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12.1 Introduction

This lecture is based on Yang (2021a, Empirical Economics).

Simple and reliable tests are proposed for testing the existence of dynamic
and/or spatial effects in fixed-effects panel data models with small T and
possibly heteroskedastic errors. The tests are constructed based on the
adjusted quasi scores (AQS), which correct the conditional quasi scores
given the initial differences to account for the effect of initial values.

To improve the finite sample performance, standardized AQS tests are
also derived, which are shown to have much improved finite sample
properties. All the proposed tests are robust against nonnormality, but
some are not robust against cross-sectional heteroskedasticity (CH).

A different type of adjustments are made on the AQS functions, leading to
a set of tests that are fully robust against unknown CH.

Monte Carlo results show excellent finite sample performance of the
standardized versions of the AQS tests.

Z. L. Yang, SMU ECON747, Term I 2024-25 2 / 83



Introduction

Panel data (PD) model has been an important tool for applied economics
researchers over the past few decades.

However, there have been growing concerns on whether panel models are
dynamic in nature due to the impacts from the past to the current and
future ‘economic’ performance, and whether the models contain spatial
dependence due to interactions among economic agents or social actors,
e.g., neighbourhood, copy-catting, social network, and peer group effects.

In other words, there have been growing concerns from applied
researchers on whether a dynamic spatial panel data model (DSPD) is
more appropriate than a regular PD model, or a regular dynamic panel
data (DPD) model, or a static spatial panel data (SPD) model.

Thus, it is highly desirable to device simple and reliable tests helping
applied researchers to choose the most appropriate model.

Z. L. Yang, SMU ECON747, Term I 2024-25 3 / 83



The model

Consider the following dynamic spatial panel data (DSPD) model studied
by Yang (2018a) under large-n and small-T , presented in Lecture 10:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + X ′
t β + Zγ + µ+ αt1n + ut ,

ut = λ3W3ut + vt , t = 1, . . . ,T , (12.1)

where for r = 1,2,3, Wr are the given n × n spatial weight matrices, λr

are, respectively, the spatial lag (SL), space-time lag (STL), and spatial
error (SE) parameter,

yt : n × 1 vector of response

Xt : n × p matrix of time-varying regressors,

µ: n × 1 vector of individual-specific effects,

vt : n × 1 vector of idiosyncratic errors, iid(0, σ2
v ) or inid(0, σ2

vi).

Note: When T is small, the αt1n part can be merged into X ′
t β.
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Some remarks

We focus on the fixed-effects (FE) DSPD model and small T , i.e, µ is
allowed to be correlated with Xt in an arbitrary manner.

Model (12.1) is fairly general, embedding several important
submodels popular in the literature.

As T is fixed and small, the time specific effects {αt} are always
treated as fixed effects and are merged into Xt .

The individual specific effects µ can be treated as fixed effects (FE),
random effects (RE) or correlated random effects (CRE).

Yang (2018a) present a unified, initial conditions free, M-estimation
and inference method for the FE-DSPD model,

Li and Yang (2020b) extend this M-estimation and inference strategy
to allow for unknown CH in the model, and

Li and Yang (2020a) present an M-estimation and inference method
for CRE-DSPD model, including RE-DSPD model as a special case.
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The main issue of the lecture

A question arises naturally: in practical applications, do we really need
such a general and complicated model, or does a simpler model suffice as
it gives easier interpretations of the results?

This suggests that before applying this general model, it is helpful to carry
out some specification tests to identify a suitable model based on the data.

To be exact, the tests of interest concern the dynamic and spatial
parameters δ = (ρ, λ1, λ2, λ3)

′ = (ρ, λ′)′. They can be:

marginal or joint tests: under the null, one or more elements of δ are
set to zero and the rest are treated as free parameters;

or conditional tests: under the null, one or more element of δ are set
to zero, given the rest already being set to zero.

This lecture concerns with this general testing problem by focusing on the
DSPD model with small T , fixed effects, and possibly unknown CH.
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The main hypotheses

The specific tests of interest are as follows.

Joint test HPD
0 : δ = 0, (regular FE panel data (PD) model suffices).

When HPD
0 is not rejected, then one proceeds with the regular panel data

model with FE and the decision is clear. When HPD
0 is rejected, then at

least one element of δ is not zero and one does not know the exact cause
of rejection and hence it would be necessary to carry out some sub-joint
or marginal tests to identify the cause of such a rejection.

Joint test HDPD
0 : λ = 0, (regular FE dynamic panel data (DPD) model suffices).

If HDPD
0 is not rejected, then the cause of rejecting HPD

0 is due to ρ being
non-zero and the FE-DPD model is chosen; otherwise, one needs to
proceed with the following test:

Marginal test HSTPD
0 : ρ = 0, (space-time panel data (STPD) model suffices).
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If HSTPD
0 is not rejected, then the cause of rejecting HPD

0 is that at least one
element of λ is not zero. In this case, one may proceed further to identify
which element of λ is not zero by carrying out conditional tests on one or
two elements of λ, given ρ = 0.

If HSTPD
0 is rejected after HDPD

0 has been rejected, it is clear that at least one
element of λ is non-zero when ρ is treated as a free parameter, and the
marginal tests on λr should be carried out, respectively, for r = 1,2,3:

Marginal test HDSPD1
0 : λ1 = 0, (FE-DSPD model without λ1 suffices).

Marginal test HDSPD2
0 : λ2 = 0, (FE-DSPD model without λ2 suffices).

Marginal test HDSPD3
0 : λ3 = 0, (FE-DSPD model without λ3 suffices).

Note that the marginal test HDSPD3
0 is quite interesting as the general model

(12.1) reduces to a DSPD model with SL and STL effects under the null,
which is the model considered by Yu, de Jong and Lee (2008) under large
n and large T set-up, allowing fixed individual and time effects.
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The marginal test HDSPD2
0 is also interesting as the null model becomes a

DSPD model with both SL and SE effects, popular in practical applications.
Another pair of joint tests of particular interest are,

Joint test HDSPD4
0 : λ1 = λ2 = 0, (FE-DSPD model with only SE effect suffices).

Joint test HDSPD5
0 : λ2 = λ3 = 0, (FE-DSPD model with only SL effect suffices).

When HDSPD4
0 is true, the general model given in (12.1) reduces to a DSPD

model with only the SE effect.

This model is extensively studied by Su and Yang (2015) under large
n and small T set-up, with either random or fixed individual effects.

However, specification test from Model (12.1) to this reduced model
has not been considered.

When HDSPD5
0 is true, Model (12.1) reduces to a DSPD model with only

the SL effect. This is perhaps the most popular DSPD model among
applied researchers. However, a test for its adequacy is not available.
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The last test that we would like to highlight is:

Joint test HSDP
0 : ρ = λ2 = 0, (FE spatial panel data (FE-SPD) model suffices).

Under HSDP
0 , the model reduces to a static spatial panel data model with

SL and SE (or SARAR) effects. QML estimation and inference for this
model were given by Lee and Yu (2010), LM tests for the spatial effects
are given by Debarsy and Ertur (2010), and LM-type tests robust against
unknown CH are given by Baltagi and Yang (2013b).

Conditional tests might be of interest besides the joint or marginal tests
introduced above. By conditional tests we mean tests for certain types of
effects, give some other effect(s) are removed from the model.

For example, given HDSPD2
0 is not rejected, i.e., λ2 is set to zero, one

might be interested in testing further whether ρ = 0, i.e., whether the
static SARAR model suffices;

given HSTPD
0 is not rejected, i.e., ρ = 0, one might be interested in

testing further whether λ2 = 0 and if so a static SARAR model suffices.
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Literature

Despite of interest, methods for testing the above hypotheses do not seem
to be available, in particular, when T is small.

There are two related works, GMM gradient tests (Taspinar et al., 2017)
and robust LM tests (Bera et al., 2019), but both require a large panel,
concern parametric misspecifications, and do not allow for unknown CH.

In contrast, the literature on statistical tests for spatial regression models
or static spatial panel data models is much bigger. See, among others,

Anselin et al. (1996), Anselin and Bera (1998), Anselin (2001), Kelejian and

Prucha (2001), Yang (2010, 2015, 2018c), Born and Breitung (2011), Baltagi and

Yang (2013a,b), Robinson and Rossi (2014, 2015a), Jin and Lee (2015, 2018), Liu

and Prucha (2018) for spatial regression models; Baltagi et al. (2003), Baltagi et

al. (2007), Debarsy and Ertur (2010), Baltagi and Yang (2013a,b), Robinson and

Rossi (2015b), and Xu and Yang (2020) for static panel data models.
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Approaches and the tests

This lecture introduces a general and yet simple method, the adjusted
quasi score (AQS) method, for constructing test statistics for various
hypothesis concerning the DSPD models with fixed-effects, small T and
possibly heteroskedastic errors.

1 The AQS tests is a score-type test, which is preferred as it requires
only the estimation of the null model.

2 The initial constructions of the tests are based on the unified
M-estimation method of Yang (2018a):

first adjusting the conditional quasi score functions given the initial
differences to achieve unbiasedness and consistency,

and then developing a martingale difference representation of the
AQS function to give a consistent estimate of the variance-covariance
matrix of the AQS functions.
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The resulting AQS tests are shown to have standard asymptotic null
behavior and are free from the specifications of the initial conditions.

Further corrections are made on the concentrated AQS functions,
giving a set of standardized AQS (SAQS) tests with much better finite
sample properties.

All the proposed tests are robust against nonnormality.

Certain tests are fully robust against unknown CH; the others are not.

For this, alternative modifications are made by following the
M-estimation strategy of Li and Yang (2020b) to give tests that are
fully robust against unknown CH.

Monte Carlo results show excellent performance of the SAQS tests
under homoskedasticity, and the full robustness of the last test
against unknown CH.
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Overview of the chapter

This lecture presents
1 the AQS tests under homoskedasticity;
2 the standardized AQS tests with better finite sample performance;
3 the CH-robut AQS tests;
4 asymptotic properties of all these tests;
5 Monte Carlo results for the finite sample performance of the tests

introduced;
6 empirical applications to illustrate the proposed tests.
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12.2. Adjusted Quasi Score Tests

The methodology we adopt in constructing tests statistics for testing
various hypotheses requires the estimation of the null models. In certain
cases, e.g., HPD

0 , the null models are very simple, but in other cases they
are not as the null models may still contain the dynamic parameter ρ
and/or some of the spatial parameters. Also, the construction of the AQS
tests requires the AQS function of the full model. Thus, it is necessary to
outline the unified M-estimation method of Yang (2018a).

First-differencing Model (12.1) to eliminate µ, we have,

∆yt = ρ∆yt−1 + λ1W1∆yt + λ2W2∆yt−1 + ∆Xtβ + ∆ut , (12.2)

∆ut = λ3W3∆ut + ∆vt , fort = 2,3, . . . ,T .

• The time-invariant variables Z are also eliminated;
• The terms corresponding to αt are merged into Xt , as T is fixed;
• The parameters left in Model (12.2) are ψ = {β′, σ2

v , ρ, λ
′}′.
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The AQS function

Note that ∆y1 depends on both the initial observations y0 and the first
period observations y1. Thus, even if y0 is exogenous, y1 and hence ∆y1

is not. Let ψ0 be the true value of ψ and E(·) correspond to ψ0.

Yang’s (2018a) M-estimation strategy goes as follows:

formulate the conditional quasi likelihood function as if vt are normal
and ∆y1 is exogenous to give the conditional quasi score vector S(ψ),

then adjust S(ψ) to give the AQS vector S∗(ψ0) = S(ψ0)− E[S(ψ0)],

and then estimate ψ by solving the AQS equations S∗(ψ) = 0.

Interestingly, this method finds root in Neyman and Scott (1948) on
modified likelihood equations.

Chudik and Pesaran (2017) use similar ideas to give a bias-corrected
method of moments estimation.
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Stacking the vectors and matrices:

• ∆Y = {∆y ′2, . . . ,∆y ′T}′, ∆Y−1 = {∆y ′1, . . . ,∆y ′T−1}′,
• ∆X = {∆X ′

2, . . . ,∆X ′
T}′, ∆v = {∆v ′2, . . . ,∆v ′T}.

Let ⊗ be the Kronecker product and Im an m ×m identity matrix. Define

• Wr = IT−1 ⊗Wr , r = 1,2,3,
• Br (λr ) = IT−1 ⊗ Br (λr ), with Br (λr ) = In − λr Wr , for r = 1 and 3;
• B2(ρ, λ2) = IT−1 ⊗ B2(ρ, λ2), with B2(ρ, λ2) = ρIn + λ2W2.

Denote B1 = B1(λ1) and B10 = B1(λ10); similarly for other quantities.

Assume (i) the errors {vit} are iid across i and t > 0, (ii) the regressors {Xt} are

exogenous with respect to {vit}, (iii) both B−1
10 and B−1

30 exist; and (iv) the following

‘knowledge’ about the process in the past:

Assumption A. Under Model (12.1), (i) the processes started m periods before

the start of data collection, the 0th period, and (ii) if m ≥ 1, ∆y0 is independent of

future errors {vt , t ≥ 1}; if m = 0, y0 is independent of future errors {vt , t ≥ 1}.
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Yang (2018a) shows: E(∆Y−1∆v ′) = −σ2
v0D−10B−1

30 and
E(∆Y∆v ′) = −σ2

v0D0B−1
30 , where

D−1 =


In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

BT−4(In − B)2, BT−5(In − B)2, . . . B − 2In, In

 B−1
1 ,

D =


B − 2In, In, . . . 0
(In − B)2, B − 2In, . . . 0
...

...
. . .

...
BT−3(In − B)2, BT−4(In − B)2, . . . B − 2In

 B−1
1 ,

and B ≡ B(ρ, λ1, λ2) = B−1
1 (λ1)B2(ρ, λ2).
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These immediately lead to E[S(ψ0)], and to S∗(ψ0) = S(ψ0)− E[S(ψ0)], the AQS
vector at ψ0, which takes the form at a general ψ:

S∗(ψ) =

8>>>>>>>>>><>>>>>>>>>>:

1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− N

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1 + tr(C−1D−1),

1
σ2

v
∆u(θ)′Ω−1W1∆Y + tr(C−1DW1),

1
σ2

v
∆u(θ)′Ω−1W2∆Y−1 + tr(C−1D−1W2),

1
σ2

v
∆u(θ)′(C−1 ⊗A)∆u(θ)− (T − 1)tr(G3),

(12.3)

where θ = (β′, ρ, λ1, λ2)
′, ∆u(θ) = B1(λ1)∆Y − B2(ρ, λ2)∆Y−1 −∆Xβ,

G3 = W3B−1
3 , A = 1

2 (W ′
3B3 + B′3W3), Ω = C ⊗ (B′3B3)

−1, noting B3 = B3(λ3), and

C =

0BBBBB@
2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

1CCCCCA
(T−1)×(T−1)
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The M-estimation

Solving S∗(ψ) = 0 leads to the M-estimator ψ̂M of ψ. This root-finding process can
be simplified by first solving concentrated AQS equations, S∗c (δ) = 0, with β and
σ2

v being concentrated out from (12.3), to give the M-estimator δ̂M of δ, where

S∗c (δ) =

8>>>>>><>>>>>>:

1
σ̂2

v (δ)
∆û(δ)′Ω−1∆Y−1 + tr(C−1D−1),

1
σ̂2

v (δ)
∆û(δ)′Ω−1W1∆Y + tr(C−1DW1),

1
σ̂2

v (δ)
∆û(δ)′Ω−1W2∆Y−1 + tr(C−1D−1W2),

1
σ̂2

v (δ)
∆û(δ)′(C−1 ⊗A)∆û(δ)− (T − 1)tr(G3),

(12.4)

∆û(δ) = ∆u(β̂(δ), ρ, λ1, λ2), β̂(δ) = (∆X ′Ω−1∆X )−1∆X ′Ω−1(B1∆Y − B2∆Y−1),
and σ̂2

v (δ) = 1
N ∆û(δ)′Ω−1∆û(δ), where N = n(T − 1). The M-estimators of β and

σ2
v are thus β̂M ≡ β̂(δ̂M) and σ̂2

v,M ≡ σ̂2
v (δ̂M).

Yang (2018a) show that under regularity conditions the M-estimator ψ̂M = (β̂′M, σ̂
2
v,M,

δ̂′M)
′ is

√
N-consistent and asymptotically normal.

The M-estimators under the constraints imposed by various hypotheses will

remain to be
√

N-consistent and asymptotically normal.
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Construction of the AQS tests

It is important to note that the adjustments (non-stochastic terms in (12.3)) are free
from the initial conditions, and hence the resulting AQS function and the
M-estimators are free from the initial conditions.

The AQS functions given in (12.3) are the key elements in the construction of the
AQS tests. In this section, we first formulate the AQS test in a unified manner, and
then present some details for the tests defined in Sec. 12.1.

The construction of the joint and marginal AQS tests depends critically on the
availability of the variance-covariance (VC) matrix, Γ∗(ψ0) = 1

N Var[S∗(ψ0)].

The dynamic nature of Model (12.1) makes such an estimation very difficult,
as the expression of Γ∗(ψ0) encounters the initial values problem.

To overcome this difficulty, Yang (2018a) proposed to decompose the AQS function

into a sum of martingale difference (MD) sequences so that the

outer-product-of-martingale-differences (OPMD) consistently estimates Γ∗(ψ0),

free from the initial conditions!
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MD representation

Notation. Let diag(A) form a diagonal matrix by the diagonal elements of a
square matrix A and blkdiag(Ak ) form a block-diagonal matrix by matrices {Ak}.
The subscript ‘n’ is often dropped shall no confusion arise.

Yang (2018a) developed the representations: ∆Y = R ∆y1 + η + S∆v and
∆Y−1 = R−1∆y1 + η−1 + S−1∆v , leading to the expression:

S∗(ψ0) =

8>>>>>>>>><>>>>>>>>>:

Π′1∆v ,
∆v ′Φ1∆v − N

2σ2
v0
,

∆v ′Ψ1∆y1 + ∆v ′Π2 + ∆v ′Φ2∆v + tr(C−1D−10),

∆v ′Ψ2∆y1 + ∆v ′Π3 + ∆v ′Φ3∆v + tr(C−1D0W1),

∆v ′Ψ3∆y1 + ∆v ′Π4 + ∆v ′Φ4∆v + tr(C−1D−10W2),

∆v ′Φ5∆v − (T − 1)tr(G30),

(12.5)

Π1= 1
σ2

v0
Cb∆X , Π2= 1

σ2
v0

Cbη−1, Π3= 1
σ2

v0
CbW1η, Π4= 1

σ2
v0

CbW2η−1, Cb=C−1 ⊗ B30;

Φ1= 1
2σ4

v0
(C−1 ⊗ In), Φ2= 1

σ2
v0

CbS−1, Φ3= 1
σ2

v0
CbW1S, Φ4= 1

σ2
v0

CbW2S−1,

Φ5= 1
2σ2

v0
[C−1 ⊗ (G′

30 + G30)], Ψ1= 1
σ2

v0
CbR−1, Ψ2= 1

σ2
v0

CbW1R, Ψ3= 1
σ2

v0
CbW2R−1.
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Furthermore, ∆y1 = 1T−1 ⊗∆y1, R = blkdiag(B0,B2
0, . . . ,BT−1

0 ),
R−1 = blkdiag(In,B0, . . . ,BT−2

0 ), η = BB−1
10 ∆Xβ0, η−1 = B−1B−1

10 ∆Xβ0,
S = BB−1

10 B−1
30 , S−1 = B−1B−1

10 B−1
30 , and

B=

0BBBB@
In 0 . . . 0 0
B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

1CCCCA , B−1 =

0BBBB@
0 0 . . . 0 0
In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

1CCCCA .

The expression (12.5) is the key to the proof of asymptotic normality of 1√
N

S∗(ψ0),
and to the development of OPMD estimate of the VC matrix of S∗(ψ0), so that an
AQS test can be constructed.

Note that S∗(ψ0) contains three types of stochastic elements:

Π′∆v , ∆v ′Φ∆v , and ∆v ′Ψ∆y1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being

N × p or N × 1, and Φ and Ψ being N × N.
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As noted in Yang (2018a), the closed form expressions for variances of Π′∆v and
∆v ′Φ∆v , and their covariance can readily be derived, but the closed-form
expressions for the variance of ∆v ′Ψ∆y1 and its covariances with Π′∆v and
∆v ′Φ∆v depend on the knowledge of the distribution of ∆y1, which is unavailable.

Yang (2018a) went on to give a unified method of estimating the VC matrix of AQS
function, the OPMD estimate, which is summarized as follows.

For a square matrix A, let Au , Al and Ad be, respectively, its upper-triangular,
lower-triangular, and diagonal matrix such that A = Au + Al + Ad .

Denote by Πt , Φts and Ψts the submatrices of Π, Φ and Ψ, partitioned
according to t , s = 2, . . . ,T .

Define Ψt+ =
PT

s=2 Ψts, Θ = Ψ2+(B30B10)
−1, ∆y◦1 = B30B10∆y1, and

∆y∗1t = Ψt+∆y1.

Z. L. Yang, SMU ECON747, Term I 2024-25 24 / 83



Define

g1i =
PT

t=2 Π′it∆vit , (12.6)

g2i =
PT

t=2(∆vit∆ξit + ∆vit∆v∗it − σ2
v0dit), (12.7)

g3i = ∆v2i∆ζi + Θii(∆v2i∆y◦1i + σ2
v0) +

PT
t=3 ∆vit∆y∗1it , (12.8)

where for (12.7), ξt =
PT

s=2(Φ
u′
st + Φl

ts)∆vs, ∆v∗t =
PT

s=2 Φd
ts∆vs, and {dit} are the

diagonal elements of CΦ; for (12.8), {∆ζi} = ∆ζ = (Θu + Θl)∆y◦1 , and
diag{Θii} = Θd . Then,

Π′∆v =
Pn

i=1 g1i , (12.9)

∆v ′Φ∆v − E(∆v ′Φ∆v) =
Pn

i=1 g2i , (12.10)

∆v ′Ψ∆y1 − E(∆v ′Ψ∆y1) =
Pn

i=1 g3i , (12.11)

and {(g′1i , g2i , g3i)
′,Fn,i}n

i=1 form an MD sequence, where Fn,i = Fn,0 ⊗ Gn,i , a

product σ-field, with Fn,0 being the σ-field generated by (v0,∆y0), and {Gn,i} an

increasing sequence of σ-fields generated by

(vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n.
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OPMD estimator of the VC marix

Now, following the above results,

for each Πr , r = 1, 2, 3, 4, defined in (12.5), define g1ri according to (12.6);

for each Φr , r = 1, . . . , 5, defined in (12.5), define g2ri according to (12.7); and

for each Ψr , r = 1, 2, 3, defined in (12.5), define g3ri according to (12.8).

Define

gi = (g′11i , g21i , g31i +g12i +g22i , g32i +g13i +g23i , g33i +g14i +g24i , g25i)
′. (12.12)

Then, S∗(ψ0) =
Pn

i=1 gi , where {gi ,Fn,i} form a vector MD sequence. It follows
that Γ∗(ψ0) = Var[S∗(ψ0)] =

Pn
i=1 E(gig′i ), and therefore its sample analogue,

bΓ∗ =
Pn

i=1 ĝi ĝ′i , (12.13)

gives a consistent OPMD estimator of Γ∗(ψ0), i.e.,

plimn→∞
1
N

Pn
i=1[ĝi ĝ′i − Γ∗(ψ0)] = 0,

where ĝi is obtained by replacing ψ0 in gi by ψ̂M and ∆v by its observed

counterpart b∆v , noting that ∆y1 is observed.
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A generic AQS test of dynamic and spatial effects

To construct the AQS tests, the estimates (ψ̂M, ∆̂v) of the full model are
replaced by the constrained estimates at the null, (ψ̃M, ∆̃v).

This allows us to develop the AQS test in a unified manner:

let δ = (π′, ϕ′)′ and the null hypothesis specifies ϕ = 0.

Let ϑ = (β′, σ2, π′)′ and therefore ψ = (ϑ′, ϕ′)′.

Let Σ∗(ψ0) = −E[ ∂
∂ψ′ S∗(ψ0)].

Partition Σ∗(ψ) and Γ∗(ψ) according to ϑ and ϕ, and denote their
submatrices by Σ∗

ab(ψ) and Γ∗ab(ψ), a = ϑ, ϕ, b = ϑ, ϕ.

Let S∗(ψ) = (S∗′
ϑ (ψ),S∗′

ϕ (ψ))′ and gi = (g′i,ϑ,g
′
i,ϕ)′.

Clearly, the construction of the test of ϕ = 0 depends on S∗
ϕ(ϑ̃, 0) and its

variance, where ϑ̃ is the null estimate of ϑ.
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Under mild conditions, a Taylor expansion leads to the following
asymptotic MD representation:

1√
N

S∗
ϕ(ϑ̃, 0k ) = 1√

N
S∗
ϕ(ϑ0,0k )− 1√

N
Σ∗
ϕϑΣ

∗−1
ϑϑ S∗

ϑ(ϑ0,0k ) + op(1)

= 1√
N

∑n
i=1(gi,ϕ − Λgi,ϑ) + op(1), (12.14)

where Λ = Σ∗
ϕϑΣ

∗−1
ϑϑ , and k = dim(ϕ). Clearly {gi,ϕ − Λgi,ϑ} form a vector

MD sequence with respect to Fn,i . Therefore,

Var[ 1√
N

S∗
ϕ(ϑ̃, 0k )] = 1

N

∑n
i=1[(gi,ϕ − Λgi,ϑ)(gi,ϕ − Λgi,ϑ)

′] + o(1). (12.15)

An AQS-based test for testing the hypothesis H0 : ϕ = 0 is thus,

TM = S∗′
ϕ (ϑ̃, 0k )

{ ∑n
i=1(g̃i,ϕ − Λ̃g̃i,ϑ)(g̃i,ϕ − Λ̃g̃i,ϑ)

′}−1S∗
ϕ(ϑ̃, 0k ), (12.16)

where M = PD, DPD, DSPD1, · · · , DSPD5, and SPD, associated with the null
hypotheses defined in Sec. 1, Λ = Σ∗

ϕϑΣ
∗−1
ϑϑ , and all ‘tilde’ quantities are

the estimates of the corresponding quantities at the null.
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Asymptotic property of the generic AQS test

The asymptotic distribution of T M
AQS, i.e., χ2

k , can be proved under some
regularity conditions generic to all tests, and some additional regularity
conditions specific for a given test. The generic conditions are:

Assumption B: The idiosyncratic errors {vit} are independent across i = 1, . . . , n
and t = 0, 1, . . . ,T , with E(vit) = 0, Var(vit) = σ2

v0, and E|vit |4+ε0 <∞ for some
ε0 > 0.

When homoskedasticity is in question, Assumption B is relaxed to:

Assumption B∗: The idiosyncratic errors {vit} are independent across
i = 1, . . . , n and t = 0, 1, . . . ,T , with E(vit) = 0, Var(vit) = σ2

v0hni such that
0 < hni ≤ c <∞ and 1

n

Pn
i=1 hni = 1, and E|vit |4+ε0 <∞ for some ε0 > 0.

Assumption C: The time-varying regressors {Xt , t = 0, 1, . . . ,T} are exogenous,

their values are uniformly bounded, and limN→∞
1
N ∆X ′∆X exists and is

nonsingular.
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Assumption D: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order ι−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i ; (ii) ιn/n → 0 as n →∞; (iii)
{Wr , r = 1, 2, 3} are uniformly bounded in both row and column sums.

Assumption D allows the degree of spatial dependence, e.g., the number of
neighbors each spatial unit has, to grow with the sample size but in a lower speed.

As a result, the convergence rate of the estimators of certain parameters,
e.g., the spatial error parameter, may need to be adjusted down to

p
N/ιn.

See Lee (2004), Liu and Yang (2015), Su and Yang (2015), and Yang (2018a)
for more details.

However, this feature is not explicitly reflected in the subsequent
developments as the implementations of the tests do not require ι.

Additional conditions on the initial differences are necessary when the null model

contains the dynamic term, and additional conditions on B1 and B3 are necessary

when the null model contains λ1 and λ3 terms.
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Assumption E: For Φ, n× n, uniformly bounded in either row or column sums with
elements of uniform order ι−1

n , and φ, n × 1, with elements of uniform order ι−1/2
n ,

(i) ιn
n ∆y ′1Φ∆y1 = Op(1), ιn

n ∆y ′1Φ∆v2 = Op(1); (ii) ιn
n [∆y1 − E(∆y1)]

′φ = op(1);
(iii) ιn

n [∆y ′1Φ∆y1 − E(∆y ′1Φ∆y1)]=op(1); (iv) ιn
n [∆y ′1Φ∆v2 − E(∆y ′1Φ∆v2)]=op(1).

Assumption F: B−1
1 and B−1

2 exist, and are uniformly bounded in both row and

column sums in absolute value, for (λ1, λ3) in a neighborhood of (λ10, λ30).

Theorem 12.1

Under Assumptions A-F, if ϑ̃ is
√

N-consistent, we have under HM
0 ,

TM
D−→ χ2

k , as n →∞,

where M denotes a null model specified in Sec. 12.1.

Note that in a special case where Γ∗ ≈ Σ∗ at the null, i.e., the information matrix

equality (IME) holds (asymptotically), the AQS test is asymptotically equivalent to

TM,0 = S∗′(ψ̃)(
Pn

i=1 g̃i g̃′i )
−1S∗(ψ̃), where ψ̃ = (ϑ̃′, 0′k )

′. The cases under which the

above can be true are those with the null model being a static panel data model

(i.e., ρ = λ2 = 0) and the errors are Gaussian.
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Joint AQS test of HPD
0 : δ = 0

To facilitate practical applications of the AQS tests, we present details for
each of the hypothesis postulated in Sec. 12.1 so that a specific test can
directly be applied without going through the complicated general theory.

More interestingly, we show that certain tests are valid under Assumption
B∗, i.e., robust against unknown cross-sectional heteroskedasticity (CH).

The first is the Joint test HPD
0 : δ = 0. Under HPD

0 , the model DSPD(δ) is reduced to
the simplest PD model, and the estimation of the model at the null is simply the
ordinary least squares (OLS) estimation, i.e.,

β̃ = (∆X ′C−1∆X )−1∆X ′C−1∆Y and σ̃2
v = 1

N ∆ṽ ′C−1∆ṽ ,

where ∆ṽ = ∆Y −∆X β̃, leading to ψ̃ = (β̃′, σ̃2
v , 0′4)

′.

Under HPD
0 , B1 = B3 = In, and B2 = 0n where 0n denotes an n × n matrix of zeros.

It is easy to see that E[S∗(ψ0)|HPD
0

] = 0 and that β̃ and σ̃2
v are robust against

unknown CH, implying the AQS test of HPD
0 : δ = 0 is robust against unknown CH!
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The AQS joint test of HPD
0 : δ = 0, cont’d

Corollary 12.1

Under Assumptions A, B∗, C and D, TPD|HPD
0

D−→ χ2
4, as n →∞.

The very attractive feature of this joint test is that it is robust against
unknown CH as specified in Assumption B∗, besides being robust against
nonnormality of the idiosyncratic errors vit .

The same goes to the conditional tests where under the null and the given
‘condition’ the model becomes a pure panel data model.
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Joint AQS test of HDPD
0 : λ = 0

The second is the joint test HDPD
0 : λ = 0. Under HDPD

0 , B1 = B3 = In, and B2 = ρIn.
The constrained M-estimators of β and σ2

v , given ρ, are

β̃(ρ) = (∆X ′C−1∆X )−1∆X ′C−1(∆Y − ρ∆Y−1) and σ̃2
v (ρ) = 1

N ∆ṽ ′(ρ)C−1∆ṽ(ρ),

where ∆ṽ(ρ) = ∆Y − ρ∆Y−1 −∆X β̃(ρ).

The constrained M-estimator of ρ under HDPD
0 is

ρ̃ = arg
n

1
σ̃2

v (ρ)
∆ṽ ′(ρ)C−1∆Y−1 + n

` 1
1−ρ

− 1−ρT

T (1−ρ)2

´
= 0

o
, (12.17)

leading to the constrained M estimators of β and σ2
v as β̃ = β̃(ρ̃) and σ̃2

v = σ̃2
v (ρ̃).

The constrained M-estimator of ϑ is thus ϑ̃ = (β̃′, σ̃2
v , ρ̃)

′.

The concentrated AQS function for ρ contained in (12.17) clearly shows that
the M-estimator is not only consistent when T is fixed but also eliminates the
bias of order O(T−1).

In contrast, the estimator based on the unadjusted score is inconsistent when
T is fixed and has a bias of order O(T−1) when T grows with n.

See Hahn and Kuersteiner (2002), and Yang (2018a,b) for more discussions.
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Joint AQS test of HDPD
0 : λ = 0, cont’d

The following lemma shows that the restricted M-estimator ρ̃ defined in
(12.17) is robust against unknown CH.

Lemma 12.1

Under Assumptions A, B∗, and C-E, if ρ0 is in the interior of a compact
parameter space, then for the DPD model, we have, as n →∞,

ϑ̃ = (β̃′, σ̃2
v , ρ̃)

′ p−→ ϑ0 and
√

N(ϑ̃− ϑ0)
D−→ N(0,Ψ),

for a suitably defined Ψ.

Corollary 12.2

Under the assumptions of Lemma 12.1, TDPD|HDPD
0

D−→ χ2
3, as n →∞.

This gives another interesting result: TDPD is robust against nonnormality
and unknown CH, applicable to all tests with DPD model as null.
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Marginal AQS test of HSTPD
0 : ρ = 0

Under the null HSTPD
0 : ρ = 0, B2 = λ2W2. The constrained M-estimator λ̃ of

λ solves the following estimating equations:
1

σ̃2
v (λ)

∆ũ(λ)′Ω−1W1∆Y + tr(C−1DW1) = 0,
1

σ̃2
v (λ)

∆ũ(λ)′Ω−1W2∆Y−1 + tr(C−1D−1W2) = 0,
1

σ̃2
v (λ)

∆ũ(λ)′(C−1 ⊗A)∆ũ(λ)− (T − 1)tr(G3) = 0,

where ∆ũ(λ) = B1∆Y − λ2W2∆Y−1 −∆X β̃(λ), and β̃(λ) and σ̃2
v (λ) are

those given below (12.4) by setting ρ = 0.

Let β̃ = β̃(λ̃), σ̃2
v = σ̃2

v (λ̃), and ϑ̃ = {β̃′, σ̃2
v , λ̃

′}′. Based on the result of Li and Yang

(2020b), it is easy to see that plimn→∞
1
n S∗(ψ0)|ρ=0 6= 0 under unknown CH.

Therefore ϑ̃ cannot be consistent under unknown CH and TSTPD is generally not

robust against unknown CH. Sec. 12.4 presents a CH-robust version of this test.
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Marginal test HDSPDr
0 : λr = 0

With r = 1, or 2 or 3, we have three marginal tests corresponding one
specific type of spatial effects. Among these three marginal tests, the test
of HDSPD2

0 : λ2 = 0 is the most interesting one as under HDSPD2
0 the model is

reduced to the popular DSPD model with SL and SE effects. We consider
only this case as the others can be handled in the similar manner. Under
HDSPD2

0 , B2 = ρIn. The constrained M-estimators (ρ̃, λ̃1, λ̃3) of (ρ, λ1, λ3)

solve the following estimating equations:
1

σ̃2
v (ρ,λ1,λ3)

∆ũ(ρ, λ1, λ3)
′Ω−1∆Y−1 + tr(C−1D−1) = 0,

1
σ̃2

v (ρ,λ1,λ3)
∆ũ(ρ, λ1, λ3)

′Ω−1W1∆Y + tr(C−1DW1) = 0,
1

σ̃2
v (ρ,λ1,λ3)

∆ũ(ρ, λ1, λ3)
′(C−1 ⊗A)∆ũ(ρ, λ1, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(ρ, λ1, λ3) = B1∆Y − ρ∆Y−1 −∆X β̃(ρ, λ1, λ3), and β̃(ρ, λ1, λ3)

and σ̃2
v (ρ, λ1, λ3) are those given below (12.4) by setting λ2 = 0.

Let β̃ = β̃(ρ̃, λ̃1, λ̃3), σ̃2
v = σ̃2

v (ρ̃, λ̃1, λ̃3), and ψ̃ = {β̃′, σ̃2
v , ρ̃, λ̃1,0, λ̃3}′. We

obtain the AQS test statistic TSPDD2 from (12.16).
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Joint test HDSPD4
0 : λ1 = λ2 = 0

This is an interesting test as under the null the model reduces to a popular
DSPD model with spatial error only, which was studied by Su and Yang
(2015) under fixed T with initial observations being modeled. In this case,
B1 = In and B2 = ρIn, and the constrained M-estimators ρ̃ and λ̃3 solve:

1
σ̃2

v (ρ,λ3)
∆ũ(ρ, λ3)

′Ω−1∆Y−1 + tr(C−1D−1) = 0,
1

σ̃2
v (ρ,λ3)

∆ũ(ρ, λ3)
′(C−1 ⊗A)∆ũ(ρ, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(ρ, λ3) = ∆Y − ρ∆Y−1 −∆X β̃(ρ, λ1, λ3), and β̃(ρ, λ3) and
σ̃2

v (ρ, λ3) are those given below (12.4) by setting λ1 = λ2 = 0.

Let β̃ = β̃(ρ̃, λ̃3), σ̃2
v = σ̃2

v (ρ̃, λ̃3), and ψ̃ = {β̃′, σ̃2
v , ρ̃,0,0, λ̃3}′. We obtain

from (12.16) the AQS test TDSPD4 for testing HDSPD4
0 .
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Joint test HDSPD5
0 : λ2 = λ3 = 0

Under the null hypothesis, the model reduces to another popular model,
the DSPD model with only the spatial lag effect. In this case, B2 = ρIn and
B3 = In, and the constrained M-estimators ρ̃ and λ̃1 solve:

1
σ̃2

v (ρ,λ1)
∆ṽ(ρ, λ1)

′Ω−1∆Y−1 + tr(C−1D−1) = 0,
1

σ̃2
v (ρ,λ1)

∆ṽ(ρ, λ1)
′Ω−1W1∆Y + tr(C−1DW1) = 0,

where ∆ṽ(ρ, λ1) = B1∆Y − ρ∆Y−1 −∆X β̃(ρ, λ1), and β̃(ρ, λ1) and
σ̃2

v (ρ, λ1) are those given below (12.4) by setting λ2 = λ3 = 0.

Let β̃ = β̃(ρ̃, λ̃1), σ̃2
v = σ̃2

v (ρ̃, λ̃1), and ψ̃ = {β̃′, σ̃2
v , ρ̃, λ̃1,0,0}′. We obtain

from (12.16) the AQS test TDSPD5 for testing HDSPD5
0 .
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Joint test HSPD
0 : ρ = λ2 = 0

Under the null, B2 = 0 and D = −CB−1
1 , and the model becomes the static

SARAR model. The constrained M-estimators λ̃1 and λ̃3 of λ1 and λ3 solve
the following estimating equations (see also Lee and Yu (2010)):

1
σ̃2

v (λ1,λ3)
∆ũ(λ1, λ3)

′Ω−1W1∆Y − (T − 1)tr(B−1
1 W1) = 0,

1
σ̃2

v (λ1,λ3)
∆ũ(λ1, λ3)

′(C−1 ⊗A)∆ũ(λ1, λ3)− (T − 1)tr(G3) = 0,

where ∆ũ(λ1, λ3) = B1∆Y −∆X β̃(λ1, λ3), and β̃(λ1, λ3) and σ̃2
v (λ1, λ3)

are those given below (12.4) by setting ρ = λ2 = 0.

Let β̃ = β̃(λ̃1, λ̃3), σ̃2
v = σ̃2

v (λ̃1, λ̃3), and ψ̃ = {β̃′, σ̃2
v ,0, λ̃1,0, λ̃3}′. We

obtain from (12.16) the AQS test TSPD for testing HSPD
0 .
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Conditional AQS tests

Conditional tests are those for testing whether the model can be further
reduced, given that it has already been reduced. For example,

HPD1
0 : λ1 = 0, given λ2 = λ3 = 0;

HPD3
0 : λ3 = 0, given λ1 = λ2 = 0;

HSPD
0 : ρ = 0, given λ2 = 0.

The last conditional test says that based on the model without λ2, we want
to see further if ρ = 0, i.e., a regular SPD model suffices.

The conditional tests conditional upon ρ = λ2 = 0 are the tests of model
reduction for the regular SPD model, and the LM-type of tests are given by
Debarsy and Erther (2010) and Baltagi and Yang (2013a) for models with
homoskedastic models, and Born and Breitung (2011) and Baltagi and
Yang (2013b) for models with heteroskedastic errors.

All these conditional tests can be easily developed based on the general
methodology presented above.
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Conditional AQS tests, cont’d

Some conditional tests are robust against unknown CH in light of
Corollaries 12.1 and 12.2, and some can be made to be robust against
unknown CH in light of Baltagi and Yang (2013b).

Given the fact that the OPMD estimator of the VC matrix of AQS functions
are robust against unknown CH, any AQS or SAQS test can be made to
be CH-robust, provided the AQS function is made so. A general CH-robut
method is given in Sec. 12.4.

All the tests developed above can be implemented in a unified manner
based on the general expressions of the AQS function given in (12.3) or
(12.5), and the general OPMD estimate of its VC matrix given in (12.13).
Σ̃∗ can be Σ∗(ψ̃) or − ∂

∂ψS∗(ψ)|ψ=ψ̃M
.

For each specific test, all it is necessary is to change the definitions of the
matrices Br , r = 1,2,3 according to the null hypothesis, and modify the
user-supplied function that does root-finding. Empirical applications with
Matlab are presented in Sec. 12.5.
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12.3. Finite Sample Improved AQS Tests

The joint and marginal AQS tests presented above are simple but may not
be satisfactory when n is not large enough. The reason is that the
variability from the estimation of β and σ2

v are not taken into account when
constructing the test statistics.

It is thus desirable to find simple ways to improve the finite sample
performance of these tests. Clearly, after β0 and σ2

v being replaced by
β̂(δ0) and σ̂v (δ0) in the last four components of S∗(ψ0) given in (12.3), the
concentrated AQS functions no longer have mean zero, although they do
asymptotically.

Furthermore, the variance of the concentrated AQS functions may also be
affected. Thus, re-adjustments on the mean and variance may help
improving the finite sample performance of the AQS tests (see Baltagi and
Yang 2013a,b).
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Improved AQS tests – general method

Rewrite the numerator, σ̂2
v (δ)S∗

c(δ), of the concentrated AQS function in
(12.4) as

S∗
c,N(δ) =



∆û(δ)′Ω−1∆Y−1 + φ1∆û(δ)′Ω−1∆û(δ),

∆û(δ)′Ω−1W1∆Y + φ2∆û(δ)′Ω−1∆û(δ),

∆û(δ)′Ω−1W2∆Y−1 + φ3∆û(δ)′Ω−1∆û(δ),

∆û(δ)′(C−1 ⊗A)∆û(δ)− φ4∆û(δ)′Ω−1∆û(δ),

(12.18)

where φ1 = 1
N tr(C−1D−1), φ2 = 1

N tr(C−1DW1), φ3 = 1
N tr(C−1D−1W2) and

φ4 = 1
n tr(G3).

The ideas are:
finding the mean of S∗

c,N(δ0) and recentering, and then finding the variance
estimate of the recentered S∗

c,N(δ0) and restandardizing.
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Letting Ω
1
2 be the symmetric square root matrix of Ω, and ∆X ∗ = Ω− 1

2 ∆X ,
we have

Ω− 1
2 ∆û(δ) = MΩ− 1

2 (B1∆Y − B2∆Y−1),

where M = IN −∆X ∗(∆X ∗′∆X ∗)−1∆X ∗′ is a projection matrix.

Noting that M∆X ∗ = 0, and that at the true δ0,

Ω
− 1

2
0 (B10∆Y − B20∆Y−1) = ∆X ∗β0 + Ω

− 1
2

0 B−1
30 ∆v ,

we obtain

S∗
c,N(δ0) =



∆v ′B′−1
30 M∗

0∆Y−1 + φ10∆v ′M∗∗
0 ∆v ,

∆v ′B′−1
30 M∗

0W1∆Y + φ20∆v ′M∗∗
0 ∆v ,

∆v ′B′−1
30 M∗

0W2∆Y−1 + φ30∆v ′M∗∗
0 ∆v ,

∆v ′M∗∗
0 (C ⊗G30)M∗∗

0 ∆v − φ40∆v ′M∗∗
0 ∆v ,

(12.19)

where M∗ = Ω− 1
2 MΩ− 1

2 and M∗∗ = B′−1
3 M∗B−1

3 .
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It is easy to show that E[S∗
c,N(δ0) has elements:

µρ0 = σ2
v0tr[(B′

30B30)
−1M∗

0(φ10C− D−10)],

µλ10 = σ2
v0tr[(B′

30B30)
−1M∗

0(φ20C−W1D0)],

µλ20 = σ2
v0tr[(B′

30B30)
−1M∗

0(φ30C−W2D−10)],

µλ30 = σ2
v0tr[M∗∗

0 (C ⊗G30 − φ40C)].

The recentered AQS function thus takes the form:

S�
c,N(δ) = S∗

c,N(δ)− (µρ, µλ1 , µλ2 , µλ3)
′. (12.20)

Note: M∗ = Ω−1 − Ω−1∆X (∆X ′Ω−1∆X )−1∆X ′Ω−1. Thus, only the calculation of

Ω−1 is necessary and the calculations of Ω
1
2 and Ω−

1
2 are avoided.
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To develop an OPMD estimate of the VC matrix of S�
c,N(δ0), similar to

(12.5) we have,

S�
c,N(δ0) =



∆v ′Ψ1∆y1 + ∆v ′Π1 + ∆v ′Φ1∆v − µρ0 ,

∆v ′Ψ2∆y1 + ∆v ′Π2 + ∆v ′Φ2∆v − µλ10 ,

∆v ′Ψ3∆y1 + ∆v ′Π3 + ∆v ′Φ3∆v − µλ20 ,

∆v ′Φ4∆v − µλ30 ,

(12.21)

where Π1 = B′−1
30 M∗

0η−1, Π2 = B′−1
30 M∗

0W1η, Π3 = B′−1
30 M∗

0W2η−1;

Φ1 = B′−1
30 M∗

0S−1 + φ10M∗∗
0 , Φ2 = B′−1

30 M∗
0W1S + φ20M∗∗

0 ,

Φ3 = B′−1
30 M∗

0W2S−1 + φ30M∗∗
0 , Φ4 = M∗∗

0 (C ⊗G30)M∗∗
0 − φ40M∗∗

0 ,

Ψ1 = B′−1
30 M∗

0R−1, Ψ2 = B′−1
30 M∗

0W1R, Ψ3 = B′−1
30 M∗

0W2R−1.
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Similar to {gi} defined based on (12.5), we define {g◦i } based on (12.21).

Now, {g�i } are functions of unknown parameters δ0 and errors ∆v .

Replacing δ0 by δ̃ and ∆v by ∆̃v in {g�i } to give {g̃�i }, one obtains an
OPMD estimate of Γ�(δ0) = Var[S�

c,N(δ0)]:

Γ̂� =
∑n

i=1 g̃�i g̃�′i . (12.22)

Again, to develop the standardized AQS tests in a unified manner, recall
δ = (π′, ϕ′)′ and the null hypothesis specifies ϕ = 0.

Let Σ�(δ0) = −E[ ∂∂δS�(δ0)]. Partition Σ�(δ) and Γ�(δ) according to π and
ϕ, and denote their submatrices by Σ�

ab(δ) and Γ�ab(δ), a = π, ϕ, b = π, ϕ.

Let S�(δ) = (S�′
π (δ),S�′

ϕ (δ))′ and g�i = (g�′i,π,g
�′
i,ϕ)′.

Now, the construction of the test of ϕ = 0 depends on S∗
ϕ(π̃,0) and its

variance, where π̃ is the null estimate of π.
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Similar to (12.14), a Taylor expansion leads to the following asymptotic MD
representation:

1√
N

S�
ϕ(π̃,0k ) = 1√

N
S�
ϕ(π0,0k )− 1√

N
Σ�
ϕπΣ

�−1
ππ S�

π(π0,0k ) + op(1)

= 1√
N

∑n
i=1(g

�
i,ϕ − Λ�g�i,π) + op(1), (12.23)

where Λ� = Σ�
ϕπΣ

�−1
ππ . Therefore, the standardized AQS (SAQS) test

statistic for testing H0 : ϕ = 0 takes a similar form as the AQS test:

T �
M = S�′

ϕ (π̃,0k )
{ ∑n

i=1(g̃
�
i,ϕ− Λ̃�g̃�i,π)(g̃

�′
i,ϕ− Λ̃�g̃�i,π)

′}−1S�
ϕ(π̃,0k ), (12.24)

where M corresponds to PD, DPD, DSPDr, etc., for testing the hypotheses
HPD

0 , HDPD
0 , HDSPDr

0 , etc., postulated in Sec. 12.1.

As for TM,0 below Theorem 12.1, if IME holds asymptotically, i.e.,
Σ� = Γ� + o(N), the test can be simplified to

T �
M,0 = S�′(δ̃)(

∑n
i=1 g̃�i g̃�′i )−1S�(δ̃),

where δ̃ = (π̃′,0′k )′.
Z. L. Yang, SMU ECON747, Term I 2024-25 49 / 83



Furthermore, if null specifies δ = 0, T �
PD reduces to T �

PD,0 and there is no
need of (12.23).

Theorem 12.2

Under Assumptions A-D, if π̃ is
√

N-consistent, we have under HM
0 ,

T �
M

D−→ χ2
k , as n →∞,

where M denotes a null model specified in Sec. 12.1.

Monte Carlo results show that the SAQS tests can offer much
improvements over the AQS tests when n is not large, particularly
when spatial dependence is heavy.

In each SAQS test, the null estimate π̃ can be obtained in the same
way as that for the AQS test or solving a subset of equations obtained
from S�

c,N(δ), and T �
M is implemented similarly.
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All the conditional AQS tests discussed in Sec. 12.2 have their
counterparts based on the standardized AQS function.

Similar to the case of the regular AQS tests presented in Sec. 12.2,
the standardized AQS tests can also be implemented in a unified
manner based on the general expressions (12.20) or (12.21), the VC
matrix estimate defined in (12.22), and Σ̃� = −∂

∂S�
c,N(δ)|δ=δ̃M .

Similar to the AQS tests TPD and TDPD, the two standardized AQS
tests, T �

PD and T �
DPD, are also robust against both nonnormality and

unknown CH.

Others are in general robust only against nonnormality as the
corresponding AQS tests. Therefore, it is desirable to have AQS tests
fully robust against unknown CH.
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12.4 Robust AQS Tests under Cross-Sectional Heteroskedasticity

As indicated in the early section, when the null model involves both
dynamic and spatial parameters, the AQS tests may not be robust against
the unknown CH, and there is no simple way to further adjust the AQS
function to make it CH-robust.

Li and Yang (2020b) introduce an alternative way of adjusting the
conditional QS functions to give a set of CH-robust AQS functions:

S∗
H(ψ) =



1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− N

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1 + 1

σ2
v
∆u(θ)′Eρ∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W1∆Y + 1

σ2
v
∆u(θ)′Eλ1∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W2∆Y−1 + 1

σ2
v
∆u(θ)′Eλ2∆u(θ),

1
σ2

v
∆u(θ)′

[
C−1 ⊗ (A− Eλ3)

]
∆u(θ),

(12.25)

(Eρ,Eλ1 ,Eλ2) = Ω−1C−1(D−1,W1D,W2D−1), Eλ3 = B′3diag(G3)[diag(B−1
3 )]−1.
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Solving the estimating equations, S∗H (ψ) = 0, gives the CH-robust M-estimator ψ̂H.
As before, this can be done by first solving the equations for β and σ2

v , given
δ = (ρ, λ′)′, to give

β̂H(δ) = (∆X ′Ω−1∆X )−1∆X ′Ω−1(B1∆Y − B2∆Y−1),

σ̂2
v,H(δ) = 1

N ∆û(δ)′Ω−1∆û(δ),

where ∆û(δ) = ∆u(β̂(δ), ρ, λ1, λ2). Then, substituting β̂H(δ) and σ̂2
v,H(δ) back into

the last four components of (12.25) gives the concentrated AQS functions:

S∗c
H (δ) =

8>>>>><>>>>>:

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1∆Y−1 + 1

σ̂2
v,M(δ)

∆û(δ)′Eρ∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1W1∆Y + 1

σ̂2
v,M(δ)

∆û(δ)′Eλ1∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1W2∆Y−1 + 1

σ̂2
v,M(δ)

∆û(δ)′Eλ2∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′

ˆ
C−1 ⊗ (A− Eλ3)

˜
∆û(δ).

(12.26)

Solving S∗c
H (δ) = 0 gives the CH-robust M-estimator δ̂H of δ, and then the

CH-robust M-estimators of β and σ2
v : β̂H ≡ β̂H(δ̂H) and σ̂2

v,H ≡ σ̂2
v,H(δ̂H).

Z. L. Yang, SMU ECON747, Term I 2024-25 53 / 83



By the representations for ∆Y and ∆Y−1 used in Sec. 2.1 and using the
relationship ∆u = B−1

30 ∆v , the AQS function at ψ0 can be written as

S∗
H(ψ0) =



Π′
1∆v ,

∆v ′Φ1∆v − n(T−1)

2σ2
v0
,

∆v ′Ψ1∆y1 + Π′
2∆v + ∆v ′Φ2∆v ,

∆v ′Ψ2∆y1 + Π′
3∆v + ∆v ′Φ3∆v ,

∆v ′Ψ3∆y1 + Π′
4∆v + ∆v ′Φ4∆v ,

∆v ′Φ5∆v ,

(12.27)

where Π1 = 1
σ2

v0
Cb0∆X , Π2 = 1

σ2
v0

Cb0η−1, Π3 = 1
σ2

v0
Cb0W1η, Π4 = 1

σ2
v0

Cb0W2η−1,

Φ1 = 1
2σ4

v0
C−1, Φ2 = 1

σ2
v0

(Cb0S−1 + B−1′
30 Eρ0B−1

30 ),

Φ3 = 1
σ2

v0
(Cb0W1S + B−1′

30 Eλ10 B−1
30 ), Φ4 = 1

σ2
v0

(Cb0W2S−1 + B−1′
30 Eλ20 B−1

30 ),

Φ5 = 1
σ2

v0
[C−1 ⊗

`
B−1′

30 (A0 − Eλ30)B
−1
30

´
],

Ψ1 = 1
σ2

v0
Cb0R−1, Ψ2 = 1

σ2
v0

Cb0W1R, and Ψ3 = 1
σ2

v0
Cb0W2R−1.
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The similarity between (12.5) and (12.27) immediately leads to an MD
representation for the CH-robust AQS function, i.e., S∗

H(ψ0) =
∑n

i=1 gHi ,
referring to (12.6)-(12.11).

The vectors S∗
H(ψ) and gHi , and the matrix Σ∗

H(ψ) = −E[ ∂
∂ψ′ S∗

H(ψ0)] are
partitioned in the same way according to ϑ and ϕ.

A similar asymptotic MD representation, as in (12.14)and (12.23), holds
for S∗′

H,ϕ(ϑ̃H,0k ), where ϑ̃H is the constrained estimator under the null.

A CH-robust AQS test for testing the hypothesis H0 : ϕ = 0 is thus,

T †
M = S∗′

H,ϕ(ϑ̃H,0k )
{ ∑n

i=1(g̃Hi,ϕ − Λ̃∗Hg̃Hi,ϑ)(g̃Hi,ϕ − Λ̃∗Hg̃Hi,ϑ)
′}−1S∗

H,ϕ(ϑ̃H,0k ),

(12.28)
where M = PD, DPD, DSPD1, · · · , DSPD5, and SPD, associated with the null
hypotheses defined in Sec. 12.1, Λ̃∗H = Σ̃∗

H,ϕϑΣ̃
∗−1
H,ϑϑ, and g̃Hi,ϑ and g̃Hi,ϕ are

the null estimates of gHi,ϑ and gHi,ϕ. We take Σ̃∗
H = − ∂

∂ψS∗
H(ψ)|ψ=ψ̃H

with
∂
∂ψS∗

H(ψ) being given in Appendix B.
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Theorem 12.3

Under Assumptions A, B∗, C and D, if ϑ̃H is
√

N-consistent, then under HM
0 ,

T †
M

D−→ χ2
k , as n →∞,

where M denotes a null model specified in Sec. 12.1.

Working with the numerator of S∗c
H (δ) given in (12.26), one may be

able to obtain finite sample improved tests that are fully robust against
unknown CH.

However, this does not seem to be an easy task, as the existence of
unknown CH renders the simple recentering method followed in Sec.
12.3 for the homoskedastic case unapplicable.

This is seen from the results given in Li and Yang (2020b):

E(∆Y−1∆v ′) = −σ2
v0D−10B−1

30 H and E(∆Y∆v ′) = −σ2
v0D0B−1

30 H,

where H = IT−1 ⊗Hn and Hn = diag{hni , i = 1, . . . ,n}.
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12.5. Monte Carlo Results

Monte Carlo experiments are carried out to investigate the finite sample
performance of the proposed tests:

TM, the regular AQS test,

T �
M , the standardized AQS (SAQS) test,

T †
M , the CH-robust AQS test,

in terms of size and size-adjusted power of the tests.

The following data generating process (DGP) is followed:

yt = ρyt−1+λ1W1yt +λ2W2yt−1+β0ιn+Xtβ1+Zγ+µ+ut , ut = λ3W3ut +vt ,

with certain parameter(s) being dropped corresponding to each specific
test, for generating observations at the null.

The elements of Xt are generated as in Yang (2018a), and the elements of
Z are randomly generated from Bernoulli(0.5).
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Spatial weight matrices

The spatial weight matrices are generated according to Rook contiguity,
Queen contiguity, or group interaction schemes: Group-I or Group-II.

The Rook and Queen schemes are standard.

For Group-I, we first generate k =
√

n groups of sizes ng ∼ U(.5n̄,1.5n̄),
g = 1, · · · , k and n̄ = n/k , and then adjust ng so that

∑k
g=1 ng = n.

For Group-II, we first generate 6 groups of fixed sizes (3,5,7,9,11,15),
and replicate these groups r times to give n = r × 50.

See Lin and Lee (2010) and Yang (2018a) for details in generating these
spatial layouts.
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Cross-sectional heteroskedasticity

The cross-sectional heteroskedasticity (CH) is generated according to:

CH-1: hni ∝ 1
T

∑T
t=1 |∆Xnt |;

CH-2: hni ∝ ng for i th unit in gth group of size ng ; and

CH-3: hni ∝ ng if ng ≤ n̄k ; and ∝ 1/n2
g otherwise, where n̄k is the

average group size.

CH-0: hni , i.e., the case of homoskedasticity.

Group-I gives strongest spatial interaction andCH-3 gives the most
severe cross-sectional heteroskedasticity.

Under Group-II, variation in number of neighbors for each spatial unit
stays constant as n increases; in all other spatial layouts, it vanishes as n
increases although slower for Group-I (see Yang, 2010).
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Parameters and error distributions

The values of (β0, β1, γ, σµ, σv ) are set to (5,1,1,1,1), T = 3 or 6, and
n = (50,100,200,500).

Each set of Monte Carlo results is based on 5000 samples (for T = 3) or
2000 (for T = 6).

The fixed effects µ are generated according to 1
T

∑T
t=1 Xt + e, where

e ∼ (0, IN).

The error (vit ) distributions can be

(i) normal,

(ii) normal mixture (10% N(0,4) and 90% N(0,1)), or

(iii) lognormal.

In both (ii) and (iii), the generated errors are standardized to have mean
zero and variance σ2

v .
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General observations

For testing HPD
0 : δ = 0:

When n is not large, the AQS test TPD and the CH-robust AQS (RAQS) test
T †PD can be severely oversized, whereas the standardized AQS (SAQS) test
T �PD can be slightly undersized.

As n increases, the empirical sizes of T �PD quickly approach to their nominal
values corresponding to the χ2

4 distribution.

As T increases from 3 (Table 1a) to 6 (Table 1b), all tests improve significantly.

As shown by Corollary 12.1 and Theorem 12.3, these tests are all robust
against unknown CH. The results given in Table 1b confirm this. The results
further reveal that the severity of CH has a much greater impact on the AQS
and RAQS tests than on the SAQS test in finite sample performance.

As all three tests are asymptotically valid, it is important to compare their
finite sample performance in terms of the power of the tests. This has to be
done with sizes being adjusted. The results in Table 1c show that the
size-adjusted power is the highest for T �PD and the lowest for T †PD, as expected.
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For testing HDPD
0 : λ = 0:

The results show an excellent performance of the SAQS test with its empirical
sizes being very close to their nominal values even when n = 50.

In contrast, the regular and robust AQS tests can have sever size distortions
when n is not so large, which get smaller in a significantly slower speed than
those of the SAQS test, in particular under CH.

While all three tests are robust against unknown CH as shown by Corollary
12.2 and Theorem 12.3, their finite sample properties differ (from both
reported and unreported results), with TDPD and T †DPD being affected by the
severity of CH much more than the SAQS test T �DPD.

When T increases from 3 to 6, the AQS and RAQS tests improve
significantly. The SAQS test is in general slightly more powerful than the AQS
and RAQS tests.

The true value of ρ does not have a significant effect on both tests.

For testing other hypotheses, general observations hold.

A small set of results are given below, and more in Yang (2021b).
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Table 1a Empirical Size of Tests of HPD
0 : δ = 0; Group-I, T = 3, CH-0

TPD T�PD T †PD
n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%

50 1 15.30 8.08 1.22 10.78 4.28 0.46 15.54 8.20 1.16

2 22.80 14.18 3.90 8.46 3.20 0.22 25.76 16.60 5.18

3 16.48 9.46 2.16 8.78 3.44 0.22 18.24 10.54 2.64

100 1 12.60 6.48 1.28 10.42 5.08 0.60 13.30 7.38 1.56

2 17.22 10.34 3.16 9.78 4.16 0.72 19.68 12.16 3.94

3 14.00 7.96 2.10 9.80 4.54 0.80 16.04 8.98 2.50

200 1 11.14 6.52 1.26 10.56 5.30 0.90 12.66 6.84 1.50

2 14.08 7.74 1.90 9.22 4.18 0.58 16.34 9.18 2.80

3 13.70 7.20 1.76 10.78 5.12 0.78 14.60 8.14 1.96

500 1 10.78 5.58 1.32 10.34 4.94 1.28 11.80 6.22 1.46

2 12.66 6.96 1.44 10.38 5.16 0.80 13.30 7.16 2.00

3 11.98 6.40 1.62 10.82 5.50 1.08 13.22 7.14 1.56

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1a, Cont’d, CH-1

TPD T�PD T †PD
n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%

50 1 19.40 11.52 2.96 9.86 3.82 0.30 19.44 11.92 2.90

2 27.20 18.52 6.98 8.18 2.96 0.16 29.78 21.16 9.34

3 22.42 13.94 4.64 8.26 3.28 0.22 24.26 15.10 4.94

100 1 15.70 9.12 2.46 10.12 4.52 0.52 15.46 9.42 2.30

2 22.14 14.34 4.98 8.86 3.74 0.32 25.44 16.30 6.18

3 18.52 11.10 3.50 9.66 4.28 0.64 20.50 13.00 4.30

200 1 14.00 7.54 1.72 11.08 5.34 0.76 14.10 7.78 2.14

2 17.08 9.88 2.64 9.50 3.94 0.56 19.02 11.32 3.74

3 14.72 8.24 2.10 9.86 4.56 0.90 15.78 8.94 2.38

500 1 11.44 5.94 1.42 10.54 5.24 1.16 12.30 6.52 1.50

2 12.84 6.98 1.44 9.12 4.18 0.60 14.84 8.66 2.42

3 11.32 6.04 1.20 9.74 4.70 0.74 13.48 7.20 1.70

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1a, Cont’d, CH-2

TPD T�PD T †PD
n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%

50 1 15.08 8.42 1.74 10.74 4.72 0.58 16.08 9.02 2.18

2 21.58 13.04 4.10 8.58 3.40 0.20 23.90 15.06 5.36

3 17.44 9.94 2.64 9.16 3.58 0.40 19.04 10.98 2.98

100 1 12.26 6.68 1.58 10.42 4.86 0.90 13.72 7.04 1.82

2 17.52 9.96 2.98 9.52 4.18 0.52 20.08 12.68 4.06

3 14.42 7.94 2.18 10.32 4.42 0.62 15.76 9.22 2.26

200 1 11.36 5.94 1.18 10.08 4.86 0.74 12.44 6.72 1.24

2 14.48 8.98 2.26 10.12 4.78 0.74 15.78 9.48 2.58

3 13.74 7.80 1.92 11.20 5.78 0.78 15.52 8.72 2.00

500 1 10.74 5.56 1.02 10.26 5.06 0.86 12.58 6.68 1.30

2 11.34 5.82 1.40 9.60 4.66 0.86 13.52 7.66 1.94

3 11.04 5.84 1.56 10.04 4.96 1.24 12.68 7.02 1.74

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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Table 1a, Cont’d, CH-3

TPD T�PD T †PD
n dgp 10% 5% 1% 10% 5% 1% 10% 5% 1%

50 1 23.94 14.86 4.80 7.74 2.64 0.18 26.34 16.88 5.80

2 33.68 24.62 12.16 6.26 1.94 0.00 39.92 30.00 15.90

3 28.44 19.60 8.26 7.06 2.18 0.02 32.94 23.00 10.14

100 1 22.80 14.76 5.32 9.64 3.78 0.10 26.88 18.24 7.14

2 31.50 22.62 11.42 7.40 2.72 0.08 40.06 30.60 16.96

3 26.26 18.16 7.78 7.90 2.84 0.20 33.40 24.02 11.40

200 1 15.44 9.04 2.72 10.42 4.56 0.72 17.18 10.80 3.50

2 22.70 14.42 5.44 9.48 3.64 0.28 26.18 18.00 7.62

3 19.08 11.78 3.88 10.28 4.82 0.54 21.08 13.38 4.70

500 1 13.48 7.48 1.92 10.96 5.26 0.94 14.90 8.34 2.34

2 16.76 9.84 2.96 9.10 4.02 0.58 19.86 12.16 4.52

3 14.32 8.20 2.26 10.14 4.52 0.86 17.74 11.04 3.44

Note: for dpg, 1 = normal, 2 = normal mixture, 3 = lognormal
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12.6. Empirical Applications

To facilitate the practical applications of the proposed tests, we provide an
empirical illustration using the dataset on public capital productivity of
Munnell (1990).

The dataset gives indicators related to public capital productivity for
48 US states observed over 17 years (1970-1986).

The dataset can be downloaded from
http://pages.stern.nyu.edu/∼wgreene/Text/Edition6/tablelist6.htm

This dataset has been extensively used for illustrating the applications
of the regular panel data models (see, e.g., Baltagi, 2013).

In the spatial framework, it was used by Millo and Piras (2012) for
illustrating the QML and GMM estimation of fixed effects and random
effects spatial panel data models,

and by Yang et al. (2016) for illustrating the bias-correction and
refined inferences for fixed effects spatial panel data models.
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In Munnel (1990), the empirical model specified is a Cobb-Douglas
production function of the form:

ln Y = β0 + β1 ln K1 + β2 ln K2 + β3 ln L + β4Unemp + ε,

with state specific fixed effects, where

Y is the gross social product of a given state,

K1 is public capital,

K2 is private capital,

L is labour input and

Unemp is the state unemployment rate.

This model is now extended by adding the dynamic effect and one or more
spatial effects. The spatial weights matrix W takes a contiguity form with
its (i , j)th element being 1 if states i and j share a common border,
otherwise 0. The final W is row normalised. For models with more than
one spatial term, the corresponding W ′s are taken to be the same.
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Each of the five models discussed in the chapter is estimated using

(a) full data,

(b) data from the last six years (T + 1 = 6),

and (c) data from first six years.

Estimation and inference results given in Lecture 10 are repeated here
for easy reference. Table 10.6a summarize the CQMLE, FQMLE, M-Est
and the standard error of the M-Est for the SE model, as for this model the
full QMLE is available (Su and Yang, 2015). From the results we see that

(i) the dynamic and SE effects are highly significant in all models,

(ii) three methods give quite different estimates of dynamic effect,

and (iii) the FQMLE of ρ improves over CQMLE in that it is much
closer to the M-estimate in particular when T is small.

FQMLE uses m = 6, and the time mean of the regressors as the
predictor for the initial differences. The results are quite robust to the
value of m, but not quite to the choice of the predictors.
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Table 10.6a. CQMLE, FQMLE, , M-Est and its t-Ratio based on Munnell Data: SE Model
Full Data Last 6 Years First 6 Years

CQM FQM M-Est t-ratio CQM FQM M-Est t-ratio CQM FQM M-Est t-ratio
β1 -.0433 -.0234 -.0467 -1.877 -.1008 -.1124 -.0852 -2.440 -.0851 -.0922 -.0810 -1.136
β2 -.0393 -.0309 -.0702 -2.796 -.0305 -.0336 -.0501 -1.373 .0644 .0106 -.0714 -.639
β3 .2644 .2008 .1654 3.329 .7840 .6504 .5971 5.526 .4192 .3532 .3161 2.353
β4 -.0024 -.0026 -.0028 -5.306 -.002 -.0018 -.0021 -3.590 -.0028 -.0031 -.0031 -4.389
σ2

v .0001 .0001 .0001 5.931 .0000 .0000 .0000 5.366 .0000 .0000 .0000 3.998
ρ .7772 .8283 .9140 17.222 .4409 .5728 .6265 7.162 .4594 .5942 .6521 4.018
λ3 .7592 .7550 .7697 20.665 .7133 .7460 .7638 14.021 .7114 .7120 .7155 13.842

Table 10.6b summarize the results for the other four models. The results
show that, for any model estimated and data used,

(i) the dynamic effect is alway significant,

(ii) there is alway at least one spatial effect that is significant,

and (iii) the CQMLE is always significantly smaller than the
corresponding M-estimate.

The empirical results are consistent with the theories.
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Table 10.6b. CQMLE, M-Est and its t-Ratio based on Munnell Data: Other Models
Full Data Last 6 Years First 6 Years

CQMLE M-Est t-ratio CQMLE M-Est t-ratio CQMLE M-Est t-ratio
SL Model

β1 -0.0620 -0.0598 -1.8194 -0.1850 -0.1692 -2.5069 -0.0165 -0.0079 -0.1005
β2 0.0296 0.0105 0.3514 -0.0365 -0.0540 -1.1542 -0.1081 -0.2194 -2.7020
β3 0.3045 0.2480 3.1542 0.9917 0.9012 10.4729 0.3916 0.2369 1.2416
β4 -0.0025 -0.0027 -4.0988 -0.0016 -0.0019 -2.5384 -0.0018 -0.0018 -2.5330
σ2

v 0.0001 0.0001 9.5094 0.0001 0.0001 8.6974 0.0001 0.0001 3.5254
ρ 0.5333 0.6132 7.0194 0.1625 0.2448 4.4754 0.2849 0.4801 2.8386
λ1 0.2131 0.2046 4.3797 0.2077 0.1991 4.4475 0.3767 0.4134 4.0345
SLE Model

β1 -0.0412 -0.0454 -1.6237 -0.0888 -0.0755 -1.8749 -0.1023 -0.0829 -1.1113
β2 -0.0364 -0.0675 -1.3981 -0.0197 -0.0373 -0.8777 0.4341 0.0429 0.1011
β3 0.2649 0.1685 1.4418 0.7585 0.5904 5.3430 0.4201 0.3343 2.2261
β4 -0.0024 -0.0027 -3.9247 -0.0021 -0.0023 -3.5416 -0.0025 -0.0031 -3.8491
σ2

v 0.0001 0.0001 5.1623 0.0000 0.0000 4.8590 0.0000 0.0000 2.9107
ρ 0.7752 0.9092 5.9496 0.4515 0.6189 8.0173 0.3754 0.6123 2.9549
λ1 -0.0235 -0.0123 -0.3143 -0.0804 -0.0789 -0.8565 -0.3615 -0.1289 -0.4139
λ3 0.7753 0.7757 17.6446 0.7800 0.8015 10.7070 0.8878 0.7789 4.2353
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Table 10.6b. Cont’d
Full Data Last 6 Years First 6 Years

CQMLE M-Est t-ratio CQMLE M-Est t-ratio CQMLE M-Est t-ratio
STL Model

β1 -0.0383 -0.0343 -1.2882 -0.1367 -0.1072 -3.0105 -0.0791 -0.0727 -0.8560
β2 0.0215 0.0040 0.1641 -0.0158 -0.0262 -0.6303 0.1456 0.0937 0.8758
β3 0.2414 0.1844 2.9434 0.7215 0.5669 5.5058 0.4769 0.4040 4.3346
β4 -0.0011 -0.0012 -3.4687 -0.0014 -0.0017 -2.8457 -0.0017 -0.0018 -3.1086
σ2

v 0.0001 0.0001 6.1872 0.0000 0.0000 5.0666 0.0000 0.0000 4.9172
ρ 0.7547 0.8474 12.1490 0.4757 0.6365 7.2715 0.4258 0.5700 4.6003
λ1 0.6662 0.681 15.2637 0.4890 0.5409 7.9038 0.5533 0.5565 10.9247
λ2 -0.6350 -0.6747 -11.3723 -0.466 -0.5797 -6.4991 -0.5343 -0.5775 -4.5748
STLE Model

β1 -0.0399 -0.0432 -1.7639 -0.1255 -0.1071 -2.8461 -0.0657 -0.0322 -0.2979
β2 -0.0370 -0.0617 -1.3938 -0.0180 -0.0264 -0.5836 0.1254 0.0584 0.5115
β3 0.2146 0.1353 1.2129 0.7684 0.5690 3.7925 0.4517 0.3512 2.5418
β4 -0.0023 -0.0026 -3.5825 -0.0017 -0.0017 -2.3548 -0.0015 -0.0012 -1.1755
σ2

v 0.0000 0.0001 4.5221 0.0000 0.0000 5.0517 0.0000 0.0000 4.2264
ρ 0.7973 0.9164 6.2388 0.4484 0.6349 5.3390 0.4367 0.6001 3.8399
λ1 -0.5538 -0.5566 -5.3667 0.4137 0.5381 3.6888 0.5976 0.6711 3.9109
λ2 0.4985 0.5331 4.8853 -0.4138 -0.5770 -3.6064 -0.5514 -0.6536 -3.4999
λ3 0.9074 0.9059 31.9162 0.2058 0.0078 0.0237 -0.1215 -0.3409 -0.6752
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Tests of Hypotheses: Munnell Data

For testing HPD
0 : δ = 0. Data: First 6 Years

T 0
PD = 41.3321; p-value = 0.000000 (a naive version of TPD)

TPD = 40.2631; p-value = 0.000000

T �PD = 24.8616; p-value = 0.000054

TAQS4 = 35.7826; p-value = 0.000000 (a naive version of T †PD)

T †PD = 32.0701; p-value = 0.000002

For testing HPD
0 : δ = 0. Data: Last 6 Years

T 0
PD = 37.4127; p-value = 0.000000 (a naive version of TPD)

TPD = 36.9916; p-value = 0.000000

T �PD = 26.8423; p-value = 0.000021

T †0
PD = 20.0693; p-value = 0.000484 (a naive version of T †PD)

T †PD = 17.7975; p-value = 0.001352
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Tests of Hypotheses: Munnell Data

For testing HPD
0 : δ = 0. Full Data

T 0
PD = 46.1398; p-value = 0.000000 (a naive version of TPD)

TPD = 45.4386; p-value = 0.000000

T �PD = 32.1654; p-value = 0.000002

T †0
PD = 29.0929; p-value = 0.000007 (a naive version of T †PD)

T †PD = 28.4627; p-value = 0.000010

All tests strongly reject the null hypothesis of HPD
0 : δ = 0; the

heteroskedasticity-robust test T †PD seems more trustworthy.

For testing HDPD
0 : λ = 0. Data: first 6 years

T 0
DPD = 41.3321; p-value = 0.000000

TDPD = 40.2631; p-value = 0.000000

T �DPD = 24.8616; p-value = 0.000054

T †0
DPD = 35.7826; p-value = 0.000000

T †DPD = 32.0701; p-value = 0.000002
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Tests of Hypotheses: Munnell Data

For testing HDPD
0 : λ = 0. Data: last 6 years

T 0
DPD = 37.4127; p-value = 0.000000

TDPD = 36.9916; p-value = 0.000000

T �DPD = 26.8423; p-value = 0.000021

T †0
DPD = 20.0693; p-value = 0.000484

T †DPD = 17.7975; p-value = 0.001352

For testing HDPD
0 : λ = 0. Full data

T 0
DPD = 46.1398; p-value = 0.000000

TDPD = 45.4386; p-value = 0.000000

T �DPD = 32.1654; p-value = 0.000002

T †0
DPD = 29.0929; p-value = 0.000007

T †DPD = 28.4627; p-value = 0.000010

All tests strongly reject the null hypothesis of HDPD
0 : λ = 0; the

heteroskedasticity-robust test T †PD seems more trustworthy.
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Tests of Hypotheses: Cigarette Demand Data

For testing HPD
0 : δ = 0. Data: first 4 years

T 0
PD = 25.6656; p-value = 0.000037

TPD = 15.0803; p-value = 0.004538

T �PD = 3.8901; p-value = 0.421083

T †0
PD = 28.7358; p-value = 0.000009

T †PD = 13.0713; p-value = 0.010933

For testing HPD
0 : δ = 0. Data: last 6 years

T 0
PD = 31.2495; p-value = 0.000003

TPD = 30.3429; p-value = 0.000004

T �PD = 22.9664; p-value = 0.000129

T †0
PD = 29.2902; p-value = 0.000007

T †PD = 27.5405; p-value = 0.000015
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Tests of Hypotheses: Cigarette Demand Data

For testing HPD
0 : δ = 0. Full data

T 0
PD = 45.6237; p-value = 0.000000

TPD = 45.3431; p-value = 0.000000

T �PD = 21.8516; p-value = 0.000215

T †0
PD = 24.4905; p-value = 0.000064

T †PD = 18.6271; p-value = 0.000930

For testing HDPD
0 : λ = 0. Data: first 4 years

T 0
DPD = 4.2939; p-value = 0.231423

TPD = 3.6993; p-value = 0.295822

T �PD = 3.9825; p-value = 0.408384

T †PD = 7.7190; p-value = 0.102432

T †PD = 5.5975; p-value = 0.102432
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Tests of Hypotheses: Cigarette Demand Data

For testing HPD
0 : λ = 0. Data: last years

T 0
DPD = 4.5023; p-value = 0.212088

TPD = 2.4453; p-value = 0.485260

T �PD = 3.1956; p-value = 0.525634

T †PD = 3.7728; p-value = 0.437633

T †PD = 2.1558; p-value = 0.437633

For testing HPD
0 : λ = 0. Data: last years

T 0
DPD = 17.4455; pval1 = 0.000572

TPD = 11.5752; p-value = 0.008990

T �PD = 13.5485; p-value = 0.008885

T †PD = 18.3122; p-value = 0.001072

T †PD = 14.4653; p-value = 0.001072
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