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In this paper, we extend the GMM framework for the estimation of the mixed-
regressive spatial autoregressive model by Lee (2007a) to estimate a high order
mixed-regressive spatial autoregressive model with spatial autoregressive distur-
bances. Identification of such a general model is considered. The GMM approach
has computational advantage over the conventional ML method. The proposed
GMM estimators are shown to be consistent and asymptotically normal. The best
GMM estimator is derived, within the class of GMM estimators based on linear
and quadratic moment conditions of the disturbances. The best GMM estimator is
asymptotically as efficient as the ML estimator under normality, more efficient than
the QML estimator otherwise, and is efficient relative to the G2SLS estimator.

1. INTRODUCTION

The spatial autoregressive (SAR) model with high order spatial lags can char-
acterize spatial interdependence based on different types of relationships (e.g.,
geographic distance, social relation) among cross-sectional units. In this paper,
we consider the estimation of a general high order SAR model with SAR distur-
bances.

For the estimation of a SAR model with a first-order spatial lag, the con-
ventional estimation method would be the quasi-maximum likelihood (QML)
(Anselin, 1988). In addition to that, alternative estimation methods have also been
proposed. In the presence of exogenous variables, the SAR model is known as
a mixed regressive, spatial autoregressive (MRSAR) model. For the first-order
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MRSAR model with SAR disturbances, Kelejian and Prucha (1998) introduced a
general spatial two-stage least squares (G2SLS) estimator that is consistent and
asymptotically normal. Lee (2003) discussed the best instrumental variables (IVs)
selection in the last step of the G2SLS procedure and suggested the best one
within the class of IV estimators. To further simplify the computation involved in
the best G2SLS estimator, Kelejian, Prucha, and Yuzefovich (2004) suggested a
series-type best G2SLS estimator that is asymptotically equivalent to Lee’s (2003)
estimator. Kelejian and Prucha (2007a) considered the IV estimation of the first-
order MRSAR model allowing the disturbance process for general patterns of
correlation and heteroskedasticity, and proposed a spatial heteroskedasticity and
autocorrelation consistent (HAC) estimator for the variance—covariance (VC) ma-
trix of the I'V estimator.

The various IV or G2SLS estimators have the virtue of computational simplic-
ity, but they are inefficient relative to the ML estimator, when the disturbances are
normally distributed so that the likelihood function is correctly specified. Also, as
the IVs are functions of the spatial weights matrices and exogenous variables, the
G2SLS method would not be applicable when all exogenous variables in a model
are really irrelevant. Lee (2001; 2007a) proposed a systematic generalized method
of moments (GMM) framework for the estimation of the first-order SAR models,
with or without exogenous regressors. The GMM approach combines the IV esti-
mation with a generalization of the method of moments (MOM) in Kelejian and
Prucha (1999) that has been proposed for the estimation of SAR disturbances in
a regression model. That GMM approach is computationally more complicated
than the G2SLS but is simpler than the QML. The GMM estimator is asymptoti-
cally efficient relative to the G2SLS estimator, and with proper moment equations,
it can be asymptotically as efficient as the ML estimator with normally distributed
disturbances.

In this paper, we extend the GMM approach to estimate the (MR)SAR model
with general finite order spatial lags and SAR disturbances of a finite order.
High order SAR models have been specified in Blommestein(1983; 1985), Huang
(1984), and some others (see Anselin and Bera, 1998). The multiple spatial weights
matrices may capture contiguity of units in various dimensions. For example, in
Tao’s (2005) strategic interaction model of local school expenditure, two spatial
weights matrices are specified — one based on geographical contiguity and the
other based on economic similarity. An alternative perspective stated in Anselin
and Bera (1998, p.252) on the need for high order models is to consider them
as alternatives of a poorly specified weights matrix rather than as a realistic data
generating process. For this general model with high order spatial lags and dis-
turbances, the QML approach is not practical and may be, in general, infeasible,
as the parameter space is quite complex and the Jacobian determinant in the log
likelihood function can not be easily evaluated. The IV and G2SLS estimation ap-
proaches are still feasible. For instance, Kelejian and Prucha (2004) proposed the
G2SLS estimation for the spatial simultaneous equation model, where a structural
equation may have spatial lags of several endogenous variables on the right-hand
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side. Also, Kelejian and Prucha (2007a) considered the G2SLS estimation of a
structural equation with spatial lags and endogenous regressors where general
patterns of spatial correlation and heteroskedasticity are allowed for the distur-
bance. The VC matrix of the G2SLS estimate can be consistently estimated with
their proposed HAC estimator. With carefully designed quadratic moment equa-
tions, the GMM approach can be robust against unknown heteroskedasticity (see
Kelejian and Prucha, 2007b; Lin and Lee, 2006). In this paper, we are interested
in efficient estimators instead of robust ones. So we will focus on the model with
homoskedastic disturbances. Under the homoskedasticity assumption, while the
G2SLS estimation approach is feasible, it would not be asymptotically efficient.
We study the identification of the model with homoskedastic disturbances and
the asymptotic properties of the proposed GMM estimator. We discuss the selec-
tion of the best moment conditions without any specific distributional assumption,
and suggest the best GMM (BGMM) estimator within the class of GMM estima-
tors derived from linear and quadratic moment conditions.! As the GMM objec-
tive function is a polynomial of unknown parameters, constraints on parameters
are not necessary and the BGMM is computationally tractable. Furthermore, the
BGMM estimator is asymptotically as efficient as the ML estimator under nor-
mality, and more efficient than the QML estimator otherwise. It is also efficient
relative to the best G2SLS estimator.

We conduct a Monte Carlo experiment to study the finite sample performance
of the proposed GMM estimator. We find that the GMM estimator of the spatial ef-
fects has smaller bias and standard deviation than those of the G2SLS and B2SLS
when the variation from the exogenous regressors relative to that of the distur-
bances is small. When the disturbances are asymmetrically distributed, the pro-
posed BGMM improves upon the QML and B2SLS, and the improvement could
be as large as 20% in terms of reduction in the standard deviation. The GMM
estimators are also relatively robust to the misspecified order of spatial lags.

This paper is organized as follows: In Section 2, we introduce the high order
MRSAR model with SAR disturbances. Section 3 discusses the existing estima-
tors for this model. We establish identification of the model and propose a GMM
estimation approach in Section 4. Section 5 investigates consistency and asymp-
totic distribution of the GMM estimators. Section 6 derives the best selection of
moment functions and discusses the efficiency properties of the BGMM estima-
tor. Section 7 provides some Monte Carlo results of finite sample properties of
estimators. Section 8 concludes. All the proofs of the results are collected in the
Appendixes.

2. THE MRSAR MODEL WITH SAR DISTURBANCES

We consider a general p-order MRSAR model with g-order SAR disturbances
(for short, SARAR(p, q))

Y, ZZJI'?:] lj‘/anYn + Xnf +un, Un =ZZ:1PkMann +é€n, e}



190 LUNG-FEI LEE AND XIAODONG LIU

where n is the total number of spatial units, X, is an n X k, dimensional ma-
trix of nonstochastic exogenous variables, and the elements ¢,1, ..., €,, of the n-
dimensional vector €, are i.i.d. (0, 02). Win, ..., Wppand My, ..., My, aten xn
dimensional spatial weights matrices of known constants such that W;,,, # W,
if j1 # jo and My, # My, if ki # kz. However, W, and My, may or may not be
the same for j =1,...,pand k = 1,...,q. The model (1) incorporates both high
order spatial lags W1, Y, ..., Wy, Y, and spatial correlated disturbances u,.2

With a given contiguity-based spatial weights matrix W,,, it seems straightfor-
ward to define high order spatial lags operators as powers of W,, motivated as in
time series. The corresponding SAR(p) model would be Y, = Zle Aj WY, +
Xup + €,. As emphasized in Blommestein (1985), powering W,, may result in the
presence of circular and redundant routes. Proper high-order lag operators should
have those circular and redundant routes eliminated. Algorithms have been in-
troduced in Blommestein and Koper (1992) and Anselin and Smirnov (1996) to
construct proper high-order lag operators. Such models can be regarded as spe-
cial cases in our model framework. In general, our framework allows the sev-
eral spatial matrices as (proper) high-order spatial lag operators generated from a
contiguity-based spatial weights matrix but may not be so restricted.

Let p=(p1,....pq) s A=(h1,...,Ap),and @ = (p’, ', ') In order to distin-
guish the true parameters from other possible values in the parameter space, Gy =
(p(> 29> By) and ag denote the true parameters. Denote S, (1) = I,, — 2,{):1 i Wiy
and R,(p) = I, — ] _, pMin. At Oy, let S, = S, (o) and R, = R,(po) for
simplicity. (A list of special notations used for this paper has been collected
in Appendix A for convenient reference.) This model is an equilibrium model
so that S, and R, are invertible.> The reduced form equation of (1) is ¥, =
Sn_anﬂo + Sn_an_le,,. Furthermore, let Gj, = Wj, Sn_l, which provides the rep-
resentations Wj,Y, = Gj X, fo + Gjan_]En for j =1,...,p. WyY, is corre-
lated with €, because, in general, E((Gjan_]En)’e,,) = aoztr(Gjan_]) # 0. In
most cases, these correlations rule out the ordinary least squares (OLS) for the
estimation of (1).4

3. EXISTING ESTIMATORS
From (1), if €, is N (O, 0021,1), the log likelihood function of this model is

InL, = —gln(Zn) - gln02+ln|S,, (W) +1n|Ry (p)]

1
_ﬁ[sn DY, — Xﬂﬁ]/R}/‘l PR, (p)[Sh (W) Y, — X, B]. 2)

To guarantee that the log likelihood function is well defined, we only consider
the parameter space of A and p such that the determinants of S, (1) and R,(p)
are strictly positive, i.e., |S,(4)] > 0 and |R,(p)| > 0. Let || - || be any matrix

.....

all Wj, are row-normalized such that ||Wj,||c =1 for j =1,..., p,5 a possible
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parameter space for 1 can be one satisfying ZJ’.’ZI [4j] < 1. In the event that the
spatial weights matrices are not row-normalized, then the parameter space may
be taken to be 2;7:1 [4j] < (max;—y,..p ||Wj,,||)_1. The parameter space of p can
be analogously obtained.

Even with the parameter space imposed, the ML method is still computationally
cumbersome as |S,,(1)| and | R, (p)| are difficult to evaluate.® Therefore, it seems
of interest to have available alternative efficient estimation methods that do not
involve the complicated parameter space and computation of |S,,(1)| and | R, (p)].
Toward this end, we develop the BGMM estimator in this paper.

For the estimation of the SARAR(1,1), Kelejian and Prucha (1998) suggested a
feasible G2SLS (FG2SLS) estimation method. With a consistent initial estimator
pn for pg, the FG2SLS of ¢y is defined as

5g2sls,n = [Z,Z R;l (ﬁn) Qn (Q:1 Qn)_1 Q;; Rn (pAn)Zn]_l

X ZL Rl (5n) Qn(Ql On) ™ QL Ry () Yo, A3)

where Z, = (W, Y,, X,,) and Q,, is a matrix of IVs. Kelejian and Prucha (1998)
suggested O, to be taken as a fixed subset of the linearly independent columns
of { Xy, Wy X, W2 X0, -+, Wil Xy My X0y My Wy X0, MyW2 Xy, -+, My Wil X1},
where ¢ is a preselected positive integer and the subset is required to contain
at least the linearly independent columns of {X,, M, X,}. The FG2SLS estima-
tor has a closed form expression and is computationally the most simple. Lee
(2003) discussed the selection of IVs and proposed the best FG2SLS estimator
with Q, = Ry (5)[Gn (i) X P, Xu], where G, (1) = W, S71(2).7 As the vari-
ous G2SLS estimators use functions of W,, and X, as IVs, the G2SLS would not
be applicable when all exogenous variables in X,, are really irrelevant. Another
unsatisfactory feature of the G2SLS estimator is that the asymptotic distribution
of Sggsl s,n does not depend on the asymptotic distribution of p, (see Kelejian and
Prucha, 1999; Lee, 2003).8 In a time series model with lagged dependent variables
and autoregressive disturbances, y; = Agy;—1 + x; fo + u; with u; = pou,—1 + €,
it is known that a feasible GLS estimation of ¢ and fy based on the transformed
equation y; — ppyi—1 = A(yi—1 — Puyi—2) + (x; — ppxi—1)p + € is not efficient
Maddala (1971). The SARAR(1,1) includes this dynamic time series model as a
special case.” With normal disturbances, the MLEs of po and Ao are asymptot-
ically correlated (e.g. Anselin and Bera, 1998), which suggests potential ineffi-
ciency of the G2SLS. We suggest the GMM approach, which estimates pg and ¢
simultaneously using quadratic moments in addition to the linear moments used
in the G2SLS or the best G2SLS. With properly constructed moments, we show
the GMM can be asymptotically more efficient than the best G2SLS.

4. GMM ESTIMATION

The GMM method in its general setting is based on an n X kyy IV matrix Q,, and
the IV functions Pj,€,(0), where P;, is an n x n square (constant) matrix with
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tr(Py) =0fori=1,...,m.Letu,(0) =S,(1)Y, — X, and €,(0) = R, (p)u, (9),
where = (1/, #’)’. The GMM estimation uses the following empirical moments'°

&n (0) =[0x, Plnfn(0)> s Pmnfn(e)]/fn(g)
=[0n, PiuRn(p)un(6), ..., Pun Ry (p)”n(fs)]/Rn (p)un(6), )

where E(gn(e())) = E[(Qn; Prp€n, -, Pmnfn)/fn] = 0, because E(Q;En) =
0/,E(e,) = 0 and E(e, Pinen) = ogtr(Py) = 0 for i = 1,...,m."! In a practical
application, one has to select specific O, and P;,’s to implement the method.
As a simple example, for the SARAR(1,1) model, Q, may consist of X,,, W, X,
and M, X,; and Py, and P,, are, respectively, W, and M,,, where W,, and M,
have zero diagonals.'> The general but arbitrary set of linear and quadratic mo-
ment conditions provides a framework to discuss the possible selection of best
moment conditions.

There are two motivations to use quadratic moments in addition to linear mo-
ments for the GMM estimation. As will be shown below, one motivation is that
the score vector of the likelihood function essentially consists of linear com-
binations of linear and quadratic moments functions. Another rationale is by
the construction of IVs for the estimation of dy. Consider the MRSAR model
Y, =AW, Y, + X, fo+ €, for an illustration. As W, Y,, = G, X, fo+ G €,, an IV
for W,Y,, may be a function of exogenous variables that approximates G, X, /o,
the deterministic component of W, Y,,. This motivates the use of linear moments.
The quadratic moments are motivated by using the instrumental function Pe,
which should be correlated with G,¢,, the stochastic component of W,Y,,, but
uncorrelated with ¢,,.

5. CONSISTENCY AND ASYMPTOTIC DISTRIBUTIONS

To proceed, we follow the regularity assumptions in Lee (2007a) with proper
modifications to fit in the current model.

Assumption 1. The €,;’s are i.i.d. with zero mean, variance 002 and a moment
of order higher than the fourth exists.

Assumption 2. The elements of X,, are uniformly bounded constants, X,, has
full column rank k., and lim,,_, 5o %X 7 Xy exists and is nonsingular.

Assumption 3. The zero diagonal spatial weights matrices {Wj,}, {My,} (j =
1,....,p, k=1,...,q) and the corresponding {Sn_]}, {Rn_‘} are uniformly
bounded in both row and column sums in absolute value.!3

Assumption 4. The matrices P;,’s with tr (P;,) =0, fori = 1,...,m, are uni-
formly bounded in both row and column sums in absolute value, and elements of
Q,, are uniformly bounded.
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The disturbances in Assumption 1 are in the form of triangular arrays for gen-
erality. It includes the case that ¢,; = ¢;, independent of the sample size n. The
higher than the fourth moment condition in Assumption 1 is needed in order to ap-
ply the central limit theorem of Kelejian and Prucha (2001) for triangular arrays of
random variables. The nonstochastic X,, and its uniform boundedness conditions
in Assumption 2 are for analytical simplicity. The elements of X,, as well as those
of Wj,’s and My,’s, in their generality, may depend on n too. Assumption 3 limits
the spatial dependence among the units to a tractable degree and is originated by
Kelejian and Prucha (1999). It rules out the unit root case (in time series as a spe-

.....

,,,,,

.....

ment, R;! is uniformly bounded in both row and column sums in absolute value
if ZZ:I lpok| < 1/maxg=1,.. ¢{lMinlli, | Mnlloo}. The uniform boundedness as-
sumptions of both S, ! and R;"! in Assumption 3 are assumed to be valid at A and
po. But with the uniform boundedness of Wj,’s and My,’s, Sn_l(/l) and Rn_l(p)
will also be uniformly bounded, uniformly in a neighbor of 4¢ and pg, respectively
(Lee, 2004). The spatial weights matrices are assumed to have zero diagonals to
facilitate the interpretation of a spatial effect and exclude self-influence. For an-
alytical tractability, in Assumption 4, P;,’s are assumed to have the uniformly
boundedness properties as the spatial weights matrices.
For any feasible €, model (1) implies that

E(g.(0))

0, Ru(p)dy (9)
dy, ()R}, (p) Pin Ra(p)dn (8) + o gl F, " Fy(p, 2) Pia Fu(p, ) Fy '

>

4 ()R, (9) P R (0)d (9) + 0241 EL=V L (p, 1) P Fu (p, AV
s

where d,(6) = ;7:1(/10j - lj)GannﬁO + Xn(Bo = B), Fulp,4) = Ru(p)Su(2)
and F,, = F,(po, 20)."* Let Ay = (G1a X0, ---» G pnXnPos Xn)-

Assumption 5. Either (i) lim,— %Q; R, (p)A,, has full rank (p+k,) for
each possible p in its parameter space, and the moment equations

u[R,” R}, (p) PR (p)R; 11 =0, (6)

for i = 1,...,m, have the unique solution at po, or (ii) limn_mo%Q;an (PN,
has column rank (p +k, — po) for some 1 < pg < p for each possible p in its
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parameter space, and the moment equations

alF, " Fr(p, 2 PuFu(p, ) F; ' 1=0, )
fori =1,...,m, have the unique solution at the true parameter values.

Assumption 5 summarizes some sufficient conditions for the identification of
6. We provide identification conditions for the moment equations (6) and (7) in
Propositions 7 and 8 in Appendix B.

PROPOSITION 1. Under Assumptions 1-5, E(g,,(0)) = 0 has a unique solu-
tion at 0 = 6.

The moment conditions (7) correspond to those of a pure SARAR(p, g) pro-
cess,

Y, = Zle A0jWinYn +ttn,  tn =X pokMinltn + €n. (8)

For this process, €,(0) = F,(p, /l)Fn_le,, and, hence, E[e}(0)Pine,(0)] =
odulF, " Fl(p, 2) PynFy(p, 2)F; ' fori = 1,...,m. This pure SAR process im-
plies the transformed process Y, = Y{_; pox MYy + Zj’zl 20 Win¥n — 2;721
ZZ=1 PokA0j Min WinYy + €,. For the pure SAR process with p = ¢, identifica-
tion of pg and A separately would not be possible if Wj, = M, for j =1,..., p.
This is because the transformed equation would be reduced to ¥, = 2}”:1 (poj +
A0j)WinYy — 211;1 Z,‘?Zl PokA0j Win Win Yy + €,, and, hence, po and A9 would not
be distinguished from each other.'

Let Q,, = var(g, (6y)). Q, involves variances and covariances of linear and
quadratic forms of ¢,. For any square matrix A, vecp(A) = (aiy,...,an,) is

the column vector formed with the diagonal elements of A, and A* = A+ A’. It
follows from Lee (2007a) that

Ok M3 Q/ Opm )
Q — IV XKV n + V , 9
" (/13601/1”1 On (/14 - 303)w;mwnm " ©)

with w,;, = [vecp(Piy), ..., vecp(Pyyn)], and
O_L(%Q;l Ql’l 0]([\/)(1 e 0k1v><1
\ : 1
4 01 xkpy tr(an P1p) - tr(an Pn) 452 Q:l On Oryxm
Vi =0y i ) ' =o, | % ,
’ Omxklv Amn

lek]V tr(Panlnpln) tr(PS Pmn)

mn

(10)
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where O x; denote the zero matrix of dimension k x /, u3 and x4 are, respec-
tively, the third and fourth moments of €,;, and A,,, = [vec(P;,), ..., vec(P;,)1
[vec(Pip), ..., vec(Pmy)]. When €, is normally distributed, Q,, is simplified to V,,
because ©3 =0 and pg4 = 303 . In general, Q, is nonsingular if and only if both
matrices (vec(Pyy), ..., vec(Pyn)) and Q, have full column ranks. As elements
of P;,’s and Q,, are uniformly bounded by Assumption 4, and P, P;, is bounded in
row or column sums, %Qn = O(1). It is thus meaningful to impose the following

conventional regularity condition on the limit of %Qn:

Assumption 6. The limit of %Qn exists and is a nonsingular matrix.

The asymptotic analysis in this paper assumes each unit has only a finite
(bounded) number of neighbors that does not increase as n increases. The spatial
weights matrices may be sparse. Assumption 6 and parts of Assumption 5 provide
the regular conditions for estimators to have the usual /z-rate of convergence.'®

The following proposition provides the asymptotic distribution of a GMM esti-
mator with a linear transformation of the moment equations, a, g, (6), where a,, is
a matrix with full row rank greater than or equal to the number of unknown param-
eters (ky + p +¢q). The a, is assumed to converge to a constant matrix ag, which
also has full row rank. This corresponds to the Hansen’s GMM setting, which
illustrates the optimal weighting issue. As usual for nonlinear estimation, the pa-
rameter space © of & will be taken to be a bounded set with 6 in its interior.!”

Assumption 7. The 6 is in the interior of the parameter space ®, which is a
bounded subset of Rkx+P+4

Let
9E(gn (6h))
D, = # 11)
Oklvxl Oklvxl Q;Glang(n,gO anéannZ(n,BO Q;Ran

ogt (P Hip) -+ ofte(Py Hyn) ogte(Py,Gry) -+ ogte(Pi,Gpn)  Orxi,

s

ogtw(PS, Hin) - ogte(Ps, Hyn) ogte(PS,G1y) -+ odte(PS,Gpn)  O1xi,

where Gj,, = RnGj,,Rn_1 and Hy, = Mk,,Rn_l forj=1,...,pand k = 1,...,q.18

PROPOSITION 2. Under Assumptions 1-7, suppose g,(0) is given by (4)
so that linln_moanE(gn (#)) = 0 has a unique root at 6y in ©. Then, the GMM
estimator 0y, derived from mingeg g, (0)a, a,g,(0) is a consistent estimator of 6,

and /n(6, — 60) 2 N(0, X), where
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_ 1N\, (1 N, /1 . /1
Z:nll)ngo ;D” a,ay ;Dn ;Dn a,ay ;Qn a,ay ;Dn
X 1D/ ! 1D -
non a,dp N n 5

with Dy, in (11) under the assumption that 1im,—, %an D, exists and has the full
rank (ky + p+q).

From Proposition 2, with g, (#) in (4), the optimal choice of a weighting matrix
ajan is Q; ! by the generalized Schwartz inequality. As Q,, involves unknown pa-
rameters 002, 13, and u4, the optimal GMM objective function will be formulated
with a two-step feasible approach by estimating consistently 002, as well as u3 and
14 1n the first step. That can be done by using estimated residuals of ¢, from an
initial consistent estimate of 6y.!° The Q,, can then be consistently estimated as
Q,. The following proposition shows that the feasible optimum GMM estimator
with a consistently estimated Q, has the same limiting distribution of the opti-
mum GMM estimator based on €,,. With the optimum GMM objective function,
an overidentification test is available, which can be used as a goodness-of-fit test
for the selection of the order of spatial lags.

PROPOSITION 3. Under Assumptions 17, suppose that (%)—1 — ()=
0, (1), then the feasible optimal GMM estimator éfo, n derived from mingeg g),(6)
fln_l gn(0) based on g,(0) in (4) has the asymptotic distribution

-1
A D .1 -
\/ﬁ(afo,n _9()) - N <0a (nlingo ;D;Qn 1D"> > . (12)

A A A D
Furthermore, g, (H,,)Q;lgn @) - Xz((m + kiy) — (ky + p 4+ q)), where (m +
kry) > (kyx +p +fZ)~

6. EFFICIENCY AND THE BGMM ESTIMATOR

Consider now the issue of selecting the best P;,’s and the best IV matrix Q. By
transforming u, into €, free of spatial correlation, model (1) implies a SAR(p)
process for the transformed variables Y,, = R, Y,, and X,, = R, X,,,

?n = 2;7:1 /10j Ry VanYn + Rnxnﬂo +en = 211'7:1 /10]' ijnYn + )_(nﬁ() +én, (13)

where W]n =R, anRn_l.

First, consider the case that €, is normally distributed. Under normality, x4 =
306L and 13 = 0. Hence, the VC matrix Q, = V), in (10) is a block diagonal matrix.
This VC matrix and the derivative matrix in (11) together imply the asymptotic
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precision matrix (the inverse of the asymptotic VC matrix of an estimator, see
Davidson and MacKinnon, 2004, p. 101) of 0,  as

—1 5/ 0 0 ks
D,Q;'D, = (A"Bn An 0<P+‘1)X’<X) + ( o qxlz('gl‘)> : (14)

Ok, x(pt+q) Oy xky O(p+ke)xq
where
tr(P H]n) < tr(P L, Hin)
' - tr(PS PS) ... tr(PY PS )
. tr(anI:an) tr(P,fmI:an) In® 1n In* mn
=

’ani : . .

tr(Py,G1p) -+ tr(Py,G1p)
. . . tr(Prim Pivn) e tr(Prfm P}fm)

(P}, Gpn) -+ tr(P3,Gpn)

a_nd Cn_ = (Gln)_(nﬁO: ceey Gpn)_(nﬂ(), )_(n)/Qn(Q;, Qn)_1 Q,Z (GlnxnﬁOa ceey (_;pn
XnpPo, Xn). With the asymptotic precision matrix in (14), it follows from the gen-
eralized Schwartz inequality that the best selection of Q, is (G1,Xxf0, .., Gpn

)_(,,ﬁo, )_(n), and the best selection of P,’s are Gjn — H(fj”) I, and Hy, — tr(HT"”)I,,
forj=1,...,pandk=1,...,¢q

Let Py, denote the class of P,’s satisfying Assumption 4. The subclass P, of
‘P1n consisting of P,’s with zero diagonals is also interesting. The corresponding
GMM estimator with P,’s from P,, is robust against distributional assumptions,
because, when vecp (P;,;) =0fori =1,...,m, Q, =V, regardless of the values
of w3 and p4 — 3061 20 Based on the Schwartz inequality, the best selection of
IV matrix Q,, is still (G1,X,po,-..,GnXnPo, Xn), but the best P,’s from Py,
are Gjn — D((_}jn) and Hy, — D(Hyy), for j=1,...,pand k =1,...,¢q, under
homoskedasticity. D(A) denotes a diagonal matrix with diagonal elements being
those of A if A is a vector, or the diagonal elements of A if A is a square matrix.

When the distribution of €, is unknown, the following proposition provides the
best linear and quadratic moments for the estimation of the SARAR(p, ¢) model
via selecting the best P,’s and Q,.%' If an intercept appears in X,,, define X *as
the submatrix of X,, with the intercept column deleted. Thus, X,, = [X c(po)l
where c¢(po) is a scalar function of po and /,, is an n-dimensional vector of ones.
Otherwise X* = X,,. Suppose there are k* columns in X}. Let X,,] be the jth
column of X,,, and X* be the jth column of X* Denote X;‘;j = X,*lj 11 4 X*.

22

nj’
the deviation of X ». from its sample mean. Let G =Gju— Em:% (Gjn) —
(n4—3)— ’73
700[(;74 " D(G]n X, f0) and H} = Hy, ey 3 D(Hyy), for j =1,.
andk=1,...,q, where 3 = u3 /00 is the skewness of the disturbance, and 74 =

a /oé is the kurtosis of the disturbance. And denote M,, = {90,,1} the class of
optimal GMM estimators derived from linear and quadratic moment conditions
(4), with P,’s and Q,, satisfying Assumption 4.



198 LUNG-FEI LEE AND XIAODONG LIU

PROPOSITION 4. Let P}, = Gy, — 3te(Gy) 1 for j=1,....p, Py, =
HY, = LwHE )1, for k= 1,...,q, and Pp+q+,” DX for 1 =1,...,k:.
Let Q;, = (QT”, Q;n: Q;n) with an = (Q2n1’ . Q;np) and Q3n = (Q3n1’ cees

Q3nq) such that QF, = X, + = 1) 2()( ll,,l;)_(n), Q;nj = (_;jn}_(nﬁo—}—

m (GannﬁO_ lnl G]n nﬂO) - %[VCCD(GJﬂ) tr(éjn)ln]) Jfor

j=1,...,p, and O3, = vecp(Hy,)— ntr(Hk,,)l,,, fork=1,...,q. Within the
class of optimal GMM estimators M,,, under Assumptions 1-7, the estimator éb,n
derived from Il’linge@ g*/ @) Q*_lg; (@), where Qy = var (g,’lk (00)) and g (0) =
[O;, P} €n(9),. p+q+k* 20 €,(0), is the BGMM estimator with the lim-

iting distribution ﬁ(@b’n - 6’0)3 N (O, Zb_l), where

_ 23
| o =12 (714 - n%]Q
Xp= lim — i, In 203 ,
n—oon _ 213 )_(/ Q* 0'_2}_(/Q* 2X/Q
UO[(’M_])_W%] n<3n 0 n=2n n=1ln
and
tl‘(P Prl, nHln) tl‘(P g, nHln)
= ,
(P p+1 n ‘1”) e tr(P;j—q ann)
tr(P "Hi,) --- tr(P;;H]n)
X = I I R
tr(P[ Hyp) -+ tr(P*‘an)
‘70_2 (Glﬂinﬁo)/ Q31 +tr(P1*,f(_?1,,) ‘70_2 (élﬂinﬂo)/ Q;np i (P;:GI")
Ipn= : . :
72 (GonXabo) Q31+ (P2Gpn) <+ 052 (GouXauo)' Q5,16 (PG

The moment functions [P; 1€ (@)  Priy p€n (@)1 €, () are apparently de-

p+q.n
signed for the estimation of pg in u, = Zk:I Pok Mynuy, + €,. Due to the correla-
tion between linear and quadratic moment functions, it is more involved than the
best moment function for estimating the (pure) SAR(gq) process Y, = ZZ=1 POk
MinYn + €,.23 And the selection of (Pl .. P;n, P;+q+]’n, e P;‘+q+k;,n) and
(01,> 93,, Q3,) corresponds to the selectlon of the best quadratic moment func-
tions and the best IV matrix for the estimation of the transformed MRSAR model
(13). These two sets of moment functions estimate pg and Jy simultaneously.

The best selections of P,’s and Q, from Pj, under normality assumption are
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special cases of P;’s and O, given in Proposition 4. When ¢, is normally dis-
tributed, G;fn and Hf, reduce to Gj, and Hj,, respectively, for j =1,..., p and

k=1,...,q.Hence, it follows that Pj; = Gjn - tr(f"’) I, P;Jrk’n = Hp, — ﬂ%lln,
01, = X,, and 05, = (GinXnfos. .- Gpn)_(nﬁo) asnm3=0,forj=1,..., pand
k=1,...,q. And it follows arguments in Breusch, Qian, Schmidt, and Wyhowski
(1999) that moment functions [Q3, , D(X;‘l’)f,, @,..., D(X:;Z;)e,, (€, (0) are
redundant given [Q7,, Q3,, P, €x(0), ..., P; q.n€n ()Y€, (0) under normality.24

The moment function g, (¢) of the BGMM and its VC matrix Q; involve the
unknown parameters 6, 002, w3 and u4. In practice, with initial /n-consistent
estimators 6,,, &,12, f13, and fi4,, Py and Qj in g;r(0) can be replaced by their esti-
mated counterparts P;* and QF, fori =1,...,k* + p+q, and Q} can be estimated
accordingly as fl; The following proposition shows that the feasible BGMM esti-
mator has the same limiting distribution as the BGMM estimator in Proposition 4.

PROPOSITION 5. Let 13;!, QZ: and f)j‘; be the estimated counterparts of

Py, Qr, and Q;, for i =1,...,k{ 4+ p+q, with the unknown parameters re-
placed by their \/n-consistent estimators Oy, &,12, 3y, and fia,. Then, under As-
sumptions 1-7, the estimator éfb,n from mingee g’ (0) fz;—lg;; ©) with g:(0) =

[QZ, ﬁl* €,0),..., ﬁé+p+q,nen ()1 €, (@) has the same limiting distribution of

n

Oy, derived from mingee g*' (0) Q" g* (6).

Lastly, we compare the asymptotic efficiency of the BGMM estimator with that
of the conventional QML estimator and the best G2SLS estimator in Lee (2003).
As the first order conditions of the log likelihood function (2) are asymptotically
equivalent to some linear and quadratic moment conditions in the sense that their
consistent roots have the same limiting distribution, the QML estimator is asymp-
totically equivalent to some GMM estimator based on those linear and quadratic
moment conditions. The BGMM estimator is asymptotically as efficient as the
ML estimator when €,,;’s are i.i.d. normally distributed. When ¢,;’s are i.i.d. non-
normal errors, the extremum estimator based on the normal likelihood function is
a QML estimator. The BGMM estimator improves the efficiency of such a QML
estimator by using the best linear and quadratic moment conditions via the se-
lection of P)’s and Q}, and by using the optimal weighting matrix . On the
other hand, the BGMM estimator improves the best G2SLS estimator via joint
estimation of pg and Jp using the quadratic moment conditions in addition to the
linear moment conditions used in the G2SLS. The additional quadratic moment
conditions provide the additional information on the correlation structure of the
reduced form disturbances for the estimation. The result is summarized in the
following proposition.

PROPOSITION 6. Under Assumptions 1-7, the BGMM estimator is asymp-
totically efficient relative to the QML estimator and the best G2SLS estimator.
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7. MONTE CARLO STUDY

In the Monte Carlo study, we first consider the SARAR(1,1) model specified as
Y, = AW, Y, + X1 1 + Xnofo + up, where uy, = pWyuy + €4, Xp1 = (x11,-.-,
xn1) and X0 = (x12,...,X,2)". The variables x;; and x;» are independently gen-
erated standard normal variables for all i, and ¢€,;’s are independently generated
from the following three distributions, all of which are scaled to have mean 0 and
variance 2: (a) normal, €,; ~ N (0,2), (b) symmetric bimodal mixture normal,
€ni = ~/2/17u where u ~ SN (—4,1)+ .5N (4,1), and (c) gamma, €,; = u —2
where u ~ gamma (2, 1). The skewness (73) and kurtosis (#4) of these distribu-
tions are, correspondingly: (a) 73 =0, na = 3; (b)y3 = 0, 54 &~ 1.228; and (c)
3 = +/2, 74 = 6. Normal distribution is the basis for comparison. Symmetric bi-
modal mixture normal distribution and gamma distribution will study the effects
of skewness and kurtosis excess on the finite sample performance of various esti-
mators. Asymptotically, the feasible BGMM estimator proposed in Proposition 5
is as efficient as the MLE under (a), and is more efficient than the QML estimator
under (b) and (c).

Let W4 denote the weights matrix for the study of crimes across 49 districts
in Columbus, Ohio, in Anselin (1988). For moderate sample sizes of n = 245
and 490, the corresponding spatial weights matrices in the Monte Carlo study are
given by Is ® W4 and 119 ® Wy, respectively, where ® denotes the Kronecker
product operator. The true 4 and pg are set to be 0.4 in the data generating pro-
cess. We use different fy in different experiments.

The estimation methods considered are: (1) the G2SLS and B2SLS: the G2SLS
approach in Kelejian and Prucha (1998) and the best G2SLS method in Lee
(2003);% (2) the QML: the quasi maximum likelihood method;?¢ (3) the GMM
the feasible best optimal GMM in the class of P»; (4) the GMM2: the feasible best
optimal GMM under the normality assumption; and (5) the BGMM: the general
feasible best GMM described in Proposition 5.

The number of repetitions is 1,000 for each case in the Monte Carlo experi-
ment. The regressors are randomly redrawn for each repetition. In each case, we
report the mean (Mean) and standard deviation (SD) of the empirical distribu-
tions of the estimates. To facilitate the comparison of various estimators, their
root mean square errors (RMSE) are also reported.

Computationally, the G2SLS is the simplest. The best G2SLS involves S, L),
and the GMM1, GMM2, and BGMM involve both S;!(1) and R, !(4), hence
they are more complicated than the G2SLS but much simpler than the conven-
tional QML because they do not need the computation of |S,(1)| and |R,(p)],
and S; ' (1) and R, ! (1) are evaluated only once at an initial consistent estimate.

Tables 1-3 report the results of the case that fo; = 1 and fgr = —1, which will
be referred to as the case with strong x. The ratio of the variance of x;1 f19+ xi2 /20
over the sum of the variances of x;1f10+ xj2f20 and ¢; is 0.5. In this case, we
use the G2SLS estimate as the initial estimate to implement the B2SLS and the
various feasible optimal GMM.?” For sample size n = 245, the G2SLS estimates
of pg are biased downwards by about 12%, under all disturbance specifications.
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TABLE 1. Estimation of the SARAR(1,1) model with strong x’s (normal)
lo=0.4 po=0.4 Bio=1.0 Bop=—1.0
n =245
G2SLS  .412(.137)[.138] .351(.154)[.162] .995(.087)[.087] —.998(.092)[.092]
B2SLS  .387(.159)[.160] .351(.154)[.162] .992(.091)[.091] —.996(.092)[.092]
QML .389(.135)[.136]  .383(.153)[.154] .993(.087)[.087] —.996(.092)[.092]
GMM1  .387(.136)[.137] .393(.152)[.153] .993(.087)[.087] —.996(.093)[.093]
GMM?2  .387(.136)[.137] .392(.152)[.152] .993(.087)[.088] —.996(.092)[.093]
BGMM  .384(.149)[.150] .400(.162)[.162] .992(.089)[.089] —.995(.095)[.095]
n =490
G2SLS  .400(.096)[.096] .381(.110)[.112] .998(.062)[.063] —.996(.064)[.064]
B2SLS  .389(.095)[.096] .381(.110)[.112] .997(.063)[.063] —.995(.064)[.064]
QML  .388(.096)[.096] .398(.106)[.106] .997(.062)[.063] —.995(.064)[.064]
GMMI1  .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] —.995(.064)[.064]
GMM2  .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] —.995(.064)[.064]
BGMM  .385(.099)[.100] .406(.107)[.107] .996(.064)[.064] —.994(.064)[.064]

Note: Mean(SD)[RMSE].

TABLE 2. Estimation of the SARAR(1,1) model with strong x’s (symmetric
mixture normal)

lo=04 po=0.4 fi1o=1.0 f20=-1.0

n =245
G2SLS  .413(.135)[.136] .350(.155)[.163] .993(.089)[.089] —1.001(.090)[.090]
B2SLS  .390(.137)[.137] .350(.155)[.163] .991(.089)[.090]  —.999(.091)[.091]
QML 391(.134)[.135]  .383(.153)[.154] .991(.089)[.089] —1.000(.090)[.090]
GMMI1  .389(.134)[.135] .393(.149)[.149] .991(.089)[.090] —.999(.090)[.090]
GMM2  389(.133)[.133] .392(.148)[.148] .991(.089)[.089]  —.999(.090)[.090]
BGMM  .384(.137)[.138] .401(.147)[.148] .991(.085)[.085] —.998(.084)[.085]

n =490
G2SLS  .404(.094)[.094] .378(.107)[.109] .998(.064)[.064] —1.000(.063)[.063]
B2SLS  .394(.093)[.093] .378(.107)[.109] .998(.064)[.064] —1.000(.063)[.063]
QML .394(.094)[.094] .392(.105)[.105] .998(.063)[.063] —1.000(.063)[.063]
GMMI1  .392(.095)[.095] .398(.104)[.104] .997(.064)[.064] —.999(.063)[.063]
GMM?2  .392(.094)[.094] .398(.104)[.104] .997(.064)[.064] —.999(.063)[.063]
BGMM  .392(.093)[.093] .400(.103)[.103] .997(.061)[.061] —.998(.061)[.061]

Note: Mean(SD)[RMSE].

As the sample size increases to n = 490, biases in the G2SLS estimates of pg
reduce to 5 ~ 7%. When n = 245, the G2SLS estimates of 4¢ are slightly biased
upwards, and the B2SLS and various GMM estimates of 1g as well as the QML
estimates of Ao and pg are slightly biased downwards. All the estimates of Sy
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TABLE 3. Estimation of the SARAR(1,1) model with strong x’s (gamma)

2o =04 po=0.4 Bio=1.0 Bop =—1.0

n =245
G2SLS  411(.133)[.133] .354(.154)[.161] .998(.087)[.087] —.996(.094)[.094]
B2SLS  .383(.150)[.151] .354(.154)[.161] .995(.090)[.091] —.995(.096)[.096]
QML  .383(.137)[.138] .389(.155)[.156] .995(.087)[.087] —.993(.094)[.094]
GMMI  380(.139)[.141] .400(.151)[.151] .995(.088)[.088] —.993(.095)[.095]
GMM2  380(.141)[.143] .400(.154)[.154] .994(.088)[.089] —.993(.095)[.095]
BGMM  .385(121)[.122] .402(.139)[.139] .997(.069)[.069] —.994(.073)[.073]

n =490
G2SLS  .411(.092)[.092] .373(.109)[.112] .995(.064)[.064] —.996(.063)[.063]
B2SLS  .400(.093)[.093] .373(.109)[.112] .995(.064)[.064] —.995(.063)[.063]
QML  .399(.095)[.095] .388(.108)[.109] .994(.064)[.064] —.995(.063)[.063]
GMMI  .398(.094)[.094] .394(.105)[.106] .994(.064)[.064] —.995(.063)[.063]
GMM2  .398(.095)[.095] .393(.107)[.107] .994(.064)[.065] —.995(.063)[.063]
BGMM  .397(.073)[.073] .399(.091)[.091] .996(.049)[.049] —.996(.048)[.048]

Note: Mean(SD)[RMSE].

and po are essentially unbiased for both sample sizes considered. In terms of
SD and RMSE, the G2SLS estimates are almost as good as those of the QML,
GMM1, and GMM2, under all disturbance specifications. The B2SLS estimates
of 4o have slightly larger SDs than those of the G2SLS estimates for n = 245.
Other than that, the B2SLS and the G2SLS estimates are similar for both sample
sizes considered. The good finite sample performance of the G2SLS similar to that
of the QML has been noted in Kelejian, Prucha, and Yuzefovich (2004) when X’s
have strong effects. When the disturbances are normally distributed, for sample
size n = 245, the QML, GMM1, and GMM?2 estimates of 1 and pg are better than
the BGMM estimates in terms of smaller SD and RMSE. The performance of the
BGMM estimates is as good as the others when n = 490. When the disturbances
are symmetric and platykurtic, the BGMM estimates of Sy are a little better than
the others. When the disturbances follow gamma distribution that has #3 # 0, the
BGMM estimators have smaller SD and RMSE than the other estimates for both
sample sizes considered. For example, when n = 490, the percentage reduction in
SD of the BGMM estimates of 4o, po, fo1, and o, relative to the QML estimates
is, respectively, 23%, 16%, 23%, and 24%.8

To illustrate whether the finite sample distributions of the estimates can be
approximated by the normal distribution in the experiment, we report quantile-
quantile plots from the computer package S-Plus with the BGMM estimates for
samples size 490 in Figures 1-3. The quantile-quantile plots have similar features
for other estimators. As the plotted lines mostly lie on straight lines, the normal
approximations seem adequate (Chambers, Cleveland, Kleiner, and Tukey 1983).
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FIGURE 1. Quantile-quantile plots for the BGMMESs (normal).

Table 4 reports the results of the case that fp; = 0.4 and S = —0.4, which will
be referred to as the case with weak x. The ratio of the variance of x;1 f10+ X220
over the sum of the variances of x;1 10 + x;j220 and ¢; is about 0.14. Hence ¢
may be difficult to estimate by the G2SLS. As the feasible B2SLS and GMM
estimators may be sensitive to initial consistent estimates, we use the unweighted
GMM with Q, = (X,,, W, X,,, W,%Xn) for linear moments, Py, = W,, and P,, =
an — %tr(W,%)In for quadratic moments, and 7, as the weighting matrix to get
initial estimates.”’ The G2SLS estimates of A are biased upwards and those of
po are biased downwards. For instance, when n =490 and the disturbances follow
the gamma distribution, the G2SLS estimator of A¢ is upward biased by 21% and
that of pg is downward biased by 37%. The biases of the QML estimates of 1¢
and pg are in the same direction as those of the G2SLS estimates but smaller in
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FIGURE 2. Quantile-quantile plots for the BGMMESs (symmetric mixture normal).

magnitude. The B2SLS and various GMM estimates of 1o are downward biased
and the B2SLS estimates of pg are upward biased. When n = 490, the biases in the
GMM estimators are less than 15% for the normal error and less than 10% for the
other error distributions considered. The other estimates are essentially unbiased.
The GMM1 and GMM2 estimates of ¢ and pg have the smallest SDs for all error
distributions considered. For instance, when n = 490 and the disturbances follow
the normal distribution, the percentage reduction in SD of the GMM2 (the best
GMM under normality assumption) estimates of Ao and pg relative to the B2SLS
estimates is, respectively, 31% and 18%. On the other hand, when the disturbances
are asymmetrically distributed, the BGMM estimates of Sy have smaller SD and
RMSE than the other estimates, as in the case with strong x.
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FIGURE 3. Quantile-quantile plots for the BGMMESs (gamma).

To study the properties of the estimators when the order of the spatial lags is
misspecified, we consider a SARAR(2,1) specifiedas ¥,, =11 W1, Y, + 12 Wa, Y, +
X181+ Xnofo+u,, where u, = pWi,u, +€,. Wi, and W, correspond to the
row-normalized weights matrices for the study of local school expenditure across
612 urban school districts in Ohio in Tao (2005). Before row normalization, Wy,
is based on neighbors with common borders: wy;; = 1 if i and j share a border
and w1;; = 0 otherwise. W5, has weights based on the inverse of income differ-
ences: wy;; = 1/[INCOME; —INCOME;j|, with INCOME; being median
per capita income in district i over the sample period, for all urban school dis-
tricts j within the same metropolitan area as i. In the data generating process,
we use 191 = 0.4, 102 = 0.2, po = 0.4, fo1 = 1, and fop = —1. The misspecified
model has mistakenly excluded W5, 7Y, in the estimation. The estimation results
are reported in Tables 5-7.
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TABLE 4. Estimation of the SARAR(1,1) model with weak x’s (n = 490)

lo=0.4 po =04 Po1 =0.4 Po2 =—0.4

Normal
G2SLS  .449(.243)[.247] .282(.245)[.272] .395(.064)[.065] —.393(.065)[.065]
B2SLS  .346(.296)[.301] .432(.245)[.247] .394(.066)[.066] —.392(.066)[.066]
QML 407(.203)[.203]  .347(.216)[.223] .396(.063)[.063] —.394(.063)[.064]
GMMI1  .352(.205)[.211] .411(.199)[.199] .395(.063)[.063] —.393(.064)[.064]
GMM2  .352(.205)[.211] .411(.199)[.200] .395(.063)[.063] —.393(.063)[.064]
BGMM  .344(.224)[.231] .416(.214)[.215] .393(.064)[.065] —.392(.064)[.065]

Symmetric mixture normal
G2SLS  .453(.248)[.254] .276(.239)[.269] .394(.065)[.065] —.397(.064)[.064]
B2SLS  .361(.269)[.272] .427(.237)[.238] .394(.066)[.067] —.397(.066)[.067]
QML A417(.200)[.201]7  .337(.214)[.223] .397(.063)[.063] —.399(.063)[.063]
GMMI1  .368(.205)[.207] .397(.200)[.200] .395(.064)[.064] —.397(.063)[.063]
GMM2  371(.198)[.200] .395(.194)[.194] .395(.064)[.064] —.398(.063)[.063]
BGMM  .369(.201)[.203]  .399(.196)[.196] .395(.062)[.062] —.397(.061)[.061]

Gamma
G2SLS  .485(.219)[.235] .253(.233)[.275] .392(.065)[.066] —.394(.064)[.065]
B2SLS  .377(318)[.319] .424(.251)[.252] .390(.069)[.069] —.394(.066)[.066]
QML A28(.195)[.197]  .329(.209)[.221]  .394(.064)[.064] —.395(.063)[.063]
GMMI1  .376(.197)[.198] .391(.193)[.193] .392(.064)[.065] —.394(.063)[.063]
GMM2  .374(.203)[.205] .392(.198)[.198] .392(.064)[.065] —.394(.063)[.064]
BGMM  .365(.223)[.226] .400(.213)[.213] .392(.050)[.051] —.393(.050)[.050]

Note: Mean(SD)[RMSE].

To facilitate the comparison, we report the various estimates of the correctly
specified model in the upper panels of Tables 5-7.3! We use the G2SLS estimate
as the initial estimate for the various feasible estimators. Except that the B2SLS
estimates of 1¢; is distorted by outliers, we observe a similar pattern as the results
reported in Tables 1-3. We also estimate the misspecified model, i.e., under the
exclusion restriction of 1g> = 0, and the results are reported in the lower panels
of Tables 5-7. The omitted economic interaction effect represented by W»,, Y, is
partly captured by the effect of Wy, Y, but not much. For the misspecified model,
the G2SLS estimates of Ag; are biased upwards by about 7% and those of pg
are biased downwards by about 5%. The QML and various GMM estimates of
Ao1 are slightly upward biased. The other estimates are essentially unbiased. The
estimates of g and pg in the misspecified model also have slightly larger SDs.
Overall, the exclusion of a spatial lag seems to have small effects on the estimates
of the remaining parameters.

In summary, the GMM approaches with both linear and quadratic moments
can improve upon the G2SLS and B2SLS in the finite sample when the variation
from the exogenous regressors relative to that of the innovations is small. The
proposed BGMM improves upon the QML and B2SLS when disturbances are



TABLE 5. Estimation of the SARAR(2,1) model (normal)

A1 =04 A2 =0.2 po=0.4 Po1 =1.0 Lo =—-1.0
G2SLS  .419(.090)[.092]  .241(.134)[.140]  .339(.104)[.120] = .995(.059)[.059] —.996(.055)[.055]
B2SLS  .389(.201)[.201]  .157(.746)[.747]  .339(.104)[.120]  .993(.064)[.065] —.995(.061)[.061]
GMMI1  .393(.092)[.092] .204(.089)[.089] .399(.105)[.105] .994(.059)[.059] —.995(.055)[.055]
GMM2  .393(.097)[.097] .202(.088)[.088] .400(.108)[.108] .993(.059)[.060] —.995(.056)[.056]
BGMM  .392(.098)[.098] .201(.087)[.087] .403(.111)[.111] .993(.060)[.060] —.995(.056)[.057]
Under the exclusion restriction 1gp = 0
G2SLS  .428(.090)[.095] - S78CIID[L113]  .999(.059)[.059]  —.999(.055)[.055]
B2SLS  .418(.089)[.091] - S78CILID[L113]  .998(.059)[.059]  —.999(.055)[.055]
QML 417(.095)[.097] - B98(CIID[L1T1]  .998(.059)[.059] —.998(.056)[.056]
GMM1  .414(.099)[.100] - A04(112)[.113]  .997(.059)[.059] —.998(.056)[.056]
GMM2  .414(.098)[.099] - 404 112)[.112]  .997(.059)[.059]  —.998(.056)[.056]
BGMM  .414(.100)[.101] - A05(C113)[.113]  .997(.059)[.060] —.998(.056)[.056]

Note: Mean(SD)[RMSE].
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TABLE 6. Estimation of the SARAR(2,1) model (symmetric mixture normal)

Ao1 =04 Agp =0.2 po=0.4 Po1=1.0 Por=-1.0
G2SLS  .420(.086)[.088]  .245(.131)[.138]  .339(.100)[.117] .999(.056)[.056] —.999(.056)[.056]
B2SLS  .395(.104)[.104]  .186(.360)[.361]  .339(.100)[.117] .998(.057)[.057] —.998(.057)[.057]
GMMI1  .392(.105)[.105] .206(.104)[.105] .402(.106)[.106] .997(.058)[.058] —.998(.057)[.057]
GMM2  .391(.108)[.108] .205(.106)[.106]  .403(.105)[.105] .997(.058)[.058] —.998(.057)[.057]
BGMM  .392(.098)[.098] .198(.094)[.094] .406(.106)[.106] .997(.055)[.055] —.998(.055)[.055]
Under the exclusion restriction 1y =0
G2SLS  .428(.088)[.092] - .378(.106)[.108]  1.003(.057)[.057] —1.003(.056)[.056]
B2SLS  .418(.087)[.088] — .378(.106)[.108]  1.002(.057)[.057] —1.002(.056)[.056]
QML .417(.092)[.093] - 402(.108)[.108]  1.002(.057)[.057] —1.002(.056)[.056]
GMMI1  .414(.094)[.095] - A407(.109)[.109]  1.002(.057)[.057] —1.002(.056)[.056]
GMM2  .415(.093)[.094] — 406(.108)[.109]  1.002(.057)[.057] —1.002(.056)[.056]
BGMM  .415(.092)[.093] — A407(.106)[.106]  1.001(.055)[.055] —1.002(.055)[.055]

Note: Mean(SD)[RMSE].
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TABLE 7. Estimation of the SARAR(2,1) model (gamma)

Ao1 =0.4 Agp =0.2 po=0.4 bo1 =1.0 Pop=—1.0
G2SLS  .416(.093)[.094]  .244(.132)[.139]  .341(.105)[.120] .998(.056)[.056] —.997(.059)[.059]
B2SLS  .392(.163)[.164]  .185(.800)[.800] .341(.105)[.120] .996(.059)[.059] —.998(.079)[.080]
GMM1  .388(.101)[.102] .200(.081)[.081]  .405(.107)[.107] .997(.057)[.057] —.996(.059)[.060]
GMM2  .388(.105)[.106]  .199(.085)[.085] .405(.107)[.108] .997(.058)[.058] —.996(.060)[.060]
BGMM  .393(.080)[.080] .197(.081)[.082] .403(.093)[.093] .998(.043)[.043]  —1.000(.044)[.044]
Under the exclusion restriction g = 0
G2SLS  .423(.094)[.097] - 382(.111)[.112]  1.002(.056)[.056]  —1.001(.059)[.059]
B2SLS  .414(.093)[.094] - 382(.11D)[.112]  1.002(.056)[.056]  —1.000(.059)[.059]
QML A411(.100)[.101] - A403(.113)[.113]  1.001(.057)[.057] —1.000(.059)[.059]
GMMI1  .410(.099)[.100] - A409(.111)[.112]  1.001(.056)[.056]  —1.000(.059)[.059]
GMM2  .409(.100)[.100] - A409(.112)[.112]  1.001(.056)[.056] —1.000(.059)[.059]
BGMM  .414(.079)[.080] - 408(.094)[.095]  1.001(.042)[.042] —1.004(.044)[.044]

Note: Mean(SD)[RMSE].
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asymmetrically distributed, and the improvement could be as large as 20% in
terms of reduction in SD. Furthermore, the GMM estimators are relatively robust
to the misspecified order of spatial lags.

8. CONCLUSION

In this paper, we consider the GMM estimation of high order MRSAR models
with SAR disturbances. The proposed GMM approach improves upon the G2SLS
in Kelejian and Prucha (1998) and the best G2SLS in Lee (2003) in asymptotic
efficiency. Among the optimal GMM estimators, we show the existence of the
BGMM estimator that is asymptotically as efficient as MLE under normality, and
more efficient than the QML estimator when the disturbances are not normally
distributed. Some evidence from Monte Carlo experiments confirms that the pro-
posed GMM may improve upon the finite sample performance of the conventional
QML and the best G2SLS approaches.

NOTES

1. The best GMM estimator is the optimal GMM estimator with the best linear and quadratic
moment conditions. It is called the “best” because it is the most efficient one within the class of GMM
estimators derived from linear and quadratic moment conditions.

2. The feature of (1) is that the A’s and p’s are unknown parameters. If the spatial lag components
have a form like 2 21'7:1 ;WY = AWy Yy, where the weight parameters @; s are known and deter-
mined outside the model, then such an alternative model is technically a SAR model of the first order
as analyzed in Lee (2007a).

3. As the values of the dependent variable are determined by the model with X, and ¢, the model
is, therefore, an equilibrium one. This feature differs from a time series autoregressive model where
there is an initial value problem.

4. Lee (2002) has identified a subclass of models for which the OLS estimator can be consistent.

5. Forany n x n matrix A, = [a,_;;], the row sum matrix norm is defined by || A |[co =max;—; ..
2;':1 lan,ijl, and the column sum matrix norm is defined by ||A, ||} = max;j— 2?:1 lan,ijl-

6. With a single weights matrix W;,, the Ord device (Ord, 1975), explained as follows can sim-
plify the evaluation of |/, — AW |. When W), is diagonalizable, we have W;, = R, D, R, ", where Dy
is a diagonal matrix of elgenvalues and R; is the correspondmg eigenvector matrix. It follows that
[In —AWy| =1y — ARy Dy R, | =\l —ADy| = z—l (1—2dy;), where d,;’s are diagonal elements
in Djy. The Ord device is to Compute the eigenvalues of the spatial weights matrix once and then use
them to evaluate the determinant at different values of 1. However, the Ord device will not be applica-
ble to the current model with a few exceptions. For a mmple illustration, consider two matrices Wy,
and W, that are both diagonalizable, i.e., Wj, = R}, D;; Rn ,j=1,2. Unless Ry, = Ry,, they can

not be canceled out in |I; — /llRlnDlnRﬂll — ARy, Doy, Rzn |. The Ry, might be equal to R, in
some special situations. A well-known case is when both Wy,, and W5,, can be simultaneously diag-
onalizable. However, to be simultaneously diagonalizable, the sufficient conditions are that both Wy,
and W, are symmetric and commutative, i.e., Wy, Wa,, = Wo, Wy, (see Dhrymes, 1978). Another
case is the high order spatial lags model with W, = Wy, j=1,..., p, generated as powers of a di-
agonalizable W,,. In this case, |, — zj”:] Wil =1, — zj”:] 2jRyDART = 1 — zjf.’:l 1;Dj| =

H;l_] 1- ZP A ]dljn) However, the Ord device would not be applicable if redundant and circular
routes of the hlgh order spatial operators are eliminated (Blommestein, 1985). The ML method may
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be practically tractable when all the spatial weights matrices are sparse such that S, (1) and R, (p) can
be effectively evaluated by sparse matrix techniques.

7. To simplify the computation involved in the best FG2SLS estimator, Kelejian, Prucha, and Yuze-
fovich (2004) suggested the best series FG2SLS estimator that is also an asymptotically efficient esti-
mator within the class of IV estimators, with O, = R, (ﬁn)[ZZ":O /Alﬁ W,’f“ Xn ﬁn , X1, and ry, is some
sequence of natural numbers going to infinite.

8. In the regression model with SAR disturbances, as all the explanatory variables in the main
equation are exogenous variables, the asymptotic distribution of j, in Kelejian and Prucha (1999) via
the least squares residual does not depend on the asymptotic distribution of the least squares estimator
of fy. For the SARAR(1,1) model, as the second step estimator, the asymptotic distribution of pj,
depends on the asymptotic distribution of the first step estimator of dy via the estimated residual i, in
the presence of the spatial lag W, Y, in the main equation (Kelejian and Prucha, 2007b).

9. It has a special spatial weights matrix of a single neighbor for each spatial unit and yy = 0.

10. These moments have been designed to focus on the estimation of 6. If we are also interested in
the estimation of &2, it can be estimated by the empirical second moment with estimated residuals of
€. In Liu, Lee, and Bollinger (2006), we show that this approach will not lose asymptotic efficiency
by focusing on 6.

11. However, the zero trace assumption of P,’s is not sufficient for consistency of the GMM esti-
mator in the presence of the heteroskedasticity of unknown form. Under heteroskedasticity, we need
to use P;’s with zero diagonals to ensure consistency. (Lin and Lee, 2006)

12. For the SARAR(1,1) model, Kelejian et al. (2004) suggested the use of the linearly independent
columns of [X,,, W, X, My Xy, My Wy, X1 for Qy, in the G2SLS procedure for estimating the main
equation, and use M, and M) M, to set up moments via estimated residuals of the first stage to
estimate the disturbance process.

13. A sequence of square matrices {An}, where Ap = [ay,;;], is said to be uniformly bounded in
row sums (column sums) in absolute value if the sequence of row sum matrix norm ||A;||co (column
sum matrix norm [|Ay||1) are bounded. (Horn and Johnson, 1985)

14. Derivation of (5) is given in Lemma C.9.

15. It is noted that when the identification of the MRSAR model via linear moments is possible,
Wy is not required to be distinct from M. When X,, =1, (i.e., only intercept) and M,, = W, is row
normalized, A, will not have a full column rank. In this case, the parameters cannot be identifiable.
When X, =1, and W,, is row-normalized, G, X,y = X, ¢ where ¢ = By/(1 — Ag). Thus, A, =
(GnXnpPo, Xn) does not have the full column rank. In practice, if there is a need to specify an M, for
the error process, which should be different from W;,, a possible thinking is, while the spatial weight
matrix W, for the main equation may be designed to capture reactions of economic competitors,
there might still be autocorrelation in variables not crucial to the model. Autocorrelated disturbances
might then be considered to capture such correlations. This interpretation has been offered, e.g., in
Benirschka and Binkley (1994) for a model of agricultural land values. In that case, the correlation of
disturbances may be captured by the specification of a spatial correlated process, with M, representing
geographic proximity.

16. There are scenarios where the number of neighbors increases as n increases. Those are large
group interaction scenarios, which are relevant for in-filling asymptotics. In Lee (2004), it is shown
that such scenarios might imply estimates to have lower than the usual y/n-rate of convergence. The
analysis in this paper can be extended to incorporate the large group interaction scenarios but will
involve much complicated notations. For additional and related analyses for GMM estimation with
large group interactions, see Lee (2007b).

17. Note that it is unnecessary to require that for each € in ©, |S, (1)] is positive. The property of
such a determinant does not play a role in the GMM estimation. In theory, any bounded set in Assump-
tion 7 will do as long as 6 is in the interior of the parameter space and other assumptions are satisfied
at @ = 6. The boundedness (or compactness) assumption of the parameter space is needed for asymp-
totic analysis in proving the uniform convergence in probability of the GMM objective function. In this
regard, the G2SLS estimation has the theoretical advantage, as restrictions on the parameter space is
not explicitly needed even though there are implicit restrictions due to the uniform boundedness of
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Sn(Ap) and Ry (pg). The disadvantage of the G2SLS may simply be due to inefficiency, in particular,
when exogenous variables in X, have small effects (relative to disturbances) on the outcomes.

18. The derivation of (11) is given in Lemma C.10.

19. The detailed proof is straightforward and is omitted here.

20. Itis also robust against unknown heteroskedasticity (Lin and Lee, 2006).

21. When the disturbances are normally distributed, it is quite easy to identify the best moments via
the generalized Schwartz matrix as shown above. Without normality, it is not so. In general, the key
ingredient is to incorporate proper diagonal elements of G, in the construction of additional moment
conditions. The final derivation of the best moments is based on such an insight and trial by errors.

22. When M), is row-normalized, M;l,, =1, and (I, —poMn)_lln =(1 —po)_lln. Hence, Ryl =
My (In —POMn)_lln =(In _/’OMn)_anln =(1 —PO)_lln~ In this case, ¢, (pg) = (1 _PO)_1~

23. For the pure SAR(q) process, the BGMM estimator uses the quadratic moment conditions
with P} = H[ — %D(H,ﬁn) fork=1,...,q (Liu et al., 2006), where A’ = A — %tr(A) I, for an
n X n matrix A.

24. We note that the quadratic moments with P,’s from Py, but not PP, will not be robust when
€,;’s have heteroskedastic variances (Lin and Lee, 2006). The quadratic moments with P,"’s given in
Proposition 4 can improve asymptotic efficiency only under the homoskedasticity assumption.

25. To estimate the SARAR(1,1) model, we use Q,, = (X, W, Xy, anXn) as the TV matrix for the
G2SLS. In general, a valid IV matrix could be (X, W, Xp, -+, W,? X)) for some g > 1. We have tried
different values of ¢. We found that as more spatial lags of X, are included as IVs, the SD of the esti-
mated (¢, pg) will decrease slightly, while the bias will increase a lot. To balance the tradeoff between
SD and bias, we picked the O, according to the RMSE for illustration. To estimate the SARAR(2,1)
model presented later, we use Q,, =(Xp, Wi, Xn, Woy X len Xn, W22n Xns WinWon, Xn, Wo, Wi, Xn)
as the IV matrix for the G2SLS.

26. The QML estimator is calculated using sac.m in Econometrics Toolbox (version 7) by James P.
Lesage. Function option info.lflag = 0 for full computation (instead of approximation), and other
options are set to the default values.

27. The G2SLS estimates of (1¢, pg) lie in (—1, 1)2 for all replications.

28. We also estimated the model by the iterated G2SLS and B2SLS. In the 1,000 repetitions, only
about 650 repetitions generated convergent estimates. Also, the convergent iterated estimates of p are
severely downward biased. To save space, the Monte Carlo results of the iterated G2SLS and B2SLS
estimators are not reported in this paper.

29. We impose a restricted parameter space on the simple unweighted GMM, so that the estimated
(j. n»pn) liein (—1, 1)2. There are a few divergent cases. For n = 490, the numbers of divergent cases
are from 15 to 17 with different error specifications. Additional replications are generated to have a
total of 1,000 convergent cases for the reported results.

30. Additional Monte Carlo results can be found in our previous two working papers. We considered
alternative disturbance distributions (t distribution and asymmetric bimodal mixture normal distribu-
tion) and weights matrix for the SARAR(1,1) model. The general conclusions are similar. We also
considered smaller values of S for the case with weak x. We found that as the variation from the
exogenous regressors relative to that of the disturbances becomes smaller (than 0.14), the biases and
SDs in the G2SLS and B2SLS estimates of (4¢, pg) dramatically increases, while the various GMM
estimators are still reasonably good. Also, there are additional results on the SARAR(2,0) model.

31. As the QML approach is hard to implement for high order MRSAR models, we did not report
the QML estimates for the correctly specified model.
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APPENDIX A: Summary of Notations

D (A) = Diag(A) is a diagonal matrix with diagonal elements being those of A if A is a
vector, or diagonal elements of A if A is a square matrix.
vecp (A) is a column vector formed by the diagonal elements of a square matrix A.

A% = A+ A’where A is a square matrix.

1
Al = A— —tr(A) I, where A is an n x n matrix.
n

AL is a linearly transformed square matrix of A that preserves the uniform boundedness
property.

o=@ pY0=0"9).
L q
Sp(A) =1 — 2 /lj Win; Sn = Sn(20); Ru(p) = In _zkzlﬂkMkn§ Ry = Rn(po).
j=1
Gjn (1) = WinSy ' (1) Gjn = Gju (20); Hin(p) = Min Ry (p); Hien = Hin (p0)-

Fn(p,2) = Rn(p)Sn(A); Fn = RnSp.

un(0) = Sn(A)Yn — Xuf; €0 (0) = Ry (p)uy (9).

Yu(p) = Ru(p) Y Xn(p) = R (p) X3 Win(p) = Ru(p) Wi Ry, ' (p).
S51(p. 2) = Ru(p)Su(DR (0): Gju(p, 1) = Win(p) S (p, 1).

Yo = Yn(p0); Xn=Xn(p0); Wjn=W;n(p0); Sjn="Sjn(p0> 20); Gjn =G jn(p0, 20)-

I, is an n x 1 vector of ones.
eg; is the jth unit column vector in RF.

If an intercept appears in X, such that X, =[X nsc(po)lnl, where c(pp) is a scalar function
of po, X;; is the submatrix of X,, with the intercept term removed. Otherwise X = X,.

- - | L L .
X ;;i =Xy - ;lnl;, X}, is the deviation of observation X, ;from its sample mean.
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e = (=3 -n3

Gt =Gp— B "B Gy

T |
73

- ————————-D(GjuXnpo), where 13 = p3/og and g = pa/oy.
ool(na—1)—n3l

(na—3)—n3

D(Hpy).
—ny—p3 )

HZn = Hyp —

APPENDIX B: Identification

In Appendix B, we first estabish the identication of the GMM. Then, we provide identifi-
cation conditions for the moment equations (6) and (7) in Assumption 5 in the following
two subsections.

Proof of Proposition 1. From (5), Q}, R, (p)d, () = 0 is explicitly Q), Rn(p)An(dp —
6) = 0, which has the unique solution & if Q}, Ry (p)An, where Ay = (G 1, X0 0. ---» Gpn
XnPo> Xn), has full column rank (ky + p) for each possible p in its parameter space. With
Jp identified, because Fj (p,/lo)Fn_l =Ry (p)Rn_l and dj,(dp) = 0, the remaining mo-
ment equations in (5) become (6). The identification of pg via these moment conditions
is the same as that of the pure SAR process u, = 22:1 Pk Mypun + €, via the moments
[P1uRu(p)ttn, ..., Pun Ry (p)un) Ry(p)uy as if u, were observable. The necessary and
sufficient condition, as well as some other sufficient conditions, for the identification of pg
via (6) is given in Proposition 7.

On the other hand, if A, does not have a full column rank (kx + p), then d, () =
0 alone could not identify dy. Suppose X, has full column rank k,. Without loss of
generality, assume that (G g1, Xnf0, ---» GpnXnBo, Xn) has full rank (p +kx — po),
for some 1 < pg < p, and there exist constant vectors a; and constants c;; such that
GinXnpo = le=P0+1 G XnPocji + Xnaj for j =1,..., po. Hence, the linear moment
equations Q}, R, (p)d () = 0 from (5) reduce to

P
Q;Rn(p){ z G XnPo

I=po+1

Po
Y (20j —4j) cji+ Gar —iz)}
j=1

Po
+Xu | Y, (hoj—4j)a; +(ﬁ0—/3)} } =0,
j=1
which have all their solutions satisfying
b =tor+ 200 (oj = Aj) e B=202 (Aoj —47) aj + fo, (B.1)
for I = pp+1,..., p. From (B.1), Sy and A¢; (I = po+1,..., p) are identifiable once
AQLs -5 A0 po are identified. With d,, (d) = 0, the identification of 1¢1,..., /1()p0 based on

(5) will reduce to (7). Let v, = F,” len be the disturbance vector of that equation. The

reduced form equation becomes Y, = X[y + Zjl.’il 40jajl +le:p0+l G XnpPolro +
ijil 20j¢ji1+vn. The moment equations (7) correspond to a pure SARAR(p, ¢) process,

op = 211.721 20 Winvn +un, Up = ZZZI Pok Mipun + €. (B.2)
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We provide the necessary and sufficient condition for the identification of the moment
equations (7) in Proposition 8, and we also discuss some weaker sufficient conditions for
identification. With (p(’), 2015+ -» A0p,) identified, as shown above, the remaining parame-
ters can be identified from the linear moment conditions. u

B.1. Identification of a Pure SAR (q) Process. In this subsection, we discuss the iden-
tification of the pure SAR process u;, = ZZZI Pk Mypun + €, via the quadratic moment
equations (6). Let g and ¢j; be m-dimensional vectors with the i/th element being, respec-
tively, gk, ; = tr(Pj, Hn) and gji.; = tr(Hj, Pip Hyp).

PROPOSITION 7. The necessary and sufficient condition for (6) to have the unique
solution at pq is that the vectors g’s and ¢ji’s do not have a linear combination with
nonlinear coefficients in the form that

D oo+ D0y DA 5ok =0, (B.3)

for some nonzero constants dy, ..., 0.

Proof. As Ry (p) Ry' = In + S{_ (pok — pk) Hin» tTR,™ RY, () Pin R (p) Ry 11 =

St ok —p) ok + S0 S (poj = pj) (pok — ) pjk,i for i =1,...,m. It is ap-
J

parent that py is a common solution of these m moment equations. The desired result

follows. u

A sufficient identification condition for the pure SAR(g) model is that the ¢’s are linearly
independent. Weaker sufficient conditions are available. If there exists a solution p; not
equal to pgp, one has d; # 0 in (B.3). This will imply that either ¢ or ¢1; will be linearly
dependent on all the other ¢’s. So it is sufficient to identify p; if each of ¢ and ¢ is
linearly independent of the other ¢’s. With p| being identified, (B.3) becomes 2Z=2 Ok Pr +

2}1:2 22:2 ;S @jr = 0. Similar arguments apply to the identification of pgy, and so on.

B.2. Identification of a Pure SARAR (p, q) Process. When A, does not have full col-
umn rank, the identification of the original model (1) reduces to the identification of a pure
SARAR(p, q) process (B.2), as shown in the proof of Proposition 1. The identification
conditions of (B.2) can be derived by investigating some characteristics of the moment
equations (7). Let hj, = Gj, — le:poﬂ CiiGin, Opyi = tr(Pl:;Hkn), ap 0 = tr(Pl-‘;hjn),

a/)klkz,i = tr(H[élnPinszn)! a;“jljz’i = tr(hjl'nPinhjn)’ a/)klj,i = tr(PiSy,Hknhjn+
/ pSyp,. R / s . J— / s .

Hy, Pihjn)s 0 py 25,0 = WCHE By Hignhjn)s @p 0,500 = w(hy, Py Hinhjpn), and

Wpg iy iy o = tr(, , Hy,  PinHionhjon)- Let ap, be the m-dimensional vector with o, ;

as its ith element. Similarly, a ;> etc., are defined.

PROPOSITION 8. Suppose Ay, has column rank (p +ky — pg), for some 1 < py < p.
The necessary and sufficient condition for (7) and (B.1) to have the unique solution at
(p(/), 2015+ -+» A0py) IS that the vectors a.’s do not have a linear combination with nonlinear
coefficients in the form that

q ro ... q Po N .
Dt OO 22 ;5 D 1 @i OO D0 21 gy Vi Vi

Po q . Po q .
+2j=1 D it i OV +2j=1 Zkhkz:l i iy 2 Okt Ok Vj
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11,/2 1Zk 1 pA)Jljz5ij1V/2+ J|,/2 IZkl,kz 1 pk1k2/1“]25k|5k27/1)’/2—0
(B4)

for some nonzero constants d1, ...,0q Or y1,..., Vpq-

Proof. For the identification of the pure SARAR(p, q) process in (B.2), as Fy(p,4) =
Fp +2k 1(p0k Pk M Sn +2 1(10/ j)Rn Win +Z 12k 1(p0k pk)(l()j —4j )
MinWin, itimplies that £y, (p, /‘L)Fn_ =1 +2Z:1 (pok — Pk)Hkn +Zj=1 (/10] - /)Gjn+
zj.’: 241 ok — pi) (o — 27) Hien G- Tt follows that

w (B Eyp ) P (o, V)
=0 (pok = pOte(PY, Hi) + X7 o = 2)tr(Py, G
+ 2% ko1 POk = P (POks = Pk e (HY, y Pinn Hieyn)
+ 20 1 Gojy = 2i)Gojy = 2,)t(G y PinGjpn)
+ 201 D= (o = pi) (o j = ) ( Py Hign G + iy P, G
+ 201 2R, k1 POy = Pk POk, = Pk (R j = 20 (Hy, y Py Hiyn Gjn)
T2 zzlzz=1(p0k =)o jy = 4 Gojy = A (Gl , Piy Hin G jyn)
F 20 et 2k kg1 (PO = P POk = i) (R = A (o j = A7)
xtr(G}lnH,élnP,‘nsznszn):
fori =1,...,m. Substitution of (B.1) gives
w (Fy 7 Er . ) P Fup, )
= 1 ok = Py i+ 270 (hoj = A)a, i
+ 20 k1 POk = P (POks = PR 1 i
+ 11 =t o =4 Gojy = 2jp) a0, i
+ 270 e ok = P oj = Ap)ap i,
+ 2701 DR, k1 POk = Pk (P0ky = i) (R0 = 2Dy 2

+ j] ja= 12k 1 ok = Pi) oy = 4j1) (R0 jo = Ajp) i dy o i

j],jz 12]{1,/{2 1(P0k1 Pk])(POkz pkz)(l()]] j])(’l()jz _ijz)apklkzijljrl"
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It is apparent that (p(’), 2015+ ++» A0py) is @ common solution of these m moment equations.
The desired result follows. u

A sufficient identification condition is that the o’s are linearly independent. Weaker suf-
ficient conditions are available. If there exists a solution p1 not equal to pg1, one has d; # 0
in (B.4). This will imply that either a5, or a);, will be linearly dependent on all the other
a’s. So it is sufficient to identify pg; if both a,, and a),, are linearly independent of all
the other a’s. With pg; being identified, (B.4) becomes

q P q o ) .

2= %k +2j:1 Ai;7j +2k1,k2:2 Wpryiy Ok1 Oy F 241 iyt Py o Vit Vi
P N4 , P N4 ‘
+2j:1 DR it Ok +2j:1 zk,,kzzz gy 2 Ok Oka V)

Po q o Po q . —
t 2. =1 D Uiy 1y Ok Vit Vit 200 iyt Zkl,kzzz % sy gy jy Ok1 k2 Vi Vo = 05
(B.5)

Then similar arguments apply to the identification of p(»>, and so on. With p( being identi-
fied, (B.5) further reduces to

o 4275 2y @y Vi Vi = O (B.6)
So it is sufficient to identify A¢; if both a7, and a,,, are linearly independent of all the
other a’s in (B.6). Then similar arguments apply to the identification of 4¢;, and so on. By
symmetric arguments, a similar set of sufficient conditions can be stated for the identifica-
tion of A first and then the identification of py. As a general principle, the true (pg, 1o)
may be identifiable when sufficient distinct moment equations are used and their solution
sets intersect only at the true parameter vector. As the GMM estimation with those moment
functions can be rewritten in a nonlinear least squares estimation framework with nonlin-
earity only in parameters, sufficient identification condition can also be derived from the
corresponding nonlinear regression equation.

APPENDIX C: Some Useful Lemmas

In Appendix C, we list some lemmas which are useful for the proofs of the results in the
text. First, we state some basic properties. The central limit theorem in Kelejian and Prucha
(2001) is stated here as Lemma C.5. The other properties in Lemmas C.1-C.8 are either
trivial or can be found in Lee (2004; 2007a).

LEMMA C.1. Suppose that the elements of the sequences of n-dimensional column
vectors {z1,} and {zp,} are uniformly bounded. If the n x n dimensional matrices {A}
are uniformly bounded in either row or column sums in absolute value, then |Z/1,,An12n{ =
O (n).

LEMMA C.2. Suppose that €,1,...,€un are ii.d. random variables with zero mean
and finite variance o2 and finite fourth moment uy4. Then, for any two n x n matrices Ap

and By, E (€, Anén - €, Bnén) = (,u4 — 304) vecT, (An) veep (By) +ot[tr(Ap)tr(By) +
tr (AuBy)], where By = By + By,
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LEMMA C.3. Suppose that {A,,} are uniformly bounded in both row and column sums
in absolute value. €1, ...,€ny are i.i.d. with zero mean and finite fourth moment. Then,
E(e,Anen) = O(n), var(e,Anen) = O(n), €,Anen = Op(n), and %e;,Anen -
E(e, Anen) = 0p(1).

n

LEMMA C.4. Suppose that A, is an n X n matrix with its column sums being uniformly
bounded in absolute value, elements of the n x ky matrix Cy, are uniformly bounded, and
€115 ---»€nn are i.i.d. with zero mean and finite variance o2, Then, ﬁC;lAnen = 0p(1)

and %C;Anen = op(1). Furthermore, if the limit of %C,QA,,A;C,, exists and is positive

. D .
definite, then ﬁC;,Anen 5 N(0, 02 limy—s 00 %C;,AnA;,Cn).

LEMMA C.5. Suppose that {Ay} is a sequence of symmetric n x n matrices with row

and column sums uniformly bounded in absolute value, and by, = (b1, ...,bny) is an
n-dimensional vector such that sup,, %Z?:l [byi |21 < 00 for some 51 > 0. €p1s ... €nn
2

are i.i.d. random variables with zero mean and finite variance o<, and its moment
E(|e|4+2‘5) for some 6 > 0 exists. Let aén be the variance of Q, where Qn = €,,Ap€n +

b en — 0‘2tI‘(An). Assume that the variance aé is bounded away from zero at the rate n.
n

Q)l D
Then, sor N(0,1).

LEMMA C.6. Let 8, and é,’f be, respectively, the minimizers of I ,(0) and F };(0) in ©.
Suppose that %(FV, (0) — Fn(0)) converges in probability to zero uniformly in 6 € ©, where
Op is in the interior of ©, and {%f n (9)} satisfies the uniqueness identification condition
at 0. If%(r; (0) — F n(0)) = 0p(1) uniformly in 0 € O, then both 0, and é,*[ converge in
probability to 6.

In addition, suppose that %% converges in probability to a well-defined limit-
ing matrix, uniformly in 6 € ©, which is nonsingular at 0y, and ﬁ% =0,(1). If

62”;9 »~2n9 . . oF (6 OF (6
%( aeaé,) - %l) = 0p(1) uniformly in 0 € © and ﬁ(% - fT(O)) =op(1),

then \/n (@} —6y) and /n(6, — 6) have the same limiting distribution.

LEMMA C.7. Under Assumption 2, the projectors Xn(X), X))~} X}, and I, — X,
(X, X n)_l X}, are uniformly bounded in both row and column sums in absolute value.

LEMMA C.8. Suppose that {||Wjull}, {I|1Mgall}, (115511}, and (1R 1), where |||

is a matrix norm, are bounded for j =1,...,pandk =1,...,q. Then {||S,1(A)_1 |1} and
{l|Rn (p)_1 ||} are uniformly bounded in a neighborhood of Ao and pg, respectively.

The following are two facts for model (1):

LEMMA C.9. For model (1), €,(0) = R, (p)d,(d) + Fn(p,/l)Fn_len, where d;, (0) =
371 (oj = 2)GjnXn o+ Xn(Bo = B).



220 LUNG-FEI LEE AND XIAODONG LIU

Proof. As S,(2)S; ! = ZP 1Goj = 2)Gjn+ In, €n(0) = Ry (p)[Su(W)Yn — Xn ] =
Ru(p)[Sn(A)(S) ]Xnﬂ() + S, ]Rn €n) — Xnfl = Rn(p)[zjl';lqu - ij)GannﬂO-i—
Xn(Bo— A1+ Ru(p)Sn (D) Sy 1 Ry e -

LEMMA C.10. For model (1), Dy, = a(),E(gn (0p)) is given by (11).

Proof. The derivatives of g, (¢) in (4) with respect to pi, 4j, and f are 8%,;)5(9) =
0gn (0 G
~[Qn, P}, Ru(p)utn (@), .., Py Ru(p)un (O)) Migun 0, %20 = 101, Y, Ru(p)

Un (@), .- P R (p)ttn (D)) R (p) WY, and 2200 = —[ 0,1, P, Ru(p)un (9), ... P
R (p)un(0)) Rn(p)Xn, for j=1,...,p and k = 1,...,q. At 6y, as uy = R; '€, and
WinYn = GinXnfo+ GjuRyy ' €n, (11) follows from Assumption 1. |

The following properties are specific to the model in this paper. Lemma C.11 is a trivial
extension of Liu et al. (2006). The proofs of Lemmas C.12 and C.13 are presented in
Appendix D.

LEMMA C.11. Suppose that z1, and zp, are n-dimensional column vectors of con-
stants of which elements are uniformly bounded, the n x n constant matrix Ay is uniformly
bounded in column sums in absolute value, the n x n constant matrices By, and By, are
uniformly bounded in both row and column sums in absolute value, and €, ..., €y, are
i.i.d. random variables with zero mean and finite second moment. /n(G — ag) = Op (1)
where oy is an r-dimensional vector in the interior of its parameter space. The n x n matrix
Cy,(0n) has the expansion that

m—1 r

Cn(Gn) = Cplag) = 2 2 Z(anjl anl)"'(&nj,-_(XOj,-)Kin(“O)

i=1ji=1 ji=l

+ 2 2 (‘Xn]l agj,)- '(&njm _‘Xij)Kmn(&n), (C.D
J1=1 Jm=1

for some m > 2, where Cp(ag) and K;,(aqg) are uniformly bounded in both row and
column sums in absolute value for i =1,...,m — 1, and Ky, (a) is uniformly bounded
in both row and column sums in absolute value, uniformly in a small neighborhood of

ag. Then, (a) 324, (Cn(@n) = Cn(@0))221 = 0p(1); (b) =2}, (Cul@n) = Cn(@0)) Anen =
op(l) (c) *6 B’ 2 (Cn(0n) — Cn(ag))Bayen = 0p(1), if (C.1) holds for m > 3; and (d)
ﬁen(cn(an) Cn(ap))en = op(1), if (C.1) holds for m > 4 with tr(K;, (ag)) = 0 for
i=1,---,m—1

Furthermore, suppose \/n (3, —yq) = Op (1) where yg is an s-dimensional vector in the
interior of its parameter space, and the matrix Dy, (J) has the expansion that

m—1 s K
Dy(Gn) = Dn(yo) = D, X, -+ X, Gujs —70j,) = Gnji — 70;:) Lin (70)

i=lji=1 ji=1

N N
+ 2 X Gnji =700 Pajiy = 70j,) Linn (F), (€C2)
P
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for some m > 2, where Dy, (yg) and Liy, (yq) are uniformly bounded in both row and col-
umn sums in absolute value for i = 1,...,m — 1, and Ly, (y) is uniformly bounded in
both row and column sums in absolute value, uniformly in a small neighborhood of .

Then, (a’) 5521, (Ca(@n) = Cu(@0)) (D (Fn) = D (70))220 = 0p(1); (b") =2, (Can(tn)

= Cn(@0))(Dn () = Du(70) Anén = 0p(1); (c’) %63, B,,(Cp(én) — Cn(@0))(Dp (Gn)—
D (70))Bonen = 0p(1), if (C.1) and (C.2) hold for m > 3; and (d’) fen(Cn(an) -
Cn(00))(Dp(n) — Du(y0))en = 0p(1), if (C.1) and (C.2) hold for m > 4 with tr(K , ()
Ljn(yo)) =0fori,j=1,....m—1.

LEMMA C.12. Suppose that z1, and zp, are n-dimensional column vectors of con-
stants of which their elements are uniformly bounded, the n x n constant matrix A, is
uniformly bounded in column sums in absolute value, and the n X n constant matrices
By, and By, are uniformly bounded in both row and column sums in absolute value.
Let 9,,,0,%, L3n, arid flay be, respectively, /n-consistent estimates of 90,00 n3, and pg.
Let Cy be either Gj, or Hyy,, and C; be either Gj*n, H , or D(an) for j=1,...,p,

k=1,...,q,andl=1,...,k}. Let G, and é;{ be the estimated counterparts of C, and C;;.
For these Cy, (resp. Cy;) matrices, C ,I; (resp. Cp; L represents its linear transformed matrix
that preserves the uniform boundedness in row and column sums property. Furthermore, let
ﬁn be a stochastic matrix that can be expanded to the form of (C.1). Then, under Assump-
tions 1-3, (a) 721n(C’ — )z, = op(1), nzln(C’ —CHEApen = o,,(l) L€n B,

(Cn —cn) Bonen = 0p(1), =, (Cu = Cu)'en = 0p(1); (b) 321, (G = Ci)Fagy =
op(1), =24, (G = G Anen = 0p(1), €5 B] (é*—c*)Lanen =0p(1), e,
(= cn)fen=o,,(1),- (¢) Lvec (€ — Cn)E zgn_op(l) vecD(c,, Co)lAnen =
op(1); and (d) Lvec) (Ci — Ci)E 2o, = 0p (1), LA, (C) — c,,)L] =o0p(1).

In addition, if Dy (y) is uniformly bounded in both row and column sums in absolute
value, uniformly in a small neighborhood of yq that is in the interior of its parameter space,

then (e) %tr[D,g (yn) (é;'; - C,";)L] =o0p(1), where 7, —yp = 0p(1).

LEMMA C.13. Suppose that z;, is an n-dimensional column vector of constants that
are uniformly bounded, and the n x n constant matrix Ay is uniformly bounded in column
sums in absolute value. Let 0, &,% , L3y, and 14, be, respectively, \/n-consistent estimates
ofeo,ag,,u3, and py. Let Cy, be either Gj,, or Hyy, for j = 1 .,pandk=1,...,q, with
T(X” L0, X0), Ty =
ﬁ(cnxnﬂo llnl/ Cngnﬁo), and T3n = %VGCD(CI‘) with
Tln, Tzn, and T3n being their emmated counterparts. Then, under Assumptions 1-3, (a)
i (Tin = Tin)an = 0p (1); and (b) = (Tiy = TinY Anen = 0p (1), fori =1,2.3.

Furthermore, let Dy, (7,) be a stochasnc matrix that can be expanded to the form of
(C.2) for some m > 3. Then, (c) %(Tin —Tin) Du(Pn) = 0p(1), fori =1,2,3.

Cn being the estimated counterpart. Let Ty, = X, +

CanﬁO +

To show that the proposed moment conditions are optimal, we show that adding ad-
ditional moment conditions to the moment conditions does not increase the asymptotic
efficiency of the GMM estimator using the conditions for redundancy in Breusch, Qian,
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Schmidt, and Wyhowski (1999). Their definition of redundancy is given as follows: “Let
f be the optimal GMM estimator based on a set of (unconditional) moment conditions
E [gl (v, 0)] = 0. Now add some extra moment conditions E [gz (v, (9)] =0 and let 0 be
the optimal GMM estimator based on the whole set of moment conditions E[g (y,0)] =
Elg] (.0).85(y, 9)]/ = 0. We say that the moment conditions E [g> (y,0)] = 0 are re-
dundant given the moment conditions E [gl (y,ﬂ)] =0, or simply that g is redundant

given gp, if the asymptotic variances of 6 and 8 are the same” (Breusch et al., 1999,

Q1 Q .
p.90). Let Q=E g (y.0) g’ (y.0)] = <Q; QZ) . with Qj; =E [g; (y.0) g (.0)] for

J:1 =1,2. And define D; =E [agj (y,0) /69/} for j = 1,2. Suppose the dimensions of
21 (»,0), g2 (y,0), and @ are, respectively, k1, ko, and kp.

LEMMA C.14 (Theorem 1 in Breusch et al., 1999). The following statements are equiv-
alent. (a) g is redundant given g1; (b) Dy = Qzlﬂl_llDl; and (c) there exists a ki x kg
matrix A such that Dy = Q1A and Dy = Qr1 A.

LEMMA C.15 (Theorem 2 in Breusch et al., 1999). Suppose E[g ()] = E [g’l @),

2, (0),85 (9)]/ =0, or simply g = (g’l,g’z,gé)/. Then (g, gé)/ is redundant given gy if
and only if go is redundant given g| and g3 is redundant given g1.

APPENDIX D: Proofs

Proof of Lemma C.12. As S — Sy =X_; (Aj = A0;) Wjn, it follows that ;7 — 5! =
SIS =SS =8, ‘[z” 1 Gnj = 20,)Gjnl. By induction,
i

+81

m

p ~
2 (;Lnj - /IOj)Gjn
=1

~ m—1 P ~
Sit—syt =51 > [ Y (Gnj—20;)Gin
j

i=1 |j=1

Iy = 30j)) Gy = 20j:)(Sy ' Gjin -+ Gjon)
1

P

u Mﬁ
W Mﬁ

Ji
+ Z 2 (/L'n/l /10]1 ' (j'njm - j’OJVH)(S"'I_IGJIW o Gjmn)’ (D'l)
/1 =1 Jm—l
for any m > 2. Hence, it follows that

A m—1 P ~
(Gln - Gln)L = z z z (/lnjl /10]1 ' (/lnj,' _ini)(GlnGjln "'Gj,-n)L
i=1ji=1 ji=1

+2 Zun,l—io,l < Conjpy = 20j,) G1nGjyn -+ Gjpn) ™. (D.2)
l—] ]m—]

which conforms to the expansion (C.1) with K;,(1g) = (GlnGjlnn-Gji,,)L and
Knn (;In) = (GlnGjln . Gjm,,)L. Analogously, we have,
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RV -R = Z Z 2(pnk1 P0k,) - (ks — ok )Ry Hiey -+ Hio)
i=1 k=1 k=1

+ Z Z By = Poky) Pty — POky, ) Ry Hiey -+ Hipon), (D.3)
k=1 kp=1

for any m > 2, and

(Hpp — Hp)" = Z 2 Z(Pnkl Pok,) Prk; — Pok;) (Hin Hy -+ Hygn)™
i=1 k=1 k=1

+ z z (pnlq pOkl (ﬁnk,,, = POk, )(I:Iln H\n "'Hkmn)L~(D-4)
b=l k=l

Expansion (C.6) conforms to expansion (C.1) with K,-n (po) = (Hln Hy -+ Hy, DE, a
Kmn(ﬁn) = (I:IlnHkln . Hk n) As Gn = RnGnR; We have Gn - Gn = (Rn —Rp)
GnR + Ru(Gn = G) (R = Ry D) + Ru(Gn = G DRy R G (Rt Ry (R
Rn)Gn Ry = zkzl (Pok = Pruk)MinGn R, 1. On the other hand, G, and R, ! can be ex-
panded to the form of (C.1) by (D.2) and (D.3), respectively. Note that when the transfor-
mation -is taken, the deterministic parts of the expansions of Ry, (én - Gn)(Ién_ I R, ! ),
Ry, (é,, — Gn)Rn_l, and R, G, (Ién_1 — Rn_l) have a zero trace by construction. Hence (a)
follows from Lemma C.11, where the uniform boundedness in a neighborhood of the true
parameters of the relevant matrices in the remainder terms follow from Lemma C.8.

For (b), first consider the case that C;; is either G]*n or Hf for j=1,...,pand k =

k=200 = o, = S
=0 D(Gjy) — OK“D(G,-,,X,,ﬁO) and H| = Hy, —

1,...,q. We have GJ’-"n = Gj,,—
K—ZJS
K

D(Hyy), for j=1,...,pandk=1,...,q, where k = 5§ (,u4 aO) ,u3 Let ,, be
D(Cy)] =

x’s estimated counterpart, and Uy, = [é — K”}ZC#D(C”)] —[C, — al KZUO
2 2 208 N N
(Cn=C) = (1= 2800 D, = ) 4 CGE 20 D(C,). As (2(62)3 en — 208 /) =
op(1), it follows from (a) and Lemma C.1 that Zln (Uin)ngn =0p(1). On the other hand,
A2~ ~ - . 2 _ DA
let Uz, = = P43 D€y Xy () o — o Knfio) — (538 — %613 D(C, Ko i) = — T30

DI(Cy — Cn)XnPo + CA‘n)_(n(,én = Bo) + én(Xn(pn) - )_(n),én] - (m - @)
D(CyXnfo), where C, — Cy, takes the general form Ch—Cy = Zl_l erl: 'Z]r',-:l
(@njy = @0jy) -+ (@nj; — a0ji) Kin (a0) + Xf _y - X} —1 (@njy — a0j,) -+ @nj, — a0j,)
Kmn(0y), in the proof of (a). Therefore, D[(é’n — Cn))_(,,ﬁo] = zlf"z_]] zjr.l:] "'zjr',:l
(Gnj, —0jy) -+ (@nj; —a0j;) DIKin (ao)XnﬂoHZ]r-l:] X0 1 @njy—agj) - (Gnjy, —
aojm)D[Kmn (0n)XnPol- As conditions in Lemma C.11 are satisfied via Lemma C.8, it
follows that %z’ln D'[(Cy —C)Xn ol zon =o0p(1). Let e be the jth unit column vector
in R, then %Z/lnD/[éan (,én = Po)lzon = %21_1 21n,i<2n ze;”én)_(n (,BAn Bo) =op(1),
as % 2?:1 zlnj,-zzn,ie;lién)_(n = 0p (1) and ﬁ,, o =op(1). Slmllarly, Zln ’[é‘n()_(n
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() = Xn)pnlz2n = zk 1 (P0k = Put) z’lnD/(éannxn/?n)zzn = op(1). The remain-
ing term in 7z1n(U2n) 20, is 0p(1) as (an,u3n/1cn —oo,u3/1c) = 0p(1). And with sim-
ilar arguments and corresponding results in Lemma C.11, the other results in (b) follow,
when C is either Gj’-kn or HY for j=1,...,pandk=1,...,q. When Cj; = D(X* ),
for [ =1,...,k}, we have Ci — Cji = D(Rn(pn) X)) — D(Ru(p0) X)) = Xi_, (pok —
Pni) D (M, X35)). Because (pg — pn) = 0p (1) and /n(pg — pn) = Op(1), the four claims
in (b) hold for C;; = D()_(Zj) by Lemmas C.1, C.4, C.3, and C.5, respectively.

For (c), as vec/, (Ch—Cn)kt = I, D(Cy —Cy)L, the results follow from similar argument
as in the proof of (a).

For (d), as vec, (Cyr — Ci)L =1, D(C; — C;)E, it follows from similar arguments as
in the proof of (b) that 1vec), (Ck — Ci)E 20, = 0p(1). To prove LufAl (C) — Ci)E1 =
op (1), first we consider the case when Cj; is either C]’-"n or HY, for j=1,...,p and
k=1,...,q. As in the proof of (a), for m =2, C,, — Cp = er':l(&nj —a0j) K1, (ag) +
ZJ’-l:l er‘zzl(&"jl —oz()jl)(&,,j2 — a0 j,) K2, (). Hence, it follows itr[A/ (Cp—C)E1=

; 1(&nj - an)ltr(A/ ((ZO)) + 2;1_1 jr= 1(0‘11]1 - anl)(an]z - anz)%tr(A;;
Kzn(“n)) = 0p(1), because 7tr(A’ 1nA(ozg)) = q(l), }ltr_(A;Kzn(an)) = OI,(I),Aand
—ag = op(1). Similarly, 1tr[A}, D(CyXn(pn)fn — CnXnfo)l = Lvec, (An)[(Cn —
Cn)Xnﬁo +C(Xn(Pn) = Xn)fn + Co X (B = o)1 = 0p (1), because vecs,(An)(Cn —
Cn)XnﬁO = _1(anJ an)%VeC/D(An)K]n(O‘O)XnﬂO + 2;1_122 ](anJ| anl)
(anjz _O‘sz) ) VCCD (An)K24(6n) XnPos %VeCID (An)Cn (Xn(pn) — Xn),Bn = zk=1 (pok —
Pnk) 3 vec (An G My X Bn, and Jvech, (An)cnffn (Bn = Po) are op(1). As pulA,
D(Cp)] = 0(1) tr[A’ D(CpXnfp)l=0(1),and 6 an , [13,, Kn are consistent estimates, it
follows that ftr[A (C - Cn)L] =o0p(1). When C;; = D(X*l) forl=1,...,k¥, we have
LulA} (€ — G =S4 (hok = k) STAL DM X1 = 0 (1), because po — o =
op(1) and Lu[A}, D(My, X1 = O(1).

For (e), as Dy, (y) is uniformly bounded in both row and column sums in absolute value,

uniformly in a small neighborhood of yg, and y, — yo = 0p(1), it follows that Dy (7,) is

uniformly bounded in both row and column sums in absolute value with probability one.
The remaining arguments will be similar to those in part 2 of (d). u

Proof of Lemma C.13. As k =g (,u4 - 04) - ,u%, with u3 = 77303 and u4 = maé,

we have
2

1
T n—Tin —(Xn(Pn) Xn)+ H3n (In nln n) (Xn(Pn) Xn)
}’Z
A2 2
1 _
+ ("F" - ”3> <1n - —lnl,;) X, D.5)
Kn K n

T -1y, = (Can(pn)ﬁn Can,BO)+ /‘3,, (In - *ln ) (Can(Pn)ﬁn Can,BO)

~2
1 _
. (ﬂ;n _ H) <1,, - ;1,,1,’1) CnXnfo- (D.6)

(98] )

Kn K
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. PUIV I . 212 4
and T3, — T3, = 2w”ﬁﬂvec[)(cn —Cn)' + (% - 2U‘,’Ci)vec[)(c,t,). Let T, be
either I, or In—%lnl;,. %(fln—Tl,,)/zn =0,(1), since %()_(n(ﬁn) — X)) Ty = ZZ:I
(Pok —ﬁnk)%(Man,,)/F;lzn =o0p(1) and ,&%n/i%n —,u%/}c =0p(1). For the first two terms
in %(T2n — T,)'zn, since %[(Cn — Cn)Rn(pn) Xnpn) Thzn = op(1) by Lemma C.12,
LIChXn(Bn) = X) Bl Thzn = S, ook — hnk) 2 (CoMin X ) Tzn = 0p(1), and
(Bn = Bo) L (CoXn) Thzn = 0p(1), it follows that L(Cy Xy, (5n)fn — CaXnfo) Thzn =
%[(Cn —Cp) Rn(/;n)Xnﬂn + Cn(Xn(/Sn) = Xn)Pn + CnXn(Bn — ﬂO)]/r;Zn = Op(1)~
The remaining term in %(Tz,, — Tap)'zn is 0p(1) because ,&%n/r%n —ﬂ%/K‘ =o0p(1) and
%(FnCn)_(nﬁO)’zn = O(1). For the first term in %(T3n—T3n)’zn, it follows from Lemma
C.12 that%vec/D (Cn—Cn)'zn =0p(1). And the remaining term in %(ﬁn —T3p) znis 0p(1)
because (&3)2,&3,,/ Kn —agug/rc = 0"1(1) and %vec/D (CHYzy, = 0(1). This proves (a).

For (b), the first two terms in ﬁ(Tln —T1n) Anen are op(1) because ﬁ(X,, (pn) —
Xn) T Anen =37 _y V/1(pok = puk) L (Min Xn) Ty Anen=0p (1), where \/n(pog — pui) =
Op(1) and %(Mann)/l";lAnen =0p(1) by Lemma C.4 for k = 1,...,q. Similarly, the
remaining term in ﬁ(fﬁn —T1,) Anén is also op(1). For the first two terms in ﬁ(fzn —
T»,) Apen, we have

1
Jn

_ 1

=

(én )_{n (ﬁn )ﬂAn —Cp XnﬂO)/r; Apén

1

ﬁ[(én - Cn)Ranﬁn]/r;LAnEn

[(Cn = Cn)(Rn(pn) — Rn) Xnfn) T}y Anén +
a1 . 1.

+ 30 Vn(pok _pnk)ﬁ;/z;(Mann)/C;zr;zAnGn +/n(fn _ﬁO)/;X;zC;zr;zAnfm

D.7)

The first two terms of (D.7) are o, (1) by Lemma C.12. And the remaining terms of
(D.7) are op(1) because %(Mann)’C;,F;Anen = 0p(1) and %X;CﬁlfflAnen =o0p(1)
by Lemma C.4. Similarly, the remaining term in ﬁ(f’zn —Ton) Aney is also 0p(1). The
first term in ﬁ (f3n —T3,) Anén is 0p(1) by Lemma C.12, and the remaining term is also

0p (1) because %Vec’D (CHy Apen = 0p(1) by Lemma C.4. The desired results follow.
For (c), as the arguments are similar to those in the proof of (a), we only give the proof
for %(Tzn —T,) Dy = 0p(1). For its first two terms, we have

1 ~ - A - o

;(Cnxn (pn)ﬁn - CanﬂO)/F;z Dy,
_1 A = A A
= ;[(Cn = Cn)XnPul' Ty Dn

+ [ZZ:] (POk - ﬁnk)éananBn +Cn )_(n (Bn - ﬂO)]/r;l ﬁna (D.8)

where the first term can be rewritten as %[(CA',I - Cn))_(,,/;’n]/l",/i (ﬁn —Dy)+ %[(CA‘n —
Cn))_(nﬁn]’l";t Dy, and it is 0p(1) by Lemma C.12. The remaining term of (D.8) is also
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op(1) because fn — po = op(1), fn — Bo = 0p(1), and (Fnéann_Xn)’ﬁn = 0,(1),
(TaCnXn) Dy = Op(1). Similarly, we have (23, /&n — 43 /) (TnCnXn o) Dp = 0p(1).
Hence, % (T, — Tay) Dn = 0p(1). |

Proofs of Propositions 2 and 3. With the basic properties in Lemmas C.1-C.5 and our
assumptions, the proofs of these two propositions will be similar to the arguments in Lee
(2007a) and, hence, are omitted. |

Proof of Proposition 4. Consider the moment conditions E (g (), gn (6))" = 0,
where g, (@) is a vector of arbitrary moment functions taking the form of (4). To show the
desired results, it is sufficient to show that g, is redundant given g, or, equivalently, that
there exists an A, invariant with P;, (i = 1,...,m) and Q, st. Dy = Q1 A, according to
Lemma C.14 (c), where

oF O
Dy = (gnfo))
00
Ok,vxq Q:,(Gln)gnﬁOa---,Gpnxn_ﬁO) Q;;Xn
og (w(P, Hin), ..., t(P, Hyn)) 0§ ((P,G1n), ..., tt(P{,Gpn)) Orxi,

oG (P, Hin), .., w(PS, Hyn)) 03((Ps,G1n)s .. s tr(P,Gpn)) Otk

and
Q1 =E (g (00) &5, (00))
5010, u3Qpvecp (Pf,) - p3Qpveep(Pyy g i )
_ /J3veCID (P1n) Qp o-(‘)‘tr(Plsnpl*n) gétr(PlsnP;ﬂ]-i-k;,n)
paveely (Pun) Q5 oqu(Py, Pr) o oqu(PhuPr e )
Ok[v)(k]v , Ole:(p‘i‘Q‘H(;) .
A O1xk;y  vech (Pry) (vecp (Pln) S ""VeCD(Pp-l-q—i-k;f,n))
+(ug —30q)

O1xky  vecs (Pun) (vecp (P,) ... ’VeCD(P;+q+k;,n))

With « = ag [(;74 —1)— ;7%] = o*g(,u4 —crg) —,u%, let

208 13 -2
O M3
w1l Ogxp 09" Ig Ogxi:

Ogxk,  Ogxp
A==\ Opxte 05°Ip  Opxg 051y Opxg Opxz | -
U()_zlkx O, x p Ok, xg Ok, xp  Okyxq b
where b = (b, “'>bl,<:)/ with b; = — (/‘3/’“)61/@(1 forl=1,...,k¥. Tocheck Dy = Q)1 Ay,
the following identities are helpful. For j =1,...,p, k=1,...,q,and [ = 1,...,k}, (a)

200 = tr(G 2 = 5 P
VeCD(P;l) = &VGCD (Gjn — %In)—%'u3 (GannﬁO — %lnl,nganﬂo); (b) vecp

K K

260 Hin) - -
(P;+k,n) = =lvecp (Hkn - u( n"" In) ;(€) VecD(P;+q+l,n) =Xy - %l,, ;IX*I; and (d)

n n
k*

5 vecD(P;‘+q+l n)e;cxl =X, - %lnl,’l)_(n. It follows from (a), (b), and (d), respectively,



HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS 227

- S 200
to have that (e) agQEnj + u3vecD(f’;1) = angan,Bo; ) TOQEnk = vecD(P;+k’n);

and (g) 07, — ”752;(; VecD(P;+q+l,n)e;cxl = X,,. For an arbitrary n x n matrix P, with
tr(Py) =0, we have: (h) vec), (Py) 0%, = (078 (ua — o) /x)vec (Pu) Xu: (i) u3vec, (Py)
Q;nj + agtr(P,f P+ (ua— 3ag)vec’l)(Pn)vecD(Bj’;l) = agtr(P,f Gin): () —%Vecb
(Pn)Q5, + ogtr(P,‘f Po )+ (a— 306‘)vec’D (Pu)veep(Pyyy ) = ogtr(P,i Hpy,); and
(&) ogte(PY Py, 11 ,) + (ua = 3og)vecy (Pa)veep (P 1y ) = (g — o) vec, (Pn)
vecD(P;+q+l’n).

It follows from identity (f) the (1, 1) block of Q31 Ap is O, x4; it follows from iden-
tity (e) that the (1,2) block of Qa1 A, is —Q,(G1,Xnfo. - ... GpnXnPo): and it follows
from identity (g) that the (1, 3) block of Q31 A, is —Q), X, Identity (j) implies that the
(i+1,1) blocks of Q1 A, are —ag(tr(Pileln), -, (P Hgn)) fori = 1,...,m; identity
(i) implies that the (i + 1,2) blocks of Q1 4, are —a3(tr(P%,G1y), ..., tr(P%,Gpn)) for
i =1,...,m; and identities (d), (h), and (k) imply that the remaining blocks of Q1 A, are
zeros. Therefore, Qy1 A, = Ds.

Furthermore, as g;; (9) is a special case of g, (9), and A, is invariant with P,’s and Q. it
follows that D| = Q[ A, and hence Ql_ll Dy = Ay, where Q) = Q) = var (g7 (6p)) and
D; =E (%) Hence ) = lim;,— oo %Di Ql_llDl =limy— 00 %Di A,,. After some
tedious but straightforward algebra, the desired result follows. n

Proof of Proposition 5. We shall show that /- (0) = g,/ (9)@,’;_159,’; @) and F ,(0) =
gy (9)9;‘1 &, (0) will satisfy the conditions in Lemma C.6. If so, the GMM estimator
from the minimization of /(@) will have the same limiting distribution as that of the
minimization of J,(¢). The difference of [ ;(6) and F ,(#) and its derivatives involve
the difference of g;; () and g; () and their derivatives. Furthermore, one has to consider
the difference of f);‘; and Q7.

First, consider %(g;; ) —gn(0)). Let m* =k} + p +q. Explicitly,

1 1 4 1 . 1 R
~@n @) =8n ) = |- (05 =00, ~ €6, O) (P, = PJ)s .~ €4 (O) Py, = Pryey)| €n 0.
n n n n

The €, (0) is related to €, as €,(0) = €, (0) + (In +ZZ:1 (pok = pi) Hien) (In + Zle (/IOj -
2))Gjn)en where e,(0) = (I + X _, (o — pk)Hkn)[Zle (Loj = 2))GjnXnPo + Xn
(Bo = P)- 1t follows that 3 (05, = 0} en(0) = (05 — O3 (n + X _, (pox = pi) Hin)
(In +Z]1-7:] (Zoj— A./)Gjn)fn + %(QZ — 03) en(0) = 0p(1) uniformly in @ € © by Lemma
C.13. From Lemma C.12, it follows that %6;, (0)(13;;! —Pr)en (@) =o0p(1),fori=1,...,m*,
uniformly in @ € ®. Hence, we conclude that %(gA;: (0) — g, (0)) = 0p(1) uniformly in
0 e 0.
Consider the derivatives of g (¢) and g (6).

v1 26 ) « azgn (00)
i n 0000
) o @)t ) - 20) pus 2eal0) | o7 (9) pis E2en(®)
Mz " o0 and o 8n (9) — 00 In 00’ €n ) In 600"
60/ ’ 6969/ .
x5 0€n(6) / . ks 02
E;l (H)Pmin 00’ 96639) Pmin 5660;1/0 + E;l (G)Pmin 66;2(09/)
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The first-order derivatives of ¢, (0) are ’9%9(,6) = —[M1,un(9),..., Mgnun(9), Rn(p)Wi,
Y, ..., Ra(p)WpnYn, Ra(p)Xnl, where un () = (In _Ele 2iWin)Yn — Xu B, Rn(p) =
I, — ZZII Pk My, and Yy, = Sn_IX,,ﬁo + S,l_1 Rn_len. The second derivatives of ¢, (0) are

%6 (0 %6y (0 %6y (0
#8(,;3 = MgpWinYn, 6;70(,) = My, Xy, and ﬁ,} = 0. It follows from Lemmas C.12

06* (0 oo™ (0 ~2A*9 62 (0 .
fmg C.g that %(%9() - %5‘70()) =o0p(1) and %(Oagnaé’) - ag”aé,)) = 0p(1) uniformly
inf € ©.

Consider %(Q;’; —Q*), where

a3 0y O 1305w )

Q;, =E g, (60) &' (00)] =<
u3wi. O aéAZl* + (ug— 306‘)60;1’*60;1*

with @} . =[vecp(P},),...,vecp(Py.,)] and

tr(Pl*liPI*n) tr(PrrfPrZ*n)
me = : :
tr(Pr:S‘nan) tr(PntinP:r‘z*n)

First, consider the block matrix aé A+ (g — 303 Yor!.wk .. It follows from Lemma

Co12 that (P Pr) — hr(Pys P = el (P — Pis) P 4 S (P — Pl and vec),
1

(ﬁi;) vecp (IA’]»”;[) - %Vec’D (P%)vecp (P) = Zvec’D(ﬁ;l)vecD(ﬁj; P+ %Vec’D(ﬁ;l —

Pi;)vecD(Pj’;) are op(1) for i,j = 1,...,m*. Hence, %(&,%)2tr(Pi’:ij’;) - %061
(P Pr) and L uan - 3(&,%)2)Vec/D(P;,)VCCD(P;,) — L(us = 3og)vec)y (Pr)vecp
(P'j";l) are op(1) fori, j=1,...,m".

®/ %

Next consider the block matrix 3 Q) w; .. It follows from Lemmas C.12 and C.13 that
%QZ/ vecp (Py) — % *vecp (Pr) = %(AQZ - Q;‘l):vecD(P:l) + % 0}'vecp (P — Pl.*;l)A:
op(1), fori =1,...,m*. Hence, %(,&3,1 wveep(PY) — u3Qy/vecp(PY)) = [43,1%(Q;§/
vecp (P)— Or/'vecp(P})) + (13, —,u3)%Q;;’vecD(Pi*;l) =op(l),fori =1, ...,m*.A

Lastly, consider the remaining block matrix 0'02 Q0 Q. Lemma C.13 implies that %(Q;:
0%~ 01103 = L1003, — Q%) +(0F, — 03, Q41 = 0p (1) for i, j = 1,2,3. There-
fore, it follows that %(&,% 2Ok — ag QX or = &,%%(QZ/ QF—0YonH+ (&,% — ag)%

» Q% =o0p(1). In conclusion, %QZ - %QZ =0p(1). As the limit of %Q;’; exists and is
a nonsingular matrix (as the moments are not linearly dependent with probability 1), it
follows that (%Q;‘,)_l - (%Qj‘l)_l = 0p (1) by the continuous mapping theorem (White,
1984, Prop. 2.30).

Furthermore, because 1 (2%(0) — gi(0)) = 0p(1), and L{g*(0) —E(g}:(0))] = 0p(1)
uniformly in 6 € ©, and supycg %lE(g,’; @) = O(1) (see the proof of Proposition 3),

hence %g,’; (@) and %g;; () are Op(1), uniformly in 6 € ©. Similarly, %6%9(6), %6%}5@)’

2 % 2%
% aa%%(g) ,and % aageg(g) are Op(1), uniformly in 6 € ©.

With the uniform convergence in probability and uniformly stochastic boundedness
properties, the difference of £} (¢) and F ,, (€) can be investigated. By expansion, % (F: @) —

Fa(@)=L1a @01 (65:0) — g 0) + Lgr O) Q™ — i Dgx0) + g ) !




HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS 229

(&7 0) — g, (0)) = 0p(1), uniformly in 6 € ©. Similarly, for each component 6 of

12F30)  18%F,0) _ 2,08 /(9) x—108, (9) st oy 1 0285 (0) 083 (0) Ax—1
0, 5280 ~ n o6,60° = A O 2 1 5 (00 an50 — g

agi (0 gr(0
S+ g @)~ S = opu).

Finally, because ( %8y (HO)Q* 1 65';/(90)9*_1) = 0p(1) as above, and 178;;(60) =
6Fn(490) oF ,,(9())) —
00 -

Op (1) by the central limit theorems in Lemmas C.4 and C.5, f(

58* (6 e (O « ag, (6 * * —
2 S8 et L L 500) — g5 (00)) + (L) Ge—1_ 283 ) gy l)ﬁgn(eo)}—2%

08, (O A

e (Lo 1ﬁ( &1(00) = g1(00)) +0p(1). As —=(g1(6) = g1 (6o)) = 0p(1) by
Lemmas C.12 and C.13, f(af 1 (%) 5%5)01) = 0p(1). The desired result follows from
Lemma C.6. |

Proof of Proposition 6. The log-likelihood function for the SARAR(p, g) model is
given by (2), and its derivatives are 2 lg[f” = LR (0) Xn) e 0) = X}, (p)en(®),

Ol = —ﬁ + 5zen@)en(0). “Pkr = —tr(Gjn(p,A)) + 2 {Gjn(p. D) Xn (p)BY
en(0) + 4€,0)Gjn(p, e (©), “g;,f = —tr(Hin(p)) + €, (0) Hen€n(6), where

Ya(p) = Rn(p)Yn, Xn(p) = Ru(p)Xn, Win(p) = Rn(ﬂ)W;an L) Su(p.2) = Ru(p)
Sn(/l)Rn_l(p), and Gj(p,4) = Wj,,(p)S];l(/l), for j=1,...,pand k =1,...,q. The
QML estimator of o2 is 53;1 n @) = 1 €,,(0)€,(0) for a given value 6. Substitution of
oy l ,,(0) in the remaining likelihood equatlons shows that the QML estimator is charac-
terized by the equations X;z (p)en (@) =0, [Gjn(p, DX (p)plen(6) +e, (0)[Gjn(p, A)—
1tr(Gju(p, )len(0) = 0. and ,(O) [ Hyn (p) = Str(Hy (p))]en(@) = 0. for j =1,....p
andk=1,...,q. Denote the QML estimator of & by 8y, ,. Obviously, 6,,; , is the solution
of aygmi.n(0) =0, with
I, 000
apn=1_ 0 I, 1, 0
0 001

and

8mt.n @) = XnBmit.n)> Gin Bt s 1) X0 Boat.) Bt s -+ G pn Bt > o)
X Bnt,n) Bt n Gy Bt At n)€n ©), - Gl (ont s Aot n)€n 6),
H (Pt n)€n ), ..., Hyy (pi,n)én (0)) €0 (0),

where A’ = A — ftr (A) I, fora square matrix A. And it follows by similar arguments as in
the proof of Proposmon 5 that ay gy, (0) =01is asymptotlcally equivalent to a, &mi.n @ =
0, where gy ,(0) = [Xn,Gl,,X,,/)’ml s Gannﬂml n,Glnen(H) pnen(ﬁ)
Hlne,, @,..., qnfn (@)1 €en(0), in the sense that their consistent roots have the same
limiting distribution. The vector of empirical moments g;,; () consists of linear and
quadratic functions of €, (@), hence the corresponding optimal GMM estimator derived
from ming;nl,n (H)Q,jlgml’n (@) is in the class M,,. As the BGMM estimator is the most
efficient estimator in M,, the BGMM estimator is efficient relative to the QML
estimator.
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The best G2SLS estimator of Lee (2003) is consistent and asymptotic normal with
2 D . —
\/ﬁ(ébglvls,n —3dp)—>N (O, 0'(% (limy— 00 lA;l R;, RnAn) 1), where Ay = (G1, X0 B0, - -»

GpnXnpo, Xn). The asymptotic VarianZe of the best G2SLS estimator can be easily
compared with the asymptotic variance of the BGMM estimator in P,,. With the best
Py’s in Py, the asymptotic variance of éb, n 1s the inverse of the asymptotic precision ma-
trix in (14). By the inverse formula of a partitioned matrix, the corresponding asymptotic

variance of the component 3,5,,, of éb,n is

2

_ _ —1
(cn N <(AnB,:1A;)zz—(AnB;‘AM(AnB;‘A;)H‘ (AnBy ' Ap)1n opxkx>)
0,
0

Ok, x p Ok xky

where (A, B;71A})11 is the first ¢ x ¢ diagonal block in A, By LAl (AnB; A))2 is
the other p x p diagonal block in A, B; ' A/, and (A, B, ' A/,)21 and (A, B; 1 AL) 5 are,
respectively, the p x g lower block and the g x p upper block in A, B, ! AJ,.In Py, the best
selection of IVs is given by O = R, A, and, hence, C, = A}, R, Ry Ay. As Ay Bn_lA,, is
nonnegative definite, the asymptotic variance of the BGMM estimator in P,,, is relatively
smaller than the asymptotic variance of the best G2SLS estimator. As Py, is a broader class
containing P»,,, the BGMM estimator in Py,, given in Proposition 4 is therefore efficient
relative to the best G2SLS estimator. n



