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4.1. Introduction

Many econometric models share the following common features:

(i) there are few nonlinear parameters that are the main source of bias in
model estimation and main cause of difficulty in bias correction,

(ii) there are many other parameters in the model (linear or scale), but
their constrained estimates, given the nonlinear parameters, are
either unbiased or can be easily bias-corrected,

(iii) and these constrained estimates possess analytical expressions,
rendering the concentrated estimating function (CEF) of nonlinear
parameters an analytical form.

These include the spatial linear regression models covered in this lecture,

the spatial panel models with fixed effects,

the dynamic regression models,

the dynamic (spatial) panel model with fixed effects,

the Box-Cox regression, Weibull duration model, etc.
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The above discussions suggest that for bias and variance corrections, one
should focus on CEF, for dimension reduction and (more importantly) for
capturing the additional variations from the estimation of linear and scale
parameters, thus making the bias and variance corrections more effective.

Yang (2015a) proposed a general method of bias and variance
corrections, based on stochastic expansions and bootstrap, with
the former providing tractable approximations to the bias terms and
the latter making the ‘bias corrections’ practically implementable.

The method gives a satisfactory treatment on a long-researched bias
problem arising from the estimation of nonlinear parameters (Kiviet,
1995; Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Bun and
Carree, 2005; Bao and Ullah, 2007a,b; Bao, 2013).

The method also addresses another important issue: the high-order
correction on the variance of a bias-corrected estimator.
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In this lecture, we
1 introduce the general method for bias and variance corrections on

nonlinear estimators, and a bootstrap method for practical
implementation of bias and variance corrections;

2 demonstrate the applications of these methods by presenting detailed
results for the spatial lag (SL) dependence model, giving,

the 2nd- and 3rd-order bias-corrected QMLEs,
refined inferences for covariates effect,
refined inferences for spatial effects,
and Monte Carlo results for their finite sample performance;

3 and outline the results for the closely related spatial models, the
spatial error (SE) dependence model, the spatial linear regression
(SLR) model with both SL and SE (SLE).

The methods presented apply to all econometric models satisfying the
conditions, including the spatial models introduced in this course.
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4.2. A General Method for Bias and Variance Corrections

Consider a general class of
√

n-consistent estimators identified by the
moment condition or joint estimating equation (JEE): ψn(θ) = 0, i.e.,

θ̂n = arg{ψn(θ) = 0},

where ψn(θ) ≡ ψn(Zn, θ) is a p × 1 vector-valued function of the
observable data Zn = {Zi}n

i=1 (iid or non-iid) and a parameter vector θ,
of the same dimension as θ, and normalized to have order Op(n−1/2).

In studying the finite sample properties of θ̂n, Bao and Ullah (2007a),
extending Rilstone et al. (1996), developed:

a 3rd-order stochastic expansion, a 2nd-order bias, and a 3rd-order MSE
(mean squared error) for θ̂n, assuming

Eψn(θ0) = 0, here θ0 denotes the true value of the parameter vector θ.

They adopted an analytical approach for estimating bias and MSE, which
involves high-dimension matrices (up to p × p3) and high-order moments (up
to 10th-order) of errors, and thus is limited in the scope of applications.

Z. L. Yang, SMU ECON747, Term I 2024-25 5 / 52



Yang (2015a, JOE) argued:

the condition, Eψn(θ0) = 0, is neither necessary nor true in general.

It is required for achieving asymptotic efficiency but not for achieving
consistency (see, e.g., Amemiya, 1985; White, 1994);

thus, the condition, Eψn(θ0) = 0, needs to be relaxed, in particular,
under a constrained estimation framework;

the vector of parameters θ may contain a set of linear and scale
parameters, say α, and a few nonlinear parameters, say δ;

given δ0, the constrained estimator α̃n(δ0) of α0 possesses an explicit
expression, which may be unbiased or easily bias corrected,

e.g., for β̃n(λ0) and σ̃2
n(λ0) in the SL model considered in Lecture 2:

E[β̃n(λ0)] = β0 and E[ n
n−k σ̃

2
n(λ0)] = σ2

0 .

To fix ideas, partition ψn(θ) according to θ = (α′, δ′)′, i.e.,

ψn(θ) = {ψ′
nα(α, δ), ψnδ(α, δ)}′.
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Then, the estimator δ̂n of δ would typically be

δ̂n = arg{ψ̃n(δ) = 0}, (4.1)

where ψ̃n(δ) ≡ ψnδ(α̃n(δ), δ) is the CEF of δ, α̃n(δ) is the estimator of α at
a given δ, and ψ̃n(δ) = 0 is the concentrated estimating equation (CEE).

Note: E[ψnδ(α̃n(δ0), δ0)] 6= 0 even if E[ψnδ(α0, δ0)] = 0, implying that δ̂n is
biased even if α̃n(δ0) is unbiased!

Therefore, Yang (2015a) argued that it is more effective to work with the
CEF for bias and variance corrections,

which not only reduces the dimensionality for the bias-correction problem
(multi-dimensional to single-dimensional if δ is a scalar),

but also takes into account the additional variability from the estimation of the
‘nuisance’ parameters α.

Once the nonlinear estimator δ̂n is bias corrected to give δ̂bcn , the bias of the
resulting linear estimator α̂n = α̃n(δ̂

bc
n ) will be greatly reduced.

Stochastic expansion on δ̂n and bootstrap provide a feasible tool!
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4.2.1. Stochastic expansion

Let Hrn(δ) = ∇r ψ̃n(δ), r = 1,2,3, be the partial derivatives of ψ̃n(δ), carried
out sequentially and elementwise with respect to δ′. Let

ψ̃n ≡ ψ̃n(δ0), Hrn ≡ Hrn(δ0), r = 1,2,3,
H◦

rn = Hrn − E(Hrn), Ωn = −E(H1n)
−1.

Let ∆ be the parameter space of δ, and δ0 be the true value of δ.

Yang (2015a, p.180, p.192) presents a set of sufficient conditions:

Assumption A: ∆ is compact with δ0 being an interior point. E(ψ̃n) = O(n−1),
and δ̂n, as the solution of ψ̃n(δ) = 0, is a

√
n-consistent estimator of δ0.

Assumption B: ψ̃n(δ) is differentiable up to r th order for δ in a neighborhood of
δ0, E(Hrn) = O(1), and H◦

rn = Op(n−
1
2 ), r = 1, 2, 3.

Assumption C: E(H1n)
−1 = O(1), and H−1

1n = Op(1).

Assumption D: ‖Hrn(δ)− Hrn(δ0)‖ ≤ ‖δ − δ0‖Un for δ in a neighborhood of

δ0, r = 1, 2, 3, and E(|Un|) < C <∞ for some constant C.
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Theorem 4.1. Under Assumptions A-D, the estimator δ̂n defined in (4.1)
possesses the following third-order stochastic expansion:

δ̂n − δ0 = a−1/2 + a−1 + a−3/2 + Op(n−2), (4.2)

where, a−s/2 represents terms of order Op(n−s/2), for s = 1,2,3, with

a−1/2 = Ωnψ̃n, (4.3)

a−1 = ΩnH◦
1na−1/2 + 1

2ΩnE(H2n)(a−1/2 ⊗ a−1/2), (4.4)

a−3/2 = ΩnH◦
1na−1 + 1

2ΩnH◦
2n(a−1/2 ⊗ a−1/2)

+ 1
2ΩnE(H2n)(a−1/2 ⊗ a−1 + a−1 ⊗ a−1/2)

+ 1
6ΩnE(H3n)(a−1/2 ⊗ a−1/2 ⊗ a−1/2), (4.5)

and ⊗ denotes the Kronecker product. (see Yang, 2015a, Sec. 4).

This CEE-based expansion takes the same form as that given by Bao and
Ullah (2007a) based on JEE, but it leads a different expansion for the bias.
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Taking expectations on both sides of (4.2) gives an expansion for Bias(δ̂n).

Corollary 4.1. Under Assumptions A-D, assuming further that “a quantity
bounded in probability has a finite expectation”, we have a third-order
expansion for the bias of δ̂n, Bias(δ̂n) = δ̂n − δ0:

Bias(δ̂n) = b−1 + b−3/2 + O(n−2), (4.6)

where b−1 = E(a−1/2 + a−1) = O(n−1), and b−3/2 = E(a−3/2) = O(n−3/2).

The more detailed expressions for the bias terms are:

b−1 = 2ΩnE(ψ̃n) + ΩnE(H1nΩnψ̃n) + 1
2ΩnE(H2n)E[(Ωnψ̃n)⊗ (Ωnψ̃n)], (4.7)

b−3/2 = ΩnE(H◦
1na−1) + 1

2ΩnE[H◦
2n(a−1/2 ⊗ a−1/2)]

+ 1
2ΩnE(H2n)E(a−1/2 ⊗ a−1 + a−1 ⊗ a−1/2)

+ 1
6ΩnE(H3n)E(a−1/2 ⊗ a−1/2 ⊗ a−1/2). (4.8)
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Thus, b−1 alone gives a second-order expansion for Bias(δ̂n), and

b−1 + b−3/2 gives a third-order expansion for Bias(δ̂n).

This give options of performing a second-order bias correction on δ̂n:

δ̂bc2
n = δ̂n − b̂−1, (4.9)

or a third-order bias correction on δ̂n:

δ̂bc3
n = δ̂n − b̂−1 − b̂−3/2, (4.10)

giving a 2nd-order and a 3rd-order bias-corrected estimators.

b̂−1 and b̂−3/2 are the estimates of b−1 and b−3/2, respectively.

Methods for obtaining b̂−1 and b̂−3/2 remain.

Note that E(a−1/2) = ΩnE(ψ̃n) = O(n−1), which is a term ‘missed’ by the
stochastic expansions based on joint estimating functions, and is shown to
play a pivotal role in bias and variance corrections.
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To understand (4.2), suppose δ is a scalar. Assumptions A-D allow Taylor
expansions of ψ̃n(δ̂n) = 0 around δ0 be carried out up to 3rd-order:

0 = ψ̃n + H1n(δ̂n − δ0) + Op(n−1),

0 = ψ̃n + H1n(δ̂n − δ0) + 1
2 H2n(δ̂n − δ0)

2 + Op(n− 3
2 ),

0 = ψ̃n + H1n(δ̂n − δ0) + 1
2 H2n(δ̂n − δ0)

2 + 1
6 H3n(δ̂n − δ0)

3 + Op(n−2),

which give, as −H−1
1n = Op(1) from Assumption C,

δ̂n − δ0 = −H−1
1n ψ̃n + Op(n−1),

δ̂n − δ0 = −H−1
1n ψ̃n − 1

2 H−1
1n H2n(δ̂n − δ0)

2 + Op(n−
3
2 ),

δ̂n − δ0 = −H−1
1n ψ̃n − 1

2 H−1
1n H2n(δ̂n − δ0)

2 − 1
6 H−1

1n H3n(δ̂n − δ0)
3 + Op(n−2).

Under Assumptions B and C, we have Ωn = −E(H1n)
−1 = O(1), H−1

1n = Op(1),
and H◦

1n = H1n − E(H1n) = Op(n−1/2), which lead to:

−H−1
1n = (Ω−1

n − H◦
1n)

−1 = (1− ΩnH◦
1n)

−1Ωn = Ωn + Ω2
nH◦

1n + Ω3
nH◦2

1n + Op(n−
3
2 ),

or −H−1
1n = Ωn + Ω2

nH◦
1n + Op(n−1), or −H−1

1n = Ωn + Op(n−1/2).
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Based on the above results, recursive substitutions of the r th-order form of
−H−1

1n into the r th-order Taylor expansion of δ̂n − δ0, r = 1,2,3, lead to a
3rd-order stochastic expansion for δ̂n, with a−1/2 = Ωnψ̃n,

a−1 = ΩnH◦
1na−1/2 + 1

2ΩnE(H2n)(a2
−1/2), (4.11)

a−3/2 = ΩnH◦
1na−1 + 1

2ΩnH◦
2n(a

2
−1/2)

+ ΩnE(H2n)(a−1/2a−1) + 1
6ΩnE(H3n)(a3

−1/2). (4.12)

(See Yang, 2015a, Theorem 2.1).

Under a scalar δ, the bias terms b−1 and b−3/2 simplify to:

b−1 = 2ΩnE(ψ̃n) + Ω2
nE(H1nψ̃n) + 1

2Ω3
nE(H2n)E(ψ̃2

n), (4.13)

b−3/2 = ΩnE(ψ̃n) + 2Ω2
nE(H1nψ̃n) + Ω3

nE(H2n)E(ψ̃2
n) + Ω3

nE(H2
1nψ̃n)

+ 1
2Ω3

nE(H2nψ̃
2
n) + 3

2Ω4
nE(H2n)E(H1nψ̃

2
n)

+ 1
2Ω5

nE(H2n)
2E(ψ̃3

n) + 1
6Ω4

nE(H3n)E(ψ̃3
n). (4.14)
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4.2.2. Bootstrap method for feasible high-order bias correction

How to estimate b−1 and b−3/2?

Finding their analytical expressions and plugging-in the parameter
estimates as suggested by Bao and Ullah (2007a)?

It is difficult (if not impossible) to do so, due to the complication of the
terms, e.g., H2nψ̃

2
n , H1nψ̃

2
n and ψ̃3

n , of which expectations are desired,

in particular when errors are nonnormal and heteroskedastic!

In case of a vector δ, the analytical approach runs into a greater
difficulty as the desired expectations are of more complicated forms,
e.g., E(a−1/2 ⊗ a−1/2 ⊗ a−1/2) = E(Ωnψ̃n ⊗ Ωnψ̃n ⊗ Ωnψ̃n).

Thus, the bootstrap is perhaps the ONLY feasible way!

In what follows, we introduce a simple and reliable bootstrap method for
bootstrapping the various expected quantities appeared in b−1 and b−3/2.
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Suppose that the model under consideration takes the form:

g(Zn, θ0) = en,

Zn represents the ‘data’ on n cross-sectional units,

θ the vector model parameters, with θ0 being its true value,

the elements {en,i} of en are iid with mean 0 and variance 1.

Suppose that the key quantities ψ̃n and Hrn can be expressed as
ψ̃n ≡ ψ̃n(en, θ0) and Hrn ≡ Hrn(en, θ0), r = 1,2,3.

Let ên = g(Zn, θ̂n) be the vector of estimated residuals based on the
original data, and

ên −mean(ên)1n,

be the ‘centered’ estimated residuals denoted by ên again to save notation.
Let F̂n be the empirical distribution function (EDF) of ên, i.e.,

F̂n(y) =
1
n

n∑
i=1

{ên,i ≤ y}.
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The case of a scalar δ

When δ is a scalar parameter, we see from (4.14) that the quantities
needed to be estimated in bias terms take the form:

E(ψ̃i
nH j

rn) = E[ψ̃i
n(en, θ0)H

j
rn(en, θ0)], i , j = 0,1,2, . . . , r = 1,2,3.

Hence, the corresponding bootstrap estimates of these quantities are:

Ê(ψ̃i
nH j

rn) = E∗[ψ̃i
n(ê

∗
n , θ̂n)H

j
rn(ê∗

n , θ̂n)], (4.15)

for i , j = 0,1,2, . . . , r = 1,2,3, where

E∗ denotes the expectation with respect to F̂n,

ê∗
n is a vector of n random draws from F̂n,

θ̂n is the original estimate of θ0, now a constant with respect to F̂n.

Finding the ‘exact’ bootstrap expectations (4.15) are still practically
infeasible as the number of different bootstrap samples can be huge.

However, with a ‘small’ number of bootstrap samples, one can obtain
accurate approximations to these bootstrap expectations.
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Feasible versions of bootstrap estimates can be obtained as follows:

Bootstrap Algorithm 1 (BA-1):

1. Compute the parameter estimate θ̂n defined by JEF, the estimated
residuals ên = g(Zn, θ̂n), and the EDF F̂n of the centered residuals ên;

2. Draw a random sample of size n from F̂n, and denote the resampled
vector by ê∗

n,b,

3. Compute ψ̃n(ê∗
n,b, θ̂n) and Hrn(ê∗

n,b, θ̂n), r = 1,2,3;

4. Repeat steps 2.-3. for B times, to give approximate bootstrap
estimates as,

E∗[ψ̃i
n(ê∗

n , θ̂n)H
j
rn(ê∗

n , θ̂n)] =̇ 1
B

∑B
b=1 ψ̃

i
n(ê∗

n,b, θ̂n)H
j
rn(ê∗

n,b, θ̂n),

for i , j = 0,1,2, . . . , r = 1,2,3.

The approximations in the last step can be made arbitrarily accurate by
choosing an arbitrarily large B. In many practical applications, however,
B = 999 suffices. Other quantities are handled in a similar manner.
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Validity of the Bootstrap Method:

Yang (2015a) shows that under certain conditions:

Bias(δbc2
n ) = Bias(δ̂n)− E(b̂−1)

= −Bias(b̂−1) + O(n−3/2) = O(n−3/2), and

Bias(δbc3
n ) = Bias(δ̂n)− E(b̂−1)− E(b̂−3/2)

= −Bias(b̂−1)− Bias(b̂−3/2) + O(n−2) = O(n−2).

Additional variations from the bootstrap approximations do not
change the order of the bias.

The above bootstrap procedures for bias corrections are valid in the
sense that it gives the desired order of bias reduction.

See Yang (2015a) for detailed proofs.
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The case of a vector δ

When δ is a vector, the non-stochastic and stochastic quantities are mixed
in b−1 and b−3/2. Yang (2015a) proposed that instead of going through the
algebraic procedure to separate the two types of quantities so that the
expectations of various quantities can be bootstrapped in one round, the
above bootstrap procedure can be revised as follows.

Bootstrap Algorithm 2 (BA-2):

1. Draw B independent random samples, {ê∗
n,b, b = 1, . . . ,B}, from F̂n,

2. Calculate the bootstrap estimates of E(H1n) and E(H2n),

Ê(H1n) = 1
B

∑n
b=1 H1n(ê∗

n,b, θ̂n) and Ê(H2n) = 1
B

∑n
b=1 H2n(ê∗

n,b, θ̂n)

3. Based on the bootstrap estimates Ω̂n = −Ê−1(H1n) and Ê(H2n),
calculate the bootstrap estimate of, e.g., E[H◦

2n(a−1/2 ⊗ a−1/2)], as

1
B

∑n
b=1

{
[H2n(ê∗

n,b, θ̂n)− Ê(H2n)][Ω̂nψ̃n(ê∗
n,b, θ̂n)⊗ Ω̂nψ̃n(ê∗

n,b, θ̂n)]
}
.

The other quantities can be handled in a similar manner.
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This is essentially a two-round bootstrap procedure as it runs the
iterations b = 1,2, . . . ,B two times, based on the same sequence of
bootstrap samples.

Computationally it is slightly more demanding, but algebraically it is
much simpler and thus easier to code.

As noted by Yang (2015a), these procedures are time-efficient as the
reestimation of the parameters θ in the bootstrap process is avoided.

This is in stark contrast to the traditional bootstrap method for bias
correction in which every bootstrap iteration has to go through a
numerical optimization in order to obtain bootstrap estimates of θ.

In summary, the stochastic expansions coupled with bootstrap provide a
general and feasible methodology for bias corrections on nonlinear
estimators. Once this is done, the linear and scale estimators will
‘automatically’ become nearly unbiased.
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4.2.3. Bootstrap method for feasible high-order variance correction

Under a similar set of conditions as those for the bias expansion, we have
a third-order expansion for the variance of δ̂n:

Var(δ̂n) = v−1 + v−3/2 + v−2 + O(n− 5
2 ), (4.16)

v−1 = Var(a−1/2), the 1st-order (asymptotic) variance,

v−3/2 = 2Cov(a−1/2, a−1), the 2nd-order variance,

v−2 = 2Cov(a−1/2, a−3/2) + Var(a−1 + a−3/2), 3rd-order variance,

which are of order O(n−1), O(n−3/2), O(n−2), respectively.

To estimate the second-order variance, the same bootstrap procedure can
be followed to give valid bootstrap estimates v̂−1 and v̂−3/2 of v−1 + v−3/2.

For third-order variance estimate, v̂−1 needs to be further corrected in
order to eliminate the third-order bias. See Yang (2015a, p.182) for details.
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4.2.4. Inference following bias and variance corrections

An important purpose of bias and variance corrections is to improve
the asymptotic inference methods presented in the earlier Lectures.

There are mainly two types of inferences that could benefit from the
bias-corrections on the nonlinear estimators: one is the inference for
the nonlinear parameters, and the other for the linear parameters.

In the framework of linear regressions with spatial dependence, the
spatial parameters are the nonlinear parameters, and the regression
coefficients are the linear parameters.

Improved tests for spatial effects have been considered by Baltagi
and Yang (2013a,b), Robinson and Rossi (2014a,b), Yang (2010), and
Yang (2015b).

However, the issue of improved inferences for the regression
coefficients has not been considered until Liu and Yang (2015a,b).

Improved Wald-type of tests have not been fully explored.
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To fix ideas, we focus on the 2nd-order bias-corrected δ̂n, the δ̂bc2
n .

Let α̂n ≡ α̃n(δ̂n), α̂bc
n ≡ α̃n(δ̂

bc2
n ), θ̂n = (α̂′n, δ̂

′
n)

′ and θ̂bc
n = (α̂bc′

n , δ̂bc2′
n )′.

Yang (2015a) argued that estimation of the nonlinear parameters is
the main source of bias; once the nonlinear estimators are bias
corrected the resulting linear estimators would be nearly unbiased.

Let Vn(θ0) be the asymptotic variance-covariance (VC) matrix of θ̂n,
and Vn,αα(θ0) be the α-α block and Vn,δδ(θ0) the δ-δ block of Vn(θ0).

Then, an asymptotic t-statistic for inference for c′0α0, a linear contrast of
α0, has the familiar form:

tn(α0) = (c′0α̂n − c′0α0)/

√
c′0Vn,αα(θ̂n)c0. (4.17)

Simply replacing θ̂n by θ̂bc
n , a possibly improved t-statistic results:

tbc
n (α0) = (c′0α̂

bc
n − c′0α0)/

√
c′0Vn,αα(θ̂bc

n )c0. (4.18)
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The statistic tbc
n is not fully 2nd-order corrected as it uses the

asymptotic variance of α̂n evaluated at θ̂bc
n .

Furthermore, the estimator α̂bc
n is also not fully 2nd-order

bias-corrected, although it can easily be made so.

Let α̂bc2
n be the 2nd-order bias-corrected α̂n or α̂bc

n .

Let V bc2
n,αα(θ0) be the 2nd-order variance of α̂bc2

n , and V̂ bc2
n,αα be its

consistent estimate.

A fully 2nd-order corrected t-statistic, using a 2nd-order bias-corrected
estimator and its 2nd-order variance estimate, is thus:

tbc2
n (α0) = (c′0α̂

bc2
n − c′0α0)/

√
c′0V̂ bc2

n,ααc0. (4.19)

Typically, V bc2
n αα(θ0) does not have an explicit expression, but the bootstrap

methods described above can be used to give a consistent estimate of it.
See the subsequent sections for details.
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Inferences for nonlinear parameter δ.

For inferences concerning δ, the bias-corrected estimators (2nd- and
3rd-order) and their variance estimates (2nd- and 3rd-order) are directly
obtained in the bootstrap bias and variance corrections process.

Potentially improved Wald statistics for inferences for δ takes the form:

tbcj
n (δ0) = (δ̂bcj

n − δ0)
′(V̂ bcj

n,δδ)
−1(δ̂bcj

n − δ0), j = 2,3, (4.20)

where V̂ bcj
n,δδ is the estimate of the j th-order variance of δ̂bcj

n , and δ̂bcj
n is the

j th-order bias-corrected estimator of δ.
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4.3. Bias Correction and Refined Inference for SL Model

Referring to Section 2.3, Lecture 2, for the QML estimation of SL model
based on the concentrated loglikelihood function `c

n(δ), and letting

ψ̃n(λ) = 1
n

∂
∂λ`

c
n(λ),

the ψ̃n(λ) and its derivatives Hsn(λ), s = 1,2,3, required for up to
3rd-order bias correction on the QMLE λ̂n are,

ψ̃n(λ) =− T0n(λ) + R1n(λ), (4.21)

H1n(λ) =− T1n(λ)− R2n(λ) + 2R2
1n(λ), (4.22)

H2n(λ) =− 2T2n(λ)− 6R1n(λ)R2n(λ) + 8R3
1n(λ), (4.23)

H3n(λ) =− 6T3n(λ) + 6R2
2n(λ)− 48R2

1n(λ)R2n(λ) + 48R4
1n(λ), (4.24)

where Trn(λ) = n−1tr(Gr+1
n (λ)), r = 0,1,2,3, Gn(λ) = WnA−1

n (λ),

R1n(λ) =
Y ′

nA′
n(λ)MnWnYn

Y ′
nA′

n(λ)MnAn(λ)Yn
and R2n(λ) =

Y ′
nW ′

nMnWnYn

Y ′
nA′

n(λ)MnAn(λ)Yn
. (4.25)
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Bias and variance corrections for SL model.

Two key ratios, R1n and R2n, can be written at θ0 as:

R1n(en, θ0) =
e′

nMnGnen + e′
nMnηn

e′
nMnen

,

R2n(en, θ0) =
e′

nG′
nMnGnen + 2e′

nG′
nMnηn + η′nMnηn

e′
nMnen

,

where en = σ−1
0 εn, and other quantities are defined in Sec. 2.3, Lec. 2.

Hence, ψ̃n = ψ̃n(en, θ0) and Hrn = Hrn(en, θ0), r = 1,2,3.

So, the bootstrap algorithm BA-1 can be used to obtain bootstrap
estimates b̂−1 and b̂−3/2 of b−1 and b−3/2, to give 2nd- or 3rd-order
bias-corrected λ̂n:

λ̂bc2
n = λ̂n − b̂−1 and λ̂bc3

n = λ̂n − b̂−1 − b̂−3/2.

In a similar manner, the bootstrap estimates v̂−1 and v̂−3/2 can be
obtained to give 2nd- and 3rd-order corrected estimates of the
variance of λ̂n. See Yang (2015a) for details.
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Some remarks

Although Rjn are simply the ratios of quadratic forms in en, finding its
moments analytically seems extremely difficult, in particular when en

is allowed to be nonnormal.

This is made more difficult when more complicated models, such as
the SE and SLE models to be considered next, and the FE-SPD
(fixed effects spatial panel data) model to be studied in Lecture 7.

Even for merely a second-order bias correction, it requires E(H1nψ̃n),
and hence E[(R1n)

3], involving up to 6 different moments of εn,i if a
general error distribution is allowed. Besides, estimation of
higher-order moments may be numerically unstable.

In stark contrast, estimation of E[(R1n)
3] using the suggested

bootstrap method (BA-1) is extremely simple. The method is also very
general as it does not require the knowledge of true error distribution.
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Some Monte Carlo results for λ̂n

Table 4.1. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model
λ n λ̂n λ̂bc2

n λ̂bc3
n

Queen Contiguity, Normal Errors

.50 50 .411 [.195](.174) .492 [.175](.175) .497 [.175](.175)
100 .459 [.123](.116) .498 [.117](.117) .500 [.117](.117)
200 .480 [.078](.076) .499 [.075](.075) .499 [.075](.075)
500 .493 [.049](.048) .501 [.048](.048) .501 [.048](.048)

.25 50 .163 [.222](.204) .242 [.209](.209) .246 [.210](.210)
100 .212 [.146](.140) .248 [.142](.142) .250 [.143](.143)
200 .231 [.094](.092) .250 [.093](.093) .250 [.093](.093)
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060)

.00 50 -.078 [.229](.216) -.006 [.224](.224) -.003 [.226](.226)
100 -.034 [.157](.153) -.002 [.156](.156) -.001 [.157](.157)
200 -.018 [.106](.104) -.000 [.105](.105) .000 [.105](.105)
500 -.008 [.068](.067) -.000 [.068](.068) -.000 [.068](.068)

-.25 50 -.317 [.233](.223) -.255 [.236](.236) -.254 [.237](.237)
100 -.279 [.164](.161) -.253 [.166](.166) -.253 [.166](.166)
200 -.266 [.112](.111) -.252 [.112](.112) -.251 [.112](.112)
500 -.256 [.073](.072) -.250 [.073](.073) -.250 [.073](.073)
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Table 4.2. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model
λ n λ̂n λ̂bc2

n λ̂bc3
n

Queen Contiguity, Normal Mixture Errors

.50 50 .420 [.182](.164) .494 [.165](.165) .498 [.165](.165)
100 .462 [.120](.114) .499 [.114](.114) .500 [.114](.114)
200 .482 [.076](.074) .500 [.074](.074) .500 [.074](.074)
500 .492 [.049](.048) .500 [.048](.048) .500 [.048](.048)

.25 50 .169 [.207](.190) .241 [.195](.195) .244 [.195](.195)
100 .213 [.140](.135) .248 [.136](.136) .249 [.137](.137)
200 .230 [.092](.090) .249 [.090](.090) .249 [.090](.090)
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060)

.00 50 -.070 [.217](.206) -.004 [.213](.213) -.002 [.214](.214)
100 -.032 [.150](.147) -.002 [.150](.150) -.001 [.150](.150)
200 -.018 [.104](.103) -.001 [.103](.103) -.001 [.103](.103)
500 -.008 [.068](.067) -.001 [.067](.067) -.001 [.067](.067)

-.25 50 -.314 [.223](.213) -.258 [.224](.224) -.257 [.225](.225)
100 -.275 [.155](.153) -.251 [.157](.157) -.250 [.157](.157)
200 -.263 [.111](.110) -.249 [.112](.112) -.249 [.112](.112)
500 -.257 [.072](.072) -.251 [.072](.072) -.251 [.072](.072)
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Table 4.3. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model
λ n λ̂n λ̂bc2

n λ̂bc3
n

Queen Contiguity, Lognormal Errors

.50 50 .426 [.163](.146) .491 [.146](.146) .493 [.146](.146)
100 .465 [.110](.105) .498 [.105](.105) .498 [.105](.105)
200 .482 [.072](.069) .499 [.069](.069) .499 [.069](.069)
500 .491 [.047](.046) .499 [.046](.046) .499 [.046](.046)

.25 50 .179 [.185](.171) .241 [.174](.174) .244 [.174](.174)
100 .216 [.128](.124) .247 [.126](.125) .248 [.126](.125)
200 .232 [.087](.085) .249 [.085](.085) .249 [.085](.085)
500 .242 [.058](.057) .249 [.057](.057) .249 [.057](.057)

.00 50 -.067 [.198](.186) -.011 [.192](.191) -.008 [.192](.192)
100 -.029 [.139](.136) -.003 [.138](.138) -.002 [.138](.138)
200 -.017 [.099](.097) -.002 [.098](.098) -.001 [.098](.098)
500 -.007 [.065](.064) -.000 [.065](.065) .000 [.065](.065)

-.25 50 -.307 [.199](.191) -.258 [.198](.198) -.256 [.199](.199)
100 -.272 [.142](.140) -.252 [.144](.144) -.251 [.144](.144)
200 -.264 [.105](.104) -.251 [.105](.105) -.250 [.105](.105)
500 -.256 [.070](.070) -.250 [.070](.070) -.250 [.070](.070)
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Refined inference for covariate effect (CE) in SL model.

First, simply replacing λ̂n by λ̂bc2
n in (3.42), we obtain a Wald statistic for β0:

tbc
CE(β0) =

c′0β̂
bc
n − c′0β0√

c′0V̂ bc
SL,ββc0

, (4.26)

which is expected to have a better finite sample performance,

V̂ bc
SL,ββ is VSL,ββ in (3.43) but evaluated at λ̂bc2

n , β̂bc
n , σ̂2,bc

n , γ̂bc
n , and κ̂bc

n ,

where β̂bc
n = β̃n(λ̂

bc2
n ), σ̂2,bc

n = σ̃2
n(λ̂bc2

n ), and

γ̂bc
n and κ̂bc

n are the estimates of γ and κ, based on residuals at λ̂bc2
n .

Obviously, this statistic is not fully second-order bias-corrected.

However, Monte Carlo results presented in Liu and Yang (2015b)
show that it offers a huge improvement over tCE given in.

This confirms the point made at in Lecture 2.

However, results also show that when n is not so large, there is still
room for further improvement on tbc

CE(β0).
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To further improve tbc
CE(β0), note that

β̂n − β0

= β̃n − β0 − (λ̂n − λ0)(X ′
nXn)

−1X ′
nGnXnβ0 − (λ̂n − λ0)(X ′

nXn)
−1X ′

nGnεn

= (X ′
nXn)

−1X ′
n
ˆ
εn − (a−1/2 + a−1)GnXnβ0 − a−1/2Gnεn

˜
+ Op(n−3/2).

(4.27)

This leads immediately to a 2nd-order bias-corrected estimator of β,

β̂bc2
n = β̂n − (X ′

nXn)
−1X ′

n
(
â−1/2 + â−1

)
Ĝbc2

n Xnβ̂n,

where â−1/2 and â−1 are the bootstrap estimates of a−1/2 and
a−1obtained in the process of obtaining λ̂bc2

n , and Ĝbc2
n = Gn(λ̂

bc2
n ).

Similar to (4.27), σ̂2
n can be expressed in (λ̂n − λ0), and hence in a−1/2

and a−1, leading to a 2nd-order bias-corrected estimator σ̂bc2
n .

Now, a second-order expansion for Var(β̂n) takes the form,

Var(β̂n) = (X ′
nXn)

−1Var(gn)(X ′
nXn)

−1 + O(n−2),

where gn ≡ gn(en, θ0) = X ′
n
[
εn − (a−1/2 + a−1)GnXnβ0 − a−1/2Gnεn

]
.
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An explicit expression of Var(gn) is difficult to obtain, but is not needed as
it can be easily estimated by a two-stage bootstrap procedure:

Stage 1: Compute θ̂n and the QML residuals ên = σ̂−1
n (ÂnYn − Xnβ̂n). Resample

ên to give λ̂bc2
n , and hence β̂bc2

n and σ̂2,bc2
n , using Algorithm BA-1 given in Sec. 4.2.

Stage 2: Update the QML residuals as êbc2
n = σ̂bc2,−1

n (Âbc2
n Yn − Xnβ̂

bc2
n ) and

compute g∗
n,b ≡ g(êbc2∗

n,b , θ̂
bc2
n ) for b = 1, . . . ,B, where êbc2∗

n,b is the bth bootstrap
sample drawn from the EDF of êbc2

n , and θ̂bc2
n = (β̂bc2′

n , σ̂bc2
n , ρ̂bc2

n )′. The bootstrap
estimate of Var(β̂bc2

n ), unbiased up to O(n−3/2), is thus,

cVar(gn) = 1
B

PB
b=1 g∗

n,bg∗′
n,b −

“
1
B

PB
b=1 g∗

n,b

” “
1
B

PB
b=1 g∗′

n,b

”
.

The bootstrap estimate of Var(β̂n) is thus

V̂ar(β̂bc2
n ) = (X ′

nXn)
−1V̂ar(gn)(X ′

nXn)
−1,

leading to the 2nd-order bias-corrected t-statistic:

tbc2
CE (β0) =

c′0β̂
bc2
n − c′0β0√

c′0V̂ar(β̂bc2
n )c0

. (4.28)
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Some final notes are as follows.

As β̂bc
n and β̂bc2

n do not differ much, and σ̂2,bc
n and σ̂2,bc2

n also do not
differ much, one can simply use β̂bc

n and σ̂2,bc
n in practical applications.

The same remarks as above apply to the other models to be
discussed latter.

See Yang (2015a), Liu and Yang (2015b), and Yang et al. (2016) for
the Monte Carlo results for the SL, SE, SLE, and FE-SPD models.

Improved t-statistic for inference for λ0, denoted by

tbc2
SL (λ0),

can be obtained directly from tSL(λ0) given in (3.43), following the
ideas laid out around (4.20), as the fully corrected λ̂n and its variance
(2nd- and 3rd-order) are available.

It would be interesting to investigate the finite sample properties of
these tests, and compare them with the LM tests.
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4.4. Bias Correction and Refined Inference for SE Model

From the concentrated loglikelihood `c
n(ρ) given in Section 2.2, the CEF for

δ can be expressed in the following form:

ψ̃n(ρ) = 1
n

∂
∂ρ`

c
n(ρ) = −T0n(ρ) + R1n(ρ), (4.29)

The derivatives of ψ̃n(ρ) required for up to third-order bias correction are:

H1n(ρ) = −T1n(ρ) + R2n(ρ) + 2R2
1n(ρ), (4.30)

H2n(ρ) = −2T2n(ρ) + R3n(ρ) + 6R1n(ρ)R2n(ρ) + 8R3
1n(ρ), (4.31)

H3n(ρ) = −6T3n(ρ) + R4n(ρ) + 8R1n(ρ)R3n(ρ) + 6R2
2n(ρ)

+48R2
1n(ρ)R2n(ρ) + 48R4

1n(ρ), (4.32)

where Trn(ρ) = 1
n tr(Gr+1

n (ρ)), r = 0,1,2,3, and

Rjn(ρ) =
Y ′

nA′
n(ρ)Mn(ρ)Djn(ρ)Mn(ρ)An(ρ)Yn

Y ′
nA′

n(ρ)Mn(ρ)An(ρ)Yn
, j = 1,2,3,4, (4.33)

where D1n(ρ) = Gn(ρ), and Djn(ρ), j = 2,3,4, take more complicated
expressions and can be found in Appendix B of Liu and Yang (2015a).
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Bias and variance corrections for SE model

From (36), it is easy to see that at the true parameter ρ0,

Rjn ≡ Rjn(en, ρ0) =
e′

nΛjn(ρ0)en

e′
nMn(ρ0)en

, j = 1,2,3,4, (4.34)

the ratios of quadratic forms in en, where Λjn(ρ0) = Mn(ρ0)Djn(ρ0)Mn(ρ0).

ψ̃n and Hrn are functions of Rjn, j = 1, . . . , 4, as seen from (4.29)-(4.32).

Thus, to estimate bias, we need to estimate the expectations of Rjn, their
powers, cross products, and cross products of powers.

The general bootstrap procedure BA-1 leads to bootstrap estimates of the
bias terms b−1 and b−3/2 and variance terms v−1, v−3/2 and v−2.

Although Rjn is simply the ratio of quadratic forms in en, finding its expectation
seems difficult, in particular under nonnormality of en.

Even for merely a second-order bias correction, it requires E(H1nψ̃n), and
hence E[(R1n)

3], involving up to 6th moment of εn,i .

In stark contrast, estimation of E[(R1n)
3] using the suggested bootstrap

method (BA-1) is extremely simple.
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Refined inference for covariate effect in SE model

First, simply replacing ρ̂n by ρ̂bc2
n in (2.13) or (3.23), the 2nd-order

bias-corrected ρ̂, gives a potentially improved statistic for β0:

tbc
CE(β0) =

c′0β̂
bc
n − c′0β0√

σ̂2,bc
n c′0(X ′

nB̂bc2′
n B̂bc2

n Xn)−1c0

, (4.35)

where β̂bc
n = β̃n(ρ̂

bc2
n ), σ̂2,bc

n = σ̃2
n(ρ̂bc2

n ), and B̂bc2
n = In − ρ̂bc2

n Wn.

Obviously, this statistic is not fully second-order bias-corrected.
However, Monte Carlo results presented in Liu and Yang (2015b)
show that it offers a huge improvement over that in (2.13) or (3.23).

This confirms the point made in Section 2.2.3, Lecture 2.

However, results also show that when n is not so large, there is still
room for further improvement on tbc

CE(β0), which can be obtained in a
similar manner as that for SL model (see also Liu and Yang, 2015b).

Finally, a t-statistic for ρ0, tbc2
SE (ρ0), is given by following (4.20).
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4.5. Bias Correction and Refined Inference for SLE Model

From the concentrated loglikelihood function `c
n(δ) of δ = (λ, ρ)′ given in

Sec. 2.4.1, Lec. 2, the CEE of δ, ψ̃n(δ) = 1
n

∂
∂δ `

c
n(δ), has the form:

ψ̃n(δ) =


−1

n
tr(Fn(λ)) +

Y′
n(δ)Mn(ρ)F̄n(δ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

,

−1
n

tr(Gn(ρ)) +
Y′

n(δ)Mn(ρ)Gn(ρ)Mn(ρ)Yn(δ)

Y′
n(λ)Mn(ρ)Yn(δ)

,

(4.36)

Fn(λ) = W1nA−1
n (λ), Gn(ρ) = W2nB−1

n (ρ), and F̄n(δ) = Bn(ρ)Fn(λ)B−1
n (ρ)

as defined in Sec. 2.4.1, along with Yn(δ) and Mn(ρ).

This is the key expression for deriving the score-based tests for the
spatial effects, and also for performing bias-correction.

Bias correction can be carried out as an application of the general
methods, Stochastic Expansion and Bootstrap, laid out in Sec. 4.2 (or
Yang 2015a) for a vector of nonlinear estimators.
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To derive the higher-order partial derivatives of ψ̃n(δ), Hrn(δ) = ∇r ψ̃n(δ),
r = 1,2,3, define,

Trn(λ) = tr(F r
n(λ)) and Krn(ρ) = tr(Gr

n(ρ)), r = 0,1,2,3.

Also define the following quantities,

R1n(δ) =
Y′

n(δ)Mn(ρ)F̄n(δ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

,

R2n(δ) =
Y′

n(δ)F̄ ′
n(δ)Mn(ρ)F̄n(δ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

,

Srn(δ) =
Y′

n(δ)Mn(ρ)Drn(ρ)Mn(ρ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

, r = 1, 2, 3, 4,

Q†
rn(δ) =

Y′
n(δ)Mn(ρ)Drn(ρ)Mn(ρ)F̄n(δ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

, r = 1, 2, 3,

Q‡
rn(δ) =

Y′
n(δ)F̄ ′

n(δ)Mn(ρ)Drn(ρ)Mn(ρ)F̄n(δ)Yn(δ)

Y′
n(δ)Mn(ρ)Yn(δ)

, r = 1, 2.
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With these quantities, we have

ψ̃n(δ) = (ψ̃1n(δ) = −T0n(λ) + R1n(δ), ψ̃2n(δ) = −K0n(ρ) + S1n(δ))
′.

H1n(δ) =

(
−T1n(λ)− R2n(δ) + 2R2

1n(δ), −2Q†
1n(δ) + 2R1n(δ)S1n(δ)

−2Q†
1n(δ) + 2R1n(δ)S1n(δ), −K1n(ρ) + S2n(δ) + 2S2

1n(δ)

)
.

H2n(δ) =

(
ψ̃λλ

1n (δ), ψ̃λρ
1n (δ), ψ̃ρλ

1n (δ), ψ̃ρρ
1n (δ)

ψ̃λλ
2n (δ), ψ̃λρ

2n (δ), ψ̃ρλ
2n (δ), ψ̃ρρ

2n (δ)

)
, where

ψ̃λλ
1n (δ) = −2T2n(λ)− 6R1n(δ)R2n(δ) + 8R3

1n(δ),

ψ̃λρ
1n (δ) = 2Q‡

1n(δ)− 8R1n(δ)Q
†
1n(δ)− 2R2n(δ)S1n(δ) + 8R2

1n(δ)S1n(δ),

ψ̃ρρ
1n (δ) = −2Q†

2n(δ)− 8S1n(δ)Q
†
1n(δ) + 2R1n(δ)S2n(δ) + 8R1n(δ)S2

1n(δ),

ψ̃ρρ
2n (δ) = −2K2n(ρ) + S3n(δ) + 6S1n(δ)S2n(δ) + 8S3

1n(δ)

ψ̃λρ
1n (δ) = ψ̃ρλ

1n (δ) = ψ̃λλ
2n (δ) and ψ̃ρρ

1n (δ) = ψ̃λρ
2n (δ) = ψ̃ρλ

2n (δ).

H3n(δ) is obtained by taking partial derivatives w.r.t. δ′ for every element of
H2n(δ). Its full expression can be found in Liu and Yang (2015a).
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Bias and variance corrections for SLE model

The R-, S-, and Q-ratios at δ0 can all be written as functions of θ0 and
en = σ−1

0 εn, based on MnBnXn = 0 and W1nYn = Fn(Xnβ0 + B−1
n εn):

R1n(en, θ0) =
e′nMn(µn + F̄nen)

e′nMnen
,

R2n(en, θ0) =
(µn + F̄nen)

′Mn(µn + F̄nen)

e′nMnen
,

Srn(en, θ0) =
e′nMnDrnMnen

e′nMnen
, r = 1, 2, 3, 4,

Q†
rn(en, θ0) =

e′nMnDrnMn(µn + F̄nen)

e′nMnen
, r = 1, 2, 3,

Q‡
rn(en, θ0) =

(µn + F̄nen)
′MnDrnMn(µn + F̄nen)

e′nMnen
, r = 1, 2,

where F̄n = F̄n(δ0). Thus, ψ̃n = ψ̃n(en, θ0) and Hrn = Hrn(en, θ0),
r = 1,2,3. The bias terms, b−1 and b−3/2, can be easily estimated using
the general bootstrap procedure (BA-2) for a vector nonlinear parameters.
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Refined inferences for SLE model

Replacing δ̂n by δ̂bc2
n in (3.58), we obtain a statistic which is expected to

have a better finite sample performance:

tbc
CE(β0) =

c′0β̂
bc
n − c′0β0√

c′0V̂ bc
n,ββc0

, (4.37)

V̂ bc
n,ββ is Vn,ββ but evaluated at δ̂bc2

n , β̃bc
n , σ̂2,bc

n , γ̂bc
n , and κ̂bc

n .

Vn,ββ is the asymptotic VC matrix of β̂n given in Lecture 2.

γ̂bc
n , and κ̂bc

n are the estimates of γ and κ using δ̂bc2
n .

To further improve tbc
CE(β0) to give a fully 2nd-order corrected t-statistics,

tbc2
CE (β0), one follows the procedures leading to the 2nd-order corrected
t-ratios for the SL and SE models. See Liu and Yang (2015b).

The 2nd-order corrected Wald statistics for δ, λ or ρ can be obtained by
working with (3.59), following the ideas laid out around (4.20).
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Some Monte Carlo results for tests of CE in SLE model

Table 4.4. Size of Test H0: β1 = β2 for SLE Model, n = 50, λ = 0.5, σ = 1
Group Interact, REG2; Test: 1 = tCE, 2 = tbc

CE, 3 = tbc2
CE

ρ Test Normal Error Normal Mixture Lognormal

.50 1 .197 .115 .040 .201 .122 .044 .197 .122 .040
2 .120 .068 .020 .123 .073 .023 .146 .084 .028
3 .115 .062 .017 .119 .068 .023 .128 .074 .024

.25 1 .191 .109 .031 .180 .110 .031 .183 .109 .035
2 .118 .067 .020 .116 .069 .022 .120 .066 .021
3 .109 .061 .016 .103 .058 .019 .103 .055 .017

.00 1 .191 .110 .031 .177 .099 .028 .191 .114 .037
2 .111 .054 .015 .100 .054 .016 .117 .065 .021
3 .098 .047 .012 .095 .046 .013 .100 .055 .018

-.25 1 .173 .100 .025 .170 .096 .027 .184 .108 .033
2 .094 .048 .011 .098 .049 .016 .111 .059 .020
3 .108 .048 .009 .108 .051 .013 .090 .047 .016

-.50 1 .182 .104 .030 .162 .085 .023 .177 .100 .034
2 .097 .049 .013 .085 .043 .010 .102 .059 .019
3 .100 .048 .011 .091 .052 .009 .092 .046 .014
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Table 4.4, Cont’d. n = 200
ρ Test Normal Error Normal Mixture Lognormal

.50 1 .141 .078 .022 .140 .082 .028 .131 .078 .021
2 .113 .056 .014 .117 .061 .017 .116 .061 .015
3 .105 .050 .011 .107 .056 .016 .106 .052 .013

.25 1 .147 .085 .025 .152 .089 .028 .150 .083 .025
2 .108 .056 .012 .112 .061 .012 .111 .058 .012
3 .100 .050 .009 .102 .054 .011 .101 .051 .010

.00 1 .150 .089 .026 .137 .075 .016 .138 .084 .020
2 .104 .055 .012 .116 .061 .014 .124 .066 .017
3 .097 .050 .010 .102 .051 .010 .105 .052 .012

-.25 1 .158 .093 .030 .131 .074 .018 .120 .062 .014
2 .108 .054 .013 .123 .068 .019 .118 .066 .017
3 .099 .049 .012 .102 .055 .010 .095 .054 .010

-.50 1 .127 .072 .020 .120 .061 .013 .119 .063 .013
2 .115 .066 .017 .122 .063 .015 .135 .074 .019
3 .105 .060 .013 .095 .046 .009 .091 .052 .009
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Table 4.4., Cont’d. n = 500
ρ Test Normal Error Normal Mixture Lognormal

.50 1 .124 .068 .018 .126 .070 .017 .124 .073 .018
2 .102 .053 .013 .107 .053 .011 .106 .056 .011
3 .098 .049 .012 .100 .049 .010 .100 .050 .010

.25 1 .130 .073 .023 .134 .073 .020 .130 .074 .018
2 .105 .056 .015 .106 .057 .014 .101 .053 .012
3 .099 .052 .014 .100 .053 .013 .099 .049 .010

.00 1 .138 .075 .021 .135 .072 .019 .133 .076 .020
2 .106 .055 .013 .099 .052 .009 .106 .054 .012
3 .103 .053 .011 .099 .049 .009 .101 .053 .010

-.25 1 .131 .074 .020 .135 .077 .022 .132 .075 .022
2 .101 .055 .013 .102 .053 .012 .098 .053 .011
3 .096 .051 .012 .099 .051 .011 .100 .051 .010

-.50 1 .128 .071 .018 .144 .076 .022 .129 .072 .019
2 .094 .046 .011 .107 .054 .014 .093 .050 .011
3 .092 .045 .011 .103 .051 .013 .099 .050 .010
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Table 4.5. Size of Test H0: β1 = β2 in SLE Model, n = 50, λ = −.25, σ = 1
Group Interact, REG2; Test: 1 = tCE, 2 = tbc

CE, 3 = tbc2
CE

ρ Test Normal Error Normal Mixture Lognormal

.50 1 .196 .119 .045 .203 .126 .047 .188 .115 .045
2 .121 .070 .020 .122 .076 .022 .138 .085 .030
3 .114 .066 .017 .117 .072 .020 .122 .074 .022

.25 1 .198 .123 .042 .205 .128 .043 .205 .130 .054
2 .108 .059 .018 .109 .057 .020 .112 .066 .025
3 .103 .056 .015 .104 .055 .017 .109 .064 .022

.00 1 .192 .115 .037 .180 .109 .038 .199 .127 .051
2 .115 .065 .017 .118 .065 .017 .106 .062 .020
3 .103 .058 .014 .101 .056 .015 .104 .059 .020

-.25 1 .196 .114 .032 .186 .108 .038 .194 .115 .042
2 .107 .052 .016 .109 .060 .019 .114 .069 .022
3 .099 .050 .013 .098 .051 .015 .098 .057 .017

-.50 1 .188 .113 .040 .188 .111 .037 .186 .116 .040
2 .111 .061 .018 .089 .049 .014 .098 .055 .015
3 .095 .051 .015 .093 .055 .013 .099 .051 .015
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Table 4.5., Cont’d. n = 200
ρ Test Normal Error Normal Mixture Lognormal

.50 1 .129 .073 .020 .144 .083 .022 .133 .072 .016
2 .112 .063 .014 .116 .060 .012 .111 .059 .013
3 .104 .055 .013 .106 .054 .012 .093 .046 .009

.25 1 .143 .081 .025 .150 .085 .022 .151 .084 .025
2 .122 .062 .018 .122 .065 .015 .112 .055 .014
3 .110 .056 .016 .106 .057 .011 .100 .051 .013

.00 1 .144 .086 .023 .129 .075 .016 .156 .091 .028
2 .123 .066 .017 .114 .065 .015 .113 .056 .013
3 .110 .059 .014 .100 .053 .011 .103 .050 .012

-.25 1 .136 .075 .023 .125 .065 .018 .153 .090 .026
2 .123 .068 .018 .120 .062 .017 .106 .056 .011
3 .112 .060 .015 .101 .048 .012 .097 .052 .011

-.50 1 .120 .064 .016 .114 .055 .011 .150 .091 .025
2 .117 .063 .015 .126 .063 .015 .105 .051 .012
3 .106 .055 .012 .099 .045 .009 .097 .049 .011

Z. L. Yang, SMU ECON747, Term I 2024-25 48 / 52



Table 4.5., Cont’d. n = 500
ρ Test Normal Error Normal Mixture Lognormal

.50 1 .132 .069 .016 .131 .070 .017 .133 .072 .021
2 .110 .058 .012 .108 .055 .010 .109 .056 .012
3 .104 .053 .011 .100 .048 .010 .102 .052 .011

.25 1 .132 .079 .023 .125 .074 .019 .138 .076 .020
2 .109 .060 .014 .106 .055 .012 .107 .052 .012
3 .104 .056 .013 .100 .051 .009 .103 .051 .011

.00 1 .135 .077 .025 .129 .077 .020 .128 .071 .019
2 .105 .056 .015 .099 .049 .012 .100 .050 .011
3 .101 .053 .013 .100 .049 .011 .099 .050 .011

-.25 1 .139 .082 .026 .139 .079 .022 .130 .077 .020
2 .106 .059 .014 .104 .053 .011 .099 .050 .012
3 .101 .056 .014 .099 .050 .010 .100 .050 .012

-.50 1 .143 .085 .023 .140 .084 .024 .126 .074 .023
2 .107 .054 .012 .111 .059 .014 .098 .053 .013
3 .105 .053 .011 .108 .055 .012 .099 .052 .012
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4.6. Empirical Applications

Refer to Section 2.2.4 for the QML estimation of an SE model fitted to the
Neighborhood Crime data. We now fit an SL model to the same set of
data, based on QML and 2nd-ord bias corrected QML. The results are
summarized in Table 4.6, along with OLS estimates.

Table 4.6. Bias-Corrected Estimation of SL Model: Neighborhood Crime
OLS QMLE se t-Ratio QMLE-bc2 se-bc2 t-Ratio

constant 38.181 45.078 7.163 6.293 42.316 6.632 6.381
income -0.866 -1.032 0.304 -3.391 -0.965 0.299 -3.225
hvalue -0.264 -0.266 0.089 -3.005 -0.265 0.088 -3.011

λ 0.557 0.431 0.118 3.645 0.482 0.105 4.569
σ2 102.368 95.488 30.571 3.123 94.542 30.982 3.052

OLS estimation is invalid.

QMLE of λ is quite biased, and use of 2nd-order bias-corrected
QMLE is recommended.

See Section 2.3.4 for the bias-corrected estimation for Boston House
Price data.
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