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Abstract

This paper proposes a computationally simple GMM for the estimation of mixed regressive spatial
autoregressive models. The proposed method explores the advantage of the method of elimination
and substitution in linear algebra. The modified GMM approach reduces the joint (nonlinear)
estimation of a complete vector of parameters into estimation of separate components. For the mixed
regressive spatial autoregressive model, the nonlinear estimation is reduced to the estimation of the
(single) spatial effect parameter. We identify situations under which the resulting estimator can be
efficient relative to the joint GMM estimator where all the parameters are jointly estimated.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper proposes a computationally simple generalized method of moments (GMM)
of Hansen (1982) for the estimation of the mixed regressive spatial autoregressive
(MRSAR) models. The introduced method is designed to reduce the jointly nonlinear
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GMM estimation of a complete vector of parameters into nonlinear estimation of a single
parameter. This modified GMM procedure can substantially reduce the computational
burden. We shall identify situations under which the resulting modified GMM estimator
may not lose (asymptotic) efficiency relative to the joint GMM estimator.

The GMM estimation of the MRSAR model has been considered in Kelejian and
Prucha (1998) and Lee (2001b). In Kelejian and Prucha (1998), the method is a two-stage
least squares (2SLS). Lee (2001b) extends the moment functions of a 2SLS with additional
moment functions, which capture correlation across spatial units.

A sequential (two-step) estimation procedure in the GMM framework has been
mentioned in Ogaki (1993) and Newey and McFadden (1994). Ogaki (1993) and Newey
and McFadden (1994) describe a system of recursive moment functions where the first set
of moments contains a proper subset of parameters in the model and the remaining
moments may contain all the parameters. A sequential GMM estimation is motivated by
computational simplicity as a two-step estimation procedure. The sequential approach uses
the first set of moment functions for the estimation of the relevant subset of parameters,
and, recursively, it estimates the remaining parameters by using the second set of moment
functions. Ogaki (1993) notes that the asymptotic distribution of estimated parameters in
the second step GMM estimation will, in general, depend on the asymptotic distribution of
the first step estimates. He derives the optimal distance matrix in the second step GMM
estimation. Newey and McFadden (1994) have discussed similar issues. A sequential
GMM estimator may be inefficient relative to the joint GMM estimator derived by
using the complete set of moment functions with an optimal distance matrix. There are
other estimation approaches which may involve two-step estimation. For example, for
the estimation of a MRSAR model with spatial correlated disturbances, Kelejian and
Prucha (1998) discuss a feasible generalized 2SLS approach. This approach will first
estimate the MRSAR equation with a 2SLS. The spatial process of the disturbances is
then estimated with the estimated residuals. The final estimate of the coefficients of the
MRSAR equation comes from a feasible generalized 2SLS estimation. The system of
moments in this case is not recursive in parameters. This two-step approach concerns
feasible weighting issue in the generalized 2SLS approach. The two-step method in this
paper is not related to weighting issues as we are considering the estimation of a MRSAR
model with 1.i.d. disturbances.

The systems of moment functions for the estimation of the MRSAR model in Lee
(2001b), which extends the 2SLS moment functions in Kelejian and Prucha (1998) with
additional moments, are not recursive in parameters. The additional moments are
quadratic functions in parameters. They are designed to improve the possible efficiency of
estimators. These nonlinear moments render the estimation of the complete set of
coefficients of the MRSAR equation into a nonlinear estimation framework. The MRSAR
equation is linear with respect to exogenous regressors but it has a nonlinear feature in its
reduced form due to the spatial interactions. The coefficients of the exogenous regressors
seem a nuisance in the nonlinear estimation because once the spatial interactions
parameter is given, the regression coefficients can simply be estimated by the method of
ordinary least squares (OLS). Therefore, one may have the desire to reduce the nonlinear
estimation into the estimation of the (single) spatial effect parameter.

In this paper, we introduce the method of elimination and substitution within the GMM
framework. This method eliminates the coefficients of exogenous regressors of the
MRSAR from the original GMM functions. After substitution, the nonlinear estimation
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will focus on the spatial effect parameter in the remaining moment equations. System-
atically, the modified moment equations can be cast in a sequential GMM estimation
framework and the estimation becomes a two-step method. This approach is
computationally simpler than the jointly nonlinear GMM estimation based on the full
set of moment functions. The remaining issue concerns the possible loss of efficiency
of this sequential estimation. We show that the resulting GMM estimator, or equivalently,
the corresponding sequential (two-step) estimator, can be asymptotically as efficient as the
joint GMM estimator under certain circumstances. They include the case where the
disturbances have zero third order moment, in particular, normally distributed
disturbances. They include also the case with large group interactions. The asymptotic
efficiency will always be preserved under a certain class of moment functions.

This paper is organized as follows. In Section 2, we review the 2SLS, the joint GMM,
and the sequential GMM approaches for estimating the MRSAR model. The method of
elimination and substitution within the GMM framework is introduced. Section 3 lists
some basic regularity conditions and discuss identification of the model. The consistency
and asymptotic distribution of the modified GMM estimator in the presence of valid
regressors are derived in Section 4. Relative efficiency of the modified GMM estimator is
studied. Section 5 studies the model with large group interactions under a situation of
nearly multicollinearity. Section 6 studies estimation issues when the MRSAR model
possesses a feature of exact multicollinearity. Conclusions are drawn in Section 7. For easy
reference, frequently used notations in the text or in the proofs are collected in Appendix
A. Some useful lemmas for the proofs are in Appendix B. Proofs of the main results are
collected in Appendix C. Appendix D provides a numerical identity of the modified 2SLS
estimator with the conventional 2SLS estimator for the MRSAR model.

2. The MRSAR model, 2SLS, joint GMM, sequential GMM, and the method of elimination
and substitution

2.1. The MRSAR model

The simplest MRSAR model is specified as
Yy=2W,Y,+ X0y + &, (2.1)

where &), = (e, ...,¢&), & is i.i.d. (0, 0%), W, is a specified n x n spatial weights matrix of
constants, and X, is a n x k matrix of exogenous variables with full column rank. The
MRSAR model is an equilibrium model. The Y, can be determined from the system as

Y=Ly — 20W,) " (XuBy + En). 2.2)

This model has been introduced in Cliff and Ord (1973). See, also, Anselin (1988) and
Cressie (1993).

2.2. The 2SLS estimation

The MRSAR equation in (2.1) may be estimated by the 2SLS method if there are valid
instrumental variables (IV) available from the model. When f, is zero, model (2.1)
becomes a pure spatial autoregressive process, i.e., ¥, = oW, Y, + &,, and no valid IV
constructed from X, is available. When f, is not zero, functions of X, (and W,) can be
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valid IV variables. Kelejian and Prucha (1998) suggest X,,, W,X, and/or Wan to form
the IV matrix. From (2.2), the ideal IV for W,Y, shall be W, (I, — Ao W,,)*IXHBO. The
W,X, and WﬁX » provide approximations to this ideal IV.

Let O, be an n x r IV matrix with full column rank r, where r>k + 1. The 2SLS
estimator of (o, f;)’ is

o (WaYa) a0
B = )d Qn(p)(Wn Yy, Xn) bd Qn(p) Y, (2.3)

where, for any matrix 4, Ap) = A(A'A)"' 4’ denotes the orthogonal projector to the
column space of A. The 2SLS estimator in (2.3) is a joint estimator in the sense that 4 and
are jointly estimated in a single step.

2.3. A GMM approach

The 2SLS estimator (2.3) may not be efficient relative to other estimators such as the
maximum likelihood (ML) estimator with some exceptions.' Lee (2001b) has introduced a
GMM estimator derived by combining the moment functions of the 2SLS and other
moment functions capturing spatial correlation. That GMM estimator can be efficient
relative to the 2SLS estimator. For the MRSAR model (2.1), for any possible value
0=,pB), let

en(0) =, — AW, Y, — X,uP.

The empirical moment functions for the GMM estimation in Lee (2001b) consist of
€, (0)P,e,(0) and Q)¢,(0) where P, is a n x n constant matrix with a zero trace. As W, is a
constant matrix with zero diagonal, W, can be used as a P,. Other matrices generated

2 . . .
from W, such as Wﬁ — WZH, etc, may also quahfy.2 With several such matrices
Pin, ..., P, the vector of moment functions for the GMM estimation can be

132(0) = (&,(0)P1en(0), . .., &,(0) Prnen(0), ,(0)0,)'. 24

The corresponding optimally weighted GMM estimator can be asymptotically efficient
relative to the 2SLS estimator (2.3) because of the additional quadratic moment functions.?
For cases where there are no valid IVs, &,(0)Pj,e,(0), j = 1,...,m, provide the identification
and estimating functions for 4 (Lee, 2001a).

From the computational point of view, the GMM estimation is relatively more
demanding than the 2SLS approach. While Q) ¢,(0) is linear in parameters, &, (0)P;,e,(0)’s
are quadratic functions of 6. With these moment functions, the GMM objective function
for minimization will be a quartic function in 0, and the GMM estimator needs to be
derived via a minimization routine. The minimization will involve the search for the
estimator in a (k + 1)-dimensional parameter space. For ML estimation,  can be easily

"For some models with large group interactions, the 2SLS estimator can be as efficient as the ML estimator, see
Lee (2002).

%In a subsequent section, it shall be shown under some situations that the best selected P, is W,(I, — Ao W,) ' —
%tr[ W, — 2o W,z)’l]l,,. The matrices generated from W, provide valuable approximations to the best one.

3For some models with large group interactions, these additional moment functions may not increase
asymptotic efficiency over the 2SLS estimator. For other cases, the issue of the appropriate number of matrices Pj,
may become less a problem because of the existence of the best one in the preceding footnote.
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concentrated out and the optimization is on the single 4. On the contrary, § in the GMM
estimation with the moment functions (2.4) cannot be easily concentrated out. For a given
A, the MLE of f§ is linear and is simply the OLS estimator of (,, — AW,)Y, on X,. On the
other hand, the GMM objective function is a quartic function in . Given A, the GMM
estimation of f is still nonlinear. This motivates the search for a computationally simpler
GMM estimation for the model.

2.4. A method of elimination and substitution within the GMM framework

We suggest the estimation of 4 and f in steps. First, ff shall be evaluated given any value
of J via a subset of the linear moment equations.* After substitution into the remaining
equations, A will be estimated by the GMM method. Finally, f# can be estimated once the
estimate of A is available.

Consider O, = (Q,,, X,) where @, is a matrix of possible instrumental variables
excluding X,. Given a value of 4, an estimator f,(4) can be derived from the following
linear moment equations:

X (Y= WY,k — X,Bu(2) =0, (2.5)
which is
B2 = (X, X)) X (I — AW ,) Y. (2.6)

For a given /, let the least squares residual vector be
F\Jl(/l) = (In -4 Wn) Yn - Xnﬁn(;h) = Mn(ln - AWH) Yn; (27)

where M, =1, — Xn(X;Xn)_lX;. By substituting ﬁn(i) for f in (2.4), these moments
become, respectively, 8x,,1()v)’P,~,18x,,1(2), j=1,...,m, and Q&.,(1). For the GMM
estimation of A, the empirical moment functions are’

g,(4) = (g;,n(i)PlnSx,n(/l)a s 8;,,1(2)Pn7n8x,n(;h)a 8;,n()v)in)/~ (2.8)

At Jy, denote &y, = &y ,(4o). Because &, = M,&,, E(ey,) = 0. These moment functions
resemble those in (2.4) with ¢,,(2) and Q,, replacing, respectively, ¢,(0) and Qn.6 The g,(4)
is still a quartic function of 4. But a GMM minimization will involve only a one-
dimensional search over the parameter space of 4.

The modified moment functions after elimination and substitution can be cast into the
sequential GMM framework of Ogaki (1993). In the general sequential GMM framework,
f(zi,0) = (' (zi,01),/5(z1,01,0,2)) consists of recursive sets of moments. The first set of
moment functions f(z;, 0;) depends on the parameter component 0;, where z; is the ith
vector of sample observations. The 0, is a subvector of 0, where 6 = (6, 05)". The second
set of moment functions f,(z;, 01, 0,) depends on both 0; and 0,. The sequential GMM
estimation approach separates the estimation of 6; and 0, in two steps. It may be

“If one intends to eliminate f§ from the whole set of linear and nonlinear moment equations for a given A, this
would concentrate out the . However, the latter would involve nonlinear estimation of  under the assumption
that each of P, with j=1,...,m has a zero trace.

5The linear moments involve only Q,,; instead of Q, because X " &xn(4) is identically zero for all A by construction.

®We note that there is a minor difference of these recursive moment functions from those in (2.4) in that
E(sf\,)nP/-,,sx,,,) = cr% tr(PjuM,),j = 1,...,m, are not necessarily zero. However, one may show that they can be close
to zero when divided by the large sample size n under the assumption that P;,’s have a zero trace.
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computationally convenient to estimate 0; from f(z;, 0y) first, and then estimate 0, from
f 2(2,,91, 0,), where 01 is the first step estimate of 0, in a secondstep For the modified
GMM estimation based on (2.6) and (2.8), the complete set of recursive moments is

Jn(0) = € (D P1exn(A); - . . € (D Prnern(A), €y (D) Opys €,(0) X n).- (29)

The estimation with the moment functions in (2.8) for 4 corresponds to the first step
estimation with 6 being A. The least squares estimation in (2.6) corresponds to the second
step GMM estimation with the moment functions X¢,(0) and 0, being f.

Because a sequential GMM estimation may lose efficiency relative to the joint GMM
estimation, in the subsequent sections, we shall investigate asymptotic properties of the
modified GMM estimator and compare its efficiency with that of the joint GMM estimator
based on the original moments (2.4) as well as that based on the complete recursive
moments (2.9). We shall identify circumstances under which the sequential estimation may
be efficient as the joint GMM estimation of the MRSAR model.

3. Some basic regularity conditions and model identification
3.1. Some basic regularity conditions

In order to justify asymptotic properties of the modified GMM estimator, it is essential
to have restrictions on the sequence of spatial weights matrices {W,}. In the empirical
literature, there are generally two different types of spatial weights matrices. For
geographical problems, W, may be a sparse matrix as neighboring units for each spatial
unit are defined by only a few adjacent ones. For social interactions problems in group
setting, each unit may be influenced by all members in the group but each member of a
group may have only small influence on other members. In many cases, the group size can
be large. An example of the latter is the model in Case (1991). To allow both scenarios, the
following assumptions are the basic regularity conditions for the model (2.1).

Assumption 1. The disturbances ¢;’s of (2.1) are i.i.d. with zero mean, variance ¢ and its
moments of higher than the fourth order exists.

Assumption 2. The elements of exogenous variables in the n x k matrix X, are uniformly
bounded constants, X, has the full column rank k, and lim,,ﬁoo%X X, exists and is
nonsingular.

Assumption 3. The spatial weights matrices {W,} and {({, — 4 W)™ at A=) are
uniformly bounded in absolute value in both row and column sums.

Assumption 4. The elements of W, = (w,;) are of order O(t) uniformly in 7 and j, where
{h,} can be a bounded or a divergent nonnegative constant sequence.

h
Assumption 5. If {/,} is a divergent sequence, lim,_, o 7= =

"The main issues discussed in Ogaki (1993) and Newey and McFadden (1994) concern the asymptotic
distribution of the second step estimator of 6,. Newey and McFadden (1994) have focused their attention on an
exactly identified moment system. Ogaki (1993) describes the optimum selection of the distance matrix in the

second step GMM estimation. The second step estimator of 62 will, in general, be affected by the asymptotic
distribution of the first step estimator of 6; unless E(afzw)(’))
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Assumption 6. The parameter space A of /g is a compact interval of the real line with 4y in
its interior.

These six assumptions are the basic structures of the model. The variances of quadratic
forms ¢, P, exist as the fourth moment of ¢, exists. The existence of a moment higher
than the fourth order is needed for the application of central limit theorems for quadratic
forms (Kelejian and Prucha, 2001). Assumption 2 is a convenient assumption, which can
be replaced by proper finite moment conditions if x is stochastic without a bounded range.

The notion of uniform boundedness in absolute value in row and column sums of a
sequence of matrices in Assumption 3 is important. For any sequence of n x n matrices
{A4,}, where A4, = (a,;), A, is uniformly bounded in absolute value in row sums
(respectively, column sums) if there exists a finite constant ¢ such that max;¢;<,
Z}Lﬂan,gyléc (respectively, maxj<j<,) p;ldn;j|<c) for all n. These conditions can be
expressed as boundedness in matrix norms for {4,}. The || 4,]; = maxi<j<,D_ i |an;l is
known as the maximum column sum matrix norm of 4,, and ||4,ll, = MmaXi<i<x
> i—ilan gl is its maximum row sum matrix norm (Horn and Johnson, 1985).% As a matrix
norm satisfies the submultiplicative property, when two sequences {4,} and {B,} are
uniformly bounded in absolute value in row (column) sums, its product sequence {4, B,}
will also be uniformly bounded in absolute value in row (column) sums. The variance of
Y, from (2.2) is aj(I, — Ao W) NI, — o W;l)*l. Along with Assumptions 1 and 2,
Assumption 3 guarantees, for example, that the elements of Y, have finite variances and
the sequence of variances is bounded as n goes to infinity. These uniform boundedness
conditions originated in Kelejian and Prucha (1998, 1999, 2001). We note that the uniform
boundedness condition for {(I, — AW,)"'} is imposed at A= y. It can be shown, in
general, under this condition the uniform boundedness property will also hold uniformly
w.r.t. Z at a small neighborhood of 4, (Lee, 2004).°

Assumption 4 includes both the conventional spatial scenario of few neighbors and the
social scenario with a large number of small interactions in Case (1991).'° In Case’s model,
‘neighbors’ refer to farmers who live in the same district. Suppose that there are R districts
and there are m farmers in each district (for simplicity). The sample size is » = mR. Case
assumed that in a district, each neighbor of a farmer is given equal weight. In that case,
W,=1r® B,,, where B,, = ﬁ(lml;n —1I,), ® is the Kronecker product, and /,, is a

m-dimensional column vector of ones. In this example, &, = (m — 1). If sample size n
increases because m is increasing, then {/,} will be a divergent sequence. When 1< 1, it is
easy to see that the uniform boundedness conditions in Assumption 3 are satisfied for this

. . . h _ m—1 1 _ 1 . . . .
large interactions scenario. As * = ("-5) - = O(g). If sample size n increases by increasing

both R and m, then £, goes to infinity and %” goes to zero as n tends to infinity. Assumption
5 rules out extreme cases that /4, diverges to infinity at the rate n. If A, is divergent to
infinity at the rate n, one can give an example that the GMM estimator is inconsistent. The
same phenomenon is observed for the ML estimation of the model (Lee, 2004).

8The norms || - ||, and || - |l are related to L; and L., for integrable functions. This is so because they are the
matrix norms induced by the corresponding vector norms for finite dimensional vectors.

“Uniform boundedness of {(I, — AW,)~'} uniform w.r.t. A in its whole parameter space A would be a stronger
requirement. For the GMM approach, the stronger requirement is not needed.

1%We note that the uniform boundedness condition for W, in Assumption 3 rules out the possibility that {/,}
goes to zero. This is so, because the uniform boundedness condition implies that all elements of W, = (w, ;) are
uniformly bounded for all 7,;.
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For general nonlinear extremum estimation, a parameter space is generally assumed to
be a compact set (Amemiya, 1985). This is so for our model by Assumption 6. For our
case, the nonlinearity of A appears in a quartic form of the objective minimization function.

As the IV matrices O, and P;,’s are usually generated from X, and W,, they shall have
similar properties as those of X, and W, in Assumptions 2-5. In particular, it is reasonable
to assume that they shall possess the properties in the following assumption.

Assumption 7. The elements of Q, are uniformly bounded in absolute value. The constant
matrices Pj,’s with tr(P;,) = 0 are uniformly bounded in absolute value in both row and
column sums. The elements of P;,’s, where P, = (p,;), are of order O(i) uniformly in i
and j.

Additional regularity conditions shall be subsequently specified.
3.2. Identification

Consider the identification of A via g,(4) in (2.8). From (2.7), in terms of its relation
to &,

exn(2) = MLy = AW )Ly = do W)™ (XuBy + 1)
= (/LO - )L)Mn Wn(ln - )LO Wn)_anﬁO + Mn(In - an)(In - j~0 Wn)_lgna (31)
where the first term on the right-hand side of the last equality follows because (1, — AW},
Ly = 20W) =1, 4+ (o — WWo(Iy — JoW,)~ " and M, X, = 0. Therefore,
E(Qzlex,n(i)) = (}0 - ;L)Qilan Wn(ln - )»0 Wn)_anﬂO (32)
and
E(€ (D) Ppexn(2) = (o — A Wil — 2o W) XuBo) MuPiuMuW (L — 2 W)™
XXy + 0% tr[(1,, — 2o Wn)/_l(ln — A Wn)/MnPjn
XMLy = 2Wa)(In = 2 Wa) '], (3.3)
From (3.2), E(Q, ¢.a(2)) = 0 has a unique solution at 1 = 2q if Q,, M, W,(I, — AoW,)™"
Xy #0.
If w,I,— 4 Wn)_an[)’O depends linearly on X, for large n, M, W,(I, — Ao W,,)_l
Xnfy =0 and the identification of Ay will rely on the moment equations in (3.3). An
obvious example of multicollinearity is that all the regressors in X, may be irrelevant, i.e.,

fo = 0. Another relevant example is that W, is row-normalized and X,, = (/,,, X2,), where
[, is a vector of ones, but X, is a subvector of spatially varying regressors with zero

coefficients. In this situation, X,f, = /,f,, where f, is the intercept and W,([, —
W)t X,py = l%oln. For any square matrix A, denote 4> = A + A/, i.e., the sum of 4
and its transpose. 4° is symmetric. When linear dependence occurs, (3.3) becomes
E(&),(2)Pjuexn(4))
= o (s = W) ™ (In = AW Y My Py Moy = AW ) Ly = 2o W) ']
= apl(do — D (P, WLy — 2o W) ™)
+ (o = Pty = Ao W)™ X W P WLy = 20 W)~} + O(1),

/
n
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where the simplification comes from Lemmas B.4 and B.5 in Appendix B, and tr(P;,) =0
The identification of 4y shall be based on E(e)(2)Pjueq(2) =0, j=1,...,m, with m=2,
similar to those for the identification of the pure SAR process in Lee (2001a).

The identification of Ay (and hence f;) can be summarized:

(i) either hm,HOO 1 O WLy — 2o Wy)~ 'x 2Pos n] has the full rank (k + 1) or,
(i) hrnn_m X /X has the full rank &, lim,_, o 2 2 Ar(Pju Wl — 2o W)~ "Y£0 for some Js
and

hm _ [tr(P Wn(ln - ;LO Wn)il)a tr(P Wn(ln - AO W11)71)],

In mn

is linearly 1ndependent of
lim —[tr((I — S W)W PLW (L, — W), (T, — A W)

X W;Pmn Wally — 2gWy)~ )] .

The identification condition (i) explores the existence of relevant regressors and valid
instruments. By substituting the reduced form of W,Y, into (2.1), the reduced form
equation (2.2) can be expressed as

Yn = ;LO[Wn(In - /10 Wn)_anﬁ()] + Xnﬁo + (In - }~0 Wn)_lgn- (34)

This condition (i) will fail if W,(I,, — Ao W,) "' X,, py and X, are multicollinear (in the limit).
For example, without the presence of valid regressors X, , = 0 will imply the failure of
this condition. The condition (ii) can remedy this situation as it explores the correlation of
Y, via the correlation of the reduced form disturbances (/,, — Ag W,,)*lé”‘,,. While condition
(1) is invariant with the size of group interactions, namely /,, condition (ii) involves
explicitly /,. This is so because tr(P}, W,(I, — 2 W,)~') = OGL) and tr((, — 2o W)~ W,
Py, W, (I, — Ao W= O(hl”) as shown in Appendix B. For subsequent analysis of
asymptotic properties of the modified GMM estimator, it is desirable to separate the
situations of condition (i) and condition (ii).

4. Consistency and asymptotic distribution of the modified GMM estimator in the presence
of valid regressors

In this section, we consider the situation (i). When W,(I, — 4 Wn)‘lX 2By and X,
are linearly independent, (i) can be valid as long as the IV matrix Q, is properly chosen.
Because Q, = (Q,;,X,), condition (i) is equivalent to that hm,,_>Oo Q M, W, I, —
AW~ 'x #Po#0 and hm,Hoo X X, has the full rank k. 1

Assumption 8. lim,_.co L O, M, W (I, — oW ,)~' X,y #0.

Because E(W,Y,) = W,(I, — 4o W,,)_IX,,/SO, Assumption 8 means that the IV’s in Q,,
shall be chosen such that they are correlated with E(W,Y,) after the influence of X, has
B)_(A B( Ip B)(

'This follows because (D, ‘D n 9y where C is nonsingular.
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been taken out. If M,E(W,Y,) were zero, this assumption would fail. Cases where
Assumption 8 is violated will be considered in a subsequent section.

Suppose that Q, is a n x r matrix. The matrix Q,, will then be a n x (r — k) matrix. Let
F, be a constant (stochastic) s x (m + r — k) matrix of full row rank s, where s> 1, which
converges (in probability) to a constant matrix Fo with full row rank s. The modified
GMM estimator 4, is derived from min; g),(1)F, F,g,(2) with g,(2) in (2.8).

4.1. Asymptotic distribution of the modified GMM estimator

Consistency of the modified GMM estimator /. can be established in Theorem 1 below.
For the asymptotic distribution, the first order condition of I i WF;ann(in) =0. By

the mean value theorem of gn(in) at Ao,

~ — -1 ~
Ay (ag"“”) F,r, “”)> ) b Fog o), @)

04 ox GV

where 1, lies between 4, and ;In and

0g,(A , _
D) (Phyen(DD - P, QY MWLy — W) Xy 6,0, (42)
For any sequence of constant vectors {b,} with all its elements being bounded, %b;é"n =

op(1) and, for any sequence of constant matrices {4,,} uniformly bounded in absolute value

o2
in either row or column sums, %é”‘;Ané”‘n =-21r(4,) + op(1) by Lemma B.8. It follows that

19g, (% 1
19uo) _ 1 p o+ ool), 7
n a)u n

where
D, = [O—% Cons (Wn(ln - /10 Wn)ian,BO)/Mnin],

and Cpy, = [tr(P}, WLy — Ao W)™ D), tr(P, Wl — 2 W) ™.
The asymptotic distribution of 4, can be derived from (4.1) and (4.3). The proof is in
Appendix C.

Theorem 1. Under the regularity Assumptions (1-8) and that, for any 1+ g, lim,,_, « %E (g9,(A),
where g,,(7) is based on (2.8), does not lie in the orthogonal space of the rows of F, the modified
GMM estimator 2, is consistent and

—1

3 1 /o ! 1 ) d
(A, — 2g) = (Z DnFnFnD,,> D,F,F, %gn(ﬂo) + op(1) — N(0, X)), 4.4
where
: 1 / ! - / ! 1 ! 1 / ! -
Y, = lim EDnFnF”D,, D, FF, . Var(g,(40))F, FnD, EDnFnFnD,, , 4.5)

which is assumed to exit.

The condition in Theorem 1 that, for any A# Ao, lim,Hoo"—?E(gn(/l)) does not lie in the
orthogonal space of the rows of Fj, shall hold under the identification condition in



L.-f. Lee | Journal of Econometrics 140 (2007) 155-189 165

Assumption 8 as long as {F,} is chosen not to wipe out all the information in g,,(4) (Ruud,
2000). The asymptotic distribution of A, has the familiar expression in the typical GMM
framework. The variances and covariances of g,(4o) can be derived from the formulas for a
quadratic function (see, e.g., Lee, 2001a). For any n x n square matrix 4 = [a;], let
Diag(A4) = diag(ay, . . .,a,,) be the diagonal matrix and vecp(4) = (aji,...,a,,) be the
vector formed by the diagonal elements ay, ..., a,, of A. Appendix A provides a summary
of these notations and others used in this paper for easy reference. The components of
var(g, (o)) are

Var((g;,MnPjnMn@@n) = (:u4 - 363) tr(Diagz(MnPjnMn)) + 03 tr(MnPjnM"}).;n)a

E(& M,PyyM,8, - M, PiyM, &) = (ug — 303) vec (M, Py M ,)vecp(M, P, M )
+ oy tr(M, Py M, P;, M,),

Var(Q;nMnéan) = G(Z)Q;nMnin , and E(Q;lanéan : g;,MnPjnMngn) =3 Q;ﬂMnVGCD(MnPjn
M,), where uy = E(&}) and p, = E(¢}). When ¢ has a symmetric distribution (or more
general, p3 = 0), quadratic moments &, Pj,éy, will be uncorrelated with linear moments Q&
and the variance matrix of g,(4¢) will be block-diagonal. The following lemma can simplify the
expression of % Var(g,(%o)) in the limit. It says that in many relevant quantities, the presence of
M, can be ignored in large samples. The proof of this lemma is given in Appendix C.

Lemma 1. Suppose that the sequence of n x n constant matrices {P,} is uniformly bounded in
absolute value in both row and column sums. The elements of {P,} and the sequence of vectors
{q,} are uniformly bounded. Then, under Assumption 2 for X,,

(1) tr(Pnjwn) = tr(MnPn) = tr(Pn) + O(l),
(2) tr(MnPnMnP;) = tr(PnP;) + O(l)s
(3) vecp (M, Py)q, = vecp(Py)g, + O(1) and vec,(M,P,M,)q, = vecp(Pn)q, + O(1), and
(4) UeC/D(anlnMn) UeCD(MnPZnMn) = UeC/D(Pln) UeCD(P2n) + O(l)
Furthermore, when P, ;; = O(hl”) uniformly for all i, j, where h, is a rate not larger than the

rate n,
(5) tr(Diag* (M, P, M) = S P2 + OGh).
Denote w, = (vecp(Pin), . . ., vecp(Pmn)), which is a n x m matrix. Let
o - ((u4 - 303)/60’”60;1 + a5 uzsw/;Mnin ) 46
1439, M n 0, 759 MnQn
where
tr(Pi,P3,) ... t(PuP;,)
4, = : : : 4.7)
tr(P1,P;,) ... tr(PuP;,,)

Lemma Ishows that ! Var(g,(4)) —1Q, = O() = o(1)."

°The term M, Q,; cannot be simplified because it is the projection of Q,; into the orthogonal space of the
column space of X,.
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For large group interaction cases, i.e., lim,_, /A, = 0o, lim,,_mo%Qn can be further
simplified. As elements of P,’s are O(L), ; w,w, = O(hlz), r4, = 0@ and Lo, M, 0, =

O(hl") by Lemma B.2. Therefore, as h, — o0, 1Q, —10* = 0(11‘7) = o(1), where

n

0 0
QF = , . 4.8
" (0 aﬁinMan) 49

Let Fy=Fu,-.., Fum, Fny), where F,;, j=1,...,m, are s-dimensional column vectors

. . . . . . . 3 d
and F,, is a s x (r — k) matrix. The above simplification implies that /n(4, — 1¢) —
N(0, 2), where

1 A -
Z/l = lim |: B) (” n(ln - ZO” n)_lXnﬁO)/MninF,,anxQ;ﬂMn” n(In - AO” n)_anﬁO
n >

2
g A — 7 ’ ’
X nig(Wn(In — Ao Wn) IXH:BO)/MninanFnXinMninF;LxF"Xin

_ 1 - / / /
XMy WLy = o W)™ Xufy [;(Wn(ln = A W) XuBo) MQi F Fx O
-1
XMy WLy — 4o Wn)_anﬂO] 4.9)

in Theorem 1. An implication of (4.9) is that, for large group interactions, &, ,(4)Pjéxn(4)
does not provide an asymptotic effect in addition to that of Q, &, for the GMM
estimation of A under Assumption 8. R

It remains to consider the asymptotic distribution of the modified estimator f3, of f,.
Because

By= (X X)) X.Su() Yo = (XX ,) " X0[Ly — (o = 20) WLy — 2o W)X uBo + 1),
(4.10)

it follows that

1

%X’no@n — (XL X) T XLW oLy — 20 W) XuBon/n(in — 40) + 0p(1).

Jath, — o) = (%X;,Xn)fl
@.11)

From Theorem 1 and (4.11),

1 / !/

—D,F,F,D, 0

n A~
1 1 \/ﬁ(gn - 90)
;X; WLy — 20 W) "' X B, gX;,X,,

1 1
"D F g, (7
pontn ﬁgn(ﬂo)

- | X' &, + op(1).

Jn
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As E(X,&y - ¢,(Z0)) = 1, + O(1) where 5, = (u3X},w,,0)', it follows that (0, — 0y) S
N(0, Zy) where
1 -1
D, F,FD, 0

20 = lim
n— 00 1

1

X Walln = doWa)" Xy XX,

n
1 Il 1 / 1 7
;DnFnFnZVar(gn(}VO))FnFnDn ﬁDnFnF”nn

1
—,F),FyD, o3-X) X,
n n
Uy 1 ~1 /
EDnFnFnDn Z( Wn(ln - AO Wn) Xnﬁo) Xn
x . (4.12)

1
0 XX,

In summary, the estimates Jn and Bn are /n-consistent, and asymptotically normal under
the crucial condition in Assumption 8 in addition to the basic regularity conditions in
Assumptions 1-7.

The GMM estimation miny g,(1)F, Fng,(%) can be implemented by a nonlinear least
squares programming. The F,g,(1) can be expanded in A:

m
Fog,() = (Z Fy Y M,Pi,M,Y, + F,.Q, M, Yn>
Jj=1

m
_ (Z FyY,W,M,P, MY, + F O M, W, Yn> )
J=1

+ ( Fy Y. W M,PyM,W, Y,,) 2?
J=1

and can be regarded as a ‘residual’ vector of a nonlinear least squares equation with s
number of observations and two regressors. The vector of the dependent variable is
(Z;n 1Fnj Y;,anjnMn Yn + anQ;ﬂMn Yn) and (ijlerg/ Y;7 W;anjs‘nMn Yn + Fn,YQ;an

W,Y,) and (Z}”IF,U- YW, M,P,,M,W,Y,) are the two vectors of regressors with

nonlinear coefficients 4 and —A%>. The GMM minimization corresponds to the mini-
mization of the sum of squared residuals.

4.2. The modified GMM estimator with optimum weighting

With ¢,(4) in (2.8) and the variance matrix @, of g,(4) in (4.6), the optimum GMM
estimation for /Ay in the modified approach is
min g/,(1)2;'g,(2). (4.13)

Theorem 2. Under Assumptions (1-8) where {h,} is a bounded sequence, and the conditions
that limnﬁoo%Qn and lim,,ﬁoo%D;Q; 'D,, exist and are nonsingular, the modified optimum
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GMM estimator from min ¢, g;l(/l)fz,jlgn(i), where g,(1) is based on (2.8) and %f)n—
%Qn = op(1), is consistent and

~1
G — 70) S N(O, lim <111D;,Q;ID,1> ) (4.14)

n—o00

The corresponding modified optimum GMM estimator 0, of 0y is asymptotically normal with
the asymptotic variance

1

X D.Q.'D, 0 \ (D'D, D"y,
Asy. Var(0,) = , _ , ’ o-1 2y
X" Wn(ln - )~0 Wn) Xnﬁo Xan ”nQn D” O-OXHX”
D;Q;an (Wn(ln - ;LO Wn)ilxnﬁO)/Xn
X . (4.15)
0 X, X0

The results of the above theorem can be valid only for the case with small group
interactions, i.e., {h,} is a bounded sequence, because the limit of %Q,, needs to be
nonsingular. For the large group interaction case with /, being a divergent sequence, the
limiting matrix of %Qn will be singular as seen from (4.8). In this case, the quadratic
moments &, ,(4) Pjyéxq(4) are dominated by the linear moment Q& ,(4) (see the discussion
below (4.9)). The corresponding modified optimum GMM estimator turns out to be the
familiar 2SLS estimator as shown in Appendix C.

The modified GMM estimation is a sequential procedure. Instead of this sequential
estimation, the relevant moment functions can be stacked together and A and f can be
jointly estimated. The following subsections compare the efficiency of the various GMM
approaches. For the divergent 4, case, the modified optimum GMM estimator is the
familiar 2SLS estimator. So it remains to consider the bounded 4, case.

4.3. The modified GMM estimator vs joint optimum GMM estimators

4.3.1. The recursive moment functions (2.9)
The variance matrix Var(f,(0)) of (2.9) is asymptotically equal to

(/14 - 363)0);,(1111 + GgAn ﬂ}w;,Mnin MSw;Xn
Qc,n = M3Q;/11Mna)n G%Q;uMnin 0 S (4.16)
U3 X, 0 alX! X,

in that 1 Var(f,(00)) — 1 Q. = o(1). Let 0. be the optimum GMM estimator from min, f”,(0)
Q;,i /,(0). With similar arguments as for Theorem 2, it can be shown that

—1
S0y — 0) 2N (o, <Ji“20 %D;,ngg,lpt,,,,> ) (4.17)
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where

B <oécmn (Walln = 20 W)~ XuBo) M, Q,y (Wn(ln—zoWn)—‘Xnﬂo)/Xn)
c,n — .

0 0 XX,
(4.18)
Consider the distance matrix Q, ! where
(g — 3000, + a3, w30, M, 0, 0
Q= 130, Moy 5305 MO,y o | (4.19)
0 0 73X, X

The matrix €, differs from Q. in (4.16) by replacing the component ;) X, in Q., with a
zero submatrix. The matrix €2, is a block diagonal matrix.

Theorem 3. The modified GMM estimation of A and [ is equivalent to the joint GMM
estimation ming f ;l(())Q’1 1.(0), where f,(0) is based on (2.9).

8,1

As any possible nonzero correlation between recursive moment functions is ignored in
the weighting matrix € ,, the modified GMM estimator 0, can be inefficient relative to the
joint optimum GMM estimator 0.,. However, when u; =0 or that P,’s have zero
diagonals, there is a zero correlation and €, = Q.,. Under such circumstances, the
modified estimator is as efficient as the joint optimum GMM estimator.

Corollary 1. Under the conditions in Theorem 2, when i3 = 0 or for the case that P,’s have
zero diagonals, the modified estimator 0, is as efficient as the joint optimum GMM estimator
Ocn.

The case @3 = 0 occurs, for example, when the density of ¢ is symmetric. The other case

holds when P,’s are designed to have zero diagonals.

4.4. The moment functions (2.4) versus the Recursive Moment Functions (2.9)

The f7(0) in (2.4) extends the moments Q,&,(0), where Q, = (Q,,,X,), of a 2SLS
approach by incorporating &,,(0)Pj,e4.(0), j = 1,...,m, in the estimation. It is of interest to
compare the optimum GMM based on f(0) with that based on f,(0) in (2.9). The
optimum GMM estimator (9;’ from

min f; (0)2,'/1(0) (4.20)

is, from Lee (2001b),
- 1 -
\/E(Qu,n - 00) ]_)) N <Oa (nlingc Z D?,nQ:f,;lDin) > ) (421)

where the variance matrix of £ (6) is

o ((M4 - 308)60;,‘1)’1 + O'gAn U3, 0, )
c,n =

/ / 4.22
2%} Qn W G% Qn Qn ( )
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and

2 _ -1 / '
Dt — (Gocmn (Wn(ln /10 W”) X”BO) Q") ) (423)

“=\ 0 X,0,

The following theorem shows that asymptotic variances of the two optimum GMM
estimators 0, en 10 (4.17) and 0 , in (4.21) are algebraically identical.

Theorem 4. When Q, = (Q,,, X»), the identity Dan:‘nlD* =D, nQLnDLn holds, under the
conditions that Q., and Qj’n are nonsingular.

Consequently, @)C,, and @* from (4.17) and (4.21) have the same limiting distribution.
From this result and Theorem 3, we conclude that, in general, 0, may be inefficient relative
to 0 » When p30, #0. However, for the cases that u3 = 0 or diag(P,) = 0,1 =1,...,m, 0,
is asymptotlcally efficient as 0
4.5. The best modified GMM estimator

When p; = 0, the asymptotic variance of T 18

—1
Var() = (D,2;'D,) " = {cmn K% - 3> o o+ A,,} o
0

| -1
0y = W)™ X (M, Q) (W — o Wn)lxnﬂ())} ,
0

(4.24)
from (4.14) and (4.6), and the asymptotic variance of Bn from (4.15) becomes
Var(p,) = oo(X' X,) " + (X, X)X WL, — 20 W)~ X8,
x (D2, D) WLy — 20 W) XouBo) X (X, X )" (4.25)

Because M, is idempotent, by the generalized Schwartz inequality, (M,,in)(p)<M
Hence, the best Q,; to minimize Var(}n) in (4.24) corresponds to O, = W,(I,, — 20 W, )~

XuPy- This is intuitively appealing because it is E(W,Y,), which is also the best IV for
W,Y, in the 2SLS estimation (Lee, 2003). In consequence, O, minimizes also Var(ﬁn)
in (4.25)."

The best selection of P, is available when u3 =0 and p, = 30, e.g., ¢ is normally
distributed. In this situation, (4.24) becomes

DnQn ID = CmnA C/ 2 (Wn(ln - /10 Wn)_IXnBO),(Mnin)(p) Wn(ln - AO Wn)_anﬁO'

mn

By the representation tr(A4B) = vec'(A")vec(B) for conformable matrices,

1
Copin = 1 vec' < {WH(I,, —doW) 7t = (Wl = p SLON ) ] )(vec(P )...vec(PS,)

2

BIn practice, one may use W, (I, — in W,,)’]X,,Bn, based on some initial consistent estimates in and Bn, as a
feasible Q. This is so also for the best P} below.

nl*
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and

4, = 2(vec(Pl”) .vec(Ps ) (vec(PS)) . .. vec(PS,,)).

The generalized Schwartz inequality implies

mn =3

u(Wally = W), }

CmnA C <tr < |:Wn(1n - /10 Wn)_l -
n

Wn(ln - /10 Wn)_l> .

Hence the best P, matrix is P, = W,(I, — AoW,)~ ! M[ 14 _With the best
P and Q7, the asymptotic variance of the best modified GMM estimator 4, is

p— _1 s
(D,Q;'D,)" = {tr([Wn(ln — gyt = Tl n)“‘) W) )In} WLy — 2 Wn)')

—1
+§(Wn(1n — QoW XuBo) My WLy — g Wn)—‘Xnﬁo} . (4.26)
0

When P, is restricted to the smaller class of matrices with diag(P,) = 0, then w, = 0 and
Q;, is a diagonal matrix similar to that of the case with u3 =0 and p, = 363. The
generahzed Schwartz inequality shows that the best IV matrix is Q) = (W,([,—

AW )~ Xnﬁo, n), and the best P, with a zero diagonal is P, = W,(I, — 4o Wn)_

n

—Diag(W (I, — JoW,)~"). The asymptotic variance of the best GMM estimator 4, is

(D,2

n-——n

an) {tr([Wn(In - /10 Wn)71 - diag(Wn(In - /10 W}7)71)]5Wn(1n - /10 Wn)il)

-1
+%(Wn(1n - /10 Wn)ianﬂO)/Mn Wn(ln - /10 Wn)ianﬂo} . (427)
0

5. Estimation when lim, .o 2 (W, (I, — 20 W)™ X, Bo) My W (L — 20 W) "' X, is a
finite positive constant in the case lim,_, ../, = 00

Assumption 8 assumes that W,(I,, — JgW,)”' X,f, and X,, are linearly independent in
the limit. In a certain case, they may be linearly independent for all finite n but are nearly
multicollinear in the limit in the sense that lim,_ 1 Wy — W)~ D¢ 2Bo)
MW, (I, — 20 W)X, 2Po = 0. In this section, we consider the followmg situation:

Assumption 8'. lim,_, « ]Z’ W, — A Wn)_lX,,ﬁO)/Mn W, — A W,,)_l)(nﬁ0 = ¢, where
0<c<oo, as h, — oo.

An example satisfies Assumption 8’ is in the scenario of large group interactions in Case
(1991) mentioned before. Suppose there are R districts and, for simplicity, there are m
spatial units in each district. In this case, 4, = m and ’j—;’ = R. If x contains an intercept term
and x’s are i.i.d. across spatial units and districts, it can be shown (see in Lee, 2004,

“This best Py is derived over sets of Pj,, j = 1,...,m for any finite m. It is not just the best one over the set of a
single P,. Therefore any P, in addition to P} for GMM estimation will not improve the asymptotic efficiency of
the best GMM estimator of 6.
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footnote 15) that, as m — oo,

hy, _ , _ 1 ,

*(Wn(ln - }~0 Wn) 1Xnﬂ0) Mn Wn(ln - /10 Wn) anﬁ() - PN ﬁozxﬁO,

n (1= 40)

where X, = E[(x — u)'(x — w)] is the variance matrix of x, is finite and nonzero when B, #0.
Under the situation in Assumption §', elements of M, W ,(I, — Ao W,,)*IX 2B would

likely have the order O(—=). It is natural to rescale IV matrix Q,; so that its elements have

NG

also order O(f). Any rescale will, in principle, not change the moment equation

plim
n— o0

E(Q,, &x) = 0. But it does make quadratic and linear moments in a similar scale. Therefore,
0, shall be rescaled by dividing v/, if necessary, so that the following setting holds:

Assumption 9. The elements of Q,; have order O(\/lh‘).

This implies, in particular, elements of h’—;’ 0, M,0, have order O(l). Under the
circumstance in this section, as %, — oo, in order for the relevant central limit theorem in
Lemma B.9 to be applicable, Assumption 5 needs to be slightly strengthened.

1+3
Assumption 5. If {£,} is a divergent sequence, limn_moh”Tz 0 where 6>0 such that

E(|e]**2) exists.

Theorem 5. Under Assumptions 1-4, 5, 6, 7, &, 9, lim,_.h, =00, and that
limnﬁm’%E(gn(i)) does not lie in the orthogonal space of the column space of Fy for any
A# Ay, then the modified GMM estimator 1, from min,e, ¢,(A)F,F,9,(4), where g,(2) is
based on (2.8), is consistent and

R h, - T, .
im0 = ("piran)) D0 o) S NO.E) )

where

n—00 nen

o (h, - hy, h, -
3, = lim (nD’F’F,,D,,> D;F;,<nFnQnF;)FnD,,<nD;F;F,,DH) . (5.2)

An implication of Theorem 5 is that the modified GMM estimator of Jn under
Assumption 8 has the slower \/%—rate of convergence. This is so also for the

corresponding 2SLS estimator of Ay because of the near multicollinearity of W,(I, —
JoW,)'X +Bo and X,. In the situation of Assumption 8, linear moments do not dominate
the quadratic moments and the 2SLS estimator of 4y can be improved upon by the
additional quadratic moments.

From the asymptotic distribution of Theorem 5, the optimum distance matrix is
apparently Q, ' Under Assumptions 3, 4 and 9, h—”vec})(Pn)MnQn,K

n

Crrvec(Payveep(P) (G Oy My Q)" = O(=) = o(1). which implies that /30,6,

i

P @@;’Pn(o@n are asymptotically uncorrelated, regardless whether u; is zero or not.

and

Thus, the best IV Q,; for the linear moment is W, (I, — Ao W,,)_]Xnﬁo. Also, because
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n In 4A” 1 -
§ 000 = OG5 2y =10 (U gy 0 )+ o(1). the best Py is (Wl =2 Wa) ' —
. —1
len) even if &’s are not normally distributed.
As for the modified GMM estimator f, in (4.10), its asymptotic distribution can be
derived from (4.11):

/ -1 / -1
Vit = iy = = (Foe) - KT Bl G, )t on)

(5.3)

The asymptotic distribution of Bn may have the same \/%-rate of convergence as that of Jon
In summary, when the circumstance in Assumption 8 does not hold but has been

changed to that in Assumption &', the estimates 7 and [3,, are asymptotically normal but

their rate of convergence is the slower \/%-rate instead of the usual +/n-rate for the case

lim,,—, oo 1, = 00.

6. Estimation of MRSAR models under multicollinearity of W,(I, — 4 W,,)_lX 2o and X,

Both Assumptions 8 and 8’ rule out the cases that W, (I, — A Wn)*l)(,,[f0 and X, can be
perfectly multicollinear. In this section, we shall consider the more general situation, which
includes the multicollinearity case. It considers the remaining situations not covered under
Assumptions 8 and 8§ for both bounded or divergent {/,}.

Assumption 8", 1im,,_,oc 22 (W, (I, — 2o W)™ XuBo) Mu(W (L — 20 W) "' X,uBo) = 0.

When W, (I,, — Ao W,,)*IX 2o and X, are multicollinear for large n, there will be no valid
IV for the estimation of 1 because the reduced form (3.4) is simply a regression equation in
X,. Therefore, any linear moment Q,, (/1) would not be useful and the 2SLS method is

not applicable. When W, (I, — Ao W,) ' X 2B and X, are not perfectly multicollinear but
have the feature in Assumption 8", the quadratic moments shall dominate any linear
moments, that is an implication from the preceding section. The appropriate approach
shall include only the quadratic moments. Thus the empirical joint moments shall have
0,= X, and

J2(0) = (e, (0)P1nn(0), . . ., £,(0) Prunen(0), £,(0) X ) (6.1)

in place of (2.4). The method of elimination and substitution shall have fin(/l) = (X, X 27!
X I,—AW,)Y, and

gn()“) = (8;,,,(1)131,,8_,5,,,(}.), s 8;,,,()»)1),”,,8)(,,,(/1)) (62)

after substitution. The corresponding (simplified) variance matrix of the moment function
9gu(4o) 1s

Qn = (:u“4 - 30—3)(0;,(0)1 + GgAna (63)
where 4, is in (4.7). Lemma B.2 implies that elements of @, are of order OG). The

identification of Ay will depend on correlation across spatial units in (/,, — 4g W”)_]é’,,:
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Assumption 10. The lim,_, o 2 tr(PnWully — 4o W,)~1)#0 for some j and

n

Iy
lim —[tr(P WLy — W)™, ... tr(PS

> 00 mn

Wn(ln - j-0 Wn)_l)],
is linearly independent of

lim —[tr((] — oW YW PLW (L, — 2o W), Lt (T, — W)
X W;,Pmn Wn(In - j-0 Wn) )] .

The consistency and asymptotic distribution of this modified GMM estimator J are in
the following theorem.

Theorem 6. Under Assumptions 1-5, 5, 6,7, 8", 10 and that lim,_, o ™ E(g,(2)) does not lie

n

in the orthogonal space of the columns ofFo for any 1. Ay, the modified GMM estimator Ay,
Srom minge4 g, (A)F, Fug,(2), where g,(2) is in (6.2), is consistent and

~1
\/hz(;“” - /10) = <h C;HHF:‘!F C’Wl> C;7an;1 \/%7gn()~0) + OP(I) _d) N(O’ Zl)a

where

[l - h h, -
>, = lim (— 2 F'F, c) C F (nFQF>FC< '62C F' ch> )

N—> 00 mn— n mn— n mn— n
(6.4)

Theorem 6 is applicable for both bounded or divergent {A,}. When {A,} is a divergent
sequence, the modified GMM estimator 4, has a slower than (/n-rate of convergence. In
any case, the linear moments do not have effects on the asymptotic distribution of 4, in
(6.4) because C,,,, and Q, in (6.3) do not depend on X,,.

From (6.4), the generalized Schwartz inequality implies that the optimum weighting
matrix is (”" Q,)~!. The modified optimum GMM estimator J from

ming, ()2, g,(7), (6.5)
re

where liT"Qn - h;”Qn = op(1), will have the asymptotic distribution:

-1
\/Z(An S N(O ;nli n (h c;,mgznlcmn) ) (6.6)

When p, = 300 or P,’s have zero diagonal, Q,, = aoA in (6.3). For the case that 4, — oo,
}jq" (Q, — a34,) = o(1) because w,w, = O( ) Thus, when ¢&’s are normally distributed or £,

goes to infinity, the best P, shall be (W,(, — Ao W,,)_1 —wln) For the
class of moment functions with Diag(P,) =0, the best P, is (W,(I,— A W,,)_l—
Diag(W (I, — ioWy)™").
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The asymptotic distribution of Bn follows from (4.11):

n o~ 1 /1, 1 P -1
h—n(ﬁn_ﬁO)_\/—/’a(ZXan> %Xngn_(Xan) Xan(In_AOWn)

X X By - %E@n — Jo) + op (%h_) 6.7)

The first and second terms on the right-hand side of (6.7) would be uncorrelated if p; = 0.
For the case that lim,,_, .o/, = 00, the first term vanishes and the limiting distribution of ﬁn
will be determined by \/%(;1,, — o) if all the components of lim,_, o (X)X DX P Wl —

o Wn)*lX #Po are nonzero. In the event that W,(I, — Ao W,,)*IX «Po and X, are
multicollinear, W,(I, — Ay W,,)*IX,,[?O = X,¢, for some column vector ¢,#0. Let ¢, =
(¢} ,» ¢5,) Where all the components of ¢}, are nonzero in the limit and ¢,, = 0. Let J,, be the
selection matrix such that J,c, = ¢,. Then, for the case lim,_, o h, = 00,

Vit = B ==ty [i0u = i)+ ont) (68
and

] 1 1
V(B = Pag) = T <n X;Xn> ﬁX;,éan + op(1), (6.9)

where 8 = (), f3). The component 31,, has the \/%-rate of convergence but the component

B, has the usual /n-rate.
In summary, under the circumstance in Assumption 8", for the case with 4, being

a bounded sequence, the estimates Jn and ﬁn can still be asymptotically normal with the
J/n-rate of convergence. However, for the case with 4, — oo, 4, and f8, are asymptotically

normal but, in general, 7 and certain components of fin may have the slower \/%-rate of

convergence.
7. Conclusion

This paper introduces a modified GMM method based on the method of elimination
and substitution for estimating the MRSAR model. This GMM approach isolates the
nonlinear estimation of the MRSAR model on the spatial effect parameter. The
parameters of exogenous regressors can be estimated by the least squares method once
the estimate of the spatial effect parameter is available. This approach is computationally
simpler than other GMM approaches which extend the 2SLS estimation in Kelejian and
Prucha (1998) and estimate jointly the spatial effect parameter and the regression
coefficients of the model.

For the ML method, the likelihood function (under normality assumption) involves a
Jacobian term. The computation of the Jacobian, i.e., the determinant of (I, — AW,,), has
received much attention in the literature (e.g. Ord, 1975; Pace and Barry, 1997; Smirnov
and Anselin, 2001). The GMM approach has the feature that neither the determinant nor
the inverse of (I,, — AW,) need to be computed. But, the regression coefficient subvector f8
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in the log likelihood function of the ML approach can be easily concentrated out, and the
resulting concentrated (or profile) likelihood function involves only the spatial effect
parameter A, while the joint GMM objective function does not have such a feature. The
modified GMM approach based on the method of elimination and substitution has both
computational advantage features.

In addition to computational issues, we investigate the relative efficiency of the modified
and joint GMM estimators. The modified GMM estimator can be as efficient as the joint
optimum GMM estimator under disturbances with a zero third order moment. Other cases
depend on the design of IV matrices used for the moment functions in GMM estimation.
We have also considered issues on selecting the best IV matrix for estimation.

The modified GMM approach and the asymptotic analysis in the paper have focused on
the MRSAR model with a single spatial lag. The asymptotic analysis and the results
derived in this paper may be generalized to high order spatial lags models. The nonlinear
estimation will then focus on the several spatial effect parameters.'”> This may be, in
particular, useful as the ML approach cannot easily carry out for spatial autoregression
models with higher order lags.
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Appendix A. Summary of notations used in the text and the proofs

Apy = A(A'4)7' 4.
M, =1,- X,(X,X,)"' X,
0, = (01, Xn).
En=(e1,...,8.).
exn(2) = M1, — AW,)Y .
Exn = Exn(0).
A® = A+ A" where A is a square matrix.

Diag(A4) = diag(a1, . . ., ay,) a diagonal matrix formed by the diagonal elements of a n x n

matrix A.

SMany features of a spatial regression with higher spatial lags, however, have not been adequately understood
or have not been studied. For example, there may be complicated restrictions on the parameter space of spatial
lags coefficients.
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vecp(A) = (ayy, ..., au) a column vector formed by the diagonal elements of a n x n

matrix 4.
Gy = W, — W)\

o, = (vecp(P1y), . . ., vecp(Puy)).

tr(G,)

) . 1 s . )
Cpn = (t1(P3,Gy), . .., tr(P,,Gy)) = zvec/ ( <G,, — I,,) >(vec(Pﬁn), ., vec(P).

D, = (63 Con, (Gu X o) M, Q,,), Where af = E(e?).

Dn (GanﬁO)/Xn '
Den=1 9 X' X, '

Do <oécmn (Gan/?o)/Qn).

o 0 X:1 Qn
tr(Pi, Py, ... t(Pi.P;,)
A, = : : = %(vec(Pﬁn) ...vee(P,) (vee(Py) . . . vee(P5,).
tr(P,P,) ... tr(PuP;,)

), where y; = E(¢") for I = 3,4.

0 — (g — 303)60116% + O'gAn ﬂ}w;MnQn]
" 13051 My, U%Q;QIMnQnI

(1 — 300)w, 0, + 644, u0,M,0,,  30,X,

Qe = /"3Q;/11ann U%Qi,anin 0
X0, 0 a3 X, X,

(/,14 - 30—3)(’0;160" + Ugﬁn ,u3w,’1MnQ”1 0

Qs = ﬂ}Qi,]ann O'%Q:ﬂMnin 0
0 0 O'%X;Xn

o — (g = 305)0, 0 + 034, 130,0,
o 130, 00,00 )

N, = (13X ,0,,0)'.
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Appendix B. Some lemmas

Lemma B.1. Suppose that the elements of the n x k matrices X, are uniformly bounded for
all n; and llm,Hoo nX X, exists and is nonsingular, then the projectors X (X, X,)” X ' and

- XX, X))~ X are uniformly bounded in absolute value in both row and column sums.
Furthermore the elemenls of Xu(X), X )~ D¢ ., are of uniform order O(n)

Proof. Let B, = (% XX n)*l. From the assumptions, B, converges to a finite limit.
Therefore, there exists a constant ¢, such that |b, ;| <c, for all n, where b, is the (i, /)th
element of B,. By the uniform boundedness of X, there exists a constant ¢, such that

Xl <cy forall i,j and n. Let 4, = X,(X,X,)"' X, =15°% S 1 DirsXn X, Where x,,, is
the rth column of X,. It follows that Z, an il = ZJ 1|Zs_lzr_ D s X ir Xn js| <k’ e,
for all 7 and n, where x,; is the (i,r)th element of X,. Similarly, Zl Hangl =150 )
ZleZlebnjmxn,irxn,/.yl<k2CbC§, for all j and n. That is, X,(X,X,)"' X’ are uniformly
bounded in absolute value in both row and column sums. Consequently, (I, —

X,(X,X,)" 'x ») are also uniformly bounded in absolute value in both row and column
sums.
The (i,/)th element of X (X, X,)"' X/, is 1S S™* b, %, x5 Tt follows that

I & K2epc? 1
;;;bn,rsxn,irxn,/x < n =0 ; . U

Lemma B.2. Suppose that the elements a,; of the sequence of n x n matrices {A,}, where
Ay = [anj], have the order O(%) (resp. O(hi")) uniformly in all i and j, and { B} is a sequence of
n X n matrices.

(1) If {B,} are uniformly bounded in absolute value in column sums, then the elements of A, B,
have the uniform order O(;) (resp. O(;)).
(2) If {B,} are uniformly bounded in absolute value in row sums, then the elements of B, A,

have the uniform order O(;) (resp. O(;.)).
For both cases (1) and (2), |tr(4,B,)| = |[tr(B,4,)| = O(1) (resp. O(ﬁ)).
Proof. This is proved in Lee (2001a). O

Lemma B.3. Suppose that the elements of the two sequences of n-dimensional column vectors
{p,} and {q,} are uniformly bounded. If {A,} is uniformly bounded in absolute value in either
row or column sums, then |p,A,q,| = O(n).

Proof. This is in Lee (2001b). It is a trivial result. [

Lemma B.4. Suppose that the sequence of n x n matrices {A,} are uniformly bounded in
absolute value in both row and column sums. Elements of the n x k matrices X, are uniformly
bounded; lim,_, « X"nX" exists and is nonsingular. Let M, = I, — X (X, X DX - Then

(1) tr(]‘lnAn) = tr(An) + O(l),
(ii) tr(4, M, Ay,) = tr(4,A,) + O(1),



L.-f. Lee | Journal of Econometrics 140 (2007) 155-189 179

(iii) tr[(M,4,)*] = tr(42) + O(1), and
(V) tr[(4, M ,4,)"] = te[(M,4,4.)*] = tr[(4,4,)*] + O(1).
Furthermore, if A, ;; = O(i) for all i and j, where h,, is a rate not faster than the rate n,
then
(V) t2(M,Ay) = tr2(A,) + O(),
(vi) Z?:l[(MnAn)ii]z = Z?:][An,ii]z + O(t)’ and
(ViD) ST [(Aa M) = S [Anal” + OGH).

Proof. The assumptions imply that elements of the k x k matrix (% X' X ,,)*1, %X P Ap Xy,
1X74,4,X, and %X;AﬁXn are bounded for large enough n by Lemma B.3. It follows that

tr(M,A,) = tr(4,) — tr{(X. X,) "' X/ 4,X,] = tr(4,) + O(1),

tr(A M, A,) = tr(4, A,) — (X' X,) "' X 4,4, X ] = tr(A, 4,) + O(1),
and
tr{(M,4,)"] = tr(42) — 2tr{(X, X,) " X, A2X )] + tr{(X, X,) " X, B, X ],

where B, = AnX,,(X;Xn)_lX;An. The B, is uniformly bounded in absolute value in both
row and column sums because both 4, and X, (XX PED¢ ' are. Hence, tr[(M,A4,)] =
tr(4%) + O(1), which is (iii).

By (iii), tr[(4, M, A4,)*] = tr[(M,4,4.)*] = tr{(4,4,)*] + O(1) because 4,4, is uniformly
bounded in absolute value in both row and column sums. The (i) implies that tr’>(M,4,) =
(tr(4,) + O(1))? = tr2(4,) + 2tr(4,) - O(1) + O(1) = tr’(4,) + O(n). Because A, is uni-
formly bounded in absolute value in column sums and elements of X, are uniformly
bounded, X 4,e, = O(1) for all i, where ¢, is the ith unit column vector of dimension

n. By Lemma B.2, elements of X,,(X;X,,)*IX;A,, are of uniform order O(%).
Hence, YT (Mo An)i = S0 (Ani = €, X (X, X0) ™ X, Anen)” = 1L (Ani + OG)) =
Sy [(Ani)* + 24,5 - O() + O(H)] = S Al + O(ﬁ) because A, ; = O(ﬁ). Finally,
Sy [(AaM)l =3 (Ani =, Xa(X, X0) ™ X en) = S (A +0G)) = o1 [(Api)*+
24,50 OG) + O(H)] = Yi (4ni)’ +OGL). O

Lemma B.5. Suppose that both A, and B, are uniformly bounded in absolute value in either

. . . XX
row or column sums. Elements of the n x k matrices X, are uniformly bounded; lim,,_, ,, ="
exists and is nonsingular. Then

(1) tr(A, M,B,) = tr(4,B,) + O(1), and
) tr(M A M,B,) = tr(4,B,) + O(1).

Proof. The assumptions in this Lemma imply that B, A4, is uniformly bounded in absolute
value in either row or column sums, and the elements of %X wBnA,X, are uniformly
bounded. Therefore,

tr(An]Wan) = tr(Aan) - tr[(X;,Xn)_IX;BnAan] = tr(Aan) + O(l)
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Then (2) follows from (1). Let C,, = M, A,. If A, is uniformly bounded in absolute value in
row (column) sums, C,, is uniformly bounded in absolute value in row (column) sums. Hence,
tr(C, M, By) = tr(C,B,) + O(1) = tr(M 4, B,) + O(1) = tr(4,B,) + O(1) by (1). O

Lemma B.6. Suppose that A, is a square matrix with its column sums being uniformly
bounded in absolute value and elements of the n x k matrix C, are uniformly bounded. The

&’sin &y = (e1,...,6) are i.id. (0,d3). Then, \}—C/A &, = Op(1). Furthermore, if the limit
of 1C)4,4,C, exists and is positive definite, then

L 4,4,Cy).

J_ﬁ C,A,6, 2 N(0, 03 lim, o0

Proof. The first result follows from the Chebyshev inequality, and the second one follows
from the Lindeberg—Feller central limit theorem. [

Lemma B.7. Suppose that A, is a constant n x n matrix uniformly bounded in absolute value
in both row and column sums, and the ¢’s in &, = (e1,...,&,) are i.i.d. (0, 05). Let ¢, be a

column vector of constants. If% chcp = o(1), then h’j c,Ay&y = op(l). On the other hand, if
¢t e, = O(1), then \/%c;Ané",, = Op(1).

Proof. The first result follows from Chebyshev’s inequality if var(ﬁc,A éEn) =
aﬁhr’;c’ AyA,c, goes to zero. Let A, be the diagonal matrix of eigenvalues of 4,4,
and I', be the orthonormal matrix of eigenvectors. As eigenvalues in absolute values
are bounded by any norm of the matrix, eigenvalues in 4, in absolute value are uniformly
bounded because |A4,|l (or ||4,];) are uniformly bounded. Hence, | ¢, ApA el <
':—l"c;F Wl Cn | Apmax | = %"c;cn|/1n,max| = o(1), where A, max is the eigenvalue of 4,4, with the
largest absolute value.
When "¢/ ¢, = O(1), " ¢/ 4, A},c, < "¢, ¢4 Aymax| = O(1). Hence,

/h h
Var< ﬁc;Anﬁn> = oé;"c;AnA;cn =O(1).

Therefore, /f2¢, 4,4, = Op(1). O

Lemma B.8. Suppose that {A,} are uniformly bounded in absolute value in either row or
column sums, and the elements a,;; of A, have the order O(t) uniformly in i and j. The ¢;’s in

&y = (e1,...,8&) are i.i.d. with zero mean and its fourth order moment exists.
Then,

(i) E(8,4,6,) = OGh) and var(6,4, (g‘n) = O@h),
(i) furthermore, if lim,_ o™ = 0, then 7” (6, An & — E(8,4,6,)) = op(1).

n

Proof. This is in Lee (2001a). O

Lemma B.9. Suppose that {A,} is a sequence of symmetric matrices uniformly bounded in
absolute value in row and column sums and {b,} is a sequence of constant vectors with its
elements uniformly bounded. The &’s in &, = (e1,...,¢&,) are i.i.d. with zero mean and its
fourth order moment exists. Let 03 be the variance of q, where gq,=Db,E,+

& A8y — ® tr(A,). Assume that the variance 03 is O(n/hy) with {(hy /n)aq"} bounded away
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from zero, the elements of A, are of uniform order O(1/hy,) and the elements of b, are of
uniform order O(1/</hy,).
If either (1) {h,} is bounded from above and is bounded away from zero, or (ii) when

142/6 N d
=0 for some 6>0 such that E(|e|*T?) exists, then ;I(_,"_> N(0, 1).

hy — 00, lim,,, oo

Proof. The result of (i) follows from the central limit theorem in Kelejian and Prucha
(2001). Its generalization in (ii) is in Lee (2004). [

Appendix C. Proofs

Proof of Theorem 1. It shall be shown that (F,g,(1)(}F,g,(7)— EQF,g,(2)
E(%F,,gn(i)) = op(1) uniformly in 4 in A. As

<1ann(ﬂ»>) (1annu>) _ E(angnw) E(l annu))
n n n n

1 1 T 1
= [y F — E(y 0, )| [ Fa0 = E( )|

n
2 F Frga() — E (1 ann(@ﬂ E (1 annu)) ,
n n n

it is sufficient to show that iF,g, (1) — EC F,g,(4)) = op(1) uniformly in 1 in 4, and
E(F,g,(4)) is uniformly bounded in A.
As (In - /1Wn)(1n - /10 I/Vn)_1 =1I,+ ()VO - /“)Gna
Sx,n(;h) = Mn(ln - ;LWn) Yn = (/“0 - /I)MnGanﬁ() + Mn(ln + ()LO - ;N)Gn)(gjn-

It follows that

m

ann(;°) = Z Fnlg;,n(i)Plngx,n(;h) + anQ:qlﬁx,n(/l)
=1

= (lo— 7Y FulM,Gu X o) Pru(M, G, X o) + (o — ) 1(2)
=1
+ qn(i) + (10 - }.)anQ;anGanﬁo + lZn(l):

where

m

h(2) = Fu(M,Gu X o) Py, MLy + (3o — 1) G)6 ),
=1

lZnOV) = anQ;,an(In + (/LO - )V)Gn)éan
and

42 =Y Fué(In+ (o — DG MyPuMy(Iy + (o — )G)E .
I=1

Lemma B.6 implies that %l 1n(4) and %lzn(i) are op(1) uniformly in A in A. The uniform
convergence holds because A appears linearly and A is a bounded set. Lemma B.8
implies that %qn(i)—E(ﬁqn(i))zo;)(l) uniformly in 4 in A. Therefore, %ann(i)z
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LE(F,g,(7))+ op(1). The equicontinuity of 1E(F,g,(4)) on A is apparent from its
expression:

E(ann(/b)) = (AO - j~)F‘nxQ;,1j‘4nGn-Xvnﬁ0 + ZFnl(MnGanBO)IPIn(MnGanﬁO)
=1

(%o — 1) + E(q,(2)),

where  E(q,(2) = 633 1L Ful{te[M,P] + (Ao — 2) tr[G, M, P}, M| + (G — 2)* tr[G, M, P},
M,G,}.

Consider the identification uniqueness of /g (White 1994). Suppose the identification
uniqueness condition that lim inf,_,min,_y (AO)E( F,g,(A) E(}? F,g,(1))>0 does not
hold for some &¢>0, where N,(J) is the complement of the open e-neighborhood of 4y
in A. Then, there exists a sequence {4,} convergent to A, € A where A, #4y such
that Folim,_.« E( g,(4,)) = 0. By the equicontinuity of E(g,(2)), lim,_ [EC g,(Zn) —
E(g,(A4)]= 0. This implies, in turn, that Fylim,_« E(g,(44)) = 0, a contradiction to
the identification assumption. Hence, the identification uniqueness of 4o holds. The
consistency of A, follows from the uniform convergence and the identification uniqueness
condition (White, 1994, Theorem 3.4).

By expansion,

1 .
Zg;,n()“)P;Mn Gn(XnﬁO + (O@n)
1 . 1 .
= ()~0 - )“)Z [Mn Gn(XnﬂO + gn)]/P;Mn Gn(Xnﬁo + (g)n) + Z ‘g):anP;Mn Gn(Xnﬁo + (g)n)
1 2
= (o = D5 1M G, X o) Py MG X oy + 03 (P GG + % tr(P5G,) + op(1),

by Lemmas B.4 and B.5. Hence, }fgn“"’ — (P een(n), - Poecn(in)s Q) MG,
XnPo+6En)=— 1D + op(1), for any consistent estlmate on of /u()

The &, P, X, (X’ X,)"'X! &, and T X (X, X,) 'X! P, X (X, X,)"' X &, are both of

op(1). It follows that J-é;,M P.M,E, = \}-é’;P & + op(1). By the central limit theorem

of linear-quadratic form in Kelejian and Prucha (2001),

N B ¢ 1
%—gn(ﬂo) = %—((giqplngn: .. é‘)/ Pmn(g) & Mnin)/ + OP(I) - N(O, /}l)nolo ZQ,,) .

The asymptotic distribution of 7 follows from the Taylor expansion of the first order
condition of the GMM minimization and

-1 A
1 agn(}il) ’ 1 agn(/lil) 1 ag;:(;“ﬂ) 7 1 d
f() Ao) = ( 2 F.F, ] P F.F, ﬁgn(io) — N(0, 2)). O

Proof of Lemma 1. Because P, and P,M,P, are uniformly bounded in absolute value in
both row and column sums, (1) and (2) follow from Lemmas B.1 and B.4.
Note that M,,P, = P, — X,(X' X,)"' X! P, and

M, PyMy = Py — Xo(X, X)X Py — PuX (X, X,) 7' X,
+ X (X, X)X P X (X X)X



L.-f. Lee | Journal of Econometrics 140 (2007) 155-189 183

As the elements of X (X, ,1)*1X/ P, are of uniform O( ) by Lemmas B.1 and B.2, and
elements of ¢, are uniformly bounded, vec,(X,(X), n) 'X!P)g, =n- 0@) = 0(1).
Similarly, vec), (P, X (X' X )" X" )q, and vecy(X (X' X,) "' X! P, X (X X,)™ IX’)q,, are of
O(1). Therefore, vecy (M, Py)gq, = vecp(Pn)gq, + O(1) and vecD(M P,M,)q, = vecp(Pn)q,+
O(1), which is (3). The result in (4) follows from (3). The (vi) and (vii) of Lemma B.4
imply that

te(Diag* (M, P,M,)) = i[(MnPnMn),-,J2 = i[(f’ﬂun)ﬁ]2 +0 (i>

i=1 i=1
= Z(Pnii) +0O(— >
A ’ hy,
i=1
which is (5). O
Proof of Theorem 2. The results follow from Theorem 1 and (4.14) as F,F,, = (ﬁ Q) O
Proof of Theorem 3. Because ming(S,(1)Y, — Xnﬁ)/X,,(X;an)_lX;(Sn(i) Y,—X,0) =0,
min /,(0)2,1,,(0)

= mjn[g;(i)gn_] gn()t) + iz nl[}n(Sn(/I) Yn - Xnﬁ),Xn(X;Xn)ilelq(Sn(/l) Yn - Xnﬁ)]
0o

= min g, ()2, g,
Thus, the modified estimation corresponds to a GMM with the recursive moment
functions f,(0) in (2.9) and the distance matrix €, ,} O

Proof of Corollary 1. When u;w/, X, is not zero, &, # Q. ,. When u; = 0 or P,’s have zero
diagonals, w, =0 and Q, = Q.,. The modified estimator is as efficient as the joint
optimum GMM with f,(0). O

Proof of Theorem 4. Let A = (u, — 30)w, 0, + 644, and D = 6}C,y,. The matrices D,
and Q., can be rewritten into block matrix forms

o (P EY (A B
en — 0 E, P on = B C)

where E| = (G, X)) (M, Q,1, X0), E> = (0, X,X,), B= u30,(M,0,,,X,), and

C = G%Q:11Mnin 0
- 0 X! Xy |

Correspondingly, the D, and Q , can be partitioned into

I A
cn T O E; > en T B*’ C* >

where Ef = (G, Xuf)' O, E3 = X,0,, B* = 1500,0,, and C* = 530,0,.
For the inverses of Q. and an, the inversion formula for partitioned matrix is useful.

The first diagonal block of Q! s (4 — BC~'B)7!, and that of Q:‘,; is (4 —B*C*' B!,
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Explicitly, 4—BC™'B = A — %w;[(Mnin)(p) + X,(X' X,)"' X! ]w,, and 4 — B*C*"'B¥ =
15 ),(Q,) gy Because of the identity (Q,)p) — Xu(X,X,) " X, = (M,0,) When
0, :0(Qn1, X,) (see, e.g., Ruud, 2000),
A—BC'B =4-BC"'B".

Denote this common matrix by H.
The inversion formula of partitioned matrix implies

o _ H™! ~H"'BC™!
cn T _C/—IB/H—I C—l + C—]B/H—ch—l ’

and, therefore, D, Q' D., —(VlI V12) with

cn"“cn Vo

Vi=DH'D -EC'BH'D —DH 'BC'E\ + E,C"'E| + E\C"'BH'BC™'E},

Vio=-DH'BC'E, + E\C"'E, + E\C"'"BH 'BC'E,
and

Vy = E,C'Ey + E;CT'BH'BC™'E),.
These expressions can be simplified. Because

BC'E| = = O (M 0,1y + Xn( X, X0) T X1Gu X uBo = 5 0,(0,) ) G X B
0

and E1C7"E} = 5(G,X,80) (Q,) ) GuX By, it follows that
0

Vi=DH'D - ﬁ—g(Ganﬁo)’(Qn)@wnH*‘D/ = ’;—gDH*‘w;(Qn)(mGanﬁo
+ %(GnX 1B0) (@) ) Gn X nBo + (Z—%Y(GHX 1Bo) (D)) @nH ™' /(0,0 Gn X Py
Because BC™'E, = Z—gw;X,, and E,C™'E} = U‘—g(GanﬁO)/Xn,
R A (G X o) X+ ( ) (GuX o) (Q)pyonH X,
Furthermore, because E, C_lE’2 = %X;X,,,

1
Vop =— X’X +<
O'

) X’wnH o, Xy
0

o
For Q7, its inverse is

_ —1 -1
e H ‘/ —H IB,C*
¢ _C*—IB* H71 C*—l + C*—IB* Hle*C*—l °
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and D Q;71D; = (11 /1), where
vV =DH'D—EC*'B°H"'D— DH'B*C* 'E¥ + E;C*'EY
+ ET C*—lB*/Hle* C*_IET/,

V>1k2 — _DHle*C*flEz/ + ETC*71E§, + ET C*le*’Hle*C*flEzf
and
w—1 x—1 ¥’ py—1 k—1
Vi, = E;CEy + E5C'BYH B CEY
These expressions can be simplified as EXC*"'B* = B(GuXuBo) () )@
7%

% rv— 1 ok’ 1 % vk— 1 ok H ’ 1% ’
El C 1E‘] = 2 (GanﬁO)/(Qn)(p)Ganﬁ()a B C 1E2 = O__;wn(Qn)(p)Xn - U_gw X
0 0 0

= — nn
0

and EXC*ES = J%(G,,Xnﬂo)’(Qn)(p)X,, = ﬁ(Gan/io)/Xn, where the last two equalities
0 0
hold because X, is in the column space of Q,. Hence, it follows that Vi, = Vi1, V], = Vi,
and V;z = sz.
In conclusion, when Q, = (Q,;, X,), D.,Q.'D.,, = D @:-'D* . O

cn“en c,n“en cn’
Proof of Theorem 5. The proof of this theorem is similar to that of Theorem 1 by taking
into account the situation in Assumptions 8 and 10 under lim,_, o 4, = 0.

It shall be shown that “2¢,(i) — E( g,(2)) = "[(io — D)11,(2) + Lou(2) + ¢,()] = op(1)
uniformly in A, where /y,, /5, and g, are defined in the proof of Theorem 1. Lemma B.7
implies that %”lln(i) and %lzn(i) are of Op( %”) uniformly in A under Assumptions &'
and 9. Lemma B.2 implies that elements of (I, + (19 — 1)G,) M, P, M (I, + (A9 — 1)G,)
are of order O(t) because elements of P, has order O(t). Therefore, Lemma B.8 implies
that “[¢,(2) — E(q,(4))] = op(1) uniformly in A.

Note that

hn
— E(Fg,(4)
n

m
h
= (/LO - ;°)2 Z Fnl gn(Ganﬂo)/MnPlnMnGanﬁ()
I=1

hy , hy ,
+ (/10 - i);aninMnGan,BO + ;E(qn(/h)),

where E(Qn(;”)) = 0%[(/10 - ;“)len:anl tr(G;zMnP?nMn) + (}0 - /1)227;1}711/ tr(jwnpln
M,G,G))]. As %P; is uniformly bounded in absolute value in either column or row sums
and all its eigenvalues must be less than || P,||,, and | P,||, those eigenvalues are uniformly
bounded. Therefore,

1 A,

hy, , /
7 (Ganﬁo) MnPnMnGanﬁ0| - 5; |(Ganﬁ0) MnP;MnGanﬁM

h
< |)bn,max| ;n(GanBO)/MnGanBO = O(l),
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where 7, max 1s the largest eigenvalue of 5 P’S’ in absolute value. Under Assumption 8" and 9, the
Cauchy inequality implies that %2 | F; ;. Q”M G X Pyl <2 Fj,cQ, M, 0, jm)l/z(%” (G, X By
M,,(GnX,,ﬂO))l/2 =0(1), where Fj, is the jth row of F,,j = 1,...,s. Lemma B.2 implies that
h;" tr(G,M P, M,) and /’" tr(M,P,M,G,G,) are of order O(l) Hence, ™ 1 E(F,g,(/) are
equicontinuous on A.
The identification uniqueness condition that lim, ., min, g, (AO)E( Fng,(A)
(h” Fu9,(2))>0 is satisfied under Assumption 8 and the property of Fy in the theorem.
The consistency of 4, follows.
For the asymptotic distribution,
hy0g,(2)
n 0L

Lemma B.7 implies that terms ]%(G,,X,I,BO)’M,ZP;M &n, n’(G X)) M, PM,G,é6, and
o \M,G,8, are of order Op(y/™). The [, M,P\M,G,&8, — o}tr(P;G,)] and
g G\ PAM,G,6, — o} tr(P5,G,G,)] are op(1) by Lemmas B.8 and B.5. Therefore,

h
;ns,/x,n(/l)PZMnGn(Xnﬁo + (gn)

__(P n exnl(4), . mnsrn(}) in) M (G X By + Gu&).

h"l >\ h 4 S
= (o = D (Xufo + 60) G, M P, MyGu(X ufy + 60) + 28, My P, My Go(Xafy + 61)
()0—7){ (GuXuBo) MuP, MG Xy

+00— (P G, G, )} + aoh— tr(P3 Gy) + op(1),

uniformly in A. As %(GanﬁO)/M P'M,G, X,y and h# tr(P;,G,G,) are of O(1), for any

consistent estimate 2, of A, /Z’ aJ"(A”) %Dn + op(1).

Note that F,g,(/) = Z,:IFM&”M PyuM,e, + Fu O,y Mye,. By expansion, ¢,M,P,
Mye, =€ Pren — & Xo(X. X)) X/ Py 4 6, X (X X)X P X (X X)) X 6y = €, P+
Op(1). Therefore, by the CLT of quadratic and linear functions,

=z hn I ’
\/7 ngn(/b()) - \/7< nZFn/Pn/Sn + Fn‘chlM 3/1) + OP( 7) (0 hm _FO~Q F )

The asymptotic distribution of I follows from

1, 0. (2 1y 0g' (Jn h 09g;,(An
\[(A;z_ 0)_( qn( ) n nn qn( )) n qg(j'/b) n\/7 ngn(io)—)N(O Z/L) J

Proof of Theorem 6. It shall be shown that %”ann(/l) — E(%” F,g,(2)) = op(1) and E(% F.g,
(4)) is uniformly bounded, uniformly in 4 in A.
As 8x,n(l) = (’10 - ;L)MnGanﬁO + Mn(ln + (/LO - j~)Gn)£7na

ann(i) = (;“0 - /1)2 ZFnl(MnGanﬁO)/PlnMnGanﬁ() + (/10 - )v)ln(i) + qn(ﬂ),
I=1
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where F, = (Fu1,...,Fun), [,(A) = \Fu(M,G, X.By) P M, + (Ao — 2)Gy)E), and

m
q,(2A) = Z Fu& (I, + (Ao — 2)Gp) My Py M (I, + (o — 7)Gn)E .
=1

Under Assumption 8", Lemma B.7 implies that ’;—z”ln(/{) = op(1) uniformly in 1€ A.
Lemma B.8 implies that “2g,(2) — E("*2¢,(1)) = op(1) uniformly in 2 in A. Hence,
b F,g,(2) — E( F,g,(2)) = op(1) uniformly in A. The equicontinuity of % E(F,g,(1)) on
A is apparent from its expression.

Note that

E(q,(2) = 03> FulttM,Pi] + (2o — D) t[G, M, P, M,] + (Jo — 2 tr]G, M, Py M, G, ]}
=1

= oé{(io — )Y Fute(G,P,) + (ho — )" > Fyytr(PyG, G;)} +0(1),

=1 =1

by Lemmas B.4 and B.5 and tr(P;,) = 0. Assumption 8" implies also = (M, Gy X o)
P.M,G,X,fy = 2/’” (MG, X ,Bo) P, M, G, X,y = o(1) because the elgenvalues of P} are
uniformly bounded as P) is umformly bounded in absolute value in row and column sums.
Thus, % E(F,g,(2)) = 'L—"E(ann(i)) + o(D).

The identification uniqueness condition of Ay in this case is

lim inf min E<IZ’ F,,qn(}v)> E(lj: ann()v)) >0,

n—00 )eN, (i)

which follows from the identification conditions in Assumption 10. The consistency follows
from uniform convergence and identification uniqueness (White, 1994, Theorem 3.4).
By Lemmas B.7 and B.8 and Ij—;’(MnG,,Xnﬁo)’P;M,,GnX,,ﬂO = o(1),

Iy
_8;n()”)PZMnGn(XnBO + éon)
n

h"l / o h" o/ 3
= (o = D~ IMaGu(X By + En P MuGo(X oy + En) + -1 6, My Py My Go(Xo o + 1)

= (o — /1)—00 tr(PG,G.) + ooﬁ tr(PG,) + op(1).

Hence, %w =t (Plngr n(zn)a_- ce mngrn(ln) in) M, Gy (X, o+ &) = _0'% h: Comn +
op(1), for any con51stent estimate A, of Ag.
The /516, P, Xo(X,X,)™ X6, and /518, XX, X007 X, PaX (X, X0) ™ X6y are of

Op( h;"). Hence, Iz—féa;MnPnMnéa,, = %”zﬁ”‘;Pné’n + op(1). By the central limit theorem in
Lemma B.9,

/ d .y
\/7gn()”0) = \/7(5/ P1u&n,. .., é’):J)mngn) +op(1)— N(Os nll)n;lo;Qn> 5
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where ), is in (6.3). The asymptotic distribution of /. follows from the Taylor expansion:

a - -1 ;8
\/hﬁ(;ln — ;“0) = <//Zlagn(/bn)F/ Fn/}l:ag”(;"”)> @agl’l(ﬂn) F;Fn

oL " 0 n 04

x \//::ngn(io) ANO,z). O

Appendix D. Sequential two-stage least squares estimation

The 2SLS approach in (2.3) with IV matrix Q, = (Q,,;, X») can be regarded as a special
case of the optimum GMM estimation with the moments Q,(Y, — Z,A — X,f5), where
Z,= W,Y,, and the distance matrix (6;0Q,Q,)"" (or simply (Q.0,)"").

Correspondingly, 4 and 8 can also be estimated by the method of elimination and
substitution. This method solves f(4) from X (v, — Z,A— X,f(4)) =0 for any A. By
substitution, the remaining moments are Q,,(y, — Z,A — X,p(2)) = O, M (v, — Z,2). At
A= lo,

Q;,an(Yn - an-O) = Q;ﬂMn(Yn — Zyho — Xnﬁo) = Q;,angm

which has zero mean and its variance matrix is 63Q.; M, Q,,. Thus, the optimum distance
in the GMM estimation using Q,,, M ,(y, — Z,4) shall be (Q, M,Q,,)”". The modified
optimum GMM estimation of 1 is

min(¥y = Zu2Y (Mu Qi)Yo = Za2). (D.1)
The modified estimator 7, from (D.1) is

i = (Z (M Q)0 Zn) ™' Z, (M )y Y s (D.2)
and the corresponding estimator of f§ is

By = (XX XL = Zu(Z (M Q)0 Z) ™ Zy (M Q)] Y (D.3)

When Q, = (0,1, Xu), (Q,))Xn = X, and, hence, the joint 2SLS estimator in (2.3) can
be rewritten as

2 / / -1

In _ Zn(Qn)(p)Zn Z. X, Z;(Qn)(p) Y,

Bn B X;'tZ" X:1Xn X; Y" ’
Let Ry =Z(Q,)pZn — ZyXu(X; X)X} Z0 = Z,((Q)y — Xu(X, X2) "' X)Z,. By the
inverse formula of a partitioned matrix,

Z(Q)wZn ZyXu\ ™
X.Z,  X,X,

R! —R'Z X (X, X))

(X' X)X Z, R (XX (X X)X Z R Z X (XX,
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As 0, = (X, 01): (@) — Xn(X;X,,)le; = (M, Q,1)p) and, hence, R, = Z;(M"in)(p)
Z,. It follows that

o= RNZ Q) Yo = Z, Xl X, X)X, V) = R Z3, (M Q1)) Yo

and

B,= — (X, X)) ' X\, Z,R, Z1(0,) ) Yo + (X, X)X, Y,
+ (X' X)X Z, R\ Z X (X X)X Y,
= (X, X)X, — ZuR, ' Z (M40, )] Vs

which are, respectively, numerically identical to the sequential estimators in (D.2)
and (D.3).
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