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Abstract

The GMM method and the classical 2SLS method are considered for the estimation of mixed
regressive, spatial autoregressive models. These methods have computational advantage over the
conventional maximum likelihood method. The proposed GMM estimators are shown to be
consistent and asymptotically normal. Within certain classes of GMM estimators, best ones are
derived. The proposed GMM estimators improve upon the 2SLS estimators and are applicable even
if all regressors are irrelevant. A best GMM estimator may have the same limiting distribution as the
ML estimator (with normal disturbances).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we propose a general GMM framework for the estimation of mixed
regressive, spatial autoregressive (MRSAR) models. The GMM estimation for those
models can be computationally simpler than the maximum likelihood (ML) or quasi
maximum likelihood (QML) methods in a general setting. The GMM estimator (GMME)
may be asymptotically more efficient than the two-stage least squares (2SLS) estimator
(2SLSE) and may be asymptotically efficient as the ML estimator (MLE).
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The 2SLS method has been noted for the estimation of the MRSAR model in Anselin
(1988, 1990), Land and Deane (1992), Kelejian and Robinson (1993), Kelejian and Prucha
(1997, 1998), and Lee (2003), among others. The instrumental variables (IVs) are generated
from exogenous regressors and the spatial weights matrix of the model. However, there are
some issues on the 2SLS approach. The main issue is that the proposed 2SLSE is inefficient
relative to the MLE. For the estimation of a conventional linear simultancous equation
model, the 2SLSE is asymptotically efficient as the limited information MLE (see, e.g.,
Amemiya, 1985). This is not so for the estimation of the MRSAR model. The 2SLSE has
been shown to be consistent and asymptotically normally distributed (Kelejian and
Prucha, 1998). Lee (2003) discusses the best one (B2SLSE) within the class of IV
estimators. By comparing the limiting variance matrices, the 2SLSE and B2SLSE are less
efficient relative to the MLE (when the disturbances are normally distributed). A subtle
issue is that the 2SLS method would not be consistent when all the exogenous regressors in
the MRSAR model are really irrelevant. Furthermore, it is not possible to test the joint
significance of all the exogenous regressors based on those IV estimators (Kelejian and
Prucha, 1998). On the contrary, the MLE of a MRSAR is consistent and its limiting
distribution can be used for testing the joint significance of regression coefficients. These
show that the 2SLS approach is less satisfactory than the ML approach in some of its
statistical properties. However, the 2SLS approach is computationally simpler than the
ML approach and is distribution free.

For pure spatial autoregressive (SAR) processes, a method of moments (MOM) has
been introduced in Kelejian and Prucha (2001). The MOM method is computationally
simpler than the ML method. Their MOM estimator is consistent but is unlikely to be
efficient relative to the MLE.! Recently, Lee (2001) extends the MOM estimation into a
more general GMM estimation framework. Within that GMM framework, a best GMM
estimator (BGMME) can have the same limiting distribution as the MLE or QML
estimator.

In this paper, we consider the possible generalization of the MOM method for the
MRSAR model. We suggest a combination of the moments in the 2SLS framework with
moment functions originated for the estimation of pure SAR processes. We show that the
resulting GMME can be asymptotically efficient relative to the 2SLSE and B2SLSE. The
best GMME can be made available and it can be efficient as the MLE. With this GMM
framework, one may also test the joint significance of all the possible exogenous regressors.

This paper is organized as follows. In Section 2, we consider the estimation of a
MRSAR model. We discuss the moment functions that can be used in addition to the
moments based on the orthogonality of exogenous regressors with the model disturbance.
Consistency and asymptotic distribution of the GMME will be derived in Section 3. In
Section 4, the GMME and the 2SLSE are compared. The best selection of moment
functions and I'Vs will be discussed and its possible efficiency property is derived. All the
proofs of the results are collected in the appendices. Section 5 provides some Monte Carlo
results for the comparison of finite sample properties of estimators. Conclusions are drawn
in Section 6.

"The asymptotic distribution of their MOM estimator has not been established in their article. They have
provided Monte Carlo results to demonstrate that their MOM estimator is only slightly inefficient relative to the
QML estimator under various distributions.
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2. GMM estimation and identification of the MRSAR model

The MRSAR model differs from a pure SAR process in the presence of exogenous
regressors X, as explanatory variables in the model:

Yy =AW,Y,+ XuP + én, 2.1

where X, is a n x k dimensional matrix of nonstochastic exogenous variables, W, is a
spatial weights matrix of known constants with a zero diagonal, and the disturbances &,;,
i=1,...,n, of the n-dimensional vector &, are i.i.d. (0, ). Specifically, we assume that

Assumption 1. The ¢, are i.i.d. with zero mean, variance ¢> and that a moment of order
higher than the fourth exists.

Assumption 2. The elements of X, are uniformly bounded constants, X, has the full rank
k, and lim,_,.(1/n)X; X, exists and is nonsingular.

Because statistics involving quadratic forms of ¢, will be present in the estimation, the
existence of the fourth order moment of ¢,’s will guarantee finite variances for the
quadratic forms. The higher than the fourth moment condition in Assumption 1 is needed
in order to apply a central limit theorem due to Kelejian and Prucha (2001). The
nonstochastic X, and its uniform boundedness conditions in Assumption 2 are for
convenience. If the elements of X, are stochastic and have unbounded ranges, conditions
in Assumption 2 can be replaced by some finite moment conditions.

The W, Y, in (2.1) is called a spatial lag and its coefficient is supposed to represent the
spatial effect due to the influence of neighboring units on a single spatial unit. The main
interest in estimation of the model is, in general, the parameters A and f. In order to
distinguish the true parameters from other possible values in the parameter space, we
denote o, By, and o} as the true parameters which generate an observed sample. Let
0= (A4, p") and 6y = (4, ;). This model is supposed to be an equilibrium model. The
structural equation (2.1) implies the reduced form equation that

Y, = (In — o Wn)_anﬁO + (In — o Wn)_lsn- (22)
It follows that W,Y, = W,I,— AW, 'X,.po+ W, —oW,) e, and W,Y,
is correlated with ¢, because, in general, E(W ., — Lo Wn)_lsn)/s,,) = ag tr

W, — Ao Wn)_l)aéO. There are some regularity conditions on W, and (I, — 4 Wn)_1
which will be needed in order that the spatial correlations between units can be
manageable. The following Assumption 3 is originated in the works of Kelejian and
Prucha, e.g., Kelejian and Prucha (1998). A sequence of square matrices {A4,}, where
A, = [an], is said to be uniformly bounded in row sums (column sums) in absolute value if
the sequence of row sum matrix norm || 4,|l,, = max;—i__, 2;1:1 |@n ;] (column sum matrix
norm [|4,|l; = maxj—;__, > 1, la,;|) are bounded.? ‘

.....

Assumption 3. The spatial weights matrices {W,} and {(I, — AW,)"'} at 1=l are
uniformly bounded in both row and column sums in absolute value.

Note that we have imposed the uniform boundedness condition on {(I, — 2 W,)"'} only
at 2 = Jo. The stronger assumption that {({, — 2W,)"'} is uniformly bounded in both row

2Properties of those matrix norms can be found in Horn and Johnson (1985, pp. 294-295).



492 L.-f. Lee | Journal of Econometrics 137 (2007) 489-514

and column sums in absolute value, uniformly in 4 (in a compact parameter space of 1) is
not imposed.®

With the normal distribution for ¢,, the unknown parameters A, f and ¢ can be
estimated by the ML (or QML) method (Ord, 1975). The ML method involves the
computation of the determinant |(/,, — AW )| of (I, — AW ,), at each possible value of 4
during an optimization search. For the case that W, is row-normalized and the
corresponding spatial matrix before row normalization is symmetric, the eigenvalues of
W, are all real. As |(I,, — AW )] is solely a function of 1 and eigenvalues of W, Ord (1975)
points out that computation of |(/, — AW ,)| can be easily updated as the eigenvalues of
W, need to be computed only once. * With a general spatial weights matrix which does not
have special properties, such as sparseness and the symmetry property in Ord (1975), the
MLE would be difficult to be computed for sample with a large size. Recently, Smirnov
and Anselin (2001) discuss the attractability of using a characteristic polynomial approach.

For a computational point of view, a 2SLS method remains the simplest. Kelejian and
Prucha (1998) suggest the use of W, X, WﬁX,,, etc., together with X, as IVsin a 2SLS for
estimating 0. Lee (2003) shows that the B2SLS corresponds to use W,(I, — Ao W,) ' X,
and X, as IV matrices. These 2SLSE and B2SLSE are computationally simple and have
closed form expressions. However, the 2SLS and B2SL methods have the limitation in that
at least one nonconstant regressors in X, must have significant coefficients in order that
valid IVs can be generated from them. As the 2SLSE and B2SLSE are based on the
existence of relevant nonconstant regressors, it is impossible to test the joint significance of
X, with those estimators.’

Even if valid IVs do exist, the 2SLSE may be inefficient relative to the MLE. By
comparing the limiting variance matrices of the MLE and 2SLSE (e.g., in Anselin, 1988;
Anselin and Bera, 1998), neither the 2SLSE nor the B2SLE have the same limiting
distribution of the MLE. In this paper, we suggest to incorporate some other moment
conditions in addition to those based on X, in order to improve upon the efficiency of the
2SLSE.

Let Q, be an n x k, matrix of IVs constructed as functions of X, and W, in a 2SLS
approach. Denote ¢,(0) = ([, — AW,)Y, — X, for any possible value 6. The moment
functions corresponding to the orthogonality conditions of Q, and &, are Q,,(0). Let 2,
be the class of constant n x n matrices which have a zero trace. A subclass #2,, of 2y,
consisting of matrices with a zero diagonal is also interesting. By selecting matrices
Py, ..., Py, from 2, we suggest the use of (Pj,,(0)) e,(0) in addition to 0),,(0) to form a
set of moment functions. For analytical tractability, the matrices in £}, are assumed to
have the uniformly boundedness properties as W,.

Assumption 4. The matrices P;,’s from 2, are uniformly bounded in both row and
column sums in absolute value, and elements of Q, are uniformly bounded.

3The latter stronger assumption is needed for the ML approach. For the GMM method that we propose,
because the GMM function is a polynomial function of 6, which is relatively simpler function, our analysis does
not require the stronger uniform boundedness assumption.

“However, Kelejian and Prucha (1999) have pointed out that Ord’s method may suffer from numerically
imprecise problems for large sample.

SWhen Bo = 0, the model would be a pure spatial autoregressive process. For a spatial autoregressive model
with only a nonzero intercept term but no other spatially varying regressors, W/, will not be an useful instrument
for W,Y, when W, is row normalized. When W, is row-normalized, W ,l, = [, where /, is the vector of ones.
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With the selected matrices Pj,’s and IV matrices Q,, the set of moment functions forms a
vector

92(0) = (P1nen(0), . . ., Pumen(0), 0,) e(0) = (&,(0)P1nen(0), . . ., &.(0)Pounen(0), . (0)0,)
2.3)

for the GMM estimation. At 0y, g,(00) = (¢, Pinén, - - - » &, Pnén, €,0,), which has a zero
mean because E(Q,¢,) = 0. E(e,) = 0 and E(¢, Pj,e,) = a3 tr(P;,) = 0 for j = 1,...,m.° The
intuition is as follows. The IV variables in Q,, can be used as IV variables for W, Y, and
X, in (2.1). The Pje, is uncorrelated with ¢,. As W, Y, = W,(I, — A W,,)_l(X,,ﬁO + &n),
Pj,e, can be used as an IV for W,Y, as long as Pje, and W,(I, — 2o W) e, are
correlated.

For any possible value 6,

E(g,(0))
d;,(G)Plndn(Q) + O-(% tr((ln - )~0 Wn),_l(ln — A W;)Pln(ln - ;LWII)([H - /10 Wn)_l)

b}

d;(g)Pmndn(e) + 0-(2) tr((In - )~0 Wn)lil(ln - ) W;,)Pmn(ln - } Wn)(ln - /10 Wn)il)
0,dn(6)
2.4)

where d,(0) = X,,(By — B) + (o — YW, (I, — Lo Wn)*anﬁO. For these moment functions
to be useful, they have to identify the true parameter 6y of the model. In the GMM
framework, the identification condition requires the unique solution of the limiting
equations, lim,_ - (1/n)E(g,(0)) =0 at Oy (Hansen, 1982). The moment equations
corresponding to Q, are lim,_.o(1/n)Q0,d,(0) = lim,_, (1 /1) (0, X, O, W,(I,, — o w,)!
XuPo)((Bo — Y, %0 — 4) = 0. They will have a unique solution at 0y if (0, X,, O, W,(I, —
Ao Wn)_anﬁO) has a full column rank, i.e., rank (k + 1), for large enough ». This sufficient
rank condition implies the necessary rank condition that (X,, W,(I, — JoW,) ' X 2PBo) has
a full column rank (k 4+ 1) and that Q, has a rank at least (k 4 1), for large enough n. The
sufficient rank condition requires Q, to be correlated with W, Y, in the limit as n goes to
infinity. This is so because E(Q, W, Y,) = Q. W (I, — oW ,) ' X,f,. Under the sufficient
rank condition, 0y can thus be identified via lim,_..(1/n)Q,d,(0) = 0.

The necessary full rank condition of (X, W,(I,, — /¢ Wn)_anﬁO) for large n is possible
only if the set consisting of W,(I, — AgW,) ' X 2By and X, is not asymptotically linearly
dependent. This rank condition would not hold, in particular, if f§, were zero. There
are other cases when this dependence can occur (see, e.g., Kelejian and Prucha, 1998).
As X, has rank k, if (X, W,(I, — A W,,)*anﬁO) does not have a full rank (k + 1), its rank
will be k, and there will exist a constant vector ¢ such that W,(I,, — 4 Wn)_lX,,,Bo = X,c.
Then, d,(0) = Xx(By — B+ (20 — A)¢) and Q,d,(0) = @, Xu(By — B + (40 — A)c). The corre-
sponding moment equations Q/,d,(0) = 0 will have many solutions but the solutions are all
described by the relation that = f,+ (1o — A)c as long as Q,X, has a full rank k.

The selection of the number of 7 is not an important issue for our GMM approach, because there exists a best
P, as discussed in a subsequent section. Furthermore, from our Monte Carlo study, the selection of W, and
(W% — (tr( Wi)/n)ln) provides accurate approximations for the best one.
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Under this scenario, f§, can be identified only if Ay is identifiable. The identification
of Ao will rely on the remaining quadratic moment equations lim,,(1/n)tr((Z, —
doW Y Ny = AW Pl — AW )L, — 2W,) ") =0 for j=1,...,m. In this case,
Yo = oWl — Ao W)™ XuBo) + XuBo + In — 2o W) ' en = Xu(Bo + 70¢) + un,  where
uy = (Iy — JoW,)'e,. The relationship w, = AgW,u,+¢, is a SAR  process.
The identification of Ay thus comes from the SAR process u,. One can see from
Lee (2001) that the set of the limiting quadratic moment equations has a unique solution
at Ao if lim, . oo(1/m)[tr(P5, Wl — Ao W) ™), te (P, WL, — A W,) "D is linearly
independent  of  lim,_oo(1/m[tr((I, — 2o W) "W PL, W (I, — gW,)™ "), ... to((I, —
Ao W;l)_1 W' Ppn Wl — 2o W,)" 1], where 4 = A+ A’ for any square matrix 4. The
following assumption summarizes some sufficient conditions for the identification of 0,
from the moment lim,,_, .o(1/n)E(g,(0)) = 0.

Assumption 5. Either (i) lim,_ (1/n)Q,(W,(I, — 2o W,,)_IX,,ﬂO, X,) has the full rank
(k+1), or (il) lim,..(1/n)Q,X, has the full rank k, lim,_.(1/n) (P, Wl —
Ao Wn)*l);éO for some j, and lim,_,(1/n)[tr(P;, W,(I, — o Wn)*l), oo te(P,, W, —
JoW,)™ ] is linearly independent of

lim (1/m)[te((L, — A W) WP W, (I, — AgW,) "),
e te(Ly = A W) W P WLy — S0 W)™ Y.

In terms of computation of the GMM estimator, because the moment functions in ¢, (0)
are quadratic functions in A and f§, the GMM objective function will be of polynomial of
order four. The derivation of the GMM estimator will involve the minimization of a
polynomial function in 6. The computation of polynomial coefficients, which do not
involve the unknown 6, need to be done once. The evaluation of the corresponding
objective function will thus involve the multiplication of these polynomial coefficients with
powers of 0’s at different values of 6. The computation is more complicated than that of
the 2SLS but shall be simpler than that of the ML approach.

The variance matrix of these moment functions involves variances and covariances of
linear and quadratic forms of ¢,. For any square n x n matrix A, let vecp(4) =
(a11,...,au) denote the column vector formed with the diagonal elements of A. Then,
E(Q;ﬁ:n &, Pren) = Q;Z:lzl Z;;lpn,gE(Sngnignj) = Q; veep(P)ps and  E(e), Pjnén - &,Pinen) =
(14 — 303) vecy(Py) veep(Py) + ag tr(PyPj,) by Lemma A.2, where u;=E(g)) and
s = E(&}). Tt follows that var(g,(0p)) = Q, where

(:u4 -3 ag)w;tm Opym U3 w;’ll‘ﬂ Qn
Q, = + Va, 2.5
( 130, O 0 (@)

with w,, = [vecp(P1y), . . ., vecp(Pyy)] and
tr(Py,Py,) - tr(PiP,,) 0
Jd o : : JfAm 0
Pn=00l PPy e PPy O =%<0 %@&)’(M)
o - 0 oo,
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where 4,,, = [vec(P),),...,vec(P,, )] [vec(P},), .. vec(Pmn)] by using tr(4B) = vec(A4'Y
vec(B) for any conformable matrices A and B. When &, i1s normally distributed, Q, is
simplified to V,, because y; = 0 and py = 303. If P;,’s are from 2,,, Q, = V, also because
wpm = 0. In  general, from (2.3), @, is nonsingular if and only if both
(vec(P1y), . .., vec(Pyy)) and Q, have full column ranks. This is so, because Q, would be
singular if and only if the moments in g,(0y) are functionally dependent, equivalently, if
and only if Z " Py =0 and Q,b =0 for some constant vector (ai,...,an,b")#0. As
elements of Pj,, s and Q, are uniformly bounded by Assumption 4, it is apparent that
(1/nw,,,0,, (1/n)w,,,wu and (1/n)0, 0, are of order O(1). Furthermore, because P;, P}, is
bounded in row or column sums in absolute value, (1/n) tr(P;,P;,) = O(1). Consequently,
(1/m)Q, = O(1). It is thus meaningful to impose the following conventional regularity
condition on the limit of (1/n)Q,.

Assumption 6. The limit of (1/n)Q, exists and is a nonsingular matrix.’

The variance matrix @, is needed to formulate the optimum GMME with g,(0).

3. Consistency and asymptotic distributions

The following proposition provides the asymptotic distribution of the GMME with a
linear transformation of the moment equations, a,g,(0), where a, is a matrix with a full
row rank greater than or equal to (k + 1). The a,, is assumed to converge to a constant full
rank matrix ay. This corresponds to the Hansen’s GMM setting, which illustrates the
optimal weighting issue.

Assumption 7. 0y is in the interior of the parameter space @, which is a compact subset of
Rk+1 _8

Proposition 1. Under Assumptions 1-5, suppose that P, for j =1,...,m, are from P, and
Q, is a n x ky IV matrix so that aglim,_.«(1/n)E(g,(0)) = 0 has a unique root at 0, in O.
Then, the GMDME 0, derived Sfrom mingeg g,(0)a,a,g,(0) is a consistent estimator of 0y, and
V10, — 0) = N(0,X), where

, 1.\, /1 T N, /1 . (1
2 = lim =D, )a,a,| =D, =D, |a,a,| =@, |d,a,| =D,
n—oo | \n n n n n
1\, (1 -
X ;Dn a,ay, ZD" 3.1

"In this paper, for simplicity, we do not consider the large group interactions scenario as in Case (1991), where
lim,—, oo(1/1)Q,, might be singular. It is possible to extend our analysis to cover that case but the analysis would
become much algebraically complicated. For an analysis on the MLE, see Lee (2004).

8For a nonlinear extremum estimator, the parameter space would usually be assumed to be a compact set
(Amemiya, 1985). The extremum estimate always exists when the objective function is continuous on a compact
set. Furthermore, for the proof of consistency of the extremum estimator, the uniform convergence argument will
usually require a compact parameter space (see the uniform convergence theorem in Amemiya). For our GMM
approach, the moment functions are quadratic functions of 6. Because of its simple nonlinear structure, the
uniform convergence argument of the sample objective function after proper normalization can be easily
established as long as the parameter space is bounded. So the compact parameter space assumption may be
relaxed to a bounded set as long as the minimum of the objective function exists in such a parameter space.
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and
D,

(P WAdn = W) e gt (P, Wl = A W)™ (Wl = A W)™ Xafo) Q, /
B 0 0 X;Qn ’

(3.2)

under the assumption that lim,_, »(1/n)a,D, exists and has the full rank (k + 1).

The rank conditions in Assumption 5 imply that lim,_ .(1/n)g,(0p) =0 has a
unique root at 0y and, hence, its corresponding gradient matrix lim,_ .(1/n)D, of
(2.8) has rank (k4 1). In the presence of Assumption 5, the extra conditions that
lim,,_, oo (1/n)a,E(g,(0)) = 0 has a unique root at 0y and the limit of (1/n)a, D, has full rank
(k + 1), are simply to eliminate the bad choice of a sequence {a,} for the linear combination
ang,(0), which may result in the loss of identification from the original g,. If Assumption 5
were not satisfied, the condition that aglim,_«(1/n)g,(0) =0 has a unique root at 0y
would not be satisfied.” The identification condition is specified for the limiting function.
The weaker requirement that a,E(g,(0)) = 0 has a unique root at 0, for large enough # is
not sufficient for 0y to be identifiably unique, because the objective function might flatten
out in the limit.

From Proposition 1, with the moment functions g,(0) in (2.3), the optimal choice of a
weighting matrix a,a, is ((1 /n)Qn)_1 by the generalized Schwartz inequality. If P;,’s are
selected from the subclass £, or ¢,;’s are normally distributed, Q,, in (2.5) will be reduced
to the simpler matrix 7, in (2.6). These variance matrices can be used to form the optimal
GMM objective function with g,(0). The 62, u;, and uy can be consistently estimated by
using estimated residuals of ¢, from an initial consistent estimate of 0,.'° The Q,, can then
be consistently estimated as Q,. The following proposition shows that the feasible
optimum GMME (OGMME) with a consistently estimated €, has the same limiting
distribution as that of the OGMME based on Q,. With the optimum GMM objective
function, an overidentification test is available.

Proposition 2. Under Assumptions 1-6, suppose that (f2n /n)_1 — (2, /n)_1 = op(l), then the
Seasible OGMME 0,,, derived from mingeg g,(0)82, 19,(0) based on g,(0) in (2.3) with Pj.’s
from Py, has the asymptotic distribution

N —1
N N<O, ( lim (1 /n)D;Q;ID,,) ) (3.3)
Furthermore,
7,002, 9,(0,) 3 2(m+ ky) — (k + 1)). (3.4

“When the set of W.(I, — 4 W,,)_anﬁo and X, were linearly dependent, Proposition 1 would not cover the
large group interaction case of Case (1991) because, in this situation, (1/11) tr(Pj?,1 W, — 2 W,)~") would vanish
in the limit and Assumptions 5 and 6 needed be strengthened. The MLE 4, of 4 in this situation is known to have
a slower rate of convergence than that of the MLE ﬁn of f, (see, Lee, 2004).

0The detailed proof is straightforward but tedious and is omitted here.



L.-f. Lee | Journal of Econometrics 137 (2007) 489-514 497

The 2SLSE an would be inconsistent when the set of W,(I, — AW, ' X.f,
and X, is linearly dependent. An obvious example is i, = 0. Another example is a
model where the only relevant variable in X, is the intercept term [, and W, is
row-normalized (Kelejian and Prucha, 1998). In that case, W, (I, — Ao Wn)_lX Bo =
(Bor/(L = 29)), because (I, — g w,) = (1/(1 = 2))l, and W,l, =1,. However,
even when the set of W,(I,— AW, 'X «Po and X, is linearly dependent, the
GMM approach may still work because of the additional moment functions with P;,’s.
The asymptotic distribution of the GMME in (2.9) can be used to formulate a Wald
statistic for testing the overall significance of all exogenous variables while that of the
2SLSE cannot.

4. Efficiency and the BGMME

The optimal GMME (;o,n can be compared with the 2SLSE. With Q, as the IV matrix,
the 2SLSE of 0, is

Orun = 2,040,070, 21" Z,0,(0,0,)' 0, Y, (4.1)
where Z,, = (W,Y,, X,). The asymptotic distribution of (;251,,, is

R 1
\/ﬁ(GZSl,n - 00) B) N<0’ 6(2) lim {}’l (Wn(ln - AO W11)71Xnﬁ09 Xn),

—1
x0,(0,0,) " QLW (L — 2 W) Xy, Xn)} ) ; (4.2)

under the assumptions that lim,_, (1/n)Q,,0,, is nonsingular and lim,_, (1 /1) Q,(W (I, —
JoW )" X By, X ) has the full column rank (k + 1) (Kelejian and Prucha, 1998). Because
the 2SLSE can be derived from ming ¢ (0)Q.(0,0.) " Q,ex(0), the 2SLS approach is a
special case of the GMM estimation in Proposition 1 with a, = (0,(Q;1Qn/n)_1/2) and
(1/n)ayg,(0) = (Q,;QAn/n)_l/z(l/n)Q;lsn(é)). It follows from Proposition 2, 6,, shall be
efficient relative to 0y,

Within the 2SLS framework, by the generalized Schwartz inequality applied to
the asymptotic variance of 0y, in (4.2), the best IV matrix Q, will be (W,(I,—
Ao Wn)_lX,,ﬁO,X,,). Using the best IV matrix for Q, in the GMM framework, the
resulting GMME shall be efficient relative to the B2SLE. There is a related question
on whether (W,,(I,,—)uoW,,)_anﬁo,Xn) can be the best IV matrix in the class of
matrices @, with given Pj;,’s. The answer can be affirmative for cases where the
moments Q¢, do not interact with the moments &, Pje, via their correlations. The
covariance of Q¢ and &, Py, j = 1,...,m, is u3Q,,w,um, which can be zero when 3 = 0 or
Wpm = 0.

The remaining issue is on the best selection of P;,’s. When the disturbance ¢, is normally
distributed or P;,’s are from 25,

7 ~—1 CmnAl‘;rllC:nn 0 1 —1 /
D,Q, D, = 0 0 ‘I'p Wy — 20W,)" XuBo, X 1)
0

X(Wn(ln — Ao Wn)71Xnﬁ0> Xl‘l)7 (4.3)
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where C,, = [tr(P],W,(I, — Ao Wn)*l), otr(PS WL, — A W,,)*l)]. Note that, because

mn

tr(Pj,Pj,) = %tr(PjnPﬁn), Amn can be rewritten as

w(P,P,) o (PP,

1n" mn
1
Amn = E
tr(annPSIn) T tr(Prj;mann)
1
= E[vec(an) ---vec(P), )] [vec(Py,) - - - vec(P;,)].

(i) When P;,’s are from 25,

tr(Py, Wouly = 2o W) ™') = % tr(Py,[ WLy — Ao W)~ — Diag(W (I, — 2o W,)~")]")

1
=5 ved (WL — Jo W) ™' = Diag(W (I, — 2o W)~ D)

xvec(P},)

for j=1,...,m, in C,,, where Diag(A) denotes the diagonal matrix formed by the
diagonal elements of a square matrix A. Therefore, the generalized Schwartz inequality
implies that

1
CmnA,;yl, C/ < E 1)66'/([ Wn(ln - )LO Wn)71 - Dlag( Wn(ln - /10 Wn)il)]s)

xvec([W (I, — 2o W)~" — Diag(W (I, — 2o W,)")I)
=t (WL, — JoWn)~" = Diag(W (I, — oW ,) WL, — 2W,)7h).

Thus, in the subclass %,,, [W,(I, — 4o Wn)*1 — Diag(W,(I,, — 9 Wn)*l)] and together
with [W, (I, — A Wn)*anﬂo,X,,] provide the set of best IV functions.!!
(i1) For the case where ¢, is N(0, a(%ln), because, for any Pj, € 21,

tr(P;n Wy — 2o W")_l)

— -1 s
_ % UEC/<|:Wn(In _ /10 Wn)71 . tr(Wn(In ; /10 Wn) )In:| ) vec(P;n),

for j =1,...,m, the generalized Schwartz inequality implies that

(W, (L, — W)™
n

mn " mn =

CmnA_lc/ <t1'<|:W,,(I,7 - j-0 I/Vn)_1 - In:| Wn(In - /10 Wn)_l>~

""Note that the best selected matrix for the quadratic moment is a single matrix which is best relative to any
finite number of Pj,. So any additional P;, in addition to the best one will not play a role in (asymptotically)
efficient estimation. This is so also for the best IV matrix Q for linear moments.
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Hence, in the broader class 2,, [W,(I, — 4 W,,)*1 — (tr(W (I, — Ao Wn)*l)/n)l,,] and
(W, — 2o Wn)*anBO, X ] provide the best set of IV functions. For all those cases, in the
event that the set of W,(I, — Ao W,,)_IX «Po and X, is linearly dependent, W,(I, —
JoW,)'X nBo 1s redundant and the best IV matrix shall simply be X,. 12

In practice, with initial cons1stent estimates 4, ,B of /10 and f,, w, n(In — 2 Wn) can be
estimated as W, (I, — 2, W,)~", and W,(I, — AgW,) "' X,y by Waullp — W)~ X B,
The corresponding variance matrix V,, of these best moment functions can be estimated as
V,. The following proposition summarizes the results and shows that the feasible
BGMME has the same limiting distribution as the BGMME.

Proposition 3. Under Assumptions 1-3, suppose that 2, is a \/n-consistent estimate of ’o, f,
is a consistent estimate of By, and 67 is a consistent estimate of a}.

Within the class of GMME:s derived with %,,, the BGMME 92;,7,, has the limiting
distribution that \/ﬁ(éﬂ),n — 6o) 2 N(O, 22_,,1) where

2o
tr[(G, — Diag(G,))*G,] + Ui%(Gan Bo) (G X o) a—‘(z](G,,Xnﬂo)’Xn
= lim - , (4.4)
n—>00 11 ﬁX;(GanﬁO) LX X,
0

%

with Gy = Wo(I, — 2o W,)~L, which is assumed to exist.
In the event that ¢,~N(0, O'OI,,) within the broader class of GA%ME’S derived with 24, the
BGMME 01/,,, has the limiting distribution that «/—(91bn — 0p) — N(0, Zlb) where

21

tr[(G” - tr(zﬁln)s Gn] + %(GanBO)I(GHXnﬂO) %(annﬁo)//‘/n

= lim ~ > (43
n—oo0 11 LX(GuX ) LXX,
0 0

which is assumed to exist.

When ¢, is N(0,03l,), model (2.1) can be estimated by the ML method.
The log likelihood function of the MRSAR model via its reduced form equation
in (2.2) is

|
L, = —2In@r) = 2Ine® + 1[Iy — AW — —= [V — (In — AW X1
2 2 207
X(Ly = AW )Ly = AW )Y = Ly = AW,) " X, Bl. (4.6)

12The best IV vector W,(I, — 2o W,) ' X .8, together with X, will satisfy the identification Assumption 5(i) as
long as they are not linearly dependent in the limit. In the event that they are, the model identification will follow
from the best matrix W,(I, — 2oW,) ™" = (1/m)te(W, (I, — W) "), or W,(I, — ioW,)~" = Diag(W I, —
JoW,)™) for the quadratic moment (Lee, 2001). With those best IV vectors and matrices, its variance matrix will
be nonsingular and Assumption 6 will also be satisfied.
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The asymptotic variance of the MLE (@),,,1,,1, &fn,’n) is

AsyVar(éml,n N ;/,n)

|

, -1
tr(G,%)+tr(G;G,,)+ﬂlg(Ganﬁo) (GuX o) %(X;an,,ﬁo)/ t(Gy)

0

1 1
_ L X,G,X.By Lxx, 0
() y
2 0 207

(see, e.g., Anselin and Bera, 1998, p. 256). From the inverse of a partitioned matrix, the
asymptotic variance of the MLE 6, is

AsyVar(@m/,n)
(r(G}) + (G, G) + 2 (GuXuBo) (GuX o) =2 t2(G) & (X, Ga X))
= X,G X ufy = XX
A.7)

As tr(G?) 4 tr(G, G,) — 2/n) trX(G,) = tr((G, — (tr(G,)/m)I,.)° G,), the GMME 015, has the
same limiting distribution as the MLE of 6, from Proposition 3.

There is an intuition on the best GMM approach compared with the ML one. The
derivatives of the log likelihood in (4.6) are

OlnL, 1

63 — ; anin(e),
O0lnL, n 1,
302 = 22T ﬁgn(g)gn(g)a
and
OlnL,

0L Wy = AW DLy — W) X 0)
A\ o

1
+ g 8;,(6)[ Wn(ln - /AhWn)il]/Sn(e)-
The equation d1n L,/d0* = 0 implies that the MLE is 6;(0) = (1/n)¢;,(0)&,(0) for a given

value 0. By substituting 62(0) into the remaining likelihood equations, the MLE 0,,,,, will
be characterized by the moment equations: X’,¢,(6) = 0, and

(Wl — /A“Wn)ilxnﬁ]/gn(e)
+ 8,,1(6) Wn(ln - /NLWn)71 - % tr(Wn(In - /IWn)il) 311(0) = 0
The similarity of the best GMM moments and the above likelihood equations is revealing.

The best GMM approach has the linear and quadratic moments of ¢,(6) in its formation
and uses consistently estimated matrices in its linear and quadratic forms.
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5. Some Monte Carlo results

The model in the Monte Carlo study is specified as
Yn = /LWn Yn + anﬁl + Xn2ﬁ2 + Xn3ﬂ3 + &,

where x;;, x;; and x;; are three independently generated standard normal variables and are
ii.d. forall i, and g,’s are i.i.d. N(0, 6?). When the sample size is n = 49, the spatial weights
matrix W, corresponds to the weights matrix for the study of crimes across 49 districts in
Columbus, Ohio in Anselin (1988). For large sample sizes of n =245 and 490, the
corresponding spatial weights matrices are block diagonal matrices with the preceding
49 x 49 matrix as their diagonal blocks. These correspond to the pooling, respectively, of
five and ten separate districts with similar neighboring structures in each district. The
estimation methods considered are the

(1) 2SLS—the 2SLS method with IV’s X, W, X, and WﬁXn;

(2) GMM—a simple unweighted GMM approach using Q, = (X, W, Xy, WﬁX n) for
linear moments and W, and Wﬁ —(tr(Wﬁ)/n)I,, for quadratic moments (with an
identity matrix as the distance matrix);

(3) OGMM—the optimum GMM approach using Q, = (X, W,X,, WﬁX ») for linear
moments and W, and Wﬁ — (tr( Wﬁ)/n)ln for quadratic moments (with the inverse of
their (estimated) variance matrix as the distance matrix)'?; A .

(4) BGMM-—the best optimum GMM approach by using X, and (I, — 4, W lx #B, for
the linear moments, and W,(l, — 4, Wn)_l — (/) e[ W, (I, — An W,,)_I]In for the
quadratic moment, where (4,, 8,,) is an initial consistent estimate;

(5) ML—the ML approach.

The number of repetitions is 1,000 for each case in this Monte Carlo experiment. The
regressors are randomly redrawn for each repetition. In each case, we report the mean
‘Mean’ and standard deviation ‘SD’ of the empirical distributions of the estimates. To
facilitate the comparison of various estimators, their root mean square errors ‘RMSE’ are
also reported. In all the cases of this study, the true A is set to 0.6. The smallest sample size
is n =49, and the moderate sample sizes are 245 and 490. The variance of the equation
errors a3 is 2. The B coefficients are varied in the experiments.

Table 1 reports the results of the case where ,; = —1.0, f5, = 0 and 3, = 1.0. In this
case, the corresponding variance ratio of xf3, with the sum of variances of xf, and ¢ is 0.5.
If one ignores the interaction term, this ratio would represent R> = 0.5 in a regression
equation. The results indicate that the main differences of the various estimation
approaches are on the estimation of the spatial effect 4. For the small sample size N = 49,
the 2SLS is biased upward by 12.7% and it has also the largest SD compared with the
various GMME:s and the MLE. The MLE is biased downward by 4% and the OGMME is
biased upward by 6.8%. The GMME and BGMME are essentially unbiased. The
BGMME is not better than the GMME and OGMME in terms of SD and RMSE with this
small sample. Among the various GMM estimates, the OGMME is better in terms of SD

3The normality of the disturbances is assumed. The o2 in the variance matrix of the moments is estimated with
the estimated residuals of the model equation with the simple GMM estimates as its coefficients. Note that the
minimization of an objective function in various GMM approaches is performed globally without imposing a
restricted parameter space, such as 4 lies in (—1, 1), in our study.
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Table 1
2SLSE, GMME, and MLE
Method A I p fs

Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE]
N=49
2SLS 0.676 (0.177)[0.192] —0.968 (0.218)[0.220] 0.001 (0.204)[0.204] 0.985 (0.213)[0.214]
GMM 0.600 (0.150)[0.150] —0.982 (0.221)[0.222] 0.001 (0.206)[0.206] 0.998 (0.211)[0.211]
0-GMM 0.641 (0.134)[0.141] —0.971 (0.221)[0.223] 0.001 (0.208)[0.208] 0.987 (0.212)[0.213]
BGMM 0.593 (0.161)[0.161] —0.978 (0.219)[0.220] 0.001 (0.207)[0.207] 0.993 (0.209)[0.210]
MLE 0.575 (0.115)[0.118] —0.988 (0.218)[0.218] 0.000 (0.205)[0.205] 1.002 (0.211)[0.211]
N =245
2SLS 0.612 (0.078)[0.079] —0.993 (0.092)[0.093] —0.002 (0.090)[0.090] 0.991 (0.094)[0.094]
GMM 0.600 (0.053)[0.053] —0.997 (0.092)[0.092] —0.002 (0.090)[0.090] 0.996 (0.093)[0.093]
O0-GMM 0.606 (0.049)[0.049] —0.994 (0.091)[0.092] —0.003 (0.090)[0.090] 0.993 (0.093)[0.094]
BGMM 0.598 (0.048)[0.048] —0.995 (0.091)[0.092] —0.002 (0.090)[0.090] 0.994 (0.093)[0.093]
MLE 0.596 (0.047)[0.047] —0.998 (0.091)[0.091] —0.002 (0.090)[0.090] 0.997 (0.093)[0.093]
N =490
2SLS 0.608 (0.056)[0.056] —0.994 (0.063)[0.064] —0.001 (0.065)[0.065] 0.996 (0.066)[0.067]
GMM 0.600 (0.037)[0.037] —0.997 (0.063)[0.063] —0.001 (0.066)[0.066] 0.999 (0.066)[0.066]
O0-GMM 0.604 (0.032)[0.033] —0.995 (0.063)[0.063] —0.001 (0.066)[0.066] 0.997 (0.066)[0.066]
BGMM 0.599 (0.032)[0.032] —0.996 (0.063)[0.063] —0.001 (0.066)[0.066] 0.998 (0.066)[0.066]
MLE 0.598 (0.032)[0.032] —0.997 (0.063)[0.063] —0.001 (0.066)[0.066] 0.999 (0.066)[0.066]

True parameters: 4 = 0.6, f; = —1.0, f, =0, and f; = 1.0.

and RMSE. The MLE has the smallest SD and RMSE among all these estimates. The
estimates of f’s of the various methods do not have much differences. The estimates of ff’s
have small biases. When 7 increases to 245 or 490, the upward bias of the 2SLS estimate of
A is reduced. All the other estimates are unbiased. Even for the moderate sample sizes, the
2SLS estimates of A have apparently larger SD and RMSEs than the corresponding
various GMMEs and MLEs. The BGMME is slightly better than the OGMME, and, in
turn, the OGMME is slightly efficient relative to the GMME. The BGMM is efficient as
the MLE when N = 490.

In Table 2, the true parameters are f; = —0.2, f, = 0, and fi; = 0.2. The variance of xf3,
is much smaller than the variance of ¢. If one ignores the interaction term, the implied R? is
about 0.04 in a regression equation. In this case, the 4 may be relatively more difficult to be
estimated by the 2SLS. The upward bias of the 2SLSE of 1 can be large. The SD and
RMSE of the 2SLS estimates are larger than those of the MLE and various GMMEs. The
OGMME can be the best among the various GMM estimates when N = 49. The BGMME
can be better than the other GMMESs with larger N. The BGMME estimates can be as
efficient as the MLE with large N = 490. For the estimates of the f’s, there are not much
differences among the various estimates.

In summary, the 2SLSE of 4 has larger biases and SDs than those of the various
GMMEs.'* The performance of the 2SLSE becomes worse when the value of R> becomes

“This may be so because our cases have only moderate or very small R?> values due to the explanatory
variables.
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Table 2
2SLSE, GMME, and MLE
Method A b1 B, fs

Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE] Mean (SD)[RMSE]
N=49
2SLS 0.906 (0.316)[0.440] —0.177 (0.215)[0.216] 0.001 (0.209)[0.209] 0.195 (0.213)[0.213]
GMM 0.597 (0.174)[0.174] —0.191 (0.217)[0.218] —0.001 (0.205)[0.205] 0.201 (0.213)[0.213]
O0-GMM 0.688 (0.216)[0.233] —0.186 (0.219)[0.219] 0.001 (0.211)[0.211] 0.199 (0.216)[0.216]
BGMM 0.605 (0.193)[0.193] —0.187 (0.214)[0.214] —0.002 (0.206)[0.206] 0.198 (0.211)[0.211]
MLE 0.566 (0.142)[0.146] —0.190 (0.216)[0.216] 0.000 (0.205)[0.205] 0.203 (0.210)[0.210]
N =245
2SLS 0.795 (0.258)[0.323] —0.189 (0.092)[0.092] —0.003 (0.089)[0.089] 0.188 (0.093)[0.094]
GMM 0.600 (0.059)[0.059] —0.198 (0.091)[0.091] —0.002 (0.091)[0.091] 0.197 (0.093)[0.093]
O0-GMM 0.613 (0.060)[0.061] —0.197 (0.091)[0.091] —0.003 (0.090)[0.090] 0.196 (0.093)[0.093]
BGMM 0.600 (0.058)[0.058] —0.197 (0.090)[0.091] —0.002 (0.090)[0.090] 0.196 (0.092)[0.092]
MLE 0.596 (0.057)[0.057] —0.198 (0.091)[0.091] —0.002 (0.090)[0.090] 0.197 (0.093)[0.093]
N =490
2SLS 0.747 (0.218)[0.263] —0.190 (0.063)[0.064] —0.002 (0.064)[0.064] 0.192 (0.066)[0.067]
GMM 0.600 (0.041)[0.041] —0.198 (0.062)[0.062] —0.001 (0.066)[0.066] 0.199 (0.065)[0.065]
O0-GMM 0.606 (0.041)[0.041] —0.197 (0.062)[0.062] —0.001 (0.065)[0.065] 0.199 (0.065)[0.065]
BGMM 0.600 (0.040)[0.040] —0.197 (0.062)[0.062] —0.001 (0.065)[0.065] 0.199 (0.065)[0.065]
MLE 0.597 (0.040)[0.040] —0.197 (0.062)[0.062] —0.001 (0.065)[0.065] 0.199 (0.065)[0.065]

True parameters: 4 = 0.6, f; = —0.2, f, =0, and f; = 0.2.

small. The various GMMEs can substantially improve upon the 2SLSE. The OGMME
and BGMME can be efficient as the MLE with large sample sizes.'® The differences of the
various estimators occur only for the estimation of A but not for estimation of the f’s.

6. Conclusion

In this paper, we consider the estimation of the MRSAR model. The 2SLS method has
been suggested in the literature for the estimation of the MRSAR model. The 2SLS
method can be applicable only if some of the spatially varying exogenous variables are
really relevant. It is impossible in the 2SLS framework to test the overall significance of all
the exogenous variables in the MRSAR model. It is known that the 2SLSE does not attain
the same limiting distribution of the MLE (under normal disturbances) of the MRSAR
model. This paper improves upon the 2SLS approach by introducing additional moment
functions in the GMM framework. The resulted GMME can be efficient relative to the
2SLSE. It is possible to derive the best GMMEs within certain classes of GMMEs. One of
the BGMMEs can attain the same limiting distribution of the MLE (under normal
disturbances). Within the GMM estimation framework, it is possible to test the overall
significance of all the exogenous variables in the model. The GMM approach may, in
principle, be generalized for the estimation of MRSAR models with higher order spatial

SHowever, in some repetitions, the BGMME may be sensitive to initial consistent estimates in the construction
of G,. The results in Tables 1 and 2 are based, respectively, on 2SLSE and GMME as initial estimates.
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lags and models with both spatial lags and/or SAR disturbances. However, many issues for
the models with higher order moments have not been well understood, for example, the
proper parameter space of the lag coefficients and its identification problem. These will be
studied in another occasion.
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Appendix A. Some useful lemmas

In this appendix, we list some lemmas which are useful for the proofs of the results in the
text.

Lemma A.1. Suppose that the sequences of n-dimensional column vectors {z\,} and {z,} are
uniformly bounded. If {A,} are uniformly bounded in either row or column sums in absolute
value, then |z,,4,22,] = O(n).

Proof. This is trivial. O

Lemma A.2. Suppose that e,...,&, are iid random variables with zero mean,
nite variance o* and finite fourth moment p,. Then, for any two square n x n matrices A
Ha v q
and B,

E(¢, A, - €, Bey) = (114 — 303) vec)(A) vecp(B) + ai[tr(A) tr(B) + tr(AB%)],
where B = B+ B'.
Proof. This is a Lemma in Lee (2001). O

Lemma A.3. Suppose that {A,} are uniformly bounded in both row and column
sums in absolute value. The &1, ..., &, are i.id. with zero mean and its fourth moment
exists. Then, E(g,Ane,) = O(n), var(e,Aue,) = O(n), €,A4,6, = Op(n), and (1/n)e,A,e,—
(1/n)E(e), Anen) = op(1).

Proof. Lee (2001). O

Lemma A.4. Suppose that A, is a n X n matrix with its column sums being uniformly
bounded in absolute value, elements of the n x k matrix C, are uniformly bounded, and
Enls- .., Em are Li.d. with zero mean and finite variance o*. Then, (1//n)C, Apen = Op(1) and
(1/n)C;, Apen = op(1). Furtheymore, if the limit of (1/n)C,A,A,,C,, exists and is positive
definite, then (1//n)C., A&, — N(0, 6*lim,,_.oo(1/n)C, A, A, Cp).

Proof. See Lee (2004). [

Lemma A.S. Suppose that {A,} is a sequence of symmetric n x n matrices with row and
column sums uniformly bounded in absolute value and b, = (b,1, .. .,b,,) is a n-dimensional
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vector such that sup,(1/m)> ", |by|*™ <oo for some n,>0. The &,... e, are iid.
random variables with zero mean and finite variance o*, and its moment E(|e|*+%°) for some
0>0 exists. Let ay, be the variance of Q, where Q, = &,Anen + b6, — 0” tr(A4,). Assume

that the variance JZQH is bounded away from zero at the rate n. Then, (Q,/c¢,) 2N (0,1).

Proof. See Kelejian and Prucha (2001). [

Lemma A.6. Suppose that (1/n)(Q,(0) — O,(0)) converges in probability to zero uniformly in
0 € @ which is a convex set, and {(1/n)Q,(0)} satisfies the identification uniqueness condition
at 0. Let 0, and (;Z be, respectively, the minimizers of Q,(0) and Q;(0) in ©. If (1/n)(Q}(0) —
0,(0)) = op(1) uniformly in 0 € O, then both 0, and @: converge in probability to 0.

In addition, suppose that (1/n)(* 0,(0)/0000') converges in probability to a well
defined [limiting matrix, uniformly in 0 € ©, which is nonsingular at 0y, and
(1//m)©0,(00)/00) = On(1). If (1/n)(@ Q}(6)/2000 — 80, (6)/2630') = op(1) uniformly
in 0 € © and (1//n)(00;(0,)/00 — 00,(60)/06) = 0p(1), then /n(@, — 0o) and \/n(B, — 00)

have the same limiting distribution.

Proof. The convergence of 0, to 0, follows from the uniform convergence of (1/n)(Q,(0) —
0,(0)) to zero in probability and the uniqueness identification condition of {Q,(0)} (White,
1994). As (1/n)(@;,(0) — Q,(0)=(1/n)(;,(0) — 0,(0)) + (1/n)(Q,(0) — O,(0)) = op(1) uni-
formly in 6 € ©, the convergence of @,’: to Oy in probability follows. For the limiting
distribution, the Taylor expansion of 8Q;(0)/00 at 0, implies that

-1

2 Ak *
Sl = 00) = — (6 %3 1.003(00)

n 0000 Jn 00
_ (12000, 100,00
—( 2000 OP(l)) (W 20 +0P(1)>
[ 120,0)\ " 1 00,(60)
_<_Z aeae/) 700 oD

Thus, ﬁ(@: — 0p) and /7(0, — By) have the same limiting distribution. [J

Lemma A.7. Suppose that the elements of the n x k matrices X, are uniformly bounded for
all n; and lim,_, 5 (1 /n)X "X, exists and this llmzting matrix is nonsingular, then the
projectors, X (X, X,)~ X’ and I, — X (X, X))~ 'YX’ | are uniformly bounded in both row and
column sums in absolute value

Proof. See Lee (2004). [

n?

Lemma A.8. Suppose that {IWall} and {||S, YOI}, where || - | is a matrix norm, are
bounded. Then {|S,(A)” "I}, where S W) =1, — AW,, are uniformly bounded in a
neighborhood of /.

Proof. See Lee (2004). [

In the following Lemmas and Appendix B, some simplified notations shall be used to
minimize the presentation of mathematical terms. For any square n x n matrix 4, we shall
denote the adjusted matrix (4 — ((tr(A4)/n)l,) or (4 — Diag(A4)) by A“. Furthermore, with
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the spatial weights matrix W,, denote S,(1)=1,—AW,, S,=S,), G.(2)=
Wn(ln - /ALWn)ila and Gn = Gn(;LO)

Lemma A.9. Suppose that zi, and z, are n-dimensional column vectors of constants
which elements are uniformly bounded, the n x n constant matrices A, are uniformly
bounded in the maximum column sum norm, and &,;’s in &, = (&1, . . ., &nn), are Li.d. with zero
mean and a finite variance . Let Jn be an J/n-consistent estimate of ly. Then, under
Assumption 3,

(1) (/M2 (GulFn) = Gu) 220 = 0p(1), (1/m)21,(G(n) = G)" 220 = 0p(1); and
@) (/M2 (Gulhn) = Gu) Ayen = 0p(1), (1/ /W21, (Ga(n) = Gp)* At = 0p(1).

Proof. As S, — S (/ln)_() — Jo)W,, it follows that G,(Z,) — G, = W[ S ) — S5 =
WSy OndlSn — SuCalSy ' =Cin — 20)GaCin) Gy and  (GoCin) — Go)' =Ch ~ 0)(G(n)
G A further expansmn implies that G, (/ln) -G, = (A,, — JO)G2 + (/1 — 20)* G,y ()L,,)G2
and (G,(1) — G)* = (G — 20)G> + (on — 20)(Gu(F)G)?. We note that, under Assump-
tion 3, because S is uniformly bounded in both row and column sums in absolute
value, S;l(i) and, hence, G,(4) must be uniformly bounded in both row and column
sums in absolute value uniformly in 4 in a small neighborhood of 7y by Lemma A.3.
As A, is consistent, it follow that G,(4,) is uniformly bounded in both row and
column sums in absolute value with probability one. Therefore, Lemma A.1 implies that
(1/m)z1,G,G()zan = Op(1).  Hence, (1/m)2;,(Gu(kn) — Go) 220 = (o — 20)(1/0)2),,G, G,
(Zn)z2n = op(l) as 24, —Ap = op(1). Similarly, (1/n)z),(G, ()L,,) —G,)* Zon = op(1). Thls
proves (1). .
For (2), by the further expansion of G,(/,) around G,,

1 . R 1 .
—= 2, (Gun) — Gp) Ayt = N1y — 0) = 2, G* At + (o — 20)?
Jn n

x % 2, G2 G () Antn.

Lemma A.4 implies that (l/n)z’lntA,,sn = op(l). Therefore, with the ./n-consistent Jons
the first term on the right-hand side is op(1). The remainder term is also op(1). This is
so as follows. Let || - ||; be the maximum column sum norm. Because the product of
matrices uniformly bounded in column sums in absolute value is uniformly bounded in
column sums in absolute value, |GG, ()n)A I} <c; for some constant ¢; for all n.
As elements of z;, are uniformly bounded, there exists a constant ¢, such that ||z}, ||; <c».
It follows that

zlnG’zG/ o) Anen

n

R 2] ) R
<[V = 0] el U 162G, Gl

7

<“‘2 (Vi = 20) ni el

n i=1

Result (2) follows because +/n(4, —4g) =op(l) and (1/m)> 7 lexl = Op(1) by the
strong law of large numbers. Similarly arguments are applicable to (I /M2,
(Ga(2) = Go)* Ayt O
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Lemma A.10. Let A, and B, be n x n matrices, uniformly bounded in both row and
column sums in absolute value. The &’s in &, = (én1,...,&m) are iid. with zero mean
and its fourth moment exists. Suppose that i, is a /n-consistent estimator of Ay. Then,
under Assumption 3,

(@) (1/n)e, A(Gy(n) — G) Bye, = op(1), and
(i) (1/+/n)e, (Gol) — G5 = op(1).

Proof. This is a case of Lemma A.9 in Lee (2001). [

Appendix B. Proofs

Proof of Proposition 1. For consistency, we first show that (1/n)a,g,(0) — (1/n)a,E(g,(0))
will converge in probability uniformly in 6 € © to zero. Let a, = (a,1, . . ., Gy, Ayx) Where
any is a (row) subvector. Then a,g,(0) = &,(0)(3 7L, @ Pjn)en(0) + aansn(Q) By expan-
sion, ¢&,(0) = d,(0) + &, + (Lo — 2)Gye, where d (0) (o — DG X By + Xu(By — P)-
follows that

& (6) (Z a,U-Pj,,> e(0) = d. (0) <Z anjpjn> du(0) + 1,(0) + q,(0),
j=1

=1

where  1,(0) = d ()1, anPy)(en + (ho — DGuen)  and  q,(0) = (g, + (Ao — Ve, G),)
(Zj 1 @niPin)(en + (Ao — 2)Gpey). The term [,(0) is linear in &,. By expansion,

%1,1(9) (ho — A)—(Xnﬁo) G, (Z Iy jn>sn+(ﬁo ﬂ)—X/ (Z Iy ],1>

+ (;°0 - /1)2 E (XnﬁO)/G; (Z anj[};n> Gngn

J=1

+Go = o~ B X, (Z )G o = 0n(1),

by Lemma A.4, uniformly in 6 € ®. The uniform convergence in probability follows
because /,(0) is simply a quadratic function of A and f and @ is a bounded set. Similarly,

qn(g) (Z an/ /n) & + (/10 - ))* S G, <Z a”fR;n) &n
j=1

+ (io — /1)2 ; b;zG;’l <Z aanjn> GnSn

=(g—) 2 Zan]tr(Gn P+ (o — 2)° iZan]tr(G/P]nGmop(l),
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uniformly in 0 € ©, by Lemma A.3 and E(g),Pj,e,) = aﬁ tr(Py,) =0 for all j=1,...,m
Consequently,

2 m

%s;(e)(z an,-Pjn>sn(0) d,,(0)<z g jn>d(e)+uo—x OZan,tr( G)
J=1

O- /
+ (Ao — A)° 70 Z i tr(G, Py, G,,) + 0p(1),
j=1

uniformly in 6 € ©. As g,(0) is a quadratic function of 6 and @ is bounded, (1/n)a,E(g,(0))
is uniformly equicontinuous on @. The identification condition and the uniform
equicontinuity of (1/n)a,E(g,(0)) imply that the identification uniqueness condition for
(1/n%)E(g.(0)a,a,E(g,(0)) must be satisfied. The consistency of the GMME 0, follows
from the uniform convergence and the identification uniqueness condition (White, 1994).

For the asymptotic distribution of 9,,, by the Taylor expansion of (agn(en)/ae)
anangn(en) =0 at 0()’

; _ [rogn , 10g,00] " 1 20,0 R
ity = 00) = = |~ I g, - ) L G a,,(00).
As  0e,(0)/00 = —(W,Y,, X,), it follows that 3g,(0)/00" = —(P},eq(0),...,
Pyen(0), 0,) (W, Yy, X). Explicitly, (1/m)e,(0)P;, W, Y, = (1/n) &, (0)P;, G, X By + (1/n)
g (G)B G,e,. By Lemmas A.4 and A.3,

1 S U .S
PGuX oy + - 6,Py GuX ufy + (o — ;) .G, PG Xy

1
E 81/1(9)});n GanﬁO d/ (9)
1
=~ d,(O)P},G, Xy + op(1),
and

1 1 1 1
S0 (OP;, Gty = ~ d(O)P}Gutn +~ 6, Py, Gt (= 2)6,G, P}, Gt

jn n-n" jn

2 2
= 0tr( ».Gu) + (o — 2) °tr( P;,G,) + op(1),

uniformly in 6 € @. Hence,

jn n' jn

%e;(())P;n wW,Y, = % d (0)P5,G, X By + % tr( ' Gn)+ (o — 7) Otr(G’ P G,)+ op(1),

uniformly in 6 € ©. At 6y, d (90) = 0 and, hence, (1/n)e,(00)P;, W, Y, = = (a3 /n) tr(P;, Gu)+
on(1). AL O, (1/m)é(00)P, X, = op(1). Finally, (1/mQLW, Y, = (1/mQ, G Xy + (1/n)
0,Guen = (1/n)Q,G Xn,/)’o + 0p(1) In conclusion, (l/n)(agn(ﬂn)/ 00) = —(1/n)D,, + op(1)
with D, in (3.2). On the other hand, Lemma A.5 implies that

1 1 1
\/—ﬁ angn(OO) = 7ﬁ l <Z Apj /n) & + an‘cQ gn] - N<0 1111>r1;>10 ZanQna )
The asymptotic distribution of «/ﬁ(ﬂm — Jg) follows. O
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Proof of Proposition 2. The generalized Schwartz inequality implies that the optimal
weighting matrix for a,a, in Proposition 1 is ((1 /n)Qn)*l. For consistency, consider

1, 1, 1, a
p gp(0)2;"g,(0) = p gn(0)2;"9,(0) + p g,(0)(2," — 2,)g,(0).

With a, = ((1 /n)Qn)*l/ 2 in Proposition 1, Assumption 6 implies that ay = (lim,_ e
(1 /n)Qn)_'/ 2 exits. Because aq is nonsingular, the identification condition of 0y corresponds
to the unique root of lim,_, . E(1/n) g,(8)) = 0 at 8y, which is satisfied by Assumption 5.
Hence, the uniform convergence in probability of (1/n)g,(0)R, 1g.(0) to a well defined limit
uniformly in 6 € @ follows by a similar argument in the proof of Proposition 1. So it
remains to show that (1/n)g;1(9)(f2;1 — Q;l)g”(ﬂ) = op(1) uniformly in 0 € ©. Let || - || be
the Euclidean norm for vectors and matrices. Then,

N .
Qu) ([
n n '
To show that this is of probability order op(1) uniformly in 6 € 0, it is sufficient to show

that (1/m)]g,(0)|l = Op(1) uniformly in 6 € ®. From the proof of Proposition 1,
(1/n)[g,(0) — E(g,(0))] = op(1) uniformly in 6 € . On the other hand, as

2
Hl gu0)(Q;" — Q;l)gmH < (1 ||g,,(6>||)
n n

n jn

1 1 1 !
; d;(Q)P/ndn(a) = ()~0 - }“)2; (Xnﬁo)/G;zP/nGanﬁO + ()v() - /1)2 (Xnﬁo),G/ P; Xn(ﬁo - ﬁ)

/ 1 !
=+ (ﬁO - ﬁ) EXnPi”Xn(ﬁO - ﬁ) = OP(I),
uniformly in 6 € @ by Lemma A.1, it follows that

o,
1 1 1
=- d(0)Pyd,(0) + (Ao — 1)} - tr(P},Gy) + (o — 2)’0y - tr(G, Py G,) = O(1),

uniformly in 0 € @. Similarly, (1/n)E(Q,,(0)) = (1/n)Q0,d.(0) = (%o — A)(1/n) Q,G, X,
+(1/n) 0, X, (By — ) = O(1) uniformly in 6 € ©. These imply that ||(1/n)E(g,(0))]| = O(1)
uniformly in 6 € ©. Consequently, by the Markov inequality, (1/n)|g,(0)| = Op(1)
uniformly in 0 € ©. Therefore, [|1/ng,(0)(Q," — 2,")g,(0)Il = op(1), uniformly in 0 € ©.
The consistency of the feasible optimum GMME 0, ,, follows. For the limiting distribution,
as (1/n)0g,(0,)/00 = —D,/n + op(1) from the proof of Proposition 1,

A ] ~ 17! N
i) = - [% s (2 lagnwﬂ Lot ()71 )

00 n n oo n 00 Jn

-1
D, (Q\'D,| D, /2\ "1
_n(_) En _n(_) —= g,(0) + op(1).
n\n n n\n N

The limiting distribution of ﬁ(@on — 6y) in (3.3) follows from this expansion.
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For the overidentification test, by the Taylor expansion,

1 0 10 9,1 n 0 Dn A
e e R
= 4, 20 o,

T

where 4, = I,, — (D,/n)[(D,,/n)(Q2,/n)"' D, /n)~' D, /n(Q,/n)~". Therefore,

DA e 1 N AN
gn(eon)Qn ]gn(eon) - Tﬁ gn(QO)An (i’l) Anﬁ gn(HO) + OP(I)

-1
_ L () ) (%) | (2D
ﬁgno n ! n n|n\n n

Do\ "l reN\
x—* (7) (7> 7 9u(0o) + op(1)

2 2 m + k) — (k + 1),
because (1/4/n)g,(00) BN (0,1im,—, o 2, /1) as in the proof of Proposition 1. [

Proof of Proposition 3. For the feasibAle best CjMM estimation wjth 210, the vector of
moment functions is g,,(0) = (&,(00(G, — (tr(G)/n)1 ,)en(0), £,(0)G, X, ﬁn, e (0)X,), and
the corresponding estimated V), is

(G- 1001,)'63) 0
> 4
n

Vn =0 | A A ,oa A
0 ;7_3 (GanﬁnaXn) (Ganﬁn, Xn)

When G,X,f, and X,, are linearly dependent, the linear moment of G,X,f, would be
redundant and should be dropped. The moment function g,,(0) and the corresponding
proper weighting function ¥, should simply be Jpa(0) = (e, (0)(G - (tr(G,,)/n)In)
en(0), &,(0)X ), and

o (e((Gmenya) o
n = O,
' 0 L XX,

The feasible best GMME with 2, will be derived from minyeo g, ,(0) 17; gpa(0).

For the best GMM estimation with the subclass Pons its moment functions g,,, and
estimated variance matrix are those with G, Dzag(Gn) replacing (G — (tr(Gn)/n)I ) in
the preceding expressions.

We shall show that the objective functions Q;(0) = &}7"(9)1/ q,,n(e) and Q,(0) =
95..(0) V 9p,(0), where g, , is the counter part of g, with G, and B, replacing, respectively
by G, and B, will satisfy the conditions in Lemma A.6. If so, the GMME from the
minimization of Q7 (0) will have the same limiting distribution as that of the minimization
of Q,(0). The diftference of Q;(0) and Q,(0) and its derivatives involve the difference of
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gp.(0) and g,,(0) and their derivatives. Furthermore, one has to consider the difference of
V,and V,.
First, consider (1/n)(g,,(0) — g,,,(0)). Explicitly,

2 a(0) = 0,00 = (eOG, = G5 0) (G, = X,V 5(0)0).

The ¢,(0) is related to ¢ as  &,(0)=¢,+ (lo — 1)Gue, +d,(0)  where
dn(0) = (Ao — V)G X By + Xu(By — p). It follows that (1/nm)X|Ge,(0) = (1/n)X,G e, +
(Ao — A)(l/n)X;GnG &+ (1/mX,G,d,(0) = (1/n)X,,G,d,(0) + op(l) by Lemma A.4, uni-
formly in 0 € ®. On the other hand Lemma A.l implies that (1/n)X),G,d,(0) = Op(1)
uniformly in 6 € @. The uniformity follows because d,(0) is linear in 4 and f. Hence
(1/m) X, G en(0) = Op(1) uniformly in 6 € ©. Similarly, Lemma A.9 implies (I/mX’, (G —

Gy) en(0)=(1/n)X, (Gp—G,) en+(lo — })(l/n)X’(G -Gy G,,s,,+(1/n)X’(G -G )’d 0) =
0p(1) uniformly in 0 € @. It follows that (l/n)(G X,,ﬂn G X 1Bo) ex(0) = (l/n)ﬁ X (G,,

G,) e,(0) + (ﬁn Bo) (1/n)X,,Ge,(0) = op(1) because ﬁn By = op(1). Similarly, Lemmas
A.9 and A.10 imply that (l/n)a (0)(G — G,)6,(0) = op(1) uniformly in § € ©. Hence, we
conclude that (1/n)(gy,,(0) — g5 ,,(0)) = op(1) uniformly in 0 € ©.

Consider the derivatives of g,,(0) and g,,(0). As the second derivatives of &,(0) with
respect to 0 are zero because &,(0) is linear in 0, it follows that

g,(0)G L . 2,0) s 20
%90 _ | (,x,8,y20 | 0O _ R
o0~ " om0
X, %P 0

The first order derivatives of &,(0) is 0¢,(0)/00 = —(W,Y,, X,)). Because W,Y, =
GanﬁO + Guén,

WY G~ G 0)
= % (Ganﬁo)/(Gn - Gn)dsdn(()) +l (Ganﬁo),(Gn - Gn)ds('gn + (JVO - /I)Gngn)

A 1
+d ()G — G)* G, + MNG G)S(en 4 (2o — 2)Gren) = op(1),

n n

uniformly in 6 € ©, and
% (Wn Yn)/(én - Gn)ds Wn Yn
1 1 (A s 2 1~ (A s
= (Xafo) G (G = Gu)* G Xy + - (Xuo) GG — Gu)* Gt

1
- 8 G, (Gn - Gn)dSGnSn

n n

= OP(l)

by Lemmas A.9 and A.10. Similarly, Lemmas A.9 and A.10 imply that (1/n)X, (Gp — G
en(0) = op(1),  (1/mX (G, — G)®W,Y =op(1), and (1/m)X'(G, -G )dSXn = op(1).
Hence, we conclude that (1/n)(0g,,(0)/00 — dg,,(0)/00) = op(1) and (1/n)(0* Jrn(0)/
0000’ — 62g,,n(9)/6060’) = op(1) uniformly in 0 € 6.
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For the cases under consideration, V, and V,, are block diagonal matrices. Without loss
of generality, consider the situation that G,X,f, and X, are not linearly dependent for
large n. Thus,

; w(GrG) 0 y tr(G¥G,) 0
n — 0 6'%;1’1 > n — O O%An ’

where A, = (GoX By, XY (GuX o, X)) and A, = (GuX B, X1) (GuX B, X,). The differ-
ence of G, and G, is (G, — G,) = (/1 — /IO)G2 + (/1 — )0)2G,1G This implies that

1 . s ) | o A
(G (Gy = Gn) = Uy = o) 1(G G + (U = J0)* — (G G G) = op(1),

because (1/n)tr(G*G2) = O(1), (1/n)tr(G®G,G?) = Op(1) and (4, — 49) = op(1). Simi-
larly,

%tr[(én— Gn)dsén]=(2n—xo)%trmﬁ“éﬂ)ﬂiﬂ—zo)z tr[(G,G2)® G,] = op(1).

Therefore, (1/m[tr(G Gy) — tr(GEG)] = (1/m) tl(GE — G¥)G, + G¥(Gy — Gy)] = op(1).
Consider the remaining block matrix. Because 62 is a consistent estimate of ¢} and
(1/m)A4, = O(1) by Lemma A.1,

1, .5 o 1 1 1
;(O—,ZIAn An)— 2 (A _Ail)+( _6(2])2An— 2 (A _An)"‘OP(l)

The difference (l/l’l)(/in — Ap,) is op(1) because

n n

I DV 1 / / % 1 al
0 (GuXuf,) Xy — 7 (GuXuBo) X = B X (G Gn)Xn + 7 (IBH ﬁo) X, G = op(1)

and

LGB GuXub) — 1 (G X ) (G Xoby)

n-—n

a1 A A A A1 A
=By X1(Go = G G X+ B, X,,G (G = G)X B,
y, 1 el P
(B B - X4 GLGuX (B, — o) = ov(D),

by Lemmas A.l and A.9. In conclusion, (1/n) V,— (1/m)V, = op(1). It follows that
((1/m) |20 ((1/m) V,)~" = op(1) by the continuous mapping theorem.

Furthermore, because (1/1)(gy,(0) — g5,,(0)) = op(1), and (1/n)[g;,(6) — E(g,,,(0)] =
op(1) uniformly in 0 € @, and sup, g 1/n|E(g,,(0))| = O(1) in the proof of Proposition 2,
(1/m)gy, ,(0) and (1/n)g,,,(0) are stochastically bounded, uniformly in 0 € @. Similarly,
(1/1)(@G4,(0)/30), (1/n)(035,(0)/30), (1/m)@g,,(0)/2030) and (1]n)(@G,,(0)/3000) are
stochastically bounded, uniformly in 6 € @. With the uniform convergence in probability
and uniformly stochastic boundedness properties, the difference of Q7(0) and Q,(0) can be
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investigated. By expansion
1 o
Z (QZ (9) Qn(e)) - gb ;1(6) V l(gb n(g) gb n(g))

1, _ s 1, PR
t~ GO =V Db+ GOV G,(0) = 95,(0))
:Op(l),

uniformly in 6 € ©. Similarly, for each component 6; of 0,

12205(0) 19°0,(0) _ 2 (0,0 1 83,(0) . i P 0*Gp(0)
0 30,00 5 0000 —n | 00 Vn oo T 20,00
0gpn(0)  _, 0gp,(0) 1 ang,n(e)
( 0, " og T 9OV 5
=OP(1).

Finally, because ((3),,(00)/00)V;" — (0g},,(00)/00)V,") = op(1) as above, and (1/+/n)
gpa(00) = Op(1) by the central limit theorems in Lemmas A.4 and A.5,

1 (@QZ(%) B aQ,,(90)>

NAEL o0
=2{ Dsllo) . ' G 00) = 0,(00)
+( g”a";%) v, - agba"g(e()) v, >J— gbn(Go)}
=2 a0 i 1o 00) = 3,00 + 0 (D).

o0 Vi f
This difference will be of order op(1) if (1/4/n)(g,(00) — g5,.(00)) = op(1). Lemma A.10
implies that the component (l/ﬁ)sg(én — Gy)%, =op(l). Lemmas A4 and A9
imply  that  (1/5/DIGuXaB,) = (GuXuBo) 1w = B(1 /WX (G = Go) ew + (B, — BoY
(1/VWX, G5 = op(D. and  (1//m)(B,X,en = BoXyen) = (By = Bo) (1/ /WX 0 = 0p(1).
Hence (1/4/n)(g5,,(00) — 95,,(60)) = op(1).

Finally, the results of the proposition follows from Lemma A.6 and the preceding
propositions. [
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