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5.1. Introduction

To test the existence of spatial dependence in an econometric model, a
convenient test is the Lagrange Multiplier (LM) test (Anselin, 1988a,b,
2001; Anselin and Bera, 1998). This is because

LM test requires only the estimation of null model, and thus

it is computationally much easier than other type of tests, in particular
when the test concerns the ‘nonlinear parameters’.

However, evidence shows that, in finite sample,

the true sizes of the LM test referring to the asymptotic critical values
can be quite different from their nominal sizes, and

more so with denser spatial weight matrices and one-sided tests.

As a result, the LM tests in such circumstances may have low power
in detecting a ‘negative’ or ‘positive’ spatial dependence.

LM tests may not be robust to misspecification in error distribution.
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In this lecture,

Residual-based bootstrap methods are introduced for a 2nd-order
approximation to the finite sample critical values of LM statistics.

Conditions for their validity are clearly laid out and formal justifications
are given in general, and in details under,

several popular spatial LM tests: LM tests for SE, LM tests for SL, and
LM tests for spatial error components (SEC).

Further demonstrations are given using: joint LM test for SL and SE,
LM test of SE allowing SL and vise versa.

Major conclusions:

With the unrestricted estimates and residuals, bootstrap is able to
provide critical values that agree with the true ones to the 2nd-order;
but it is not in general with restricted estimates and/or residuals.

However, use of restricted estimates/residuals sometimes provides
partial asymptotic refinements, leading to improved results over the
large sample approximations.
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Highlights – General Guidelines

The proposed bootstrap methods are applicable to a wide class of LM
testing situations, not only the LM tests for spatial dependence.

We demonstrate that for these methods to work well, it is important to
obey the following general guidelines:

(i) The bootstrap DGP resembles the null model;

(ii) The LM statistic is asymptotically pivotal under the null or its robustified or
standardized version must be used;

(iii) The estimates of the nuisance parameters, to be used as parameters in the
bootstrap world, are consistent whether or not the null hypothesis is true;

(iv ) The empirical distribution function of the residuals to be resampled estimates
consistently the error distribution whether or not the null hypothesis is true;

(v) The calculations of the bootstrapped values of the LM statistic are done under
the null hypothesis.
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Standardization and Bootstrap

Following discussions are helpful before introducing the methods formally.

Standardization (Koenker, 1981; Robinson, 2008; Yang, 2010; Baltagi
and Yang, 2013, etc.) is a popular method that

makes the LM tests robust against the distributional misspecification,

and alleviates the problems of size distortion for two-sided tests.

But,

standardization does not solve the problem of size distortion for
one-sided tests, and the problem of lower power.

The reason is that the finite sample distribution of the LM test is often
skewed, due to the spatial effect.

We demonstrate that standardization coupled with bootstrap provide a
satisfactory solution to these problems.

This lecture draws heavily on work of Yang (2015, JOE).
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Bootstrap method is able to provide asymptotic refinements on the
critical values of a test statistic if this statistic is asymptotically pivotal
under the null hypothesis:

Beran, 1988;

Hall, 1992;

Horowitz, 1994, 1997;

Hall and Horowitz, 1996;

Davidson and MacKinnon, 1999, 2006;

van Giersbergen and Kiviet, 2002;

Godfrey, 2009, etc.

However, as pointed out by Davidson, and reiterated by Godfrey:

it is not always the case that the asymptotic analysis seems to provide
a good explanation of what is observed in finite samples;

there are unsettled issues on the choices of residuals and the
parameter estimates to be used to set up the bootstrap DGP.

Z. L. Yang, SMU ECON747, Term I 2024-25 6 / 69



5.2. Bootstrap Critical Values for LM Tests: General Methods

Suppose that the model can be written as,

q(Yn, Xn, Wn; θ, δ) = en, (5.1)

en: n × 1 vector of errors, iid (0, 1), with true CDF F ,
δ: the parameters of interest,
θ: the nuisance parameters,
Yn: n × 1 response vector,
Xn: n × k matrix of regressors,
Wn: n × n spatial weight matrix.

Suppose that the model can be inverted to give

Yn = h(Xn, Wn; θ, δ; en). (5.2)

Consider a general hypothesis

H0 : δ = δ0 versus Ha : δ 6= δ0 ( or in scalar case , < δ0, > δ0).

The most interesting test corresponds to δ0 = 0, e.g., test of no spatial effect.
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5.2.1. The bootstrap method

Let LMn(δ0) be the LM test for testing H0, derived under a ‘specified’ error
distribution, e.g., N(0, 1), which may or may not be the true F . Let,

Gn(·, θ,F): the finite sample null distribution of LMn(δ0);

cn(α; θ,F), α∈(0, 1): the finite sample critical value (FCV) of
LMn(δ0)|H0 ;

G(·, θ,F): the limiting null distribution of LMn(δ0).

Note that, typically,

LMn(δ0) is not a pivotal quantity as Gn(·, θ,F) depends on (θ,F);

but it is an asymptotic pivotal quantity if F is correctly specified, and
in this case G(·, θ,F) is free of parameters (θ,F), typically standard
normal if δ is a scalar, or chi-square if δ is a vector.

If F is misspecified, e.g., specified distribution for en,i is N(0, 1) but
true F is not, LMn(δ0) may not even be an asymptotic pivotal quantity.
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Denote

θ̃n: the restricted estimate of θ under H0,

(θ̂n, δ̂n): the unrestricted estimates of (θ, δ),

The observable counterpart of en is referred to as residuals,

ẽn = q(Yn, Xn, Wn; θ̃n, δ0): the restricted residuals,

ên = q(Yn, Xn, Wn; θ̂n, δ̂n): the unrestricted residuals,

F̃n: the empirical distribution function (EDF) of ẽn,

F̂n: the EDF of ên.

Note that under the LM framework

only the estimation of the null model is required, and

the null model is determined by the pair {θ,F}.

In order to approximate the finite sample null distribution (in particular
the critical values) of LMn(δ0), the bootstrap world must be set up so
that it is able to mimic the real world at the null.
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Thus, the bootstrap DGP should take the following form

Y ∗
n = h(Xn, Wn; θ̈n, δ0; e∗n), e∗n

iid∼ F̈n, (5.3)

− θ̈n: the bootstrap parameter vector,
− F̈n: the bootstrap error distribution.

The steps for finding the bootstrap critical values (BCV) for LMn(δ0)|H0 is
summarized as follows:

General Bootstrap Algorithm 1 (GBA-1):

(a) Draw a bootstrap sample e∗n from F̈n;

(b) Compute Y ∗
n = h(Xn, Wn; θ̈n, δ0; e∗n ) to obtain the bootstrap data

{Y ∗
n , Xn, Wn};

(c) Estimate the null model based on {Y ∗
n , Xn, Wn}, and then compute a

bootstrapped value LMb
n(δ0) of LMn(δ0)|H0 ;

(d) Repeat (a)-(c) B times to obtain the EDF of {LMb
n(δ0)}B

b=1, and its α-quantile
gives a bootstrap critical value cn(α; θ̈n, F̈n) for LMn(δ0)|H0 .
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Various resampling schemes

When does cn(α; θ̈n, F̈n) give a better approximation to cn(α; θ,F), the true
α-quantile of LMn(δ0)|H0 , than does the asymptotic critical value, say c(α)?

In reality, one does not know whether or not H0 is true.

Thus it incurs an important issue: the choice of the pair {θ̈n, F̈n} for setting
up the bootstrap DGP.

It leads to four resampling schemes, to adopt the similar terms as in
Godfrey (2009):

RSuu : unrestricted resampling scheme, {θ̈n, F̈n} = {θ̂n, F̂n},

RSrr : restricted resampling scheme, {θ̈n, F̈n} = {θ̃n, F̃n}

RSur : hybrid resampling scheme 1, {θ̈n, F̈n} = {θ̂n, F̃n}

RSru : hybrid resampling scheme 2, {θ̈n, F̈n} = {θ̃n, F̂n}.
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Alternative to RSuu, consider the bootstrap analog of H0,

H∗
0 : δ = δ̂n.

The corresponding bootstrap procedure for finding the critical values is:

General Bootstrap Algorithm 2 (GBA-2):

(a) Draw a bootstrap sample ê∗n from the EDF F̂n of ên,

(b) Compute Y ∗
n = h(Xn, Wn; θ̂n, δ̂n; ê∗n ) to obtain the bootstrap data {Y ∗

n , Xn, Wn},

(c) Conditional on δ̂n, estimate the model based on {Y ∗
n , Xn, Wn}, and then

compute LMn(δ̂n) and denote its value as LMb
n(δ̂n),

(d) Repeat (a)-(c) B times to obtain the EDF of {LMb
n(δ̂n)}B

b=1, and the quantiles
of it give the bootstrap critical values of LMn(δ0)|H0 .

This resampling scheme is denoted as RSuf .

A major difference from the other schemes is that RSuf requires the
construction of an LM-type test at a general δ value (more complicated).
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5.2.2. Validity of the bootstrap methods

Note that in general, c(α)− cn(α; θ,F) = O(n−1/2).

We argue that with a proper choice of the pair (θ̈n, F̈n), it can be that

cn(α; θ̈n, F̈n)− cn(α; θ,F) = O(n−1).

⇒ BCV provides a higher-order approximation to the finite sample critical
value (FVC) of LMn(δ0)|H0 than does the asymptotic critical value (ACV).

To this end,

we need some general conditions on the LM test statistic LMn(δ0) and
its finite sample null distribution Gn(·, θ,F) at the true (θ,F).

Let Nθ,F denote a neighborhood of (θ,F).

When the ‘specified’ CDF for en,i (i.e., the CDF under which LMn(δ0)

is developed) is the same as F , we say F is correctly specified,
otherwise misspecified.
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Assumption G1. F is correctly specified such that (i) LMn(δ0) developed under F
is asymptotically pivotal when H0 is true; (ii) (θ̃n, F̃n) is

√
n-consistent for (θ,F)

under H0; and (iii) (θ̂n, F̂n) is
√

n-consistent for (θ,F) whether or not H0 is true.

Assumption G2. F is misspecified but Assumptions G1(ii)-(iii) remain.

Furthermore, either LMn(δ0) is robust (i.e., it remains to be asymptotically pivotal

at H0) or its robust version, denoted as SLMn(δ0), is used.

Assumption G3. For (ϑ, F ) ∈ Nθ,F , the null CDF Gn(·, ϑ, F ) converges weakly to

G(·, ϑ, F ) as n increases, and admits the following asymptotic expansion uniformly

in t and locally uniformly for (ϑ, F ) ∈ Nθ,F :

Gn(t , ϑ, F ) = G(t , ϑ, F ) + n−
1
2 g(t , ϑ, F ) + O(n−1), (5.4)

where G(·, ϑ, F ) is differentiable and strictly monotone over its support,
and g(t , ϑ, F ) is a functional of (t , ϑ, F ) differentiable in (ϑ, F ).

Assumptions 1 & 2 are standard for ML or QML estimation. Assumption 3 is

adapted from Beran (1988), with θ containing only the nuisance parameters.
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In an important special case where δ is a scalar and LMn(δ0)|H0

a∼ N(0, 1),
the asymptotic expansion (5.4) at (θ,F) reduces to

Gn(t , θ,F) = Φ(t) + n−
1
2 φ(t)p(t , θ,F) + O(n−1), (5.5)

where Φ and φ are the CDF and pdf of N(0, 1), if that the j th cumulant
κj,n ≡ κj,n(θ,F) of LMn(δ0)|H0 can be expanded as a power series in n−1:

κj,n = n−
j−2

2 (kj,1 + n−1kj,2 + n−2kj,3 + · · · ).

from which one has p(t , θ,F) = −k1,2 + 1
6 k3,1(1− t2).

See Hall (1992, Sec. 2.3) for details on Asymptotic Expansions.

This constitutes one of the most important scenarios in constructing
bootstrap LM tests.

The proof of validity of the BLM test for spatial dependence depends
critically on the validity of this expansion.
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Proposition 5.1 Under Assumptions G1 and G3, the bootstrap methods
under RSuu and RSuf are generally valid in that they are both able to
provide full asymptotic refinements on the critical values of the LM tests,
with an error of approximation of order O(n−1).

Proposition 5.2 Under Assumptions G2 and G3, if further
∂

∂F g(t , θ,F) = O(n−
1
2 ), then F̃n can be used in place of F̂n, and thus the

bootstrap method with RSur is also valid.

Proposition 5.3 Under Assumption G1 or G2, and Assumption G3, if
either θ̃n is also consistent when H0 is false or LM or SLM test is invariant
of θ, then θ̃n can be used in place of θ̂n and thus the bootstrap method with
RSru is also valid.

Proposition 5.4 Under Assumptions G2 and G3, if the conditions for both
Propositions 5.2 and 5.3 hold, then all the five bootstrap methods are valid.
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Proof. Under the real world null DGP: Yn = h(Xn, Wn, θ, δ0; en),

LMn(δ0)|H0 ≡ LMn(Yn, Xn, Wn; δ0)

= LMn[h(Xn, Wn, θ, δ0; en), Xn, Wn; δ0]

≡ LMn(Xn, Wn, θ, δ0; en).

The bootstrap DGP that mimics the real world null DGP is
Y ∗

n = h(Xn, Wn; θ̈n, δ0; e∗n), where e∗n
iid∼ F̈n. Based on the bootstrap data

(Y ∗
n , Xn, Wn), estimating the null model and computing the bootstrap

analogue of LMn(δ0), we have

LM∗
n(δ0) ≡ LMn(Y ∗

n , Xn, Wn; δ0)

= LMn[h(Xn, Wn, θ̈n, δ0; e∗n), Xn, Wn; δ0]

≡ LMn(Xn, Wn, θ̈n, δ0; e∗n).

Thus, LM∗
n(δ0) is identical in structure to LMn(δ0)|H0 , suggesting that the

bootstrap CDF of LM∗
n(δ0) has the form Gn(·, θ̈n, F̈n), identical in form to

the finite sample CDF Gn(·, θ,F) of LMn(δ0)|H0 .
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Under Assumption G3, expansion (5.4) holds for (θ,F), giving

Gn(t , θ,F) = G(t , θ,F) + n−
1
2 g(t , θ,F) + O(n−1). (5.6)

Assume plimn→∞(θ̈n, F̈n) ∈ Nθ,F . As (5.4) holds locally uniformly for any
(ϑ, F ) ∈ Nθ,F , the bootstrap CDF admits the asymptotic expansion:

Gn(t , θ̈n, F̈n) = G(t , θ̈n, F̈n) + n−
1
2 g(t , θ̈n, F̈n) + Op(n−1). (5.7)

Comparing (5.7) with (5.6), the scenarios under which the bootstrap is able to
provide asymptotic refinements on the critical values are clear.

For Proposition 5.1, as F is correctly specified, G(t , θ,F) = G(t). Further, as
(5.6) holds locally uniformly in (θ,F), G(t , θ̂n, F̂n) = G(t). Then, we have

Gn(t , θ,F)− Gn(t , θ̂n, F̂n) = n−
1
2 [g(t , θ,F)− g(t , θ̂n, F̂n)] + Op(n−1) = Op(n−1),

It follows that cn(α, θ̂n, F̂n)− cn(α, θ,F) = Op(n−1).

However, cn(α, θ,F)− c(α) = Op(n−
1
2 ), where c(α) is the ACV of LMn(δ0)|H0 ,

⇒ BCV gives a higher-order approximation to the FCV of LMn(δ0)|H0 .
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To prove Proposition 5.2, we have in view of (5.7),

Gn(t , θ̂n, F̃n) = G(t , θ̂n, F̃n) + n−
1
2 g(t , θ̂n, F̃n) + Op(n−1).

The fact that LMn(λ0)|H0 (or its robust version) is asymptotically pivotal
even if F is misspecified implies

G(t , θ,F) = G(t) and G(t , θ̂n, F̃n) = G(t).

Since ∂
∂F g(t , θ,F) = O(n−

1
2 ) and θ̂n is consistent, it follows that

g(t , θ̂n, F̃n)− g(t , θ,F) = Op(n−
1
2 ).

The result of Proposition 5.2 thus follows. Proofs of the rest are evident.

Remark 5.1. When F is misspecified, LMn(λ0) is not robust and its limit null CDF
G(t , θ,F) depends on (θ,F). Thus, G(t , θ̈n, F̈n)−G(t , θ,F) is Op(n−

1
2 ) if (θ̈n, F̈n) is

consistent, otherwise the difference can be Op(1).

Remark 5.2. Standardization is like prepivoting, giving an LM-type of test robust

against distributional misspecification (Beran, 1988).
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5.3. Bootstrap LM Tests of Spatial Dependence

In this section, we present bootstrap LM (BLM) tests for spatial
dependence in several popular spatial linear regression (SLR) models:

BLM test for SE effect in SE model

BLM test for SL effect in SL model

BLM test for SL and SE effects in SLE model
Joint BLM test for SL and SE

Marginal BLM test for SL allowing SE

Marginal BLM test for SE allowing SL

BLM test for the existence of spatial error component

Validity of each BLM test (i.e., being able to provide a second order
approximation) is critically discussed.
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Some basic assumptions for spatial linear regression models

Assumption S1. The innovations {en,i} are iid random draws from F with mean

zero, variance 1, and finite cumulants κj ≡ κj(F), j = 3, 4, 5, 6.

Assumption S2. The elements of Xn are uniformly bounded for all n, and

limn→∞
1
n X ′

nXn exists and is nonsingular. (These conditions are to be replaced by

their stochastic versions if Xn is stochastic. The results are then interpreted

conditionally, given the exogenous Xn.)

Assumption S3. The elements {wn,ij} of Wn are at most of order h−1
n uniformly for

all i, j, with the rate sequence {hn} satisfying hn/n → 0 as n →∞. {Wn} are

uniformly bounded in both row and column sums with wn,ii = 0 and
P

j wn,ij = 1, ∀i .

Furthermore:

E∗, Var∗, D∗−→,
p∗−→, op∗(·), etc., correspond to the bootstrap error CDF F̈n,

to distinguish from the usual notation corresponding to F .

Assume throughout F̈n has a zero mean and a unit variance (achievable
through centering and scaling), and j th cumulant κ̈jn ≡ κj(F̈n), j = 3, 4, 5, 6.
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5.3.1. Linear regression with spatial error (SE) dependence

Recall the linear regression model with SE dependence:

Yn = Xnβ + un, un = ρWnun + εn, εn = σen. (5.8)

We are interested in testing the hypothesis H0: ρ = 0.

Consider the LM test statistics given in (3.32) and the standardized LM
test statistic given in (3.34), written in a slightly different forms:

LMFI
SE =

n√
Kn

ε̃′nWn ε̃n

ε̃′n ε̃n
, (5.9)

SLM◦
SE =

n√
K †

n + κ̃4na′nan

ε̃′nW ◦
n ε̃n

ε̃′n ε̃n
, (5.10)

where Kn = tr(W ′
nWn + WnWn), W ◦

n = Wn − 1
n−k tr(WnMn)In, an = diagv(An),

An = MnW ◦
n Mn, K †

n = tr[An(An +A′
n)], Mn = In − Xn(X ′

nXn)
−1X ′

n, and κ̃n is the

excess sample kurtosis of OLS residuals ε̃n.

Baltagi and Yang (2013) show that LMFI
SE|H0

a
= SLM◦

SE|H0

a∼ N(0, 1).
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Bootstrap methods and their validity

To see the validity of the various bootstrap methods presented in Section
5.2, we concentrate on LMFI

SE.

Under the real world null DGP: Yn = Xnβ + σen, ε̃n = σMnen, and

LMFI
SE|H0 =

n√
Kn

e′nMnWnMnen

e′nMnen
. (5.11)

Clearly, LMFI
SE|H0 is free of β and σ. Further, it is easy to show that it is

an exact pivot if F is known;

an asymptotic pivot if F is unknown, i.e., LMFI
SE|H0

D−→ N(0, 1).

In case of a known F , one can simply use Monte Carlo method to find the finite
sample critical values of LMSEC|H0 to any level of accuracy.

In case of an unknown F , LMSED|H0 is not an exact pivot and thus the Monte Carlo

method does not work. Bootstrap methods need to be called for asymptotically

refined approximations to the FCVs of LMSED|H0 .
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In the bootstrap world, the bootstrap DGP that mimics the real world null
DGP is Y ∗

n = Xnβ̈n + σ̈ne∗n , where e∗ni are iid draws from F̈n.

Based on the bootstrap data (Y ∗
n , Xn), compute OLS estimates of (β̈n, σ̈n),

OLS residuals and LM test (5.9), to give bootstrap analogue of LMSED|H0 :

LM∗
SE =

n√
Kn

e∗n
′MnWnMne∗n
e∗n ′Mne∗n

, (5.12)

showing that LM∗
SE is invariant of β̈n and σ̈2

n . It can be further shown that

LM∗
SE|H0

D∗

−→ N(0, 1), where D∗ denotes ‘w.r.t. F̈n’.

Comparing (5.12) with (5.11), it is intuitively quite clear that if e∗n are drawn from an
EDF F̈n that consistently estimates F whether or not H0 is true, then the EDF of
LM∗

SED offers a consistent estimate of the finite sample distribution of LMSED|H0 .

This is just like the Monte Carlo approach under a known F . However, with F̈n the

finite sample distribution of LMSED|H0 is estimated nonparametrically. With this in

mind, the attractiveness of the bootstrap approach becomes clearer.
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Proposition 5.5. Suppose Model (5.8) satisfies Assumptions S1-S3. If (i)
ρ̂n is

√
n-consistent, and (ii) |LMFI

SE|H0 | ≤ U a.e., and E(U4) exists, then
the bootstrap methods under RSuu,RSuf and RSru are valid for LMFI

SE, ∀F .
If, in addition, γ = 0, the bootstrap methods under RSur and RSrr are valid
as well. The same conclusions apply to SLM◦

SE.

Proof: Key arguments are given here and details are in Yang (2015).

LMFI
SE|H0

D−→ N(0, 1), ∀F , and its CDF admits Edgeworth expansion:

Gn(t ,F) = Φ(t) + n−
1
2 c

− 3
2

0 φ(t) p(t ,F) + O(n−1), (5.13)

where p(t ,F) = −c0c1 + ( 1
6 κ2

3T4 + T5)(1− t2).

LM∗
SE

D∗−→ N(0, 1), ∀F̈n, and its bootstrap CDF admits asymptotic expansion:

Gn(t , F̈n) = Φ(t) + n−
1
2 c

− 3
2

0 φ(t) p(t , F̈n) + Op(n−1), (5.14)

where p(t , F̈n) = −c0c1 + ( 1
6 κ̈2

3nT4 + T5)(1− t2).

Taking difference between (5.14) and (5.13) gives,

Gn(t , F̈n)− Gn(t ,F) = 1
6 n

− 1
2

r c
− 3

2
0 T4 φ(t)(1− t2)(κ̈2

3n − κ2
3) + Op(n−1).
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Remark 5.3: When the error distribution is skewed, the bootstrap methods under
RSur and RSrr , though not strictly valid, improve the asymptotic method as the main
second-order terms involving c0c1 and T5 are captured by the bootstrap methods,
resulting partial asymptotic refinements.

Remark 5.4: The detailed proof given in Appendix B, Yang (2015), shows that the
first three cumulants of LMSED|H0 are:

κ1,n = n
− 1

2
r c

− 1
2

0 c1 + O(n
− 3

2
r ),

κ2,n = 1 + O(n−1
r ), and

κ3,n = n
− 1

2
r c

− 3
2

0 (κ2
3T4 + 6T5) + O(n

− 3
2

r ),

from which we see precisely the reason why the finite sample distribution of a

spatial LM test deviates more from its limiting distribution with a denser spatial

weight matrix.
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Discussion

The other three variants of the LM tests, I◦SE, LMMD
SE, and SLMMD

SE,
introduced in Lecture 3 can also be considered.

Theorem 3.1 shows that under H0 the five test statistics are
asymptotically equivalent and are robust against nonnormality. Thus,
any of them can be used for bootstrapping.

Clearly, LMFI
SE is the simplest, and is thus used.

Conclusion: To bootstrap the FCVs, the three resampling schemes
with unrestricted residuals are recommended in particular RSuu,
although the two with restricted residuals are partially valid.

The advantages of using a bootstrap LM test are:

(i) finite sample performance of the test statistic to be bootstrapped is
unimportant as long as it is asymptotically pivotal under the null, and

(ii) second-order refinements are achieved for both two-sided tests and
one-sided tests (if test is univariate).
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Monte Carlo results

The Monte Carlo experiments are carried out based on the following DGP:

Yn = β01n + Xn1β1 + Xn2β2 + un, un = ρWnun + σen,

where the parameter values are set at β = {5, 1, 1}′ and σ = 1 or 2.

Four different sample sizes are considered, i.e., n = 50, 100, 200, and 500.

Each set of results is based on M = 2, 000 Monte Carlo samples, and
B = 699 bootstrap samples for each Monte Carlo sample.

Details on spatial layouts, error distributions, and fixed regressors’ values are
given in Appendix C, Yang (2015).

For ρ = {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75}, two types of Monte Carlo
results are recorded:

(a) the means and standard deviations of the bootstrap critical values, and

(b) the rejection frequencies of the LM and SLM tests.
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General observations from Monte Carlo results are:

The (average) BCVs are all very close to the ‘true’ finite sample critical
values (obtained by Monte Carlo simulation), but can all be far from
their asymptotic critical values (ACV) which are ±1.6449 and ±1.96;

The BCVs for both LM and SLM under RSuf , RSuu and RSru are all
very stable, and those under RSur and RSrr change with ρ slightly,
which confirms the Remark 5.3.

The standard deviations of BCVs are all small;

Use of BCVs significantly improves size and power of LM tests;

Regressors and spatial weight matrices affect the finite sample
behavior of the test. In all these scenarios, standardization helps and
bootstrap methods work well in improving LM tests.

However, standardization does not play a major role as far as BCV is
concerned as the original LM is asymptotically robust against
distributional misspecification (DM).
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Table 5.1. Bootstrap and MC Critical Values for Burridge’s LM Test of SE Dependence
spatial Layout: Group Interaction with g = n0.5; H0 : ρ = 0; σ = 2

n = 100 n = 200
Method ρ 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%

Normal Error
RSrr 0.0 -1.863 -1.717 1.097 1.509 -1.883 -1.729 1.166 1.580

0.5 -1.862 -1.717 1.103 1.516 -1.883 -1.729 1.166 1.582
RSuu 0.0 -1.863 -1.717 1.096 1.510 -1.883 -1.730 1.165 1.580

0.5 -1.862 -1.716 1.103 1.518 -1.882 -1.729 1.166 1.580
MC -1.872 -1.722 1.113 1.505 -1.851 -1.692 1.222 1.648

Normal Mixture Error
RSrr 0.0 -1.878 -1.701 1.039 1.446 -1.877 -1.714 1.130 1.538

0.5 -1.879 -1.704 1.047 1.456 -1.879 -1.717 1.132 1.539
RSuu 0.0 -1.878 -1.701 1.039 1.448 -1.877 -1.715 1.130 1.539

0.5 -1.880 -1.701 1.039 1.450 -1.878 -1.715 1.127 1.537
MC -1.9158 -1.7221 1.0062 1.403 -1.855 -1.691 1.195 1.575

Log-Normal Error
RSrr 0.0 -1.824 -1.651 1.001 1.440 -1.816 -1.659 1.087 1.522

0.5 -1.834 -1.663 1.010 1.447 -1.828 -1.669 1.096 1.527
RSuu 0.0 -1.826 -1.652 1.003 1.441 -1.816 -1.660 1.087 1.521

0.5 -1.823 -1.651 1.000 1.442 -1.818 -1.660 1.088 1.527
MC -1.863 -1.664 0.984 1.449 -1.786 -1.624 1.113 1.542

RSrr and RSuu : Average bootstrap critical values based on M = 2, 000 and B = 699;
MC: Monte Carlo critical values based on M = 30, 000; Regressors generated according to XVal-B
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Table 5.2a. Rejection Frequencies for One-Sided LM Test of Spatial Error Dependence
spatial Layout: Group Interaction with g = n0.5; H0 : ρ = 0

n = 100 n = 200
|ρ| L2.5% L5% R5% R2.5% L2.5% L5% R5% R2.5%

Normal Error
ACV: LM test referring to ACV

0.00 0.0155 0.0690 0.0175 0.0110 0.0200 0.0740 0.0200 0.0115
0.25 0.0700 0.2440 0.2295 0.1760 0.0930 0.2740 0.3245 0.2625
0.50 0.1925 0.4735 0.7865 0.7400 0.3005 0.6000 0.8860 0.8585

RSrr

0.00 0.0270 0.0530 0.0485 0.0215 0.0290 0.0565 0.0445 0.0235
0.25 0.1165 0.2000 0.3550 0.2520 0.1370 0.2270 0.4450 0.3410
0.50 0.2715 0.4105 0.8570 0.8050 0.3875 0.5245 0.9280 0.8915

RSuu

0.00 0.0265 0.0530 0.0470 0.0210 0.0300 0.0555 0.0435 0.0235
0.25 0.1170 0.2020 0.3595 0.2560 0.1375 0.2235 0.4430 0.3390
0.50 0.2740 0.4060 0.8565 0.8030 0.3845 0.5275 0.9280 0.8915

ACV∗: SLM test referring to ACV

0.00 0.0015 0.0170 0.0705 0.0420 0.0300 0.0555 0.0435 0.0235
0.25 0.0145 0.0825 0.4035 0.3440 0.1375 0.2235 0.4430 0.3390
0.50 0.0555 0.2180 0.8785 0.8465 0.3845 0.5275 0.9280 0.8915
Note: L = Left tail (ρ < 0), R = Right tail (ρ > 0); Regressors generated according to XVal-B
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Table 5.2b. Rejection Frequencies for One-Sided LM Test of Spatial Error Dependence
spatial Layout: Group Interaction with g = n0.5; H0 : ρ = 0

n = 100 n = 200
|ρ| L2.5% L5% R5% R2.5% L2.5% L5% R5% R2.5%

Normal Mixture Error
ACV: LM test referring to ACV

0.00 0.0165 0.0605 0.0150 0.0090 0.0155 0.0540 0.0205 0.0135
0.25 0.0710 0.2110 0.2305 0.1735 0.0945 0.2635 0.3325 0.2625
0.50 0.2045 0.4460 0.7815 0.7390 0.2940 0.5850 0.9020 0.8705

RSrr

0.00 0.0250 0.0530 0.0480 0.0230 0.0215 0.0415 0.0520 0.0245
0.25 0.0930 0.1730 0.3705 0.2710 0.1355 0.2255 0.4575 0.3600
0.50 0.2580 0.3915 0.8690 0.8110 0.3595 0.5290 0.9410 0.9120

RSuu

0.00 0.0245 0.0510 0.0475 0.0235 0.0200 0.0415 0.0515 0.0245
0.25 0.0925 0.1780 0.3700 0.2735 0.1365 0.2235 0.4570 0.3575
0.50 0.2550 0.3935 0.8675 0.8105 0.3665 0.5335 0.9410 0.9105

ACV∗: SLM test referring to ACV

0.00 0.0045 0.0170 0.0600 0.0370 0.0065 0.0165 0.0690 0.0425
0.25 0.0325 0.0790 0.4070 0.3410 0.0260 0.0995 0.5050 0.4270
0.50 0.0960 0.2145 0.8855 0.8535 0.0860 0.3045 0.9480 0.9325
Note: L = Left tail (ρ < 0), R = Right tail (ρ > 0); Regressors generated according to XVal-B
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Table 5.2c. Rejection Frequencies for One-Sided LM Test of Spatial Error Dependence
spatial Layout: Group Interaction with g = n0.5; H0 : ρ = 0

n = 100 n = 200
|ρ| L2.5% L5% R5% R2.5% L2.5% L5% R5% R2.5%

Log-Normal Error
ACV: LM test referring to ACV

0.00 0.0125 0.0490 0.0180 0.0090 0.0150 0.0530 0.0210 0.0110
0.25 0.0735 0.1975 0.2190 0.1630 0.0820 0.2605 0.3115 0.2395
0.50 0.2120 0.4350 0.7910 0.7340 0.2805 0.5605 0.9180 0.8900

RSrr

0.00 0.0295 0.0440 0.0485 0.0240 0.0250 0.0495 0.0660 0.0285
0.25 0.1155 0.1950 0.3600 0.2605 0.1525 0.2485 0.4540 0.3460
0.50 0.2860 0.4235 0.8870 0.8165 0.4090 0.5460 0.9525 0.9255

RSuu

0.00 0.0290 0.0445 0.0490 0.0250 0.0255 0.0495 0.0635 0.0290
0.25 0.1155 0.1965 0.3650 0.2580 0.1560 0.2520 0.4550 0.3470
0.50 0.2905 0.4255 0.8865 0.8170 0.4110 0.5525 0.9530 0.9230

ACV∗: SLM test referring to ACV

0.00 0.0045 0.0140 0.0535 0.0375 0.0015 0.0165 0.0720 0.0470
0.25 0.0310 0.0760 0.3915 0.3140 0.0255 0.0870 0.4825 0.4025
0.50 0.1170 0.2185 0.9015 0.8630 0.0985 0.2925 0.9570 0.9430
Note: L = Left tail (ρ < 0), R = Right tail (ρ > 0); Regressors generated according to XVal-B
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5.3.2. Linear regression with spatial lag (SL) dependence

Recall linear regression with SL dependence or SAR model:

Yn = λWnYn + Xnβ + εn, εn = σen. (5.15)

The LM test statistic for testing H0: λ = 0 is:

LMFI
SL =

ε̃′nWnYn

σ̃2
n

√
η̃′nMnη̃n + Kn

, (5.16)

where Kn = tr(W ′
nWn + WnWn), η̃n = 1

σ̃n
WnXnβ̃n, β̃n and σ̃2

n are the OLS
estimates from regressing Yn on Xn, and ε̃n the OLS residuals.

A standardized version of LMSLD, having better finite sample properties
and more robust to spatial layouts, is given in Yang and Shen (2011):

SLM◦
SL =

ε̃′nW ◦
n Yn

σ̃2
n

√
η̃′nMnη̃n + K †

n + κ̃nd ′ndn + 2γ̃nη̃′nMndn

, (5.17)

W ◦
n = Wn − 1

n−k tr(WnMn)In, K †
n = tr[An(An +A′

n)], an = diagv(An), An = MnW ◦
n ,

dn = diagv(W ◦
n ), and γ̃n and κ̃n are 3rd and 4th cumulants of ẽn = σ̃−1

n ε̃n.
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Yang and Shen (2011) show that both LMFI
SL and SLM◦

SL have limiting null
distribution N(0, 1), whether or not F is correctly specified, showing that both
are asymptotically robust against distributional misspecification.

To implement the bootstrap method under the resampling scheme RSuf , more
general LM statistics for a nonzero λ, LMFI

SL(λ), and its standardized version,
SLM◦

SL(λ), can be found in Yang and Shen (2011).

The OPMD variants of LMFI
SL and SLM◦

SL can be developed and BCVs can be
obtained and used for a refined inference.
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Bootstrap methods and their validity

To study the validity of various resampling schemes, we concentrate on
LMFI

SL. Under the real world null DGP: Yn = Xnβ + σen, we have

LMFI
SL|H0 =

√
n(e′nMnWnen + e′nMnηn)

(e′nMnen)
1
2 {η′nMnηn + Q(en) + 2e′nPnWnMnηn}

1
2
, (5.18)

Q(en) = n−1Kne′nMnen + e′nP′
nW ′

nMnWnPnen, ηn = σ−1WnXnβ, and Pn = In −Mn.

This shows that LMFI
SL|H0 = f (en, Xn, Wn, β, σ), meaning that LMSLD|H0 is not

an exact pivot whether or not F is known.

This stands in difference from LMFI
SE|H0 considered earlier.

The dependence of LMFI
SL|H0 on (β, σ2) is expected to impose constraints on

the choices of their estimates to be used as parameters in the bootstrap DGP.

On the other hand, the limiting distribution of LMFI
SL|H0 does not depend on

(β, σ2) and F , suggesting (as in Section 5.3.1) that bootstrap methods can be
applied to provide asymptotically refined critical values for LMFI

SL|H0 .
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Under the bootstrap world, the bootstrap DGP that mimics the real world
null DGP takes the form: Y ∗

n = Xnβ̈n + σ̈ne∗n , where e∗ni
iid∼ F̈n.

Based on bootstrap data (Y ∗
n , Xn), estimating bootstrap model and

computing test statistic (5.16) lead to bootstrap analogue of LMFI
SL|H0 :

LM∗
SL =

√
n(e∗′n MnWne∗n + e∗′n Mnη̈n)

(e∗′n Mne∗n)
1
2 {η̈′nMnη̈n + Q(e∗n) + 2e∗′n PnWnMnη̈n}

1
2
, (5.19)

where η̈n = σ̈−1
n WnXnβ̈n.

Comparing (5.19) with (5.18), it is intuitively clear that for bootstrap to
provide a higher-order approximation to the FCVs of LMSLD|H0 , it is
necessary that β̈n, σ̈

2
n , and F̈n are consistent whether or not H0 is true.

Following proposition summarizes the results.
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Proposition 5.6. Suppose Model (5.15) satisfies Assumptions S1-S3. If
(i) λ̂n is

√
n-consistent, and (ii) |LMFI

SL|H0 | ≤ U a.e., and E(U4) exists, then
the bootstrap methods under RSuu and RSuf are valid for LMFI

SL, ∀F .
Further, if γ = 0 and conditions in (A.3) (Yang 2015) hold, the bootstrap
methods under RSur is also valid. The same conclusions apply to SLM◦

SL.

Proof: Key arguments are given here and details are in Yang (2015).

First, LMFI
SL|H0

D−→ N(0, 1), ∀F ; its finite sample CDF admits Edgeworth expansion:

Gn(t , θ,F) = Φ(t) + n−
1
2 c0(θ)

− 3
2 φ(t) p(t , θ,F) + O(n−1), (5.20)

p(t , θ,F) =− c0(θ)c1 + [ 1
6 κ2

3T4 + T5 + 1
6 κ3(S3(θ) + 2S5(θ)) + 1

3 S4(θ)](1− t2).

Similarly, LM∗
SLD

D∗−→ N(0, 1); its bootstrap CDF admits asymptotic expansion:

Gn(t , θ̈n, F̈n) = Φ(t) + n−
1
2 c0(θ̈n)

− 3
2 φ(t) p(t , θ̈n, F̈n) + Op(n−1), (5.21)

p(t , θ̈n, F̈n) =− c0(θ̈n)c1 + [ 1
6 κ̈2

3nT4+T5+ 1
6 κ̈3n(S3(θ̈n) + 2S5(θ̈n)) + 1

3 S4(θ̈n)](1−t2).
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With these two expansions, the conclusions reached in Proposition 5.6 are clear.

Gn(t , θ̈n, F̈n)− Gn(t , θ,F) = Op(n−1
r ) only when θ̈n = θ̂n and F̈n = F̂n.

Similar to the SE model, p(t , θ,F) depends on F only through γ, thus F̂n can
be replaced by F̃n if additional conditions hold, leading to the validity of RSur .

Finally, the same set of results are obtained for SLM◦
SL.

Remark 5.5: When the error distribution is skewed, the bootstrap method under
RSur , though not strictly valid, improves upon the asymptotic method as the main
second-order terms involving T5, c0(θ)c1 and S4(θ) are captured by bootstrap due
to the consistency of θ̂n, leading to the so-called partial asymptotic refinements.

This explains why the Monte Carlo results (not reported for brevity) under RSur are

very similar to these under RSuu even when the errors are skewed.

Remark 5.6: Again, the cumulants of LMSLD|H0 given in Appendix B, Yang (2015) ,

show clearly the effect of spatial weight matrix on the finite sample distribution of

LMSLD|H0 .
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Summary

We note that for the SL model,

Restricted estimates β̃n and σ̃2
n are not consistent if H0 is false,

Neither LMFI
SL nor SLMFI

SL is invariant of β and σ2,

Both LMFI
SL and SLMFI

SL are asymptotic N(0, 1) for any F .

Conclusion:
1 The resampling methods with restricted estimates, RSrr and RSru,

are not valid for both tests;
2 All resampling methods with unrestricted estimates, RSur, RSuu and
RSuf, are recommended, in particular the RSuu scheme,

3 Standardization does not play a major role in bootstrapping critical
values as the regular LM test is asymptotically robust against DM,

4 although it does in improving regular LM tests (two-sided).
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Monte Carlo results for SL model

The finite sample performance of LMFI
SL and SLMFI

SL for testing H0: λ = 0 vs
Ha: λ < 0 or Ha: λ > 0, when referring to ACV and BCV are investigated,
based on the following data generating process:

Yn = λWnYn + β01n + Xn1β1 + Xn2β2 + εn,

under various resampling schemes, in terms of

accuracy and stability of the BCVs with respect to the true value of λ,

and size and power of the tests.

In a similar way as for the SE model, the parameter values are chosen,
and Wn, Xn and εn are generated.
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For BCVs, Monte Carlo results clearly reveal the following:

BCVs are not affected much by the type of residuals used, consistent with the
discussions given in Remark 5.5;

BCVs can be quite different from the corresponding ACVs, showing the
necessity of using finite sample critical values for testing the existence of
spatial lag dependence in a linear regression model;

BCVs based on RSrr (and RSru) vary significantly with λ. This suggests that, if
when H0 is true the BCVs and sizes are accurate (indeed they are), then
when H0 is false, the BCVs cannot be accurate and therefore the powers
cannot be reliable;

BCVs based on RSuu are very stable with respect to λ, and are very accurate
as they agree very well with the corresponding Monte Carlo critical values
obtained by imposing H0 and using M = 30, 000, and with the BCVs under
RSrr and H0 (considered as an ideal situation). The same holds when |λ|
further increases from 0.5.

BVCs do not depend much on the error distribution.
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For size and power, Monte Carlo results reveal the following:

The tests referring to ACVs can have severe size-distortion, and more so with
heavier spatial dependence. Referring to BCVs effectively remove the size
distortions under any resampling method, but this is unachievable with the
restricted estimates as in practice whether H0 is true or false is unknown.

BCVs of LM statistic based on restricted estimates tend to increase in
magnitude as λ increases. As a result, power tends to be lower for a
right-tailed test, and higher for a left-tailed test, compared with the power of
the tests based on the unrestricted estimates.

BCVs of SLM statistic based on restricted estimates decrease as λ

increases. As a result, power of both left- and right-tailed tests tends to be
higher than that based on unrestricted estimates. However, the former
corresponds to a larger size due to smaller underlining BCVs.

As the original LM test is already asymptotically pivotal and robust,
standardization does not provide further improvements on the methods in that
the use of restricted estimates still lead to BCVs that vary with λ.
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Table 5.3a. Bootstrap Critical Values for LM and SLM Tests of Spatial Lag Dependence
Spatial Layout: Group Interaction with g = n0.5; n = 100; σ = 1; XVal-B

LM Test SLM Test

λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%
Normal Error

RSrr

-0.5 -2.0718 -1.8294 1.2718 1.6270 -1.8282 -1.5691 1.7465 2.1265
-0.3 -2.0872 -1.8313 1.2960 1.6438 -1.8529 -1.5813 1.7331 2.1033
0.0 -2.1064 -1.8372 1.3469 1.6844 -1.8904 -1.6090 1.7195 2.0722
0.3 -2.1144 -1.8318 1.4030 1.7303 -1.9238 -1.6322 1.7031 2.0407
0.5 -2.1135 -1.8245 1.4375 1.7608 -1.9383 -1.6417 1.6994 2.0307

RSuu

-0.5 -2.1034 -1.8378 1.3510 1.6849 -1.8908 -1.6133 1.7145 2.0635
-0.3 -2.1030 -1.8312 1.3507 1.6870 -1.8905 -1.6072 1.7121 2.0638
0.0 -2.1064 -1.8363 1.3559 1.6924 -1.8949 -1.6127 1.7163 2.0682
0.3 -2.1099 -1.8376 1.3563 1.6908 -1.8982 -1.6139 1.7183 2.0667
0.5 -2.1049 -1.8366 1.3578 1.6898 -1.8929 -1.6132 1.7184 2.0655

MC

0 -2.1190 -1.8415 1.3262 1.6512 -1.9018 -1.6117 1.7002 2.0447
RSrr and RSuu : Average bootstrap critical values based on M = 2, 000 and B = 699;

MC: Monte Carlo critical values based on M = 30, 000; Regressors generated according to XVal-B
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Table 5.3b. Bootstrap Critical Values for LM and SLM Tests of Spatial Lag Dependence
Spatial Layout: Group Interaction with g = n0.5; n = 100; σ = 1; XVal-B

LM Test SLM Test

λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%
Normal Mixture Error

RSrr

-0.5 -2.0640 -1.8098 1.2502 1.6027 -1.8228 -1.5513 1.7074 2.0825
-0.3 -2.0809 -1.8167 1.2730 1.6198 -1.8494 -1.5695 1.6954 2.0620
0.0 -2.0941 -1.8170 1.3308 1.6675 -1.8818 -1.5923 1.6900 2.0411
0.3 -2.1066 -1.8191 1.3962 1.7254 -1.9197 -1.6235 1.6859 2.0250
0.5 -2.1095 -1.8175 1.4302 1.7542 -1.9361 -1.6367 1.6885 2.0196

RSuu

-0.5 -2.0972 -1.8206 1.3424 1.6743 -1.8888 -1.6003 1.6899 2.0362
-0.3 -2.1001 -1.8210 1.3401 1.6761 -1.8918 -1.6008 1.6887 2.0385
0.0 -2.0959 -1.8175 1.3414 1.6763 -1.8872 -1.5971 1.6898 2.0389
0.3 -2.0978 -1.8204 1.3428 1.6777 -1.8900 -1.6009 1.6899 2.0368
0.5 -2.0975 -1.8229 1.3425 1.6761 -1.8886 -1.6023 1.6913 2.0389

MC

0.0 -2.1175 -1.8320 1.3125 1.6077 -1.9059 -1.6033 1.6781 1.9927
RSrr and RSuu : Average bootstrap critical values based on M = 2, 000 and B = 699;

MC: Monte Carlo critical values based on M = 30, 000; Regressors generated according to XVal-B
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Table 5.3c. Bootstrap Critical Values for LM and SLM Tests of Spatial Lag Dependence
Spatial Layout: Group Interaction with g = n0.5; n = 100; σ = 1; XVal-B

LM Test SLM Test

λ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%
Log-Normal Error

RSrr

-0.5 -2.0232 -1.7734 1.2626 1.6337 -1.7806 -1.5159 1.6860 2.0766
-0.3 -2.0374 -1.7797 1.2960 1.6574 -1.8064 -1.5353 1.6806 2.0586
0.0 -2.0556 -1.7869 1.3500 1.6995 -1.8455 -1.5663 1.6759 2.0381
0.3 -2.0807 -1.7979 1.4160 1.7513 -1.8982 -1.6079 1.6794 2.0233
0.5 -2.0947 -1.8026 1.4362 1.7671 -1.9235 -1.6251 1.6797 2.0169

RSuu

-0.5 -2.0612 -1.7899 1.3612 1.7118 -1.8549 -1.5735 1.6780 2.0391
-0.3 -2.0592 -1.7883 1.3631 1.7083 -1.8530 -1.5722 1.6782 2.0348
0.0 -2.0608 -1.7884 1.3581 1.7057 -1.8545 -1.5721 1.6764 2.0344
0.3 -2.0667 -1.7921 1.3664 1.7162 -1.8626 -1.5780 1.6790 2.0388
0.5 -2.0614 -1.7901 1.3601 1.7104 -1.8553 -1.5743 1.6762 2.0373

MC

0.0 -2.0276 -1.7597 1.3454 1.6944 -1.8154 -1.5290 1.6663 2.0354
RSrr and RSuu : Average bootstrap critical values based on M = 2, 000 and B = 699;

MC: Monte Carlo critical values based on M = 30, 000; Regressors generated according to XVal-B
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Table 5.4a. Rejection Frequencies for LM Tests of Spatial Lag Dependence
Spatial Layout: Group Interaction with g = n0.5; σ = 1; XVal-B

n = 50 n = 100
|λ| L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Normal Error
ACV

0.0 0.0435 0.0970 0.0190 0.0085 0.0430 0.0875 0.0235 0.0095
0.1 0.1010 0.1905 0.0905 0.0550 0.1405 0.2300 0.1240 0.0805
0.2 0.2150 0.3510 0.2885 0.1985 0.2955 0.4400 0.4510 0.3430
0.3 0.3585 0.5420 0.6110 0.4990 0.4705 0.6410 0.8535 0.7690

RSrr
0.0 0.0285 0.0565 0.0485 0.0260 0.0305 0.0540 0.0445 0.0235
0.1 0.0655 0.1220 0.1640 0.0975 0.1045 0.1725 0.1960 0.1190
0.2 0.1555 0.2455 0.3975 0.2890 0.2405 0.3505 0.5495 0.4310
0.3 0.2870 0.4175 0.7135 0.6055 0.4075 0.5390 0.8920 0.8340

RSuu
0.0 0.0270 0.0575 0.0555 0.0280 0.0290 0.0555 0.0475 0.0245
0.1 0.0605 0.1195 0.1715 0.1030 0.0995 0.1755 0.2015 0.1255
0.2 0.1415 0.2440 0.4070 0.3020 0.2325 0.3500 0.5590 0.4420
0.3 0.2610 0.4025 0.7260 0.6220 0.3955 0.5350 0.8935 0.8410
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Table 5.4b. Rejection Frequencies for SLM Tests of Spatial Lag Dependence
Spatial Layout: Group Interaction with g = n0.5; σ = 1; XVal-B

n = 50 n = 100
|λ| L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%

Normal Error
ACV

0.0 0.0230 0.0475 0.0635 0.0355 0.0235 0.0495 0.0510 0.0280
0.1 0.0520 0.1100 0.1865 0.1160 0.0915 0.1610 0.2065 0.1350
0.2 0.1265 0.2290 0.4345 0.3325 0.2050 0.3340 0.5740 0.4575
0.3 0.2275 0.3755 0.7500 0.6505 0.3500 0.5055 0.9050 0.8510

RSrr
0.0 0.0280 0.0565 0.0520 0.0280 0.0300 0.0535 0.0450 0.0240
0.1 0.0655 0.1215 0.1695 0.0980 0.1050 0.1715 0.1955 0.1190
0.2 0.1540 0.2440 0.4005 0.2950 0.2380 0.3505 0.5525 0.4355
0.3 0.2865 0.4145 0.7190 0.6120 0.4075 0.5350 0.8925 0.8340

RSrr
0.0 0.0235 0.0520 0.0515 0.0235 0.0250 0.0525 0.0450 0.0220
0.1 0.0575 0.1105 0.1650 0.0925 0.0960 0.1690 0.1930 0.1175
0.2 0.1340 0.2270 0.4005 0.2920 0.2240 0.3395 0.5485 0.4220
0.3 0.2485 0.3910 0.7165 0.6060 0.3820 0.5230 0.8905 0.8320
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5.3.3. Linear regression with spatial error components (SEC)

Kelejian and Robinson (1995) proposed an SEC model:

Yn = Xnβ + un, with un = Wnvn + εn, and εn = σen. (5.22)

The error components vn and εn are assumed to be independent, with iid
elements of mean zero and variances σ2

v and σ2, respectively.

The SEC model provides a useful alternative to the traditional spatial models
with a SAR or SMA error process, in particular

when spatial autocorrelation is constrained to close neighbors, e.g., spatial
spillovers in the productivity of infrastructure investments (Kelejian and
Robinson, 1997; Anselin and Moreno, 2003).

Let λ = σ2
v/σ2 and Ωn(λ) = In + λWnW ′

n. Then, Var(un) = σ2Ωn(λ).

If vn and εn are normal, then un ∼ N(0, σ2Ωn(λ)) and Gaussian likelihood
for θ = (β′, σ2, λ)′ can be formulated. QML estimation of θ proceeds.
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We are interested in testing H0: λ = 0 vs Ha: λ > 0.

Or equivalently, H0: σv = 0 vs Ha: σv > 0. The alternative can only be
one-sided as σv is non-negative. Anselin (2001) derived an LM test based
on the assumptions that errors are normally distributed:

LMFI
SEC =

n√
Kn

ε̃′nHn ε̃n

ε̃′n ε̃n
, (5.23)

Hn = WnW ′
n − 1

n tr(WnW ′
n)In, Kn = 2tr(H2

n ), and ε̃n is the vector of OLS
residuals. The limiting null distribution of LMFI

SEC is N(0, 1) when F = Φ.

Yang (2010) provided a robust/standardized LM test:

SLM◦
SEC =

n√
K †

n + κ̃na′nan

ε̃′nH†
n ε̃n

ε̃′n ε̃n
, (5.24)

where H†
n = WnW ′

n − 1
n−k tr(WnW ′

nMn)In, K †
n = 2tr(A2

n), an = diagv(An),
An = MnH†

nMn, and κ̃n is the 4th cumulant of ẽn = σ̃−1
n ε̃n.

Yang (2010) showed that SLM◦
SEC|H0

D−→ N(0, 1),∀F .
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Bootstrap methods and their validity

Under H0, ε̃′n = Mnεn = σMnen, and the statistics LMFISEC can be written as

LMFI
SEC|H0 =

n√
Kn

e′nMnHnMnen

e′nMnen
. (5.25)

⇒ LMFI
SEC|H0 is invariant of the nuisance parameters and thus a pivot if F is

known. Monte Carlo method can be used to find its FCVs.

However, when F is unknown and possibly misspecified, LMFI
SEC|H0 is not

even an asymptotic pivot. Indeed, Lemma A2 (Yang, 2015) leads to

(1 + κc0)
− 1

2 LMFI
SEC|H0

D−→ N(0, 1), ∀F ,

where c0 = limn→∞ K−1
n b′nbn with bn = diagv(MnHnMn), and κ is the 4th

cumulant of eni which is non-zero if eni is non-normal.

Thus, the limit distribution of LMFI
SEC|H0 depends on F through κ. Then,

what is the consequence of ignoring this when conducting bootstrap?
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The bootstrap DGP is again: Y ∗
n = Xnβ̈n + σ̈ne∗n . Based on bootstrap data

(Y ∗
n , Xn), compute OLS estimates, OLS residuals, and statistic (5.23).

Some algebra leads to the bootstrap analogue of (5.25):

LM∗
SEC =

n√
Kn

e∗′n MnHnMne∗n
e∗′n Mne∗n

. (5.26)

Similarly, Lemma A2 (Yang, 2015) gives (1 + κ̈nc0)
− 1

2 LM∗
SEC

D∗

−→ N(0, 1).

Therefore, the leading terms in the asymptotic expansions of bootstrap
CDF of LM∗

SEC and CDF of LMFI
SEC|H0 are such that,

Φ(t/
√

1 + κ̈nc0)− Φ(t/
√

1 + κc0) = op(1), if F̈n = F̂n; Op(1) if F̈n = F̃n.

This clearly shows that when F is misspecified the bootstrap method is unable to

provide an improved approximation to the FCVs of LMFI
SEC|H0 over the ACVs even if

the unrestricted residuals are used, and that the use of the restricted residuals

worsens the approximation.
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Therefore, one must use a robust LM statistic for bootstrap to provide a
refined test. Similar algebra as for LMFI

SEC|H0 and LM∗
SEC gives

SLM◦
SEC|H0 =

n√
K †

n + κ(en)a′nan

e′nMnH†
nMnen

e′nMnen
, (5.27)

and its bootstrap analogue

SLM∗
SEC =

n√
K †

n + κ(e∗n)a′nan

e∗′n MnH†
nMne∗n

e∗′n Mne∗n
, (5.28)

where κ(en) and κ(e∗n) are the 4th cumulants of
√

nMnen√
e′nMnen

and e∗n .

Similar to SLM◦
SEC|H0

D−→ N(0, 1), ∀F , SLM∗
SEC

D∗−→ N(0, 1) for both F̂n and F̃n.

The implication of these results is that when bootstrapping the standardized
LM test given in (5.24), using either unrestricted residuals or restricted
residuals leads to bootstrap critical values that are correct asymptotically.

However, as stated in the following proposition, only the use of unrestricted
residuals leads to full asymptotic refinements.
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How can we get the unrestricted estimate of en in (5.22)?

The SEC model is not the standard model considered in Sec. 5.2.

The unrestricted estimate ûn = Yn − Xnβ̂n cannot be decomposed into v̂n and
ên to give a consistent F̂n directly based ên, unless vn and εn are normal.

Note that e◦n = σ−1Ω
− 1

2
n (λ)un ∼ (0, In), which is normal if vn and εn are.

We consider its unrestricted estimate, ê◦n = σ̂−1Ω
− 1

2
n (λ̂n)ûn, as an

approximation to ên, and draw bootstrap samples from ê◦n .

Proposition 5.7. Suppose Assumptions S1-S3 hold for Model (5.22) with

un = Ω
1
2
n (λ)εn. If (i) λ̂n is

p
n/hn-consistent, and (ii) |SLMSEC|H0 | ≤ U a.e., and

E(U4) exists, then the bootstrap methods under the resampling schemes RSuu ,

and RSru are valid for SLM◦
SEC. The results remain if instead un = Wnvn + εn such

that the jth sample cumulant of σ−1Ω
− 1

2
n (λ)un

p−→ κj , j = 1, . . . , 6.

Proof: See Yang (2015).

Z. L. Yang, SMU ECON747, Term I 2024-25 54 / 69



Some final remarks are as follows.

Remark 5.7. Under SLMSEC, use of F̂n leads to bootstrap critical values in error of

order op(n
− 1

2
r ), whereas use of F̃n leads to bootstrap critical values in error of

order Op(n
− 1

2
r ). This means that at least in theory the bootstrap critical values

based on the restricted residuals offer no improvement over the asymptotic ones.

However, a closer examination on the Edgeworth expansion shows that the

bootstrap based on F̃n can still do a better job as the main second-order effect,

term involving 1
3 (2T3 − T1 + 3T5), is captured by the bootstrap. Our Monte Carlo

results given below confirm this point.

Remark 5.8. The point that a denser weight matrix makes the finite sample null

distribution of the test statistic deviate more from the limiting distribution is once

again demonstrated by the first three cumulants of LMSEC|H0 , which are derived as

those of SLMSEC|H0 given in Appendix B.
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Monte Carlo results for SEC model

The finite sample performance of LMFI
SEC and SLM◦

SEC for testing H0 : λ = 0 vs
Ha : λ > 0, when referring to the asymptotic critical values and the bootstrap
critical values under various resampling schemes, are investigated in terms of the
accuracy and stability of the bootstrap critical values with respect to the true value
of λ, and the size and power of the tests. The Monte Carlo experiments are carried
out based on the following data generating process:

Yn = β01n + Xn1β1 + Xn2β2 + Wnvn + εn

where {vn,i} are iid draws from
√

0.6t5, and the methods for generating Wn, Xn and

εn are described in Appendix C, Yang (2015). The regressors are treated as fixed

in the experiments. The parameter values are set at β = {5, 1, 1}′ and σ = 1, and

sample sizes used are n = (54, 108, 216, 513). All results reported below are

based on M = 2, 000 Monte Carlo samples, and B = 699 bootstrap samples for

each Monte Carlo sample generated. The bootstrap critical values are

bench-marked against the Monte Carlo (MC) critical values obtained based on

M = 50, 000 Monte Carlo samples under H0.
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Table 5.5a. Bootstrap Critical Values for LM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m = 8, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal

λ 10% 5% 1% 10% 5% 1% 10% 5% 1%
RSrr

0.0 1.0763 1.4706 2.2198 1.6682 2.3600 3.6943 2.1365 3.2755 5.5770
0.5 1.0766 1.4684 2.2162 1.5400 2.1660 3.3711 1.9092 2.9030 4.8534
1.0 1.0784 1.4699 2.2376 1.4653 2.0475 3.1833 1.8069 2.7365 4.5543
1.5 1.0836 1.4811 2.2416 1.4126 1.9668 3.0347 1.6942 2.5609 4.2301
2.0 1.0935 1.4932 2.2571 1.3744 1.9066 2.9449 1.6207 2.4350 4.0063

RSuu

0.0 1.0754 1.4690 2.2184 1.6453 2.3256 3.6383 2.0866 3.1835 5.3784
0.5 1.0738 1.4649 2.2097 1.5392 2.1640 3.3659 1.9024 2.8723 4.7672
1.0 1.0709 1.4609 2.2217 1.4829 2.0749 3.2285 1.8312 2.7751 4.5934
1.5 1.0710 1.4632 2.2140 1.4439 2.0192 3.1225 1.7438 2.6375 4.3598
2.0 1.0732 1.4657 2.2190 1.4137 1.9705 3.0440 1.6968 2.5611 4.2373

MC

0.0 1.0772 1.4737 2.2308 1.7310 2.4793 4.0564 2.2162 3.4827 7.4663
MC: Monte Carlo Critical values based on M = 50, 000.
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Table 5.5b. Bootstrap Critical Values for SLM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m = 8, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal

λ 10% 5% 1% 10% 5% 1% 10% 5% 1%
RSrr

0.0 1.3219 1.7255 2.4923 1.3693 1.8443 2.7315 1.4028 1.9818 2.9503
0.5 1.3204 1.7213 2.4860 1.3578 1.8204 2.6939 1.3953 1.9451 2.8880
1.0 1.3181 1.7185 2.4993 1.3520 1.8043 2.6625 1.3877 1.9264 2.8542
1.5 1.3175 1.7208 2.4910 1.3498 1.7939 2.6297 1.3729 1.8944 2.8019
2.0 1.3218 1.7272 2.4974 1.3463 1.7834 2.6192 1.3654 1.8749 2.7717

RSuu

0.0 1.3215 1.7251 2.4921 1.3675 1.8399 2.7248 1.3998 1.9700 2.9357
0.5 1.3202 1.7212 2.4856 1.3581 1.8205 2.6921 1.3954 1.9418 2.8843
1.0 1.3176 1.7182 2.4977 1.3543 1.8077 2.6717 1.3900 1.9348 2.8701
1.5 1.3169 1.7186 2.4882 1.3529 1.8049 2.6488 1.3783 1.9076 2.8291
2.0 1.3197 1.7224 2.4938 1.3505 1.7988 2.6390 1.3748 1.8983 2.8169

MC

0.0 1.3189 1.7238 2.5153 1.3714 1.8843 2.8192 1.3823 2.0921 3.1531
MC: Monte Carlo Critical values based on M = 50, 000.
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Table 5.5c. Bootstrap Critical Values for LM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m=19, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal

λ 10% 5% 1% 10% 5% 1% 10% 5% 1%
RSrr

0.0 1.1502 1.5338 2.2687 1.8199 2.4772 3.7743 2.6510 4.0188 6.6391
0.5 1.1526 1.5372 2.2731 1.6764 2.2758 3.4514 2.3728 3.6083 5.9152
1.0 1.1558 1.5418 2.2794 1.5888 2.1559 3.2507 2.1695 3.2701 5.2968
1.5 1.1612 1.5485 2.2905 1.5333 2.0724 3.1247 2.0451 3.0671 4.9338
2.0 1.1710 1.5607 2.3023 1.4866 2.0145 3.0414 1.9375 2.8884 4.6049

RSuu

0.0 1.1499 1.5333 2.2678 1.8084 2.4606 3.7472 2.6015 3.9204 6.4371
0.5 1.1495 1.5341 2.2673 1.6880 2.2929 3.4773 2.3740 3.5833 5.8370
1.0 1.1489 1.5332 2.2617 1.6219 2.2022 3.3299 2.2332 3.3549 5.4274
1.5 1.1473 1.5295 2.2640 1.5833 2.1467 3.2393 2.1538 3.2382 5.2166
2.0 1.1525 1.5362 2.2629 1.5435 2.0858 3.1581 2.0716 3.1130 4.9923

MC

0.0 1.1569 1.5445 2.2472 1.8325 2.5278 3.9093 2.6464 4.1103 8.5357
MC: Monte Carlo Critical values based on M = 50, 000.
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Table 5.5d. Bootstrap Critical Values for SLM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m = 19, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal

λ 10% 5% 1% 10% 5% 1% 10% 5% 1%
RSrr

0.0 1.3026 1.6901 2.4312 1.3369 1.7769 2.6263 1.3836 1.9416 2.9125
0.5 1.3029 1.6909 2.4326 1.3286 1.7583 2.5835 1.3722 1.9220 2.8692
1.0 1.3003 1.6882 2.4274 1.3259 1.7512 2.5635 1.3661 1.8927 2.8153
1.5 1.3011 1.6880 2.4293 1.3239 1.7435 2.5493 1.3579 1.8737 2.7870
2.0 1.3048 1.6925 2.4299 1.3194 1.7361 2.5346 1.3549 1.8583 2.7535

RSuu

0.0 1.3024 1.6899 2.4311 1.3360 1.7745 2.6227 1.3820 1.9352 2.9025
0.5 1.3026 1.6911 2.4319 1.3287 1.7610 2.5867 1.3742 1.9187 2.8649
1.0 1.3010 1.6895 2.4243 1.3274 1.7571 2.5783 1.3696 1.9025 2.8324
1.5 1.3000 1.6862 2.4279 1.3280 1.7526 2.5666 1.3657 1.8932 2.8177
2.0 1.3045 1.6926 2.4266 1.3238 1.7442 2.5579 1.3643 1.8821 2.8027

MC

0.0 1.3033 1.6967 2.4031 1.3209 1.7774 2.6576 1.3432 2.0206 3.0694
MC: Monte Carlo Critical values based on M = 50, 000.
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Table 5.6a. Rejection Frequencies for LM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m = 8, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal
λ 10% 5% 1% 10% 5% 1% 10% 5% 1%

ACV
0.0 0.0690 0.0330 0.0070 0.1480 0.1075 0.0575 0.1790 0.1420 0.0960
0.5 0.5845 0.4640 0.2490 0.5550 0.4590 0.2980 0.5795 0.5015 0.3665
1.0 0.9005 0.8460 0.6780 0.8540 0.7870 0.6470 0.8110 0.7635 0.6525
1.5 0.9815 0.9695 0.9180 0.9650 0.9415 0.8680 0.9140 0.8890 0.8205
2.0 0.9960 0.9910 0.9665 0.9850 0.9750 0.9340 0.9530 0.9375 0.9010
RSrr
0.0 0.1010 0.0465 0.0120 0.1045 0.0555 0.0135 0.1180 0.0625 0.0180
0.5 0.6560 0.5215 0.2760 0.4890 0.3505 0.1505 0.4735 0.3275 0.1610
1.0 0.9330 0.8720 0.7045 0.8140 0.6980 0.4520 0.7190 0.5945 0.3850
1.5 0.9890 0.9765 0.9310 0.9535 0.9045 0.7405 0.8600 0.7820 0.6115
2.0 0.9960 0.9935 0.9720 0.9805 0.9545 0.8570 0.9215 0.8560 0.7130
RSuu
0.0 0.1010 0.0480 0.0115 0.1065 0.0605 0.0205 0.1215 0.0685 0.0395
0.5 0.6570 0.5230 0.2840 0.4835 0.3490 0.1540 0.4690 0.3245 0.1580
1.0 0.9330 0.8740 0.7055 0.8090 0.6850 0.4320 0.7145 0.5820 0.3670
1.5 0.9890 0.9775 0.9300 0.9520 0.8980 0.7020 0.8555 0.7640 0.5780
2.0 0.9960 0.9930 0.9715 0.9795 0.9490 0.8295 0.9160 0.8395 0.6735
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Table 5.6b. Rejection Frequencies for SLM Test of Spatial Error Components
Group Sizes {2, 3, 4, 5, 6, 7}, m = 8, σ = 1, XVAL-B

Normal Error Normal Mixture Lognormal
λ 10% 5% 1% 10% 5% 1% 10% 5% 1%

ACV
0.0 0.1025 0.0525 0.0130 0.1090 0.0660 0.0255 0.1160 0.0795 0.0440
0.5 0.6640 0.5465 0.3210 0.4985 0.3875 0.2085 0.4685 0.3735 0.2225
1.0 0.9340 0.8845 0.7485 0.8210 0.7320 0.5420 0.7160 0.6320 0.4745
1.5 0.9890 0.9780 0.9445 0.9540 0.9185 0.8155 0.8480 0.8005 0.6925
2.0 0.9965 0.9950 0.9805 0.9810 0.9590 0.9010 0.9045 0.8725 0.7900
RSrr
0.0 0.1015 0.0465 0.0120 0.0970 0.0515 0.0105 0.1040 0.0590 0.0170
0.5 0.6535 0.5205 0.2755 0.4730 0.3380 0.1435 0.4400 0.3105 0.1585
1.0 0.9330 0.8715 0.7050 0.8045 0.6825 0.4510 0.6870 0.5705 0.3765
1.5 0.9885 0.9765 0.9310 0.9490 0.8980 0.7290 0.8335 0.7590 0.6120
2.0 0.9960 0.9935 0.9715 0.9785 0.9510 0.8530 0.8955 0.8335 0.7080
RSuu
0.0 0.1000 0.0485 0.0110 0.0975 0.0525 0.0110 0.1035 0.0595 0.0210
0.5 0.6550 0.5220 0.2780 0.4750 0.3405 0.1460 0.4420 0.3105 0.1560
1.0 0.9320 0.8730 0.7020 0.8050 0.6795 0.4470 0.6875 0.5670 0.3715
1.5 0.9890 0.9770 0.9295 0.9480 0.8970 0.7240 0.8325 0.7560 0.5995
2.0 0.9960 0.9935 0.9715 0.9780 0.9485 0.8475 0.8940 0.8330 0.7010
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5.3.4. Linear regression with both SL and SE dependence

In this section, we further illustrate these methods using a more general
model: the linear regression with both SL and SE, or the SLE model:

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn, εn = σen, (5.29)

where all quantities are defined as in (5.8) and (5.15). W1n and W2n can
be the same. Clearly, (5.29) has the form of the general model given in
(5.1): σ−1Bn(ρ)[An(λ)Yn − Xnβ] = en.

The following hypotheses are of interest:

HSLE
0 : δ0 = (λ0, ρ0)

′ = 0, standard liner regression model suffices,
HSL|SE

0 : λ0 = 0, SE model suffices,
HSE|SL

0 : ρ0 = 0, SL model suffices.
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The corresponding LM tests can be found in Anselin et al. (1996) and can
be written as (assuming W1n = W2n = Wn): for testing HSLE

0 ,

LMFI
SLE =

(ε̃′nWnYn − ε̃′nWn ε̃n)
2

σ̃4
n η̃′nMnη̃n

+
(ε̃′nWn ε̃n)

2

σ̃4
nKn

, (5.30)

where all quantities are defined in (5.9) and (5.16); for testing HSE|SL
0 ,

LMFI
SE|SL =

ε̃′nWn ε̃n

σ̃2
n[Kn − S̃2

1n/(η̃′nMnη̃n + S̃2n)]1/2
, (5.31)

where S̃1n = tr[(Wn + W ′
n)F̃n], S̃2n = tr[(F̃ ◦

n + F̃ ◦′
n )F̃ ◦

n ], F̃n = WnA−1
n (λ̃n),

and F̃ ◦
n = F̃n − 1

n tr(F̃n)In; and for testing HSL|SE
0 ,

LMFI
SL|SE =

ε̃′nB̃nWnYn

σ̃2
n[S̃3n + η̃′nB̃′

nB̃nη̃n + h̃′nJ̃−1
n h̃n]1/2

, (5.32)

where S̃3n = tr(W 2
n + G̃′

nB̃′
nB̃nG̃n), h̃n = {σ̃−1

n X ′
nB̃′

nB̃nη̃n, 0, tr((G̃′
nB̃n + Wn)G̃n)}′,

J̃n = Jn(θ̃n) given in (B.1) of Yang (2015), B̃n = B̃n(ρ̃n), and G̃n = WnB̃−1
n .
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Validity of the bootstrap methods

The bootstrap methods can be implemented in the same manner. The
bootstrap DGPs that mimic the real world null DGPs are,

Y ∗
n = Xnβ̈n + σ̈ne∗n ,

Y ∗
n = A−1

n (λ̈n)(Xnβ̈n + σ̈ne∗n), and
Y ∗

n = Xnβ̈n + σ̈nB−1
n (ρ̈n)e∗n ,

respectively, for the three hypotheses. For example, to obtain BCVs of
LMFI

SL|SE|H0 , based on the unrestricted estimates/residuals:

(a) Compute the unrestricted QMLEs (β̂n, σ̂
2
n , λ̂n, ρ̂n) based on Model (5.29);

(b) Compute ên = σ̂−1
n Bn(ρ̂n)[An(λ̂n)Yn − Xnβ̂n], and standardize, to give F̂n;

(c) Draw a bootstrap sample e∗n from F̂n; compute Y ∗
n = Xnβ̂n + σ̂nB−1

n (ρ̂n)e∗n ;

(d) Estimate null model Yn = Xnβ + un, un = ρWnun + εn, based on bootstrap
data (Y ∗

n , Xn, Wn); then compute a bootstrap value LMb
SL|SE of LMFI

SL|SE;

(e) Repeat (c)− (d) B times to obtain EDF of {LMb
SL|SE}B

b=1 and its α-quantile
— a bootstrap estimate of the true finite sample α-quantile of LMSL|SE|H0 .
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Monte Carlo results for SLE model

Table 5.7. Rejection Frequencies for LMFI
SE|SL, H0: ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, λ = 0.25, XVal-B
Normal Error Lognormal Error

Method |ρ| L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%
ACR 0.00 0.0415 0.1030 0.0180 0.0080 0.0325 0.0750 0.0145 0.0090

0.25 0.1815 0.3080 0.1370 0.0920 0.1095 0.2360 0.1225 0.0770
0.50 0.4105 0.5720 0.5275 0.4300 0.2965 0.4920 0.5235 0.4285

RSrr 0.00 0.0225 0.0450 0.0520 0.0235 0.0310 0.0490 0.0420 0.0185
0.25 0.3215 0.4275 0.2550 0.1645 0.1110 0.1780 0.2510 0.1540
0.50 0.3215 0.4275 0.6765 0.5745 0.3050 0.4175 0.6980 0.5855

RSur 0.00 0.0225 0.0425 0.0515 0.0230 0.0255 0.0470 0.0415 0.0170
0.25 0.1155 0.1880 0.2590 0.1680 0.1010 0.1745 0.2505 0.1385
0.50 0.3140 0.4250 0.6815 0.5815 0.2910 0.4115 0.7010 0.5640

RSru 0.00 0.0245 0.0470 0.0500 0.0225 0.0325 0.0525 0.0405 0.0180
0.25 0.3295 0.4260 0.2505 0.1650 0.1160 0.1815 0.2555 0.1520
0.50 0.3140 0.4250 0.6690 0.5605 0.3120 0.4300 0.6965 0.5855

RSuu 0.00 0.0230 0.0440 0.0530 0.0240 0.0290 0.0465 0.0400 0.0175
0.25 0.1195 0.1890 0.2585 0.1715 0.1005 0.1725 0.2495 0.1405
0.50 0.3140 0.4250 0.6820 0.5840 0.2920 0.4170 0.7025 0.5710

L = Left tail (ρ = −0.25,−0.5, in the rejection frequencies), R = Right tail (ρ = 0.25, 0.5);
MC: Monte Carlo critical values based on M = 30, 000.
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Table 5.8. Bootstrap Critical Values for LMI
SE|SL, H0: ρ = 0

Group Interaction with g = n0.5, σ = 1, n = 100, λ = 0.25, XVal-B
Normal Error Lognormal Error

Method ρ L2.5% L5% U5% U2.5% L2.5% L5% U5% U2.5%
Bootstrap Critical Values

RSrr -0.50 -2.1615 -1.9302 1.1107 1.4812 -1.9531 -1.7562 1.0984 1.5787
-0.25 -2.1735 -1.9390 1.1115 1.4823 -1.9577 -1.7561 1.0847 1.5536
0.00 -2.1857 -1.9459 1.1178 1.4897 -1.9903 -1.7667 1.0758 1.5207
0.25 -2.2003 -1.9557 1.1326 1.4991 -2.0973 -1.7993 1.0647 1.4808
0.50 -2.2453 -1.9832 1.1639 1.5186 -2.3318 -1.8836 1.0706 1.4511

RSur -0.50 -2.1766 -1.9397 1.1182 1.4870 -2.0037 -1.7737 1.0731 1.5107
-0.25 -2.1856 -1.9463 1.1174 1.4863 -2.0271 -1.7780 1.0706 1.5140
0.00 -2.1912 -1.9489 1.1212 1.4916 -2.0460 -1.7848 1.0741 1.5158
0.25 -2.1881 -1.9474 1.1236 1.4931 -2.0702 -1.7895 1.0752 1.5193
0.50 -2.1914 -1.9508 1.1256 1.4921 -2.0858 -1.7998 1.0786 1.5218

RSru -0.50 -2.1485 -1.9194 1.1051 1.4742 -1.9382 -1.7440 1.0948 1.5791
-0.25 -2.1633 -1.9297 1.1059 1.4727 -1.9514 -1.7511 1.0795 1.5523
0.00 -2.1816 -1.9425 1.1140 1.4866 -1.9825 -1.7638 1.0727 1.5146
0.25 -2.2076 -1.9619 1.1365 1.5033 -2.0891 -1.8010 1.0653 1.4805
0.50 -2.2990 -2.0294 1.1910 1.5552 -2.3591 -1.9098 1.0844 1.4731

RSuu -0.50 -2.1756 -1.9394 1.1190 1.4897 -1.9881 -1.7672 1.0728 1.5149
-0.25 -2.1850 -1.9457 1.1173 1.4841 -2.0160 -1.7759 1.0696 1.5167
0.00 -2.1913 -1.9499 1.1204 1.4922 -2.0265 -1.7810 1.0733 1.5110
0.25 -2.1887 -1.9476 1.1244 1.4928 -2.0675 -1.7890 1.0740 1.5138
0.50 -2.1928 -1.9509 1.1271 1.4915 -2.0794 -1.7905 1.0732 1.5178

MC 0.00 -2.1641 -1.9271 1.1382 1.4957 -2.1120 -1.8134 1.0815 1.4698

L = Left tail (ρ = −0.25,−0.5, in the rejection frequencies), R = Right tail (ρ = 0.25, 0.5);
MC: Monte Carlo critical values based on M = 30, 000.
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5.4. Empirical Applications

Z. L. Yang, SMU ECON747, Term I 2024-25 68 / 69



References

Z. L. Yang, SMU ECON747, Term I 2024-25 69 / 69


