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2.1. Introduction

Lecture 2 introduces popular spatial linear regression models and their
estimation through quasi maximum likelihood (QML) method, and GM or
GMM method, which include the linear regression models with

1 spatial lag (SL) dependence,
2 spatial error (SE) dependence,
3 both SL and SE (SLE),

Where spatial Durbin (SD) effect can be added to any of the three models.

Asymptotic properties of the QML estimators are presented.

Method of estimating standard errors of the QMLE is introduced.

Finite sample performance of the QML-based methods is discussed
based on Monte Carlo results.

Two examples are presented to illustrate the applications of
QML-based methods.
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2.2. SLR Model with SE Dependence

Model. Spatial linear regression (SLR) model with spatial error (SE)
dependence, or the SE model in short, takes the following form:

Yn = Xnβ + un, un = ρWnun + εn, (2.1)

where the SE structure is a spatial autoregressive (SAR) process. It can
also be a spatial moving average (SMA) process: un = ρWnεn + εn,

Yn: n × 1 vector of observations on n spatial units,

Xn: an n × k matrix containing the values of k regressors,

Wn: n × n matrix summarizing interactions among n spatial units, called the
spatial weight matrix or the spatial interaction matrix,

εn: n × 1 vector of independent and identically distributed (iid) idiosyncratic
errors with mean zero and variance σ2,

ρ: the spatial error parameter,

β: k × 1 vector of regression coefficients.
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Durbin-SE Model. The model (2.1) can be extended by adding a spatial
Durbin term WnX ∗

n , where X ∗
n contains some regressors, referred to in this

course as Durbin-SE model:

Yn = Xnβ + WnX ∗
n β∗ + un, un = ρWnun + εn. (2.2)

The term ‘spatial Durbin model’ was first appeared in Anselin (1988) for
its analogy with Durbin (1960) for time series. See also Elhorst (2014, p.7).

Elhorst (2014) interprets the spatial Durbin effect as the exogenous
interaction effects, where the dependent variable of a particular unit depends
on independent variables of other units.

By defining a new regressor matrix Xn = [Xn, WnX∗n ], and a new vector of
regression coefficients β = (β′, β∗′)′, Durbin-SE model has the same form as
the regular SE model, and hence inference methods remain the same.

However, a problem of particular interest is to test the existence of spatial

Durbin effect, i.e., testing H0: β∗ = 0, which can be carried out based on the

usual tests for covariate effects, to be presented in Lecture 3.
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2.2.1. QML estimation of SE model

For QML estimation of spatial models, the following results are useful:

(i) An n-dimensional random vector Y is said to have a multivariate normal
distribution with mean µ and variance-covariance (VC) matrix Σ, denoted
as N(µ,Σ), if its joint probability density function (pdf) takes the form:

f (y;µ,Σ) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(y− µ)′Σ−1(y− µ)

)
. (2.3)

where | · | denotes the determinant of a square matrix.

(ii) For two n × n matrices A and B, and a scalar c:

|A′| = |A|, |A−1| = |A|−1, |cA| = cn|A|, |AB| = |A||B|;

(iii) For a matrix function A(ρ) of scalar ρ, positive definite (p.d.),

∂
∂ρA(ρ)−1 = −A(ρ)−1[ ∂

∂ρA(ρ)]A(ρ)−1, Horn and Johnson (1985).

∂
∂ρ log |A(ρ)| = tr[A(ρ)−1 ∂

∂ρA(ρ)], tr(·) = trace of a matrix.
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Now, define Bn(ρ) = In − ρWn. Then, un = B−1
n (ρ)εn, and

Σn = Var(un) = σ2B−1
n (ρ)B′−1

n (ρ).

By (2.3), the quasi Gaussian loglikelihood function of θ = (β′, σ2, ρ)′ for
the SE or Durbin-SE model, as if εn,i are iid normal, is given by,

`n(θ) = − n
2 log(2πσ2) + log |Bn(ρ)| − 1

2σ2 u′n(β)B′n(ρ)Bn(ρ)un(β). (2.4)

where un(β) = Yn − Xnβ. It is assumed: |Bn(ρ)| > 0, and B−1
n (ρ) exists.

Maximizing `n(θ) gives the MLE θ̂n of θ if the errors are indeed
Gaussian, otherwise the QMLE.

Letting Gn(ρ) = WnB−1
n (ρ), maximizing `n(θ) is equivalent to solving

Sn(θ) = 0, where the score function has the form:

Sn(θ) =
∂

∂θ
`n(θ) =


1
σ2 X ′

nB′n(ρ)Bn(ρ)un(β),

1
2σ4 u′n(β)B′n(ρ)Bn(ρ)un(β)− n

2σ2 ,

1
σ2 u′n(β)B′n(ρ)Wnun(β)− tr[Gn(ρ)].

(2.5)
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The QML estimation process proceeds as follows:

Solving the first two sets of equations of (2.5) for a given ρ gives the
constrained QMLEs of β and σ2,

β̃n(ρ) = [X ′
nB′n(ρ)Bn(ρ)Xn]

−1X ′
nB′n(ρ)Bn(ρ)Yn, and (2.6)

σ̃2
n(ρ) = 1

n Y ′
nB′n(ρ)Mn(ρ)Bn(ρ)Yn, (2.7)

where Mn(ρ) = In − Bn(ρ)Xn[X ′
nB′n(ρ)Bn(ρ)Xn]

−1X ′
nB′n(ρ).

The concentrated log-likelihood function for ρ upon substituting the
constrained QMLEs β̃n(ρ) and σ̃2

n(ρ) into `(θ):

`c
n(ρ) = − n

2 [log(2π) + 1] + log |Bn(ρ)| − n
2 log(σ̃2

n(ρ)). (2.8)

Maximising `c
n(ρ) numerically gives the unconstrained QMLE ρ̂n of ρ,

which upon substitutions gives the unconstrained QMLEs of β and σ2

as, β̂n ≡ β̃n(ρ̂n) and σ̃2
n ≡ σ̂2

n(ρ̂n).

Thus, the QMLE of the full parameter vector θ is θ̂n = (β̂′n, σ̂
2
n , ρ̂n)

′.
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Asymptotic properties of the QMLE of SE model

Let θ0 be the true value of the parameter vector θ that generates the data;
E(·) and Var(·) correspond to θ0; and Bn ≡ Bn(λ0), Gn ≡ Gn(λ0), etc.

Theorem 2.1. Under regularity conditions, we have θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N
(
0, limn→∞ nJ−1

n InJ−1
n
)
, (2.9)

(Liu & Yang 2015a), where Jn = −E[ ∂
∂θ Sn(θ0)] and In = Var[Sn(θ0)], with

Jn =

0BB@
1

σ2
0
X ′nB′nBnXn 0 0

∼ n
2σ4

0

1
σ2

0
tr(Gn)

∼ ∼ tr(Gs
nGn)

1CCA , and (2.10)

In =

0BB@
1

σ2
0
X ′nB′nBnXn

1
2σ3

0
γ0X ′nB′nιn

1
σ0

γ0X ′nB′ngn

∼ n
4σ4

0
(κ0 + 2) 1

2σ2
0
(κ0 + 2)tr(Gn)

∼ ∼ κ0g′ngn + tr(Gs
nGn)

1CCA , (2.11)

where ιn is a vector of ones, γ0 and κ0 are the measures of skewness and excess

kurtosis of εn,i , gn = diagv(Gn), Gn = Gn(ρ0), and Gs
n = Gn + G′n.
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Remarks:

diagv(Gn) forms a column vector by the diagonal elements of Gn.

Note that in deriving the last component (the ρ-ρ component) of Jn,
we have used the following matrix identity (given above):

∂
∂ρB−1

n (ρ) = −B−1
n (ρ)[ ∂

∂ρBn(ρ)]B−1
n (ρ). (2.12)

Clearly, when εn,i are iid normal, γ0 = κ0 = 0, and the asymptotic

result reduces to
√

n(θ̂n − θ0)
D−→ N

(
0, limn→∞ nJ−1

n
)
.

For deriving the expression for In = Var[Sn(θ0)], we have by (2.5),

Sn(θ0) =


1
σ2

0
X ′

nB′nεn,

1
2σ4

0
ε′nεn − n

2σ2
0
,

1
σ2

0
ε′nGnεn − tr(Gn),

of which the elements are linear or quadratic forms in εn.
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Based on the expression of Sn(θ0) and using the following lemma, one
can easily derive the analytical expression for Ins = Var[Sn(θ0)].

Lemma 2.1. Let An and Bn be n × n non-stochastic matrices and cn be
n×1 non-stochastic vector. For n×1 random vector εn of iid elements with
mean 0, variance σ2

0 , skewness γ0, and finite excess kurtosis κ0, we have

(i) Cov(c′nεn, ε
′
nAnεn) = σ3

0γ0c′nan,

(ii) Cov(ε′nAnεn, ε
′
nBnεn) = σ4

0κ0a′nbn + σ4
0 tr(AnBs

n),

where an = diagv(An), bn = diagv(Bn), and Bs
n = B′n + Bn.

Note from Lemma 2.1 (ii), we can obtain Var(ε′nAnεn) by letting An = Bn.
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Standard error estimate of the QMLE of SE model

With the results of Theorem 2.1, the asymptotic variance-covariance (VC)
matrix J−1

n InJ−1
n of θ̂n is estimated as follows:

1 estimate Jn by Ĵn = Jn(θ̂n),
2 estimate In by În = I(θ̂n), the plug-in estimators,
3 and estimate γ0 and κ0 in In by the sample skewness and excess

kurtosis of the QML residuals: ε̂n = εn(ρ̂n, β̂n) = Bn(ρ̂n)(Yn − Xnβ̂n).

The square roots of the diagonal elements of J−1
n (θ̂n)In(θ̂n)J−1

n (θ̂n) give
the estimated standard errors of θ̂n, robust against nonnormality.

t-ratios for the elements of θ0 can then be constructed, from which one can

judge whether the elements of θ0 are significantly different from 0, and thus

make a conclusion on whether a covariate or a spatial effect is significant.
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2.2.2. GLS-GM estimation of SE model

A hybrid method, combination of generalized least squares (GLS) and
generalized moments (GM), for estimating the SE model is introduced by
Kelejian and Prucha (1999). The ideas are

first to develop GM estimators ρ̃n and σ̃2
n for ρ and σ2, based on a

consistent ‘predictor’ ũn for un;

then to estimate Σn = Var(un) by Σ̃n = σ̃2
nB−1

n (ρ̃n)B′−1
n (ρ̃n), leading to

a feasible GLS estimate for β as

β̃n = (X ′
nΣ̃

−1
n Xn)

−1X ′
nΣ̃

−1
n Yn;

Under typical conditions, the GLS estimator of β based on Σn is
consistent and asymptotically normal;

Under additional conditions, e.g., ρ̃n and σ̃2
n are consistent, the

feasible GLS estimator is asymptotically equivalent to the GLS
estimator, and thus is also consistent and asymptotically normal.
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GM estimation. The generalized moments (GM) estimation of ρ and σ2 is
based on the following three moment conditions:

E( 1
n ε′nεn) = σ2,

E( 1
n ε′nW ′

nWnεn) = σ2n−1tr(W ′
nWn),

E( 1
n ε′nW ′

nεn) = 0.

By εn = Bn(ρ)un, we obtain the following sample moment conditions:

gn(ρ, σ2) =


1
n ũ′nB′n(ρ)Bn(ρ)ũn − σ2,

1
n ũ′nB′n(ρ)W ′

nWnBn(ρ)ũn − 1
nσ2tr(W ′

nWn),

1
n ũ′nB′n(ρ)W ′

nBn(ρ)ũn.

The GM estimators of ρ and σ2 are thus:

(ρ̃n, σ̃
2
n) = argmin [g′n(ρ, σ2)gn(ρ, σ2)],

Remark: ũn can be the ordinary least squares (OLS) residuals, i.e., the
residuals obtained from regressing Yn on Xn (Kelejian and Prucha, 1999).

Z. L. Yang, SMU ECON747, Term I 2024-25 13 / 56



2.2.3. Finite sample performance of the QMLE of SE model

Intuitively, spatial error dependence causes the disturbances un to lose ’a
lot’ of degrees of freedom (df). As a result, the QML estimation of ρ and σ2

may suffer from finite sample bias. This issue needs attention.

Liu and Yang (2015a) demonstrate based on Monte Carlo experiments:
ρ̂n can be severely downward biased, but the bias of ρ̂n does not spill over
much to β̂n;

However, the bias of ρ̂n does spill over to the estimate of Var(β̂n);

This makes the usual t-ratios for (the elements of) β0 more variable than
N(0, 1) and inferences for β0 based on it unreliable.

From the asymptotic results given in (2.9)-(2.11), we see that β̂n follows
asymptotically N(β0, σ

2
0(X ′

nB′nBnXn)
−1). Thus, inference for the linear

contrast in β0: c′0β0, is carried out based on the following t-ratio:

tSE(β0) =
c′0β̂n − c′0β0√

σ̂2
nc′0
[
X ′

nB′n(ρ̂n)Bn(ρ̂n)Xn
]−1c0

. (2.13)
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From the t-ratio given above, we see that

downward bias of ρ̂n causes σ̂2
n to be downward biased, and

severe bias of ρ̂n may cause X ′
nB̂′nB̂nXn to be severely biased for the

estimation of X ′
nB′nBnXn as seen from the expression:

X ′
nB′n(ρ̂n)Bn(ρ̂n)Xn = X ′

nB′nBnXn − (ρ̂n − ρ0)X ′
n(W

′
nBn + B′nWn)Xn

+ (ρ̂n − ρ0)
2X ′

nW ′
nWnXn.

If X ′
n(W ′

nBn + B′nWn)Xn ≥ 0, then

X ′
nB′n(ρ̂n)Bn(ρ̂n)Xn overestimates X ′

nB′nBnXn,

σ̂2
nc′0[X

′
nB′n(ρ̂n)Bn(ρ̂n)Xn]

−1c0 underestimates Var(c′0β̂n).

⇒ tSE(β0) tends to be ‘larger’ than N(0, 1) (or more variable),
⇒ confidence interval for c′0β0 has low coverage,
⇒ test of c′0β0 = 0 over rejects.

See Liu and Yang (2015b) or Lecture 4 for details on this issue. colorblueA
Monte Carlo comparison of QML and GLS-GM estimators is of interest.
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2.2.4. Empirical illustrations

Neighborhood Crime. In illustrating the applications of spatial
cross-sectional models, Anselin (1988, p.187) used the neighborhood
crime data corresponding to 49 contiguous neighborhood in Columbus,
Ohio, in 1980. These neighborhood correspond to census tracts, where

Crime: the response variable pertaining to the combined total of residential
burglaries and vehicle thefts per thousand household in the neighborhood.

Income and housing values (House), are the explanatory variables both in
thousand dollars.

A dummy variable East indicates whether the ‘neighborhood’ in the east or

west of a main north-south transportation axis.

The estimation results for the SLR-SE model are summarized in Table 2.1.

Both Income and House have significant and negative effects on Crime.

Data show a strong positive spatial error correlation in Crime among the
’neighbors’ in Columbus, Ohio, in 1980.
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Table 2.1. Estimation of SLR-SE Model: Neighborhood Crime
QMLE se t-Ratio rse rt-Ratio

constant 59.8924 5.3662 11.1611 5.3662 11.1611
income -0.9413 0.3306 -2.8477 0.3306 -2.8477
hvalue -0.3023 0.0905 -3.3407 0.0905 -3.3407

σ2 95.5737 19.8735 4.8091 27.1596 3.5190
ρ 0.5618 0.1339 4.1963 0.1343 4.1835

The dummy variable East can be added to the model to see whether there is
a significant difference between east and west in neighborhood crime.

Spatial Durbin terms (of Income and/or House) can be added to the model to
‘see’ if there are contextual effects on Crime.

There may be model specifications that can better reflect ‘spillover effects’ of
crimes in Columbus, Ohio.

See Lab1 for details on Matlab implementation of the estimation and

inference procedures introduced.
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Boston House Price. The data, form Harrison and Rubinfeld (1978),
corrected and augmented with longitude and latitude by Gilley and Pace
(1996), contains 506 observations (1 observation per census tract) from
Boston Metropolitan Statistical Area (Click for Data). The variables are:

MEDV: the median value (corrected) of owner-occupied homes in 1000’s;
crime: per capita crime rate by town;
zoning: proportion of residential land zoned for lots over 25,000 square feet;
industry: proportion of non-retail business acres per town;
charlesr: Charles River dummy variable (= 1 if tract bounds river; 0 o.w.);
nox: nitric oxides concentration (parts per 10 million);
room: average number of rooms per dwelling;
houseage: proportion of owner-occupied units built prior to 1940;
distance: weighted distances to five Boston employment centres;
access: index of accessibility to radial highways;
taxrate: full-value property-tax rate per 10,000;
ptratio: pupil-teacher ratio by town;
blackpop: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town;

lowclass: lower status of the population proportion.
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The spatial weight matrix is constructed using the Euclidean distance in
terms of longitude and latitude. A threshold distance e.g., 0.05, is chosen,
which gives a Wn matrix with 19.08% non-zero elements.

The results from fitting a SLR-SE model is summarized in Table 2.2.

The variables crime, noxsq, distance, taxrate, ptratio, and
lowclass all have strong (highly significant) negative effects on house price.

The variables zoning, rooms2, access, and blackpop all have strong
positive effects on house price.

Data show a strong positive SE correlation among neighboring regions.

SD effects can be added, and their significance can be inferred.

Alternative model specifications can be used.

See Lab2 for details on Matlab implementation of the estimation and

inference procedures introduced.
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Table 2.2. Estimation of SED Model: Boston House Price (MEDV)
QMLE se t-Ratio rse rt-Ratio

constant 29.6250 5.4956 5.3907 5.4956 5.3907
crime -0.1318 0.0276 -4.7693 0.0276 -4.7693

zoning 0.0379 0.0141 2.6887 0.0141 2.6887
industry -0.0139 0.0729 -0.1909 0.0729 -0.1909
charlesr -0.4975 0.8794 -0.5658 0.8794 -0.5658

noxsq -19.2666 5.2686 -3.6568 5.2686 -3.6568
rooms2 4.2812 0.3643 11.7516 0.3643 11.7516

houseage -0.0259 0.0139 -1.8604 0.0139 -1.8604
distance -1.6095 0.3021 -5.3276 0.3021 -5.3276

access 0.3174 0.0767 4.1407 0.0767 4.1407
taxrate -0.0130 0.0036 -3.6137 0.0036 -3.6137
ptratio -0.6143 0.1523 -4.0344 0.1523 -4.0344

blackpop 0.0106 0.0031 3.4261 0.0031 3.4261
lowclass -0.4270 0.0514 -8.2999 0.0514 -8.2999

σ2 14.9219 0.9697 15.3874 1.7700 8.4306
ρ 0.6947 0.0420 16.5461 0.0420 16.5332
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2.3. SLR Model with SL Dependence

The model. The spatial lag (SL) dependence model takes the form:

Yn = λWnYn + Xnβ + εn, (2.14)

where Yn, Xn, and Wn are as in (2.1). The errors εn,i are iid(0, σ2).

The term λWnYn says that the dependent variable of a specific spatial
unit may depend on the dependent variables of other spatial units.

This model captures the possible endogenous interaction effects.

A major difference between the SL and SE models is that the spatial
interactions in SE model changes only the variance of Yn, whereas in
SL model, it changes both the mean and the variance of Yn:

SE model: E(Yn) = Xnβ, Var(Yn) = σ2B−1
n (ρ)B′−1

n (ρ),

SL model: E(Yn) = A−1
n (λ)Xnβ, Var(Yn) = σ2A−1

n (λ)A′−1
n (λ),

where An(λ) = In − λWn, with it inverse being assumed to exist.
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Durbin-SL model. Similar to the SE model, the SL model (2.14) can also
be extended by adding a spatial Durbin term WnX ∗

n , where X ∗
n contains a

subset of regressors (excluding, e.g., the constant term), giving the
so-called Durbin-SL model of the form (Elhorst 2014, p.7):

Yn = λWnYn + Xnβ + WnX ∗
n β∗ + εn. (2.15)

By defining a new regressor matrix X = [Xn, WnX ∗
n ], and a new vector of

regression coefficients β = (β′, β∗′)′,

Durbin-SL model (2.15) has an identical form as the regular SL model, and all
the estimation and inference methods remain the same.

However, a problem of particular interest is to infer the significance of spatial
Durbin effect as in the Durbin-SE model, i.e., whether the data provide
sufficient evidence to infer β∗ 6= 0,

which can be carried out based on confidence intervals or tests for covariate
effects. The latter is to be introduced in Lecture 3.
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2.3.1. QML estimation of SL model

For ease of exposition, we proceed with Model (2.14). Using the matrix
An(λ), Model (2.14) has a reduced form:

An(λ)Yn = Xnβ + εn.

Assuming εn,i are iid N(0, σ2), the joint pdf of εn is

(2πσ2)−
n
2 exp(− 1

2σ2 ε
′
nεn),

which gives the joint pdf of Yn (or likelihood function) as the Jacobian of
transformation (εn → Yn) equals | ∂εn

∂Yn
| = |An(λ)|, assumed to be positive.

Thus, the log-likelihood function of θ = (β′, σ2, λ)′ is

`n(θ) = − n
2 log(2πσ2) + log |An(λ)|

− 1
2σ2 [An(λ)Yn − Xnβ]′ [An(λ)Yn − Xnβ] . (2.16)

Maximizing `n(θ) gives the MLE θ̂n of θ if εn,i are truly iid N(0, σ2),
otherwise the QMLE if εn,i are merely iid(0, σ2).

Z. L. Yang, SMU ECON747, Term I 2024-25 23 / 56



Similar to the case of SE model, the MLE or QMLE θ̂n can be obtained by
solving the score-based estimating equations Sn(θ) = 0, where

Sn(θ) = ∂
∂θ `n(θ) =


1
σ2 X ′

nεn(β, λ),

1
2σ4 ε

′
n(β, λ)εn(β, λ)− n

2σ2 ,

1
σ2 Y ′

nW ′
nεn(β, λ)− tr[Fn(λ)],

(2.17)

εn(β, λ) = An(λ)Yn − Xnβ, and Fn(λ) = WnA−1
n (λ). Thus, the process of

obtaining θ̂n can be simplified:

Solving the first two sets of equations in (2.17) for a given λ, we obtain
the constrained QMLEs for β and σ2, letting Mn = In − Xn(X ′

nXn)
−1X ′

n:

β̃n(λ) = (X ′
nXn)

−1X ′
nAn(λ)Yn, σ̃2

n(λ) = 1
n Y ′

nA′n(λ)MnAn(λ)Yn. (2.18)

Substituting β̃n(λ) and σ̃2
n(λ) back into (2.16) for β and σ2, we obtain

the partially maximized or the concentrated loglikelihood of λ:

`c
n(λ) = −n

2
[log(2π) + 1]− n

2
log σ̂2

n(λ) + log |An(λ)|. (2.19)

Maximizing `c
n(λ) gives λ̂n, β̂n ≡ β̃n(λ̂n), σ̂2

n ≡ σ̃2
n(λ̂n), and hence θ̂n.
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Asymptotic properties of the QMLE of SL model.

A similar set of notation is followed, e.g., An ≡ An(λ0), and Fn ≡ Fn(λ0).

Theorem 2.2. Under regularity conditions, we have θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N
(
θ0, limn→∞ nJ−1

n InJ−1
n ), (2.20)

(Lee 2004), where Jn = −E[ ∂
∂θ′ Sn(θ0)] and In = Var[Sn(θ0)], with

Jn =

0BB@
1

σ2
0
X ′nXn 0 1

σ0
X ′nηn

0 n
2σ4

0

1
σ2

0
tr(Fn)

1
σ0

η′nXn
1

σ2
0

tr(Fn) η′nηn + tr(F s
n Fn)

1CCA , and (2.21)

In =

0BB@
1

σ2
0
X ′nXn

1
2σ3

0
γ0X ′nιn

1
σ0

X ′nηn + 1
σ0

γ0X ′nfn

∼ n
2σ4

0
+ n

4σ4
0
κ0

1
σ2

0
tr(Fn) + 1

2σ2
0
γ0ι

′
nηn + 1

2σ2
0
κ0tr(Fn)

∼ ∼ η′nηn + tr(F s
n Fn) + κ0f ′nfn + 2γ0f ′nηn

1CCA , (2.22)

where fn = diagv(Fn), F s
n = Fn + F ′n, ηn = σ−1

0 GnXnβ0, and γ0 and κ0 are the

skewness and excess kurtosis of εn,i .
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Standard error estimate of the QMLE of SL model

The results (2.20)-(2.22) provide QML-based statistical inferences
concerning the parameters of the SLR model with SL dependence.

Again, Jn can be estimated by the plug-in estimator Jn(θ̂n), or simply
by its sample counterpart − ∂

∂θ Sn(θ)|θ=θ̂n
.

The variance of the score In can be consistently estimated by the
plug-in method, i.e., plugging

θ̂n in In for θ0, and
γ̂n and κ̂n for γ0 and κ0,
where γ̂n and κ̂n are the sample skewness and excess kurtosis of the
estimated errors ε̂n = εn(β̂n, λ̂n) = An(λ̂n)Yn − Xnβ̂n.

These results give the estimates of robust standard errors of the
QMLE θ̂n – robust against nonnormality of the error distribution.

When it is known that εn is normally distributed, then In = Jn, and√
n(θ̂n − θ0)

D−→ N
(
θ0, limn→∞ nJ−1

n ).
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2.3.2. GMM estimation of SL model

The added regressor WnYn in the SLD model (2.14) is endogenous, as

E[(WnYn)
′εn] = σ2

0 tr(Fn(λ0)) 6= 0,

i.e., the elements of WnYn are correlated with the elements of εn. This can
easily seen from the expression WnYn = Fn(λ0)Xnβ0 + Fn(λ0)εn, which
follows from the reduced form of (2.14): Yn = A−1

n (λ0)Xnβ + A−1
n (λ0)εn.

Therefore, OLS estimate of ϑ = (β′, λ)′ is not consistent.

If Wn is row normalized and |λ| < 1, then (In − λWn)
−1 =

∑∞
i=0 λiW i

n,
⇒ instrumental variables (IVs) for WnYn: WnXn, W 2

n Xn, · · · ,
⇒ linear moments: [Xn, Qn]

′εn(ϑ),
• εn(ϑ) = An(λ)Yn − Xnβ,

• Qn contains columns of [WnXn, W 2
n Xn, · · · ], linearly independent of Xn.

For n × n matrices Pjn with tr(Pjn) = 0, E(ε′nPjnεn) = tr(PjnE(εnε
′
n)) = 0,

⇒ quadratic moments: ε′n(ϑ)Pjnεn(ϑ), j = 1, · · · , m.
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Intuitions: Note that WnYn = Fn(λ0)Xnβ0 + Fn(λ0)εn.

The chosen Qn is correlated with FnXnβ0 but uncorrelated with εn,
⇒ Q instruments the mean of WnYn;

Pjnεn is uncorrelated with εn, and thus it instruments the error of
WnYn, if Pjn is chosen such that Pjnεn is correlated with Fnεn,
⇒ Pjn can be Wn, W 2

n − 1
n tr(W 2

n )In, etc.

Letting Qn = (Xn, Qn), the GMM estimator of ϑ0 is

ϑ̃n = argmin g′n(ϑ)Ωngn(ϑ),

where gn(ϑ) =
{
ε′n(ϑ)Qn, ε′n(ϑ)P1nεn(ϑ), · · · , ε′n(ϑ)Pmnεn(ϑ)

}′, and Ωn is
the GMM weight matrix. The asymptotic VC matrix of ϑ̃n is given as:

AVar(ϑ̃n) = (Σ′nΩnΣn)
−1(Σ′nΩnΓnΩnΣn)(Σ

′
nΩnΣn)

−1,

where Γn = Var[gn(ϑ0)] and Σn = −E[ ∂
∂ϑ′ gn(ϑ0)], with exact expressions:
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Σn =


Q′nXn Q′nFnXnβ0

0 σ2
0 tr(Ps

1nFn)
...

...
0 σ2

0 tr(Ps
mnFn)

 , (2.23)

Γn =

(
σ2

0Q′nQn σ3
0γ0Q′nωnm

σ3
0γ0ω

′
nmQn σ4

0(Λmn + κ0ω
′
nmωnm)

)
, (2.24)

where Ps
kn = P ′kn + Pkn, k = 1, · · · , m, ωnm =

{
diagv(P1n), · · · , diagv(Pmn)},

and Λmn = {tr(PjnPs
kn), j , k = 1, · · · , m}.

Simplest GMM: Ωn = In;

Optimal GMM: Ωn = Γ−1
n , not feasible as Γn contains σ2

0 , γ0 and κ0;

Feasible optimal GMM: Ωn = Γ̃−1
n , where Γ̃n is a ‘consistent estimate’

of Γn, based on initial consistent estimate of ϑ0;

Best OPGMM: choose ‘best’ moment functions, . . . (see Lee, 2007).
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A simple choice for Γ̃n is Γ̃2SLS based on the 2SLS estimation:

(i) let Zn = (Xn, WnYn), and compute the 2SLSE of ϑ0:

ϑ̃2SLS = [Z ′nQn(Q′nQn)
−1Q′nZn]

−1Z ′nQn(Q′nQn)
−1Q′nYn,

(ii) compute the 2SLE residuals ε̃2SLS = An(λ̃2SLS)− Xnβ̃2SLS, and the
sample variance, skewness and excess kurtosis of ε̃2SLS to give
consistent estimates of σ2, γ0 and κ0.

The feasible OGMM estimator of ϑ0 is

ϑ̃◦n = argmin g′n(ϑ)Γ̃−1
2SLSgn(ϑ),

and a consistent estimate of the asymptotic VC matrix of ϑ̃◦n is

(Σ̃′2SLSΓ̃
−1
2SLSΣ̃2SLS)

−1.

• For more details on GMM estimation of SL model, see Lee (2007).
• A thorough Monte Carlo comparison of QMLE and GMME are desirable,

based on ‘strong’ or ‘weak’ instruments.
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2.3.3. Finite sample performance of QMLE of SL model

Like the case of SE dependence, the existence of SL dependence also
causes the QMLE of the spatia lag parameter to be biased.

Yang (2015) presents a rigorous study on the finite sample properties
of the QML estimator of λ.

The QMLE λ̂n is downward biased – the denser is the spatial weight
matrix the more its is downward biased.

Yang (2015) proposes a general method of bias correction, which is
shown to be quite effective in removing the bias.

Liu and Yang (2015b) show that the usual t-statistics for covariate
effects tend to reject the null hypothesis of ‘no effect’ too often. They
proposed finite sample improved test statistics based on the
bias-correction method of Yang (2015).

These methods will be introduced in the subsequent lectures.
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2.3.4. Empirical illustrations

Boston House Price. See Sec. 2.2.4 for detailed description of the data
and the construction of spatial weight matrix.

The results from fitting a SLR-SL model is summarized in Table 2.3.

Similar to the SLR-SE model, crime, noxsq, distance, taxrate,
ptratio, and lowclass all have strong negative effects on house price.

The variables zoning, rooms2, access, and blackpop all have strong
positive effects on house price.

Data show a strong positive SL dependence among neighboring regions.

SD effects can be added, and their significance can be inferred.

Alternative model specifications can be used.

QMLE-bc (bias-corrested QMLE of Yang 2015) results are slightly different.

See Lab2 for details on Matlab implementation of the estimation and

inference procedures introduced.
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Table 2.3. QML Estimation of SL Model: Boston House Price
QMLE rse t-Ratio QMLE-bc rse-bc t-Ratio-bc

constant 14.5396 5.0687 2.8685 13.4682 5.0337 2.6756
crime -0.0831 0.0300 -2.7678 -0.0819 0.0300 -2.7326

zoning 0.0448 0.0124 3.6167 0.0447 0.0124 3.6151
industry 0.0353 0.0555 0.6368 0.0361 0.0554 0.6506
charlesr 1.1181 0.7850 1.4243 1.0414 0.7835 1.3291

noxsq -11.4788 3.5190 -3.2620 -11.1715 3.5104 -3.1824
rooms2 3.7066 0.3800 9.7543 3.7016 0.3794 9.7564

houseage 0.0021 0.0119 0.1733 0.0021 0.0119 0.1792
distance -1.2240 0.1842 -6.6431 -1.2117 0.1838 -6.5921

access 0.2553 0.0604 4.2258 0.2529 0.0603 4.1921
taxrate -0.0110 0.0034 -3.2225 -0.0109 0.0034 -3.2075
ptratio -0.5349 0.1247 -4.2880 -0.5145 0.1242 -4.1427

blackpop 0.0078 0.0024 3.2216 0.0078 0.0024 3.1968
lowclass -0.3679 0.0483 -7.6215 -0.3602 0.0481 -7.4952

σ2 18.3358 2.2937 7.9938 18.2882 2.2845 8.0053
λ 0.3833 0.0399 9.6044 0.4020 0.0386 10.4204

Z. L. Yang, SMU ECON747, Term I 2024-25 33 / 56



2.4. SLR Model with SLE Dependence

The model. Adding both spatial lag and error (SLE) into the linear
regression models, we have a more general SLR model:

Yn = λW1nYn + Xnβ + un, un = ρW2nun + εn. (2.25)

It is also called the SARAR model in the literature, which emphasizes that
the model contains a spatial autoregressive (SAR) term in response and a
SAR term in error in line with the terms used in time series model.

As for the SE and SL models, a spatial Durbin term, W3nX∗n β∗, can also be
added into the model to capture the so-called contextual effects.

Again, it is of interest to infer if β∗ = 0.

The W matrices are in general different to capture different types of spatial
interactions corresponding to SL, SE and SD effects, but they are allowed to
be the same as far as the methods are concerned.

For ease of exposition, we work with Model (2.25), thinking that the SD term,
if any, has already been merged into the covariates effect Xnβ.
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2.4.1. QML estimation of SLE model.

The model (2.25) has the reduced form:

Bn(ρ)An(λ)Yn = Bn(ρ)Xnβ + εn.

where An(λ) = In − λW1n and Bn(ρ) = In − ρW2n as defined earlier.

The Jacobian of the transformation (εn → Yn) is |Bn(ρ)An(λ)|.

The quasi Gaussian loglikelihood function of θ = (β′, σ2, λ, ρ)′ is

`n(θ) =− n
2 log(2πσ2) + log |An(λ)|+ log |Bn(ρ)|

− 1
2σ2 [Yn(δ)− Xn(ρ)β]′ [Yn(δ)− Xn(ρ)β] , (2.26)

where δ = (λ, ρ)′, Xn(ρ) = Bn(ρ)Xn, and Yn(δ) = Bn(ρ)An(λ)Yn.

Maximizing `n(θ) gives the MLE θ̂n of θ if {εi} are iid normal.
Otherwise, θ̂n is the QMLE of θ.

Assumptions: |An(λ)| > 0, |Bn(ρ)| > 0, and A−1
n (λ) and B−1

n (ρ) exist.
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The (quasi) score function, Sn(θ) = ∂
∂θ `n(θ), has the form:

Sn(θ) =



1
σ2 X′n(ρ)εn(β, δ),

1
2σ4 ε

′
n(β, λ)εn(β, δ)− n

2σ2 ,

1
σ2 Y ′

nW ′
1nB′n(ρ)εn(β, δ)− tr[Fn(λ)],

1
σ2 ε

′
n(β, δ)Gn(ρ)εn(β, δ)− tr[Gn(ρ)],

(2.27)

• εn(β, δ) = Yn(δ)− Xn(ρ)β, Fn(λ) = W1nA−1
n (λ), and Gn(ρ) = W2nB−1

n (ρ).

Given δ, solving the first two components of the quasi score equations,
Sn(θ) = 0, we obtain the constrained (Q)MLEs of β and σ2:

β̃n(δ) = [X′n(ρ)Xn(ρ)]−1X′n(ρ)Yn(δ), (2.28)

σ̃2
n(δ) = 1

n Y′n(δ)Mn(ρ)n(ρ)Yn(δ), (2.29)

where Mn(ρ) = In − Xn(ρ)[X′n(ρ)Xn(ρ)]−1X′n(ρ). Substituting β̃n(δ) and
σ̃2

n(δ) back into (2.26) gives the concentrated quasi loglikelihood for δ:

`c
n(δ) = − n

2 [ln(2π) + 1]− n
2 ln(σ̂2

n(δ)) + ln |An(λ)|+ ln |Bn(ρ)|. (2.30)
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Maximizing (2.30) gives the QMLE δ̂n of δ, and thus the QMLEs of β and
σ2 as β̂n ≡ β̃n(δ̂n) and σ̂2

n ≡ σ̃2
n(δ̂n). Write θ̂n = (β̂′n, σ̂

2
n , δ̂′n)

′.

Plugging β̃n(δ) and σ̃2
n(δ) into the δ-component of Sn(θ) and simplifying,

we have the concentrated quasi score (CQS) function of δ:

Sc
n(δ) =


−tr(G1n(λ)) +

nY′n(δ)Mn(ρ)F̄n(δ)Yn(δ)

Y′n(δ)Mn(ρ)Yn(δ)
,

−tr(Gn(ρ)) +
nY′n(δ)Mn(ρ)Gn(ρ)Mn(ρ)Yn(δ)

Y′n(λ)Mn(ρ)Yn(δ)
,

(2.31)

where F̄n(δ) = Bn(ρ)Fn(λ)B−1
n (ρ). Maximizing `c

n(δ) ⇔ solving Sc
n(δ) = 0.

The CQS function Sc
n(δ) is the key expression for

deriving the score-based tests for the spatial effects,

for performing bias-correction on the QMLE δ̂n,

to be introduced in the subsequent lectures.
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Asymptotic properties of the QMLE of SLE model.

Theorem 2.3. Under some regularity conditions, we have θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N
(
θ0, limn→∞ nJ−1

n InJ−1
n ), (2.32)

(Jin and Lee 2013), where Jn = −E[ ∂
∂θ′ Sn(θ0)] and In = Var[Sn(θ0)], with

Jn =

0BBBB@
1

σ2
0
X′nXn 0 1

σ0
X′nµn 0

∼ n
2σ4

0

1
σ2

0
tr(Fn)

1
σ2

0
tr(Gn)

∼ ∼ µ′nµn + tr(F̄ s
n F̄n) tr(Gs

nF̄n)

∼ ∼ ∼ tr(Gs
nGn)

1CCCCA , (2.33)

In = Jn +

0BBBB@
0 γ0

2σ3
0
X′nιn

γ0
σ0

X′n f̄n γ0
σ0

X′ngn

∼ nκ0
4σ4

0

κ0
2σ2

0
tr(Fn) + γ0

2σ2
0
ι′nµn

κ0
2σ2

0
tr(Gn)

∼ ∼ κ0 f̄ ′n f̄n + 2γ0 f̄ ′nµn κ0g′n f̄n + γ0g′nµn

∼ ∼ ∼ κ0g′ngn

1CCCCA , (2.34)

where µn = σ−1
0 BnFnXnβ0, f̄n = diag(F̄n), F̄ s

n = F̄n + F̄ ′n, F̄n = F̄n(δ0) = BnFnB−1
n ,

and all others quantities are defined earlier.
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Standard error estimation of the QMLE of SLE model.

The results (2.32)-(2.34) form the base for statistical inferences, e.g.,
confidence intervals, LM tests, Wald tests, for the elements of θ.

Jn is estimated by the plug-in estimator Jn(θ̂n), or by − ∂
∂θ Sn(θ)|θ=θ̂n

.

In is estimated by the ‘plug-in’ estimator as well, i.e., In(θ̂n, γ̂n, κ̂n),
obtained by plugging in θ̂n, γ̂n and κ̂n,

γ̂n and κ̂n are the sample skewness and excess kurtosis of the QML
residuals ε̂n = Yn(δ̂n)− Xn(ρ̂n)β̂n.

Square roots of diagonal elements of J−1
n (θ̂n)In(θ̂n, γ̂n, κ̂n)J−1

n (θ̂n)

give the estimated standard errors of the elements of θ̂n.
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2.4.2. GMM estimation

Lee and Liu (2010) extend the GMM framework for the SL model to a
high-order spatial linear regression model, SARAR(p, q), including the
SLE model, or SARAR(1, 1), discussed above. The set of moment
functions for SARAR(1,1) remains in a similar form as for SL model:

gn(ϑ) =
{
ε′n(ϑ)Qn, ε′n(ϑ)P1n εn(ϑ), · · · , ε′n(ϑ)Pmn εn(ϑ)

}′
,

except that now ϑ = (β′, λ, ρ)′ and εn(ϑ) = Bn(ρ)[An(λ)Yn − Xnβ].

Now, letting again Σn = −E[ ∂
∂ϑ′ gn(ϑ0)] and Γn = Var[gn(ϑ0)], we have

Σn =


Q′nXn, Q′nF̄nXnβ0, 0

0, σ2
0 tr(Ps

1nF̄n), σ2
0 tr(Ps

1nGn)
...

...
...

0, σ2
0 tr(Ps

mnF̄n), σ2
0 tr(Ps

mnGn)

 , (2.35)

and Γn identical in expression as that given in (2.24).
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The feasible OGMM estimate of ϑ0 is thus

ϑ̃n = argmin g′n(ϑ)Γ̃−1
n gn(ϑ)

where Γ̃n is a consistent estimate of Γn, which can be obtained based on
the generalized 2SLS estimate of Kelejian and Prucha (1998):

(i) let Zn = (Xn, WnYn), and compute the G2SLSE of ϑ0:

ϑ̃G2SLS = [Z ′nB′n(ρ̃n)Qn(Q′nQn)
−1Q′nBn(ρ̃n)Zn]

−1

Z ′nB′n(ρ̃n)Qn(Q′nQn)
−1Q′nBn(ρ̃n)Yn,

where ρ̃n is a consistent initial estimator of ρ.

(ii) compute the G2SLE residuals ε(ϑ̃G2SLS), and the sample variance,
skewness and excess kurtosis of ε(ϑ̃G2SLS) to give consistent
estimates of σ2

0 , γ0 and κ0.

Finally, the IV matrix Qn can be taken as a subset of linearly independent
columns of {Xn, W1nXn, W 2

1nXn, W2nXn, W 2
2nXn} (containing Xn), and the

Pjn matrices can be constructed similarly to these for the SL model.
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2.4.3. Finite sample performance of the QMLE of SLE model

With both SL and SE effects in the model, the finite sample performance
of the QMLEs may be of more concern.

Liu and Yang (2015b) extended the bias-correction procedure of Yang (2015)
from SL model to SLE model. They focus on improving the finite sample
performance of t-ratios for covariates effects.

Their bootstrap methods can be followed for a Monte Carlo comparison of
QMLE δ̂n and bias-corrected δ̂n on their finite sample performance.

Details on bias-corrected estimation of spatial autocorrelation will be given in
Lecture 4.

A Monte Carlo comparison of QML-type and GMM-type estimators is desired.

Z. L. Yang, SMU ECON747, Term I 2024-25 42 / 56



2.4.4. Empirical illustrations

Boston House Price. See Sec. 2.2.4 for detailed description of the data
and the construction of spatial weight matrix.

The results from fitting a SLR-SLE model is summarized in Table 2.4.

The conclusions on covariates effects are largely unchanged.

Interestingly, spatial error effect is strong and positive as in the SLR-SE
model, but with the existence of SE effect the SL effects becomes
insignificant.

Alternative model specifications with different types of spatial weight matrices
for SL and SE effects may help addressing this issue.

SD effects can be added, and their significance can be inferred.

QMLE-bc (bias-corrested QMLE of Yang 2015) results are slightly different.

See Lab2 for details on Matlab implementation of the estimation and

inference procedures introduced.
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Table 2.4. Estimation of SLE Model: Boston House Price
QMLE rse t-Ratio QMLE-bc rse-bc t-Ratio-bc

constant 27.8251 5.9648 4.6649 27.8251 5.9648 4.6649
crime -0.1301 0.0279 -4.6660 -0.1301 0.0279 -4.6660

zoning 0.0390 0.0141 2.7763 0.0390 0.0141 2.7763
industry -0.0071 0.0723 -0.0976 -0.0071 0.0723 -0.0976
charlesr -0.3970 0.8775 -0.4524 -0.3970 0.8775 -0.4524

noxsq -18.5059 5.1765 -3.5750 -18.5059 5.1765 -3.5750
rooms2 4.2958 0.3680 11.6746 4.2958 0.3680 11.6746

houseage -0.0240 0.0139 -1.7300 -0.0240 0.0139 -1.7300
distance -1.6254 0.2897 -5.6097 -1.6254 0.2897 -5.6097

access 0.3177 0.0756 4.2047 0.3177 0.0756 4.2047
taxrate -0.0131 0.0036 -3.6294 -0.0131 0.0036 -3.6294
ptratio -0.6201 0.1513 -4.0984 -0.6201 0.1513 -4.0984

blackpop 0.0104 0.0031 3.3818 0.0104 0.0031 3.3818
lowclass -0.4234 0.0521 -8.1350 -0.4234 0.0521 -8.1350

σ2 15.0920 1.8042 8.3648 15.0920 1.8042 8.3648
λ 0.0569 0.0679 0.8381 0.0506 0.0679 0.7456
ρ 0.6595 0.0593 11.1309 0.6893 0.0593 11.6339

Z. L. Yang, SMU ECON747, Term I 2024-25 44 / 56



Appendix: Basics on Consistency and Asymptotic Normality

This appendix presents some basics for establishing consistency and asymptotic
normality of a QML estimator or an M-estimator. Some Monte Carlo results are
also presented in supporting the asymptotic arguments.

We use SLR-SE model to demonstrate typical assumptions required for the
asymptotic analysis.

Assumption 1: The true ρ0 is in the interior of the compact parameter set P.

Assumption 2: {εn,i } are iid with mean 0, variance σ2, and E|εn,i |4+δ < ∞, ∀δ > 0.

Assumption 3: Xn has full column rank k, its elements are uniformly bounded
constants, and limn→∞

1
n X ′nB′n(ρ)Bn(ρ)Xn exists and is non-singular for ρ near ρ0.

Assumption 4: The elements {wij} of Wn are at most of order h−1
n uniformly for all

i and j, where hn can be bounded or divergent but subject to limn→∞
hn
n = 0; Wn is

bounded in both row and column sum norms and its diagonal elements are zero.
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Assumption 5: Bn is non-singular and B−1
n is bounded in both row and column

sum norms. Further, B−1
n (ρ) is bounded in either row or column sum norm,

uniformly in ρ ∈ P.

Assumption 6: lim
n→∞

hn
n [log |σ2

0B−1
n B

′−1
n | − log |σ2

n(ρ)B−1
n (ρ)B

′−1
n (ρ)|] 6= 0, ∀ρ 6= ρ0.

Consistency. Let δ be the parameter vector in the concentrated quasi
loglikelihood `c

n(δ), obtained from the full loglikelihood `n(θ) by replacing β

and σ2 by their constrained QMLEs.

Let δ0 be the true value of θ which takes values in the parameter
space Θ. The expectation operator ‘E’ corresponds the true θ0.

It is only necessary to prove the consistency of δ̂n as the consistency
of β̂n and σ̂n immediately follow if plim 1

n X ′
nXn exists and is invertible.

Define ¯̀n(θ) = E[`n(θ)], the expected loglikelihood at a general θ.

Define ¯̀c
n(δ) = maxβ,σ2 ¯̀n(θ).
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The consistency of δ̂n follows, i.e., δ̂n
p−→ δ0, if

(a) supδ:d(δ,δ0)≥ε
¯̀c
n(δ) < ¯̀c

n(δ0), for every ε > 0,

(b) supθ∈Θ
1
n |`

c
n(δ)− ¯̀c

n(δ)|
p−→ 0.

The condition (a) is the so-called identification uniqueness condition for δ0

which ensures that ¯̀c
n(δ) has a identifiably unique maximizer that

converges to δ0.

This together with condition (b) ensures that the difference between the
maximizer θ̂n of `c

n(δ) and the maximizer of ¯̀c
n(δ) gets smaller and smaller

as n goes large.

See White (1994, Theorem 3.4) or van der Vaar (1998, Theorem 5.7).

For detailed applications of these theorems, see Liu and Yang (2015a) for
the case of SE model, Lee (2004) for the case of SL model, and Jin and
Lee (2013) for the case of SLE model.
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Asymptotic normality. Assume the QMLE θ̂n which maximizes `n(θ), can
be equivalently obtained by solving the estimating equation Sn(θ) = 0,
where Sn(θ) = ∂

∂θ `n(θ) is the score function. Assume θ̂n
p−→ θ0. Then, by

Taylor series expansion, we have

0 = 1√
n Sn(θ̂n) = 1√

n Sn(θ0) +
[ 1

n
∂

∂θ′ Sn(θ
∗)
] √

n(θ̂n − θ0) + op(1),

where θ∗ lies elementwise between θ̂n and θ0. The asymptotic normlity of
θ̂n follows if

(a) 1√
n Sn(θ0)

D−→ N(0, limn→∞
1
nIn),

(b) 1
n

[
∂

∂θ′ Sn(θ
∗)− ∂

∂θ′ Sn(θ0)
] p−→ 0, and

(c) 1
n

[
∂

∂θ′ Sn(θ0)− E
(

∂
∂θ′ Sn(θ0)

)] p−→ 0.

As the elements of Sn(θ0) are typically linear or quadratic forms in εn due
to the use of Gaussian quasi likelihood, the result (a) can be proved using
the central limit theorem (CLT) for linear-quadratic forms of Kelejian and
Prucha (2001), and Cramér-Wold devise.
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The conditions (b) and (c) can be proved by applying some law of large
numbers (LLN).

See for details Liu and Yang (2015a) for the case of SE model, Lee (2004)
for SL model, and Jin and Lee (2013) for SLE model.

Clearly, if the above conditions hold, then

0 = 1√
n Sn(θ0) +

[ 1
n E
(

∂
∂θ′ Sn(θ0)

)] √
n(θ̂n − θ0) + op(1)

= 1√
n Sn(θ0)−

[ 1
nJn(θ0)

)] √
n(θ̂n − θ0) + op(1)

It follows that
√

n(θ̂n − θ0) =
[ 1

nJn(θ0)
)]−1 1√

n Sn(θ0) + op(1). It follows that

Var[
√

n(θ̂n − θ0)] =
[ 1

nJn(θ0)
)]−1

Var[ 1√
n Sn(θ0)]

[ 1
nJn(θ0)

)]−1.

If further E[Sn(θ0)] = 0 or at least 1
n E[Sn(θ0)] → 0, then

√
n(θ̂n − θ0)

D−→ N(0, lim
n→∞

nJ−1
n InJ−1

n ).
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Some Illustrative Monte Carlo Results for SLR-SL Model

Tables A1-A3 presents some Monte Carlo results for the finite sample
performance of λ̂n, λ̂bc2

n (2nd-order bias-corrected λ̂n), and λ̂bc3
n (3rd-order

bias-corrected λ̂n), of the SLR-SL model. The results reveals:

λ̂n can be quite biased,

λ̂bc2
n almost removes the bias,

λ̂bc3
n does not improve much over λ̂bc2

n ,

More results from Yang (2015) show that with a denser spatial weight
matrix, the bias of λ̂n becomes larger.

When sample size increases, all three estimators ‘converge’ to the
true value of λ.

When sample size is not large, it is necessary to carry out the
bias-correction, in particular on the QMLE of the spatial parameter(s).
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Table A1. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model

λ n λ̂n λ̂bc2
n λ̂bc3

n

Queen Contiguity, Normal Errors

.50 50 .411 [.195](.174) .492 [.175](.175) .497 [.175](.175)
100 .459 [.123](.116) .498 [.117](.117) .500 [.117](.117)
200 .480 [.078](.076) .499 [.075](.075) .499 [.075](.075)
500 .493 [.049](.048) .501 [.048](.048) .501 [.048](.048)

.25 50 .163 [.222](.204) .242 [.209](.209) .246 [.210](.210)
100 .212 [.146](.140) .248 [.142](.142) .250 [.143](.143)
200 .231 [.094](.092) .250 [.093](.093) .250 [.093](.093)
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060)

.00 50 -.078 [.229](.216) -.006 [.224](.224) -.003 [.226](.226)
100 -.034 [.157](.153) -.002 [.156](.156) -.001 [.157](.157)
200 -.018 [.106](.104) -.000 [.105](.105) .000 [.105](.105)
500 -.008 [.068](.067) -.000 [.068](.068) -.000 [.068](.068)

-.25 50 -.317 [.233](.223) -.255 [.236](.236) -.254 [.237](.237)
100 -.279 [.164](.161) -.253 [.166](.166) -.253 [.166](.166)
200 -.266 [.112](.111) -.252 [.112](.112) -.251 [.112](.112)
500 -.256 [.073](.072) -.250 [.073](.073) -.250 [.073](.073)
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Table A2. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model

λ n λ̂n λ̂bc2
n λ̂bc3

n

Queen Contiguity, Normal Mixture Errors

.50 50 .420 [.182](.164) .494 [.165](.165) .498 [.165](.165)
100 .462 [.120](.114) .499 [.114](.114) .500 [.114](.114)
200 .482 [.076](.074) .500 [.074](.074) .500 [.074](.074)
500 .492 [.049](.048) .500 [.048](.048) .500 [.048](.048)

.25 50 .169 [.207](.190) .241 [.195](.195) .244 [.195](.195)
100 .213 [.140](.135) .248 [.136](.136) .249 [.137](.137)
200 .230 [.092](.090) .249 [.090](.090) .249 [.090](.090)
500 .242 [.060](.060) .250 [.060](.060) .250 [.060](.060)

.00 50 -.070 [.217](.206) -.004 [.213](.213) -.002 [.214](.214)
100 -.032 [.150](.147) -.002 [.150](.150) -.001 [.150](.150)
200 -.018 [.104](.103) -.001 [.103](.103) -.001 [.103](.103)
500 -.008 [.068](.067) -.001 [.067](.067) -.001 [.067](.067)

-.25 50 -.314 [.223](.213) -.258 [.224](.224) -.257 [.225](.225)
100 -.275 [.155](.153) -.251 [.157](.157) -.250 [.157](.157)
200 -.263 [.111](.110) -.249 [.112](.112) -.249 [.112](.112)
500 -.257 [.072](.072) -.251 [.072](.072) -.251 [.072](.072)
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Table A3. Monte Carlo Mean[rmse](sd) of Estimators of λ in SL Model

λ n λ̂n λ̂bc2
n λ̂bc3

n

Queen Contiguity, Lognormal Errors

.50 50 .426 [.163](.146) .491 [.146](.146) .493 [.146](.146)
100 .465 [.110](.105) .498 [.105](.105) .498 [.105](.105)
200 .482 [.072](.069) .499 [.069](.069) .499 [.069](.069)
500 .491 [.047](.046) .499 [.046](.046) .499 [.046](.046)

.25 50 .179 [.185](.171) .241 [.174](.174) .244 [.174](.174)
100 .216 [.128](.124) .247 [.126](.125) .248 [.126](.125)
200 .232 [.087](.085) .249 [.085](.085) .249 [.085](.085)
500 .242 [.058](.057) .249 [.057](.057) .249 [.057](.057)

.00 50 -.067 [.198](.186) -.011 [.192](.191) -.008 [.192](.192)
100 -.029 [.139](.136) -.003 [.138](.138) -.002 [.138](.138)
200 -.017 [.099](.097) -.002 [.098](.098) -.001 [.098](.098)
500 -.007 [.065](.064) -.000 [.065](.065) .000 [.065](.065)

-.25 50 -.307 [.199](.191) -.258 [.198](.198) -.256 [.199](.199)
100 -.272 [.142](.140) -.252 [.144](.144) -.251 [.144](.144)
200 -.264 [.105](.104) -.251 [.105](.105) -.250 [.105](.105)
500 -.256 [.070](.070) -.250 [.070](.070) -.250 [.070](.070)
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