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a b s t r a c t

This paper establishes asymptotic properties of quasi-maximum likelihood estimators for SAR panel data
models with fixed effects and SAR disturbances. A direct approach is to estimate all the parameters
including the fixed effects. Because of the incidental parameter problem, some parameter estimatorsmay
be inconsistent or their distributions are not properly centered. We propose an alternative estimation
method based on transformationwhich yields consistent estimatorswith properly centered distributions.
For the model with individual effects only, the direct approach does not yield a consistent estimator of
the variance parameter unless T is large, but the estimators for other common parameters are the same as
those of the transformation approach. We also consider the estimation of the model with both individual
and time effects.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Spatial econometrics consists of econometric techniques deal-
ing with the interactions of economic units in space, which can
have physical or economic characteristic. The spatial autoregres-
sive (SAR) model by Cliff and Ord (1973) has received the most
attention in economics.1 Panel data with spatial interaction is
also of great interest, as it enables researchers to take into ac-
count the dynamics and control for the unobservable heterogene-
ity (e.g., Anselin, 1988; Baltagi et al., 2003, 2007; Elhorst, 2003;
Kapoor et al., 2007; Yu et al., 2007, 2008; Yu and Lee, forthcoming).
For panel data models with fixed individual effects, when the

time dimension T is fixed, we are likely to encounter the inciden-
tal parameter problem discussed in Neyman and Scott (1948). This
is because the introduction of fixed effects increases the number
of parameters. For the linear panel regression model with fixed
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1 Early development in estimation and testing for cross sectional data can be
found in Anselin (1988), Cressie (1993), Kelejian and Robinson (1993), and Anselin
and Bera (1998), among others.

0304-4076/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2009.08.001
effects, the direct maximum likelihood (ML) approach estimates
jointly the common parameters and fixed effects. The correspond-
ing ML estimates (MLEs) of the regression coefficients are known
as the within estimates, which happen to be the likelihood esti-
mates conditional on the time means of the dependent variables.
However, the MLE of the variance parameter is inconsistent when
T is finite. The inconsistency of the variance parameter is the one il-
lustrated in Neyman and Scott (1948). For the SAR panel datamod-
els with fixed individual effects, similar findings of the direct ML
approach are found in this paper. The direct approach will yield
consistent estimates for the spatial and regression coefficients, ex-
cept for the variance parameterwhen T is small (but the number of
spatial units n is large).2 For the SAR panel models with both fixed
individual and time effects, the direct approach will be inconsis-
tent for the estimation of the common parameters unless n is large.
Even when both n and T are large, the distribution of the estimates
of the common parameters would not be properly centered.
To eliminate the fixed effects, the method of conditional

likelihood is used when sufficient statistics can be found for the

2 When a dynamic effect is considered into the SAR panel data, we will have
an ‘‘initial condition’’ problem which will cause the inconsistency of the direct
likelihood estimates for all the parameters unless T is large (see Yu et al., 2007, 2008
and Yu and Lee, forthcoming). The initial value problem for the dynamic panel data
model is well known (Nickell, 1981).
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fixed effects. For the linear regression and logit panel models, the
time average of the dependent variables for each cross sectional
unit provides a sufficient statistic3 (see Hsiao, 1986). For the
normal panel regression model, the conditional likelihood can
be constructed from some transformed data. In this paper, we
investigate the use of similar transformations to the SAR panel
model. By using a data transformation from (IT− 1T lT l

′

T ) to eliminate
the individual effects where lT is the T × 1 vector of ones, the
transformed equation can be estimated by the quasi-maximum
likelihood (QML) approach. For the model with both individual
and time fixed effects, one may combine the transformations
from (In − 1

n lnl
′
n) and (IT −

1
T lT l
′

T ) to eliminate both effects.
4 The

transformation approach for our models can either be justified
as a conditional likelihood, a partial likelihood (Cox, 1975), or
a modified likelihood based on a concentrated likelihood of the
direct estimation (Kalbfleisch and Sprott, 1970; Cox and Reid,
1987; Lancaster, 2000; Arellano and Hahn, 2005). 5
Panel regression models with SAR disturbances have recently

been considered in the spatial econometrics literature. The model
in Baltagi et al. (2003) is Ynt = Xntβ0+cn0+Unt ,Unt = λ0WnUnt+
Vnt , t = 1, 2, . . . , T , where elements of Vnt are i.i.d. (0, σ 20 ), cn0 is an
n×1 vector of individual error components,Wn is a spatial weights
matrix, and the spatial correlation is inUnt . A different specification
in Kapoor et al. (2007) is Ynt = Xntβ0 + U+nt and U

+

nt = λ0WnU
+

nt +

dn0+Vnt , t = 1, 2, . . . , T , wheredn0 is the vector of individual error
components. Kapoor et al. (2007) propose a method of moment
(MOM) procedure for the estimation of λ0 alongwith the variances
ofdn0 andVnt . The twomodels are different in terms of the variance
matrices of the overall disturbances. The variancematrix in Baltagi
et al. (2003) ismore complicated and its inverse is computationally
demanding; the one in Kapoor et al. (2007) has a special pattern
and its inverse can be easier to compute. By the transformation
(In − λ0Wn), the data generating process (DGP) of Kapoor et al.
(2007) becomes Ynt = Xntβ0 + cn0 + Unt where cn0 = (In −
λ0Wn)−1dn0 and Unt = U+nt − (In − λ0Wn)−1dn0. The Unt =
λ0WnUnt + Vnt forms a SAR process. This model implies spatial
correlations in both the individual and disturbance components,
cn0 and Unt , having the same spatial effect parameter. Baltagi
et al. (2007) formulate a model which allows for different spatial
effects in both individual and disturbance components. Baltagi
et al. (2003, 2007) have emphasized the test of spatial correlation
in their models.
We note that, with the fixed effects specification, all these

panel models have the same representation. By regarding (In −
λ0Wn)−1dn0 as a vector of unknown fixed effect parameters, the
two equations are identical to a linear panel regression with
fixed effects and SAR disturbances. In this paper, we consider the
estimation of the SAR panelmodel with both spatial lag and spatial
disturbances. For the model with individual effects, we consider
the case where n is large but T can be finite or tends to infinity. For
the model with both individual and time effects, we focus on the
scenario with both n and T being large. 6

3 Sufficient statistics might not be available for many other models. A well-
known example is the probit panel regression model, even though probit and logit
models are close substitutes (see Chamberlain, 1982). In addition to the conditional
likelihood method, other methods to eliminate nuisance parameters have been
discussed in Kalbfleisch and Sprott (1970), Cox and Reid (1987) and Lancaster
(2000) among others.
4 The use of the transformation from (In − 1

n lnl
′
n) to eliminate time fixed effects

has been considered in Lee and Yu (forthcoming) for a spatial dynamic panel model
with large T . In a group setting with group fixed effects, a similar transformation
can eliminate the group effects (Lee et al., 2008).
5 However, our modified likelihood is not one of those which could be
constructed from their formulas.
6 We may point out, in some occasions, the implication of either n or T being
finite. For a SAR model, because spatial interactions are highly parameterized, it is
This paper is organized as follows. In Section 2, the SAR panel
model with individual fixed effects is introduced. We consider,
first, the direct ML approach where the individual effects are also
estimated. We find that when T is finite, the estimate of the vari-
ance parameter is inconsistent, but the estimates of the other com-
mon parameters are consistent and asymptotically normal. As an
alternative estimation method, we propose a data transformation
procedure, and establish the consistency and asymptotic distri-
bution of the QML estimator of that approach. We demonstrate
that the estimates (except the variance parameter) from the direct
approach are identical to the corresponding estimates from the
transformation approach. These results extend those of the within
estimates and the conditional likelihood estimation of the linear
panel regression model to the SAR panel model. Section 3 general-
izes the model to include both individual and time effects. For the
direct ML approach, even both n and T are large, the distribution of
the estimates is not properly centered. The noncentrality can, how-
ever, be removed by some bias-correction procedure. On the con-
trary, the transformation approach will yield consistent estimates
as long as either n or T are large, and their asymptotic distribu-
tions are normal and properly centered. For the model with both
effects, the likelihood function from the transformation approach
is not necessarily a conditional likelihood, but a partial likelihood
function instead. Itmay also be justified as a certainmodified likeli-
hood function. Simulation results are reported in Section 4 to com-
pare the two approaches. Section 5 concludes the paper. Proofs are
collected in the Appendix.

2. The model with individual effects only

The SAR panel model with individual effects and SAR distur-
bances is

Ynt = λ0WnYnt + Xntβ0 + cn0 + Unt ,
Unt = ρ0MnUnt + Vnt , t = 1, 2, . . . , T , (1)

where Ynt = (y1t , y2t , . . . , ynt)′ and Vnt = (v1t , v2t , . . . , vnt)
′

are n × 1 vectors and vit is i.i.d. across i and t with zero mean
and variance σ 20 . Wn is an n × n nonstochastic spatial weights
matrix that generates the spatial dependence on yit among cross
sectional units. Xnt is an n×kmatrix of nonstochastic time varying
regressors, and cn0 is an n× 1 vector of fixed effects. Similarly,Mn
is an n× n spatial weights matrix for the disturbances. In practice,
Mn may or may not beWn.
In this paper, we consider, first, the estimation of the param-

eters including the fixed effects, and investigate the possible in-
cidental parameter issue. We then consider the estimation after
the elimination of the fixed effects. Define Sn(λ) = In − λWn
and Rn(ρ) = In − ρMn for any λ and ρ. At the true parameter,
Sn = Sn(λ0) and Rn = Rn(ρ0). Then, presuming Sn and Rn are in-
vertible, (1) can be rewritten as

Ynt = S−1n Xntβ0 + S
−1
n cn0 + S−1n R

−1
n Vnt . (2)

For notational purposes, we define Ỹnt = Ynt − ȲnT for t = 1,
2, . . . , T , where ȲnT = 1

T

∑T
t=1 Ynt . Similarly, X̃nt = Xnt − X̄nT and

Ṽnt = Vnt − V̄nT . A list of frequently used notations is provided in
Appendix A for easy reference. For our asymptotic analysis of the
estimators, we make the following assumptions.

Assumption 1. Wn and Mn are nonstochastic spatial weights ma-
trices with zero diagonals.

of interest only when n is large. Otherwise, a vector autoregressionmodel would be
preferable. For this reason, as suggested by a referee, we focus our attention on n
being large.
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Assumption 2. The disturbances {vit}, i = 1, 2, . . . , n and t = 1,
2, . . . , T , are i.i.d. across i and t with zero mean, variance σ 20 and
E |vit |4+η <∞ for some η > 0.

Assumption 3. Sn(λ) and Rn(ρ) are invertible for all λ ∈ Λ and
ρ ∈ P, whereΛ and P are compact intervals. Furthermore, λ0 is in
the interior ofΛ, and ρ0 is in the interior of P.7

Assumption 4. The elements of Xnt are nonstochastic and boun-
ded,8 uniformly in n and t . Also, under the asymptotic setting
in Assumption 6, the limit of 1

nT

∑T
t=1 X̃

′
ntR
′
nRnX̃nt exists and is

nonsingular.

Assumption 5. Wn andMn are uniformly bounded in both row and
column sums in absolute value (for short, UB).9 Also S−1n (λ) and
R−1n (ρ) are UB,

10 uniformly in λ ∈ Λ and ρ ∈ P.

Assumption 6. n is large, where T can be finite or large.11

The zero diagonal assumption helps the interpretation of the
spatial effect, as self-influence shall be excluded in practice. In
many empirical applications, each of the rows ofWn (andMn) sums
to 1, which ensures that all theweights are between 0 and 1. In this
section, our estimation and analysis for the model do not require
the feature of row-normalization. Assumption 2 provides i.i.d. reg-
ularity assumptions for vit .We note that the disturbances inUnt are
allowed to be spatially correlated. It is the noise term inUnt that are
i.i.d. distributed. If there is unknown heteroskedasticity, the MLE
(QMLE)will not be consistent.Methods such as the GMM in Lin and
Lee (forthcoming) and that in Kelejian and Prucha (forthcoming)
may be designed for that situation. Invertibility of Sn(λ) and Rn(ρ)
in Assumption 3 guarantees that (2) is valid. Also, compactness is
a condition for theoretical analysis on nonlinear functions. When
Wn is row-normalized, a compact subset of (−1, 1) has often been
taken as the parameter space for λ in theory. So is the parameter
space of ρ for a row-normalizedMn. When exogenous variables Xnt
are included in the model, it is convenient to assume that they are
uniformly bounded as in Assumption 4. Assumption 5 is originated
by Kelejian and Prucha (1998, 2001) and also used in Lee (2004,
2007a). ThatWn,Mn, S−1n (λ) and R

−1
n (ρ) are UB is a condition that

limits the spatial correlation to amanageable degree. Assumption 6
allows two cases of interest: (i) both n and T are large; and (ii) n is
large and T is fixed. For (ii), we are interested in the short panel
data case in contrast to the case where T is large in other studies,
e.g., Hahn and Kuersteiner (2002) and Yu et al. (2008).

2.1. The direct approach

Denote θ = (β ′, λ, ρ, σ 2)′ and ζ = (β ′, λ, ρ)′. At the true
value, θ0 = (β ′0, λ0, ρ0, σ

2
0 )
′ and ζ0 = (β ′0, λ0, ρ0)

′. The log
likelihood function of (1), as if the disturbances were normally
distributed, is

7 Due to the nonlinearity of λ and ρ in the reduced form of the model,
compactness of Λ and P is needed. However, the compactness of β and σ 2 is not
necessary because the β and σ 2 estimates given λ and ρ are least squares type
estimates.
8 If Xnt is allowed to be stochastic and unbounded, appropriate moment
conditions can be imposed instead.
9 We say a (sequence of n × n) matrix Pn is uniformly bounded in row and
column sums in absolute value if supn≥1 ‖Pn‖∞ < ∞ and supn≥1 ‖Pn‖1 <

∞, where ‖Pn‖∞ = sup1≤i≤n
∑n
j=1

∣∣pij,n∣∣ is the row sum norm and ‖Pn‖1 =
sup1≤j≤n

∑n
i=1

∣∣pij,n∣∣ is the column sum norm.
10 This assumption has effectively ruled out some cases, and, hence, imposed
limited dependence across spatial units. For example, if λ0n = 1 − 1/n under
n → ∞, it is a near unit root case for a cross sectional SAR model and S−1n will
not be UB (see Lee and Yu, 2007).
11 The casewith a finite n and large T is of less interest as the incidental parameter
problem does not occur in this model.
ln Ldn,T (θ, cn) = −
nT
2
ln(2πσ 2)+ T [ln |Sn(λ)| + ln |Rn(ρ)|]

−
1
2σ 2

T∑
t=1

V ′nt(ζ , cn)Vnt(ζ , cn), (3)

where Vnt(ζ , cn) = Rn(ρ)[Sn(λ)Ynt − Xntβ − cn]. We can estimate
cn directly and have the estimator of θ0 via a concentrated log
likelihood with cn concentrated out:

ln Ldn,T (θ) = −
nT
2
ln(2πσ 2)+ T [ln |Sn(λ)| + ln |Rn(ρ)|]

−
1
2σ 2

T∑
t=1

Ṽ ′nt(ζ )Ṽnt(ζ ), (4)

where Ṽnt(ζ ) = Rn(ρ)[Sn(λ)Ỹnt− X̃ntβ]. The first and second order
derivatives of (4) are (36) and (37) in Appendix B.

2.2. Transformation approach

To eliminate the individual effects, the deviation from the time
mean operator, JT = (IT − 1

T lT l
′

T ), can be used. BecauseWn is time
invariant, the variables in the deviation form would still be a SAR
model. Such a transformed model consists of Ỹnt = λ0WnỸnt +
X̃ntβ0 + Ũnt and Ũnt = ρ0MnŨnt + Ṽnt . However, the resulting
disturbances Ṽnt would be linearly dependent over the time
dimension. Without creating linear dependence in the resulting
disturbances, a corresponding transformation can be based on
the orthonormal eigenvector matrix of JT . We use an orthogonal
transformation which includes the Helmert transformation as a
special case to eliminate the fixed effects. Let [FT ,T−1, 1

√
T
lT ] be the

orthonormal eigenvector matrix of JT , where FT ,T−1 is the T × (T −
1) submatrix12 corresponding to the eigenvalues of one. For any
n × T matrix [Zn1, . . . , ZnT ], define the transformed n × (T − 1)
matrix [Z∗n1, . . . , Z

∗

n,T−1] = [Zn1, . . . , ZnT ]FT ,T−1. Similarly, X
∗
nt =

[X∗nt,1, X
∗

nt,2, . . . , X
∗

nt,k]. Then, (1) implies

Y ∗nt = λ0WnY
∗

nt + X
∗

ntβ0 + U
∗

nt ,

U∗nt = ρ0MnU
∗

nt + V
∗

nt , t = 1, . . . , T − 1. (5)

Because (V ∗′n1, . . . , V
∗′

n,T−1)
′
= (F ′T ,T−1 ⊗ In)(V

′

n1, . . . , V
′

nT )
′ and vit ’s

are i.i.d,

E(V ∗′n1, . . . , V
∗′

n,T−1)
′(V ∗′n1, . . . , V

∗′

n,T−1)

= σ 20 (F
′

T ,T−1 ⊗ In)(FT ,T−1 ⊗ In) = σ
2
0 In(T−1).

Hence, v∗it ’s are uncorrelated for all i and t (and independent under
normality), where v∗it is the ith element of V

∗
nt .

The log likelihood function of (5), as if the disturbances were
normally distributed, is

ln Ln,T (θ) = −
n(T − 1)
2

ln(2πσ 2)+ (T − 1)[ln |Sn(λ)|

+ ln |Rn(ρ)|] −
1
2σ 2

T−1∑
t=1

V ∗′nt (ζ )V
∗

nt(ζ ), (6)

where V ∗nt(ζ ) = Rn(ρ)[Sn(λ)Y
∗
nt − X

∗
ntβ]. For any n-dimensional

column vectors pnt and qnt , as

12 In dynamic panel data, the first difference and Helmert transformation have
often been used to eliminate the individual effects (see Anderson and Hsiao,
1981; Arellano and Bover, 1995 among others). A special selection of FT ,T−1 gives
rise to the Helmert transformation where Vnt is transformed to ( T−t

T−t+1 )
1/2
[Vnt −

1
T−t (Vn,t+1 + · · · + VnT )], which is of particular interest for dynamic panel data
models.
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T−1∑
t=1

p∗′ntq
∗

nt = (p
′

n1, . . . , p
′

nT )(FT ,T−1 ⊗ In)

× (F ′T ,T−1 ⊗ In)(q
′

n1, . . . , q
′

nT )
′

= (p′n1, . . . , p
′

nT )(JT ⊗ In)(q
′

n1, . . . , q
′

nT )
′
=

T∑
t=1

p̃′nt q̃nt

by using (p̃n1, . . . , p̃nT ) = (pn1, . . . , pnT )JT , (6) can be rewritten as

ln Ln,T (θ) = −
n(T − 1)
2

ln(2πσ 2)+ (T − 1)[ln |Sn(λ)|

+ ln |Rn(ρ)|] −
1
2σ 2

T∑
t=1

Ṽ ′nt(ζ )Ṽnt(ζ ), (7)

where Ṽnt(ζ ) = Rn(ρ)[Sn(λ)Ỹnt − X̃ntβ] and its first and second
order derivatives are (40) and (41) in Appendix B.
We note that the likelihood function in (7) has a conditional

likelihood interpretation. It is the likelihood conditional on the
time average ȲnT , which is a sufficient statistic for cn0 under
normality. This is because (1) implies that ȲnT = λ0WnȲnT +
X̄nTβ0 + cn0 + ŪnT with ŪnT = ρ0MnŪnT + V̄nT , but cn0 does not
appear in Ỹnt = λ0WnỸnt + X̃ntβ0+ Ũnt with Ũnt = ρ0MnŨnt + Ṽnt .
As Ṽnt , t = 1, . . . , T , are independent of V̄nT under normality, the
likelihood in (7) is the conditional likelihood of Ynt , t = 1, . . . , T
conditional on ȲnT (Hsiao, 1986; Lancaster, 2000).

2.3. Comparison of the two approaches

One may compare the concentrated log likelihood function in
(4) of the direct approach with the one in (7) of the transformation
approach. We see that the difference is on the use of T in (4) but
(T − 1) in (7). A closer comparison of the two log likelihoods with
a further concentration is revealing.
For (4), we can further concentrate out β and σ 2 and focus on

(λ, ρ). The QMLEs of β and σ 2 given λ and ρ are

β̂dnT (λ, ρ) =

[
T∑
t=1

X̃ ′ntR
′

n(ρ)Rn(ρ)X̃nt

]−1
×

[
T∑
t=1

X̃ ′ntR
′

n(ρ)Rn(ρ)Sn(λ)Ỹnt

]
, (8)

σ̂ 2dnT (λ, ρ) =
1
nT

T∑
t=1

[Sn(λ)Ỹnt − X̃nt β̂dnT (λ, ρ)]
′

× R′n(ρ)Rn(ρ)[Sn(λ)Ỹnt − X̃nt β̂
d
nT (λ, ρ)]. (9)

The concentrated log likelihood function of (λ, ρ) of the direct
approach is

ln Ldn,T (λ, ρ) = −
nT
2
(ln(2π)+ 1)−

nT
2
ln σ̂ 2dnT (λ, ρ)

+ T [ln |Sn(λ)| + ln |Rn(ρ)|]. (10)
For (7), the corresponding estimates are

β̂nT (λ, ρ) =

[
T∑
t=1

X̃ ′ntR
′

n(ρ)Rn(ρ)X̃nt

]−1
×

[
T∑
t=1

X̃ ′ntR
′

n(ρ)Rn(ρ)Sn(λ)Ỹnt

]
, (11)

σ̂ 2nT (λ, ρ) =
1

n(T − 1)

T∑
t=1

[Sn(λ)Ỹnt − X̃nt β̂nT (λ, ρ)]′

× R′n(ρ)Rn(ρ)[Sn(λ)Ỹnt − X̃nt β̂nT (λ, ρ)], (12)
and the concentrated log likelihood function of (λ, ρ) for the
transformation approach is
ln Ln,T (λ, ρ) = −
n(T − 1)
2

(ln(2π)+ 1)−
n(T − 1)
2

ln σ̂ 2nT (λ, ρ)

+ (T − 1)[ln |Sn(λ)| + ln |Rn(ρ)|]. (13)

Note that β̂nT (λ, ρ) = β̂dnT (λ, ρ), but σ̂
2d
nT (λ, ρ) =

T−1
T σ̂

2
nT (λ, ρ).

Hence, (10) can be rewritten as

ln Ldn,T (λ, ρ) = −
nT
2

(
ln(2π)+ ln

T − 1
T
+ 1

)
−
nT
2
ln σ̂ 2nT (λ, ρ)+ T [ln |Sn(λ)| + ln |Rn(ρ)|]. (14)

By comparing (13) and (14), we see that they yield the same
maximizer (λ̂nT , ρ̂nT ). As β̂dnT (λ, ρ) and β̂nT (λ, ρ) are the same, the
QMLE of ζ0 = (β ′0, λ0, ρ0)

′ from the direct approach is the same as
that of the transformation approach. However, the estimate of σ 20
from the direct approach will not be consistent unless T is large,
which can be seen from the difference of σ̂ 2dnT (λ, ρ) and σ̂

2
nT (λ, ρ).

As σ̂ 2dnT (λ, ρ) =
T−1
T σ̂

2
nT (λ, ρ), we see that the bias corrected

estimate T
T−1 σ̂

2d
nT is numerically equivalent to σ̂

2
nT (λ, ρ). Hence, the

ML estimation of the SAR panel model with fixed individual effects
shares some common features with the ML estimation of the
fixed effects linear panel regression model. The concentrated log
likelihood function in (13) or (14) provides a common ground for
the investigation of asymptotic properties of the two approaches.
It also provides computational simplicity in terms of reduced
dimension for optimization.

2.4. Consistency and asymptotic distributions of estimates

Denote Gn = WnS−1n and

HnT (ρ) =
1

n(T − 1)

T∑
t=1

(X̃nt ,GnX̃ntβ0)′

× R′n(ρ)Rn(ρ)(X̃nt ,GnX̃ntβ0), (15)

σ 2n (ρ) =
σ 20

n
tr[(Rn(ρ)R−1n )

′(Rn(ρ)R−1n )],

σ 2n (λ, ρ) =
σ 20

n
tr[(Rn(ρ)Sn(λ)S−1n R

−1
n )
′(Rn(ρ)Sn(λ)S−1n R

−1
n )].

Assumption 7. Either (a) the limit of HnT (ρ) is nonsingular
for each possible ρ in P, and the limit of ( 1n ln |σ

2
0 R
−1′
n R

−1
n | −

1
n ln |σ

2
n (ρ)R

−1
n (ρ)

′R−1n (ρ)|) is not zero for ρ 6= ρ0; or (b) the limit
of(
1
n
ln |σ 20 R

−1′
n S

−1′
n S

−1
n R
−1
n | −

1
n
ln |σ 2n (λ, ρ)R

−1
n (ρ)

′S−1n (λ)
′S−1n (λ)R

−1
n (ρ)|

)
is not zero for (λ, ρ) 6= (λ0, ρ0), as n tends to infinity.

Assumption 7 states the identification conditions of the model,
which generalizes those for a cross section SAR model in Lee
and Liu (2006) to the panel case. The part (a) of Assumption 7
represents the possible identification of λ0 and β0 through the
deterministic part of the reduced form equation of (1), and the
identification of ρ0 and σ 20 from the SAR process of Unt in (1). The
part (b) of Assumption 7 provides identification through the SAR
process of the reduced form of disturbances of Ynt in (2). When
Mn = Wn and λ0 6= ρ0, the condition in 7(b) would not be
satisfied as (λ0, ρ0) and (ρ0, λ0) could not be distinguished from
each other. Identification will then rely on either Assumption 7(a)
or extra information on the order of magnitudes of λ0 and ρ0. The
identification and consistency are shown in the following theorem.
The analysis follows from the concentrated likelihood (10) or (13)
for λ0 and ρ0. Those of β0 and σ 20 for the direct and transformation
approaches follow, respectively, from (8)–(9) and (11)–(12).
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Theorem 1. Under Assumptions 1–7, θ0 is identified. Furthermore,

(1) for the QMLE θ̂dnT based on (8)–(10) of the direct approach, θ̂
d
nT −

θT
p
→ 0 where θT = θ0 − (01×(k+2), 1T σ

2
0 )
′;

(2) for the QMLE θ̂nT based on (11) and (13) of the transformation
approach, θ̂nT − θ0

p
→ 0.

Proof. See Appendix B.3. �

For this theorem, σ̂ 2dnT does not converge to σ
2
0 when T is a fixed

finite value as n tends to infinity. It will be consistent only when T
is large. The (β̂d′nT , λ̂

d
nT , ρ̂

d
nT )
′ of θ̂dnT will be consistent even when T

is small, because they are identical to those of the transformation
approach. For the σ̂ 2nT of the transformation approach, it is a
consistent estimate of σ 20 as long as n tends to infinity.
The asymptotic distribution of θ̂dnT can be derived from the

Taylor expansion of (38) around θT , and θ̂nT can be derived
accordingly with (42).13 Denote Cn = G̈n − trG̈n

n In and Dn =
Hn − trHn

n In where G̈n = RnGnR
−1
n and Hn = MnR

−1
n .

Assumption 8. The limit of 1
n2
[
tr(C snC

s
n)tr(D

s
nD
s
n)− tr

2(C snD
s
n)
]
is

strictly positive as n tends to infinity.

The first order derivative of the concentrated log likelihood
function at the true parameters involves both linear and quadratic
functions of Ṽnt . Its asymptotic distribution can be derived from
a central limit theorem for martingale difference arrays (see
Lemma A.1 in Appendix A). Assumption 8 is a condition for the
nonsingularity of the limits of the information matrices of both
approaches. When the limit of HnT (ρ0) is singular, as long as the
limit of 1

n2
[
tr(C snC

s
n)tr(D

s
nD
s
n)− tr

2(C snD
s
n)
]
is strictly positive, the

limits of the information matrices remain nonsingular.

Theorem 2. Under Assumptions 1–7 (a); or Assumptions 1–6, 7 (b)
and 8,

(1) for the direct approach,
√
nT (θ̂dnT − θT )

d
→N

(
0, lim

T
T − 1

(ΣdθT ,nT )
−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1
)
, (16)

where the lim is taken under Assumption 6, and ΣdθT ,nT , Ω
d
θT ,nT

are in (39) and (48)
(2) for the transformation approach,√

n(T − 1)(θ̂nT − θ0)
d
→N(0, limΣ−1θ0,nT

× (Σθ0,nT +Ωθ0,nT )Σ
−1
θ0,nT

), (17)

whereΣθ0,nT andΩθ0,nT are in (43) and (49).

Proof. See Appendix B.4. �

The (β̂d′nT , λ̂
d
nT , ρ̂

d
nT ) is identical to (β̂

′

nT , λ̂nT , ρ̂nT ), and they are
properly centered at their true parameter values. But for the
estimate of σ 20 of the direct approach,

√
nT (σ̂ 2dnT − σ

2
0 ) may not

be centered at 0, even though T also tends to infinity, unless nT
goes to zero. On the other hand, for the transformed approach,√
n(T − 1)(σ̂ 2nT − σ

2
0 ) is properly centered at 0 even with a finite

13 Those can also be derived with the concentrated likelihood in (10) or (13) with
the corresponding estimates of β0 and σ 20 via (8)–(9) and (11)–(12). However, while
these can be convenient for the marginal distributions for the estimates of β0 and
σ 20 , it is algebraically tedious and is indirect to obtain the joint distributions. The
derivations via the log likelihoods of (38) or (42) are more direct.
T . When Vnt are normally distributed, ΩdθT ,nT = 0 and Ωθ0,nT = 0
because µ4 − 3σ 40 = 0. The difference between Σ

d
θT ,nT

and Σθ0,nT
(resp. Ωdθ0,nT and ΩθT ,nT ) occurs at the corresponding elements
associated with σ 2T and σ

2
0 , as shown in (39) and (43) (resp. (48)

and (49)). From Theorem 1, it is straightforward to construct the
bias corrected estimates for the direct approach as

θ̂d1nT =

(
β̂d′nT , λ̂

d
nT , ρ̂

d
nT ,

T
T − 1

σ̂ 2dnT

)′
. (18)

This bias corrected estimate is numerically the same as the
estimate of the transformation approach.
In some social interaction models, if each unit has many

neighbors, the QMLEs of some parameters in (β ′0, λ0, ρ0)
′ might

have a lower rate of convergence. For the cross section SAR model
with i.i.d. disturbances, Lee (2004) shows that when GnXnβ0 is
asymptotically multicollinear with Xn, the information matrix is
asymptotically singular and theMLEs ofβ0 andλ0will have a lower
rate of convergence. Only when GnXnβ0 is not multicollinear with
Xn would the rate of convergence be regular

√
n under the ‘‘many

neighbors’’ setting. In the SAR panel data with SAR disturbances,
we might have similar findings. Namely, when HnT is singular,
the estimates of β0 and λ0 will have a lower rate of convergence
under the ‘‘many neighbors’’ setting.WhenHnT is nonsingular, the
QMLEs of (β ′0, λ0) have the regular rate. However, the rate of the
MLE of ρ0 would be lower under the ‘‘many neighbors’’ setting,
regardless of the singularity ofHnT or not. Hence, the result in Lee
(2004) would carry over to (β ′0, λ0), while the rate of theMLE of ρ0
would always be lower.14

3. A general model with both individual and time effects

Both Baltagi et al. (2003) and Kapoor et al. (2007) focus on
models with only individual effects. In the panel data literature,
there are also two-way error component regression models where
we have not only individual effects but also time effects (See
Wallace and Hussain, 1969; Amemiya, 1971; Nerlove, 1971;
Baltagi, 1995;Hahn andMoon, 2006, etc). The time effectsmight be
important, for example, in growth theory and regional economics
(see, e.g., Ertur and Koch, 2007 and Foote, 2007). Hence, we
generalize (1) to

Ynt = λ0WnYnt + Xntβ0 + cn0 + αt0ln + Unt ,
Unt = ρ0MnUnt + Vnt , t = 1, 2, . . . , T , (19)

where αt0 is the fixed time effect. From a methodological point of
view, the asymptotics are of interest only when both n and T tend
to infinity.15When T tends to infinity, the time effects may cause
the incidental parameter problem in addition to the individual
effects. In the following sections, we consider the direct QML
approach which estimates both the individual and time effects,
and a transformation approachwhere both the individual and time
effects are eliminated. For the transformation approach, we may
first eliminate the individual effects in (19) by FT ,T−1 similar to (5),
which yields

Y ∗nt = λ0WnY
∗

nt + X
∗

ntβ0 + α
∗

t0ln + U
∗

nt ,

U∗nt = ρ0MnU
∗

nt + V
∗

nt , t = 1, 2, . . . , T − 1, (20)

14 We do not provide a rigorous analysis of this ‘‘many neighbors’’ case in this
paper. However, by investigating the elements of informationmatrix of (10) or (13),
we can infer the rates of convergence for the QMLEs of (λ0, ρ0), and hence the rates
for the QMLEs ofβ0 and σ 20 . The ‘‘many neighbors’’ case is of special interest in social
interaction models. One may have a deeper understanding of that model with the
approach in Lee (2007b) via a group setting.
15 If T is finite, the time effects can be regarded as a finite number of additional
regression coefficients similar to the role of β .
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where [α∗10ln, α
∗

20ln, . . . , α
∗

T−1,0ln] = [α10ln, α20ln, . . . , αT0ln]FT ,T−1
are transformed time effects. We can further transform (20) to
eliminate the time effects.

3.1. Direct approach

The log likelihood function of (19)with both cn and (α1, . . . , αT )′
concentrated out is

ln Ldn,T (θ) = −
nT
2
ln(2πσ 2)+ T [ln |Sn(λ)| + ln |Rn(ρ)|]

−
1
2σ 2

T∑
t=1

Ṽ ′nt(ζ )JnṼnt(ζ ), (21)

where Ṽnt(ζ ) = Rn(ρ)[Sn(λ)Ỹnt − X̃ntβ] and Jn = In − 1
n lnl
′
n is the

deviation from the group mean transformation over spatial units.
The first and second order derivatives of (21) are, respectively, (50)
and (51) in Appendix C.

3.2. Transformation approach

In a panel regression model with both individual and time
effects, these effects can be eliminated by taking deviations from
time and cross section means. For example, for yit , denote yi. =
1
T

∑T
t=1 yit , y.t =

1
n

∑n
i=1 yit and y.. =

1
nT

∑n
i=1
∑T
t=1 yit . The

within estimator of β in the panel regression model is to regress
yit − y.t − yi. + y.. on xit − x.t − xi. + x.. (see, e.g., Wallace and
Hussain, 1969; Baltagi, 1995). Thewithin estimator is a conditional
MLE of yit ’s conditional on all yi. and y.t . In terms of matrices, these
transformations correspond to JT and Jn. With Wn and Mn being
row normalized, JnWnJn = JnWn and JnMnJn = JnMn. Using these
transformations for (19), we have JnỸnt = λ0JnWnJnỸnt + JnX̃ntβ0+
JnŨnt with JnŨnt = ρ0JnMnJnŨnt + JnṼnt . The elements of JnỸnt , etc.,
are in the deviation form from both individual and time means.
This transformed equation is in the form of a SAR model without
individual or time effects. The parameters can then be estimated
from this equation.
Without creating linear dependence on the resulting distur-

bances, the transformations can be based on the orthonormal
eigenvectormatrices of JT and Jn. Let (Fn,n−1, 1√n ln) be the orthonor-
mal eigenvector matrix of Jn, where Fn,n−1 is the n × (n − 1) sub-
matrix corresponding to the eigenvalues of one. Similar to Lee and
Yu (forthcoming),we can further transform the n-dimensional vec-
tor Y ∗nt in (20) to an (n − 1)-dimensional vector Y

∗∗
nt such that

Y ∗∗nt = F
′

n,n−1Y
∗
nt . For this transformation approach and a likelihood

estimation, we needWn andMn to be row normalized.16

Assumption 1′. Wn and Mn are row normalized nonstochastic
spatial weights matrices with zero diagonals.

WithWn andMn being rownormalized, (20) can be transformed
into

Y ∗∗nt = λ0(F
′

n,n−1WnFn,n−1)Y
∗∗

nt + X
∗∗

nt β0 + U
∗∗

nt ,

U∗∗nt = ρ0(F
′

n,n−1MnFn,n−1)U
∗∗

nt + V
∗∗

nt , (22)

for t = 1, . . . , T − 1 where X∗∗nt = F ′n,n−1X
∗
nt and V

∗∗
nt =

F ′n,n−1V
∗
nt . After the transformations, the effective sample size is

now (n − 1)(T − 1). Because (V ∗∗′n1 , . . . , V
∗∗′

n,T−1)
′
= (IT−1 ⊗

16 When Wn and Mn are not row normalized, we can still eliminate the
transformed time effects; however, we will not have the presentation of (22). In
that case, a likelihood formulationwould not be feasible, and alternative estimation
methods, such as the generalized method of moment, would be possible. Such an
estimation approach is beyond the scope of this paper.
F ′n,n−1)(V
∗′

n1, . . . , V
∗′

n,T−1)
′
= (F ′T ,T−1 ⊗ F

′

n,n−1)(V
′

n1, . . . , V
′

nT )
′, we

have

E(V ∗∗′n1 , . . . , V
∗∗′

n,T−1)
′(V ∗∗′n1 , . . . , V

∗∗

n,T−1)

= σ 20 (F
′

T ,T−1 ⊗ F
′

n,n−1)(FT ,T−1 ⊗ Fn,n−1)

= σ 20 (IT−1 ⊗ In−1).

Hence, the elements v∗∗it ’s of V
∗∗
nt are uncorrelated for all i and t .

The log likelihood function for (22) is

ln Ln,T (θ) = −
(n− 1)(T − 1)

2
ln(2πσ 2)

+ (T − 1) ln
∣∣In−1 − λF ′n,n−1WnFn,n−1∣∣

+ (T − 1) ln
∣∣In−1 − ρF ′n,n−1MnFn,n−1∣∣

−
1
2σ 2

T−1∑
t=1

V ∗∗′nt (ζ )V
∗∗

nt (ζ ), (23)

where V ∗∗nt (ζ ) = R
∗
n(ρ)[(In−1 − λF

′

n,n−1WnFn,n−1)Y
∗∗
nt − X

∗∗
nt β]with

R∗n(ρ) = In−1 − ρF
′

n,n−1MnFn,n−1. From Lemma A.2 in Appendix A,
the determinant and inverse of (In−1 − λF ′n,n−1WnFn,n−1) are∣∣In−1 − λF ′n,n−1WnFn,n−1∣∣ = 1

1− λ
|In − λWn| ,

(In−1 − λF ′n,n−1WnFn,n−1)
−1
= F ′n,n−1(In − λWn)

−1Fn,n−1,

and similarly for (In−1 − ρF ′n,n−1MnFn,n−1). For any n-dimensional
column vectors pnt and qnt ,
T−1∑
t=1

p∗∗′nt q
∗∗

nt = (p
′

n1, . . . , p
′

nT )(FT ,T−1 ⊗ Fn,n−1)

× (F ′T ,T−1 ⊗ F
′

n,n−1)(q
′

n1, . . . , q
′

nT )
′

= (p′n1, . . . , p
′

nT )(JT ⊗ Jn)(q
′

n1, . . . , q
′

nT )
′

=

T∑
t=1

p̃′nt Jnq̃nt .

This implies that (23) is equal to

ln Ln,T (θ) = −
(n− 1)(T − 1)

2
ln(2πσ 2)

− (T − 1)[ln(1− λ)+ ln(1− ρ)]
+ (T − 1)[ln |Sn(λ)| + ln |Rn(ρ)|]

−
1
2σ 2

T∑
t=1

Ṽ ′nt(ζ )JnṼnt(ζ ), (24)

and its first and second order derivatives are in (54) and (55) of
Appendix C.
We note that this likelihood function is, in general, not nece-

ssarily a conditional likelihood for the spatial model, because the
sample average over spatial units at each t might not be a su-
fficient statistic for the time dummy. The cross section average
1
n l
′
nWnYnt might not equal c · y.t for some scalar c , unless the
column sums ofWn are all equal to 1. In practice,Wn is usually row-
normalized but not column-normalized. Conversely, the likelihood
in (24) is a partial likelihood function.17 It may also be regarded
as a modification of the concentrated likelihood in (21) as
Ln,T (θ) = Ldn,T (θ)AnT (θ) where AnT (θ) = (2πσ 2)

n+T−1
2 {[(1 − λ)

(1 − ρ)]T−1|Sn(λ)| · |Rn(ρ)|}−1. The factor AnT (θ) modifies the

17 The density function of (Yn1, . . . , YnT ) of (19) can be decomposed as f (Yn1, . . . ,
YnT |θ, cn, α1, . . . , αT ) = f (Yn1, . . . , YnT |Y ∗∗n1 , . . . , Y

∗∗

n,T−1, θ, cn, α1, . . . , αT ) ×
f (Y ∗∗n1 , . . . , Y

∗∗

n,T−1|θ), where f (Y
∗∗

n1 , . . . , Y
∗∗

n,T−1|θ) is the density of (22).
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concentrated likelihood of the direct approach so that themodified
likelihood can improve upon the concentrated likelihood function.
Various ways to construct a modified likelihood function from
the concentrated likelihood of a direct approach are in Cox and
Reid (1987), Lancaster (2000), and Arellano and Hahn (2005).
The Cox and Reid (1987) and Lancaster (2000) approach involves
orthogonal parameterization, which is model specific. The ones
in Arellano and Hahn (2005) involve approximations and are
related to bias corrected estimation. For our model, the likelihood
modification does not seem to relate to theirs, as our intention is
not to make a bias correction on the direct estimate. Our approach
is motivated by the estimation of the within equation, which relies
on the linearity feature of the specified model.18

3.3. Comparison of the two approaches

For the direct approach, from (21), we have

β̂dnT (λ, ρ) =

[
T∑
t=1

X̃ ′ntR
′

n(ρ)JnRn(ρ)X̃nt

]−1
×

[
T∑
t=1

X̃ ′ntR
′

n(ρ)JnRn(ρ)Sn(λ)Ỹnt

]
, (25)

σ̂ 2dnT (λ, ρ) =
1
nT

T∑
t=1

[Sn(λ)Ỹnt − X̃nt β̂dnT (λ, ρ)]
′

× R′n(ρ)JnRn(ρ)[Sn(λ)Ỹnt − X̃nt β̂
d
nT (λ, ρ)], (26)

and hence, the concentrated log likelihood function of (λ, ρ) is

ln Ldn,T (λ, ρ) = −
nT
2
(ln(2π)+ 1)−

nT
2
ln σ̂ 2dnT (λ, ρ)

+ T [ln |Sn(λ)| + ln |Rn(ρ)|]. (27)

For the transformation approach, from (24), the corresponding
estimates are

β̂nT (λ, ρ) =

[
T∑
t=1

X̃ ′ntR
′

n(ρ)JnRn(ρ)X̃nt

]−1
×

[
T∑
t=1

X̃ ′ntR
′

n(ρ)JnRn(ρ)Sn(λ)Ỹnt

]
, (28)

σ̂ 2nT (λ, ρ) =
1

(n− 1)(T − 1)

T∑
t=1

[Sn(λ)Ỹnt − X̃nt β̂nT (λ, ρ)]′

× R′n(ρ)JnRn(ρ)[Sn(λ)Ỹnt − X̃nt β̂nT (λ, ρ)], (29)

and the concentrated log likelihood function of (λ, ρ) is

ln Ln,T (λ, ρ) = −
(n− 1)(T − 1)

2
(ln(2π)+ 1)

−
(n− 1)(T − 1)

2
ln σ̂ 2nT (λ, ρ)

− (T − 1)[ln(1− λ)+ ln(1− ρ)] + (T − 1)
×[ln |Sn(λ)| + ln |Rn(ρ)|]. (30)

Note that β̂nT (λ, ρ) = β̂dnT (λ, ρ), but

σ̂ 2dnT (λ, ρ) =
(n− 1)(T − 1)

nT
σ̂ 2nT (λ, ρ).

Hence, (27) can be rewritten as

18 The approaches in Cox and Reid (1987) and Arellano and Hahn (2005) may be
applied to nonlinear models.
ln Ldn,T (λ, ρ) = −
nT
2

(
ln(2π)+ ln

(n− 1)(T − 1)
nT

+ 1
)

−
nT
2
ln σ̂ 2nT (λ, ρ)+ T [ln |Sn(λ)| + ln |Rn(ρ)|]. (31)

By comparing (30) and (31), we can see that ln Ldn,T (λ, ρ) and
ln Ln,T (λ, ρ) do not yield the same estimates of λ0 and ρ0.
By ignoring irrelevant constant terms, the difference between

1
(n−1)(T−1) ln Ln,T (λ, ρ) and

1
nT ln L

d
n,T (λ, ρ) is

1
n(n−1) [ln |Sn(λ)| +

ln |Rn(ρ)|] − 1
n−1 [ln(1 − λ) + ln(1 − ρ)]. The direct and trans-

formation approaches will yield asymptotically similar sample av-
erage objective functions when n is large, because their difference
will vanish when n tends to infinity. Hence, under large n case, the
estimate ζ̂ dnT of the direct approach and ζ̂nT of the transformation
approach are both consistent. However, they are not numerically
identical.

3.4. Consistency and asymptotic distributions of estimates

Denote19

HnT (ρ) =
1

(n− 1)(T − 1)

T∑
t=1

(X̃nt ,GnX̃ntβ0)′R′n(ρ)

× JnRn(ρ)(X̃nt ,GnX̃ntβ0), (32)

σ 2n (ρ) =
σ 20

n− 1
tr[(Rn(ρ)R−1n )

′Jn(Rn(ρ)R−1n )],

σ 2n (λ, ρ) =
σ 20

n− 1
tr[(Rn(ρ)Sn(λ)S−1n R

−1
n )
′Jn(Rn(ρ)Sn(λ)S−1n R

−1
n )].

The following assumptions provide conditions for parameter
identification. These assumptions modify the assumptions in
Section 2 in that Jn will be involved.

Assumption 4′. The elements of Xnt are nonstochastic and boun-
ded, uniformly in n and t . Under the setting in Assumption 6, the
limit of 1nT

∑T
t=1 X̃

′
ntR
′
nJnRnX̃nt exists and is nonsingular.

20

Assumption 7′. Either (a) the limit of HnT (ρ) is nonsingular
for each ρ in P and the limit of ( 1

n−1 ln |σ
2
0 R
−1′
n JnR

−1
n | −

1
n−1 ln |σ

2
n (ρ)R

−1
n (ρ)

′JnR−1n (ρ)|) is not zero for ρ 6= ρ0; or (b) the
limit of ( 1

n−1 ln |σ
2
0 R
−1′
n S

−1′
n JnS

−1
n R
−1
n |−

1
n−1 ln |σ

2
n (λ, ρ)R

−1
n (ρ)

′S−1n
(λ)′JnS−1n (λ)R

−1
n (ρ)|) is not zero for (λ, ρ) 6= (λ0, ρ0).

Assumption 8′. The limit of 1
(n−1)2

[
tr(C snC

s
n)tr(D

s
nD
s
n)− tr

2(C snD
s
n)
]

is strictly positive, where Cn = JnG̈n −
trJnG̈n
n−1 Jn and Dn = JnHn −

trJnHn
n−1 Jn.

Theorem 3. (1) For the QMLE θ̂dnT based on (21), under Assump-
tions 1–3, 4′, 5, 6 and 7′, θ̂dnT − θT

p
→ 0 where θT = θ0 −

(01×(k+2), 1T σ
2
0 )
′.

(2) For the QMLE θ̂nT based on (24), under Assumptions 1′, 2, 3, 4′,
5, 6 and 7′, θ̂nT − θ0

p
→ 0.

Proof. The arguments will be similar to those in the proof of
Theorem 1. �

19 HnT (ρ), σ 2n (ρ) and σ
2
n (λ, ρ) for Section 3 are different from those in Section 2

although they share the same notations. The difference is that we have degrees of
freedom adjustment and Jn matrix present in those in Section 3.
20 This assumption rules out regressors which are either time or cross section
invariant.
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For the direct approach, the consistency of the QMLE of ζ0 =
(β ′0, λ0, ρ0)

′ requires only n to be large. If T were finite, the
time dummies would introduce an additional finite number of
regression coefficients, which can be consistently estimated as n
tends to infinity. However, the consistency of the estimate of the
variance parameter requires both n and T to be large. For the
transformation approach, all the estimates in θ̂nT will be consistent
even when T is small.
Similar to the previous sections, the asymptotic properties of

θ̂dnT can be obtained by the Taylor expansion of
∂ ln Ldn,T (θ)

∂θ
around θT ,

and that of θ̂nT from
∂ ln Ln,T (θ)

∂θ
around θ0. For the direct approach,

however, the score evaluated at θT will not be centered at zero
when T is large, due to the incidental parameter problem induced
by time effects. Denote bθT ,nT = (Σ

d
θT ,nT

)−1aθT ,n whereΣ
d
θT ,nT

is in
(53) and21

aθT ,n =
(
01×k,

1
n
l′nRnGnR

−1
n ln,

1
n
l′nHnln,

1
2σ 2T

)′
.

Theorem 4. (1) For the direct approach, under Assumptions 1–3, 4′,
5, 6 and 7′ (a); or Assumptions 1–3, 4′, 5, 6 and 7′ (b) and 8′
(i) when nT → c, where 0 < c <∞,
√
nT (θ̂dnT − θT )+

1
√
c
bθT ,nT

d
→N(0, lim(ΣdθT ,nT )

−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1);

(ii) when nT → 0, n(θ̂dnT − θT )+ bθT ,nT
p
→ 0; but

(iii) when nT →∞,
√
nT (θ̂dnT − θT )

d
→N(0, lim T

T−1 (Σ
d
θT ,nT

)−1

(ΣdθT ,nT +Ω
d
θT ,nT

)(ΣdθT ,nT )
−1), whereΣdθT ,nT andΩ

d
θT ,nT

are
in (53) and (58).

(2) For the transformation approach, under 1′ 2, 3, 4′, 5, 6 and 7′ (a);
or 1′ 2, 3, 4′, 5, 6 and 7′ (b) and 8′,√
(n− 1)(T − 1)(θ̂nT − θ0)

d
→N(0, limΣ−1θ0,nT

× (Σθ0,nT +Ωθ0,nT )Σ
−1
θ0,nT

). (33)
whereΣθT ,nT andΩθT ,nT are in (57) and (59).

Proof. See Appendix C.3. �

Hence, θ̂dnT is
√
nT consistent when n and T go to infinity, but

it has a leading bias which is the sum of −(01×(k+2), 1T σ
2
0 )
′ and

−
1
nbθT ,nT . The confidence interval for θ̂

d
nT will not properly center

around θ0 when n
T → c for finite c > 0. When n

T → 0,
i.e., T is large relative to n, the bias component with bθT ,nT is
the dominating one, and θ̂dnT has the low n rate of convergence
and its limiting distribution is degenerate. On the other hand,
when n

T → ∞, i.e., T is small relative to n, the estimate of
ζ0 = (β ′0, λ0, ρ0)

′ is asymptotically centered; while only the
estimate of σ 20 has the low T rate of convergence, and its limiting
distribution is degenerate.22When T is finite, there is no additional
incidental parameter problem caused by a finite number of time
dummies. The additional incidental parameter problem occurs
only when T goes to infinity at the same rate as n or faster than
n.23 For the transformation approach, the QMLE θ̂nT is consistent

21 When Wn and Mn are row normalized, aθT ,n will be reduced to (01×kx ,
1

1−λ0
, 1
1−ρ0

, 1
2σ 2T
)′ .

22 It is T (σ̂ 2dnT − σ
2
0 )+ σ

2
0
p
→ 0 where σ̂ 2dnT is the last entry of θ̂

d
nT .

23 It is of interest to see that, for the panelmodel without time dynamics, the finite
or relatively short T (relative to n) do not cause noncentrality in the distribution for
estimates of most of the common parameters except the variance parameter of the
disturbances. This feature differs from those of the dynamic panel data models in
Hahn andKuersteiner (2002) andHahn andMoon (2006), and spatial dynamic panel
models in Yu et al. (2008).
and asymptotically normal, and it is properly centered. When
both n and T are large, estimates of the parameters based on the
two approaches will be consistent and have the same asymptotic
variance matrix.
In general, analytical bias reduction procedures are possible.

Arellano and Hahn (2005) review various bias-correction methods
for nonlinear panel data models with fixed individual effects. To
correct for the bias due to the presence of incidental parameter
problem, they analytically compare the bias correction of (i) esti-
mators; (ii) moment equation (the score); and (iii) concentrated
likelihood. A restricted case that relies on parameters orthogonal-
ity (Cox and Reid, 1987; Lancaster, 2000) is also discussed. For our
SAR panel data model with fixed effects, we develop a bias correc-
tion procedure corresponding to (i).24

The overall bias can be corrected in two steps — an additive
correction followed by a scalar adjustment in the σ 2 component.
The first step is to correct for the bias of 1nbθT ,nT and the second step
is to correct the bias of (01×(k+2), 1T σ

2
0 )
′. Denote

θ̂d1nT = θ̂
d
nT −

B̂nT
n
, and θ̂d2nT = AT · θ̂

d1
nT , (34)

where B̂nT = [−(Σdθ,nT )
−1
·aθ,n]|θ=θ̂dnT and AT =

(
Ik+2 0(k+2)×1
01×(k+2)

T
T − 1

)
.

As is shown in Appendix C.4, B̂nT + bθT ,nT = Op
(
max

(
1
√
nT
, 1n

))
.

With rescaling25of the estimator of σ 2 in θ̂d1nT by
T
T−1 , the bias

corrected θ̂d2nT is asymptotically normal and centered around θ0.

Theorem 5. Under Assumptions 1–3, 4′, 5, 6 and 7′ (a); or
Assumptions 1–3, 4′, 5, 6 and 7′ (b) and 8′, when T

n3
→ 0,

√
nT (θ̂d2nT − θ0)

d
→N

(
0, lim

T
T − 1

(ΣdθT ,nT )
−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1
)
. (35)

Proof. See Appendix C.4. �

4. Monte Carlo

We conduct a small Monte Carlo experiment to evaluate the
performance of estimates under different settings. We first look
into the model (1) with individual effects but no time effects, and
compare the performance of the transformation approachwith the
direct approach. Then, we investigate the model (19) with both
individual and time effects.
We first generate samples from (1):

Ynt = λ0WnYnt + Xntβ0 + cn0 + Unt ,
Unt = ρ0MnUnt + Vnt , t = 1, 2, . . . , T ,

using θ a0 = (1.0, 0.2, 0.5, 1)′ and θ b0 = (1, 0.5, 0.2, 1)′ where
θ0 = (β ′0, λ0, ρ0, σ

2
0 )
′. Xnt , cn0 and Vnt are generated from

independent standard normal distributions, and both the spatial

24 Other bias correction methods for SAR panel data via (ii) and (iii) might be
possible and would be of interest in future research.
25 An alternative is to correct that entry in an additive fashion as σ̂ 2nT +

1
T σ̂

2
nT .

However, for a finite T , such bias correction would not yield a consistent estimate
for σ 20 ; and for T being large, the distribution will not be properly centered unless
n
T3
→ 0.
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Table 1
Transformation and direct approaches: model with individual effects only.

T n θ0 β λ ρ σ 21 σ 22

(1) 5 49 θ a0 Bias −0.0027 0.0096 −0.0279 −0.0216 −0.2173
E-SD 0.0766 0.1377 0.1459 0.1067 0.0854
RMSE 0.0766 0.1380 0.1485 0.1089 0.2334
T-SD 0.0743 0.1355 0.1371 0.1043 0.0746

(2) 5 49 θ b0 Bias −0.0039 −0.0173 0.0021 −0.0027 −0.2182
E-SD 0.0736 0.1150 0.1590 0.1044 0.0835
RMSE 0.0737 0.1163 0.1590 0.1068 0.2336
T-SD 0.0718 0.1134 0.1574 0.1024 0.0733

(3) 10 49 θ a0 Bias −0.0005 0.0040 −0.0110 −0.0116 −0.1104
E-SD 0.0492 0.0948 0.0939 0.0704 0.0633
RMSE 0.0492 0.0949 0.0945 0.0713 0.1273
T-SD 0.0496 0.0925 0.0921 0.0701 0.0599

(4) 10 49 θ b0 Bias −0.0011 −0.0066 0.0007 −0.0120 −0.1108
E-SD 0.0466 0.0759 0.1053 0.0691 0.0622
RMSE 0.0466 0.0762 0.1053 0.0702 0.1271
T-SD 0.0475 0.0755 0.1069 0.0687 0.0586

(5) 50 9 θ a0 Bias 0.0003 0.0072 −0.0126 −0.0082 −0.0280
E-SD 0.0501 0.0844 0.0810 0.0713 0.0699
RMSE 0.0501 0.0847 0.0820 0.0718 0.0753
T-SD 0.0499 0.0842 0.0787 0.0704 0.0682

(6) 50 9 θ b0 Bias −0.0010 −0.0065 0.0018 −0.0093 −0.0291
E-SD 0.0481 0.0664 0.0961 0.0708 0.0694
RMSE 0.0482 0.0668 0.0962 0.0714 0.0752
T-SD 0.0475 0.0645 0.0967 0.0689 0.0669

(7) 50 16 θ a0 Bias −0.0010 0.0021 −0.0050 −0.0079 −0.0278
E-SD 0.0380 0.0692 0.0660 0.0536 0.0525
RMSE 0.0380 0.0692 0.0662 0.0542 0.0594
T-SD 0.0374 0.0663 0.0641 0.0528 0.0512

(8) 50 16 θ b0 Bias −0.0015 −0.0037 0.0016 −0.0082 −0.0280
E-SD 0.0367 0.0549 0.0792 0.0526 0.0516
RMSE 0.0367 0.0550 0.0793 0.0532 0.0587
T-SD 0.0356 0.0524 0.0762 0.0516 0.0501

(9) 50 49 θ a0 Bias −0.0009 −0.0011 −0.0004 −0.0025 −0.0224
E-SD 0.0220 0.0405 0.0401 0.0305 0.0298
RMSE 0.0220 0.0405 0.0401 0.0306 0.0373
T-SD 0.0214 0.0404 0.0396 0.0303 0.0294

(10) 50 49 θ b0 Bias −0.0007 −0.0031 0.0026 −0.0019 −0.0219
E-SD 0.0212 0.0321 0.0465 0.0297 0.0291
RMSE 0.0212 0.0323 0.0466 0.0298 0.0365
T-SD 0.0203 0.0324 0.0464 0.0296 0.0287

Note: 1. θ a0 = (1, 0.2, 0.5, 1) and θ
b
0 = (1, 0.5, 0.2, 1).

2. The column of σ 21 is from the transformation approach; and the column of σ
2
2 is from the direct approach.

3. The transformation approach and the direct approach yield the same estimate of ζ0 = (β ′0 , λ0 , ρ0)
′ .
weights matrices Wn and Mn are the same rook matrices.26 We
use some combinations of T = 5, 10, 50, and n = 9, 16, 49.
For each set of generated sample observations, we calculate the
ML estimator and evaluate the bias. We do this 1000 times. With
two different values of θ0 for various combinations of n and T ,
finite sample properties of estimators are summarized in Table 1.
For each case, we report the empirical bias (Bias), the empirical
standard deviation (E-SD), the empirical root mean square error
(RMSE) and the theoretical standard deviation (T-SD).27
We see that both approaches provide the same estimate of

ζ0 = (β
′

0, λ0, ρ0)
′, and they have small biases when either n or T

are large. From the last two columns in Table 1, the transformation
approach yields a consistent estimator of σ 20 when either n or T is
large; however, the estimator of σ 20 by the direct approach has a

26 We use the rook matrix based on an r board (so that n = r2). The rook matrix
represents a square tessellation with a connectivity of four for the inner fields on
the chessboard, and two and three for the corner and border fields, respectively.
Most empirically observed regional structures in spatial econometrics are made up
of regions with connectivity close to the range of the rook tessellation.
27 The T-SD is obtained from diagonal elements of the negative inverse of the
estimated Hessian matrix.
small bias only when T is large. For E-SDs, RMSEs and T-SDs for the
estimators of ζ0 = (β ′0, λ0, ρ0)

′, they are small when either n or
T are large. Also, T-SDs are similar to E-SDs, which means that the
negative inverse of the Hessian matrix provides proper estimates
for the variances of estimators.
We then generate samples from (19):

Ynt = λ0WnYnt + Xntβ0 + cn0 + αt ln + Unt ,
Unt = ρ0MnUnt + Vnt , t = 1, 2, . . . , T ,

using the same n, T , θ a0 , θ
b
0 , Wn and Mn. The Xnt , cn0, αT0 =

(α1, α2, . . . , αT ) and Vnt are generated from independent standard
normal distributions. The finite sample properties of the estimators
are summarized in Tables 2–4. Table 2 is for the direct approach,
and Table 3 is for those estimators after bias correction; Table 4 is
for the transformation approach.
We see that the biases of estimates of ζ0 and σ 20 , based on the

transformation approach, are smallwhen eithernor T are large. For
the direct approach, the bias of the estimate of ζ0 is small when n is
large, and the bias is largewhen n is small and T might be large; the
bias for the estimate ofσ 20 is small onlywhenbothn and T are large.
After the bias correction for the direct approach, by comparing
Tables 2 and 3, we see that the bias correction reduces the biases of



174 L.-f. Lee, J. Yu / Journal of Econometrics 154 (2010) 165–185
Table 2
Direct approach: model with both time and individual effects.

T n θ0 β λ ρ σ 2

(1) 5 49 θ a0 Bias 0.0021 0.0271 −0.0904 −0.2207
E-SD 0.0749 0.1213 0.1342 0.0843
RMSE 0.0749 0.1243 0.1618 0.2362
T-SD 0.0662 0.1254 0.1338 0.1026

(2) 5 49 θ b0 Bias −0.0017 −0.0382 0.0183 −0.2267
E-SD 0.0733 0.1063 0.1443 0.0831
RMSE 0.0733 0.1129 0.1455 0.2415
T-SD 0.0642 0.1090 0.1478 0.1013

(3) 10 49 θ a0 Bias 0.0038 0.0241 −0.0779 −0.1151
E-SD 0.0488 0.0856 0.0910 0.0623
RMSE 0.0489 0.0889 0.1198 0.1308
T-SD 0.0468 0.0900 0.0952 0.0688

(4) 10 49 θ b0 Bias 0.0001 −0.0305 −0.0178 −0.1216
E-SD 0.0471 0.0733 0.0980 0.0622
RMSE 0.0471 0.0794 0.0996 0.1366
T-SD 0.0450 0.0771 0.1060 0.0679

(5) 50 9 θ a0 Bias −0.0014 −0.0179 −0.3438 −0.1260
E-SD 0.0519 0.0541 0.0566 0.0649
RMSE 0.0520 0.0570 0.3484 0.1417
T-SD 0.0488 0.0983 0.1140 0.0605

(6) 50 9 θ b0 Bias −0.0091 −0.1959 −0.1330 −0.1258
E-SD 0.0526 0.0528 0.0571 0.0651
RMSE 0.0534 0.2029 0.1447 0.1416
T-SD 0.0479 0.0965 0.1192 0.0619

(7) 50 16 θ a0 Bias 0.0038 0.0262 −0.1964 −0.0608
E-SD 0.0377 0.0496 0.0551 0.0498
RMSE 0.0379 0.0561 0.2040 0.0786
T-SD 0.0365 0.0713 0.0803 0.0493

(8) 50 16 θ b0 Bias −0.0021 −0.0948 −0.0539 −0.0692
E-SD 0.0375 0.0461 0.0578 0.0500
RMSE 0.0376 0.1054 0.0791 0.0854
T-SD 0.0354 0.0660 0.0862 0.0494

(9) 50 49 θ a0 Bias 0.0030 0.0195 −0.0671 −0.0272
E-SD 0.0217 0.0365 0.0385 0.0291
RMSE 0.0219 0.0413 0.0774 0.0398
T-SD 0.0210 0.0409 0.0428 0.0297

(10) 50 49 θ b0 Bias −0.0002 −0.0286 −0.0132 −0.0335
E-SD 0.0213 0.0314 0.0428 0.0288
RMSE 0.0213 0.0425 0.0448 0.0442
T-SD 0.0201 0.0347 0.0479 0.0293

Note: θ a0 = (1, 0.2, 0.5, 1) and θ
b
0 = (1, 0.5, 0.2, 1).
the direct approach estimates, without significant increase in the
variance (S-TD).28 This is consistentwith the theoretical prediction.
We also run the simulation when Vnt is generated from the

exponential distribution with unit variance (demeaned by the
populationmean). The disturbances are skewed. To save space, the
Monte Carlo simulation is reported only for the T = 10 and n = 49
case. By comparingwith the corresponding estimates in Tables 1–4
under the normal disturbances, we see that the biases and SDs are
similar except that the SDs of the estimates for σ 20 in Table 5 are
relatively larger.

5. Conclusion

In this paper, we consider the estimation of SAR panel models
with fixed effects and SAR disturbances.
We first consider the model with individual effects only where

the time periods T can be finite (or infinite), while the number
of spatial units n is large. If T is finite, the direct ML approach
by estimating all the parameters including the fixed effects will
yield consistent estimators for the common parameters except
the variance parameter. These features are similar to the direct
ML estimation of the linear panel regression model with fixed

28 For the T-SD of the bias corrected estimates, its values are also similar to those
of the estimates before bias correction.
individual effects. As an alternative estimation approach, we
suggest the use of a transformation approach, which eliminates
the individual fixed effects and can provide consistent estimates
for all the common parameters, including the variance. In the
transformation approach, the individual effects are eliminated
by taking deviation from time average for each spatial unit. A
likelihood function, which takes into account the generalized
inverse of the resulting disturbances, can be constructed from the
transformed data. The transformation approach is shown to be a
conditional likelihood approach if the disturbances were normally
distributed.
We consider, next, the model with both individual and time

effects. We show that the direct approach will yield consistent
estimateswhen both n and T are large. However, the distribution of
the estimates is not properly centered. Bias correction procedures
are useful to remove the noncentrality. For the practical case
where the spatial weightsmatrices are row-normalized, likelihood
type estimation based on transformed data is also available where
both the individual and time effects can be eliminated. The
common parameter estimates from the transformed approach
are consistent when either n or T is large, and the asymptotic
distributions are properly centered. Monte Carlo results are
provided to illustrate finite sample properties of the various
estimators.
While Baltagi et al. (2003, 2007) and Kapoor et al. (2007)

consider spatial models with random effects, the SAR models in
this paper have fixed effects. The proposed estimation methods
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Table 3
Bias corrected direct approach: model with both time and individual effects.

T n θ0 β λ ρ σ 2

(1) 5 49 θ a0 Bias −0.0015 0.0131 −0.0371 −0.0202
E-SD 0.0761 0.1368 0.1487 0.1073
RMSE 0.0761 0.1375 0.1533 0.1092
T-SD 0.0747 0.1373 0.1356 0.0938

(2) 5 49 θ b0 Bias −0.0033 −0.0192 −0.0013 −0.0236
E-SD 0.0735 0.1197 0.1623 0.1051
RMSE 0.0736 0.1213 0.1623 0.1078
T-SD 0.0722 0.1189 0.1572 0.0925

(3) 10 49 θ a0 Bias 0.0005 0.0082 −0.0216 −0.0106
E-SD 0.0498 0.0971 0.1012 0.0705
RMSE 0.0498 0.0975 0.1035 0.0713
T-SD 0.0500 0.0941 0.0929 0.0666

(4) 10 49 θ b0 Bias −0.0008 −0.0094 −0.0022 −0.0132
E-SD 0.0470 0.0822 0.1107 0.0699
RMSE 0.0471 0.0827 0.1107 0.0712
T-SD 0.0477 0.0802 0.1095 0.0655

(5) 50 9 θ a0 Bias −0.0007 −0.0083 −0.1737 −0.0274
E-SD 0.0538 0.0801 0.0861 0.0714
RMSE 0.0538 0.0805 0.1939 0.0765
T-SD 0.0523 0.0998 0.1052 0.0668

(6) 50 9 θ b0 Bias −0.0018 −0.1080 −0.0545 −0.0301
E-SD 0.0523 0.0763 0.0881 0.0719
RMSE 0.0523 0.1322 0.1036 0.0780
T-SD 0.0503 0.0969 0.1234 0.0675

(7) 50 16 θ a0 Bias 0.0006 0.0096 −0.0645 −0.0052
E-SD 0.0387 0.0673 0.0732 0.0532
RMSE 0.0387 0.0680 0.0976 0.0534
T-SD 0.0384 0.0722 0.0727 0.0520

(8) 50 16 θ b0 Bias −0.0003 −0.0349 −0.0106 −0.0112
E-SD 0.0373 0.0624 0.0800 0.0534
RMSE 0.0373 0.0715 0.0807 0.0545
T-SD 0.0364 0.0655 0.0876 0.0514

(9) 50 49 θ a0 Bias −0.0003 0.0017 −0.0079 −0.0010
E-SD 0.0222 0.0414 0.0425 0.0304
RMSE 0.0222 0.0414 0.0433 0.0304
T-SD 0.0216 0.0413 0.0405 0.0300

(10) 50 49 θ b0 Bias −0.0005 −0.0061 0.0015 −0.0022
E-SD 0.0213 0.0353 0.0485 0.0298
RMSE 0.0213 0.0358 0.0486 0.0298
T-SD 0.0204 0.0347 0.0484 0.0294

Note: 1. θ a0 = (1, 0.2, 0.5, 1) and θ
b
0 = (1, 0.5, 0.2, 1).

2. The T-SD uses the bias corrected estimates.
are robust to different specifications in Baltagi et al. (2003) and
Kapoor et al. (2007), and are computationally simpler than the
ML approach for the estimation of the generalized random effects
model in Baltagi et al. (2007). However, when the individual effects
are random in the true DGP, proper methods which take into
account the random effects’ variance structure can improve the
efficiency of the estimates. Hausman’s type specification test of
fixed effects versus random effects may be constructed. These will
be investigated in future research.

Appendix A. Notations and some lemmas

The following list summarizes some frequently used notations
in either the text or the Appendices A–C:
Sn(λ) = In − λWn for any possible λ and Sn = In − λ0Wn.
Rn(ρ) = In − ρMn for any possible ρ and Rn = In − ρ0Mn.
Gn = WnS−1n and Hn = MnR

−1
n .

Ỹnt = Ynt − ȲnT for t = 1, 2, . . . , T where ȲnT = 1
T

∑T
t=1 Ynt .

Ẅn = RnWnR−1n , G̈n = Ẅn(In − λ0Ẅn)
−1
= RnGnR−1n , Ẍnt =

RnX̃nt .
θ = (β ′, λ, ρ, σ 2)′ and ζ = (β ′, λ, ρ)′.
Asn = A

′
n + An for any n× nmatrix An.

In Section 2, HnT (ρ) = 1
n(T−1)

∑T
t=1(X̃nt ,GnX̃ntβ0)

′R′n(ρ)Rn(ρ)

(X̃nt ,GnX̃ntβ0).
In Section 3, HnT (ρ) = 1
(n−1)(T−1)

∑T
t=1(X̃nt ,GnX̃ntβ0)

′R′n(ρ)

JnRn(ρ)(X̃nt ,GnX̃ntβ0).

Lemma A.1. Suppose that {Bn} is a sequence of symmetric UB
matrix with elements bn,ij, and Dnt is a sequence of constant vectors
with its elements dnt,i uniformly bounded. The moment E(|vit |4+2δ)
for some δ > 0 of vit exists. Let σ 2QnT be the variance of
QnT where QnT =

∑T
t=1

(
D′ntVnt + V

′
ntBnVnt − σ

2
0 trBn

)
such that

σ 2QnT = σ
2
0
∑T
t=1 D

′
ntDnt + T [

(
µ4 − 3σ 40

)∑n
i=1 b

2
n,ii+ 2σ

4
0 tr(B

2
n)] +

2µ3
∑T
t=1
∑n
i=1 dnt,ibn,ii. Assume that the variance σ

2
QnT
is O(nT )

with { 1nT σ
2
QnT
} bounded away from zero. If either n or T are large,

then QnT
σQnT

d
→N(0, 1).

Proof. When T is fixed and n is large, this is Lemma A.13 in Lee
(2004), which is essentially the CLT in Kelejian and Prucha (2001).
When T is large and n is either fixed or large, it is a special case
(there is no moving averages of past disturbances in QnT ) of the
CLT in Yu et al. (2008). �

Let (Fn,n−1, ln/
√
n) be the orthonormal matrix of Jn = In− 1

n lnl
′
n

where Fn,n−1 corresponds to the eigenvalues of ones and ln/
√
n

corresponds to the eigenvalue zero. Thus,
JnFn,n−1 = Fn,n−1, F ′n,n−1Fn,n−1 = In−1, Jnln = 0,

F ′n,n−1ln = 0, Fn,n−1F ′n,n−1 +
1
n
lnl′n = In, Fn,n−1F ′n,n−1 = Jn.
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Table 4
Transformation approach: model with both time and individual effects.

T n θ0 β λ ρ σ 2

(1) 5 49 θ a0 Bias −0.0020 0.0121 −0.0300 −0.0223
E-SD 0.0764 0.1403 0.1529 0.1078
RMSE 0.0764 0.1408 0.1558 0.1100
T-SD 0.0751 0.1406 0.1481 0.1045

(2) 5 49 θ b0 Bias −0.0042 −0.0167 0.0017 −0.0242
E-SD 0.0737 0.1227 0.1658 0.1052
RMSE 0.0738 0.1238 0.1658 0.1079
T-SD 0.0723 0.1223 0.1654 0.1031

(3) 10 49 θ a0 Bias −0.0001 0.0056 −0.0137 −0.0124
E-SD 0.0500 0.0986 0.1031 0.0706
RMSE 0.0500 0.0988 0.1040 0.0717
T-SD 0.0502 0.0955 0.0994 0.0702

(4) 10 49 θ b0 Bias −0.0013 −0.0064 −0.0005 −0.0133
E-SD 0.0471 0.0836 0.1126 0.0700
RMSE 0.0471 0.0839 0.1126 0.0712
T-SD 0.0478 0.0816 0.1122 0.0691

(5) 50 9 θ a0 Bias 0.0010 0.0098 −0.0102 −0.0110
E-SD 0.0546 0.1038 0.1260 0.0729
RMSE 0.0546 0.1042 0.1264 0.0738
T-SD 0.0540 0.1021 0.1276 0.0721

(6) 50 9 θ b0 Bias −0.0017 −0.0010 0.0028 −0.0121
E-SD 0.0512 0.1094 0.1306 0.0745
RMSE 0.0512 0.1094 0.1306 0.0755
T-SD 0.0507 0.1066 0.1314 0.0731

(7) 50 16 θ a0 Bias −0.0011 0.0019 −0.0046 −0.0093
E-SD 0.0393 0.0755 0.0845 0.0540
RMSE 0.0393 0.0755 0.0846 0.0548
T-SD 0.0390 0.0737 0.0830 0.0532

(8) 50 16 θ b0 Bias −0.0019 −0.0031 0.0013 −0.0095
E-SD 0.0373 0.0709 0.0915 0.0537
RMSE 0.0373 0.0710 0.0915 0.0546
T-SD 0.0365 0.0684 0.0894 0.0529

(9) 50 49 θ a0 Bias −0.0009 −0.0011 −0.0002 −0.0026
E-SD 0.0222 0.0422 0.0434 0.0305
RMSE 0.0222 0.0423 0.0434 0.0306
T-SD 0.0216 0.0417 0.0428 0.0304

(10) 50 49 θ b0 Bias −0.0008 −0.0030 0.0025 −0.0021
E-SD 0.0213 0.0358 0.0494 0.0298
RMSE 0.0213 0.0360 0.0494 0.0299
T-SD 0.0204 0.0351 0.0487 0.0298

Note: θ a0 = (1, 0.2, 0.5, 1) and θ
b
0 = (1, 0.5, 0.2, 1).
Lemma A.2. For W ∗n = F
′

n,n−1WnFn,n−1, whenWn is row normalized,∣∣In−1 − λW ∗n ∣∣ = 1
1−λ |In − λWn| and (In−1−λW

∗
n )
−1
= F ′n,n−1(In−

λWn)−1Fn,n−1.

Proof. The derivation of these results can be found in Appendix
A.2 of Lee and Yu (forthcoming). �

The following Lemma is applicable to both the models, under
relevant assumptions in the corresponding Sections 2 and 3.

Lemma A.3. Let ‖θ − θ1‖ be the Euclidean normof θ−θ1, andΘ1 be
a neighborhood of θ1. Under the assumptions in the relevant section,
the corresponding Hessian matrix of ln Ln,T (θ) of the transformation
approach with θ1 = θ0, has the following properties:

−
1
nT
∂2 ln Ln,T (θ)
∂θ∂θ ′

−

(
−
1
nT
∂2 ln Ln,T (θ1)
∂θ∂θ ′

)
= ‖θ − θ1‖ · Op(1),(

−
1
nT
∂2 ln Ln,T (θ1)
∂θ∂θ ′

)
−Σθ1,nT = Op

(
1
√
nT

)
,

sup
θ∈Θ

∣∣∣∣− 1nT ∂2 ln Ln,T (θ)∂θ∂θ ′
−

(
−
1
nT
E
∂2 ln Ln,T (θ)
∂θ∂θ ′

)∣∣∣∣
ij
= Op

(
1
√
nT

)
,

and

sup
θ∈Θ1

∣∣∣∣− 1nT E ∂2 ln Ln,T (θ)∂θ∂θ ′
−Σθ1,nT

∣∣∣∣
ij
= sup

θ∈Θ1

‖θ − θ1‖ · O(1),
for all i, j = 1, 2, . . . , k+ 4.
Similarly, for ln Ldn,T (θ) of the direct approach with θ1 = θT , the

corresponding properties above hold.

Proof. When n is large and T is fixed, the derivation is similar to
Lee (2004) for the cross sectional SAR model. When T is large and
n could be finite and large, the derivation is similar to (38)–(41) in
Yu et al. (2008). �

Lemma A.4. Suppose that {An} and {Bn} are sequences of matrices
with elements an,ij and bn,ij, and {Dnt} is a sequence of constant column
vectors with its elements dnt,i. Then,

cov

[(
T∑
t=1

Ṽ ′ntAnṼnt

)
,

(
T∑
t=1

Ṽ ′ntBnṼnt

)]

= (µ4 − 3σ 40 )
(T − 1)2

T
vec ′D(An)vecD(Bn)+ σ

4
0 (T − 1)tr(AnB

s
n),

and cov[(
∑T
t=1 Ṽ

′
ntAnṼnt),

∑T
t=1 D

′
nt Ṽnt ] = 0, where vecD(An) is a

column vector formed by the diagonal elements of An, and Bsn =
Bn + B′n.

Proof. DenoteVnT = (V ′n1, V
′

n2, . . . , V
′

nT )
′. With JT = IT− 1T lT l

′

T , we
have

∑T
t=1 Ṽ

′
ntAnṼnt = V′nT (JT ⊗ An)VnT . Hence, using the formulas
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Table 5
Estimates with non-normal disturbances: both approaches under different DGPs.

T n θ0 β λ ρ σ 21 σ 22

Transformation and direct approach, model with individual effects only
(1) 10 49 θ a0 Bias −0.0006 0.0007 −0.0091 −0.0047 −0.1042

E-SD 0.0501 0.0922 0.0914 0.1401 0.1261
RMSE 0.0501 0.0922 0.0918 0.1402 0.1636
T-SD 0.0497 0.0926 0.0920 0.1001 0.1045

(2) 10 49 θ b0 Bias 0.0005 −0.0112 0.0056 −0.0042 −0.1038
E-SD 0.0476 0.0754 0.1045 0.1387 0.1248
RMSE 0.0476 0.0762 0.1047 0.1368 0.1623
T-SD 0.0476 0.0761 0.1071 0.0991 0.1038

Direct approach, model with both effects
(3) 10 49 θ a0 Bias 0.0048 0.0199 −0.0727 – −0.1083

E-SD 0.0492 0.0825 0.0870 – 0.1252
RMSE 0.0495 0.0849 0.1134 – 0.1656
T-SD 0.0469 0.0902 0.0950 – 0.1021

(4) 10 49 θ b0 Bias 0.0016 −0.0329 −0.0135 – −0.1140
E-SD 0.0478 0.0703 0.0943 – 0.1241
RMSE 0.0478 0.0776 0.0953 – 0.1685
T-SD 0.0451 0.0776 0.1063 – 0.1012

Direct approach after bias correction, model with both effects
(5) 10 49 θ a0 Bias 0.0013 0.0034 −0.0158 – −0.0033

E-SD 0.0502 0.0934 0.0961 – 0.1404
RMSE 0.0503 0.0935 0.0974 – 0.1404
T-SD 0.0501 0.0943 0.0925 – 0.1010

(6) 10 49 θ b0 Bias 0.0008 −0.0119 0.0024 – −0.0064
E-SD 0.0478 0.0794 0.1070 – 0.1391
RMSE 0.0478 0.0803 0.1071 – 0.1391
T-SD 0.0479 0.0806 0.1097 – 0.0996

Transformation approach, model with both effects
(7) 10 49 θ a0 Bias 0.0005 0.0004 −0.0076 −0.0053 –

E-SD 0.0504 0.0959 0.0988 0.1400 –
RMSE 0.0504 0.0959 0.0991 0.1401 –
T-SD 0.0503 0.0957 0.0994 0.0755 –

(8) 10 49 θ b0 Bias 0.0003 −0.0093 0.0043 −0.0048 –
E-SD 0.0478 0.0816 0.1098 0.1389 –
RMSE 0.0478 0.0821 0.1099 0.1390 –
T-SD 0.0479 0.0821 0.1127 0.0744 –

Note: 1. θ a0 = (1, 0.2, 0.5, 1) and θ
b
0 = (1, 0.5, 0.2, 1).

2. The column of σ 21 is from the transformation approach;
and the column of σ 22 is from the direct approach.
For the T-SD under non-normal disturbances,ΩdθT ,nT andΩθ0,nT are not zero.
for cross moments of quadratic forms,

E

(
T∑
t=1

Ṽ ′ntAnṼnt

)(
T∑
t=1

Ṽ ′ntBnṼnt

)
= EV′nT (JT ⊗ An)VnTV

′

nT (JT ⊗ Bn)VnT
= (µ4 − 3σ 40 )vec

′

D(JT ⊗ An)vecD(JT ⊗ Bn)

+ σ 40 [tr(JT ⊗ An)tr(JT ⊗ Bn)+ tr(JT ⊗ An)(JT ⊗ B
s
n)].

Using the fact that tr(JT ⊗ An) = tr(JT )tr(An) = (T − 1)tr(An)
and vecD(JT ⊗ An) = (1 − 1

T )lT ⊗ vecD(An), we have vec
′

D(JT ⊗

An)vecD(JT ⊗ Bn) = (T−1)2

T vec ′D(An)vecD(Bn). Hence,

E

(
T∑
t=1

Ṽ ′ntAnṼnt

)(
T∑
t=1

Ṽ ′ntBnṼnt

)

= (µ4 − 3σ 40 )
(T − 1)2

T
vec ′D(An)vecD(Bn)

+ σ 40 [(T − 1)
2tr(An)tr(Bn)+ (T − 1)tr(AnBsn)].

Also, we have E(
∑T
t=1 Ṽ

′
ntAnṼnt) = σ 20 (T − 1)tr(An) and
E(
∑T
t=1 Ṽ

′
ntBnṼnt) = σ

2
0 (T − 1)tr(Bn). Therefore,

cov

[(
T∑
t=1

Ṽ ′ntAnṼnt

)
,

(
T∑
t=1

Ṽ ′ntBnṼnt

)]

= (µ4 − 3σ 40 )
(T − 1)2

T
vec ′D(An)vecD(Bn)

+ σ 40 (T − 1)tr(AnB
s
n).

For the covariance between the quadratic form and the linear
form, cov[(

∑T
t=1 Ṽ

′
ntAnṼnt),

∑T
t=1 D

′
nt Ṽnt ] = E[(

∑T
t=1 Ṽ

′
ntAnṼnt) ×∑T

t=1 D
′
nt Ṽnt ]. Denote D̃nT = (D̃′n1, . . . , D̃

′

nT )
′ where D̃nt = Dnt −

1
T

∑T
s=1 Dns with elements d̃nt,i. It follows that

cov

[(
T∑
t=1

Ṽ ′ntAnṼnt

)
,

T∑
t=1

D′nt Ṽnt

]
= EV′nT (JT ⊗ An)VnT D̃

′

nTVnT

=

(
1−

1
T

)
µ3

T∑
t=1

n∑
i=1

an,ii · d̃nt,i = 0,

where µ3 is the third moment of vit , and the last equality holds
because

∑T
t=1 d̃nt,i = 0. �
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Appendix B. The direct and transformation approaches in
Section 2

B.1. The first and second order derivatives of (4) for the direct
approach

For the concentrated log likelihood function (4), the first and
second order derivatives are given in Box I. The score of the log
likelihood function evaluated at θT is

1
√
nT

∂ ln Ldn,T (θT )

∂θ

=



1
σ 2T

1
√
nT

T∑
t=1

Ẍ ′nt Ṽnt

1
σ 2T

1
√
nT

T∑
t=1

(G̈nẌntβ0)′Ṽnt +
1
σ 2T

1
√
nT

T∑
t=1

(Ṽ ′nt G̈
′

nṼnt − σ
2
T trG̈n)

1
σ 2T

1
√
nT

T∑
t=1

(Ṽ ′ntH
′

nṼnt − σ
2
T trHn)

1
2σ 4T

1
√
nT

T∑
t=1

(Ṽ ′nt Ṽnt − nσ
2
T )


. (38)

From the second order condition in (37), we have ΣdθT ,nT given in
Box II.

B.2. The first and second order derivatives of (7) for the transforma-
tion approach

For the first and second order derivatives of (7),

∂ ln Ln,T (θ)
∂θ

=



1
σ 2

T∑
t=1

(Rn(ρ)X̃nt)′Ṽnt(ζ )

1
σ 2

T∑
t=1

(Rn(ρ)WnỸnt)′Ṽnt(ζ )− (T − 1)trGn(λ)

1
σ 2

T∑
t=1

(Hn(ρ)Ṽnt(ζ ))′Ṽnt(ζ )− (T − 1)trHn(ρ)

1
2σ 4

T∑
t=1

(
Ṽ ′nt(ζ )Ṽnt(ζ )− n

T − 1
T

σ 2
)


, (40)

and see Box III. At true θ0, we have the equation in Box IV and the
information matrixΣθ0,nT = −E

(
1

n(T−1)
∂2 ln Ln,T (θ0)

∂θ∂θ ′

)
=

1
σ 20

(
HnT ∗ ∗

01×(k+1) 0 ∗

01×(k+1) 0 0

)

+



0k×k ∗ ∗ ∗

01×k
1
n
tr(G̈snG̈n) ∗ ∗

01×k
1
n
tr(HsnG̈n)

1
n
tr(HsnHn) ∗

01×k
1
σ 20 n
tr(G̈n)

1
σ 20 n
tr(Hn)

1
2σ 40

 , (43)

whereHnT =
1

n(T−1)

∑T
t=1(Ẍnt , G̈nẌntβ0)

′(Ẍnt , G̈nẌntβ0).

B.3. Proof for Theorem 1 (Consistency)

Without loss of generality, we will present the analysis under
the asymptotic setting that n tends to infinity with a fixed finite
T . The extension to the case with infinity T is immediate. We
first prove the consistency of the estimates of (λ0, ρ0) via the
concentrated likelihood, which are the same (up to a constant
proportion) for the direct and transformation approaches. The
probability limits of the estimates of other parameters for both
approaches can then be derived.
Global identification of (λ0, ρ0):
Corresponding to 1

n(T−1) ln Ln,T (λ, ρ) in (13), defineQn,T (λ, ρ) =
maxβ,σ 2 E

1
n(T−1) ln Ln,T (θ). Denote

Hλ0,nT (ρ) = H3,nT (ρ)−H ′2,nT (ρ)H
−1
1,nT (ρ)H2,nT (ρ),

whereHi,nT (ρ) for i = 1, 2, 3 are the corresponding components
ofHnT (ρ) in (15). We have

Qn,T (λ, ρ) = −(ln(2π)+ 1)−
1
2
ln σ ∗2nT (λ, ρ)

+
1
n
[ln |Sn(λ)| + ln |Rn(ρ)|], (44)

where

σ ∗2nT (λ, ρ) = (λ0 − λ)
2Hλ0,nT (ρ)

+ σ 20
1
n
tr(R′−1n S

′−1
n S

′

n(λ)R
′

n(ρ)Rn(ρ)Sn(λ)S
−1
n R
−1
n ). (45)

At the true parameters, Qn,T (λ0, ρ0) = − 12 (ln 2π + 1) −
1
2 ln σ

2
0 +

1
n ln |Sn(λ0)| +

1
n ln |Rn(ρ0)|. We are going to prove that

limQn,T (λ, ρ) < limQn,T (λ0, ρ0) for any (λ, ρ) 6= (λ0, ρ0). We
have

Qn,T (λ, ρ)− Qn,T (λ0, ρ0) = −
1
2
[ln σ ∗2nT (λ, ρ)− ln σ

2
0 ]

+
1
n
ln |Sn(λ)| −

1
n
ln |Sn(λ0)| +

1
n
ln |Rn(ρ)| −

1
n
ln |Rn(ρ0)|

= T1,n(λ, ρ)− T2,nT (λ, ρ),

where

T1,n(λ, ρ) = −
1
2
[ln σ 2n (λ, ρ)− ln σ

2
0 ]

+
1
n
ln |Sn(λ)| −

1
n
ln |Sn(λ0)|

+
1
n
ln |Rn(ρ)| −

1
n
ln |Rn(ρ0)| ,

and T2,nT (λ, ρ) = ln
(
1+

(λ0−λ)
2(H3,nT (ρ)−H ′2,nT (ρ)H

−1
1,nT (ρ)H2,nT (ρ))

σ 2n (λ,ρ)

)
.

Consider the pure spatial process Ynt = λ0WnYnt + Unt with
Unt = ρ0MnUnt + Vnt for a period t . The log likelihood function of
this transformed process is

ln Lp,n(λ, ρ, σ 2) = −
n
2
ln 2π −

n
2
ln σ 2 + ln |Sn(λ)|

+ ln |Rn(ρ)| −
1
2σ 2
V ′nt(λ, ρ)JnV

′

nt(λ, ρ),

where Vnt(λ, ρ) = Rn(ρ)Sn(λ)Ynt . Let Qp,n(λ, ρ) = maxσ 2 E
1
n ln

Lp,n(λ, ρ, σ 2) and Qp,n(λ0, ρ0) be Qp,n(λ, ρ) evaluated at (λ0, ρ0).
It follows that Qp,n(λ, ρ) − Qp,n(λ0, ρ0) = T1,n(λ, ρ). By the
information inequality, Qp,n(λ, ρ) − Qp,n(λ0, ρ0) ≤ 0. Thus,
T1,n(λ, ρ) ≤ 0 for any (λ, ρ). Also, as (λ0 − λ)2(H3,nT (ρ) −

H ′2,nT (ρ)H
−1
1,nT (ρ)H2,nT (ρ)) is a quadratic function ofλ givenρ and

σ 2n (λ, ρ) is bounded away from zero,
29 T2,nT (λ, ρ) ≥ 0.

29 The Qp,n(λ, ρ)− Qp,n(λ0, ρ0) ≤ 0 for any (λ, ρ) implies that− 12 ln σ
2
n (λ, ρ) ≤

−
1
2 ln σ

2
0+

1
n ln |Sn(λ)|−

1
n ln |Sn(λ0)|+

1
n ln |Rn(ρ)|−

1
n ln |Rn(ρ0)|. As

1
n ln |Sn(λ)|−

1
n ln |Sn(λ0)| and

1
n ln |Rn(ρ)| −

1
n ln |Rn(ρ0)| are O(1) uniformly in (λ, ρ),

− ln σ 2n (λ, ρ) is bounded fromabove asσ
2
0 is bounded away from0.Hence,σ

2
n (λ, ρ)

is bounded away from 0.
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6)

7)
1
√
nT

∂ ln Ldn,T (θ)

∂θ
=
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2σ 4

1
√
nT

T∑
t=1
(Ṽ ′nt (ζ )Ṽnt (ζ )− nσ
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]
∗ ∗[

1
σ 2

T∑
t=1
(Rn(ρ)X̃nt )′Hn(ρ)Ṽnt (ζ )+
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]
0 0

1
σ 4

T∑
t=1
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Box II.
1)
−
∂2 ln Ln,T (θ)
∂θ∂θ ′

=



1
σ 2

T∑
t=1
(Rn(ρ)X̃nt )′Rn(ρ)X̃nt ∗ ∗ ∗

1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′Rn(ρ)X̃nt

[
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′Rn(ρ)WnỸnt + (T − 1)tr(G2n(λ))

]
∗ ∗[

1
σ 2

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′Rn(ρ)X̃nt +

1
σ 2

T∑
t=1
Ṽ ′nt (ζ )MnX̃nt

] [
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′nHn(ρ)Ṽnt (ζ )+

1
σ 2

T∑
t=1
(MnWnỸnt )′Ṽnt (ζ )

]
0 0

1
σ 4

T∑
t=1
Ṽ ′nt (ζ )Rn(ρ)X̃nt

1
σ 4

T∑
t=1
(Rn(ρ)WnỸnt )′Ṽnt (ζ ) 0 0



+



0k×k 0k×1 0k×1 0k×1
01×k 0 0 0

01×k 0

[
1
σ 2

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′Hn(ρ)Ṽnt (ζ )+ (T − 1)tr(H2n (ρ))

]
∗

01×k 0
1
σ 4

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′Ṽnt (ζ ) −

n(T − 1)
2σ 4

+
1
σ 6

T∑
t=1
(Ṽ ′nt (ζ )Ṽnt (ζ ))


(4

Box III.



180 L.-f. Lee, J. Yu / Journal of Econometrics 154 (2010) 165–185

2)

1

√
n(T − 1)

∂ ln Ln,T (θ0)
∂θ

=



1
σ 20

1
√
n(T − 1)

T∑
t=1

Ẍ ′nt Ṽnt

1
σ 20

1
√
n(T − 1)

T∑
t=1

(G̈nẌntβ0)′Ṽnt +
1
σ 20

1
√
n(T − 1)

T∑
t=1

(
Ṽ ′nt G̈

′

nṼnt −
T − 1
T

σ 20 trG̈n

)
1
σ 20

1
√
n(T − 1)

T∑
t=1

(
Ṽ ′ntH

′

nṼnt −
T − 1
T

σ 20 trHn

)
1
2σ 40

1
√
n(T − 1)

T∑
t=1

(
Ṽ ′nt Ṽnt − n

T − 1
T

σ 20

)


(4

Box IV.
Under Assumption 7(a),H3,nT (ρ)−H ′2,nT (ρ)H
−1
1,nT (ρ)H2,nT (ρ)

is positive so that T2,nT (λ, ρ) > 0 for λ 6= λ0 given any ρ. Given
λ0, ρ0 is the unique maximizer of lim T1,n(λ, ρ) under

lim
(
1
n
ln
∣∣σ 20 R−1′n R−1n ∣∣− 1n ln ∣∣σ 2n (ρ)R−1n (ρ)′R−1n (ρ)∣∣

)
6= 0

for ρ 6= ρ0.

Hence, (λ0, ρ0) are identified. When Assumption 7(a) fails,
identification requires that T1,n(λ, ρ) is strictly less than zero.
Under Assumption 7(b), we will have T1,n(λ, ρ) < 0 whenever
(λ, ρ) 6= (λ0, ρ0). Hence, lim[Qn,T (λ0, ρ0) − Qn,T (λ, ρ)] > 0 if
(λ, ρ) 6= (λ0, ρ0). This proves the global identification.
Uniform convergence of 1

n(T−1) ln Ln,T (λ, ρ)− Qn,T (λ, ρ):
As 1

nT ln L
d
n,T (λ, ρ) − Q

d
n,T (λ, ρ) =

1
n(T−1) ln Ln,T (λ, ρ) −

Qn,T (λ, ρ) where Q dn,T (λ, ρ) = maxβ,σ 2 E
1
nT ln L

d
n,T (θ), we prove

the latter for simplicity. Denote

X̃x,nt(ρ) = Rn(ρ)(GnX̃ntβ0 − X̃ ′ntH
−1
1,nT (ρ)H2,nT (ρ)),

and

Vx,nT (ρ) =
1

n(T − 1)

T∑
t=1

X̃ ′ntR
′

n(ρ)Rn(ρ)Sn(λ)S
−1
n R
−1
n Ṽnt .

We have

σ̂ 2nT (λ, ρ) = (λ0 − λ)
2Hλ0,nT (ρ)

+
1

n(T − 1)

T∑
t=1

Ṽ ′ntR
′−1
n S

′−1
n S

′

n(λ)R
′

n(ρ)Rn(ρ)Sn(λ)S
−1
n R
−1
n Ṽnt

+ 2(λ0 − λ)
1

n(T − 1)

T∑
t=1

X̃′x,nt(ρ)Rn(ρ)Sn(λ)S
−1
n R
−1
n Ṽnt

−V ′x,nT (ρ)H
−1
1,nT (ρ)Vx,nT (ρ). (46)

Hence,

σ̂ 2nT (λ0, ρ0) = σ
2
0 + Op

(
1
√
nT

)
and σ ∗2nT (λ0, ρ0) = σ

2
0 . (47)

From (13) and (44), 1
n(T−1) ln Ln,T (λ, ρ) − Qn,T (λ, ρ) =

1
2 ln σ

∗2
nT (λ, ρ) −

1
2 ln σ̂

2
nT (λ, ρ). By the mean value theorem,

1
n(T−1) ln Ln,T (λ, ρ) − Qn,T (λ, ρ) = −

1
2

1
σ̃ 2nT (λ,ρ)

(σ̂ 2nT (λ, ρ) −

σ ∗2nT (λ, ρ)) where σ̃
2
nT (λ, ρ) lies between σ̂

2
nT (λ, ρ) and σ

∗2
nT (λ, ρ).

We need to show that (1) σ̂ 2nT (λ, ρ)− σ
∗2
nT (λ, ρ)

p
→ 0 uniformly in

λ and ρ and (2) σ̃ 2nT (λ, ρ) is bounded away from zero uniformly in
λ and ρ in probability.
To prove (1): We have σ̂ 2nT (λ, ρ) and σ

∗2
nT (λ, ρ) in (45) and

(46). When T is large, from Lemma 15 in Yu et al. (2008),
1
nT

∑T
t=1 Ṽ

′
ntBnṼnt − E

1
nT

∑T
t=1 Ṽ

′
ntBnṼnt

p
→ 0 and 1

nT

∑T
t=1 X̃

′
ntBnṼnt
p
→ 0 for any UB matrix Bn. When n is large and T is finite, the
results still hold by using Lemma A.12 in Lee (2004).30Hence,
[σ̂ 2nT (λ, ρ)−σ

∗2
nT (λ, ρ)]

p
→ 0 uniformly in λ and ρ. To prove (2): As

σ̃ 2nT (λ, ρ) lies between σ̂
2
nT (λ, ρ) and σ

∗2
nT (λ, ρ), we have

1
σ̃ 2nT (λ,ρ)

≤

max{ 1
σ̂ 2nT (λ,ρ)

, 1
σ∗2nT (λ,ρ)

}. As H3,nT (ρ) − H ′2,nT (ρ)H
−1
1,nT (ρ)H2,nT (ρ)

is nonnegative definite by the Cauchy–Schwarz inequality, and
σ 2n (λ, ρ) is uniformly bounded away from zero, σ̂

2
nT (λ, ρ) and

σ ∗2nT (λ, ρ) are uniformly bounded away from zero. Hence,
1

σ̃ 2nT (λ,ρ)

is uniformly bounded. Combining (1) σ̂ 2nT (λ, ρ) − σ
∗2
nT (λ, ρ)

p
→ 0

uniformly in λ and ρ, and (2) 1
σ̃ 2nT (λ,ρ)

is Op(1) uniformly in λ and ρ,

we have 1
n(T−1) ln Ln,T (λ, ρ)−Qn,T (λ, ρ)

p
→ 0 uniformly in λ and ρ.

Uniform equicontinuity of Qn,T (λ, ρ):
From (44) and (45), Qn,T (λ, ρ) is uniformly equicontinuous in

λ and ρ due to the facts: (1) 1n ln |Sn(λ)| and
1
n ln |Rn(ρ)| are

uniformly equicontinuous in λ and ρ; (2) (λ − λ0)2Hλ0,nT (ρ) is
uniformly equicontinuous in λ and ρ; (3) σ 2n (λ, ρ) is uniformly
equicontinuous in λ and ρ.
Combining the global identification, uniform convergence and

equicontinuity, the consistency of (λ̂nT , ρ̂nT ) and, equivalently,
(λ̂dnT , ρ̂

d
nT ) follows.

Estimates for other parameters:
From (8), the consistency of β̂dnT (λ̂

d
nT , ρ̂

d
nT ) can be easily

obtained, where (β̂dnT , λ̂
d
nT , ρ̂

d
nT ) is numerically the same as

(β̂nT , λ̂nT , ρ̂nT ) from Section 2.3. From (9) and (12), we can see that
T
T−1 σ̂

2d
nT (λ̂

d
nT , ρ̂

d
nT )−σ

2
0
p
→ 0 and σ̂ 2nT (λ̂

d
nT , ρ̂

d
nT )−σ

2
0
p
→ 0. Hence, the

results follow. �

B.4. Proof for Theorem 2 (Asymptotic Distribution)

For the direct approach, according to the Taylor expansion,

√
nT (θ̂dnT − θT ) =

(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)−1

×

(
1
√
nT

∂ ln Ldn,T (θT )

∂θ

)
.

where θ̄dnT lies between θT and θ̂
d
nT . As we have

−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

30 1
nT

∑T
t=1 Ṽ

′
ntBnṼnt =

1
nT V
′

nTAnTVnT where VnT = (V ′n1, . . . , VnT )
′ and AnT =

JT ⊗ Bn . As AnT is UB due to the special pattern of JT and Bn being UB, 1nT V
′

nTAnTVnT
is just a quadratic form of VnT with a UB matrix AnT .
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=

(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′
−

(
−
1
nT

∂2 ln Ldn,T (θT )

∂θ∂θ ′

))

+

(
−
1
nT

∂2 ln Ldn,T (θT )

∂θ∂θ ′
−ΣdθT ,nT

)
+ΣdθT ,nT

where the first term is ‖θ̄dnT − θT‖ · Op(1) and the second term is

Op( 1
√
nT
) (see Lemma A.3),− 1

nT
∂2 ln Ldn,T (θ̄

d
nT )

∂θ∂θ ′
=
∥∥θ̄dnT − θT∥∥ ·Op(1)+

Op
(
1
√
nT

)
+ΣdθT ,nT .

Under Assumptions 7 and 8, ΣdθT ,nT in (39) is nonsingular. We
can prove the nonsingularity of the limiting information matrix
by using an argument by contradiction (similar to Lee, 2004). We
need to prove that limΣdθT ,nT c = 0 implies c = 0 where c =
(c ′1, c2, c3, c4)

′, c2, c3, c4 are scalars and c1 is k × 1 vector. With

Cn and Dn defined in Assumption 8, 1n tr(G̈
s
nG̈n) − 2

(
trG̈n
n

)2
=

1
2n tr(C

s
nC
s
n),

1
n tr(H

s
nHn)− 2

( trHn
n

)2
=

1
2n tr(D

s
nD
s
n) and

1
n tr(H

s
nG̈n)−

2 trHnn
trG̈n
n =

1
2n tr(C

s
nD
s
n). Also, denote Hβ,nT =

1
nT

∑T
t=1 Ẍ

′
nt Ẍnt ,

Hβλ,nT =
1
nT

∑T
t=1 Ẍ

′
nt G̈nẌntβ0, Hλβ,nT = H ′βλ,nT and Hλ,nT =

1
nT

∑T
t=1(G̈nẌntβ0)

′G̈nẌntβ0. By the method of substitution and
elimination, limΣdθT ,nT c = 0 will imply{
lim

(
1
σ 2T

1
n
tr(DsnD

s
n)
(
Hλ,nT −Hλβ,nT (Hβ,nT )

−1Hβλ,nT
)
+ Φn

)}
× c2 = 0

where Φn = 1
4n2
[
tr(C snC

s
n)tr(D

s
nD
s
n)− tr

2(C snD
s
n)
]
and Hλ,nT −

Hλβ,nT (Hβ,nT )
−1Hβλ,nT are nonnegative by the Cauchy–Schwarz

inequality. Hence, the nonsingularity of limΣdθT ,nT follows from
Assumption 7.

For 1
√
nT

∂ ln Ldn,T (θT )
∂θ

, it is a linear and quadratic form of Ṽnt with

zero mean because EṼ ′nt Ṽnt =
T−1
T nσ

2
0 = nσ

2
T . For its variance, as

Ẍnt is uncorrelated with Vnt , using Lemma A.4, we have

E

(
1
√
nT

∂ ln Ldn,T (θT )

∂θ
·
1
√
nT

∂ ln Ldn,T (θT )

∂θ ′

)

=
T
T − 1

(ΣdθT ,nT +Ω
d
θT ,n)

whereΣdθT ,nT is in (39) and

ΩdθT ,nT =
(T − 1)
T

(µ4 − 3σ 40 )
σ 40

×



0k×k ∗ ∗ ∗

01×k
1
n

n∑
i=1

G̈2n,ii ∗ ∗

01×k
1
n

n∑
i=1

G̈n,iiHn,ii
1
n

n∑
i=1

H2n,ii ∗

01×k
1
2σ 2T n

trG̈n
1
2σ 2T n

trHn
1
4σ 4T


. (48)

When Vnt are normally distributed,ΩdθT ,nT = 0(k+3)×(k+3) because
µ4 − 3σ 40 = 0. By using the central limit theorem in Lemma A.1,
1
√
nT

∂ ln Ldn,T (θT )
∂θ

d
→N(0, lim T

T−1 (Σ
d
θT ,nT
+ΩdθT ,n)).

Because
∥∥θ̄dnT − θT∥∥ = op(1) and ΣdθT ,nT is nonsingular in the

limit,
(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)−1
is Op(1). It follows that θ̂dnT − θT =
Op
(
1
√
nT

)
. Hence,

√
nT (θ̂dnT − θT ) =

(
ΣdθT ,nT + Op

(
1
√
nT

))−1
×

(
1
√
nT

∂ ln Ldn,T (θT )

∂θ

)
.

Using the fact that(
ΣdθT ,nT + Op

(
1
√
nT

))−1
= (ΣdθT ,nT )

−1
+ Op

(
1
√
nT

)
,

we have
√
nT (θ̂dnT − θT )

d
→N(0, lim

T
T − 1

(ΣdθT ,nT )
−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1).

For the transformation approach, the proof is similar. For the
variance matrix of the estimates θ̂nT ,Σθ0,nT is in (43) and

Ωθ0,nT =
(T − 1)
T

(µ4 − 3σ 40 )
σ 40

×



0k×k ∗ ∗ ∗

01×k
1
n

n∑
i=1

G̈2n,ii ∗ ∗

01×k
1
n

n∑
i=1

G̈n,iiHn,ii
1
n

n∑
i=1

H2n,ii ∗

01×k
1
2σ 20 n

trG̈n
1
2σ 20 n

trHn
1
4σ 40


. (49)

As the log likelihood function in the transformation approach has
a proper degree of freedom adjustment (from nT to n(T − 1)),
the location of θ̂nT is properly centered at θ0; while for the direct
approach, θT provides the convenient location for analysis. �

Appendix C. The direct and transformation approaches in
Section 3

C.1. The first and second order derivatives of (21) for the Direct
Approach

The first and second order derivatives of the concentrated log
likelihood in (21) are

∂ ln Ldn,T (θ)

∂θ
=



1
σ 2

T∑
t=1

(Rn(ρ)X̃nt)′JnṼnt(ζ )

1
σ 2

T∑
t=1

(Rn(ρ)WnỸnt)′JnṼnt(ζ )− T trGn(λ)

1
σ 2

T∑
t=1

(Hn(ρ)Ṽnt(ζ ))′JnṼnt(ζ )− T trHn(ρ)

1
2σ 4

T∑
t=1

(Ṽ ′nt(ζ )JnṼnt(ζ )− nσ
2)


, (50)

and see the equation in Box V. For the first order derivative eva-
luated at θT , it has two components

∂ ln Ldn,T (θT )

∂θ
=
∂ ln Ld,un,T (θT )

∂θ
− T · aθT ,n (52)
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1)
−
∂2 ln Ldn,T (θ)

∂θ∂θ ′

=



1
σ 2

T∑
t=1
(Rn(ρ)X̃nt )′JnRn(ρ)X̃nt ∗ ∗ ∗

1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′JnRn(ρ)X̃nt

[
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′JnRn(ρ)WnỸnt + T tr(G2n(λ))

]
∗ ∗[

1
σ 2

T∑
t=1
(Rn(ρ)X̃nt )′JnHn(ρ)Ṽnt (ζ )+

1
σ 2

T∑
t=1
(MnX̃nt )′JnṼnt (ζ )

] [
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′nJnHn(ρ)Ṽnt (ζ )+

1
σ 2

T∑
t=1
(MnWnỸnt )′JnṼnt (ζ )

]
0 0

1
σ 4

T∑
t=1
Ṽ ′nt (ζ )JnRn(ρ)X̃nt

1
σ 4

T∑
t=1
(Rn(ρ)WnỸnt )′JnṼnt (ζ ) 0 0



+



0k×k 0k×1 0k×1 0k×1
01×k 0 0 0

01×k 0

[
1
σ 2

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′JnHn(ρ)Ṽnt (ζ )+ T tr(H2n (ρ))

]
∗

01×k 0
1
σ 4

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′JnṼnt (ζ ) −

nT
2σ 4
+
1
σ 6

T∑
t=1
(Ṽ ′nt (ζ )JnṼnt (ζ ))


(5

Box V.
3)
ΣdθT ,nT = −E
1
nT

∂ ln L2dn,T (θT )

∂θ∂θ ′
=



1
σ 2T nT

T∑
t=1

Ẍ ′nt JnẌnt ∗ ∗ ∗

1
σ 2T nT

T∑
t=1

(G̈nẌntβ0)′JnẌnt
1

σ 2T nT

T∑
t=1

(G̈nẌntβ0)′JnG̈nẌntβ0 +
1
n
trG̈snJnG̈n ∗ ∗

01×k
1
n
tr(HsnJnG̈n)

1
n
tr(HsnHn) ∗

01×k
1
σ 2T n
tr(G̈n)

1
σ 2T n
tr(Hn)

1
2σ 4T


(5

Box VI.
where

∂ ln Ld,un,T (θT )

∂θ

=



1
σ 2T

T∑
t=1

Ẍ ′nt JnṼnt

1
σ 2T

T∑
t=1

(G̈nẌntβ0)′JnṼnt +
1
σ 2T

T∑
t=1

(Ṽ ′nt G̈
′

nJnṼnt − σ
2
T trG̈

′

nJn)

1
σ 2T

T∑
t=1

(Ṽ ′ntH
′

nJnṼnt − σ
2
T trH

′

nJn)

1
2σ 4T

T∑
t=1

(Ṽ ′nt JnṼnt − (n− 1)σ
2
T )


,

and

aθT ,n =
(
01×k,

1
n
l′nRnGnR

−1
n ln,

1
n
l′nHnln,

1
2σ 2T

)′
.

For the second order derivative evaluated at θT , see Box VI.

C.2. The first and second order derivatives of (24) for the transforma-
tion approach

Using trGn(λ) − tr(JnGn(λ)) = 1
1−λ and tr(G

2
n(λ)) − tr

((JnGn(λ))2) = 1
(1−λ)2

(see Lee and Yu, forthcoming), the first
and second order derivatives of the concentrated log likelihood
function (24) are

∂ ln Ln,T (θ)
∂θ

=



∂ ln Ln,T (θ)
∂β

∂ ln Ln,T (θ)
∂λ

∂ ln Ln,T (θ)
∂ρ

∂ ln Ln,T (θ)
∂σ 2



=



1
σ 2

T∑
t=1

(Rn(ρ)X̃nt)′JnṼnt(ζ )

1
σ 2

T∑
t=1

(Rn(ρ)WnỸnt)′JnṼnt(ζ )− (T − 1)trJnGn(λ)

1
σ 2

T∑
t=1

(Hn(ρ)Ṽnt(ζ ))′JnṼnt(ζ )− (T − 1)trJnHn(ρ)

1
2σ 4

T∑
t=1

(
Ṽ ′nt(ζ )JnṼnt(ζ )− (n− 1)

T − 1
T

σ 2
)


, (54)

and the equation in Box VII. The score vector and the information
matrix are given in Box VIII and

Σθ0,nT = −E
(

1
(n− 1)(T − 1)

∂2 ln Ln,T (θ0)
∂θ∂θ ′

)

=
1
σ 20

(
HnT ∗ ∗

01×(k+1) 0 ∗

01×(k+1) 0 0

)
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5)
∂2 ln Ln,T (θ)
∂θ∂θ ′

=



1
σ 2

T∑
t=1
(Rn(ρ)X̃nt )′JnRn(ρ)X̃nt ∗ ∗ ∗

1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′JnRn(ρ)X̃nt

[
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′JnRn(ρ)WnỸnt + (T − 1)tr(JnG2n(λ))

]
∗ ∗[

1
σ 2

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′JnRn(ρ)X̃nt +

1
σ 2

T∑
t=1
Ṽ ′nt (ζ )JnMnX̃nt

] [
1
σ 2

T∑
t=1
(Rn(ρ)WnỸnt )′nJnHn(ρ)Ṽnt (ζ )+

1
σ 2

T∑
t=1
(MnWnỸnt )′JnṼnt (ζ )

]
0 0

1
σ 4

T∑
t=1
Ṽ ′nt (ζ )JnRn(ρ)X̃nt

1
σ 4

T∑
t=1
(Rn(ρ)WnỸnt )′JnṼnt (ζ ) 0 0



+



0k×k 0k×1 0k×1 0k×1
01×k 0 0 0

01×k 0

[
1
σ 2

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′JnHn(ρ)Ṽnt (ζ )+ (T − 1)tr(JnH2n (ρ))

]
∗

01×k 0
1
σ 4

T∑
t=1
(Hn(ρ)Ṽnt (ζ ))′JnṼnt (ζ )

[
−
(n− 1)(T − 1)

2σ 4
+
1
σ 6

T∑
t=1
(Ṽ ′nt (ζ )JnṼnt (ζ ))

]


(5

Box VII.
6)
1
√
(n− 1)(T − 1)

∂ ln Ln,T (θ0)
∂θ

=



1
σ 20
√
(n− 1)(T − 1)

T∑
t=1

(Ẍ ′nt JnṼnt)

1
σ 20
√
(n− 1)(T − 1)

T∑
t=1

(
(G̈nẌntβ0)′JnṼnt

)
+

1
σ 20
√
(n− 1)(T − 1)

T∑
t=1

(
Ṽ ′nt G̈nJnṼnt −

T − 1
T

σ 20 trJnG̈n

)
1

σ 20
√
(n− 1)(T − 1)

T∑
t=1

(
Ṽ ′ntHnJnṼnt −

T − 1
T

σ 20 trJnHn

)
1

2σ 40
√
(n− 1)(T − 1)

T∑
t=1

(
Ṽ ′nt JnṼnt −

T − 1
T

(n− 1)σ 20

)


(5

Box VIII.
+



0k×k ∗ ∗ ∗

01×k
1
n− 1

tr(G̈snJnG̈n) ∗ ∗

01×k
1
n− 1

tr(HsnJnG̈n)
1
n− 1

tr(HsnJnHn) ∗

01×k
1

σ 20 (n− 1)
tr(JnG̈n)

1
σ 20 (n− 1)

tr(JnHn)
1
2σ 40

 , (57)

whereHnT =
1

(n−1)(T−1)

∑T
t=1(Ẍnt ,GnẌntβ0)

′Jn(Ẍnt ,GnẌntβ0).

C.3. Proof for Theorem 4 (Asymptotic Distribution)

For the direct approach, according to the Taylor expansion,

√
nT (θ̂dnT − θT ) =

(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)−1

×

(
1
√
nT

∂ ln Ldn,T (θT )

∂θ

)
.

Here, θ̄dnT lies between θT and θ̂
d
nT , and

1
√
nT

∂ ln Ldn,T (θT )
∂θ

+

√
T
n aθT ,n =

1
√
nT

∂ ln Ld(u)n,T (θT )

∂θ

d
→N(0, lim T

T−1 (Σ
d
θT ,nT
+ΩdθT ,nT ))whereΣ

d
θT ,nT

is in
(53) and

ΩdθT ,nT =
(T − 1)
T

(µ4 − 3σ 40 )
σ 40
×



0k×k ∗ ∗ ∗

01×k
1
n

n∑
i=1

[(JnG̈n)ii]2 ∗ ∗

01×k
1
n

n∑
i=1

[JnG̈n]ii[JnHn]ii
1
n

n∑
i=1

[(JnHn)ii]2 ∗

01×k
1
2σ 2T n

trJnG̈n
1
2σ 2T n

trJnHn
1
4σ 4T


. (58)

Because
∥∥θ̄dnT − θT∥∥ = op(1) and ΣdθT ,nT is nonsingular in

the limit,
(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)−1
is Op(1). Hence,

√
nT (θ̂dnT −

θT ) = Op(1)(Op(1) + O(
√
T
n )), which implies that θ̂

d
nT − θT =

Op
(
max

(
1
√
nT
, 1n

))
. In turn,

(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)−1
= (ΣdθT ,nT )

−1
+

Op
(
max

(
1
√
nT
, 1n

))
. It follows that

√
nT (θ̂dnT − θT )

=

(
−
1
nT

∂2 ln Ldn,T (θ̄
d
nT )

∂θ∂θ ′

)
·

(
1
√
nT

∂ ln Ld(u)n,T (θT )

∂θ
−

√
T
n
aθT ,n

)

= (ΣdθT ,nT )
−1 1
√
nT

∂ ln Ld(u)n,T (θT )

∂θ
+ Op

(
max

(
1
√
nT
,
1
n

))
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×
1
√
nT

∂ ln Ld(u)n,T (θT )

∂θ

− (ΣdθT ,nT )
−1
·

√
T
n
aθT ,n − Op

(
max

(
1
√
nT
,
1
n

))
·

√
T
n
aθT ,n,

and, hence,

√
nT (θ̂dnT − θT )+ (Σ

d
θT ,nT )

−1
·

√
T
n
aθT ,n

+Op

(
max

(
1
√
nT
,
1
n

))√
T
n
aθT ,n

= ((ΣdθT ,nT )
−1
+ op(1)) ·

1
√
nT

∂ ln Ld(u)n,T (θT )

∂θ
.

Therefore, we have the results in Theorem 4 for the direct
approach.
For the transformation approach, the proof is similar. For the

variance matrix of θ̂nT , the information matrixΣθ0,nT is in (57) and

Ωθ0,nT =
(T − 1)
T

(µ4 − 3σ 40 )
σ 40

×



0k×k ∗ ∗ ∗

01×k
1
n− 1

n∑
i=1

[(JnG̈n)ii]2 ∗ ∗

01×k
1
n− 1

n∑
i=1

[(JnG̈n)ii(JnHn)ii]
1
n− 1

n∑
i=1

[(JnHn)ii]2 ∗

01×k
1

2σ 20 (n− 1)
tr(JnG̈n)

1
2σ 20 (n− 1)

tr(JnHn)
1
4σ 40


. (59)

Because a degree of freedom has been properly adjusted (from nT
to (n−1)(T −1)) for the likelihood function in the transformation
approach, the score has zero mean and the resulting asymptotic
distribution is properly centered at the true parameter vector. �

C.4. Proof for Theorem 5 (Bias Correction)

We have
√
nT (θ̂dnT − θT ) +

√
T
n (Σ

d
θT ,nT

)−1aθT ,n + Op
(√

T
n3

)
d
→

N(0, lim T
T−1 (Σ

d
θT ,nT

)−1(ΣdθT ,nT + ΩdθT ,nT )(Σ
d
θT ,nT

)−1) from Theo-
rem 4. As the first step bias corrected estimator is θ̂d1nT = θ̂dnT +
1
n (Σ

d
θ̂dnT ,nT

)−1an(θ̂dnT )where an(θ) = aθ,n, we will have

√
nT (θ̂d1nT − θT )

d
→N(0, lim

T
T − 1

(ΣdθT ,nT )
−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1)

if T
n3
→ 0 and√

T
n

(− 1
nT
E
∂2 ln LdnT (θ̂

d
nT )

∂θ∂θ ′

)−1
an(θ̂dnT )− (Σ

d
θT ,nT )

−1an(θT )


p
→ 0,

where − 1
nT E

∂2 ln LdnT (θ̂
d
nT )

∂θ∂θ ′
= Σd

θ̂dnT ,nT
is the information matrix

evaluated at θ̂dnT . The first condition is assumed in the theorem. For
the second condition, as

θ̂dnT − θT = Op

(
max

(
1
√
nT
,
1
n

))
and

−
1
nT
E
∂2 ln LdnT (θ̂nT )

∂θ∂θ ′
= (ΣdθT ,nT )

−1
+ Op

(
max

(
1
√
nT
,
1
n

))
,

we have√
T
n


(
−
1
nT
E
∂2 ln LdnT (θ̂nT )

∂θ∂θ ′

)−1
an(θ̂dnT )− (Σ

d
θT ,nT )

−1an(θT )


= (ΣdθT ,nT )

−1

√
T
n

(
an(θ̂dnT )− an(θT )

)
+ an(θ̂dnT )

×Op

(
max

(
1
n
,

√
T
n3

))

= (ΣdθT ,nT )
−1 ∂an(θ

∗

nT )

∂θ ′

√
T
n

(
θ̂dnT − θT

)
+ an(θ̂dnT )

×Op

(
max

(
1
n
,

√
T
n3

))
where θ∗nT lies between θ̂

d
nT and θT . From the explicit form of

an(θ),
∂an(θ∗nT )
∂θ ′

is bounded in probability. Thus, as θ̂dnT − θT =

Op
(
max

(
1
√
nT
, 1n

))
, the second condition is satisfied under n

T3
→

0. Consequently,
√
nT (θ̂d1nT − θT )

d
→N

(
0, lim

T
T − 1

(ΣdθT ,nT )
−1

× (ΣdθT ,nT +Ω
d
θT ,nT )(Σ

d
θT ,nT )

−1
)
.

The remaining bias in the variance parameter is adjusted in θ̂d2nT =

AT · θ̂d1nT , where AT =
(
Ik+2 0(k+2)×1
01×(k+2)

T
T − 1

)
. After this adjustment,

(35) follows. �
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