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Abstract

This paper proposes a computationally simple GMM for the estimation of mixed regressive spatial

autoregressive models. The proposed method explores the advantage of the method of elimination

and substitution in linear algebra. The modified GMM approach reduces the joint (nonlinear)

estimation of a complete vector of parameters into estimation of separate components. For the mixed

regressive spatial autoregressive model, the nonlinear estimation is reduced to the estimation of the

(single) spatial effect parameter. We identify situations under which the resulting estimator can be

efficient relative to the joint GMM estimator where all the parameters are jointly estimated.
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1. Introduction

This paper proposes a computationally simple generalized method of moments (GMM)
of Hansen (1982) for the estimation of the mixed regressive spatial autoregressive
(MRSAR) models. The introduced method is designed to reduce the jointly nonlinear
see front matter r 2006 Elsevier B.V. All rights reserved.

.jeconom.2006.09.006

614 292 5508; fax: +1 614 292 4192.

dress: lflee@econ.ohio-state.edu.

www.elsevier.com/locate/jeconom
dx.doi.org/10.1016/j.jeconom.2006.09.006
mailto:lflee@econ.ohio-state.edu


ARTICLE IN PRESS
L.-f. Lee / Journal of Econometrics 140 (2007) 155–189156
GMM estimation of a complete vector of parameters into nonlinear estimation of a single
parameter. This modified GMM procedure can substantially reduce the computational
burden. We shall identify situations under which the resulting modified GMM estimator
may not lose (asymptotic) efficiency relative to the joint GMM estimator.
The GMM estimation of the MRSAR model has been considered in Kelejian and

Prucha (1998) and Lee (2001b). In Kelejian and Prucha (1998), the method is a two-stage
least squares (2SLS). Lee (2001b) extends the moment functions of a 2SLS with additional
moment functions, which capture correlation across spatial units.
A sequential (two-step) estimation procedure in the GMM framework has been

mentioned in Ogaki (1993) and Newey and McFadden (1994). Ogaki (1993) and Newey
and McFadden (1994) describe a system of recursive moment functions where the first set
of moments contains a proper subset of parameters in the model and the remaining
moments may contain all the parameters. A sequential GMM estimation is motivated by
computational simplicity as a two-step estimation procedure. The sequential approach uses
the first set of moment functions for the estimation of the relevant subset of parameters,
and, recursively, it estimates the remaining parameters by using the second set of moment
functions. Ogaki (1993) notes that the asymptotic distribution of estimated parameters in
the second step GMM estimation will, in general, depend on the asymptotic distribution of
the first step estimates. He derives the optimal distance matrix in the second step GMM
estimation. Newey and McFadden (1994) have discussed similar issues. A sequential
GMM estimator may be inefficient relative to the joint GMM estimator derived by
using the complete set of moment functions with an optimal distance matrix. There are
other estimation approaches which may involve two-step estimation. For example, for
the estimation of a MRSAR model with spatial correlated disturbances, Kelejian and
Prucha (1998) discuss a feasible generalized 2SLS approach. This approach will first
estimate the MRSAR equation with a 2SLS. The spatial process of the disturbances is
then estimated with the estimated residuals. The final estimate of the coefficients of the
MRSAR equation comes from a feasible generalized 2SLS estimation. The system of
moments in this case is not recursive in parameters. This two-step approach concerns
feasible weighting issue in the generalized 2SLS approach. The two-step method in this
paper is not related to weighting issues as we are considering the estimation of a MRSAR
model with i.i.d. disturbances.
The systems of moment functions for the estimation of the MRSAR model in Lee

(2001b), which extends the 2SLS moment functions in Kelejian and Prucha (1998) with
additional moments, are not recursive in parameters. The additional moments are
quadratic functions in parameters. They are designed to improve the possible efficiency of
estimators. These nonlinear moments render the estimation of the complete set of
coefficients of the MRSAR equation into a nonlinear estimation framework. The MRSAR
equation is linear with respect to exogenous regressors but it has a nonlinear feature in its
reduced form due to the spatial interactions. The coefficients of the exogenous regressors
seem a nuisance in the nonlinear estimation because once the spatial interactions
parameter is given, the regression coefficients can simply be estimated by the method of
ordinary least squares (OLS). Therefore, one may have the desire to reduce the nonlinear
estimation into the estimation of the (single) spatial effect parameter.
In this paper, we introduce the method of elimination and substitution within the GMM

framework. This method eliminates the coefficients of exogenous regressors of the
MRSAR from the original GMM functions. After substitution, the nonlinear estimation
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will focus on the spatial effect parameter in the remaining moment equations. System-
atically, the modified moment equations can be cast in a sequential GMM estimation
framework and the estimation becomes a two-step method. This approach is
computationally simpler than the jointly nonlinear GMM estimation based on the full
set of moment functions. The remaining issue concerns the possible loss of efficiency
of this sequential estimation. We show that the resulting GMM estimator, or equivalently,
the corresponding sequential (two-step) estimator, can be asymptotically as efficient as the
joint GMM estimator under certain circumstances. They include the case where the
disturbances have zero third order moment, in particular, normally distributed
disturbances. They include also the case with large group interactions. The asymptotic
efficiency will always be preserved under a certain class of moment functions.

This paper is organized as follows. In Section 2, we review the 2SLS, the joint GMM,
and the sequential GMM approaches for estimating the MRSAR model. The method of
elimination and substitution within the GMM framework is introduced. Section 3 lists
some basic regularity conditions and discuss identification of the model. The consistency
and asymptotic distribution of the modified GMM estimator in the presence of valid
regressors are derived in Section 4. Relative efficiency of the modified GMM estimator is
studied. Section 5 studies the model with large group interactions under a situation of
nearly multicollinearity. Section 6 studies estimation issues when the MRSAR model
possesses a feature of exact multicollinearity. Conclusions are drawn in Section 7. For easy
reference, frequently used notations in the text or in the proofs are collected in Appendix
A. Some useful lemmas for the proofs are in Appendix B. Proofs of the main results are
collected in Appendix C. Appendix D provides a numerical identity of the modified 2SLS
estimator with the conventional 2SLS estimator for the MRSAR model.

2. The MRSAR model, 2SLS, joint GMM, sequential GMM, and the method of elimination

and substitution

2.1. The MRSAR model

The simplest MRSAR model is specified as

Y n ¼ l0W nY n þ X nb0 þ En, (2.1)

where E0n ¼ ð�1; . . . ; �nÞ, �i is i.i.d. ð0; s20Þ, W n is a specified n� n spatial weights matrix of
constants, and X n is a n� k matrix of exogenous variables with full column rank. The
MRSAR model is an equilibrium model. The Y n can be determined from the system as

Y n ¼ ðIn � l0W nÞ
�1
ðX nb0 þ EnÞ. (2.2)

This model has been introduced in Cliff and Ord (1973). See, also, Anselin (1988) and
Cressie (1993).

2.2. The 2SLS estimation

The MRSAR equation in (2.1) may be estimated by the 2SLS method if there are valid
instrumental variables (IV) available from the model. When b0 is zero, model (2.1)
becomes a pure spatial autoregressive process, i.e., Y n ¼ l0W nY n þ En, and no valid IV
constructed from X n is available. When b0 is not zero, functions of X n (and W n) can be
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valid IV variables. Kelejian and Prucha (1998) suggest X n, W nX n and/or W 2
nX n to form

the IV matrix. From (2.2), the ideal IV for W nY n shall be W nðIn � l0W nÞ
�1X nb0. The

W nX n and W 2
nX n provide approximations to this ideal IV.

Let Qn be an n� r IV matrix with full column rank r, where rXk þ 1. The 2SLS
estimator of ðl0;b

0
0Þ
0 is

l̂n

b̂n

 !
¼

ðW nY nÞ
0

X 0n

 !
QnðpÞðW nY n;X nÞ

" #�1
ðW nY nÞ

0

X 0n

 !
QnðpÞY n, (2.3)

where, for any matrix A, AðpÞ ¼ AðA0AÞ�1A0 denotes the orthogonal projector to the
column space of A. The 2SLS estimator in (2.3) is a joint estimator in the sense that l and b
are jointly estimated in a single step.

2.3. A GMM approach

The 2SLS estimator (2.3) may not be efficient relative to other estimators such as the
maximum likelihood (ML) estimator with some exceptions.1 Lee (2001b) has introduced a
GMM estimator derived by combining the moment functions of the 2SLS and other
moment functions capturing spatial correlation. That GMM estimator can be efficient
relative to the 2SLS estimator. For the MRSAR model (2.1), for any possible value
y ¼ ðl;b0Þ0, let

�nðyÞ ¼ ðIn � lW nÞY n � X nb.

The empirical moment functions for the GMM estimation in Lee (2001b) consist of

�0nðyÞPn�nðyÞ and Q0n�nðyÞ where Pn is a n� n constant matrix with a zero trace. As W n is a

constant matrix with zero diagonal, W n can be used as a Pn. Other matrices generated

from W n such as W 2
n �

trðW2
nÞ

n
In, etc, may also qualify.2 With several such matrices

P1n; . . . ;Pmn, the vector of moment functions for the GMM estimation can be

f �nðyÞ ¼ ð�
0
nðyÞP1n�nðyÞ; . . . ; �0nðyÞPmn�nðyÞ; �0nðyÞQnÞ

0. (2.4)

The corresponding optimally weighted GMM estimator can be asymptotically efficient
relative to the 2SLS estimator (2.3) because of the additional quadratic moment functions.3

For cases where there are no valid IVs, �0nðyÞPjn�nðyÞ, j ¼ 1; . . . ;m, provide the identification

and estimating functions for l (Lee, 2001a).
From the computational point of view, the GMM estimation is relatively more

demanding than the 2SLS approach. While Q0n�nðyÞ is linear in parameters, �0nðyÞPjn�nðyÞ’s
are quadratic functions of y. With these moment functions, the GMM objective function
for minimization will be a quartic function in y, and the GMM estimator needs to be
derived via a minimization routine. The minimization will involve the search for the
estimator in a ðk þ 1Þ-dimensional parameter space. For ML estimation, b can be easily
1For some models with large group interactions, the 2SLS estimator can be as efficient as the ML estimator, see

Lee (2002).
2In a subsequent section, it shall be shown under some situations that the best selected Pn is W nðIn � l0W nÞ

�1
�

1
n
tr½W nðIn � l0W nÞ

�1
�In. The matrices generated from W n provide valuable approximations to the best one.

3For some models with large group interactions, these additional moment functions may not increase

asymptotic efficiency over the 2SLS estimator. For other cases, the issue of the appropriate number of matrices Pjn

may become less a problem because of the existence of the best one in the preceding footnote.
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concentrated out and the optimization is on the single l. On the contrary, b in the GMM
estimation with the moment functions (2.4) cannot be easily concentrated out. For a given
l, the MLE of b is linear and is simply the OLS estimator of ðIn � lW nÞY n on X n. On the
other hand, the GMM objective function is a quartic function in b. Given l, the GMM
estimation of b is still nonlinear. This motivates the search for a computationally simpler
GMM estimation for the model.

2.4. A method of elimination and substitution within the GMM framework

We suggest the estimation of l and b in steps. First, b shall be evaluated given any value
of l via a subset of the linear moment equations.4 After substitution into the remaining
equations, l will be estimated by the GMM method. Finally, b can be estimated once the
estimate of l is available.

Consider Qn ¼ ðQn1;X nÞ where Qn1 is a matrix of possible instrumental variables
excluding X n. Given a value of l, an estimator b̂nðlÞ can be derived from the following
linear moment equations:

X 0nðY n �W nY nl� X nb̂nðlÞÞ ¼ 0, (2.5)

which is

b̂nðlÞ ¼ ðX
0
nX nÞ

�1X 0nðIn � lW nÞY n. (2.6)

For a given l, let the least squares residual vector be

�x;nðlÞ ¼ ðIn � lW nÞY n � X nb̂nðlÞ ¼MnðIn � lW nÞY n, (2.7)

where Mn ¼ In � X nðX
0
nX nÞ

�1X 0n. By substituting b̂nðlÞ for b in (2.4), these moments
become, respectively, �x;nðlÞ

0Pjn�x;nðlÞ, j ¼ 1; . . . ;m, and Q0n1�x;nðlÞ. For the GMM
estimation of l, the empirical moment functions are5

gnðlÞ ¼ ð�
0
x;nðlÞP1n�x;nðlÞ; . . . ; �0x;nðlÞPmn�x;nðlÞ; �0x;nðlÞQn1Þ

0. (2.8)

At l0, denote �x;n ¼ �x;nðl0Þ. Because �x;n ¼MnEn, Eð�x;nÞ ¼ 0. These moment functions
resemble those in (2.4) with �x;nðlÞ and Qn1 replacing, respectively, �nðyÞ and Qn.

6 The gnðlÞ
is still a quartic function of l. But a GMM minimization will involve only a one-
dimensional search over the parameter space of l.

The modified moment functions after elimination and substitution can be cast into the
sequential GMM framework of Ogaki (1993). In the general sequential GMM framework,
f ðzi; yÞ ¼ ðf

0
1ðzi; y1Þ; f

0
2ðzi; y1; y2ÞÞ

0 consists of recursive sets of moments. The first set of
moment functions f 1ðzi; y1Þ depends on the parameter component y1, where zi is the ith
vector of sample observations. The y1 is a subvector of y, where y ¼ ðy01; y

0
2Þ
0. The second

set of moment functions f 2ðzi; y1; y2Þ depends on both y1 and y2. The sequential GMM
estimation approach separates the estimation of y1 and y2 in two steps. It may be
4If one intends to eliminate b from the whole set of linear and nonlinear moment equations for a given l, this
would concentrate out the b. However, the latter would involve nonlinear estimation of b under the assumption

that each of Pjn with j ¼ 1; . . . ;m has a zero trace.
5The linear moments involve only Qn1 instead of Qn because X 0n�x;nðlÞ is identically zero for all l by construction.
6We note that there is a minor difference of these recursive moment functions from those in (2.4) in that

Eð�0x;nPjn�x;nÞ ¼ s20 trðPjnMnÞ, j ¼ 1; . . . ;m, are not necessarily zero. However, one may show that they can be close

to zero when divided by the large sample size n under the assumption that Pjn’s have a zero trace.
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computationally convenient to estimate y1 from f 1ðzi; y1Þ first, and then estimate y2 from
f 2ðzi; ŷ1; y2Þ, where ŷ1 is the first step estimate of y1, in a secondstep.7 For the modified
GMM estimation based on (2.6) and (2.8), the complete set of recursive moments is

f nðyÞ ¼ ð�
0
x;nðlÞP1n�x;nðlÞ; . . . ; �0x;nðlÞPmn�x;nðlÞ; �0x;nðlÞQn1; �

0
nðyÞX nÞ. (2.9)

The estimation with the moment functions in (2.8) for l corresponds to the first step
estimation with y1 being l. The least squares estimation in (2.6) corresponds to the second
step GMM estimation with the moment functions X 0n�nðyÞ and y2 being b.
Because a sequential GMM estimation may lose efficiency relative to the joint GMM

estimation, in the subsequent sections, we shall investigate asymptotic properties of the
modified GMM estimator and compare its efficiency with that of the joint GMM estimator
based on the original moments (2.4) as well as that based on the complete recursive
moments (2.9). We shall identify circumstances under which the sequential estimation may
be efficient as the joint GMM estimation of the MRSAR model.

3. Some basic regularity conditions and model identification

3.1. Some basic regularity conditions

In order to justify asymptotic properties of the modified GMM estimator, it is essential
to have restrictions on the sequence of spatial weights matrices fW ng. In the empirical
literature, there are generally two different types of spatial weights matrices. For
geographical problems, W n may be a sparse matrix as neighboring units for each spatial
unit are defined by only a few adjacent ones. For social interactions problems in group
setting, each unit may be influenced by all members in the group but each member of a
group may have only small influence on other members. In many cases, the group size can
be large. An example of the latter is the model in Case (1991). To allow both scenarios, the
following assumptions are the basic regularity conditions for the model (2.1).

Assumption 1. The disturbances �i’s of (2.1) are i.i.d. with zero mean, variance s20 and its
moments of higher than the fourth order exists.

Assumption 2. The elements of exogenous variables in the n� k matrix X n are uniformly
bounded constants, X n has the full column rank k, and limn!1

1
n

X 0nX n exists and is
nonsingular.

Assumption 3. The spatial weights matrices fW ng and fðIn � lW nÞ
�1
g at l ¼ l0 are

uniformly bounded in absolute value in both row and column sums.

Assumption 4. The elements of W n ¼ ðwn;ijÞ are of order Oð
1
hn
Þ uniformly in i and j, where

fhng can be a bounded or a divergent nonnegative constant sequence.

Assumption 5. If fhng is a divergent sequence, limn!1
hn
n
¼ 0.
7The main issues discussed in Ogaki (1993) and Newey and McFadden (1994) concern the asymptotic

distribution of the second step estimator of y2. Newey and McFadden (1994) have focused their attention on an

exactly identified moment system. Ogaki (1993) describes the optimum selection of the distance matrix in the

second step GMM estimation. The second step estimator of y2 will, in general, be affected by the asymptotic

distribution of the first step estimator of y1 unless Eð
qf 2ðz;y0Þ

qy1
Þ ¼ 0.
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Assumption 6. The parameter space L of l0 is a compact interval of the real line with l0 in
its interior.

These six assumptions are the basic structures of the model. The variances of quadratic
0
forms �nPjn�n exist as the fourth moment of �n exists. The existence of a moment higher

than the fourth order is needed for the application of central limit theorems for quadratic
forms (Kelejian and Prucha, 2001). Assumption 2 is a convenient assumption, which can
be replaced by proper finite moment conditions if x is stochastic without a bounded range.

The notion of uniform boundedness in absolute value in row and column sums of a
sequence of matrices in Assumption 3 is important. For any sequence of n� n matrices
fAng, where An ¼ ðan;ijÞ, An is uniformly bounded in absolute value in row sums
(respectively, column sums) if there exists a finite constant c such that max1pipnPn

j¼1jan;ijjpc (respectively, max1pjpn

Pn
i¼1jan;ijjpc) for all n. These conditions can be

expressed as boundedness in matrix norms for fAng. The kAnk1 ¼ max1pjpn

Pn
i¼1 jan;ijj is

known as the maximum column sum matrix norm of An, and kAnk1 ¼ max1pipnPn
j¼1jan;ijj is its maximum row sum matrix norm (Horn and Johnson, 1985).8 As a matrix

norm satisfies the submultiplicative property, when two sequences fAng and fBng are
uniformly bounded in absolute value in row (column) sums, its product sequence fAnBng

will also be uniformly bounded in absolute value in row (column) sums. The variance of
Y n from (2.2) is s20ðIn � l0W nÞ

�1
ðIn � l0W 0

nÞ
�1. Along with Assumptions 1 and 2,

Assumption 3 guarantees, for example, that the elements of Y n have finite variances and
the sequence of variances is bounded as n goes to infinity. These uniform boundedness
conditions originated in Kelejian and Prucha (1998, 1999, 2001). We note that the uniform
boundedness condition for fðIn � lW nÞ

�1
g is imposed at l ¼ l0. It can be shown, in

general, under this condition the uniform boundedness property will also hold uniformly
w.r.t. l at a small neighborhood of l0 (Lee, 2004).9

Assumption 4 includes both the conventional spatial scenario of few neighbors and the
social scenario with a large number of small interactions in Case (1991).10 In Case’s model,
‘neighbors’ refer to farmers who live in the same district. Suppose that there are R districts
and there are m farmers in each district (for simplicity). The sample size is n ¼ mR. Case
assumed that in a district, each neighbor of a farmer is given equal weight. In that case,

W n ¼ IR � Bm, where Bm ¼
1

ðm�1Þ
ðlml0m � ImÞ, � is the Kronecker product, and lm is a

m-dimensional column vector of ones. In this example, hn ¼ ðm� 1Þ. If sample size n

increases because m is increasing, then fhng will be a divergent sequence. When lo1, it is
easy to see that the uniform boundedness conditions in Assumption 3 are satisfied for this

large interactions scenario. As hn
n
¼ ðm�1

m
Þ � 1

R
¼ Oð1

R
Þ. If sample size n increases by increasing

both R and m, then hn goes to infinity and hn
n
goes to zero as n tends to infinity. Assumption

5 rules out extreme cases that hn diverges to infinity at the rate n. If hn is divergent to
infinity at the rate n, one can give an example that the GMM estimator is inconsistent. The
same phenomenon is observed for the ML estimation of the model (Lee, 2004).
8The norms k � k1 and k � k1 are related to L1 and L1 for integrable functions. This is so because they are the

matrix norms induced by the corresponding vector norms for finite dimensional vectors.
9Uniform boundedness of fðIn � lW nÞ

�1
g uniform w.r.t. l in its whole parameter space L would be a stronger

requirement. For the GMM approach, the stronger requirement is not needed.
10We note that the uniform boundedness condition for W n in Assumption 3 rules out the possibility that fhng

goes to zero. This is so, because the uniform boundedness condition implies that all elements of W n ¼ ðwn;ijÞ are

uniformly bounded for all i; j.
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For general nonlinear extremum estimation, a parameter space is generally assumed to
be a compact set (Amemiya, 1985). This is so for our model by Assumption 6. For our
case, the nonlinearity of l appears in a quartic form of the objective minimization function.
As the IV matrices Qn1 and Pjn’s are usually generated from X n and W n, they shall have

similar properties as those of X n and W n in Assumptions 2–5. In particular, it is reasonable
to assume that they shall possess the properties in the following assumption.

Assumption 7. The elements of Qn are uniformly bounded in absolute value. The constant
matrices Pjn’s with trðPjnÞ ¼ 0 are uniformly bounded in absolute value in both row and
column sums. The elements of Pjn’s, where Pjn ¼ ðpn;ijÞ, are of order Oð 1

hn
Þ uniformly in i

and j.

Additional regularity conditions shall be subsequently specified.

3.2. Identification

Consider the identification of l via gnðlÞ in (2.8). From (2.7), in terms of its relation
to En,

�x;nðlÞ ¼MnðIn � lW nÞðIn � l0W nÞ
�1
ðX nb0 þ EnÞ

¼ ðl0 � lÞMnW nðIn � l0W nÞ
�1X nb0 þMnðIn � lW nÞðIn � l0W nÞ

�1En, ð3:1Þ

where the first term on the right-hand side of the last equality follows because ðIn � lW nÞ

ðIn � l0W nÞ
�1
¼ In þ ðl0 � lÞW nðIn � l0W nÞ

�1 and MnX n ¼ 0. Therefore,

EðQ0n1�x;nðlÞÞ ¼ ðl0 � lÞQ0n1MnW nðIn � l0W nÞ
�1X nb0 (3.2)

and

Eð�0x;nðlÞPjn�x;nðlÞÞ ¼ ðl0 � lÞ2ðW nðIn � l0W nÞ
�1X nb0Þ

0MnPjnMnW nðIn � l0W nÞ
�1

�X nb0 þ s20 tr½ðIn � l0W nÞ
0�1
ðIn � lW nÞ

0MnPjn

�MnðIn � lW nÞðIn � l0W nÞ
�1
�. ð3:3Þ

From (3.2), EðQ0n1�x;nðlÞÞ ¼ 0 has a unique solution at l ¼ l0 if Q0n1MnW nðIn � l0W nÞ
�1

X nb0a0.

If W nðIn � l0W nÞ
�1X nb0 depends linearly on X n for large n, MnW nðIn � l0W nÞ

�1

X nb0 ¼ 0 and the identification of l0 will rely on the moment equations in (3.3). An
obvious example of multicollinearity is that all the regressors in X n may be irrelevant, i.e.,
b0 ¼ 0. Another relevant example is that W n is row-normalized and X n ¼ ðln;X 2nÞ, where
ln is a vector of ones, but X 2n is a subvector of spatially varying regressors with zero

coefficients. In this situation, X nb0 ¼ lnb01, where b01 is the intercept and W nðIn �

l0W nÞ
�1 X nb0 ¼

b01
1�l0

ln. For any square matrix A, denote As ¼ Aþ A0, i.e., the sum of A

and its transpose. As is symmetric. When linear dependence occurs, (3.3) becomes

Eð�0x;nðlÞPjn�x;nðlÞÞ

¼ s20 tr½ðIn � l0W nÞ
0�1
ðIn � lW nÞ

0MnPjnMnðIn � lW nÞðIn � l0W nÞ
�1
�

¼ s20fðl0 � lÞ trðPs
jnW nðIn � l0W nÞ

�1
Þ

þ ðl0 � lÞ2 trððIn � l0W 0
nÞ
�1
�W 0

nPjnW nðIn � l0W nÞ
�1
Þg þOð1Þ,
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where the simplification comes from Lemmas B.4 and B.5 in Appendix B, and trðPjnÞ ¼ 0.

The identification of l0 shall be based on Eð�0nðlÞPjn�nðlÞÞ ¼ 0, j ¼ 1; . . . ;m, with mX2,

similar to those for the identification of the pure SAR process in Lee (2001a).
The identification of l0 (and hence b0) can be summarized:
(i)
11
either limn!1
1
n

Q0n½W nðIn � l0W nÞ
�1X nb0;X n� has the full rank ðk þ 1Þ, or,
(ii)
 limn!1
1
n

X 0nX n has the full rank k, limn!1
hn
n
trðPjnW nðIn � l0W nÞ

�1
Þa0 for some j,

and

lim
n!1

hn

n
½trðPs

1nW nðIn � l0W nÞ
�1
Þ; . . . ; trðPs

mnW nðIn � l0W nÞ
�1
Þ�0

is linearly independent of

lim
n!1

hn

n
½trððIn � l0W 0

nÞ
�1W 0

nP1nW nðIn � l0W nÞ
�1
Þ; . . . ; trððIn � l0W 0

nÞ
�1

�W 0
nPmnW nðIn � l0W nÞ

�1
Þ�0.
The identification condition (i) explores the existence of relevant regressors and valid
instruments. By substituting the reduced form of W nY n into (2.1), the reduced form
equation (2.2) can be expressed as

Y n ¼ l0½W nðIn � l0W nÞ
�1X nb0� þ X nb0 þ ðIn � l0W nÞ

�1En. (3.4)

This condition (i) will fail if W nðIn � l0W nÞ
�1X nb0 and X n are multicollinear (in the limit).

For example, without the presence of valid regressors X n, b0 ¼ 0 will imply the failure of
this condition. The condition (ii) can remedy this situation as it explores the correlation of

Y n via the correlation of the reduced form disturbances ðIn � l0W nÞ
�1En. While condition

(i) is invariant with the size of group interactions, namely hn, condition (ii) involves

explicitly hn. This is so because trðPs
jnW nðIn � l0W nÞ

�1
Þ ¼ Oð n

hn
Þ and trððIn � l0W 0

nÞ
�1W 0

n

PjnW nðIn � l0W nÞ
�1
Þ ¼ Oð n

hn
Þ as shown in Appendix B. For subsequent analysis of

asymptotic properties of the modified GMM estimator, it is desirable to separate the
situations of condition (i) and condition (ii).
4. Consistency and asymptotic distribution of the modified GMM estimator in the presence

of valid regressors

In this section, we consider the situation (i). When W nðIn � l0W nÞ
�1X nb0 and X n

are linearly independent, (i) can be valid as long as the IV matrix Qn is properly chosen.
Because Qn ¼ ðQn1;X nÞ, condition (i) is equivalent to that limn!1

1
n

Q0n1MnW nðIn �

l0W nÞ
�1X nb0a0 and limn!1

1
n

X 0nX n has the full rank k.11

Assumption 8. limn!1
1
n

Q0n1MnW nðIn � l0W nÞ
�1X nb0a0.

Because EðW nY nÞ ¼W nðIn � l0W nÞ
�1X nb0, Assumption 8 means that the IV’s in Qn1

shall be chosen such that they are correlated with EðW nY nÞ after the influence of X n has
This follows because ðA
D0

B
C
Þ ¼ ðA�BC�1D0

0
B
C
Þð

I1
C�1D0

0
I2
Þ where C is nonsingular.
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been taken out. If MnEðW nY nÞ were zero, this assumption would fail. Cases where
Assumption 8 is violated will be considered in a subsequent section.
Suppose that Qn is a n� r matrix. The matrix Qn1 will then be a n� ðr� kÞ matrix. Let

Fn be a constant (stochastic) s� ðmþ r� kÞ matrix of full row rank s, where sX1, which
converges (in probability) to a constant matrix F0 with full row rank s. The modified
GMM estimator l̂n is derived from minl g0nðlÞF

0
nF ngnðlÞ with gnðlÞ in (2.8).

4.1. Asymptotic distribution of the modified GMM estimator

Consistency of the modified GMM estimator l̂n can be established in Theorem 1 below.

For the asymptotic distribution, the first order condition of l̂n is
qg0nðl̂nÞ

ql F 0nF ngnðl̂nÞ ¼ 0. By

the mean value theorem of gnðl̂nÞ at l0,

l̂n � l0 ¼ �
qg0nðl̂nÞ

ql
F 0nFn

qgnðl̄nÞ

ql0

 !�1
qg0nðl̂nÞ

ql
F 0nFngnðl0Þ, (4.1)

where l̄n lies between l0 and l̂n and

qgnðlÞ
ql
¼ �ðPs

1n�x;nðlÞ; . . . ;Ps
mn�x;nðlÞ;Qn1Þ

0MnW nðIn � l0W nÞ
�1
ðX nb0 þ EnÞ. (4.2)

For any sequence of constant vectors fbng with all its elements being bounded, 1
n

b0nEn ¼

oPð1Þ and, for any sequence of constant matrices fAng uniformly bounded in absolute value

in either row or column sums, 1
n
E0nAnEn ¼

s2
0

n
trðAnÞ þ oPð1Þ by Lemma B.8. It follows that

1

n

qgnðl0Þ
ql

¼ �
1

n
Dn þ oPð1Þ, (4.3)

where

Dn ¼ ½s20Cmn; ðW nðIn � l0W nÞ
�1X nb0Þ

0MnQn1�
0

and Cmn ¼ ½trðP
s
1nW nðIn � l0W nÞ

�1
Þ; . . . ; trðPs

mnW nðIn � l0W nÞ
�1
Þ�.

The asymptotic distribution of l̂n can be derived from (4.1) and (4.3). The proof is in
Appendix C.

Theorem 1. Under the regularity Assumptions (1–8) and that, for any lal0, limn!1
1
n

EðgnðlÞÞ,
where gnðlÞ is based on (2.8), does not lie in the orthogonal space of the rows of F0, the modified

GMM estimator l̂n is consistent and

ffiffiffi
n
p
ðl̂n � l0Þ ¼

1

n
D0nF 0nF nDn

� ��1
D0nF 0nF n

1ffiffiffi
n
p gnðl0Þ þ oPð1Þ �!

d
Nð0;SlÞ, (4.4)

where

Sl ¼ lim
n!1

1

n
D0nF 0nF nDn

� ��1
D0nF 0nF n

1

n
Varðgnðl0ÞÞF

0
nF nDn

1

n
D0nF 0nFnDn

� ��1
, (4.5)

which is assumed to exit.

The condition in Theorem 1 that, for any lal0, limn!1
1
n

EðgnðlÞÞ does not lie in the
orthogonal space of the rows of F0, shall hold under the identification condition in
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Assumption 8 as long as fFng is chosen not to wipe out all the information in gnðlÞ (Ruud,
2000). The asymptotic distribution of l̂n has the familiar expression in the typical GMM
framework. The variances and covariances of gnðl0Þ can be derived from the formulas for a
quadratic function (see, e.g., Lee, 2001a). For any n� n square matrix A ¼ ½aij �, let
DiagðAÞ ¼ diagða11; . . . ; annÞ be the diagonal matrix and vecDðAÞ ¼ ða11; . . . ; annÞ

0 be the
vector formed by the diagonal elements a11; . . . ; ann of A. Appendix A provides a summary
of these notations and others used in this paper for easy reference. The components of
varðgnðl0ÞÞ are

varðE0nMnPjnMnEnÞ ¼ ðm4 � 3s40Þ trðDiag2ðMnPjnMnÞÞ þ s40 trðMnPjnMnPs
jnÞ,

EðE0nMnPjnMnEn � E
0
nMnPknMnEnÞ ¼ ðm4 � 3s40Þ vec0DðMnPjnMnÞvecDðMnPknMnÞ

þ s40 trðMnPjnMnPs
knMnÞ,

varðQ0n1MnEnÞ ¼ s20Q0n1MnQn1, and EðQ0n1MnEn � E
0
nMnPjnMnEnÞ ¼ m3Q0n1MnvecDðMnPjn

MnÞ, where m3 ¼ Eð�3i Þ and m4 ¼ Eð�4i Þ. When �i has a symmetric distribution (or more

general, m3 ¼ 0), quadratic moments �0x;nPjn�x;n will be uncorrelated with linear moments Qn1�x;n

and the variance matrix of gnðl0Þ will be block-diagonal. The following lemma can simplify the

expression of 1
n

Varðgnðl0ÞÞ in the limit. It says that in many relevant quantities, the presence of

Mn can be ignored in large samples. The proof of this lemma is given in Appendix C.

Lemma 1. Suppose that the sequence of n� n constant matrices fPng is uniformly bounded in

absolute value in both row and column sums. The elements of fPng and the sequence of vectors

fqng are uniformly bounded. Then, under Assumption 2 for X n,
(1)
12

colu
trðPnMnÞ ¼ trðMnPnÞ ¼ trðPnÞ þOð1Þ,

(2)
 trðMnPnMnPs

nÞ ¼ trðPnPs
nÞ þOð1Þ,
(3)
 vec0DðMnPnÞqn ¼ vec0DðPnÞqn þOð1Þ and vec0DðMnPnMnÞqn ¼ vec0DðPnÞqn þOð1Þ, and
(4)
 vec0DðMnP1nMnÞ vecDðMnP2nMnÞ ¼ vec0DðP1nÞ vecDðP2nÞ þOð1Þ.
Furthermore, when Pn;ij ¼ Oð 1

hn
Þ uniformly for all i; j, where hn is a rate not larger than the

rate n, P

(5)
 trðDiag2ðMnPnMnÞÞ ¼

n
i¼1P

2
n;ii þOð 1

hn
Þ:
Denote on ¼ ðvecDðP1nÞ; . . . ; vecDðPmnÞÞ, which is a n�m matrix. Let

On ¼
ðm4 � 3s40Þo

0
non þ s40Dn m3o

0
nMnQn1

m3Q
0
n1Mnon s20Q

0
n1MnQn1

 !
, (4.6)

where

Dn ¼

trðP1nPs
1nÞ . . . trðP1nPs

mnÞ

..

. ..
.

trðP1nPs
mnÞ . . . trðPmnPs

mnÞ

0
BB@

1
CCA. (4.7)

Lemma 1shows that 1
n

Varðgnðl0ÞÞ �
1
n
On ¼ Oð1

n
Þ ¼ oð1Þ.12
The term MnQn1 cannot be simplified because it is the projection of Qn1 into the orthogonal space of the

mn space of X n.
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For large group interaction cases, i.e., limn!1hn ¼ 1, limn!1
1
n
On can be further

simplified. As elements of Pn’s are Oð 1
hn
Þ, 1

n
o0non ¼ Oð 1

h2n
Þ, 1

n
Dn ¼ Oð 1

hn
Þ and 1

n
o0nMnQn1 ¼

Oð 1
hn
Þ by Lemma B.2. Therefore, as hn !1, 1

n
On �

1
n
O�n ¼ Oð 1

hn
Þ ¼ oð1Þ, where

O�n ¼
0 0

0 s20Q
0
n1MnQn1

 !
. (4.8)

Let F n ¼ ðFn1; . . . ;Fnm;FnxÞ, where Fnj , j ¼ 1; . . . ;m, are s-dimensional column vectors

and Fnx is a s� ðr� kÞ matrix. The above simplification implies that
ffiffiffi
n
p
ðl̂n � l0Þ �!

d

Nð0;SlÞ, where

Sl ¼ lim
n!1

1

n2
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnQn1F

0
nxFnxQ0n1MnW nðIn � l0W nÞ

�1X nb0

� ��1

�
s20
n3
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnQn1F

0
nxFnxQ0n1MnQn1F

0
nxFnxQ0n1

�MnW nðIn � l0W nÞ
�1X nb0

1

n2
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnQn1F 0nxFnxQ0n1

�

�MnW nðIn � l0W nÞ
�1X nb0

��1
ð4:9Þ

in Theorem 1. An implication of (4.9) is that, for large group interactions, �0x;nðlÞPjn�x;nðlÞ
does not provide an asymptotic effect in addition to that of Qn1�x;n for the GMM

estimation of l under Assumption 8.
It remains to consider the asymptotic distribution of the modified estimator b̂n of b0.

Because

b̂n ¼ ðX
0
nX nÞ

�1X 0nSnðl̂nÞY n ¼ ðX
0
nX nÞ

�1X 0n½In � ðl̂n � l0ÞW nðIn � l0W nÞ
�1
�ðX nb0 þ EnÞ,

(4.10)

it follows that

ffiffiffi
n
p
ðb̂n � b0Þ ¼

1

n
X 0nX n

� ��1
1ffiffiffi
n
p X 0nEn � ðX

0
nX nÞ

�1X 0nW nðIn � l0W nÞ
�1X nb0

ffiffiffi
n
p
ðl̂n � l0Þ þ oPð1Þ.

(4.11)

From Theorem 1 and (4.11),

1

n2
D0nF 0nFnDn 0

1

n
X 0nW nðIn � l0W nÞ

�1X nb0
1

n
X 0nX n

0
BB@

1
CCA ffiffiffi

n
p
ðŷn � y0Þ

¼

1

n
D0nF 0nFn

1ffiffiffi
n
p gnðl0Þ

1ffiffiffi
n
p

0
BBB@

1
CCCAX 0nEn þ oPð1Þ.
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As EðX 0nEn � g
0
nðl0ÞÞ ¼ Z0n þOð1Þ where Zn ¼ ðm3X

0
non; 0Þ

0, it follows that
ffiffiffi
n
p
ðŷn � y0Þ!

d

Nð0;SyÞ where

Sy ¼ lim
n!1

1

n2
D0nF 0nF nDn 0

1

n
X 0nW nðIn � l0W nÞ

�1X nb0
1

n
X 0nX n

0
BB@

1
CCA
�1

�

1

n2
D0nF 0nFn

1

n
Varðgnðl0ÞÞF

0
nFnDn

1

n2
D0nF 0nFnZn

1

n2
Z0nF 0nF nDn s20

1

n
X 0nX n

0
BB@

1
CCA

�

1

n2
D0nF 0nFnDn

1

n
ðW nðIn � l0W nÞ

�1X nb0Þ
0X n

0
1

n
X 0nX n

0
BB@

1
CCA
�1

. ð4:12Þ

In summary, the estimates l̂n and b̂n are
ffiffiffi
n
p

-consistent, and asymptotically normal under
the crucial condition in Assumption 8 in addition to the basic regularity conditions in
Assumptions 1–7.

The GMM estimation minl g0nðlÞF
0
nF ngnðlÞ can be implemented by a nonlinear least

squares programming. The FngnðlÞ can be expanded in l:

FngnðlÞ ¼
Xm

j¼1

F njY
0
nMnPjnMnY n þ F nxQ0n1MnY n

 !

�
Xm

j¼1

FnjY
0
nW 0

nMnPs
jnMnY n þ F nxQ0n1MnW nY n

 !
l

þ
Xm

j¼1

FnjY
0
nW 0

nMnPjnMnW nY n

 !
l2

and can be regarded as a ‘residual’ vector of a nonlinear least squares equation with s

number of observations and two regressors. The vector of the dependent variable is

ð
Pm

j¼1FnjY
0
nMnPjnMnY n þ F nxQ0n1MnY nÞ and ð

Pm
j¼1F njY

0
nW 0

nMnPs
jnMnY n þ FnxQ0n1Mn

W nY nÞ and ð
Pm

j¼1FnjY
0
nW 0

nMnPjnMnW nY nÞ are the two vectors of regressors with

nonlinear coefficients l and �l2. The GMM minimization corresponds to the mini-
mization of the sum of squared residuals.

4.2. The modified GMM estimator with optimum weighting

With gnðlÞ in (2.8) and the variance matrix On of gnðl0Þ in (4.6), the optimum GMM
estimation for l0 in the modified approach is

min
l

g0nðlÞO
�1
n gnðlÞ. (4.13)

Theorem 2. Under Assumptions (1–8) where fhng is a bounded sequence, and the conditions

that limn!1
1
n
On and limn!1

1
n

D0nO
�1
n Dn exist and are nonsingular, the modified optimum
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GMM estimator ~ln from minl2L g0nðlÞÔ
�1

n gnðlÞ, where gnðlÞ is based on (2.8) and 1
n
Ôn�

1
n
On ¼ oPð1Þ, is consistent and

ffiffiffi
n
p
ð~ln � l0Þ!

d
N 0; lim

n!1

1

n
D0nO

�1
n Dn

� ��1 !
. (4.14)

The corresponding modified optimum GMM estimator ŷn of y0 is asymptotically normal with

the asymptotic variance

Asy.VarðŷnÞ ¼
D0nO

�1
n Dn 0

X 0nW nðIn � l0W nÞ
�1X nb0 X 0nX n

0
@

1
A
�1

D0nO
�1
n Dn D0nO

�1
n Zn

Z0nO
�1
n Dn s20X

0
nX n

0
@

1
A

�
D0nO

�1
n Dn ðW nðIn � l0W nÞ

�1X nb0Þ
0X n

0 X 0nX n

0
@

1
A
�1

. ð4:15Þ

The results of the above theorem can be valid only for the case with small group
interactions, i.e., fhng is a bounded sequence, because the limit of 1

n
On needs to be

nonsingular. For the large group interaction case with hn being a divergent sequence, the
limiting matrix of 1

n
On will be singular as seen from (4.8). In this case, the quadratic

moments �0x;nðlÞPjn�x;nðlÞ are dominated by the linear moment Qn1�x;nðlÞ (see the discussion
below (4.9)). The corresponding modified optimum GMM estimator turns out to be the
familiar 2SLS estimator as shown in Appendix C.
The modified GMM estimation is a sequential procedure. Instead of this sequential

estimation, the relevant moment functions can be stacked together and l and b can be
jointly estimated. The following subsections compare the efficiency of the various GMM
approaches. For the divergent hn case, the modified optimum GMM estimator is the
familiar 2SLS estimator. So it remains to consider the bounded hn case.
4.3. The modified GMM estimator vs joint optimum GMM estimators

4.3.1. The recursive moment functions (2.9)

The variance matrix Varðf nðy0ÞÞ of (2.9) is asymptotically equal to

Oc;n ¼

ðm4 � 3s40Þo
0
non þ s40Dn m3o

0
nMnQn1 m3o

0
nX n

m3Q
0
n1Mnon s20Q

0
n1MnQn1 0

m3X
0
non 0 s20X

0
nX n

0
B@

1
CA, (4.16)

in that 1
n

Varðf nðy0ÞÞ �
1
n
Oc;n ¼ oð1Þ. Let ŷc;n be the optimum GMM estimator from miny f 0nðyÞ

O�1c;n f nðyÞ. With similar arguments as for Theorem 2, it can be shown that

ffiffiffi
n
p
ðŷc;n � y0Þ!

D
N 0; lim

n!1

1

n
D0c;nO

�1
c;n Dc;n

� ��1 !
, (4.17)
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where

Dc;n ¼
s20Cmn ðW nðIn � l0W nÞ

�1X nb0Þ
0MnQn1 ðW nðIn � l0W nÞ

�1X nb0Þ
0X n

0 0 X 0nX n

 !0
.

(4.18)

Consider the distance matrix O�1s;n , where

Os;n ¼

ðm4 � 3s40Þo
0
non þ s40Dn m3o

0
nMnQn1 0

m3Q
0
n1Mnon s20Q

0
n1MnQn1 0

0 0 s20X
0
nX n

0
B@

1
CA. (4.19)

The matrix Os;n differs from Oc;n in (4.16) by replacing the component m3o
0
nX n in Oc;n with a

zero submatrix. The matrix Os;n is a block diagonal matrix.

Theorem 3. The modified GMM estimation of l and b is equivalent to the joint GMM

estimation miny f 0nðyÞO
�1
s;n f nðyÞ, where f nðyÞ is based on (2.9).

As any possible nonzero correlation between recursive moment functions is ignored in
the weighting matrix Os;n, the modified GMM estimator ŷn can be inefficient relative to the
joint optimum GMM estimator ŷc;n. However, when m3 ¼ 0 or that Pn’s have zero
diagonals, there is a zero correlation and Os;n ¼ Oc;n. Under such circumstances, the
modified estimator is as efficient as the joint optimum GMM estimator.

Corollary 1. Under the conditions in Theorem 2, when m3 ¼ 0 or for the case that Pn’s have

zero diagonals, the modified estimator ŷn is as efficient as the joint optimum GMM estimator

ŷc;n.

The case m3 ¼ 0 occurs, for example, when the density of � is symmetric. The other case
holds when Pln’s are designed to have zero diagonals.

4.4. The moment functions (2.4) versus the Recursive Moment Functions (2.9)

The f �nðyÞ in (2.4) extends the moments Q0n�nðyÞ, where Qn ¼ ðQn1;X nÞ, of a 2SLS

approach by incorporating �0nðyÞPjn�nðyÞ, j ¼ 1; . . . ;m, in the estimation. It is of interest to
compare the optimum GMM based on f �nðyÞ with that based on f nðyÞ in (2.9). The
optimum GMM estimator ŷ

�

c;n from

min
y

f �
0

n ðyÞO
��1
c;n f �nðyÞ (4.20)

is, from Lee (2001b),

ffiffiffi
n
p
ðŷ
�

c;n � y0Þ!
D

N 0; lim
n!1

1

n
D�
0

c;nO
��1
c;n D�c;n

� ��1 !
, (4.21)

where the variance matrix of f �nðy0Þ is

O�c;n ¼
ðm4 � 3s40Þo

0
non þ s40Dn m3o

0
nQn

m3Q
0
non s20Q

0
nQn

 !
(4.22)
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and

D�c;n ¼
s20Cmn ðW nðIn � l0W nÞ

�1X nb0Þ
0Qn

0 X 0nQn

 !0
. (4.23)

The following theorem shows that asymptotic variances of the two optimum GMM
estimators ŷc;n in (4.17) and ŷ

�

c;n in (4.21) are algebraically identical.

Theorem 4. When Qn ¼ ðQn1;X nÞ, the identity D�
0

c;nO
��1
c;n D�c;n ¼ D0c;nO

�1
c;n Dc;n holds, under the

conditions that Oc;n and O�c;n are nonsingular.

Consequently, ŷc;n and ŷ
�

c;n from (4.17) and (4.21) have the same limiting distribution.
From this result and Theorem 3, we conclude that, in general, ŷn may be inefficient relative
to ŷ

�

c;n when m3ona0. However, for the cases that m3 ¼ 0 or diagðPlnÞ ¼ 0, l ¼ 1; . . . ;m, ŷn

is asymptotically efficient as ŷ
�

c;n.

4.5. The best modified GMM estimator

When m3 ¼ 0, the asymptotic variance of l̂n is

Varðl̂nÞ ¼ ðD
0
nO
�1
n DnÞ

�1
¼ Cmn

m4
s40
� 3

� �
o0non þ Dn

� ��1
C0mn

(

þ
1

s20
ðW nðIn � l0W nÞ

�1X nb0Þ
0
ðMnQn1ÞðpÞðW nðIn � l0W nÞ

�1X nb0Þ
��1

,

ð4:24Þ

from (4.14) and (4.6), and the asymptotic variance of b̂n from (4.15) becomes

Varðb̂nÞ ¼ s20ðX
0
nX nÞ

�1
þ ðX 0nX nÞ

�1X 0nW nðIn � l0W nÞ
�1X nb0

�ðD0nO
�1
n DnÞ

�1
ðW nðIn � l0W nÞ

�1X nb0Þ
0X nðX

0
nX nÞ

�1. ð4:25Þ

Because Mn is idempotent, by the generalized Schwartz inequality, ðMnQn1ÞðpÞpMn.
Hence, the best Qn1 to minimize Varðl̂nÞ in (4.24) corresponds to Q�n1 ¼W nðIn � l0W nÞ

�1

X nb0. This is intuitively appealing because it is EðW nY nÞ, which is also the best IV for
W nY n in the 2SLS estimation (Lee, 2003). In consequence, Q�n1 minimizes also Varðb̂nÞ

in (4.25).13

The best selection of Pn is available when m3 ¼ 0 and m4 ¼ 3s40, e.g., � is normally
distributed. In this situation, (4.24) becomes

D0nO
�1
n Dn ¼ CmnD�1n C 0mn þ

1

s20
ðW nðIn � l0W nÞ

�1X nb0Þ
0
ðMnQn1ÞðpÞW nðIn � l0W nÞ

�1X nb0.

By the representation trðABÞ ¼ vec0ðA0ÞvecðBÞ for conformable matrices,

Cmn ¼
1

2
vec0 W nðIn � l0W nÞ

�1
�

trðW nðIn � l0W nÞ
�1
Þ

n
In

� �s !
ðvecðPs

1nÞ . . . vecðPs
mnÞÞ
13In practice, one may use W nðIn � l̂nW nÞ
�1X nb̂n, based on some initial consistent estimates l̂n and b̂n, as a

feasible Q�n1. This is so also for the best P�n below.
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and

Dn ¼
1
2
ðvecðPs

1nÞ . . . vecðPs
mnÞÞ

0
ðvecðPs

1nÞ . . . vecðPs
mnÞÞ.

The generalized Schwartz inequality implies

CmnD�1n C0mnptr W nðIn � l0W nÞ
�1
�

trðW nðIn � l0W nÞ
�1
Þ

n
In

� �s
W nðIn � l0W nÞ

�1

 !
.

Hence, the best Pn matrix is P�n ¼W nðIn � l0W nÞ
�1
�

trðW nðIn�l0W nÞ
�1Þ

n
In.

14 With the best
P�n and Q�n, the asymptotic variance of the best modified GMM estimator l̂n is

ðD0nO
�1
n DnÞ

�1
¼ tr W nðIn � l0W nÞ

�1
�

trðW nðIn � l0W nÞ
�1
Þ

n
In

� �s
W nðIn � l0W nÞ

�1

 !(

þ
1

s20
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnW nðIn � l0W nÞ

�1X nb0

��1
. ð4:26Þ

When Pn is restricted to the smaller class of matrices with diagðPnÞ ¼ 0, then on ¼ 0 and
O�c;n is a diagonal matrix similar to that of the case with m3 ¼ 0 and m4 ¼ 3s40. The
generalized Schwartz inequality shows that the best IV matrix is Q�n ¼ ðW nðIn�

l0W nÞ
�1X nb0;X nÞ, and the best P�n with a zero diagonal is P�n ¼W nðIn � l0W nÞ

�1

�DiagðW nðIn � l0W nÞ
�1
Þ. The asymptotic variance of the best GMM estimator l̂n is

ðD0nO
�1
n DnÞ

�1
¼ tr W nðIn � l0W nÞ

�1
� diagðW nðIn � l0W nÞ

�1
Þ

� 	s
W nðIn � l0W nÞ

�1

 �n

þ
1

s20
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnW nðIn � l0W nÞ

�1X nb0

��1
. ð4:27Þ
5. Estimation when limn!1
hn
n
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnW nðIn � l0W nÞ

�1X nb0 is a

finite positive constant in the case limn!1hn ¼ 1

Assumption 8 assumes that W nðIn � l0W nÞ
�1X nb0 and X n are linearly independent in

the limit. In a certain case, they may be linearly independent for all finite n but are nearly
multicollinear in the limit in the sense that limn!1

1
n
ðW nðIn � l0W nÞ

�1X nb0Þ
0

MnW nðIn � l0W nÞ
�1X nb0 ¼ 0. In this section, we consider the following situation:

Assumption 80. limn!1
hn
n
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnW nðIn � l0W nÞ

�1X nb0 ¼ c, where
0oco1, as hn !1.

An example satisfies Assumption 80 is in the scenario of large group interactions in Case
(1991) mentioned before. Suppose there are R districts and, for simplicity, there are m

spatial units in each district. In this case, hn ¼ m and hn
n
¼ R. If x contains an intercept term

and x’s are i.i.d. across spatial units and districts, it can be shown (see in Lee, 2004,
14This best P�n is derived over sets of Pjn, j ¼ 1; . . . ;m for any finite m. It is not just the best one over the set of a

single Pn. Therefore, any Pn in addition to P�n for GMM estimation will not improve the asymptotic efficiency of

the best GMM estimator of y0.
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footnote 15) that, as m!1,

plim
n!1

hn

n
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnW nðIn � l0W nÞ

�1X nb0 ¼
1

ð1� l0Þ
2
b00Sxb0,

where Sx ¼ E½ðx� mÞ0ðx� mÞ� is the variance matrix of x, is finite and nonzero when b0a0.

Under the situation in Assumption 80, elements of MnW nðIn � l0W nÞ
�1X nb0 would

likely have the order Oð 1ffiffiffiffi
hn

p Þ. It is natural to rescale IV matrix Qn1 so that its elements have

also order Oð 1ffiffiffiffi
hn

p Þ. Any rescale will, in principle, not change the moment equation

EðQ0n1�nÞ ¼ 0. But it does make quadratic and linear moments in a similar scale. Therefore,

Qn1 shall be rescaled by dividing
ffiffiffiffiffi
hn

p
if necessary, so that the following setting holds:

Assumption 9. The elements of Qn1 have order Oð 1ffiffiffiffi
hn

p Þ.

This implies, in particular, elements of hn
n

Q0n1MnQn1 have order Oð1Þ. Under the
circumstance in this section, as hn !1, in order for the relevant central limit theorem in
Lemma B.9 to be applicable, Assumption 5 needs to be slightly strengthened.

Assumption 50. If fhng is a divergent sequence, limn!1
h
1þ2d
n
n
¼ 0 where d40 such that

Eðj�j4þ2dÞ exists.

Theorem 5. Under Assumptions 1–4, 50, 6, 7, 80, 9, limn!1hn ¼ 1, and that

limn!1
hn
n

EðgnðlÞÞ does not lie in the orthogonal space of the column space of F0 for any

lal0, then the modified GMM estimator l̂n from minl2L g0nðlÞF
0
nFngnðlÞ, where gnðlÞ is

based on (2.8), is consistent andffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ ¼

hn

n
D0nF 0nF nDn

� ��1
D0nF 0n

ffiffiffiffiffi
hn

n

r
Fngnðl0Þ þ oPð1Þ!

d
Nð0;SlÞ, (5.1)

where

Sl ¼ lim
n!1

hn

n
D0nF 0nFnDn

� ��1
D0nF 0n

hn

n
F nOnF 0n

� �
F nDn

hn

n
D0nF 0nF nDn

� ��1
. (5.2)

An implication of Theorem 5 is that the modified GMM estimator of l̂n under

Assumption 80 has the slower
ffiffiffiffi
n
hn

q
-rate of convergence. This is so also for the

corresponding 2SLS estimator of l0 because of the near multicollinearity of W nðIn �

l0W nÞ
�1X nb0 and X n. In the situation of Assumption 80, linear moments do not dominate

the quadratic moments and the 2SLS estimator of l0 can be improved upon by the
additional quadratic moments.
From the asymptotic distribution of Theorem 5, the optimum distance matrix is

apparently O�1n . Under Assumptions 3, 4 and 9, j hn
n

vec0DðPnÞMnQn1jp

ðhn
n

vec0DðPnÞvecDðPnÞÞ
1=2
ðhn

n
Q0n1MnQn1Þ

1=2
¼ Oð 1ffiffiffiffi

hn

p Þ ¼ oð1Þ, which implies that
ffiffiffiffi
hn
n

q
Q0n1En

and
ffiffiffiffi
hn
n

q
E
0

nPnEn are asymptotically uncorrelated, regardless whether m3 is zero or not.

Thus, the best IV Qn1 for the linear moment is W nðIn � l0W nÞ
�1X nb0. Also, because
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1
n
o0non ¼ Oð 1

h2n
Þ,hn

n
On ¼

hn
n
ð
s4
0
Dn

0
0

s2
0
Q0

n1
MnQn1

Þ þ oð1Þ, the best Pn is ðW nðIn � l0W nÞ
�1
�

trðWnðIn�l0WnÞ
�1Þ

n
InÞ even if �’s are not normally distributed.

As for the modified GMM estimator b̂n in (4.10), its asymptotic distribution can be
derived from (4.11):ffiffiffiffiffi

n

hn

r
ðb̂n � b0Þ ¼ �

X 0nX n

n

� ��1
X 0nW nðIn � l0W nÞ

�1X nb0
n

ffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ þ oPð1Þ.

(5.3)

The asymptotic distribution of b̂n may have the same
ffiffiffiffi
n

hn

q
-rate of convergence as that of l̂n.

In summary, when the circumstance in Assumption 8 does not hold but has been

changed to that in Assumption 80, the estimates l̂n and b̂n are asymptotically normal but

their rate of convergence is the slower
ffiffiffiffi
n
hn

q
-rate instead of the usual

ffiffiffi
n
p

-rate for the case

limn!1 hn ¼ 1.
6. Estimation of MRSAR models under multicollinearity of WnðIn � l0WnÞ
�1Xnb0 and Xn

Both Assumptions 8 and 80 rule out the cases that W nðIn � l0W nÞ
�1X nb0 and X n can be

perfectly multicollinear. In this section, we shall consider the more general situation, which
includes the multicollinearity case. It considers the remaining situations not covered under
Assumptions 8 and 80 for both bounded or divergent fhng.

Assumption 800. limn!1
hn
n
ðW nðIn � l0W nÞ

�1X nb0Þ
0MnðW nðIn � l0W nÞ

�1X nb0Þ ¼ 0.

When W nðIn � l0W nÞ
�1X nb0 and X n are multicollinear for large n, there will be no valid

IV for the estimation of l because the reduced form (3.4) is simply a regression equation in
X n. Therefore, any linear moment Qn1�x;nðlÞ would not be useful and the 2SLS method is

not applicable. When W nðIn � l0W nÞ
�1X nb0 and X n are not perfectly multicollinear but

have the feature in Assumption 800, the quadratic moments shall dominate any linear
moments, that is an implication from the preceding section. The appropriate approach
shall include only the quadratic moments. Thus the empirical joint moments shall have
Qn ¼ X n and

f �nðyÞ ¼ ð�
0
nðyÞP1n�nðyÞ; . . . ; �0nðyÞPmn�nðyÞ; �0nðyÞX nÞ

0 (6.1)

in place of (2.4). The method of elimination and substitution shall have b̂nðlÞ ¼ ðX
0
nX nÞ

�1

X 0nðIn � lW nÞY n and

gnðlÞ ¼ ð�
0
x;nðlÞP1n�x;nðlÞ; . . . ; �0x;nðlÞPmn�x;nðlÞÞ (6.2)

after substitution. The corresponding (simplified) variance matrix of the moment function
gnðl0Þ is

On ¼ ðm4 � 3s40Þo
0
non þ s40Dn, (6.3)

where Dn is in (4.7). Lemma B.2 implies that elements of On are of order Oð n
hn
Þ. The

identification of l0 will depend on correlation across spatial units in ðIn � l0W nÞ
�1En:
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Assumption 10. The limn!1
hn
n
trðPjnW nðIn � l0W nÞ

�1
Þa0 for some j and

lim
n!1

hn

n
½trðPs

1nW nðIn � l0W nÞ
�1
Þ; . . . ; trðPs

mnW nðIn � l0W nÞ
�1
Þ�0

is linearly independent of

lim
n!1

hn

n
½trððIn � l0W 0

nÞ
�1W 0

nP1nW nðIn � l0W nÞ
�1
Þ; . . . ; trððIn � l0W 0

nÞ
�1

�W 0
nPmnW nðIn � l0W nÞ

�1
Þ�0.

The consistency and asymptotic distribution of this modified GMM estimator l̂n are in
the following theorem.

Theorem 6. Under Assumptions 1–5, 50, 6, 7, 800, 10 and that limn!1
hn
n

EðgnðlÞÞ does not lie

in the orthogonal space of the columns of F0 for any lal0, the modified GMM estimator l̂n

from minl2L g0nðlÞF
0
nF ngnðlÞ, where gnðlÞ is in (6.2), is consistent and

ffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ ¼

hn

n
s20C0mnF 0nF nCmn

� ��1
C0mnF 0nFn

ffiffiffiffiffi
hn

n

r
gnðl0Þ þ oPð1Þ �!

d
Nð0;SlÞ,

where

Sl ¼ lim
n!1

hn

n
s20C0mnF 0nF nCmn

� ��1
C0mnF 0n

hn

n
FnOnF 0n

� �
FnCmn

hn

n
s20C

0
mnF 0nFnCmn

� ��1
.

(6.4)

Theorem 6 is applicable for both bounded or divergent fhng. When fhng is a divergent
sequence, the modified GMM estimator l̂n has a slower than

ffiffiffi
n
p

-rate of convergence. In
any case, the linear moments do not have effects on the asymptotic distribution of l̂n in
(6.4) because Cmn and On in (6.3) do not depend on X n.
From (6.4), the generalized Schwartz inequality implies that the optimum weighting

matrix is ðhn
n
OnÞ
�1. The modified optimum GMM estimator ~ln from

min
l2L

g0nðlÞÔ
�1

n gnðlÞ, (6.5)

where hn
n
Ôn �

hn
n
On ¼ oPð1Þ, will have the asymptotic distribution:

ffiffiffiffiffi
n

hn

r
ð~ln � l0Þ!

d
N 0;

1

s40
lim

n!1

hn

n
C0mnO

�1
n Cmn

� ��1 !
. (6.6)

When m4 ¼ 3s40 or Pn’s have zero diagonal, On ¼ s40Dn in (6.3). For the case that hn !1,
hn
n
ðOn � s40DnÞ ¼ oð1Þ because o0non ¼ Oð n

h2n
Þ. Thus, when �’s are normally distributed or hn

goes to infinity, the best Pn shall be ðW nðIn � l0W nÞ
�1
�

trðW nðIn�l0W nÞ
�1Þ

n
InÞ. For the

class of moment functions with DiagðPnÞ ¼ 0, the best Pn is ðW nðIn � l0W nÞ
�1
�

DiagðW nðIn � l0W nÞ
�1
ÞÞ.
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The asymptotic distribution of b̂n follows from (4.11):ffiffiffiffiffi
n

hn

r
ðb̂n � b0Þ ¼

1ffiffiffiffiffi
hn

p
1

n
X 0nX n

� ��1
1ffiffiffi
n
p X 0nEn � ðX

0
nX nÞ

�1X 0nW nðIn � l0W nÞ
�1

�X nb0 �
ffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ þ oP

1ffiffiffiffiffi
hn

p

� �
. ð6:7Þ

The first and second terms on the right-hand side of (6.7) would be uncorrelated if m3 ¼ 0.

For the case that limn!1hn ¼ 1, the first term vanishes and the limiting distribution of b̂n

will be determined by
ffiffiffiffi
n

hn

q
ðl̂n � l0Þ if all the components of limn!1ðX

0
nX nÞ

�1X 0nW nðIn �

l0W nÞ
�1X nb0 are nonzero. In the event that W nðIn � l0W nÞ

�1X nb0 and X n are

multicollinear, W nðIn � l0W nÞ
�1X nb0 ¼ X ncn for some column vector cna0. Let cn ¼

ðc01n; c
0
2nÞ
0 where all the components of c1n are nonzero in the limit and c2n ¼ 0. Let Jn be the

selection matrix such that Jncn ¼ c2n. Then, for the case limn!1 hn ¼ 1,ffiffiffiffiffi
n

hn

r
ðb̂1n � b10Þ ¼ �c1n

ffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ þ oPð1Þ (6.8)

and

ffiffiffi
n
p
ðb̂2n � b20Þ ¼ Jn

1

n
X 0nX n

� ��1
1ffiffiffi
n
p X 0nEn þ oPð1Þ, (6.9)

where b ¼ ðb01; b
0
2Þ. The component b̂1n has the

ffiffiffiffi
n

hn

q
-rate of convergence but the component

b̂2n has the usual
ffiffiffi
n
p

-rate.

In summary, under the circumstance in Assumption 800, for the case with hn being

a bounded sequence, the estimates l̂n and b̂n can still be asymptotically normal with theffiffiffi
n
p

-rate of convergence. However, for the case with hn !1, l̂n and b̂n are asymptotically

normal but, in general, l̂n and certain components of b̂n may have the slower
ffiffiffiffi
n
hn

q
-rate of

convergence.

7. Conclusion

This paper introduces a modified GMM method based on the method of elimination
and substitution for estimating the MRSAR model. This GMM approach isolates the
nonlinear estimation of the MRSAR model on the spatial effect parameter. The
parameters of exogenous regressors can be estimated by the least squares method once
the estimate of the spatial effect parameter is available. This approach is computationally
simpler than other GMM approaches which extend the 2SLS estimation in Kelejian and
Prucha (1998) and estimate jointly the spatial effect parameter and the regression
coefficients of the model.

For the ML method, the likelihood function (under normality assumption) involves a
Jacobian term. The computation of the Jacobian, i.e., the determinant of ðIn � lW nÞ, has
received much attention in the literature (e.g. Ord, 1975; Pace and Barry, 1997; Smirnov
and Anselin, 2001). The GMM approach has the feature that neither the determinant nor
the inverse of ðIn � lW nÞ need to be computed. But, the regression coefficient subvector b
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in the log likelihood function of the ML approach can be easily concentrated out, and the
resulting concentrated (or profile) likelihood function involves only the spatial effect
parameter l, while the joint GMM objective function does not have such a feature. The
modified GMM approach based on the method of elimination and substitution has both
computational advantage features.
In addition to computational issues, we investigate the relative efficiency of the modified

and joint GMM estimators. The modified GMM estimator can be as efficient as the joint
optimum GMM estimator under disturbances with a zero third order moment. Other cases
depend on the design of IV matrices used for the moment functions in GMM estimation.
We have also considered issues on selecting the best IV matrix for estimation.
The modified GMM approach and the asymptotic analysis in the paper have focused on

the MRSAR model with a single spatial lag. The asymptotic analysis and the results
derived in this paper may be generalized to high order spatial lags models. The nonlinear
estimation will then focus on the several spatial effect parameters.15 This may be, in
particular, useful as the ML approach cannot easily carry out for spatial autoregression
models with higher order lags.
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Appendix A. Summary of notations used in the text and the proofs

AðpÞ ¼ AðA0AÞ�1A0.

Mn ¼ In � X nðX
0
nX nÞ

�1X 0n.

Qn ¼ ðQn1;X nÞ.

En ¼ ð�1; . . . ; �nÞ
0.

�x;nðlÞ ¼MnðIn � lW nÞY n.

�x;n ¼ �x;nðl0Þ.

As ¼ Aþ A0 where A is a square matrix.

DiagðAÞ ¼ diagða11; . . . ; annÞ a diagonal matrix formed by the diagonal elements of a n� n

matrix A.
15Many features of a spatial regression with higher spatial lags, however, have not been adequately understood

or have not been studied. For example, there may be complicated restrictions on the parameter space of spatial

lags coefficients.
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vecDðAÞ ¼ ða11; . . . ; annÞ
0 a column vector formed by the diagonal elements of a n� n

matrix A.

Gn ¼W nðIn � l0W nÞ
�1.

on ¼ ðvecDðP1nÞ; . . . ; vecDðPmnÞÞ.

Cmn ¼ ðtrðP
s
1nGnÞ; . . . ; trðP

s
mnGnÞÞ ¼

1

2
vec0 Gn �

trðGnÞ

n
In

� �s� �
ðvecðPs

1nÞ; . . . ; vecðPs
mnÞÞ.

Dn ¼ ðs20Cmn; ðGnX nb0Þ
0MnQn1Þ

0; where s20 ¼ Eð�2Þ.

Dc;n ¼
Dn ðGnX nb0Þ

0X n

0 X 0nX n

 !0
.

D�c;n ¼
s20Cmn ðGnX nb0Þ

0Qn

0 X 0nQn

 !0
.

Dn ¼

trðP1nPs
1nÞ . . . trðP1nPs

mnÞ

..

. ..
.

trðP1nPs
mnÞ . . . trðPmnPs

mnÞ

0
BB@

1
CCA ¼ 1

2
ðvecðPs

1nÞ . . . vecðPs
mnÞÞ

0
ðvecðPs

1nÞ . . . vecðPs
mnÞÞ.

On ¼
ðm4 � 3s40Þo

0
non þ s40Dn m3o

0
nMnQn1

m3Q
0
n1Mnon s20Q

0
n1MnQn1

 !
; where ml ¼ Eð�lÞ for l ¼ 3; 4.

Oc;n ¼

ðm4 � 3s40Þo
0
non þ s40Dn m3o

0
nMnQn1 m3o

0
nX n

m3Q0n1Mnon s20Q0n1MnQn1 0

m3X 0non 0 s20X
0
nX n

0
B@

1
CA.

Os;n ¼

ðm4 � 3s40Þo
0
non þ s40Dn m3o

0
nMnQn1 0

m3Q
0
n1Mnon s20Q

0
n1MnQn1 0

0 0 s20X
0
nX n

0
B@

1
CA.

O�c;n ¼
ðm4 � 3s40Þo

0
non þ s40Dn m3o

0
nQn

m3Q
0
non s20Q

0
nQn

 !
.

Zn ¼ ðm3X 0non; 0Þ
0.
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Appendix B. Some lemmas
Lemma B.1. Suppose that the elements of the n� k matrices X n are uniformly bounded for

all n; and limn!1
1
n

X 0nX n exists and is nonsingular, then the projectors X nðX
0
nX nÞ

�1X 0n and

In � X nðX
0
nX nÞ

�1X 0n are uniformly bounded in absolute value in both row and column sums.

Furthermore, the elements of X nðX
0
nX nÞ

�1X 0n are of uniform order Oð1
n
Þ.

Proof. Let Bn ¼ ð
1
n

X 0nX nÞ
�1. From the assumptions, Bn converges to a finite limit.

Therefore, there exists a constant cb such that jbn;ijjpcb for all n, where bn;ij is the ði; jÞth
element of Bn. By the uniform boundedness of X n, there exists a constant cx such that

jxn;ijjpcx for all i; j and n. Let An ¼ X nðX
0
nX nÞ

�1X 0n ¼
1
n

Pk
s¼1

Pk
r¼1bn;rsxn;rx

0
n;s, where xn;r is

the rth column of X n. It follows that
Pn

j¼1jan;ijj ¼
1
n

Pn
j¼1j
Pk

s¼1

Pk
r¼1bn;rsxn;irxn;jsjpk2cbc2x;

for all i and n, where xn;ir is the ði; rÞth element of X n. Similarly,
Pn

i¼1jan;ijj ¼
1
n

Pn
i¼1jPk

s¼1

Pk
r¼1bn;rsxn;irxn;jsjpk2cbc2x for all j and n. That is, X nðX

0
nX nÞ

�1X 0n are uniformly

bounded in absolute value in both row and column sums. Consequently, ðIn �

X nðX
0
nX nÞ

�1X 0nÞ are also uniformly bounded in absolute value in both row and column

sums.
The ði; jÞth element of X nðX

0
nX nÞ

�1X 0n is 1
n

Pk
r¼1

Pk
s¼1bn;rsxn;irxn;js. It follows that

1

n

Xk

r¼1

Xk

s¼1

bn;rsxn;irxn;js

�����
�����p k2cbc2x

n
¼ O

1

n

� �
: &

Lemma B.2. Suppose that the elements an;ij of the sequence of n� n matrices fAng, where

An ¼ ½an;ij �, have the order Oð1
n
Þ (resp. Oð 1

hn
ÞÞ uniformly in all i and j; and fBng is a sequence of

n� n matrices.
(1)
 If fBng are uniformly bounded in absolute value in column sums, then the elements of AnBn

have the uniform order Oð1
n
Þ (resp. Oð 1

hn
ÞÞ.
(2)
 If fBng are uniformly bounded in absolute value in row sums, then the elements of BnAn

have the uniform order Oð1
n
Þ (resp. Oð 1

hn
ÞÞ.
For both cases (1) and (2), jtrðAnBnÞj ¼ jtrðBnAnÞj ¼ Oð1Þ (resp. Oð n
hn
ÞÞ.

Proof. This is proved in Lee (2001a). &

Lemma B.3. Suppose that the elements of the two sequences of n-dimensional column vectors

fpng and fqng are uniformly bounded. If fAng is uniformly bounded in absolute value in either

row or column sums, then jp0nAnqnj ¼ OðnÞ.

Proof. This is in Lee (2001b). It is a trivial result. &

Lemma B.4. Suppose that the sequence of n� n matrices fAng are uniformly bounded in

absolute value in both row and column sums. Elements of the n� k matrices X n are uniformly

bounded; limn!1
X 0nXn

n
exists and is nonsingular. Let Mn ¼ In � X nðX

0
nX nÞ

�1X 0n. Then
(i)
 trðMnAnÞ ¼ trðAnÞ þOð1Þ,

(ii)
 trðA0nMnAnÞ ¼ trðA0nAnÞ þOð1Þ,
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(iii)
 tr½ðMnAnÞ
2
� ¼ trðA2

nÞ þOð1Þ, and
(iv)
 tr½ðA0nMnAnÞ
2
� ¼ tr½ðMnAnA0nÞ

2
� ¼ tr½ðAnA0nÞ

2
� þOð1Þ.

Furthermore, if An;ij ¼ Oð 1
hn
Þ for all i and j, where hn is a rate not faster than the rate n,

then
(v)
 tr2ðMnAnÞ ¼ tr2ðAnÞ þOð n
hn
Þ,
(vi)

Pn

i¼1½ðMnAnÞii�
2 ¼

Pn
i¼1½An;ii�

2 þOð 1
hn
Þ, and
(vii)

Pn

i¼1½ðAnMnÞii�
2 ¼

Pn
i¼1½An;ii�

2 þOð 1
hn
Þ.
Proof. The assumptions imply that elements of the k � k matrix ð1
n

X 0nX nÞ
�1, 1

n
X 0nAnX n,

1
n

X 0nAnA0nX n and 1
n

X 0nA2
nX n are bounded for large enough n by Lemma B.3. It follows that

trðMnAnÞ ¼ trðAnÞ � tr½ðX 0nX nÞ
�1X 0nAnX n� ¼ trðAnÞ þOð1Þ,

trðA0nMnAnÞ ¼ trðA0nAnÞ � tr½ðX 0nX nÞ
�1X 0nAnA0nX n� ¼ trðA0nAnÞ þOð1Þ,

and

tr½ðMnAnÞ
2
� ¼ trðA2

nÞ � 2 tr½ðX 0nX nÞ
�1X 0nA2

nX n� þ tr½ðX 0nX nÞ
�1X 0nBnX n�,

where Bn ¼ AnX nðX
0
nX nÞ

�1X 0nAn. The Bn is uniformly bounded in absolute value in both
row and column sums because both An and X nðX

0
nX nÞ

�1X 0n are. Hence, tr½ðMnAnÞ
2
� ¼

trðA2
nÞ þOð1Þ, which is (iii).

By (iii), tr½ðA0nMnAnÞ
2
� ¼ tr½ðMnAnA0nÞ

2
� ¼ tr½ðAnA0nÞ

2
� þOð1Þ because AnA0n is uniformly

bounded in absolute value in both row and column sums. The (i) implies that tr2ðMnAnÞ ¼

ðtrðAnÞ þOð1ÞÞ2 ¼ tr2ðAnÞ þ 2trðAnÞ �Oð1Þ þOð1Þ ¼ tr2ðAnÞ þOðnÞ: Because An is uni-
formly bounded in absolute value in column sums and elements of X n are uniformly
bounded, X 0nAneni ¼ Oð1Þ for all i, where eni is the ith unit column vector of dimension

n. By Lemma B.2, elements of X nðX
0
nX nÞ

�1X 0nAn are of uniform order Oð1
n
Þ.

Hence,
Pn

i¼1½ðMnAnÞii�
2 ¼

Pn
i¼1ðAn;ii � e0niX nðX

0
nX nÞ

�1X 0nAneniÞ
2
¼
Pn

i¼1ðAn;ii þOð1
n
ÞÞ
2
¼Pn

i¼1 ½ðAn;iiÞ
2
þ 2An;ii �Oð

1
n
Þ þOð 1

n2
Þ� ¼

Pn
i¼1½An;ii�

2 þOð 1
hn
Þ because An;ii ¼ Oð 1

hn
Þ. Finally,Pn

i¼1 ½ðAnMnÞii�
2¼
Pn

i¼1ðAn;ii�e0niX nðX
0
nX nÞ

�1X 0neniÞ
2
¼
Pn

i¼1ðAn;iiþOð
1
n
ÞÞ
2
¼
Pn

i¼1½ðAn;iiÞ
2
þ

2An;ii� Oð
1
n
Þ þOð 1

n2
Þ� ¼

Pn
i¼1ðAn;iiÞ

2
þOð 1

hn
Þ. &

Lemma B.5. Suppose that both An and Bn are uniformly bounded in absolute value in either

row or column sums. Elements of the n� k matrices X n are uniformly bounded; limn!1
X 0nX n

n

exists and is nonsingular. Then
(1)
 trðAnMnBnÞ ¼ trðAnBnÞ þOð1Þ, and
(2)
 trðMnAnMnBnÞ ¼ trðAnBnÞ þOð1Þ.
Proof. The assumptions in this Lemma imply that BnAn is uniformly bounded in absolute
value in either row or column sums, and the elements of 1

n
X 0nBnAnX n are uniformly

bounded. Therefore,

trðAnMnBnÞ ¼ trðAnBnÞ � tr½ðX 0nX nÞ
�1X 0nBnAnX n� ¼ trðAnBnÞ þOð1Þ.
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Then (2) follows from (1). Let Cn ¼MnAn. If An is uniformly bounded in absolute value in
row (column) sums, Cn is uniformly bounded in absolute value in row (column) sums. Hence,
trðCnMnBnÞ ¼ trðCnBnÞ þOð1Þ ¼ trðMnAnBnÞ þOð1Þ ¼ trðAnBnÞ þOð1Þ by (1). &

Lemma B.6. Suppose that An is a square matrix with its column sums being uniformly

bounded in absolute value and elements of the n� k matrix Cn are uniformly bounded. The

�i’s in En ¼ ð�1; . . . ; �nÞ are i.i.d. ð0;s20Þ. Then, 1ffiffi
n
p C0nAnEn ¼ OPð1Þ. Furthermore, if the limit

of 1
n

C0nAnA0nCn exists and is positive definite, then 1ffiffi
n
p C0nAnEn!

D
Nð0; s20 limn!1

1
n

C0nAnA0nCnÞ.

Proof. The first result follows from the Chebyshev inequality, and the second one follows
from the Lindeberg–Feller central limit theorem. &

Lemma B.7. Suppose that An is a constant n� n matrix uniformly bounded in absolute value

in both row and column sums, and the �i’s in En ¼ ð�1; . . . ; �nÞ are i.i.d. ð0;s20Þ. Let cn be a

column vector of constants. If hn
n

c0ncn ¼ oð1Þ, then
ffiffiffiffi
hn
n

q
c0nAnEn ¼ oPð1Þ. On the other hand, if

hn
n

c0ncn ¼ Oð1Þ, then
ffiffiffiffi
hn
n

q
c0nAnEn ¼ OPð1Þ.

Proof. The first result follows from Chebyshev’s inequality if varð

ffiffiffiffi
hn
n

q
c0nAnEnÞ ¼

s20
hn
n

c0nAnA0ncn goes to zero. Let Ln be the diagonal matrix of eigenvalues of AnA0n
and Gn be the orthonormal matrix of eigenvectors. As eigenvalues in absolute values
are bounded by any norm of the matrix, eigenvalues in Ln in absolute value are uniformly

bounded because kAnk1 (or kAnk1) are uniformly bounded. Hence, j hn
n

c0nAnA0ncnjp
hn
n

c0nGnG0ncn � jln;maxj ¼
hn
n

c0ncnjln;maxj ¼ oð1Þ; where ln;max is the eigenvalue of AnA0n with the

largest absolute value.
When hn

n
c0ncn ¼ Oð1Þ, hn

n
c0nAnA0ncnp hn

n
c0ncnjln;maxj ¼ Oð1Þ. Hence,

var

ffiffiffiffiffi
hn

n

r
c0nAnEn

 !
¼ s20

hn

n
c0nAnA0ncn ¼ Oð1Þ.

Therefore,
ffiffiffiffi
hn
n

q
c0nAnEn ¼ OPð1Þ. &

Lemma B.8. Suppose that fAng are uniformly bounded in absolute value in either row or

column sums, and the elements an;ij of An have the order Oð 1
hn
Þ uniformly in i and j. The �i’s in

En ¼ ð�1; . . . ; �nÞ are i.i.d. with zero mean and its fourth order moment exists.
Then,
(i)
 EðE0nAnEnÞ ¼ Oð n
hn
Þ and varðE0nAnEnÞ ¼ Oð n

hn
Þ,
(ii)
 furthermore, if limn!1
hn
n
¼ 0, then hn

n
ðE0nAnEn � EðE0nAnEnÞÞ ¼ oPð1Þ.
Proof. This is in Lee (2001a). &

Lemma B.9. Suppose that fAng is a sequence of symmetric matrices uniformly bounded in

absolute value in row and column sums and fbng is a sequence of constant vectors with its

elements uniformly bounded. The �i’s in En ¼ ð�1; . . . ; �nÞ are i.i.d. with zero mean and its

fourth order moment exists. Let s2qn
be the variance of qn where qn ¼ b0nEnþ

E0nAnEn � s2 trðAnÞ. Assume that the variance s2qn
is Oðn=hnÞ with fðhn=nÞs2qn

g bounded away
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from zero, the elements of An are of uniform order Oð1=hnÞ and the elements of bn are of

uniform order Oð1=
ffiffiffiffiffi
hn

p
Þ.

If either (i) fhng is bounded from above and is bounded away from zero, or (ii) when

hn !1, limn!1
h
1þ2=d
n

n
¼ 0 for some d40 such that Eðj�j4þ2dÞ exists, then

qn
sqn
!
d
Nð0; 1Þ.

Proof. The result of (i) follows from the central limit theorem in Kelejian and Prucha
(2001). Its generalization in (ii) is in Lee (2004). &

Appendix C. Proofs
Proof of Theorem 1. It shall be shown that ð1
n

FngnðlÞÞ
0
ð1
n

FngnðlÞÞ � Eð1
n

FngnðlÞÞ
0

Eð1
n

FngnðlÞÞ ¼ oPð1Þ uniformly in l in L. As

1

n
FngnðlÞ

� �0
1

n
FngnðlÞ

� �
� E

1

n
F ngnðlÞ

� �0
E

1

n
FngnðlÞ

� �

¼
1

n
FngnðlÞ � E

1

n
F ngnðlÞ

� �� �0
1

n
F ngnðlÞ � E

1

n
FngnðlÞ

� �� �

þ 2
1

n
F ngnðlÞ � E

1

n
FngnðlÞ

� �� �0
E

1

n
F ngnðlÞ

� �
,

it is sufficient to show that 1
n

F ngnðlÞ � Eð1
n

F ngnðlÞÞ ¼ oPð1Þ uniformly in l in L, and
Eð1

n
FngnðlÞÞ is uniformly bounded in L.

As ðIn � lW nÞðIn � l0W nÞ
�1
¼ In þ ðl0 � lÞGn,

�x;nðlÞ ¼MnðIn � lW nÞY n ¼ ðl0 � lÞMnGnX nb0 þMnðIn þ ðl0 � lÞGnÞEn.

It follows that

FngnðlÞ ¼
Xm

l¼1

Fnl�
0
x;nðlÞPln�x;nðlÞ þ F nxQ0n1�x;nðlÞ

¼ ðl0 � lÞ2
Xm

l¼1

FnlðMnGnX nb0Þ
0PlnðMnGnX nb0Þ þ ðl0 � lÞl1nðlÞ

þ qnðlÞ þ ðl0 � lÞFnxQ0n1MnGnX nb0 þ l2nðlÞ,

where

l1nðlÞ ¼
Xm

l¼1

FnlðMnGnX nb0Þ
0Ps

lnMnðIn þ ðl0 � lÞGnÞEn,

l2nðlÞ ¼ F nxQ0n1MnðIn þ ðl0 � lÞGnÞEn

and

qnðlÞ ¼
Xm

l¼1

FnlE
0
nðIn þ ðl0 � lÞGnÞ

0MnPlnMnðIn þ ðl0 � lÞGnÞEn.

Lemma B.6 implies that 1
n

l1nðlÞ and 1
n

l2nðlÞ are oPð1Þ uniformly in l in L. The uniform
convergence holds because l appears linearly and L is a bounded set. Lemma B.8
implies that 1

n
qnðlÞ � Eð1

n
qnðlÞÞ ¼ oPð1Þ uniformly in l in L. Therefore, 1

n
F ngnðlÞ ¼
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1
n

EðFngnðlÞÞ þ oPð1Þ. The equicontinuity of 1
n

EðFngnðlÞÞ on L is apparent from its
expression:

EðFngnðlÞÞ ¼ ðl0 � lÞFnxQ0n1MnGnX nb0 þ
Xm

l¼1

F nlðMnGnX nb0Þ
0PlnðMnGnX nb0Þ

�ðl0 � lÞ2 þ EðqnðlÞÞ,

where EðqnðlÞÞ ¼ s20
Pm

l¼1F nlftr½MnPln� þ ðl0 � lÞ tr½G0nMnPs
lnMn� þ ðl0 � lÞ2 tr½G0nMnPln

MnGn�g.
Consider the identification uniqueness of l0 (White, 1994). Suppose the identification

uniqueness condition that lim infn!1minl2N̄�ðl0Þ
Eð1

n
FngnðlÞÞ

0Eð1
n

FngnðlÞÞ40 does not
hold for some �40, where N̄�ðl0Þ is the complement of the open �-neighborhood of l0
in L. Then, there exists a sequence flng convergent to lþ 2 L where lþal0 such
that F0 limn!1 Eð1

n
gnðlnÞÞ ¼ 0. By the equicontinuity of Eð1

n
gnðlÞÞ, limn!1 ½Eð

1
n

gnðlnÞÞ �

Eð1
n

gnðlþÞÞ� ¼ 0. This implies, in turn, that F0 limn!1 Eð1
n

gnðlþÞÞ ¼ 0, a contradiction to
the identification assumption. Hence, the identification uniqueness of l0 holds. The
consistency of l̂n follows from the uniform convergence and the identification uniqueness
condition (White, 1994, Theorem 3.4).
By expansion,

1

n
�0x;nðlÞP

s
nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
1

n
½MnGnðX nb0 þ EnÞ�

0Ps
nMnGnðX nb0 þ EnÞ þ

1

n
E0nMnPs

nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
1

n
½ðMnGnX nb0Þ

0Ps
nMnGnX nb0 þ s20 trðP

s
nGnG0nÞ� þ

s20
n

trðPs
nGnÞ þ oPð1Þ,

by Lemmas B.4 and B.5. Hence, 1
n
qgnðl̄nÞ

ql ¼ �
1
n
ðPs

1n�x;nðl̄nÞ; . . . ;P
s
mn�x;nðl̄nÞ;Qn1Þ

0MnGn

ðX nb0 þ EnÞ ¼ �
1
n

Dn þ oPð1Þ; for any consistent estimate l̄n of l0.
The 1ffiffi

n
p E0nPs

nX nðX
0
nX nÞ

�1X 0nEn and 1ffiffi
n
p E0nX nðX

0
nX nÞ

�1X 0nPnX nðX
0
nX nÞ

�1X 0nEn are both of

oPð1Þ. It follows that
1ffiffi
n
p E0nMnPnMnEn ¼

1ffiffi
n
p E0nPnEn þ oPð1Þ. By the central limit theorem

of linear-quadratic form in Kelejian and Prucha (2001),

1ffiffiffi
n
p gnðl0Þ ¼

1ffiffiffi
n
p ðE0nP1nEn; . . . ;E

0
nPmnEn;E

0
nMnQn1Þ

0
þ oPð1Þ!

d
N 0; lim

n!1

1

n
On

� �
.

The asymptotic distribution of l̂n follows from the Taylor expansion of the first order
condition of the GMM minimization and

ffiffiffi
n
p
ðl̂n � l0Þ ¼

1

n

qg0nðl̂nÞ

ql
F 0nFn

1

n

qgnðl̄nÞ

ql

 !�1
1

n

qg0nðl̂nÞ

ql
F 0nFn

1ffiffiffi
n
p gnðl0Þ!

d
Nð0;SlÞ: &

Proof of Lemma 1. Because Pn and PnMnPs
n are uniformly bounded in absolute value in

both row and column sums, (1) and (2) follow from Lemmas B.1 and B.4.
Note that MnPn ¼ Pn � X nðX

0
nX nÞ

�1X 0nPn and

MnPnMn ¼ Pn � X nðX
0
nX nÞ

�1X 0nPn � PnX nðX
0
nX nÞ

�1X 0n

þ X nðX
0
nX nÞ

�1X 0nPnX nðX
0
nX nÞ

�1X 0n.
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As the elements of X nðX
0
nX nÞ

�1X 0nPn are of uniform Oð1
n
Þ by Lemmas B.1 and B.2, and

elements of qn are uniformly bounded, vec0DðX nðX
0
nX nÞ

�1X 0nPnÞqn ¼ n �Oð1
n
Þ ¼ Oð1Þ.

Similarly, vec0DðPnX nðX
0
nX nÞ

�1X 0nÞqn and vec0DðX nðX
0
nX nÞ

�1X 0nPnX nðX
0
nX nÞ

�1X 0nÞqn are of
Oð1Þ. Therefore, vec0DðMnPnÞqn ¼ vec0DðPnÞqn þOð1Þ and vec0DðMnPnMnÞqn ¼ vec0DðPnÞqnþ

Oð1Þ, which is (3). The result in (4) follows from (3). The (vi) and (vii) of Lemma B.4
imply that

trðDiag2ðMnPnMnÞÞ ¼
Xn

i¼1

½ðMnPnMnÞii�
2 ¼

Xn

i¼1

½ðPnMnÞii�
2 þO

1

hn

� �

¼
Xn

i¼1

ðPn;iiÞ
2
þO

1

hn

� �
,

which is (5). &

Proof of Theorem 2. The results follow from Theorem 1 and (4.14) as F 0nFn ¼ ð
1
n
OnÞ
�1. &

Proof of Theorem 3. Because minbðSnðlÞY n � X nbÞ
0X nðX

0
nX nÞ

�1X 0nðSnðlÞY n � X nbÞ ¼ 0,

min
y

f 0nðyÞO
�1
s;n f nðyÞ

¼ min
l
½g0nðlÞO

�1
n gnðlÞ þ

1

s20
min
b
ðSnðlÞY n � X nbÞ

0X nðX
0
nX nÞ

�1X 0nðSnðlÞY n � X nbÞ�

¼ min
l

g0nðlÞO
�1
n gnðlÞ.

Thus, the modified estimation corresponds to a GMM with the recursive moment
functions f nðyÞ in (2.9) and the distance matrix O�1s;n . &

Proof of Corollary 1. When m3o
0
nX n is not zero, Os;naOc;n. When m3 ¼ 0 or Pn’s have zero

diagonals, on ¼ 0 and Os;n ¼ Oc;n. The modified estimator is as efficient as the joint
optimum GMM with f nðyÞ. &

Proof of Theorem 4. Let A ¼ ðm4 � 3s40Þo
0
non þ s40Dn and D ¼ s20Cmn. The matrices Dc;n

and Oc;n can be rewritten into block matrix forms

D0c;n ¼
D E1

0 E2

 !
; Oc;n ¼

A B

B0 C

� �
,

where E1 ¼ ðGnX nb0Þ
0
ðMnQn1;X nÞ, E2 ¼ ð0;X

0
nX nÞ, B ¼ m3o

0
nðMnQn1;X nÞ, and

C ¼
s20Q0n1MnQn1 0

0 s20X 0nX n

 !
.

Correspondingly, the D�c;n and O�c;n can be partitioned into

D�
0

c;n ¼
D E�1

0 E�2

 !
; O�c;n ¼

A B�

B�
0

C�

� �
,

where E�1 ¼ ðGnX nb0Þ
0Qn, E�2 ¼ X 0nQn, B� ¼ m3o

0
nQn, and C� ¼ s20Q

0
nQn.

For the inverses of Oc;n and O�c;n, the inversion formula for partitioned matrix is useful.

The first diagonal block of O�1c;n is ðA� BC�1B0Þ�1, and that of O��1c;n is ðA� B�C��1B�
0

Þ
�1.
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Explicitly, A�BC�1B0 ¼ A�
m2
3

s2
0

o0n½ðMnQn1ÞðpÞ þ X nðX
0
nX nÞ

�1X 0n�on; and A� B�C��1B�
0

¼

A�
m2
3

s2
0

o0nðQnÞðpÞon: Because of the identity ðQnÞðpÞ � X nðX
0
nX nÞ

�1X 0n ¼ ðMnQn1ÞðpÞ when

Qn ¼ ðQn1;X nÞ (see, e.g., Ruud, 2000),

A� BC�1B0 ¼ A� B�C��1B�
0

.

Denote this common matrix by H.
The inversion formula of partitioned matrix implies

O�1c;n ¼
H�1 �H�1BC�1

�C
0�1B0H�1 C�1 þ C�1B0H�1BC�1

 !
,

and, therefore, D0c;nO
�1
c;n Dc;n ¼ ð

V11
V21

V12
V22
Þ with

V 11 ¼ D0H�1D0 � E1C�1B0H�1D0 �DH�1BC�1E01 þ E1C�1E01 þ E1C�1B0H�1BC�1E01,

V 12 ¼ �DH�1BC�1E02 þ E1C�1E02 þ E1C�1B0H�1BC�1E02

and

V 22 ¼ E2C�1E02 þ E2C
�1B0H�1BC�1E02.

These expressions can be simplified. Because

BC�1E01 ¼
m3
s20

o0n½ðMnQn1ÞðpÞ þ X nðX
0
nX nÞ

�1X 0n�GnX nb0 ¼
m3
s20

o0nðQnÞðpÞGnX nb0

and E1C
�1E 01 ¼

1
s2
0

ðGnX nb0Þ
0
ðQnÞðpÞGnX nb0; it follows that

V11 ¼ DH�1D0 �
m3
s20
ðGnX nb0Þ

0
ðQnÞðpÞonH�1D0 �

m3
s20

DH�1o0nðQnÞðpÞGnX nb0

þ
1

s20
ðGnX nb0Þ

0
ðQnÞðpÞGnX nb0 þ

m3
s20

� �2

ðGnX nb0Þ
0
ðQnÞðpÞonH�1o0nðQnÞðpÞGnX nb0.

Because BC�1E 02 ¼
m3
s2
0

o0nX n and E1C
�1E 02 ¼

1
s2
0

ðGnX nb0Þ
0X n,

V 12 ¼ �
m3
s20

DH�1o0nX n þ
1

s20
ðGnX nb0Þ

0X n þ
m3
s20

� �2

ðGnX nb0Þ
0
ðQnÞðpÞonH�1o0nX n.

Furthermore, because E2C�1E02 ¼
1
s2
0

X 0nX n,

V 22 ¼
1

s20
X 0nX n þ

m3
s20

� �2

X 0nonH�1o0nX n.

For O�c , its inverse is

O��1c ¼
H�1 �H�1B�C��1

�C��1B�
0

H�1 C��1 þ C��1B�
0

H�1B�C��1

 !
,
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and D�
0

c O
��1
c D�c ¼ ð

V�
11

V�
21

V�
12

V�
22

Þ, where

V�11 ¼ D0H�1D� E�1C��1B�
0

H�1D�DH�1B�C��1E�
0

1 þ E�1C��1E�
0

1

þ E�1C��1B�
0

H�1B�C��1E�
0

1 ,

V�12 ¼ �DH�1B�C��1E�
0

2 þ E�1C��1E�
0

2 þ E�1C��1B�
0

H�1B�C��1E�
0

2

and

V�22 ¼ E�2C��1E�
0

2 þ E�2C��1B�
0

H�1B�C��1E�
0

2 .

These expressions can be simplified as E�1C��1B�
0

¼
m3
s2
0

ðGnX nb0Þ
0
ðQnÞðpÞon,

E�1C��1E�
0

1 ¼
1

s20
ðGnX nb0Þ

0
ðQnÞðpÞGnX nb0; B�C��1E�

0

2 ¼
m3
s20

o0nðQnÞðpÞX n ¼
m3
s20

o0nX n

and E�1C��1E�
0

2 ¼
1
s2
0

ðGnX nb0Þ
0
ðQnÞðpÞX n ¼

1
s2
0

ðGnX nb0Þ
0X n, where the last two equalities

hold because X n is in the column space of Qn. Hence, it follows that V�11 ¼ V11, V�12 ¼ V 12,

and V�22 ¼ V22.

In conclusion, when Qn ¼ ðQn1;X nÞ, D0c;nO
�1
c;n Dc;n ¼ D�

0

c;nO
��1
c;n D�c;n. &

Proof of Theorem 5. The proof of this theorem is similar to that of Theorem 1 by taking
into account the situation in Assumptions 80 and 10 under limn!1 hn ¼ 1.

It shall be shown that hn
n

gnðlÞ � Eðhn
n

gnðlÞÞ ¼
hn
n
½ðl0 � lÞl1nðlÞ þ l2nðlÞ þ qnðlÞ� ¼ oPð1Þ

uniformly in L, where l1n, l2n and qn are defined in the proof of Theorem 1. Lemma B.7

implies that hn
n

l1nðlÞ and hn
n

l2nðlÞ are of OPð

ffiffiffiffi
hn
n

q
Þ uniformly in L under Assumptions 80

and 9. Lemma B.2 implies that elements of ðIn þ ðl0 � lÞGnÞ
0MnPlnMnðIn þ ðl0 � lÞGnÞ

are of order Oð 1
hn
Þ because elements of Pln has order Oð 1

hn
Þ. Therefore, Lemma B.8 implies

that hn
n
½qnðlÞ � EðqnðlÞÞ� ¼ oPð1Þ uniformly in L.

Note that

hn

n
EðFngnðlÞÞ

¼ ðl0 � lÞ2
Xm

l¼1

Fnl

hn

n
ðGnX nb0Þ

0MnPlnMnGnX nb0

þ ðl0 � lÞ
hn

n
FnxQ0n1MnGnX nb0 þ

hn

n
EðqnðlÞÞ,

where EðqnðlÞÞ ¼ s20½ðl0 � lÞ
Pm

l¼1Fnl trðG
0
nMnPs

lnMnÞ þ ðl0 � lÞ2
Pm

l¼1Fnl trðMnPln

MnGnG0nÞ�. As 1
2

Ps
n is uniformly bounded in absolute value in either column or row sums

and all its eigenvalues must be less than kPnk1 and kPnk1, those eigenvalues are uniformly
bounded. Therefore,

hn

n

����ðGnX nb0Þ
0MnPnMnGnX nb0j ¼

1

2

hn

n
jðGnX nb0Þ

0MnPs
nMnGnX nb0j

pjln;maxj
hn

n
ðGnX nb0Þ

0MnGnX nb0 ¼ Oð1Þ,
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where ln;max is the largest eigenvalue of
Ps

n
2
in absolute value. Under Assumption 80 and 9, the

Cauchy inequality implies that hn
n
jFj;nxQ0nMnGnX nb0jpð

hn
n

F j;nxQ0nMnQnF 0j;nxÞ
1=2
ðhn

n
ðGnX nb0Þ

0

MnðGnX nb0ÞÞ
1=2
¼ Oð1Þ, where Fj;nx is the jth row of Fnx, j ¼ 1; . . . ; s. Lemma B.2 implies that

hn
n
trðG0nMnPs

nMnÞ and
hn
n
trðMnPnMnGnG0nÞ are of order Oð1Þ. Hence, hn

n
EðFngnðlÞÞ are

equicontinuous on L.
The identification uniqueness condition that limn!1minl2N̄�ðl0Þ

Eðhn
n

F ngnðlÞÞ
0

Eðhn
n

F ngnðlÞÞ40 is satisfied under Assumption 80 and the property of F0 in the theorem.
The consistency of l̂n follows.
For the asymptotic distribution,

hn

n

qgnðlÞ
ql
¼ �

hn

n
ðPs

1n�x;nðlÞ; . . . ;Ps
mn�x;nðlÞ;Qn1Þ

0MnðGnX nb0 þ GnEnÞ.

Lemma B.7 implies that terms hn
n
ðGnX nb0Þ

0MnPs
nMnEn,

hn
n
ðGnX nb0Þ

0MnPs
nMnGnEn and

hn
n

Q0n1MnGnEn are of order OPð

ffiffiffiffi
hn
n

q
Þ. The hn

n
½E0nMnPs

nMnGnEn � s20 trðP
s
nGnÞ� and

hn
n
½E0nG0nPs

nMnGnEn � s20 trðP
s
nGnG0nÞ� are oPð1Þ by Lemmas B.8 and B.5. Therefore,

hn

n
�0x;nðlÞP

s
nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
hn

n
ðX nb0 þ EnÞ

0G0nMnPs
nMnGnðX nb0 þ EnÞ þ

hn

n
E0nMnPs

nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
hn

n
ðGnX nb0Þ

0MnPs
nMnGnX nb0

�

þs20
hn

n
trðPs

nGnG0nÞ

�
þ s20

hn

n
trðPs

nGnÞ þ oPð1Þ,

uniformly in L. As hn
n
ðGnX nb0Þ

0MnPs
nMnGnX nb0 and hn

n
trðPs

nGnG0nÞ are of Oð1Þ, for any

consistent estimate l̄n of l0, hn
n
qgnðl̄nÞ

ql ¼ �
hn
n

Dn þ oPð1Þ.

Note that Fngnðl0Þ ¼
Pm

l¼1F nl�0nMnPlnMn�n þ F nxQ0n1Mn�n. By expansion, �0nMnPn

Mn�n ¼ �0nPn�n � �0nX nðX
0
nX nÞ

�1X 0nPs
n�n þ �0nX nðX

0
nX nÞ

�1X 0nPnX nðX
0
nX nÞ

�1X 0n�n ¼ �0nPn�nþ

OPð1Þ. Therefore, by the CLT of quadratic and linear functions,ffiffiffiffiffi
hn

n

r
Fngnðl0Þ ¼

ffiffiffiffiffi
hn

n

r
�0n
Xm

l¼1

FnlPnl�n þ FnxQ0n1Mn�n

 !
þOPð

ffiffiffiffiffi
hn

n

r
Þ!

d
N 0; lim

n!1

hn

n
F0OnF 00

� �
.

The asymptotic distribution of l̂n follows fromffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ ¼

hn

n

qg0nðl̄nÞ

ql
F 0nFn

hn

n

qg0nðl̄nÞ

ql

� ��1
hn

n

qg0nðl̄nÞ

ql
F 0n

ffiffiffiffiffi
hn

n

r
Fngnðl0Þ!

d
Nð0;SlÞ: &

Proof of Theorem 6. It shall be shown that hn
n

FngnðlÞ � Eðhn
n

F ngnðlÞÞ ¼ oPð1Þ and Eðhn
n

Fngn

ðlÞÞ is uniformly bounded, uniformly in l in L.
As �x;nðlÞ ¼ ðl0 � lÞMnGnX nb0 þMnðIn þ ðl0 � lÞGnÞEn,

F ngnðlÞ ¼ ðl0 � lÞ2
Xm

l¼1

F nlðMnGnX nb0Þ
0PlnMnGnX nb0 þ ðl0 � lÞlnðlÞ þ qnðlÞ,
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where F n ¼ ðFn1; . . . ;FnmÞ, lnðlÞ ¼
Pm

l¼1FnlðMnGnX nb0Þ
0Ps

lnMnðIn þ ðl0 � lÞGnÞEn and

qnðlÞ ¼
Xm

l¼1

FnlE
0
nðIn þ ðl0 � lÞGnÞ

0MnPlnMnðIn þ ðl0 � lÞGnÞEn.

Under Assumption 800, Lemma B.7 implies that
ffiffiffiffi
hn
n

q
lnðlÞ ¼ oPð1Þ uniformly in l 2 L.

Lemma B.8 implies that hn
n

qnðlÞ � Eðhn
n

qnðlÞÞ ¼ oPð1Þ uniformly in l in L. Hence,
hn
n

FngnðlÞ � Eðhn
n

FngnðlÞÞ ¼ oPð1Þ uniformly in L. The equicontinuity of hn
n

EðFngnðlÞÞ on
L is apparent from its expression.

Note that

EðqnðlÞÞ ¼ s20
Xm

l¼1

F nlftr½MnPln� þ ðl0 � lÞ tr½G0nMnPs
lnMn� þ ðl0 � lÞ2 tr½G0nMnPlnMnGn�g

¼ s20 ðl0 � lÞ
Xm

l¼1

Fnl trðG
0
nPs

lnÞ þ ðl0 � lÞ2
Xm

l¼1

F nl trðPlnGnG0nÞ

( )
þOð1Þ,

by Lemmas B.4 and B.5 and trðPlnÞ ¼ 0. Assumption 800 implies also hn
n
ðMnGnX nb0Þ

0

PnMnGnX nb0 ¼ 2 hn
n
ðMnGnX nb0Þ

0Ps
nMnGnX nb0 ¼ oð1Þ because the eigenvalues of Ps

n are
uniformly bounded as Ps

n is uniformly bounded in absolute value in row and column sums.
Thus, hn

n
EðF ngnðlÞÞ ¼

hn
n

EðFnqnðlÞÞ þ oð1Þ.
The identification uniqueness condition of l0 in this case is

lim inf
n!1

min
l2N̄�ðl0Þ

E
hn

n
F nqnðlÞ

� �0
E

hn

n
FnqnðlÞ

� �
40,

which follows from the identification conditions in Assumption 10. The consistency follows
from uniform convergence and identification uniqueness (White, 1994, Theorem 3.4).

By Lemmas B.7 and B.8 and hn
n
ðMnGnX nb0Þ

0Ps
nMnGnX nb0 ¼ oð1Þ,

hn

n
�0x;nðlÞP

s
nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
hn

n
½MnGnðX nb0 þ EnÞ�

0Ps
nMnGnðX nb0 þ EnÞ þ

hn

n
E0nMnPs

nMnGnðX nb0 þ EnÞ

¼ ðl0 � lÞ
hn

n
s20 trðP

s
nGnG0nÞ þ s20

hn

n
trðPs

nGnÞ þ oPð1Þ.

Hence, hn
n
qgnðl̄nÞ

ql ¼ �
hn
n
ðPs

1n�x;nðl̄nÞ; . . . ;P
s
mn�x;nðl̄nÞ;Qn1Þ

0MnGnðX nb0 þ EnÞ ¼ �s20
hn
n

Cmn þ

oPð1Þ; for any consistent estimate l̄n of l0.

The
ffiffiffiffi
hn
n

q
E0nPs

nX nðX
0
nX nÞ

�1X 0nEn and
ffiffiffiffi
hn
n

q
E0nX nðX

0
nX nÞ

�1X 0nPnX nðX
0
nX nÞ

�1X 0nEn are of

OPð

ffiffiffiffi
hn
n

q
Þ. Hence,

ffiffiffiffi
hn
n

q
E0nMnPnMnEn ¼

ffiffiffiffi
hn
n

q
E0nPnEn þ oPð1Þ. By the central limit theorem in

Lemma B.9,ffiffiffiffiffi
hn

n

r
gnðl0Þ ¼

ffiffiffiffiffi
hn

n

r
ðE0nP1nEn; . . . ;E

0
nPmnEnÞ

0
þ oPð1Þ!

d
N 0; lim

n!1

hn

n
On

� �
,
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where On is in (6.3). The asymptotic distribution of l̂n follows from the Taylor expansion:

ffiffiffiffiffi
n

hn

r
ðl̂n � l0Þ ¼

hn

n

qg0nðl̂nÞ

ql
F 0nFn

hn

n

qgnðl̄nÞ

ql

 !�1
hn

n

qg0nðl̂nÞ

ql
F 0nFn

�

ffiffiffiffiffi
hn

n

r
gnðl0Þ!

d
Nð0;SlÞ: &

Appendix D. Sequential two-stage least squares estimation

The 2SLS approach in (2.3) with IV matrix Qn ¼ ðQn1;X nÞ can be regarded as a special
case of the optimum GMM estimation with the moments Q0nðY n � Znl� X nbÞ, where
Zn ¼W nY n, and the distance matrix ðs20Q

0
nQnÞ

�1 (or simply ðQ0nQnÞ
�1).

Correspondingly, l and b can also be estimated by the method of elimination and
substitution. This method solves b̂ðlÞ from X 0nðyn � Znl� X nb̂ðlÞÞ ¼ 0 for any l. By
substitution, the remaining moments are Q0n1ðyn � Znl� X nb̂ðlÞÞ ¼ Q0n1Mnðyn � ZnlÞ. At
l ¼ l0,

Q0n1MnðY n � Znl0Þ ¼ Q0n1MnðY n � Znl0 � X nb0Þ ¼ Q0n1MnEn,

which has zero mean and its variance matrix is s20Q0n1MnQn1. Thus, the optimum distance
in the GMM estimation using Q0n1Mnðyn � ZnlÞ shall be ðQ0n1MnQn1Þ

�1. The modified
optimum GMM estimation of l is

min
l
ðY n � ZnlÞ

0
ðMnQn1ÞðpÞðY n � ZnlÞ. (D.1)

The modified estimator ~ln from (D.1) is

~ln ¼ ðZ
0
nðMnQn1ÞðpÞZnÞ

�1Z0nðMnQn1ÞðpÞY n, (D.2)

and the corresponding estimator of b is

~bn ¼ ðX
0
nX nÞ

�1X 0n½In � ZnðZ
0
nðMnQn1ÞðpÞZnÞ

�1Z0nðMnQn1ÞðpÞ�Y n. (D.3)

When Qn ¼ ðQn1;X nÞ, ðQnÞðpÞX n ¼ X n and, hence, the joint 2SLS estimator in (2.3) can
be rewritten as

l̂n

b̂n

 !
¼

Z0nðQnÞðpÞZn Z0nX n

X 0nZn X 0nX n

 !�1
Z0nðQnÞðpÞY n

X 0nY n

 !
.

Let Rn ¼ Z0nðQnÞðpÞZn � Z0nX nðX
0
nX nÞ

�1X 0nZn ¼ Z0nððQnÞðpÞ � X nðX
0
nX nÞ

�1X 0nÞZn. By the
inverse formula of a partitioned matrix,

Z0nðQnÞðpÞZn Z0nX n

X 0nZn X 0nX n

 !�1

¼
R�1n �R�1n Z0nX nðX

0
nX nÞ

�1

�ðX 0nX nÞ
�1X 0nZnR�1n ðX 0nX nÞ

�1
þ ðX 0nX nÞ

�1X 0nZnR�1n Z0nX nðX
0
nX nÞ

�1

0
@

1
A.
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As Qn ¼ ðX n;Qn1Þ, ðQnÞðpÞ � X nðX
0
nX nÞ

�1X 0n ¼ ðMnQn1ÞðpÞ and, hence, Rn ¼ Z0nðMnQn1ÞðpÞ
Zn. It follows that

l̂n ¼ R�1n ðZ
0
nðQnÞðpÞY n � Z0nX nðX

0
nX nÞ

�1X 0nY nÞ ¼ R�1n Z0nðMnQn1ÞðpÞY n

and

b̂n ¼ � ðX
0
nX nÞ

�1X 0nZnR�1n Z0nðQnÞðpÞY n þ ðX
0
nX nÞ

�1X 0nY n

þ ðX 0nX nÞ
�1X 0nZnR�1n Z0nX nðX

0
nX nÞ

�1X 0nY n

¼ ðX 0nX nÞ
�1X 0n½In � ZnR�1n Z0nðMnQn1ÞðpÞ�Y n,

which are, respectively, numerically identical to the sequential estimators in (D.2)
and (D.3).
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