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3.1. Introduction

This lecture introduces tests of hypothesis in spatial linear regression
(SLR) models including:

1 tests for covariate effect (CE) or SD effect in all SLR models;
2 tests for SE effect in SLR-SE model;
3 tests for SL effect in SLR-SL model;
4 tests for SE effect and/or SL effect in SLR-SLE model:

joint test for the existence/non-existence of both SL and SE effects,
marginal test for SE effect allowing the existence of SL effect,
marginal test for SL effect allowing the existence of SE effect.

The test in (2) is also called the conditional test of SE given no SL.
The test in (3) is also called the conditional test of SL given no SE.
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Three fundamental principles for hypothesis tests

There are three fundamental principles one can follow when constructing
tests of hypothesis concerning parameters θ in a model:

Likelihood ratio principle,
(Jerzy Neyman and Egon S. Pearson, 1928, 1933; Samuel S. Wilks, 1938)

Wald principle, (Abraham Wald, 1943)

Score or Lagrange multiplier principle,
(C. R. Rao, 1948; J. Aitchison and S. D. Silvey, 1958)

These three tests are referred to in statistical literature on testing of
hypotheses as the Holy Trinity or the three classical tests.

The three principles are equivalent to the first order of asymptotics –
their limiting null distribution is chi-square with d.f. being the number
of restrictions imposed by the null hypothesis,

but differ to some extent in the second order properties.
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Types of null hypothesis

Linear hypotheses/restrictions:

H0 : Rθ0 = r , (3.1)

where r is a q × 1 nonrandom vector and R is a q × p nonstochastic
matrix, q ≤ p, with rank(R) = q.

With proper choices of R and r , various hypotheses corresponding to
the SLR-SLE models can be formulated, e.g., β10 = β20,
β30 = β40 = 0, λ0 = ρ0 = 0, λ0 = 0 (single parameter hypothesis).

The test of β3 = β40 = 0 may correspond to spatial Durbin effects.

Nonlinear hypotheses/restrictions:

H0 : c(θ0) = 0, (3.2)

where c: Θ → Rq is a continuously differentiable function on the
parameter space Θ ⊂ Rq and θ0 is assumed to lie in the interior of Θ.
Nonlinear hypotheses are of less interest in the SLR context.
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Basic theories for limiting behavior of test statistics

We follow the general notations of Lecture 2: θ, `n(θ), Sn(θ), In(θ), and
Jn(θ), are, respectively, p × 1 vector of parameters, (quasi) loglikelihood,
(quasi) score, VC matrix of (quasi) score, and expected negative Hessian.

Recall from Lecture 2: under the general quasi ML framework,
√

n(θ̂n − θ0)
D−→ N

[
0, lim

n→∞
nJ−1

n (θ0)In(θ0)J−1
n (θ0)

]
, (3.3)

which can equivalently be written as

θ̂n
a∼ N

[
θ0, J−1

n (θ0)In(θ0)J−1
n (θ0)

]
,

where a∼ denotes “distributed asymptotically as”.

Note: the establishment of (3.3) requires the following result:

1√
n Sn(θ0)

D−→ N
[
0, limn→∞

1
nIn(θ0)

]
. (3.4)

Under correct specification, In(θ0) = Jn(θ0), ⇒ θ̂n
a∼ N

[
θ0, I−1

n (θ0)
]
.

Now, In(θ0) = Fisher Information (FI) = variance of efficient score.
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3.1.1. LR test statistic and its limiting behavior

When error distribution is correctly specified, i.e., when `n(θ) is the
genuine loglikelihood function, the LR test statistic is defined as

LRn = −2[`n(θ̃n)− `n(θ̂n)], (3.5)

where θ̃n is the restricted MLE of θ under H0 and θ̂n is the MLE of θ under
the full model. Under H0, LRn

a∼ χ2
q .

When error distribution is misspecified, `n(θ) becomes a quasi
loglikelihood and the result (3.5) no longer holds in general, except,

when In = αJn (generalized IME), then we have a quasi LR (QLR)
test: QLRn = −2[`n(θ̃n)− `n(θ̂n)]/α̂n.

For general QML estimation, with In 6= αJn, the LR test statistic can
be distributed as a weighted sum of chi-squares (see Cameron &
Trivedi, 2005, Sec. 8.5.3).
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3.1.2. Wald test statistic and its limiting behavior

The Wald test is the most versatile one among the three as it only requires
that θ̂n

a→ N(θ0,Vn) where nVn is positive definite for large enough n,
where θ̂n can be any estimator with an asymptotic normal distribution.

Test of individual coefficient. Let V̂n be a consistent estimator of Vn

and ν̂njj be the j th diagonal element of V̂n. Then, the asymptotic
standard error of θ̂nj (the j the component of θ̂n) is se(θ̂nj) =

√
ν̂njj .

Wald test statistic is simply Tn = (θ̂nj − θ0)/
√

ν̂njj .

Test of linear hypothesis, H0: Rθ0 = r . Wald statistic takes the form:

Tn = (Rθ̂n − r)′(RV̂nR′)−1(Rθ̂n − r) a∼ χ2
q , under H0. (3.6)

Test of nonlinear hypothesis, H0: c(θ) = 0. Wald statistic is:

Tn = c′(θ̂n)
[
C(θ̂n)V̂nC′(θ̂n)

]−1c(θ̂n)
a∼ χ2

q , under H0, (3.7)

where C(θ) = Oθc(θ) is the q × p Jacobian of the c(θ) function.
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3.1.3. LM test statistic and its limiting behavior

When error distribution is correctly specified, i.e., when Sn(θ) is the
genuine score function, the LM or Score test statistic is defined simply as

LMFI
n = Sn(θ̃n)I−1

n (θ̃n)Sn(θ̃n)
a∼ χ2

q , under H0, (3.8)

where FI denotes Fisher Information, and θ̃n is the MLE of θ under H0.

LM test is most preferred as it requires estimating only the null model.
This is especially so when the null model is an OLS regression.

In(θ̃n) can be replaced by − ∂
∂θ′ Sn(θ)

∣∣
θ=θ̃n

, to give an observed
information (OI) variant of LM test, denoted by LMOI

n .

It can also replaced by
∑n

i=1 gni(θ̃n)g′ni(θ̃n), if Sn(θ0) =
∑n

i=1 gni(θ0)

where {gni(θ0)} form a martingale difference (M.D.) sequence, to give
an M.D. variant of LM test, denoted by LMMD

n .

These tests are asymptotically equivalent, valid for any type of H0, but
may not be robust against distributional misspecification (DM).
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DM-Robust LM test statistic for model reduction

When error distribution is misspecified, LM tests may not be valid as IME
may fail to hold. However, it can be modified to allow for DM.

Robust LM test for model reduction. Let θ = (ϑ′, ϕ′)′ and consider

H0 : ϕ0 = 0.

Partition Sn(θ) = [S′
nϑ(ϑ, ϕ), S′

nϕ(ϑ, ϕ)]′, corresponding to (ϑ, ϕ),
In = [In,ϑϑ, In,ϑϕ; In,ϕϑ, In,ϕϕ], and Jn = [Jn,ϑϑ,Jn,ϑϕ;Jn,ϕϑ,Jn,ϕϕ].

As Snϑ(ϑ̃n, 0) = 0 at the null estimate ϑ̃n of ϑ0, the construction of robust
LM test depends on Snϕ(ϑ̃n, 0). A Taylor expansion leads to

1√
n Snϕ(ϑ̃n, 0) = 1√

n Snϕ(ϑ0, 0)− 1√
nΠn(ϑ0)Snϑ(ϑ0, 0) + op(1), (3.9)

where Πn(ϑ0) = Jn,ϕϑ(ϑ0, 0)J−1
n,ϑϑ(ϑ0, 0). It follows that

Var
[ 1√

n Sn,ϕ(θ̃n, 0)
]

= 1
n

[
In,ϕϕ(θ0, 0)− In,ϕϑ(ϑ0, 0)Π′n(ϑ0)− Πn(ϑ0)In,ϑϕ(ϑ0, 0)

+ Πn(ϑ0)In,ϑϑ(ϑ0, 0)Π′n(ϑ0)
]
+ o(1).
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A general LM test for model reduction, robust to DM, is given as:

LM∗
n = S̃′

n,ϕ

(
Ĩn,ϕϕ − 2Ĩn,ϕϑΠ̃′n + Π̃nĨn,ϑϑΠ̃′n

)−1S̃n,ϕ, (3.10)

where S̃n,ϕ = Sn,ϕ(ϑ̃n, 0) and similarly are the other tilde-quantities
defined. The limiting null distribution of LM∗

n is χ2
dim(ϕ). Note:

When error distribution is correctly specified, In(θ0) = Jn(θ0), and

In,ϕϕ − 2In,ϕθΠ̃
′
n + ΠnIn,θθΠ

′
n = In,ϕϕ − In,ϕϑIn,ϑϑI ′n,ϕϑ.

On the other hand, for testing ϕ = 0, LMFIn given in (3.8) reduces to

LMFI
n = S̃′

n,ϕ

(
Ĩ−1

n
)
ϕϕ

S̃n,ϕ, (3.11)

where (·)ϕϕ denotes the ϕϕ-block of the corresponding matrix. Using
the inverse of a partitioned matrix, we have(

Ĩ−1
n
)
ϕϕ

= (In,ϕϕ − In,ϕϑIn,ϑϑI ′n,ϕϑ)−1. (3.12)

LM∗
n reduces to LMFI

n when error distribution is correctly specified.
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OPMD form of DM-robust LM test statistic

If Sn(θ0) =
∑n

i=1 gni(θ0), an M.D. representation, then by (3.9) Snϕ(ϑ̃n, 0)

has an asymptotic M.D. representation:

1√
n Sn,ϕ(ϑ̃n, 0) = 1√

n

Pn
i=1

ˆ
gni,ϕ(ϑ0, 0)− Πn(ϑ0)gni,ϑ(ϑ0, 0)

˜
+ op(1), (3.13)

where (g′ni,ϑ, g′ni,ϕ)′ = gni , and {gni,ϕ − Πngni,ϑ} form an M.D. sequence.

An OPMD (outer-product-of-martingale-difference) variant of LM∗
n is:

LM†
n = (

Pn
i=1 g̃†ni,ϕ)′

`Pn
i=1 g̃†ni,ϕg̃† ′

ni,ϕ

´−1
(
Pn

i=1 g̃†ni,ϕ), (3.14)

where g̃†ni,ϕ = g̃ni,ϕ − Π̃ng̃ni,ϑ.

LM†
n can be obtained by directly working on LM∗

n ,

LM†
n

a
= LM∗

n , where a
= denotes asymptotic equivalence.

For many spatial models, an M.D. representation for quasi score can be
made, and an OPMD variant of robust LM test can be derived.

MD and OPMD are natural methods leading to LM tests robust against both
DM (distributional misspecification) and UH (unknown heteroskedasticity).
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DM-Robust LM test for a general hypothesis

An important point: although score test starts from the likelihood setup,
the score principle is applicable to any problem where the estimators solve
a first-order conditions, including the general class of M-estimators.

LM test for a general hypothesis, linear or nonlinear, can also be extended
to allow for DM. We give a general form of robust LM test for nonlinear
hypothesis, H0: c(θ0) = 0, as linear hypothesis is a special case.

First, if θ̃n solves Sn(θ) = 0 s.t. c(θ0) = 0, it must be that c(θ̃n) = 0.

Apply the mean value theorem to j th element cj(θ̃n) of c(θ̃n),

0 =
√

ncj(θ̃n) =
√

ncj(θ0) +
√

nCj(θ̄n)(θ̃n − θ0),

where θ̄n lies between θ̃n and θ0, Cj(θ) = j th row of C(θ) = ∂c(θ)
∂θ′ .

⇒
√

nCj(θ̄n)(θ̃n − θ0) = 0, and as Cj(θ̄n)− Cj(θ0) = oP(1), ∀j ,
√

nC(θ0)(θ̃n − θ0) = op(1).
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By a Taylor expansion, we have under H0,

1√
n Sn(θ̃n) = 1√

n Sn(θ0) + 1
nJn

√
n(θ̃n − θ0)] + op(1). (3.15)

Premultiply C(nJ−1
n ) through (3.15), we have under H0,

C(nJ−1
n ) 1√

n Sn(θ̃n) = C(nJ−1
n )[ 1√

n Sn(θ0) + 1
nJn

√
n(θ̃n − θ0)] + op(1)

= C(nJ−1
n )[ 1√

n Sn(θ0)] + op(1).

⇒ Var [C(nJ−1
n ) 1√

n Sn(θ̃n)] = nCJ−1
n InJ−1

n C′ + o(1).

A generalized LM test for testing H0: c(θ0) = 0, robust against DM, is

LMGn = S̃′
nJ̃−1

n C̃′(C̃J̃−1
n ĨnJ̃−1

n C̃′)−1C̃J̃−1
n S̃n, (3.16)

where S̃n = Sn(θ̃n), and similarly are the other tilde-quantities defined.
The limiting null distribution of LMGn is χ2

q .
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Linear-Quadratic Form and Martingale Difference Decomposition

In the Gaussian QML framework, the QS functions that LM-type tests
depend upon are linear-quadratic (LQ) forms in model errors. This allows
an M.D. decomposition of the QS functions and thereby the construction of
an OPMD variant of DM-robust LM test, as shown by the following lemma.

Lemma 3.1. Let An be an n × n non-stochastic matrix with elements an,ij ,
and bn an n× 1 non-stochastic vector with elements bni . Let εn be an n× 1
random vector of iid elements, {εni}, with mean 0, variance σ2

0 , skewness
γ0 and finite excess kurtosis κ0. Define Qn(εn) = ε′nAnεn + b′nεn. We have,

(i) Qn(εn)− E[Qn(εn)] =
∑n

i=1[εniξni + an,ii(ε
2
ni − σ2) + bniεni ] ≡

∑n
i=1 gni ,

where ξn = ((Au
n)′ + Al

n)εn with elements {ξni}, and An = Au
n + Al

n + Ad
n ,

sum of upper triangular, lower triangular and diagonal matrices of An.

(ii) {gni ,Fn,i} form a martingale difference sequence w.r.t. Fn,i , the
increasing σ-field generated by {εn1, . . . , εni}, i.e. E(gni |Fn,i−1) = 0.

(iii) {gni} are uncorrelated and Var[Qn(εn)] =
∑n

i=1 E(gnig′ni).
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To understand Lemma 3.1 (i), letting an = diagv(An), we have

Qn(εn)− E[Qn(εn)] = ε′n(A
u
n + Al

n + Ad
n )εn + b′nεn − σ21′nan

= ε′n(A
u
n + Al

n)εn + a′nε
2
n + b′nεn − σ21′nan,

= ε′n((A
u
n)′ + Al

n)εn + a′n(ε
2
n − σ21n) + b′nεn

≡ ε′nξn + a′n(ε
2
n − σ21n) + b′nεn

=
∑n

i=1(εniξni + an,ii(ε
2
ni − σ2) + bniεni) ≡

∑n
i=1 gni .

The results of Lemma 3.1 can be extended to a k -vector LQ forms:

Qn(εn) =


ε′nA1nεn + b′1nεn
...

ε′nAknεn + b′knεn

=
∑n

i=1 gni ,

where gni = (g1,ni , . . . , gk,ni)
′. This gives an M.D. decomposition of Qn(εn),

as {gni ,Fn,i} form a vector M.D. sequence. Thus,
Var[Qn(εn)] =

∑n
i=1 E(gnig′ni). See Baltagi and Yang (2013b) for details.
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3.2. Tests of Hypotheses for Spatial Error Model

Recall: linear regression model with SE dependence given in (2.1):

Yn = Xnβ + un, un = ρWnun + εn, (3.17)

where Xnβ may contain spatial Durbin (SD) term, and SAR process for SE
dependence can be replaced by SMA process: un = ρWnεn + εn,

Yn: n × 1 vector of observations on n spatial units,

Xn: an n × k matrix containing the values of k regressors,

Wn: n × n matrix summarizing interactions among n spatial units,
called the spatial weight matrix or the spatial interaction matrix,

εn: n × 1 vector of independent and identically distributed (iid)
idiosyncratic errors with mean zero and variance σ2,

ρ: the spatial error parameter,

β: k × 1 vector of regression coefficients.
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Hypotheses for SE model

Hypotheses on Model (3.17) that are of main interest concern (i) covariate
effect (CE) and (ii) spatial error (SE) effect:

HCE
0 : Rβ0 = r , some regressors can be merged or dropped,

HSE
0 : ρ0 = 0, standard liner regression model suffices,

where R is a q × k constant matrix, and q ≤ k .

When the R matrix is designed so the each row contains a sole non-zero
value of one corresponding to the Durbin effects, then a test of HCE

0 gives a
test of no Durbin effects.

When the rows of R sum to zero, then a test of HCE
0 is a test of linear

contrasts in β, e.g., HCE
0 : β10 = β20 and β30 = β40.
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3.2.1. LR tests for SE model

Recall: the loglikelihood function `n(θ) given in (2.4) and rewritten as:

`n(θ) = − n
2 ln(2πσ2) + log |Bn(ρ)| − 1

2σ2 ‖εn(β, ρ)‖2. (3.18)

where εn(β, ρ) = Bn(ρ)(Yn − Xnβ), Bn(ρ) = In − ρWn, and ‖ · ‖ denotes
Euclidean norm. The LR test statistic takes the general form (Sec. 3.1):

LRn = −2[`n(θ̃n)− `n(θ̂n)],

where θ̃n and θ̂n are the restricted and unrestricted MLEs of θ.

For testing either HCE
0 or HSE

0 in the SE model, it can be shown that the LR
test statistic takes a simple common form:

LR$ = n ln(σ̃2
n σ̂−2

n )− 2 log |Bn(ρ̃n)B−1
n (ρ̂n)|, for $ = CE,SE, (3.19)

due to the fact that σ̂−2
n ‖εn(β̂n, ρ̂n)‖2 = σ̃−2

n ‖εn(β̃n, ρ̃n)‖2 = n
2 .

• Under HSE
0 , LRCE

a∼ χ2
q ; under HSE

0 , ρ̃n = 0 and LRSE
a∼ χ2

1.
• Note: LRSE = −2[`c

n(0)− `c
n(λ̂n)], where `c

n(λ) is given in (2.8).
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3.2.2. Wald tests for SE model

Recall: from (2.10) and (2.11), the expected negative Hessian matrix:

JSE(θ0) =


1
σ2

0
X ′

nB′
nBnXn 0 0

∼ n
2σ4

0

1
σ2

0
tr(Gn)

∼ ∼ tr(Gs
nGn)

 ; (3.20)

and the VC matrix of score, written as ISE(θ0) = JSE(θ0) +KSE(θ0), where,

KSE(θ0) =


0 1

2σ3
0
γ0X ′

nB′
nιn

1
σ0

γ0X ′
nB′

ngn

∼ n
4σ4

0
κ0

1
2σ2

0
κ0tr(Gn)

∼ ∼ κ0g′ngn

 , (3.21)

ιn is a vector of ones, γ0 and κ0 are the measures of skewness and
excess kurtosis of εn,i , gn = diagv(Gn), and Gs

n = Gn(ρ) + G′
n(ρ).

With the QMLE θ̂n, and the plug-in estimators ÎSE = ISE(θ̂n) and
ĴSE = JSE(θ̂n) given in Sec. 2.2.1, various Wald tests can be constructed.
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Wald test for covariates effects. From Theorem 2.1, we see that JSE is
block diagonal, and hence β̂n

a∼ N(β0, σ
2
0(X ′

nB′
nBnXn)

−1).

Wald test for testing HCE
0 : Rβ0 = r has the expression:

TCE = (Rβ̂n − r)′[σ̂2
nR′(X ′

nB̂′
nB̂nXn)

−1R]−1(Rβ̂n − r). (3.22)

Asymptotic null distribution of the statistic TCE is χ2
q .

When R is a row vector (q = 1), Wald test reduces to a t-test:

tCE =
Rβ̂n − r√

σ̂2
nR(X ′

nB̂′
nB̂nXn)−1R′

a∼ N(0, 1), under HCE
0 . (3.23)

Wald test for spatial effect. Of particular interest is the test of HSE
0 : ρ = 0.

A t-ratio, for confidence interval (CI) and test, takes the general form:

tSE =
ρ̂n − ρ0√

(Ĵ−1
SE ÎSEĴ−1

SE )ρρ

a∼ N(0, 1), under HSE
0 , (3.24)

where (·)ρρ denotes the ρ-ρ element of the corresponding matrix.
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The univariate Wald statistic, or t-statistic, tCE, is asymptotically N(0, 1),
and hence inferences for Rβ0 is carried out by referring to the N(0, 1)

critical values.

By construction, this test is robust against nonnormality of the errors.

However, its finite sample performance may be poor.

Liu and Yang (2015b) presented improved tests based on
bias-correction.

Similarly, the t-statistic, tSE, is asymptotically N(0, 1), and hence
inferences for ρ0 is carried out by referring to the N(0, 1) critical values.

Again, this test is robust against nonnormality.

The denominator of tSE canbe made more ‘explicit’.

However, its finite sample property is not clear.

It would be interesting to make a Monte Carlo comparison between
tSE given in (3.24) LRSE given in (3.19).
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3.2.3. LM tests for SE model

Recall: the (quasi) score function Sn(θ) given in (2.5):

SSE(θ) =


1
σ2 X ′

nB′
n(ρ)Bn(ρ)un(β),

1
2σ4 u′n(β)B′

n(ρ)Bn(ρ)un(β)− n
2σ2 ,

1
σ2 u′n(β)B′

n(ρ)Wnun(β)− tr[Gn(ρ)].

(3.25)

where Gn(ρ) = WnB−1
n (ρ).

Under normality: noting ISE = JSE, following (3.8) and discussions below
it, we obtain three variants of LM tests for a general hypothesis on θ:

LMFI = S′
SE(θ̃n)ISE(θ̃n)

−1SSE(θ̃n), (3.26)

LMOI = S′
SE(θ̃n)

[
− ∂

∂θ′ SSE(θ)
∣∣
θ=θ̃n

]−1SSE(θ̃n), (3.27)

LMMD = S′
SE(θ̃n)

[∑n
i=1 g̃ni g̃′ni

]−1SSE(θ̃n), (3.28)

if in (3.28), SSE(θ0) =
∑n

i=1 gni(θ0) and {gni(θ0)} is an M.D. sequence. All
three statistics are χ2

q distributed under H0 with q restrictions.
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Among the three classical tests, the LM is of particular interest as its
implementation requires only the estimation of the null model.

Its advantage is clear if the null hypothesis specifies that ρ = 0, and
hence the implementation of the LM test requires only OLS estimates.

Many tests of this type are available in the literature.

We thus focus on the LM tests for SE effect in linear regression model.

Moran’s I test: To see if there exists spatial correlation among the
observations, Y1, Y2, · · · , Yn, Moran (1950) propose a test of the form:

I =

∑
i
∑

j wij(Yi − Ȳ )(Yj − Ȳ )∑
i(Yi − Ȳ )2

, (3.29)

where Ȳ = 1
n

∑n
i=1 Yni . If the Y ′

nis are iid normal when there is no spatial
correlation, then the limiting null distribution of Moran’s I statistic is normal.
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Cliff-Ord test: Cliff and Ord (1972) extend Moran I to linear regression:
Yn = Xnβ + un, and give a test of no spatial correlation among uni as:

ISE =
ũ′nWnũn

ũ′nũn
, (3.30)

where ũn is a vector of OLS residuals from regressing Yn on Xn.
If u′nis are normal, then the distribution of ISE under the null hypothesis of
no spatial error dependence is asymptotically N(µI, σ

2
I), where

µI = 1
n−k tr(MnWn),

σ2
I =

tr(MnWnMnW ′
n )+tr((MnWn)

2)− 2
n−k [tr(MnWn)]

2

(n−k)(n−k+2) .

Here Mn = In − Xn(X ′
nXn)

−1X ′
n. This leads to a standardized Moran’s I test

for non-existence of spatial error correlation as:

I◦SE =
ISE − µI

σI

a∼ N(0, 1), under the null. (3.31)

Clearly, (3.29) is a special case of (3.30) with Xn = ιn. Therefore, The final
working version of Moran’s I test is taken to be I◦SE.
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FI-based LM test: Burridge (1980) presented an LM test for testing HSE
0 :

ρ = 0, based on Fisher information (FI) matrix In given in (3.20):

LMFI
SE =

n√
S0

ũ′nWnũn

ũ′nũn
, (3.32)

where S0 = tr(W ′
nWn + W 2

n ), having asymptotic null distribution N(0, 1).

OPMD-based LM test: Born and Breitung (2011) derived an OPMD
variant of Burridge’s LM test of HSE

0 : ρ = 0:

LMMD
SE =

ũ′nWnũn√
(ũn � ũn)′(ξ̃n � ξ̃n)

, (3.33)

where � denotes Hadamard product, ξ̃n = (W l
n + W u′

n )ũn, W l
n and W u

n are
the lower and upper triangular matrices of Wn, and LMMD

SE|H0

D−→ N(0, 1).

To derive (3.33), note: ũ′nWnũn
a
= u′nWnun, u′nWnun = u′nξn =

∑n
i=1 uniξni ,

and {uniξni} are uncorrelated if {uni} are independent under H0: ρ = 0.
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Standardized LM tests for SE model

Baltagi and Yang (2013a) commented both LMFI
SE and LMMD

SE may have poor
finite sample performance as they are neither centered, nor standardized.

Baltagi and Yang (2013a) give a standardized version of LMFI
SE:

SLM◦
SE =

nũ′n(Wn − S1IN)ũn

(κ̃nS2 + S3)
1
2 ũ′nũn

, (3.34)

where S1 = 1
n−k tr(WnMn), S2 =

∑n
i=1 a2

ii , and S3 = tr(AnA′n + A2
n),

An = MnWnMn − S1Mn, aii are the diagonal elements of An, and
κ̃n is the excess sample kurtosis of OLS residuals ũn.

To see (3.34), under HSE
0 , ũn = Mnun and E(ũ′nWnũn) = σ2

0 tr(WnMn) 6= 0.
This motivates the use of ũ′nWnũn − σ2

0 tr(WnMn) or its feasible version:

ũ′nWnũn − 1
n−k ũ′nũntr(WnMn) ≡ u′nAnun.

Finding Var(u′nAnun) and replacing σ2
0 by σ̃2

n leads to the result.
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Baltagi and Yang (2013a) also give a standardized version of LMMD
SE:

SLMMD
SE =

ũ′n(Wn − S1IN)ũn√
(ũn � ũn)′[ζ̃n � ζ̃n + (Ad

n ũn)� (Ad
n ũn)]

, (3.35)

where ζ̃n = (Al
n + Au′

n )ũn, and Al
n, Au

n and Ad
n are, respectively the lower,

upper and diagonal matrices of An defined in (3.34).

The result follows almost immediately Lemma 3.1, by noticing that the
numerator of (3.35) has the form u′nAnun, where un = εn under the null.

A very important feature of the SLM tests is that their derivations do not
depend on normality of errors, and thus robust against non-normality (NN).

Another important feature of SLM-OPMD variant is that its variance estimate
is also robust to unknown heteroskedasticity (UH).

The ideas of standardization and M.D. decomposition can be extended to
give SLM tests for other models (for robustness and better performance).

See Baltagi and Yang (2013a,b) for details on these important ideas.
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Asymptotic properties of LM-type tests for SE model

Assumption A1: The errors {εni} are iid with mean 0, variance σ2
0 , and

excess kurtosis κ0. Also, the moment E|εni |4+η exists for some η > 0.

Assumption A2: i The elements {wij} of Wn are at most of order h−1
n

uniformly for all i , j , with the rate sequence {hn} satisfying hn/n → 0 as
n →∞, (ii) wii = 0 and

∑
j wij = 1 for all i , and (iii) The the row and column

sums of Wn in absolute value are uniformly bounded.

Assumption A3: The elements of the n × k matrix Xn are uniformly
bounded for all n, and limn→∞

1
n X ′

nXn exists and is nonsingular.

Theorem 3.1. Under Assumptions 1-3, Model (3.17) and H0: ρ = 0,

(i) SLM◦
SE

D−→ N(0, 1), as n →∞,

(ii) SLMMD
SE

D−→ N(0, 1), as n →∞,

(iii) I◦SE, LMFI
SE, LMMD

SE, SLM◦
SE, and SLMMD

SE are asymptotically equivalent.
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3.2.4. Empirical illustration

Neighborhood Crime. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SE model for Crime with regressors: constant, Income,
House, East, WnIncome, and WnHouse.

LRSE =.

tSE =.

TMD
CE =, where CE = {WnIncome, WnHouse }

I◦SE =.

LMFI
SE =.

LMMD
SE =.

SLM◦
SE =.

SLMMD
SE =.
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Boston House Price. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SE model for MEDV including all the regressors, and adding
SD-room and adding SD-access.

LRSE =.

tSE =.

TMD
CE =, where CE = {SD-room, SD-access}

I◦SE =.

LMFI
SE =.

LMMD
SE =.

SLM◦
SE =.

SLMMD
SE =.
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3.2.5. Results desired for SE model but unavailable

SE model may be the simplest in the SLR framework, but there are still
results that are desired but unavailable in the literature. These include,

an LM test of HSE
0 based on the robust LM principle described around

(3.10).

an LM test of HSE
0 based on the robust LM principle described around

(3.14).

finite sample of these two robust LM tests, expected to perform not as
well as the two SLM tests as the principles in (3.10) and (3.14) do not
lead to mean corrections.

finite sample performance of Moran’s I, I◦SE.

finite sample performance of LRSE and tSE.
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3.3. Tests of Hypotheses for Spatial Lag Model

Recall: liner regression model with SL dependence given in (2.14):

Yn = λWnYn + Xnβ + εn, (3.36)

where Yn, Xn, and Wn are as in (3.17). The errors εn,i are iid(0, σ2).

The hypotheses of interest for Model (3.36) concern (i) covariate effect
(CE), and (ii) spatial lag (SL) effect:

HCE
0 : Rβ0 = r , some regressors can be merged or dropped,

HSL
0 : λ0 = 0, standard liner regression model suffices,

where R is a q × k constant matrix, and q ≤ k .

The HCE
0 hypothesis covers: insignificance of some covariates effects,

non-existence of spatial Durbin effects, etc., with proper choices of the
linear restriction matrix R and the vector r .
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3.3.1. LR tests for SL model

Recall: the loglikelihood function of θ = (β′, σ2, λ) given in (2.14):

`n(θ) = − n
2 log(2πσ2) + log |An(λ)| − 1

2σ2 ‖εn(β, λ)‖2, (3.37)

where εn(β, λ) = An(λ)Yn − Xnβ, and An(λ) = In − λWn.

From the general form of LR statistic: LRn = −2[`n(θ̃n)− `n(θ̂n)], where θ̃n

and θ̂n are the restricted and unrestricted MLEs of θ, we have, similar to
the SE model, a simple common form of the LR test statistic for testing
either HCE

0 or HSL
0 in the SL model:

LR$ = n ln(σ̃2
n σ̂−2

n )− 2 log |An(λ̃n)A−1
n (λ̂n)|, for $ = CE,SL, (3.38)

due to the fact that σ̂−2
n ‖εn(β̂n, λ̂n)‖2 = σ̃−2

n ‖εn(β̃n, λ̃n)‖2 = n
2 .

• Under HCE
0 , LRCE

a∼ χ2
q ; under HSL

0 , λ = 0 and LRSL
a∼ χ2

1.
• Note: LRSL = −2[`c

n(0)− `c
n(λ̂n)], where `c

n(λ) is given in (2.19).
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3.3.2. Wald tests for SL model

Recall: from (2.21) and (2.22), the expected negative Hessian:

JSL =


1
σ2

0
X ′

nXn 0 1
σ0

X ′
nηn

0 n
2σ4

0

1
σ2

0
tr(Fn)

1
σ0

η′nXn
1
σ2

0
tr(Fn) η′nηn + tr(F s

n Fn)

 , (3.39)

and the VC matrix of quasi score function: ISL = JSL +KSL, where

KSL =


0 1

2σ3
0
γ0X ′

nιn
1
σ0

γ0X ′
nfn

∼ n
4σ4

0
κ0

1
2σ2

0
γ0ι

′
nηn + 1

2σ2
0
κ0tr(Fn)

∼ ∼ κ0f ′nfn + 2γ0f ′nηn

 , (3.40)

where fn = diagv(Fn), F s
n = Fn + F ′

n, ηn = σ−1
0 GnXnβ0, and γ0 and κ0 are

the skewness and excess kurtosis of εn,i .

With the QMLE θ̂n, and the plug-in estimators ÎSL = ISL(θ̂n) and
ĴSL = JSL(θ̂n) given in Sec. 2.2.2, various Wald tests can be constructed.
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Wald tests for covariate effects. Let V̂SL = Ĵ−1
SL ÎSLĴ−1

SL . Let V̂SL,ββ and
V̂SL,λλ be, respectively, the β-β and λ-λ diagonal blocks of V̂SL.

Wald test for testing HCE
0 : Rβ0 = r has the expression:

TCE = (Rβ̂n − r)′(RVSL,ββR′)−1(Rβ̂n − r). (3.41)

Under HCE
0 , TCE

D−→ χ2
q , where q is the number of rows of R.

When R is a row vector (q = 1), Wald test reduces to a t-test:

tCE =
Rβ̂n − r√
RV̂SL,ββR′

D−→ N(0, 1), under HCE
0 . (3.42)

Finite sample performance of TCE and tCE can be poor, because λ̂n is
downward biased (Yang, 2015), which passes to β̂n as seen from below:

β̂n = β̃n(λ̂n) = β0 + (λ0 − λ̂n)(X ′
nXn)

−1X ′
nGnXnβ0 + op(1),

and thus causes the variance estimate V̂SL,ββ to be biased.
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The poor finite sample performance of TCE and tCE is confirmed by the
Monte Carlo results given in Liu and Yang (2015a), where improved
inferences methods are provided.

Wald Test for spatial effect. Similarly, with the λ-λ element of V̂SL,
V̂SL,λλ, we obtain a Wald statistic for λ, which is asymptotic N(0, 1),

tSL(λ0) =
λ̂n − λ0√

V̂SL,λλ

, (3.43)

The statistic tSL(λ0) can be used to test H0: λ = 0.

Finite sample property of tSL(λ0) is studied by Yang (2015),

along with the improved tests based on bias-corrections.
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3.3.3. LM tests for SL model

Recall: the (quasi) score function given in (2.17):

SSL(θ) =


1
σ2 X ′

nεn(β, λ),

1
2σ4 ε

′
n(β, λ)εn(β, λ)− n

2σ2 ,

1
σ2 Y ′

nW ′
nεn(β, λ)− tr[Fn(λ)],

(3.44)

where Fn(λ) = WnA−1
n (λ).

Under normality: we have IME, In = Jn, and we obtain three variants of
LM tests for a general hypothesis on θ as those for SE model:

LMFI = S′
SL(θ̃n)ISL(θ̃n)

−1SSL(θ̃n), (3.45)

LMOI = S′
SL(θ̃n)

[
− ∂

∂θ′ SSL(θ)
∣∣
θ=θ̃n

]−1SSL(θ̃n), (3.46)

LMMD = S′
SL(θ̃n)

[∑n
i=1 g̃ni g̃′ni

]−1SSL(θ̃n), (3.47)

if in (3.47), SSL(θ0) =
∑n

i=1 gni(θ0) and {gni(θ0)} is an M.D. sequence. All
three statistics are χ2

q distributed under H0 with q restrictions.
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LM tests for spatial effect. For testing HSL
0 : λ = 0, LM tests are preferred

as they require only the OLS estimates.

Anselin (1988) presents an LM test based on the expected information:

LMFI
SL =

ε̃′nWnYn

σ̃2
n

√
D̃n + Tn

, (3.48)

where Tn = tr[(Wn + W ′
n)Wn], D̃n = σ̃−2

n (WnXnβ̃n)
′MnWnXnβ̃n, β̃n and σ̃2

n

are the OLS estimates, and ε̃n are the OLS residuals.

Derivation of LMFI
SL is based on SSL,λ(θ) and [J−1

SL (θ)]λλ, evaluated at
θ̃n = (β̃′n(0), σ̃2

n(0), 0)′, where β̃′n(0) and σ̃2
n(0) are given in (2.18).

Although LMFI
SL is derived under normality, one can shown that it is

robust against non-normality (NN).

Its finite sample performance can be poor as the effect of estimating β

and σ2 is not taken into account.

The OI (observed information) variant can easily be derived as well.
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Paralleled with the OPMD-based LM test (3.33), Born and Breitung (2011)
also derived an OPMD-based LM test for testing HSL

0 :

LMMD
SL =

ε̃′nWnYn√
(ε̃n � ε̃n)′(ξ̃n � ξ̃n)

, (3.49)

where ξ̃n = (W l
n + W u′

n )ε̃n, W l
n and W u

n are the lower and upper triangular
matrices such that W l

n + W u
n = Wn, and LMMD

SL|H0

D−→ N(0, 1).

Again, this test is robust against NN.

The denominator of the test statistic can also been seen to be robust
against unknown heteroskedasticity (UH).

It finite sample performance may be poor for the same reason.

LM-type tests with better finite sample performance are desired.
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Standardized LM tests for SL model

The standardized version of LMFI
SL, denoted as SLMFI

SL, in the spirit of
SLMFI

SE statistic given in (3.34), is of interest but unavailable.

To derive SLMFI
SL, note that SSL,λ(θ)|θ=θ̃n

is proportional to

ε̃nMnWnYn = ε′nMnWnεn + ε′nMnWnXnβ.

Standardize this quantity, we obtain:

SLMFI
SL =???, (3.50)

where ? · · ·?, and γ̃n and κ̃n are the sample skewness and the excess of
OLS residuals ε̃n.

You are strongly encouraged to complete the derivation for SLMFI
SL.
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An OPMD variant of SLM test can be obtained along the line of (3.35):

SLMMD
SL =???, (3.51)

where ? · · ·?. You are strongly encouraged to complete this derivation.

As commented for the SE model, the tests SLMFI
SL and SLMFI

SL suggested
above may not be truly “standardized LM tests”, as mean corrections are
not made.

Theorem 3.2. Under Assumptions 1-3, Model (3.17) and H0: ρ = 0,

(i) SLM◦
SL

D−→ N(0, 1), as n →∞,

(ii) SLMMD
SL

D−→ N(0, 1), as n →∞,

(iii) LMFI
SL, LMMD

SL, SLM◦
SL, and SLMMD

SL are asymptotically equivalent.
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3.3.4. Empirical illustrations

Neighborhood Crime. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SL model for Crime with regressors: constant, Income,
House, East, WnIncome, and WnHouse.

LRSL =.

tSL =.

TMD
CE =, where CE = {WnIncome, WnHouse }

LMFI
SL =.

LMMD
SL =.

SLM◦
SL =.

SLMMD
SL =.
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Boston House Price. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SL model for MEDV including all the regressors, and adding
SD-room and adding SD-access.

LRSL =.

tSL =.

TMD
CE =, where CE = {SD-room, SD-access}

LMFI
SL =.

LMMD
SL =.

SLM◦
SL =.

SLMMD
SL =.
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3.3.5. Results desired for SL model but unavailable

The SL model is another simple model in the SLR framework and is more
popular than the SE model. However, there are more results that are
desired but unavailable in the literature. These include,

an LM test of HSL
0 by the robust LM principle described around (3.10).

an LM test of HSL
0 by the robust LM principle described around (3.14).

an SLM test along the line of (3.34).

an SLM test along the line of (3.35).

a Monte Carlo comparison of these tests for their finite sample
performance, to recommend to practitioners a simple and reliable test
for spatial lag dependence.
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3.4. Tests of Hypotheses for SLE Model

Recall: The SLR model with both SL and SE (SLE) given in (2.25):

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn, (3.52)

where all quantities are defined as in the SL and SE models. This model
involves two spatial weight matrices W1n and W2n, which can be the same.

The hypotheses of interest for Model (3.52) concern (i) covariate effect
(CE), and (ii) spatial lag (SL) and/or spatial error (SE) effects:

HCE
0 : Rβ0 = r , some regressors can be merged or dropped,

HSLE
0 : δ0 = (λ0, ρ0)

′ = 0, standard liner regression model suffices,

HSL|SE
0 : λ0 = 0, SE model suffices,

HSE|SL
0 : ρ0 = 0, SL model suffices,

where R is a q × k constant matrix, and q ≤ k .
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3.4.1. LR tests for SLE model

Recall: the log-likelihood function of θ = (β′, σ2, λ, ρ)′ given in (2.26):

`n(θ) = − n
2 log(2πσ2) + log |An(λ)|+ log |Bn(ρ)| − 1

2σ2 ‖εn(β, δ)‖2, (3.53)

• εn(β, δ) = Yn(δ)− Xn(ρ)β, Yn(δ) = Bn(ρ)An(λ)Yn, and Xn(ρ) = Bn(ρ)Xn.

Based on the LR principle introduced in Sec. 3.1., we show that the LR
statistic for testing HCE

0 , HSLE
0 , HSL|SE

0 , or HSE|SL
0 takes a common form:

LR$ = n ln(σ̃2
n σ̂−2

n )−2 log |An(λ̃n)A−1
n (λ̂n)|−2 log |Bn(ρ̃n)B−1

n (ρ̂n)|, (3.54)

for $ = CE,SLE,SL|SE,SE|SL, where ω̃n and ω̂n are the restricted (under
the null hypothesis) and unrestricted MLEs of a parameter ω, respectively.

The limiting null distribution of LR$ is χ2
df , with df = q, 2, 1 and 1,

respectively, for the four tests.

The LR tests for spatial effects can be formulated directly from `c
n(δ)

given in (2.19), e.g., LRSLE = −2[`c
n(0)− `c

n(δ̂n)].

Z. L. Yang, SMU ECON747, Term I 2024-25 46 / 59



3.4.2. Wald tests for SLE model

Recall: from (2.33) and (2,34), the expected negative Hessian:

JSLE =


1
σ2

0
X′

nXn 0 1
σ0

X′
nµn 0

∼ n
2σ4

0

1
σ2

0
tr(Fn)

1
σ2

0
tr(Gn)

∼ ∼ µ′nµn + tr(F̄ s
n F̄n) tr(Gs

nF̄n)

∼ ∼ ∼ tr(Gs
nGn)

 , (3.55)

and the VC matrix of QS function: ISLE = JSLE +KSLE, where

KSLE =


0 γ0

2σ3
0
X′

nιn
γ0
σ0

X′
n f̄n γ0

σ0
X′

ngn

∼ nκ0
4σ4

0

κ0
2σ2

0
tr(Fn) + γ0

2σ2
0
ι′nµn

κ0
2σ2

0
tr(Gn)

∼ ∼ κ0 f̄ ′n f̄n + 2γ0 f̄ ′nµn κ0g′n f̄n + γ0g′nµn

∼ ∼ ∼ κ0g′ngn

 ,

(3.56)
µn = σ−1

0 BnFnXnβ0, F̄n = BnFnB−1
n , f̄n = diag(F̄n), F̄ s

n = F̄n + F̄ ′
n, and

others quantities are defined earlier.
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Similar to the LR test, the Wald test for any hypothesis concerning θ in the
SLE model can be written in the following general form. Denote the plug-in
estimate of asymptotic VC matrix of the QMLE θ̂n as

V̂SLE = J−1
SLE(θ̂n)ISLE(θ̂n)J−1

SLE(θ̂n).

First, a Wald statistic for inference for a general linear combination c′θ0,
where c is a (k + 2)× 1 constant vector, is a univariate t-statistic:

tSLE(θ0) =
c′θ̂n − c′θ0√

c′V̂SLEc

a∼ N(0, 1), (3.57)

tSLE(θ0) can be used to construct a CI for c′θ0.

It can also be used to test the hypothesis of c′θ0 = 0.

When c contains a single non-zero value 1, tSLE(θ0) is a t-statistic for
a single parameter, and can be used to test HSL|SE

0 or HSE|SL
0 (?).

When the elements of c adds to 0, it provides inference method for a
linear contrast on θ0, e.g., β10 − β20.
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Let V̂SLE,ββ and V̂SLE,δδ be the β-β and δ-δ diagonal blocks of V̂SLE.

Wald test for testing HCE
0 : Rβ0 = r has the expression:

TCE = (Rβ̂n − r)′(RVnββR′)−1(Rβ̂n − r). (3.58)

Under HCE
0 , TCE

D−→ χ2
q , where q is the number of rows of R.

Similarly, a Wald statistic for inferences for δ is

TSLE(δ0) = (δ̂n − δ0)
′V̂−1

SLE,δδ(δ̂n − δ0)
a∼ χ2

2. (3.59)

This test statistic can be used to test H0: δ = 0. One directional tests for λ

(allowing ρ) and for ρ (allowing λ) can easily be formulated.

For testing H0: δ = 0, LM tests are preferred as they require only the
estimates of the null model, which in this case is the OLS regression.
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3.4.3. LM tests for SLE model

Recall: the (quasi) score function given in (2.27):

SSLE(θ) =



1
σ2 X′

n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, λ)εn(β, δ)− n

2σ2 ,

1
σ2 Y ′

nW ′
1nB′

n(ρ)εn(β, δ)− tr[Fn(λ)],

1
σ2 ε

′
n(β, δ)Gn(ρ)εn(β, δ)− tr[Gn(ρ)],

(3.60)

where Fn(λ) = W1nA−1
n (λ) and Gn(ρ) = W2nB−1

n (ρ).

Under normality: the LM principle introduced in Sec. 3.1.3 again leads to
three variants of LM tests for a general hypothesis on θ:

LMFI = S′
SLE(θ̃n)ISLE(θ̃n)

−1SSLE(θ̃n), (3.61)

LMOI = S′
SLE(θ̃n)

[
− ∂

∂θ′ SSLE(θ)
∣∣
θ=θ̃n

]−1SSLE(θ̃n), (3.62)

LMMD = S′
SLE(θ̃n)

[∑n
i=1 g̃ni g̃′ni

]−1SSLE(θ̃n), (3.63)

if in (3.65), SSLE(θ0) =
∑n

i=1 gni(θ0) and {gni(θ0)} is an M.D. sequence.
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FI-based LM test. Anselin (1988) gives an LM test of HSLE
0 , based on

Fisher information matrix JSLE given in (3.55):

LMFISLE =
1
σ̃4

n

(
ε̃′nW1nYn

ε̃′nW2n ε̃n

)′(
T1n + D̃n T3n

T3n T2n

)−1(
ε̃′nW1nYn

ε̃′nW2n ε̃n

)
, (3.64)

where T1n = tr[(W1n + W ′
1n)W1n], T2n = tr[(W2n + W ′

2n)W2n],
T3n = tr[(W2n + W ′

2n)W1n], D̃n is defined in (3.48).

OPMD-based LM test. Born and Breitung (2011) give an OPMD variant:

LMMDSLE =

 
ε̃′nW1nYn

ε̃′nW2nε̃n

!′ 
ε̃2 ′

n ξ̃2
1n ε̃2 ′

n (ξ̃1n � ξ̃2n)

ε̃2 ′
n (ξ̃1n � ξ̃2n) ε̃2 ′

n ξ̃2
2n

!−1 
ε̃′nW1nYn

ε̃′nW2n ε̃n

!
,

(3.65)

square of a vector: e.g., ε̃2
n = ε̃n � ε̃n,

ξ̃1n = (W u′
1n + W l

1n)ε̃n + MnWnXnβ̃n, ξ̃2n = (W u′
2n + W l

2n)ε̃n,

W u
rn and W l

rn: the upper and lower triangular matrices of Wrn, r = 1, 2.
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A general formulation of FI-based LM tests for testing HSLE
0 , HSL|SE

0 and
HSE|SL

0 can be obtained by applying (3.11) and (3.12):

LMFI
SLE(δ) = S̃′

SLE,δ(δ)[J̃−1
SLE(δ)]δδS̃SLE,δ(δ), (3.66)

where the tilde quantities are the estimates at β̃n(δ) and σ̃2
n(δ) given in

(2.28) and (2.29).

Taking δ = 0, LMFI
SLE(δ) reduces to the joint test LMFISLE given in (3.64).

Taking δ = (0, ρ̃n)
′, it gives a marginal test, LMFISL|SE,

for testing HSL|SE
0 : λ = 0 in the SLE model.

Taking δ = (λ̃, 0)′, it gives a marginal test, LMFISE|SL,
for testing HSE|SL

0 : ρ = 0 in the SLE model.

The two marginal tests LMFISL|SE and LMFISE|SL are unlikely robust to NN.

The quantity, [J̃−1
SLE(δ)]δδ, can be simplified!

You are strongly encouraged to complete the derivations for the test
statistics LMFISL|SE and LMFISE|SL to make them as compact as possible!
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Standardized LM tests for SLE model

The standardized LM tests for the joint hypothesis, HSLE
0 : δ = 0, can be

obtained by combining the ideas behind SLM◦
SE and SLM◦

SL, and the ideas
behind SLMDM

SE and SLMDM
SL. Note:

S̃′
SLE,δ(δ)|δ=0 ∝

ε̃′nW1nYn = ε′nMnW1nεn + ε′nMnW1nXnβ0,

ε̃′nW2n ε̃n = ε′nMnW2nMnεn.

This would lead to the two variants of SLM tests for HSLE
0 : δ = 0:

SLM◦
SLE =??? (3.67)

SLMMD
SLE =??? (3.68)

These tests are robust against NN, by construction.

You are encouraged to complete these derivations, and perhaps conduct

a Monte Carlo study on the finite sample performance of these two tests.
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The ideas for deriving an SLM tests introduced above may not be easily
extended to give marginal SLM tests for the hypotheses, HSL|SE

0 : λ0 = 0 in
the SLE model and HSE|SL

0 : ρ0 = 0 in the SLE model. This is because the
‘working QS function’, S̃SLE,δ(δ̃n), is not linear-quadratic in εn, either when
δ̃n = (0, ρ̃n)

′ under HSL|SE
0 or when δ̃n = (λ̃n, 0)′ under HSE|SL

0 .

However, following the principle laid out around (3.10), one obtains:

SLM◦
SL|SE =??? (3.69)

SLM◦
SE|SL =??? (3.70)

Following the principle laid out around (3.14), one obtains:

SLMMD
SL|SE =??? (3.71)

SLMMD
SE|SL =??? (3.72)

You may like to consider a rigorous study on these conditional SLM tests,
under the topic: “Robust LM Tests for Marginal Spatial Effects in Spatial
Linear Regression Models”, as a Research Paper for the course.
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3.4.4. Empirical illustrations

Neighborhood Crime. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SLE model for Crime with regressors: constant, Income,
House, East, WnIncome, and WnHouse.

LRSLE =.

TSLE =.

TMD
CE =, where CE = {WnIncome, WnHouse }

LMFI
SLE =.

LMMD
SLE =.

LMFI
SL|SE =.

LMFI
SE|SL =.

SLM◦
SLE =.

SLMMD
SLE =.

Z. L. Yang, SMU ECON747, Term I 2024-25 55 / 59



Boston House Price. See Sec. 2.2.4 for a description of the data and
variables, and the construction of the spatial weight matrix.

Consider an SLE model for MEDV including all the regressors, and adding
SD-room and adding SD-access.

LRSLE =.

tSLE =.

TMD
CE =, where CE = {SD-room, SD-access}

LMFI
SLE =.

LMMD
SLE =.

SLM◦
SLE =.

SLMMD
SLE =.
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3.4.5. Results desired for SLE model but unavailable

The SL model is another simple model in the SLR framework and is more
popular than the SE model. However, there are more results that are
desired but unavailable in the literature. These include,

an LM test of HSLE
0 based on the robust LM principle (3.10).

an LM test of HSLE
0 based on the robust LM principle (3.14).

an SLM test of HSLE
0 in line of (3.34) and (3.50).

an SLM test of HSLE
0 in line of (3.35) and (3.51).

an LM test of HSL|SE
0 based on the robust LM principle (3.10).

an LM test of HSE|SL
0 based on the robust LM principle (3.14).

a full development of the four marginal spatial tests suggested in
(3.69-3.72) including mean corrections, which may be a publishable
research topic.
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