.0732 0.0623 0.8439 1.0756

Power of Hausman test 1 1 1
(4) Additional misspecification omitting serial correlation

θr Mean 1.0315 0.5308 0.4652 0.9671 2.3671 0.9418
E-SD 0.0358 0.0528 0.0746 0.0613 0.3105 0.1951
RMSE 0.0477 0.0612 0.0824 0.0696 1.4019 0.2036

Power of Hausman test 1 1 1
(5) Additional misspecification omitting serial correlation and spatial error

θr Mean 1.0020 0.7281 0.9929 2.2948 0.5446
E-SD 0.0366 0.0257 0.0615 0.3054 0.1049
RMSE 0.0367 0.2296 0.0619 1.3304 0.4673

Power of Hausman test 1 1 1
(6) Additional misspecification omitting serial correlation and spatial lag

θr Mean 0.9116 0.8327 0.9460 2.7434 2.0092
E-SD 0.0330 0.0237 0.0609 0.4570 0.3730
RMSE 0.0943 0.3335 0.0814 1.8023 1.0759

Power of Hausman test 1 1 1

NOTE: (i) The significance levels for Hausman test are 0.01, 0.05, 0.10, respectively.
(ii) For the DGP, (β0, λ10, λ20, ρ0, σ2

e0, σ
2
c0, b0) = (1, 0.5, 0.5, 0.5, 1, 1, 1).

(iii) The fixed individual effects are generated by cn0=
√

6X̄nT +ζn from (18).
(iv) For the fixed effects estimates, they are the same as those in Table 11 and hence not reported here.

APPENDIX

A. Notations, Some Important Matrices, and Algebra.

A.1. Notations. The following list summarizes some frequently used notations in the article:
For j = 1, 2, 3, Snj(λj) = In − λjWnj for any possible λj and Gnj (λj ) = Wnj S−1

nj (λj ).
For j = 2, 3, Bnj(δj) = (In + δjMnj) for any possible δj and Knj (δj ) = B−1

nj (δj )Mnj .
Snj = In − λj0Wnj and Gnj = Wnj S−1

nj ; Bnj = (In + δj0Mnj) and Knj = B−1
nj Mnj .

As = A′ + A for any square matrix A.
vecD(A) is the column vector formed by diagonal elements of any square matrix A.
WnT,j = IT ⊗ Wnj and GnT,j = IT ⊗ Gnj .
en1 ≡

√
1 − ρ2

0Vn1 and enT = (e′
n1, e′

n2, . . . , e′
nT )′.

VnT = (V ′
n1, . . . , V ′

nT )′ and ed
n,T −1 = (�V ′

n2,�e′
n3, . . . ,�e′

nT )′.
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A.2. A list of some matrices. For an AR(1) process vt = ρvt−1 + et, where et’s are i.i.d. with
zero mean and a unit variance, the following matrices in (A.1)–(A.3) are important.

The T × T variance matrix of (v1, . . . , vT) is


T (ρ) = 1
1 − ρ2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρT −1

ρ 1 ρ · · · ρT −2

...
...

...
. . .

...

ρT −1 ρT −2 ρT −3 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(A.1)

The inverse matrix of 
T(ρ) is


−1
T (ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ · · · 0 0

−ρ 1 + ρ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 + ρ2 −ρ

0 0 · · · −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.2)

A decomposition: 
−1
T (ρ) = P′

T (ρ)PT (ρ), where

PT (ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1 − ρ2 0 · · · 0 0

−ρ 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(A.3)

The (T − 1) × T difference operator:

LT −1,T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

...
. . . 0

0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(A.4)

The (T − 1) × (T − 1) quasi-difference operator:

QT −1(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

−ρ 1 · · · 0 0

0 −ρ · · · 0 0

...
...

. . .
...

...

0 0
. . . −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.5)
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The variance matrix of ed
n,T −1 is σ2

e0HT −1 ⊗ In, where HT−1 = HT−1(ρ0) with

HT −1(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1 + ρ

−1 0 · · · 0

−1 2 −1 · · · 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . −1

0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.6)

The inverse matrix of (A.6) is

H−1
T −1(ρ) = 1 − ρ

T − (T − 2)ρ

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T − 1 (T − 2) (T − 3) · · · 2 1

(T − 2) (T − 2)ω (T − 3)ω · · · 2ω ω

(T − 3) (T − 3)ω (T − 3)(2ω − 1) · · · 2(2ω − 1) (2ω − 1)

...
...

...
...

...
...

2 2ω 2(2ω − 1) · · · 2[(T − 3)ω − (T − 4)] (T − 3)ω − (T − 4)

1 ω (2ω − 1) · · · [(T − 3)ω − (T − 4)] (T − 2)ω − (T − 3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A.7)

where ω = 2
1+ρ

.
An important weighting matrix for the within estimation:

JT (ρ) = 
−1
T (ρ) − 1 − ρ

T − (T − 2)ρ

⎛
⎜⎜⎜⎜⎜⎝

1
1 − ρ

...
1 − ρ

1

⎞
⎟⎟⎟⎟⎟⎠ (1, 1 − ρ, . . . , 1 − ρ, 1).(A.8)

A.3. Algebra about HT −1(ρ) and JT (ρ). From Hsiao et al. (2002), there exist AT−1(ρ)
and DT−1(ρ) such that AT −1(ρ)HT −1(ρ)A′

T −1(ρ) = DT −1(ρ), where DT −1(ρ) = diag{a0a1, a1a2,

. . . , aT −2aT −1},
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AT −1(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 0 · · · 0

a0 a1 0
. . .

...

a0 a1 a2
. . . 0

...
. . .

. . .
. . . 0

a0 a1 a2 · · · aT −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with A−1
T −1(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a0

0 0 · · · 0

− 1
a1

1
a1

0
. . .

...

0 − 1
a2

1
a2

. . . 0

...
. . .

. . .
. . . 0

0 0 0 − 1
aT −2

1
aT −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

as = 1 + s(ω − 1) for s = 0 , . . . , T − 1 and ω(ρ) = 2
1+ρ

(for notational simplicity, we simplify

as(ρ) as as and ω(ρ) as ω). Thus, H−1
T −1(ρ) = A′

T −1(ρ)D−1
T −1(ρ)AT −1(ρ). With |HT−1(ρ)| = 1 +

(T − 1)(ω − 1), we have the explicit expression for H−1
T −1(ρ) in (A.7).

To derive JT (ρ) = L′
T −1,T Q′

T −1(ρ)H−1
T −1(ρ)QT −1(ρ)LT −1,T , we have

AT −1(ρ)QT −1(ρ)LT −1,T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 · · · 0 0

−1 − ρ

1 + ρ
−1 a1 0 0 · · · 0 0

−1 − ρ

1 + ρ
− (1 − ρ)2

1 + ρ
a1 − (1 + ρ)a2 a2 0 · · · 0 0

−1 − ρ

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
a2 − (1 + ρ)a3 a3 · · · 0 0

...
...

...
...

...
. . .

...
...

−1 − ρ

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
· · · aT −3 0

−1 − ρ

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
− (1 − ρ)2

1 + ρ
· · · aT −3 − (1 + ρ)aT −2 aT −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, with DT −1(ρ) = diag{a0a1, a1a2, . . . , aT −2aT −1}, elements of the first row of JT (ρ) are

JT (1, 1) = 1
a0a1

+
(

1 − ρ

1 + ρ

)2 ( 1
a1a2

+ · · · 1
aT −2aT −1

)

JT (1, 2) = − 1
a0a1

+ 1 − ρ

1 + ρ

1
a1a2

+ (1 − ρ)3

(1 + ρ)2

(
1

a2a3
+ · · · 1

aT −2aT −1

)

JT (1, 3) = −a1
1 − ρ

1 + ρ

1
a1a2

− 1 − ρ

1 + ρ
(a1 − (1 + ρ)a2)

1
a1a2

+ (1 − ρ)3

(1 + ρ)2

(
1

a3a4
+ · · · 1

aT −2aT −1

)

JT (1, 4) = −a2
1 − ρ

1 + ρ

1
a2a3

− 1 − ρ

1 + ρ
(a2 − (1 + ρ)a3)

1
a3a4

+ (1 − ρ)3

(1 + ρ)2

(
1

a4a5
+ · · · 1

aT −2aT −1

)
...

JT (1, T ) = −1 − ρ

1 + ρ
aT −2

(
1

aT −2aT −1

)
.
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For the second row, we have

JT (2, 1) = JT −1(1, 2)

JT (2, 2) = 1
a0a1

+ 1
a1a2

+ (1 − ρ)4

(1 + ρ)2

(
1

a2a3
+ · · · 1

aT −2aT −1

)

JT (2, 3) = −a1
1

a1a2
− (1 − ρ)2

1 + ρ
(a1 − (1 + ρ)a2)

1
a2a3

+ (1 − ρ)4

(1 + ρ)2

(
1

a3a4
+ · · · 1

aT −2aT −1

)

JT (2, 4) = −a2
(1 − ρ)2

1 + ρ

1
a2a3

− (1 − ρ)2

1 + ρ
(a2 − (1 + ρ)a3)

1
a3a4

+ (1 − ρ)4

(1 + ρ)2

(
1

a4a5
+ · · · 1

aT −2aT −1

)
...

JT (2, T ) = − (1 − ρ)2

1 + ρ
aT −2

(
1

aT −2aT −1

)
.

The rest of the rows can be derived similarly. By using 1
atat+1

+ · · · 1
aT −2aT −1

= 1+ρ
1−ρ

( 1
at

− 1
aT −1

) for
t < T − 1 and the values of as for s = 0 , . . . , T − 1, these above items can be simplified. Thus,
we have the explicit expression of JT (ρ) in (A.8). It is apparent that JT (ρ) is UB as |ρ| < 1.

B. Appendix for section 2.

B.1. Algebra for the within equation (5).

B.1.1. The score and information matrix. From the DGP, WnT,1YnT = (IT ⊗ Gn1(λ1))
XnT β + (IT ⊗ Gn1(λ1)S−1

n2 (λ2)Bn2(δ2))VnT (θ1). Denoting ẌnT = (IT ⊗ B−1
n2 Sn2)XnT , G̈n1 =

B−1
n2 Sn2Gn1S−1

n2 Bn2 and G̈n2 = B−1
n2 Gn2Bn2, the score of (5) is

∂ ln Lw,nT (θ10)
∂β

= 1

σ2
e0

Ẍ′
nT (JT ⊗ In)VnT ,

∂ ln Lw,nT (θ10)
∂λ1

= 1

σ2
e0

(ẌnT β0)′(JT ⊗ G̈′
n1)VnT + 1

σ2
e0

V′
nT (JT ⊗ G̈n1)VnT − (T − 1)tr(Gn1),

∂ ln Lw,nT (θ10)
∂λ2

= 1

σ2
e0

V′
nT (JT ⊗ G̈n2)VnT − (T − 1)tr(Gn2),

∂ ln Lw,nT (θ10)
∂δ2

= 1

σ2
e0

V′
nT (JT ⊗ Kn2)VnT − (T − 1)tr(Kn2),

∂ ln Lw,nT (θ10)
∂ρ

= − 1

2σ2
e0

V′
nT (

∂JT

∂ρ
⊗ In)VnT + n(T − 1)

1 + ρ0

1
T − (T − 2)ρ0

,

∂ ln Lw,nT (θ10)
∂σ2

e
= 1

2σ4
e0

V′
nT (JT ⊗ In)VnT − n(T − 1)

2
1

σ2
e0

.
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Also, we have the information matrix


w,nT =
[

Hw,nT ∗
04×(kx+1) 04×4

]
+ 1

n ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0kx×kx ∗ ∗ ∗ ∗ ∗
01×kx tr(G̈′

n1G̈s
n1) ∗ ∗ ∗ ∗

01×kx tr(G̈′
n1G̈s

n2) 0 ∗ ∗ ∗
01×kx tr(G̈′

n1Ks
n2) 0 0 ∗ ∗

01×kx − 2
1 + ρ0

1
T − (T − 2)ρ0

trG̈n1 0 0 0 ∗

01×kx

1

σ2
e0

tr(G̈n1) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)

+ 1
n

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0kx×kx ∗ ∗ ∗ ∗ ∗
01×kx 0 ∗ ∗ ∗ ∗
01×kx 0 tr(G̈′

n2G̈s
n2) ∗ ∗ ∗

01×kx 0 tr(G̈′
n2Ks

n2) tr(K′
n2Ks

n2) ∗ ∗

01×kx 0 − 2
1 + ρ0

1
T − (T − 2)ρ0

trG̈n2 − 2
1 + ρ0

1
T − (T − 2)ρ0

tr(Kn2) − 1
(T − 1)

E
∂2 ln Lw,nT (θ10)

∂ρ2
∗

01×kx 0
1

σ2
e0

tr(G̈n2)
1

σ2
e0

tr(Kn2) − n

2σ2
e0

2
1 + ρ0

1
T − (T − 2)ρ0

n
2

1

σ4
e0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Hw,nT = 1
σ2

e0n(T −1)
[ẌnT , G̈nT,1ẌnT β0]′(JT ⊗ In)[ẌnT , G̈nT,1ẌnT β0] is of dimension (kx +

1) × (kx + 1) and

−E
∂2 ln Lw,nT (θ10)

∂ρ2
= 2n

(1 + ρ0)
T − 1

(T − (T − 2)ρ0)

×
[

(T − 1)
(1 + ρ0)(T − (T − 2)ρ0)

+ T − 2
2

− 1
(1 − ρ0)

+ 1
T − 1

1 − ρT −1
0

(1 − ρ0)2

]
.

B.1.2. Variance matrix of the score. From the score ∂ ln Lw,nT (θ10)
∂θ1

, we have E 1
n(T −1) ×

∂ ln Lw,nT (θ10)
∂θ1

∂ ln Lw,nT (θ10)
∂θ′

1
= 
w,nT + �w,nT , where 
w,nT is the information matrix, �w,nT is re-

lated to the third and fourth moments of ent,i (μ3,e and μ4,e) and is equal to zero when ent,i’s are
normal. Let vecD(A) be a column vector formed by diagonal elements of a square matrix A.
Denote P = [P1,P2], where P1 = vecD(P′−1

T JT P−1
T ⊗ G̈n1) and

P2 =
[
vecD

(
P′−1

T JT P−1
T ⊗ G̈n2

)
, vecD

(
P′−1

T JT P−1
T ⊗ Kn2

)
,

−1
2
vecD

(
P′−1

T
∂JT

∂ρ
P−1

T ⊗ In

)
,

1

2σ2
e0

vecD
(
P′−1

T JT P−1
T ⊗ In

)]

with PT = PT(ρ0) in (A.3). By using enT = (PT ⊗ In)VnT and Lemma 3 in Yu et al. (2008), we
have

�w,nT = μ4,e − 3σ4
e0

σ4
e0

[
0kx×kx ∗
05×kx P ′P

]
+ μ3,e

σ4
e0

⎡
⎢⎢⎣

0kx×kx ∗ ∗
P ′

1(JT ⊗ In)ẌnT 2P ′
1(JT ⊗ G̈n1)ẌnT β0 ∗

P ′
2(JT ⊗ In)ẌnT P ′

2(JT ⊗ G̈n1)ẌnT β0 04×4

⎤
⎥⎥⎦ .

(B.2)
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B.2. Algebra for the Random Effects equation (9).

B.2.1. The score and information matrix. The variance matrix �nT in (8) is a function of
φ0 = (λ20, λ30, δ20, δ30, ρ0, σ2

c0, σ2
e0)′. For components in �nT , we have

∂
T,ρ0
∂ρ

= 1
1−ρ2

0
(2ρ0
T,ρ0 +

Fρ0 ), where Fρ0 is a symmetric matrix as

Fρ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ · · · ∗
1 0 ∗ · · · ∗

2ρ0 1 0 ∗
...

...
...

. . .
...

(T − 1)ρT −2
0 (T − 2)ρT −3

0 (T − 3)ρT −4
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

also, ∂S−1
n2 (λ2)Bn2(δ2)B′

n2(δ2)S′−1
n2 (λ2)

∂λ2
= S−1

n2 (λ2)(Gn2(λ2)Bn2(δ2)B′
n2(δ2))sS′−1

n2 (λ2), which is denoted as R1

at true values. Similarly, at true parameter values, we defineC1 ≡ ∂S−1
n3 Bn3B′

n3S′−1
n3

∂λ3
,R3 ≡ ∂S−1

n2 Bn2B′
n2S′−1

n2
∂δ2

,

and C3 ≡ ∂S−1
n3 Bn3B′

n3S′−1
n3

∂δ3
. Hence,

∂�nT

∂λ2
= σ2

e0
T,ρ0 ⊗ R1,
∂�nT

∂λ3
= σ2

c0lT l′T ⊗ C1,
∂�nT

∂δ2
= σ2

e0
T,ρ0 ⊗ R3,

∂�nT

∂δ3
= σ2

c0lT l′T ⊗ C3,
∂�nT

∂ρ
= σ2

e0

[
∂
T,ρ0

∂ρ
⊗ (

S′
n2B′−1

n2 B−1
n2 Sn2

)−1
]

,

∂�nT

∂σ2
c

= lT l′T ⊗ (
S′

n3B′−1
n3 B−1

n3 Sn3
)−1

, and
∂�nT

∂σ2
e

= 
T,ρ0 ⊗ (
S′

n2B′−1
n2 B−1

n2 Sn2
)−1.

By denoting ZnT = [lT ⊗ zn, XnT ] and γ0 = (b′
0, β

′
0), the score vector has

∂ ln Lr,nT (θ0)
∂γ

= Z′
nT �−1

nT ξnT

∂ ln Lr,nT (θ0)
∂λ1

= (GnT,1ZnT γ0)′�−1
nT ξnT + ξnT G′

nT,1�
−1
nT ξnT − trGnT,1

∂ ln Lr,nT (θ0)
∂φi

= 1
2

(
ξ′

nT
∂�−1

nT

∂φi
�−1

nT ξnT − tr

(
∂�−1

nT

∂φi
�−1

nT

))
,

where φi is an element in φ = (λ2, λ3, δ2, δ3, ρ, σ2
c , σ2

e )′. By denoting k = kz + kx, the information
matrix is


r,nT =
[

Hr,nT ∗
07×(k+1) 07×7

]
+ 1

nT

⎡
⎢⎣

0k×k ∗ ∗
01×k Ttr

(
G2

n1

)+ tr
(
G′

nT,1�
−1
nT GnT,1�nT

) ∗
07×k �nT �nT

⎤
⎥⎦ ,

(B.3)

where

Hr,nT = 1
nT

[
Z′

nT �−1
nT ZnT ∗

(GnT,1ZnT γ0)′�−1
nT ZnT (GnT,1ZnT γ0)′�−1

nT GnT,1ZnT γ0

]
,

with γ = (b′, β′), �nT,i = tr(G′
nT,1�

−1
nT

∂�nT
∂φi

), and �nT,ij = − 1
2 tr( ∂�−1

nT
∂φi

∂�nT
∂φj

) for i, j = 1 , . . . , 7.
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B.2.2. Variance matrix of the score. From the score ∂ ln Lr,nT (θ0)
∂θ

, we have E 1
nT ×

∂ ln Lr,nT (θ0)
∂θ

∂ ln Lr,nT (θ0)
∂θ′ = 
r,nT + �r,nT , where 
r,nT is the information matrix, and �r,nT is related

to the third and fourth moments of ent,i and cn0,i. Denote

Ac,λ1 = (
lT ⊗ S−1

n3 Bn3
)′G′

nT,1�
−1
nT

(
lT ⊗ S−1

n3 Bn3
)
,

Ac,φi = −1
2

(
lT ⊗ S−1

n3 Bn3
)′ ∂�−1

nT

∂φi
�−1

nT

(
lT ⊗ S−1

n3 Bn3
)
,

Ae,λ1 = (
P−1

T ⊗ S−1
n2 Bn2

)′G′
nT,1�

−1
nT

(
P−1

T ⊗ S−1
n2 Bn2

)
,

Ae,φi = −1
2

(
P−1

T ⊗ S−1
n2 Bn2

)′ ∂�−1
nT

∂φi
�−1

nT

(
P−1

T ⊗ S−1
n2 Bn2

)
,

Bc,γ = (
lT ⊗ S−1

n3 Bn3
)
�−1

nT ZnT , Bc,λ1 = (
lT ⊗ S−1

n3 Bn3
)
�−1

nT (GnT,1ZnT γ0),

Be,γ = (
P−1

T ⊗ S−1
n2 Bn2

)
�−1

nT ZnT , Be,λ1 = (
P−1

T ⊗ S−1
n2 Bn2

)
�−1

nT (GnT,1ZnT γ0),

Pc = [Pc,λ1
, Pc,φ] and Pe = [Pe,λ1

, Pe,φ], where Pc,λ1 = vecD(Ac,λ1 ), Pc,φ = [vecD(Ac,φ1 ),
. . . , vecD(Ac,φ7 )], Pe,λ1 = vecD(Ae,λ1 ), and Pe,φ = [vecD(Ae,φ1 ), . . . , vecD(Ae,φ7 )]. Let μ3,c and μ4,c

be the third and fourth moments of cn0,i. By using Lemma 3 in Yu et al. (2008), we have

�r,nT =
[

0k×k ∗
08×k μ4,cP

′
cPc + μ4,eP

′
ePe

]

+

⎡
⎢⎢⎣

0k×k ∗ ∗
μ3,cP

′
c,λ1

Bc,γ + μ3,eP
′
e,λ1

Be,γ 2μ3,cP
′
c,λ1

Bc,λ1 + 2μ3,ePe,λ1Be,λ1 ∗
μ3,cP

′
c,φBc,γ + μ3,eP

′
e,φBe,γ μ3,cP

′
c,φBc,λ1 + μ3,eP

′
e,φBe,λ1 07×7

⎤
⎥⎥⎦ .

(B.4)

B.2.3. CLT for the random effects equation. From the first-order condition of the random
equation, the CLT involves the linear and quadratic forms of ξnT = lT ⊗ S−1

n3 Bn3cn0 + (IT ⊗
S−1

n2 Bn2)VnT . The VnT can be transformed into enT via enT = (PT ⊗ In)VnT . Denote Un,T +1 =
(c′

n0, e′
nT )′. By using (lT ⊗ cn0) = (lT ⊗ In)cn0, the object of the CLT has the form

(l′T ⊗ c′
n0)AnT (lT ⊗ cn0) + e′

nT BnT enT + (l′T ⊗ c′
n0)CnT enT + b′

n,T +1Un,T +1

= U′
n,T +1

⎛
⎜⎜⎝

(l′T ⊗ In)AnT (lT ⊗ In)
1
2

(l′T ⊗ In)CnT

1
2

C′
nT (lT ⊗ In) BnT

⎞
⎟⎟⎠Un,T +1 + b′

n,T +1Un,T +1,

where AnT , BnT , and CnT are UB for n and T, and elements of bn,T +1 are uniformly bounded.
Thus, as elements of (c′

n0, e′
n1, e′

n2, . . . , e′
nT ) are independent, the CLT in Kelejian and Prucha

(2001) can be applied. Note that the CLT there requires that all elements in cn0, ent for all n and
t are mutually independent but not necessarily identically distributed.

B.3. Algebra for the between equation (12).

B.3.1. The score and information matrix. For �n1(φ), which is a function of φ = (λ2, λ3, δ2,
δ3, ρ, σ2

c , σ2
e )′, we have
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∂�n1

∂λ2
= σ2

1R1,
∂�n1

∂λ3
= σ2

c0C1,
∂�n1

∂δ2
= σ2

1R3,
∂�n1

∂δ3
= σ2

c0C3,

∂�n1

∂ρ
= 2σ2

e0(T − 1 − (T − 2)ρ0)
[(1 − ρ0)(T − (T − 2)ρ0)]2

S−1
n2 Bn2B′

n2S′−1
n2 ,

∂�n1

∂σ2
c

= S−1
n3 Bn3B′

n3S′−1
n3 , and

∂�n1

∂σ2
e

= 1
(1 − ρ0)(T − (T − 2)ρ0)

S−1
n2 Bn2B′

n2S′−1
n2 .

The score is

∂ ln Lb,n(θ0)
∂b

= z′
n�

−1
n1 ξn,

∂ ln Lb,n(θ0)
∂β

= �X ′
nT �−1

n1 ξn,

∂ ln Lb,n(θ0)
∂λ1

= −trGn1 + (Wn1 �YnT )′�−1
n1 ξn,

∂ ln Lb,n(θ0)
∂φi

= −1
2

tr
(

�−1
n1

∂�n1

∂φi

)
+ 1

2
ξ′

n�−1
n1

∂�n1

∂φi
�−1

n1 ξn for φi �= ρ,

∂ ln Lb,n(θ0)
∂ρ

= −1
2

tr
(

�−1
n1

∂�n1

∂ρ

)
+ 1

2
ξ′

n�−1
n1

∂�n1

∂ρ
�−1

n1 ξn − ∂ξ′
n

∂ρ
�−1

n1 ξn.

From these, we see that ∂ ln Lb,n(θ0)
∂ρ

is different from ∂ ln Lb,n(θ0)
∂φi

for φi �= ρ, because ρ also appears
in the regression equation. Thus, we have

∂2 ln Lb,n(θ0)
∂2φi

= −1
2

tr

(
∂�−1

n1

∂φi

∂�n1

∂φi
+ �−1

n1
∂2�n1

∂2φi

)
− 1

2
ξ′

n
∂2�−1

n1

∂2φi
ξn for φi �= ρ,

and

∂2 ln Lb,n(θ0)
∂2ρ

= −1
2

tr

(
∂�−1

n1

∂ρ

∂�n1

∂ρ
+ �−1

n1
∂2�n1

∂2ρ

)

− 1
2
ξ′

n
∂2�−1

n1

∂2ρ
ξn − 2

∂ξ′
n

∂ρ

∂�−1
n1

∂ρ
ξn − ∂2ξ′

n

∂ρ2
�−1

n1 ξn − ∂ξ′
n

∂ρ
�−1

n1
∂ξn

∂ρ
.

By denoting �ZnT = [zn, �XnT ], the information matrix is


b,n =
[

Hb,n ∗
07×(k+1) 07×7

]
+ 1

n

⎡
⎢⎢⎢⎢⎣

0(k+5)×(k+5) ∗ ∗

01×(k+5) E
∂ξ′

n

∂ρ
�−1

n1
∂ξn

∂ρ
∗

02×(k+5) 02×1 02×2

⎤
⎥⎥⎥⎥⎦

+ 1
n

⎡
⎢⎢⎣

0k×k ∗ ∗
01×k tr

(
G2

n1

)+ tr
(
G′

n1�
−1
n1 Gn1�n1

) ∗
07×k �n �n

⎤
⎥⎥⎦ ,

(B.5)
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where

Hb,n = 1
n

[ �Z′
nT �−1

n1
�ZnT ∗

(Gn1 �ZnT γ0)′�−1
n1

�ZnT (Gn1 �ZnT γ0)′�−1
n1 Gn1 �ZnT γ0

]

with �n,i = tr(G′
n1�

−1
n1

∂�n1
∂φi

), �n,ij = − 1
2 tr( ∂�−1

n1
∂φi

∂�n1
∂φj

) for i, j = 1 , . . . , 7, and E ∂ξ′
n

∂ρ
�−1

n1
∂ξn
∂ρ

=
tr(B′

n2S′−1
n2 �−1

n1 S−1
n2 Bn2)

[T −(T −2)ρ0]4
2σ2

e0

(1−ρ2
0)

[T 2 + T 2ρT −1
0 − 2T + 4ρ0

(1−ρ0) (TρT −1
0 − 1−ρT

0
1−ρ0

)].

B.3.2. Steps to obtain E ∂2 ln Lb,n(θ0)
∂2ρ

in the information matrix. For −E ∂2 ln Lb,n(θ0)
∂2ρ

, (i) by using
∂�−1

n1
∂ρ

= −�−1
n1

∂�n1
∂ρ

�−1
n1 and Eξnξ

′
n = �n1, we have E(− 1

2 tr( ∂�−1
n1

∂ρ
∂�n1
∂ρ

+ �−1
n1

∂2�n1
∂2ρ

) − 1
2ξ′

n
∂2�−1

n1
∂2ρ

ξn) =
− 1

2 tr ∂�−1
n1

∂ρ
∂�n1
∂ρ

. (ii) From E ∂ ln Lb,n

∂ρ
= 0, we have E ∂ξ′

n
∂ρ

�−1
n1 ξn = 0. As ∂ξn

∂ρ
= S−1

n2 Bn2

[T −(T −2)ρ0]2 [T (Vn1 +
VnT ) − 2

∑T
t=1 Vnt] and ∂2ξn

∂ρ2 = 2(T −2)
[T −(T −2)ρ0]

∂ξn
∂ρ

, ∂2ξn
∂ρ2 is proportional to ∂ξn

∂ρ
, and hence E ∂2ξ′

n
∂ρ2 �−1

n1 ξn =
0. (iii) By using ∂ξn

∂ρ
above, as E ∂ξ′

n
∂ρ

�−1
n1

∂ξn
∂ρ

= tr[�−1
n1 E( ∂ξn

∂ρ

∂ξ′
n

∂ρ
)], we have the results.

B.3.3. Variance matrix of the score. To compute the variance of the score for the
between equation, ξn = μn + S−1

n2 Bn2 �VnT can be written as ξn = S−1
n3 Bn3cn0 + (p′

T P−1
T ⊗

S−1
n2 Bn2)enT , where pT = (1, 1 − ρ0, . . . , 1 − ρ0, 1)′ and p′

T P−1
T = l′ρT . Also, we have ∂ξn

∂ρ
=

1
(T −(T −2)ρ0)2 (q′

T P−1
T ⊗ S−1

n2 Bn2)enT , where qT = (T − 2,−2, . . . ,−2, T − 2)′. Thus, define

Cc,λ1 = (
S−1

n3 Bn3
)′

G′
n1�

−1
n1

(
S−1

n3 Bn3
)
,

Cc,φi = −1
2

(
S−1

n3 Bn3
)′ ∂�−1

n1

∂φi

(
S−1

n3 Bn3
)

for i = 1, . . . , 7,

Ce,λ1 = (
l′ρT ⊗ S−1

n2 Bn2
)′

Gn1�
−1
n1

(
l′ρT ⊗ S−1

n2 Bn2
)
,

Ce,φi = −1
2

(
l′ρT ⊗ S−1

n2 Bn2
)′ ∂�−1

n1

∂φi

(
l′ρT ⊗ S−1

n2 Bn2
)
, for φi �= ρ,

Ce,φ5 = −1
2

(
l′ρT ⊗ S−1

n2 Bn2
)′ ∂�−1

n1

∂ρ

(
l′ρT ⊗ S−1

n2 Bn2
)

− 1
[T − (T − 2)ρ0]2

(
q′

T P−1
T ⊗ S−1

n2 Bn2
)′
�−1

n1

(
l′ρT ⊗ S−1

n2 Bn2
)
,

Dc,γ = (
S−1

n3 Bn3
)′
�−1

n1
�ZnT , Dc,λ1 = (

S−1
n3 Bn3

)′
�−1

n1 Gn1 �ZnT γ0,

De,γ = lρT ⊗ (
S−1

n2 Bn2
)′
�−1

n1
�ZnT , De,λ1 = lρT ⊗ (

S−1
n2 Bn2

)′
�−1

n1 Gn1 �ZnT γ0,

Qc = [Qc,λ1 , Qc,φ], and Qe = [Qe,λ1 , Qe,φ], where Qc,λ1 = vecD(Cc,λ1 ), Qc,φ =
[vecD(Cc,φ1 ), . . . , vecD(Cc,φ7 )], Qe,λ1 = vecD(Ce,λ1 ), and Qe,φ = [vecD(Ce,φ1 ), . . . , vecD(Ce,φ7 )].
We have E 1

n
∂ ln Lb,n(θ0)

∂θ

∂ ln Lb,n(θ0)
∂θ′ = 
b,n + �b,n, where 
b,n is the information matrix and

�b,n =
[

0k×k ∗
08×k μ4,cQ

′
cQc + μ4,eQ

′
eQe

]

+

⎡
⎢⎢⎣

0k×k ∗ ∗
μ3,cQ

′
c,λ1

Dc,γ + μ3,eQ
′
e,λ1

De,γ 2μ3,cQ
′
c,λ1

Dc,λ1 + 2μ3,eQe,λ1De,λ1 ∗
μ3,cQ

′
c,φDc,γ + μ3,eQ

′
e,φDe,γ μ3,cQ

′
c,φDc,λ1 + μ3,eQ

′
e,φDe,λ1 07×7

⎤
⎥⎥⎦ .

(B.6)
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B.3.4. Covariance matrix of the scores for the between and within equations. The covariance
matrix of the scores for the between and within equations is

�wb,nT = μ3,e

σ2
0

[(
0kx×(k+1) 0kx×7

P ′[De,γ, De,λ1 ] 05×7

)
+
(

0(kx+1)×k [De,γ, De,λ1 ]′Qe

04×k 04×8

)]

+ μ4,e − 3σ4
e0

σ2
e0

[
0kx×k 0kx×8

05×k P ′Qe

]
.

(B.7)

C. Appendix for section 3.

In this appendix, we derive the variance matrix of
√

n(θ̂r1 − θ̂w1) when the disturbances are
not normal.

C.1. The general case. From the Taylor expansion of the random effects estimate, we have√
n(θ̂r1 − θ10) = J ′
−1

r,nT
1√
n

∂ ln Lr,nT (θ0)
∂θ

+ op (1). By (15) and

⎛
⎜⎜⎝

∂ ln Lr,nT

∂θ1

∂ ln Lr,nT

∂θ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂ ln Lw,nT

∂θ1
+ ∂ ln Lb,n

∂θ1

∂ ln Lb,n

∂θ2

⎞
⎟⎟⎠ ,(C.1)

we have
√

n(θ̂r1 − θ10) = (
w,nT + C)−1 1√
n

∂ ln Lw,nT (θ0)
∂θ1

+ J ′
−1
r,nT

1√
n

∂ ln Lb,n(θ0)
∂θ

+ op (1). Also,
√

n(θ̂w1 − θ10) = 
−1
w,nT

1√
n

∂ ln Lw,nT (θ10)
∂θ1

+ op (1). Hence,
√

n(θ̂r1 − θ̂w1) = 1√
n A′

nT ( ∂ ln Lw,nT

∂θ′
1

,
∂ ln Lb,n

∂θ′ )′

+ op (1). Thus,

Var[
√

n(θ̂r1 − θ̂w1)] = A′
nT

[

w,nT + �w,nT �wb,nT

�′
wb,nT 
b,n + �b,n

]
AnT

= A′
nT

([

w,nT 0kθ1 ×k

0k×kθ1

b,n

]
+
[

�w,nT �wb,nT

�′
wb,nT �b,n

])
AnT

= B−1 − (B + C)−1 + A′
nT

[
�w,nT �wb,nT

�′
wb,nT �b,n

]
AnT .

C.2. The KKP model case. For the KKP case, we compare estimates of θ∗
1 under the within

and random specifications. For the random effects model, by reparameterization, the parameters
to be estimated are θ∗

10, σ2
e0, and θ20, where θ∗

1 = (β′, λ1, λ2, δ2, ρ)′ and θ2 = (b′, σ2
∗)′. Similar to

the argument above, we have
√

n(θ̂∗
r1 − θ̂∗

w1) = 1√
n A∗′

nT ( ∂ ln Lw,nT

∂θ′
1

,
∂ ln Lb,n

∂θ′ )′ + op (1). Therefore, the

asymptotic variance of
√

n(θ̂∗
r1 − θ̂∗

w1) is
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A∗′
nT

⎡
⎢⎢⎢⎣

E
1
n

∂ ln Lw,nT (θ0)
∂θ1

∂ ln Lw,nT (θ0)
∂θ′

1
E

1
n

∂ ln Lw,nT (θ0)
∂θ1

∂ ln Lb,n(θ0)
∂θ′

E
1
n

∂ ln Lb,n(θ0)
∂θ′

1

∂ ln Lw,nT (θ0)
∂θ

E
1
n

∂ ln Lb,n(θ0)
∂θ

∂ ln Lb,n(θ0)
∂θ′

⎤
⎥⎥⎥⎦A∗

nT .

D. Proofs for Propositions.

D.1. Proof for Proposition 1.

D.1.1. Uniform convergence. From the DGP, denoting Dn(θ1) = B−1
n2 (δ2)

Sn2(λ2)Sn1(λ1)S−1
n1 S−1

n2 Bn2, we have

VnT (θ1) = (
IT ⊗ B−1

n2 (δ2)Sn2(λ2)
)[(

IT ⊗ Sn1(λ1)S−1
n1

)
XnT β0 − XnT β

]
+ lT ⊗ B−1

n2 (δ2)Sn2(λ2)
(
Sn1(λ1)S−1

n1 cn0 − cn
)+ (IT ⊗ Dn(θ1))VnT .

Because lT ⊗ B−1
n2 (δ2)Sn2(λ2)(Sn1(λ1)S−1

n1 cn0 − cn) is eliminated by JT (ρ) ⊗ In, by denoting
bnT (θ1) = (IT ⊗ B−1

n2 (δ2)Sn2(λ2))[(IT ⊗ Sn1(λ1)S−1
n1 )XnT β0 − XnT β],

V′
nT (θ1)(JT (ρ) ⊗ In)VnT (θ1) − EV′

nT (θ1)(JT (ρ) ⊗ In)VnT (θ1)

= V′
nT (JT (ρ) ⊗ D′

n(θ1)Dn(θ1))V′
nT − EV′

nT (JT (ρ) ⊗ D′
n(θ1)Dn(θ1))V′

nT

+ 2b′
nT (JT (ρ) ⊗ Dn(θ1))VnT .

As VnT = (P−1
T ⊗ In)enT , where elements of enT are independent (0, σ2

e0), Dn(θ1) is UB in n,
and P′−1

T JT (ρ)P−1
T is UB in T, as both JT (ρ) and P−1

T are UB in T, we have 1
n(T −1) ln Lw,nT (θ1) −

E 1
n(T −1) ln Lw,nT (θ1)

p→ 0 uniformly in θ1 ∈ �1 (see Lee, 2004).

D.1.2. Uniform equicontinuity. As Sn1(λ1)S−1
n1 = In − (λ1 − λ10)Gn1, by denoting HnT (λ2,

δ2, ρ) = (XnT , GnT,1XnT β0)′(JT (ρ) ⊗ S′
n2(λ2)B′−1

n2 (δ2)B−1
n2 (δ2)Sn2(λ2))(XnT , GnT,1XnT β0) and

pn,T −1(λ1, λ2, δ2, ρ) = 1
n(T − 1)

σ2
e0tr
(
P′−1

T JT (ρ)P−1
T

) · tr(D′
n(θ1)Dn(θ1)),(D.1)

we have

E
1

2σ2
e

1
n(T − 1)

V′
nT (θ1)(JT (ρ) ⊗ In)VnT (θ1)

= 1
2σ2

e

1
n(T − 1)

(β′ − β′
0, λ1 − λ10)HnT (λ2, δ2, ρ)(β′ − β′

0, λ1 − λ10)′ + 1
2σ2

e
pn,T −1(λ1, λ2, δ2, ρ).

(D.2)

These terms are all polynomial functions of θ1. Therefore, E 1
n(T −1) ln Lw,nT (θ1) is uniformly

equicontinuous on any bounded set of θ1.

D.1.3. Identification uniqueness. By (D.2), E 1
n(T −1) ln Lw,nT (θ1) − E 1

n(T −1) ln Lw,nT (θ10) =
T1,n,T −1(λ1, λ2, δ2, ρ, σ2

e ) − 1
2σ2

e
T2,n,T −1(β, λ1, λ2, δ2, ρ), where T2,n,T −1(β, λ1, λ2, δ2, ρ) =

1
n(T −1) (β′ − β′

0, λ1 − λ10)HnT (λ2, δ2, ρ)(β′ − β′
0, λ1 − λ10)′ and
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T1,n,T −1
(
λ1, λ2, δ2, ρ, σ2

e

) = −1
2

(
ln σ2

e − ln σ2
e0

)
+ 1

n
[ln |Sn1(λ1)| + ln |Sn2(λ2)| − ln |Sn1(λ10)| − ln |Sn2(λ20)|]

− 1
n

[ln |Bn2(δ2)| − ln |Bn2(δ20)|] − 1
2(T − 1)

(ln |HT −1(ρ)| − ln |HT −1|)

− 1
2σ2

e

(
pn,T −1(λ1, λ2, δ2, ρ) − σ2

e

)
.

Consider a model without exogenous variables; after the first difference and quasi-difference,
it is

�Ynt,ρ0 = λ1Wn1�Ynt,ρ0 + �Unt,ρ0 with �Unt,ρ0 = λ2Wn2�Unt,ρ0 + Bn2�ent, t = 3, . . . , T,

�Yn2 = λ1Wn1�Yn2 + �Un2 with �Un2 = λ2Wn2�Un2 + Bn2�Vn2 and

�Vn2 = en2 − (1 − ρ0)Vn1,

where Znt,ρ0 ≡ Znt − ρ0Zn,t−1 for any n × 1 vector Znt. Its log-likelihood function is

ln Lp
w,nT (θ1) = −n(T − 1)

2
ln 2π

− n(T − 1)
2

ln σ2
e + (T − 1)[ln |Sn1(λ1)| + ln |Sn2(λ2)| − ln |Bn2(δ2)|]

− n
2

ln |HT −1(ρ)| − 1
2σ2

e
V′

nT (θ1)(JT (ρ) ⊗ In)VnT (θ1).

Using the information inequality from this model without exogenous variables,
T1,n,T −1(λ1, λ2, δ2, ρ, σ2

e ) ≤ 0 for any (λ1, λ2, δ2, ρ, σ2
e ). Also, T2,n,T−1(β, λ1, λ2, δ2, ρ) is a quadratic

function of β and λ1 with a positive semidefinite matrix given λ2, δ2, and ρ. When

lim
n→∞

1
n(T − 1)

HnT (λ2, δ2, ρ) is nonsingular given any value of λ2, δ2, and ρ,(D.3)

then T2,n,T−1(β, λ1, λ2, δ2, ρ) > 0 given any λ2, δ2, and ρ whenever (β, λ1) �= (β0, λ10). Hence,
(β0, λ10) is identified. Given λ10, then λ20, δ20, ρ0, and σ2

e0 give the unique maximizer of
limn→∞ T1,n,T −1(λ10, λ2, δ2, ρ, σ2

e ) if

lim
n→∞

(
1

T − 1
ln |HT −1| − 1

T − 1
ln
∣∣HT −1(ρ)

∣∣+ 1
n

ln
∣∣∣σ2

e0B′
n2S′−1

n2 S−1
n2 Bn2

∣∣∣
− 1

n
ln
∣∣pn,T −1(λ2, δ2, ρ)B′

n2(δ2)S−1
n2 (λ2)′S−1

n2 (λ2)Bn2(δ2)
∣∣)

�= 0 for (λ2, δ2, ρ) �= (λ20, δ20, ρ0),

(D.4)

where pn,T−1(λ2, δ2, ρ) = pn,T−1(λ10, λ2, δ2, ρ). When limn→∞ 1
n(T −1)HnT (λ2, δ2, ρ) is singu-

lar, β0 and λ10 cannot be identified from T2,n,T−1(β, λ1, λ2, δ2, ρ). Identification requires that
limn→∞ T1,n,T −1(λ1, λ2, δ2, ρ, σ2

e ) is strictly less than zero, which is equivalent to
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lim
n→∞

(
1

T − 1
ln |HT −1| − 1

T − 1
ln |HT −1(ρ)| + 1

n
ln
∣∣σ2

e0B′
n2S′−1

n2 S′−1
n1 S−1

n1 S−1
n2 Bn2

∣∣)

− lim
n→∞

(
1
n

ln
∣∣pn,T −1(λ1, λ2, δ2, ρ)B′

n2(δ2)S−1
n2 (λ2)′S′−1

n1 (λ1)′S−1
n1 (λ1)S−1

n2 (λ2)Bn2(δ2)
∣∣)

�= 0 for (λ1, λ2, δ2, ρ) �= (λ10, λ20, δ20, ρ0).

(D.5)

When λ10 is identified, β0 can be identified from T2,n,T−1(β, λ1, λ2, δ2, ρ).
Combined with uniform convergence and equicontinuity, the consistency follows.

D.1.4. Asymptotic normality. The score ∂ ln Lw,nT (θ10)
∂θ1

in Appendix B.1 has linear and quadratic
forms of independent disturbances. As T is finite, the CLT for the linear-quadratic form in

Kelejian and Prucha (2001) is applicable so that 1√
n(T −1)

∂ ln Lw,nT (θ10)
∂θ1

d→ N(0, 
w,nT + �w,nT ).

By − 1
n(T −1)

∂2 ln Lw,nT (θ̄w1)
∂θ1∂θ′

1
− 
w,nT

p→ 0 from (38)–(41) in Yu et al. (2008), where θ̄w1 lies between

θ̂w1 and θ10, the asymptotic distribution of the estimator follows from the Taylor expansion,√
n(T − 1)(θ̂w1 − θ10) = (− 1

n(T −1)
∂2 ln Lw,nT (θ̄w1)

∂θ1∂θ′
1

)−1 1√
n(T −1)

∂ ln Lw,nT (θ10)
∂θ1

.

D.2. Proof for Proposition 2.

D.2.1. Uniform convergence. Regarding the likelihood in (9), we have ξnT (θ) =
SnT,1(λ1)S−1

nT,1ZnT γ0 − ZnT γ + SnT,1(λ1)S−1
nT,1ξnT , where SnT,1(λ1) = IT ⊗ Sn1(λ1) and ξnT =

lT ⊗ S−1
n3 Bn3cn0 + (P−1

T ⊗ S−1
n2 Bn2)enT . Hence, we have

1
nT

ξ′
nT (θ)�−1

nT (φ)ξnT (θ) − E
1

nT
ξ′

nT (θ)�−1
nT (φ)ξnT (θ)

= 1
nT

(
SnT,1(λ1)S−1

nT,1ξ
′
nT

)
�−1

nT (φ)
(
SnT,1(λ1)S−1

nT,1ξnT

)− pnT (λ1, φ)

+ 2
nT

(
SnT,1(λ1)S−1

nT,1ZnT γ0 − ZnT γ
)′
�−1

nT (φ)
(
SnT,1(λ1)S−1

nT,1ξnT

)
,

where pnT (λ1, φ) = 1
nT tr[(SnT,1(λ1)S−1

nT,1)′�−1
nT (φ)SnT,1(λ1)S−1

nT,1�nT ]. As �−1
nT (φ), P−1

T , and rel-
evant spatial matrices are UB in T and n, 1

nT (SnT,1(λ1)S−1
nT,1ξnT )′�−1

nT (φ)SnT,1(λ1)S−1
nT,1ξnT −

pnT (λ1, φ)
p→ 0 uniformly in θ ∈ � when T is either finite or large. As 1

nT (SnT,1(λ1)S−1
nT,1ZnT γ0 −

ZnT γ)′�−1
nT (φ)(SnT,1(λ1)S−1

nT,1ξnT )
p→ 0 for either finite or large T, 1

nT ln Lr,nT (θ) −
E 1

nT ln Lr,nT (θ)
p→ 0 uniformly in θ ∈ �.

D.2.2. Uniform equicontinuity. We have E 1
nT ln Lr,nT (θ) = − 1

2 ln 2π − 1
2nT ln |�nT (φ)| +

1
n ln |Sn1(λ1)| − 1

2nT Eξ′
nT (θ)�−1

nT (φ)ξnT (θ). Denoting HnT (φ) = (ZnT , GnT,1ZnT γ0)′�−1
nT (φ) ×

(ZnT , GnT,1ZnT γ0), it follows that

E
1

nT
ξ′

nT (θ)�−1
nT (φ)ξnT (θ) = 1

nT
(γ′ − γ′

0, λ1 − λ10)HnT (φ)(γ′ − γ′
0, λ1 − λ10)′ + pnT (λ1, φ),

(D.6)

which is a polynomial function of θ. Thus, E 1
nT ln Lr,nT (θ) is uniformly equicontinuous in θ ∈

�.
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D.2.3. Identification uniqueness. By (D.6), E 1
nT ln Lr,nT (θ) − E 1

nT ln Lr,nT (θ0) = T1,nT (λ1,

φ) − 1
2 T2,nT (γ, λ1, φ), where

T1,nT (λ1, φ) = − 1
2nT

ln |�nT (φ)| + 1
n

ln |Sn1(λ1)| − 1
2

pnT (λ1, φ)

−
(

− 1
2nT

ln |�nT | + 1
n

ln |Sn1| − 1
2

)

with T2,nT (γ, λ1, φ) = 1
nT (γ′ − γ′

0, λ1 − λ10)HnT (φ)(γ′ − γ′
0, λ1 − λ10)′. Consider a random ef-

fects model without exogenous variables Ynt = λ10Wn1Ynt + μn + Unt, t = 1 , . . . , T, where the
log-likelihood function is

ln Lp
r,nT (θ) = −nT

2
ln 2π − 1

2
ln |�nT (φ)| + T ln |Sn1(λ1)| − 1

2nT
ξ′

nT (θ)�−1
nT (φ)ξnT (θ),

with ξnT (θ) = SnT,1(λ1)YnT . Using the information inequality for this model, T1,nT(λ1, φ) ≤ 0
for any (λ1, φ). Also, T2,nT(γ, λ1, φ) is a quadratic function of (γ, λ1) with a positive semidefinite
matrix given φ. When

lim
n,T →∞

1
nT

HnT (φ) is nonsingular given any value of φ,(D.7)

then T2,nT(γ, λ1, φ) > 0 given any φ whenever (γ, λ1) �= (γ0, λ10). Hence, (γ0, λ10) is identified.
Given λ10, φ0 is the unique maximizer of limn,T→∞T1,nT(λ1, φ) if

lim
n,T →∞

(
1

nT
ln |�nT | + 1 −

(
1

nT
ln |�nT (φ)| + pnT (φ)

))
�= 0 for φ �= φ0,(D.8)

where pnT (φ) = 1
nT tr[�−1

nT (φ)�nT ]. When limn,T →∞ 1
nT HnT (φ) is singular, γ0 and λ10 cannot be

identified from T2,nT(γ, λ1, φ). Identification requires that limn,T→∞T1,nT(λ1, φ) be strictly less
than zero, which is equivalent to

lim
n,T →∞

(
1

nT
ln
∣∣S′−1

nT,1�nT S−1
nT,1

∣∣+ 1

−
(

1
nT

ln
∣∣S−1

nT,1(λ1)�nT (φ)S′−1
nT,1(λ1)

∣∣+ pnT (λ1, φ)
))

�= 0 for (λ1, φ) �= (λ10, φ0).

(D.9)

When λ10 is identified, γ0 can be identified from T2,nT(γ, λ1, φ).
Combined with uniform convergence and equicontinuity, the consistency follows.

D.2.4. Distribution. The score is a linear and quadratic form of disturbances in ξnT . Com-
pared to the within equation case, we have two components cn0 and ent’s in ξnT , where cn0

is time invariant and ent is time variant. By using the CLT for cn0 and ent’s (see Appendix
B.2), where cn0 could be considered as en0, the score will asymptotically normal such that

1√
nT

∂ ln Lr,nT (θ0)
∂θ

d→ N(0, 
r,nT + �r,nT ), where �r,nT = 0 under normality. Combined with the

consistency of θ̂r so that − 1
nT

∂2 ln Lr,nT (θ̄)
∂θ∂θ′

p→ 
r,nT , the distribution of θ̂r can be obtained from the
Taylor expansion.
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