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10.1 Introduction

The materials presented in this chapter are drawn from Yang (2018a,
JOE) and its Supplement Yang (2018b). To simplify the notation, we
suppress the subscript nin a vector or a matrix. Consider the following
dynamic spatial panel data (DSPD) model of the form:
Ye=pYi1 + MWiye + o Woyr 1+ X(B+ Zy + p+ il + Uy,
U= 3Waup +v3, t=1,..., T, (10.1)
where for r = 1,2,3, W, are the given n x n spatial weight matrices, A,

are, respectively, the spatial lag (S1.), space-time lag (STL), and spatial
error (SE) parameter,

@ y;: nx 1 vector of response
@ X;: n x p matrix of time-varying regressors,
@ u: nx 1 vector of individual-specific effects,

@ v;: n x 1 vector of idiosyncratic errors, iid(0, 02).
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Fixed-effects DSPD models

We focus on the fixed-effects (FE) DSPD model, i.e, u is allowed to be
correlated with X; in an arbitrary manner, leading to an

@ FE-DSPD model with s1,, STL, and SE dependence, or simply STLE;
@ or FE-DSPD model with s1. and SE, or SLE, by setting Ao = 0;

@ or FE-DSPD model with s1. and STL by setting A3 = 0;

@ or FE-DSPD model with only s1. by setting A, = A3 = 0;

@ or FE-DSPD model with only SE by setting Ay = A3 = 0.

We consider the large-n and small- T setting (short panels), and assume:
@ data collection starts from time point t = 0,
@ initial observations, {y,, Xy, Z}, are available,

© process started m periods before t = 0 from positions y_,, treated as
exogenous, with m being finite (unknown) or infinite.
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Note:

@ When m =0, yy is exogenous; when m > 1, yy is endogenous, and
when m = oo, processes have become stationary.

© Model (1) can be extended to allow for higher-order spatial lags;

© It can also be reduced to some specific models:
o Model with Ay and Xz only: Yu et al. (2008), large n and large T;

o Model with A3 only: Su and Yang (2015), large n and small T;
o Model with Ay only: Elhorst (2010), large n and small T.

© The methods introduced in this lecture can be applied to all of the
above models, and are not restricted to small T.

The methods provide a unified framework for estimating short DSPD
models, free from the initial conditions and robust against nonnormality.
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Challenges in QML-type estimation of FE-DSPD model with small T

@ Incidental parameters problem: number of parameters increases
with sample size;

@ initial values problem: the distribution of the vector of initial
observations depends on the past unobservables.
Pros and cons with QML and GMM:
@ QML estimation is more efficient than GMM estimation;

@ QML estimation needs the distribution of yg, or Ay; for setting up the
unconditional (quasi) likelihood;

@ The distribution of y, or Ay, involves unobservables (e.g.,
X 1,X 2,...,¥-m), = aproper ‘model’ for yy or Ay; is required;

@ Such a model may depend on unknown process start time ‘—n’, and
may need stronger conditions on X;;

@ The traditional modeling strategy for y, or Ay; may not work for
models with spatial lags.
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Literature related to DSPD models with small T

For dynamic panel data (DPD) models:

@ Anderson, T. W,, Hsiao, C. (1981, Jasa).

@ Anderson, T. W., Hsiao, C. (1982, JoE).

@ Bhargava, A., Sargan, J. D. (1983, Econometrica).
Hsiao, C., et al. (2002, JOE), and references therein.
Binder, M., Hsiao, C., Pesaran, M. H. (2005, ET)
Hayakawa and Pesaran (2015, JOE);

Hayakawa, et al. (2020, wp).

And many more . . .
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For dynamic spatial panel data (DSPD) models:
@ Yu, J., de Jone, R. and Lee, L. F. (2008, JOE).
@ Elhorst, J. P. (2010, RSUE; 2012, JGS).

Lee, L.-F, Yu, J. (2010, RSUE).

@ Su, L., Yang, Z. L. (2015, JOE).

@ Lee, L.-F, Yu, J. (2015, JAE).

°

o

Yang, Z. L. (2018a, JOE; 2018b, Supplement).

Kuersteiner, G. M., Prucha, I. R. (2020a, Econometrica; 2018b,
Supplement).

Baltagi, B. H., Pirotte, A. and Yang, Z. L. (2021, JOE).
Li, L. Y. and Yang, Z. L. (2020, RSUE).

Yang, Z. L. (2021, Empirical Economics).
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Overview

This lecture,

@ introduces a unified method for estimating the FE-DSPD models with
short panels, the M-estimation, which is free from the specifications of
the initial conditions and robust against nonnormality of errors;

@ presents results for consistency and asymptotic normality of the
M-estimators;

© introduces robust method of estimating the VC matrix of the
M-estimators, free initial-conditions and allowing nonnormal errors;

© presents results for consistency of the VC-matrix estimator;

@ presents Monte Carlo results for the finite sample performance of the
methods introduced;

© presents an empirical application to illustrate the proposed method.

Z.L. Yang, SMU ECON747, Term | 2024-25 8/75



10.2. Unified M-Estimation of the FE-DSPD Model

Recall: M-Estimator or Zero-Estimator. The term M-estimation was

coined by Huber (1964) to mean the maximum likelihood type estimation.

It can be defined as either

@ the solution of a maximization problem:

~

¥n = argmax{Qn(4)};
@ or the root of a set of estimating equations:
Q/A’n = arg{Sp(¢y) = 0}.

The latter is also called zero estimator as it makes the estimating
equation zero. See van der Vaart (1998, Asymptotic Statistics).

See also Huber (1981, Robust Statistics).
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Conditional QML estimation

Taking first-difference of Model (10.1) to eliminate the fixed effects p:

Ayt = pAyr_1 + MWiAy + e We Ay 1 + AX 8 + Au,

(10.2)
AUy = /\3W3AU1+AV1, t=2,8,---, T.
Note: time-invariant variables Z are also eliminated, and the
terms corresponding to «; are merged into Xz, as T is fixed.
Stacking these vectors, the model is written in matrix form:
AY =pAY_ 1+ MWIAY + LW AY 1 + AXG + Au, (10.3)

Au = MW3Au+ Av,
oW, =Ir_1 W,r=1,23; ®: Kronecker product; /: identity matrix.
Denote: ¢ = (3,02,p, X), A= (A1,22,23), 0=(8",p\,N2).
Bi(A1) = lh — MWy, Ba(p, X2) = pln+ XoWo, Bs(A3) = In — AsWs.
B/(\r) = Ir—1 ®@ B/(\r), r=1,3, Ba(p,A2) = It—1 @ Bz(p, A2).
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The quasi Gaussian loglikelihood of ¥, as if Ay, is exogenous is:
(W) = — "5 10g(0}) - §log [2(Xs)| + log [B+(M)]

—1—5Au(9)’ (A3)~'Au(), (10.4)

o Au(f) =B1(M)AY — Bz(p, \2)AY_1 — AXP,
e Q(Xs) = V (Au) = C®[B;(X3)Bs(X3)] ', and
2 -1 0 0 0 0
-1 2 -1 0 0 0
C= :
0 0 0 -1 2 -1
0 0 0 0o -1 2

e Maximizing /(1) in (10.4) leads to the conditional QMLE ) of ¢.

e However, ¢) cannot be consistent if T is small and fixed,
¢ as the information about parameters contained in Ay is ignored.
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Let 61 = (0, p, A2)". Given Ay and Az, (10.4) is maximized at
01(\1, X3) = (AX'QTAX)TAX'QB1(M\)AY, (10.5)
F5(M,A3) = =y AT (A1, Aa) 27 AT(M, Aa), (10.6)
UM, A3) = B1(M)AY — AXO(A1, Aa); AX = (AX, AY_1,WoAY_y).
Substituting 7; (A1, \3) and 52(\1, A3) back into (10.4) gives the
concentrated conditional quasi loglikelihood of (A1, A3),
0220 (M. Aa) = =T log[53(M, Aa)]— 4 log |2(As)| +log [B1 (A1), (10.7)
where the constant term is dropped.

Maximizing ¢S, .(\1, \3) gives the conditional QML (CQML) estimators A
and \; of A and \s.

The CQML estimators of 61 and o2 are thus d; = f;(A1, A3) and
52 = 52(M, Aa).
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Inconsistency of CQMLE under fixed T

Note: the /511 () is a quasi Gaussian loglikelihood both in

@ the traditional sense that {v;} are not exactly Gaussian but Gaussian
likelihood is used,

@ and the sense that Ay; is not exogenous but is treated as exogenous.

@ The latter causes inconsistency of the CQMLEs when T is small.

Furthermore,

@ we see from the results presented below that even if T increases with
n, the CQMLEs may encounter an asymptotic bias;

@ we introduce a method that not only gives a consistent estimator of
the model parameters when T is small, but also eliminates the
asymptotic bias when T is large.

Details on these important points follow.
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First, to simplify the notation,

@ a parametric quantity (scalar, vector or matrix) evaluated at the
general values of the parameters is denoted by dropping its
arguments, e.g., By = Bi(\1), By = B1(\1), Q = Q()\3), and similarly
for B, and B,,r = 2, 3;

@ a parametric quantity evaluated at the true values of the parameters
is denoted by dropping its argument and then adding a subscript 0,
e.g., Bio = Bi1(Mo), Qo = Q(As0)-

e LetC=C® I,

@ Denote Au = Au(by).

@ The usual expectation, variance and covariance operators, ‘E’, ‘Var’
and ‘Cov’, correspond to the true parameter values.
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The conditional quasi score function S(v') = = ¢() has the form:

9
- oy

LAX'QTAu(0),

s Au(0) Q" Au(9) — M350,
LAu0)QTAY

LAu(0)Q WIAY — (B W),
%AU(Q)/971W2A Y_1,

sz Au(0) (C™" @ Ag)Au(9) — (T — 1)u(Gs),

where As = W;B; + ByW; and Gy = W5B; .

@ Under mild conditions, maximizing the conditional loglikelihood

(10.8)

¢s7ie(v) is equivalent to solving the estimating equation Ssr1:() = 0;

@ The QML type estimation is special case of M-estimation;

@ A necessary condition for the M-estimators to be consistent is that the
probability limit of the estimating function at the true parameter value
is zero (see, e.g., van der Vaart, 1998).
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For the estimation of the FE-DSPD model, this condition becomes,
limp_— o %SSTLE(wO) 2. 0.

However, as shown below this is not the case. Thus,

@ CQMLEs are not consistent unless T — oo.
@ Further, even if T goes to infinity with n (proportionally), the CQMLEs
encounter a bias of order O(T~"), giving the asymptotic bias:
o if LE[Ssriz(v0)] = O(1), then —L-E[Sirz(v0)] = O((2)2),
o implying E[VnT () — vo)] = O((4)?), and
e /nT () — 1) converges to a non-centered normal if 2 —-c>0.
@ If 2 — 0 (large T case), the asymptotic bias vanishes, but this would
not be a case of interest to a spatial panel model.
@ To overcome this major problem, we first derive E[Ssr.z ()], and
then adjust Ssr1z(?) so that the adjusted quasi score (AQS) vector,
say Si.z(1), is such that plim,,_, =S4 (1) = 0.

STLE
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Unified M-estimation

In contrast with Hsiao et al . (2002), Elhorst (2010), and Su and Yang
(2015), we only need to have very minimum knowledge about the
processes in the past.

Assumption A: (i) the processes started m periods before the start of data
collection, the 0th period, and (ii) if m > 1, Ay, is independent of future errors
{wi,t > 1}, if m =0, y, is independent of future errors {v;, t > 1}.

@ The proposed method requires neither {ys,s = —m, ..., —1} to follow
the same processes as {y;,t =0,1,..., T}, nor {x;} to be
trend-stationary or first-difference stationary;

@ has a much weaker requirement on processes starting positions yn.
To derive the results, the reduced form of (10.2) is important:
Ay = BolAyi—1 + Brg AXiBo + Byy Bgg Av, t=2,..., T, (10.9)
where B = B(p, M, \2) = B; (M) Ba(p, A2).
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Lemma. Suppose Assumption A holds. Assume further that, for
i=1,....,nandt=0,1,..., T, (i) the idiosyncratic errors {v;;} are iid
across i and t with mean 0 and variance o2, (ii) the time-varying
regressors X; are exogenous, and (iii) both By,' and By, exist. Then,

E(AY_1AV') = —02,D_10Bg,, (10.10)
E(AYAV') = — 02,DoBg,, (10.11)
where D_1 = D_1(p, M\, A2) and D = D(p, A\, X2), given as,
In, 0, ... 0, 0
B — 2l In, ... 0, 0 1
D_i=| . . . R -
B"*(lh—B)?, B 5lh,—B)? ... B—=2 I
B — 2l I, ... 0
(I — B)?, B — 2ip, ... 0
D=| . _ B,
B2, —B)?, B *(,-B)? ... B-2l,
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The results of the Lemma lead immediately to

E(AUQG'AY 1) = — o%tr(CT'D_19), (10.12)
E(AUQG'W1AY) = — 02tr(C'DoWy), (10.13)
E(AUQy "WoAY 1) = — 02tr(C™'D_10Wa), (10.14)

= the (p, M, )\2) elements of E[S(vy)] are of order O(n), and hence
= at least, the conditional QMLEs j, A1, and ), are inconsistent.

Under an interesting special case where \; = \» = 0, the FE-DSPD
model with SE only considered by Su and Yang (2015), we have

1—
pllm (7— 7 €STLE(1/JO) = 7—2(1,[)20)2 - 7(11_p0)5

@ which is not zero, and thus j is not consistent;
@ evenif T — oo with n, Bias(g) = O(7).

@ This corresponds to the well-known Nickel bias (Nickel, 1981).
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It is expected that this result would hold for the general model, and the
bias in 5 would spill over to the other CQMLEs.

The bias terms in (10.12)-(10.14) are functions of parameters and are free
from the initial conditions, and thus give a set of adjusted quasi score

(AQS) functions:

LAX'Q7Au(b),

%Au(&)’Qun(e) - 250,

ULEAU(H)’Q—1AY,1 +tr(C7'D_4), (10.15)
LAU(0)Q 'W1AY + tr(C~'DWy),
Gi:Au(H)’Q‘1W2AY_1 +tu(C'D_1Wy),

S AU) (' & AAU(d) — (T~ 1)(Go),

which are a set of unbiased and consistent estimating functions, i.e.,
E[S*(0)] = 0, and plimnﬁmﬁs*(wo) =0, even when T is fixed.

Solving S*(¢)) = 0 gives the M-estimator ¢, of ¢!
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This root-finding process can be simplified:
Given & = (p, \'), the constrained M-estimators of 3 and o2 are:
B(8) = (AX'QTAX)TTAX'Q N (B1AY —BoAY. ), (10.16)

5500) = sy AU(S)' 27 AL(S), (10.17)
where AU(8) = Au(B(6), p, M, A2).
Substituting 5(5) and 62(6) into the §-components of S* (1) given in
(10.15), we obtain the concentrated AQS functions:
AUS)YQ'AY_y +u(CT'D_y),
AU(5)Q'WLAY + tr(C~'DW,),
AU(5)Q"WLAY 4 + tr(C'D_1Wy),
AU(8)(C™' @ A3)Al(6) — (T — 1)tr(Gs).

_1
52 M( )
1
57 u(0)
57 m(0)
1
57 u(0)
Solving S%(9) = 0 gives the M-estimators SM of §, and hence the

M-estimators of 3 and 02: 3, = 3(8y) and 62 M= = 62(by).

q

S (6) = (10.18)

q

n
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4.3. Asymptotic Properties of the M-Estimators

Notation: Recall: ¢y = true value of ¢, By = Bi(\1), Bio = Bo(AMo),

Q = Q(A3), Qo = Q(A30), etc.; Au = Au(by). Further,
(i) A isthe parameter space of § = (p, \')’;

(iii
(i

)
(i) ‘E’ and ‘Var’ correspond to the true parameter values y;
) tr(:), |-, 1l - |I: trace, determinant, Frobenius norm;

)

V) Ymax(A), Y7min(A): largest and smallest eigenvalues of a real
symmetric matrix A.

(v) diag(ak) forms a diagonal matrix using the elements {ax},

blkdiag(Ak) forms a block-diagonal matrix using matrices {Ax}.
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Asymptotic properties

Assumption B: The innovations vj; are iid for all i and t with E(v;) = 0,
Var(vy) = 02, and E|vy|**% < oo for some ey > 0.

Assumption C: The space A is compact, and the true parameter ¢y lies
in its interior.

Assumption D: The time-varying regressors {X;, t=0,1,..., T} are
exogenous, their values are uniformly bounded, and lim,_, ,]—TAX "AX
exists and is nonsingular.

Assumption E: (i) Forr = 1,2,3, the elements w, j; of W, are at most of
order h;', uniformly in all i and j, and w; ;i = 0 for all i; (ii) hn/n — 0 as
n — oo; (iii) {W,,r =1,2,3} and {Bf01 ,r = 1,3} are uniformly bounded in
both row and column sum norms; (iv) Forr = 1,3, {B;'} are uniformly
bounded in either row or column sum norms, uniformly in A, in a compact
parameter space A,, and

0<c, < inf ymin(B;Br) < sup ymax(B;Br) < € < .

Ar€h ArEN,
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Assumption F: For an n x n matrix ¢ uniformly bounded in either row or

column sums, with elements of uniform order h;, ', and an n x 1 vector ¢

with elements of uniform order h;1 / 2,

(i) ﬂAy;ch;q = Op(1) and Ay dAV, = Op(1);
(i) T2(Ayr —E(Ap1))'é = 0p(1);
(iii) m[Ay;®oAys — E(Ay;®Ay1)] = 0p(1), and
(iv) 2[Ayj0Av: — E(AY,0AV)] = 0p(1).
Define S*(v) = E[S%,..(¢)], the population counter part of S*(1) given
n (10.15). Given 8, S, (1)) = 0 is partially solved at
B(6) = (AX'Q'AX)'AX'Q ' (B{EAY — BREAY ), (10.19)
75(0) = s EIAT(8) Q" AL(S))], (10.20)
where AU() = Au(0)| 5-55) = BIAY — B2AY 1 — AXJ(9).
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These lead to the population counter part of S:(¢) given in (10.18), upon
substituting 3(5) and 2(¢) back into the §-component of S*(v)):

02(5 E[AT(5)Q TAY_4] + u(C~'D_y),

_ —_E[A Q 'W,AY cC 'DW

Si(6) =4 7O [AD(0) 2™ WA Y]+t 2 (10.21)
021( E[A ( ) 1W1AY 1]-|-tI'(C_1D,1W1)7

A EIAT(G) (C1 @ A)AT(E)] - (T - 1)x(Ga).

Idea for consistency: By Theorem 5.9 of van der Vaart (1998), 4, will be
; ; * Q* p

consistent for g if sUpsca \/ﬁHSC(é) — 8;(9)|| - 0, and the

following identification condition holds.

Assumption G: infs. g(s 5)> || S5(0)|| > 0 for every e > 0, where d(5, &) is
a measure of distance between g and d.
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Suppose Assumptions A-G hold. Assume further that
(1) ymax[Var(AY)] and ymax[Var(A Y_1)] are bounded, and
(i) infsea Ymin (Var(B1AY —BxA Y_1)) >c, >0.

We have, as n — oo, {y —— 1.

For asymptotic normality, let Ay, = 17_1 ® Ay;. We have,
AY =R Ayy +n+SAv, (10.22)
AY_ 1 =R_1Ay1+n_1 +S_1Av, (10.23)

where R = blkdiag(Bo, B3, ..., B8] '), R_1 = blkdiag(/n, Bo, . .., B] 2),
n =BB;' AXfB, n_; = B_1B; AXB, S=BBBy', S_1 =B_1B)'B;,,

In 0 ... 0 0 0 0 ... 0 0
Bo Iy ... 0 0 In 0 ... 00
B=1] . . ) . : y B = . ) ) .o
B[™® B[™® ... By h B=® B[™ ... L O
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Using (10.22) and (10.23), the AQS function can be represented as:

S*(¢0) =

AV/FH,

AVOAY — P,

AV'WIAY) + AVITo + AV&,Av + tr(C7'D_qp),
AV Ay + AVITIg + AV O3AV + tl‘(C_1 DoW;, ),
AV'W3AY + AVTy + AV O4AY + tr(CTD_1Wa2),
AV/¢5AV - (T - 1)tl’(630),

(10.24)

|_|1=U%(CbAX, n2=a%cb77_1, |_|3=%20wa177, |_|4=%20wa277_1, ¢1=2;f40C_1,
vo vo v v 4

®p=—3CpS_1, Dg=—5 CoWsS, ds=—5CoWoS_1, d5=—3-[C~' ® (Gyg + Gao)],
v0 v0 v0 v0

Wi=—5-CpR_1, W= CoW1R, Ws=—1-CoWoR_1, and Cp=C~" ® Byo.
v0 v0 v0

@ By the CLT for bilinear-quadratic forms (Yang 2018, Appendix), one
shows the asymptotic normality of S*(v),

@ and hance the asymptotic normality of the M-estimator ¢.
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Theorem

Assume Assumptions A-G hold. We have, as n — oo,
V(T =) (e — o) == N[0, lim =" (o)™ (o) ="~ (t0)]

where " (10) = — 57— El 577 S"(v0)] @and T (o) = 77— Var[S* (o)1, both
assumed to exist and ¥* (1) to be positive definite, for sufficiently large n.

@ In practical applications, one needs to estimate ¥*(i¢p) and '™ () to
get standard errors of the M-estimators.

@ As Xi .. (o) is the expected negative modified Hessian, its observed
counter part immediately offers a consistent estimate, i.e.,

¥ () = — 63) S ()] y_y,- (10.25)

@ Note that a?p/ S* (o) is not symmetrlc. Its expression is given in Yang
(2018, Appendix), but the asymmetric parts were missing. See Yang
(2021) for a discussion on this.
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4 4. OPMD Estimation of Robust VC Matrix

However,

e Estimation of (/) runs into problems.
e From (10.24), AQS function S*(1o) contains three types of elements:

MN'Av, AV'OAv, AV'VAy,.

e Var(Av'WAYy,), etc, depend on unobservables.

Idea of the Proposed Method: write the above quantities as sums of
martingale difference (MD) sequences. Then, outer-product-of-MDs
(OPMD) gives a consistent estimate of the VC matrix.

@ For a square matrix A, decompose A = AY + A 4+ A%, sum of
upper-triangular, lower-triangular, and diagonal matrix.

@ Denote by IM;, ¢4 and Vs the submatrices of N, ¢ and W partitioned
accordingtot,s=2,..., T.
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Robust VC matrix estimation

First, for the terms linear in Av:
nav =Y, MAy
= S Y MhAv
= Y Zthz MpAvie= Y14 G-
Then, for the terms quadratic in Av: E(AV'®Av) = o2,tr(CP), and
AV OAV — E(AVOAV)
= 3, Y AVOAvs — 02tr(CP)
= 21 2 Avi(Of + Pl + PR)AVs — o5,tr(CP)
= Yt L s AV{(SF + bl + OF)AVs — 0Z,tr(CP)
= S, AVIAL + S, AVIAV] — 02tr(CP)
= S0 S (AVRAE + Avie AV — 02,dr) = S Gor,
whee A& =31 (0% + ol )Avs; Avy = 21, LA Vs; {di} = diag(Cd).
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Robust VC matrix estimation

Finally, for bilinear terms: Av/W Ay, define
] \Ut+ :Zstz\Uts, t:2,...,T,

@ Ayy = B3oBioAys; Ayfy = Vi Ay,

@ O =Wy, (ByBio) ! {©ii} = diag(©),

o {AG} = Av,0Y; {AG} =0/ Ay?.
We obtain:

AV'VAY, — E(AV'VAYy)
= YL (BGAYS + AvaiAG + Oi(Avabys, + 02) + 3 Lo AviDysy)
=30 Gai
The {g;;, Fn,} are M.D. sequences, for r = 1,2,3 !
where {F,;}7, is an increasing sequence of o-fields generated by
Vo, Ayo, (Vit,.... v, j=1,....0),i=1,...,n.
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Applying the above results to the elements of S*(«p) in (10.24):

@ For each I, termin (10.24), define g4, r=1,2,3,4,
@ For each ¢, termin (10.24), define go;, r=1,2,3,4,5,
@ For each WV, term in (10.24), define g3, r=1,2,3.

Define

911i,

921i,

931i + G12i + Gezi,
932i + G13i + Ge3i,
933i + G14i + Ge4i,
925

gi =

Then, S*(¢0) = X1 9i,
@ {g;} form a vector M.D. sequence, and hence

® Var[S*(¢o)] = Y.L E(gig))-
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The ‘average’ of the outer products of the estimated g/s, i.e.,

T = oy S 67, (10.26)
thus gives a consistent estimator of the variance of '}, . (1), where g; is
obtained by replacing v in g; by ¥ and Av in g; by its observed
counterpart Av, noting that Ay; is observed.

We have the following theorem.

Theorem

Under the assumptions of Theorem (1), we have, as n — oo,

IS 1 . A Al /
M =T (o) = T =1) > [6:¢f — B(gig))] = 0,

i=1

and hence, =~ (y)T*E* " (P) — 1 (4ho) T (10) Z* " (o) —= O.
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10.5. M-Estimation for Submodels

Certain submodels deserve some special attention. We concentrate on
the submodels that contain spatial dependence, namely,

@ the FE-DSPD model with only SE dependence,
@ the FE-DSPD model with only s1. dependence,
@ the FE-DSPD model with both s1. and sTL dependence, and
@ the FE-DSPD model with both s1. and SE dependence.
We are particularly interested in comparing our approach with the
standard small T or large T approaches, to demonstrate that

@ when T is small our approach provides results that are comparable
with the standard full QML approach when the initial model is
correctly specified.

@ However, our approach provides results that are more robust against
misspecification of the initial model than does the full QML approach.

@ When T is large, our approach provides results that are less biased
compared with the conditional QML approach.
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FE-DSPD model with SE dependence

Setting Ay = A2 = 0, Model (10.2) reduces to an FE-DSPD with only st
dependence of a SAR form,

@ which has been rigorously treated in Su and Yang (2015) based on a
full QML approach where the initial differences are modeled.

@ |t would be certainly interesting to see how the proposed approach
compares with this full QML approach.

The conditional quasi Gaussian loglikelihood (10.4) simplifies to:
loe () = =" log(03) — S log Q] — zL=Au(9) Q' Au(6),  (10.27)
where o = {3',02,p, 23,0 = (8, p),and u(f) = AY — pAY_1 — AXB.
Given As, ls:(1)) is maximized at
6(X3) = (AX'QTAX)TAX'QAY,
57(\a) = =y AT (Aa)2 7 A(Na),
where Ali(\3) = AY — AX A(\3), and AX = (AX,AY_4).
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@ Substituting 6(\3) and 52(\3) back into ¢sz(v) gives the concentrated
quasi loglikelihood function of s,

22 (%) = — "5 log(52(%s)) - § log |2, (10.28)
@ Maximizing ¢S, ()\3) gives the CQMLE X3 of A3, and thus the CQMLEs
6 = 6(X3) and 52 = 52(\3) of 5 and o2, respectively.
Now, the quasi score Ssz(¢) = 77 lss (1) is:
LAX' QT Au(0),
s Au(0) Q7" Au(9) - 351,
LAu0)QTAY
%'EAU(G)’(C_1 ® Az)Au() — (T — 1)tr(Gs).

SSE(¢) =

Only the p-element of E[Ssz(¢0)] is non-zero,
o, FE(AU'QY_1) = —nu[C ™" D(po)], (10.29)
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where the (T — 1) x (T — 1) matrix D(p) has the following expression,
noting that D_4 in the Lemma reduces to D(p) ® In:

1 0 0 0
p— 1 0 0
(1-p)? p—2 0 0

D(p) = : : _
pT2(1=p2 pT (A —=p2 -~ 1 0
pT 1 =p)? pT(A —pP - p—2 1

It is easy to see that, when |p| < 1,

«[C1D(p)] = 1 — =),

= —p  T(-p?
which is a result that has appeared in the literature of non-spatial dynamic
panel data models (e.g., Nickell, 1981; Lancaster, 2002; and Alvarez and
Arellano, 2004), and was derived from different angles.
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The result suggests that

@ the p-element of the conditional quasi score function is such that
plim,  — > AUQ'AY_4 # 0, unless T also approaches oo.

@ A necessary condition for consistency is violated, and hence the
conditional QMLE of p is inconsistent when T is fixed.

@ It also suggests that even under the large n and large T set up, the
conditional QMLE of p would incur a bias of order O(T~') as shown
in Hahn and Kuersteiner (2002) for the regular DPD model.

With (10.29) and the fact that other score elements have zero expectation,
the adjusted quasi score becomes
LAX'Q T Au(b),
A Au0YQ T Au(g) — 50
Si()=1¢ 27 “) )~ "z (10.30)
?Au(e)’Q*‘AYq + ntr(C~1D(p)),

%‘5Au(9)’(0‘1 ® Az)Au(f) — (T — 1)tr(Gs).
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@ Solving S:, () = 0 leads to the M-estimator ¢y, of .

@ This root-finding process can be simplified by first solving the
equations for 3 and o2, given § = (p, A3)’, resulting in the constrained
M-estimators of 3 and o2 as

B6) = (AX'QTAX)TTAX'QTAY(p)
85(00) = Frm ALY AL(S),
where AY(p) = AY — pAY_1 and AD(5) = Au(B(6), p).

@ Substituting 3(6) and 62(¢) into the last two components of the AQS
function in (10.30) gives the concentrated AQS functions:

y &3;(5)Aa(5)'9—1Av,1 + ntr(C~"'D(p)),
Ss=(0) = ] AU (CT' @A) AL(8)— (T —1)tr(Gs).

255 4(9)

@ Solving the resulted concentrated estimating equations, S3£(d) = 0,
we obtain the unconstrained M-estimators &y = (ju, As.)’ Of 4.

(10.31)
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@ The unconstrained M-estimators of 3 and o2 are thus 3y = 3(éy) and
82, = 62(by).

@ Compared with the full QML estimation of Su and Yang (2015), the
proposed M-estimation, though slightly less efficient, is much simpler
as it is free from the specification of the initial conditions, and is thus

robust against misspecifications of initial conditions.

@ In contrast, the full QML estimation requires that the process starting
time mis known a priori and that the processes evolve in the same
manner before and after the data collection.

@ Our Monte Carlo results and those in Su and Yang (2015) confirm
these points.
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FE-DSPD model with SL dependence

Setting A\ = A3 = 0 gives the FE-DSPD model with only S.. Now,
Y = (6,02, p, \1)". The conditional quasi loglikelihood of ) reduces to:
lse(v) =" log(o2)+Hog |B1|—3 log |Cl— 51 Av(0)'C~ Av(9), (10.32)
where 0 = (0}, A1), 01 = (8, p)’, and v(0) = B1AY — pAY_y — AX}.
@ Given Ay, £51.(v)) is maximized at
01(\) =|(AX'C'AX)'AX'CT'BAY
55(M) = s AV (M)CT AT (M),
where AV(\) = B{AY — AX A(\), and AX = (AX,AY_4).
@ Substituting f;(\1) and 52(\) back into /5., (1) gives the concentrated
conditional loglikelihood function of A,
(8, (A1) = log|B+| — " log(52(\1)) — }log|C]. (10.33)

@ Maximizing /¢, (A1) gives the CQMLE )4 of A4, and thus the CQMLEs
6 = 6(\1) and 52 = 52(\) of # and o2, respectively.
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Now, the CQS function S (1) has the form:
LAX'CTTAV(0),

s Av(0yCTAv(9) - 15N,
LAV(9)CTTAY
LAV())CT'WLAY — r(BT W),

Ss(¢) =

The expectations of the first two components of Sg1, (1)) are zero, but
these of the last two are not as by the Lemma,

E(AVIC'AY_{) = — o%tr(C'D_10), and (10.34)
E(AVCT'W,AY) = — 02,t(C~'DoW,), (10.35)

where D_; and D are from the general model, but 5 simplifies to pB1_1.
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@ These show that the last two elements of plim 1 Ss1 (1) are not

n—oo nT
zero, showing that the CQMLEs of the ST model are inconsistent.
@ Even when T grows with n, it can be shown that the CQMLE of p has
a bias of order O(T~") instead of the desired order O((nT)~").

@ Some modifications are thus necessary whether T is fixed or not.

The adjusted quasi score function is,
LAX'CAv(),
: 27 AV(0)C Av(9) - L0,
Salv) = LAV(0)C'AY | +1(C'D_y),
LAV(HYCTIWIAY + tr(CTDW).

(10.36)

The M-estimator for the FE-DSPD-SLD model is thus defined as
y = arg{ St (¥) = 0}.
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@ The root-finding process can be simplified by first solving the
equations for 3 and o2, given § = (p, A1)/, leading to the constrained
M-estimators for 3 and o2:

B(6) = (AX'CTTAX)"TAX'CTTAY(6),
53(6) = s AV(S)'C T AV(9),

where AY(8) = B1AY — pAY_q and A¥(5) = Av(5(6), 6).
@ Substituting 3() and 62(4) into the last two components of (10.36)
gives the concentrated AQS function of ¢:
6’217@5)A0(5)IC71 A Y_1 + tr(c71 D_1 ),
Si(0) = (10.37)
PG )Av(a)’c—1W1AY+tr(C—1DW1).
@ Solving the concentrated equations, S3£(5) = 0, gives the
unconstrained M-estimator §,, of 6. The unconstrained M-estimators
of 3 and o2 are thus (3 = B(64) and 62, = 52(dv).
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FE-DSPD model with SL and STL dependence

Setting A3 = 0 gives the FE-DSPD model with s1. and STL dependence.
Now, o = (3,02, p, M, X2)’, and the conditional quasi loglikelihood of :

s () = =T 10g(02) + log [B4| — 1 log |C| — —Av( YC1AvV(6),
(10.38)
where 0 = (ﬁ/,p, A, )\2)/, and V(@) =Bi{AY — (pln + )\2W2)A Y_1 — AXG.

@ Let 0y = (5, p, \2). Given Ay, £sr1.(¢0) is maximized at
01(\) = (AX'CT'AX)'AX'C'ByAY,
Fo(M) = s AV (M)CTTAT(N),
where AX = (AX,AY_1,WoAY ) and AV(\) = B1AY — AX (\).
@ The concentrated conditional quasi loglikelihood function of A is,
(2, (M) = +log [By| — "7 log(55(M)) — §logCl.  (10.39)

@ Maximizing ESTL(/\1) gives the CQMLE )4, and thus the CQMLEs
61 = 61(\y) and 52 = 52(\y).
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The CQS function Ss11(v) becomes:

LAX'CTTAV(0),

1 -1 n(T—1)
T“JAV(G)/C Av(0) — 597

SSTL("/}) == iAV( )/(:_AIA\/,17

2z AV(0)CTIWIAY —t r(By W),
LAV(0)CTWoAY_ 4.

It is easy to see that the last components of E[Ssw.(%)0)] are not zero, and
are obtained from (10.12)-(10.14). The adjusted quasi score function is,

S;TL(QZ}) =

LAX'CTTAV(6),

S AV(0)C Av(0) - 250,

LAV(0)C'AY 1 +1(C D ), (10.40)
L AV(OYCTW,AY + 1r(C~'DW5),

%AV(@) 1W2AY71 -‘1-'[I'(C_1D,1W2).
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@ The M-estimator for the FE-DSPD-SLD model is thus defined as
7/;SL = arg{S;(y) = 0}.

@ It can be found by first solving the equations for 3 and o2, given
0 = (p, A1, A2)’, leading to the constrained M-estimators

B(8) = (AX'CTTaX)~TaX'CTTAY(9),

1
~2 AN =T AT
5,(8) = (7= 1)Av(é) C'AV(9),
where AY(5) = B1AY — (ply + AaW2)AY_4 and A¥(6) = Av(5(8 ) 5);
@ and then solving the concentrated estimating equations, S;°(4) =

where the concentrated AQS function of § has the form:
L_¥(5)CTAAY 1 +tr(C~'D_4),

52 ()
S:8.(0) = sl AV CTWIAY + (W1 C'D), (10.41)
mm/((sycqwzmc1 +tr(C~'D_1W5>).

@ The M-estimators of 3 and o2 are, thus, 3 = 3(dy) and 62, = 3(5.).
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FE-DSPD model with SL and SE dependence

Setting Ao = 0 gives the FE-DSPD model with ST and SE dependence.
The conditional quasi loglikelihood of v = (', 02, p, A1, A3)" is,

lo12(1) = =L log(02) + log [Bs| — § log || — 55 Au(8) Q" Au(®),
(10.42)
where 0 = (ﬁ/,p, )\1)/ and AU(@) =Bi{AY — pA Y_ 1 — AXﬁ

@ (51x(v) is partially maximized at
6(\) = (AX’Q“AX)“AX’Q“&AY,
Fo(N) = n(T T AU (NQTAL(N),
where Al(\) = B{AY — AX 4()\), and AX = (AX,AY_4).
@ Maximizing the concentrated loglikelihood function of A,
(2:5(\) = log [B1| - "7 log(35(N)) — floglQl.  (10.43)
@ gives the CQMLE }, and thus the CQMLEs d = §(}) and 52 = 52(}).
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The CQS function Ssrz(¢) has the form:

LAX'Q Au(b),

%Au(&)’Q*1Au(0) - 250,

Ssie(¥) = { LAUO)YQTAY_,

Ui:Au(e)’Q—1W1AY — t(B7'Wy),
%Au(@)’(C“ ® Ag)Au(0) — (T — 1)u(G).

The p and Ay components of E[Ss;x(w0)] are not zero, as seen from the
Lemma given for the general model:

E(AUQ'AY 1) = — 02ytr(C™'D_1p),
E(AUQT'WLAY) = — 02,tr(C™'DoWy),
which are of identical forms as those for the SLD model.
The existence of SE, parameters in the error terms, does not effect the

adjustments on the conditional quasi score!
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The results show that the CQMLEs are not consistent unless T is also
large. The conditional quasi score function should be modified as:
LAX' QT Au(b),

1 - (T—1)
ﬁAu(e)’Q TAu(f) - - 207
Sie(¥) =4 EAu@)Q 'AY_1 +u(CT'D_y), (10.44)
LAU0)Q WLAY + tr(C~'DWy),
2%‘5Au((9)’(0*1 ® Az)Au(8) — (T — 1)tr(Gs).
The M-estimator of the FE-DPD-SLE model is defined as

which can be found by first solving for 3 and o2 to give:

B(8) = (AX'QTAX)TTAX'QTTAY (p, \y),
65(6) = sy AU(S) Q7 AL(S),

where AY(p, A1) = B{AY — pAY_q and A(6) = Au(B(0), p, \).
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Then, solve the concentrated estimating equations S%¢. () = 0 to give the

M-estimator 4y of &, where the concentrated AQS function is:

(6)YQ'AY_4 +u(C'D_4),

S15.(5) = { 5 AU WIAY 4 x(CDWy), (10.45)
57 A00) (C1 @ Ag)AD(S) — (T — 1)r(Ga),

>
bl

obtained by substituting 3(¢) and 62(¢) into the last three components of
S p(v) given by (10.44).

The M-estimators of 3 and o2 are thus:
Bu=B(0u) and 62, = 65(0u).
Letting v = (G, 65 . 8u)'-

@ The consistency and asymptotic normality of ¢, for the SLE model
are implied by the results for the general model.

@ The estimate of robust VC matrix is obtained using the relevant
submatrices for the general model.
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10.6. Monte Carlo Results

Monte Carlo experiments are carried out to investigate
(1) the finite sample performance of the M-estimators of the FE-DSPD
models,
(if) the finite sample performance of the proposed OPMD estimates of
the robust standard errors,
(iif) the performance of proposed methods relative to existing ones.
We use the following five models:
SE:  Yt=pYr1+ Potn+ XeBr +Zy +p+ur, U= AsWaur + v,
SL : Yi=pYe—1 + MWiyt + Botn + XiBr + Zy + p+ v,
SLE: Yt =pYt—1+ MWiye + Botn + XiB1 + 2y + p+ U,
ur = AsWsaur + v,
STL: Yt = pYr—1 + MWiyr + XaWayr 1 + Botn + Xif1 + Zy + p+ i,
STLE : Yt = pYr-1 + MWiye + XaWayr 1 + Botn + XeB1 + Zy + p+ uy,
us = )\2 W3U[ + V.
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Table 10.1a. Empirical Mean(sd) of CQMLE, FQMLE and M-Estimator, SE Model, T =3, m =5

n=50 n =200

err ¢ CQMLE FQMLE M-Est CQMLE FQMLE M-Est
1 1] 1.0152(.096) | 1.0017(.100) | 1.0015(.100) | 1.0109(.050) | 1.0021(.052) | 1.0020(.053)
1 .9154(.135) .9678(.148) .9719(.154) .9080(.065) .9960(.079) .9962(.080)

5 .3605(.055) .4995(.065) .5015(.066) .2869(.033) .5009(.043) .5013(.044)

5 .4702(.107) .4761(.093) .4793(.105) 4775(.073) .4877(.060) .4907(.070)

2 1 | 1.0142(.098) | 1.0007(.102) | 1.0002(.102) | 1.0099(.050) | 1.0015(.053) | 1.0014(.053)
1 .9176(.266) .9662(.284) .9785(.307) 9045(.128) .9920(.152) .9935(.155)

5 .3610(.066) .4975(.069) .5023(.078) .2876(.041) .5002(.047) .5018(.052)

5 .4701(.106) .4770(.092) .4803(.104) .4741(.075) .4844(.063) 4883(.072)

3 1 | 1.0133(.099) | 1.0001(.103) .9997(.103) | 1.0090(.047) | 1.0003(.049) | 1.0003(.049)
1 .9192(.198) .9678(.212) .9771(.227) .9060(.099) .9938(.119) .9947(.121)

5 .3585(.059) .4953(.066) .4992(.071) .2881(.036) .5018(.046) .5029(.048)

5 .4681(.110) .4736(.093) 4786(.106) .4741(.075) .4852(.062) 4884(.073)

Note: Par = ¢ = (83, 02, p, A\3)'; err=1 (normal), 2 (normal mixture), and 3 (chi-square).
X; values are generated with 6y = (g, ¢1, ¢2, o1, 02) = (.01, .5,.5,1,.5), as in Footnote 1.
Ws is generated according to Group Interaction scheme as in Footnote 2.
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Table 10.1b. Empirical Mean(sd) of CQMLE, FQMLE and M-Estimator, SE Model, T =7, m =5

n=>50 n =100

err 1 CQMLE FQMLE M-Est CQMLE FQMLE M-Est
1 1 | 1.0248(.044) | 1.0015(.044) | 1.0013(.044) | 1.0231(.033) | 1.0018(.033) | 1.0017(.033)
1 .9771(.081) .9888(.083) .9893(.083) .9821(.059) .9949(.060) .9956(.061)

5 | .4456(.028) | .4987(.029) | .4990(.029) | .4407(.021) | .4990(.022) | .4994(.022)

5 .4928(.057) .4920(.055) 4947(.056) .4931(.047) .4904(.044) .4953(.046)

2 1| 1.0247(.045) | 1.0012(.045) | 1.0010(.045) | 1.0232(.033) | 1.0020(.033) | 1.0019(.033)
1 9776(.183) .9887(.186) .9899(.187) .9806(.129) .9931(.132) .9942(.133)

5 .4461(.028) .4988(.029) .4992(.029) .4412(.022) .4991(.022) 4996(.022)

5 .4919(.058) .4914(.055) .4941(.057) .4906(.048) .4882(.046) .4928(.047)

3 1| 1.0250(.044) | 1.0015(.044) | 1.0013(.044) | 1.0214(.033) | 1.0003(.033) | 1.0002(.033)
1 9751(.130) .9863(.133) .9872(.134) .9779(.095) .9908(.097) .9915(.097)

5 .4458(.028) .4986(.029) .4990(.029) .4413(.020) .4996(.021) .5000(.021)

5 .4903(.057) .4896(.056) .4923(.057) .4919(.048) .4898(.045) .4940(.047)
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Table 10.1c. Empirical sd and average of estimated standard errors of M-Estimator

SE Model, T = 3, m = 5, Parameter configurations as in Table 10.1a.

n =150 n=100 n =200

dgp ¢ sd se se rse sd se se Tse sd se se fse
i 1].100 .112 .099 .09 | .071 .073 .070 .069 | .053 .053 .051 .051
1] .154 165 .150 .146 | .113 .114 110 .109 | .080 .081 .079 .080

5| .066 .068 .064 .065 | .059 .054 .054 .056 | .044 .040 .042 .044
5].105 111 .099 .096 | .083 .086 .081 .080 | .070 .070 .068 .068

2 1 |.102 .124 .099 .093 | .071 .078 .069 .068 | .0563 .055 .051 .050
1] .307 .17 152 263 | .209 .076 .110 .198 | .155 .050 .079 .147

5 |.078 .071 .064 .070 | .065 .053 .054 .063 | .052 .037 .042 .051

5] .104 126 .099 .090 | .089 .095 .082 .078 | .072 .074 .068 .067

3 1/(.103 .117 .099 .095 | .070 .075 .069 .069 | .049 .053 .051 .051
1] .227 133 .151 203 | .162 .089 .110 .153 | .121 .061 .079 .113

5 |.071 .070 .064 .066 | .062 .053 .054 .060 | .048 .039 .042 .047

5] .106 .118 .099 .093 | .088 .091 .082 .079 | .073 .072 .068 .067
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Table 10.2a. Empirical Mean(sd) of CQMLE and M-Estimator, sz Model, T = 3, m = 5, rho = 0.5

n=50 n=100 n = 200

err ’(/) CQOMLE M-Est CQMLE M-Est COMLE M-Est
1 1| 1.0190(.053) | .9992(.055) | 1.0024(.035) | 1.0004(.036) | 1.0112(.025) | .9998(.025)
1| .9365(.133) | .9695(.143) | .9620(.096) | .9855(.100) | .9657(.068) | .9949(.072)

5| .4279(.042) | 5015(.047) | .4467(.024) | .5007(.026) | .4310(.020) | .4995(.022)

2| .2331(.060) | .1933(.064) | .2114(.049) | .1953(.052) | .2048(.039) | .1980(.040)

2 1] 1.0193(.052) | .9992(.054) | 1.0005(.034) | .9984(.034) | 1.0116(.026) | 1.0003(.026)
1| .9391(.260) | .9743(.280) | .9558(.184) | .9797(.194) | .9635(.137) | .9929(.145)

5| .4289(.045) | .5031(.048) | .4474(.027) | .5012(.028) | .4318(.022) | .5000(.023)

2| .2335(.061) | .1938(.065) | .2124(.050) | .1967(.053) | .2030(.037) | .1962(.039)

3 1] 1.0180(.055) | .9980(.056) | 1.0019(.035) | .9998(.036) | 1.0111(.024) | .9997(.025)
1| .9388(.203) | .9730(.218) | .9581(.147) | .9817(.155) | .9623(.102) | .9913(.108)

5| .4277(.043) | 5018(.047) | .4461(.027) | .5000(.029) | .4319(.021) | .4999(.023)

2| .2354(.060) | .1960(.064) | .2121(.050) | .1962(.052) | .2054(.037) | .1986(.039)

Note: Par =y = (3, 0'5, py A1)’ err =1 (normal), 2 (normal mixture), and 3 (chi-square).
X; values are generated with 6 = (g, ¢1, ¢2, 01, 02) = (.01,.5,.5,2, 1), as in Footnote 1.
W; is generated according to Queen Contiguity scheme.
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Table 10.2b. Empirical Mean(sd) of CQMLE and M-Estimator, ST Model, T = 3, m =5, rho = —0.5

n =50 n=100 n =200

err v CQMLE M-Est CQMLE M-Est CQMLE M-Est
1 1| 1.0261(.057) | .9978(.059) | 1.0188(.037) | .9993(.037) | 1.0226(.027) | .9992(.027)

1| .9600(.136) | .9753(.141) | .9761(.099) | .9891(.102) | .9797(.068) | .9917(.070)

-5 | -5577(.046) | -.4976(.050) | -.5543(.031) | -.4989(.034) | -.5513(.022) | -.4991(.024)
2| .1898(.096) | .1841(.097) | .1855(.059) | .1978(.059) | .1824(.044) | .1975(.044)

2 1] 1.0254(.056) | .9971(.058) | 1.0179(.037) | .9985(.037) | 1.0228(.028) | .9993(.028)
1| .9557(.281) | .9719(.290) | .9745(.201) | .9878(.206) | .9857(.140) | .9980(.143)
-5 | -5557(.048) | -.4958(.052) | -.5542(.033) | -.4990(.035) | -.5518(.023) | -.4995(.024)
1985(.093) | .1920(.094) | .1853(.058) | .1974(.058) | .1815(.043) | .1966(.043)

3 1] 1.0261(.057) | .9978(.059) | 1.0184(.037) | .9989(.037) | 1.0225(.028) | .9990(.028)
.9487(.198) | .9640(.204) | .9752(.155) | .9884(.159) | .9808(.105) | .9929(.108)

-5 | -5562(.048) | -.4971(.052) | -.5547(.034) | -.4992(.037) | -.5514(.023) | -.4991(.025)
1938(.097) | .1877(.098) | .1824(.058) | .1943(.058) | .1827(.043) | .1974(.044)
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Table 10.2c. Empirical sd and average of estimated standard errors of M-Estimator
sSL Model, T = 3, m = 5, Parameter configurations as in Table 10.2a.

n=>50 n=100 n =200

err v sd se se rse sd se se rse sd se se rse
1 1|.0565 .060 .054 .052 | .036 .036 .035 .034 | .025 .026 .026 .025
1| .143 .158 .142 .138 | .100 .106 .101 .100 | .072 .075 .073 .072

5| .047 .049 .044 .044 | .026 .028 .026 .026 | .022 .021 .021 .021

.2 | .064 .070 .063 .061 | .052 .048 .052 .059 | .040 .037 .039 .042

2 1| .054 .066 .054 .052 | .034 .039 .034 .034 | .026 .027 .026 .025
1|.280 .105 .143 .255 | .194 .063 .101 .190 | .145 .042 .073 .141

5| .048 .052 .044 .046 | .028 .029 .026 .027 | .023 .021 .021 .022

.2 | .065 .077 .063 .061 | .053 .051 .052 .058 | .039 .039 .039 .042

3 1| .056 .062 .054 .052 | .036 .037 .034 .034 | .025 .027 .026 .025
1].218 122 143 196 | .155 .078 .101 .144 | 108 .053 .072 .105

5| .047 .050 .044 .045 | .029 .028 .026 .027 | .023 .021 .021 .022

.2 | .064 .074 .063 .060 | .052 .049 .052 .058 | .039 .038 .039 .042
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Table 10.3a. Empirical Mean(sd) of CQMLE and M-Estimator, SLE Model, T =3,m =5

n=50 n=100 n =200

err 1 COMLE M-Est CQMLE M-Est COMLE M-Est
1 1| 1.0028(.051) | 1.0012(.052) | .9894(.035) .9990(.036) | 1.0130(.028) | 1.0001(.028)
1 .9268(.133) .9542(.141) | .9491(.093) .9800(.100) .9629(.070) .9911(.075)

5 .4332(.041) .4993(.044) | .4285(.029) .4999(.032) .4337(.019) .5010(.021)

2 .2064(.078) .1930(.083) | .2190(.069) .1905(.075) .1871(.063) .1938(.066)

2 1383(.185) 1489(.183) | .1561(.148) .1582(.146) .1781(.122) 1723(.120)

2 1| 1.0006(.050) 9989(.051) | .9908(.036) | 1.0005(.037) | 1.0123(.027) .9995(.028)
1 9219(.263) 9505(.280) | .9495(.188) .9813(.200) .9626(.138) .9910(.146)

5 .4355(.043) .5011(.045) | .4291(.032) .5006(.034) .4332(.022) 5001(.023)

2 .2016(.078) .1881(.083) | .2199(.067) .1921(.072) .1881(.064) 1940(.067)

2 1411(.175) 1525(.171) | .1597(.148) .1634(.145) 1778(.122) 1733(.120)

3 1| 1.0001(.052) .9984(.053) .9920( 036) | 1.0015(.037) | 1.0121(.028) .9993(.028)
1 .9247(.199) .9527(.212) | .9461(.143) .9771(.152) .9596(.102) .9875(.108)

5 .4345(.042) .5006(.046) | .4287(.031) .4996(.034) .4324(.021) .4991(.022)

2 .2038(.080) .1901(.086) | .2209(.071) .1925(.076) .1898(.063) 1955(.066)

2 | .1394(.186) | .1510(.182) | .1598(.148) | .1629(.145) | .1745(.121) 1695(.118)

Note: Par = ¢ = (83, 02, p, A1, A3)’; err = 1 (normal), 2 (normal mixture), and 3 (chi-square).
X; values are generated with 6y = (g, ¢1, ¢2, 01, 02) = (.01,.5,.5,2, 1), as in Footnote 1.
W, and W; are from Group Interaction scheme, and not equal; see Footnote 2.
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Table 10.3b. Empirical sd and average of estimated standard errors of M-Estimator
SLE Model, T = 3, m = 5, Parameter configurations as in Table 10.3a.

n =50 n=100 n =200

err v sd se se rse sd se se rse sd se se rse
1 1|.052 .056 .051 .050 | .036 .038 .036 .035 | .028 .029 .028 .028
1] .141 157 140 .137 | .100 .108 .102 .100 | .075 .075 .072 .072

5| .044 045 .042 .042 | .032 .032 .031 .031 | .021 .021 .021 .021

.2 |.083 .072 .080 .098 | .075 .065 .072 .086 | .066 .056 .064 .076
2|.183 .179 .160 .163 | .146 .143 .135 .138 | .120 .116 .114 117

2 1].051 .062 .050 .049 | .037 .041 .036 .035 | .028 .030 .028 .027
1] .280 .107 .140 .247 | .200 .067 .102 .192 | .146 .043 .072 .141

5| .045 049 .041 .042 | .034 .033 .031 .033 | .023 .021 .021 .022

.2 |.083 .080 .079 .095 | .072 .070 .072 .085 | .067 .059 .064 .074

2| .17 208 .160 .153 | .145 155 134 134 | 120 .122 113 .114

3 1|.053 .058 .051 .050 | .037 .039 .036 .035 | .028 .029 .028 .028
1] .212 123 .140 .190 | .152 .080 .101 .144 | .108 .054 .072 .105

5| .046 .046 .041 .043 | .034 .031 .031 .033 | .022 .021 .021 .022

.2 |.086 .076 .080 .097 | .076 .067 .072 .085 | .066 .057 .064 .075

2| .182 191 160 .159 | 145 147 134 136 | .118 .119 114 115
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Table 10.4a. Empirical Mean(sd) of CQMLE and M-Estimator, STL Model, T =7, m=5

n=>50 n =100 n =200
err 1 COMLE M-Est CQMLE M-Est COMLE M-Est
1 1 | 1.0045(.025) | 1.0000(.025) | 1.0073(.017) .9998(.017) | 1.0078(.012) | 1.0002(.012)
1 .9809(.079) .9855(.080) .9897(.058) .9940(.058) .9923(.041) .9966(.041)
5 .4780(.018) .4996(.019) .4807(.012) .5001(.012) .4812(.008) .5001(.009)
2 .1904(.046) .1950(.046) .1971(.031) .1994(.031) .1974(.023) .1984(.023)
2 .2280(.041) .2043(.042) .2208(.030) .2006(.030) .2200(.021) .2013(.021)
2 1| 1.0040(.026) .9994(.026) | 1.0078(.017) | 1.0003(.018) | 1.0074(.012) .9998(.012)
1 .9920(.182) .9968(.184) .9884(.130) .9927(.131) .9934(.090) .9977(.091)
5 .4780(.018) .4999(.019) .4805(.013) .4999(.013) .4816(.009) .5005(.009)
2 .1908(.046) .1954(.046) .1962(.032) .1985(.032) .1986(.023) .1995(.023)
2 .2276(.042) .2038(.042) .2216(.031) .2014(.031) .2186(.022) .1999(.022)
3 1| 1.0050(.025) 10006( 25) | 1.0076(.018) | 1.0001(.018) | 1.0075(.012) .9999(.012)
1 .9815(.135) 9861(.137) .9912(.095) .9955(.096) .9903(.067) .9945(.068)
5 .4783(.018) .4999(.018) .4805(.012) 4999(.012) .4810(.008) .4999(.009)
2 .1905(.048) .1950(.048) .1954(.031) .1977(.031) .1978(.023) .1988(.023)
2 .2278(.042) .2041(.042) .2226(.030) .2024(.030) .2198(.022) .2012(.022)
Note: Par = = (3, o V,p, A1, A2)’; err = 1 (normal), 2 (normal mixture), and 3 (chi-square).

X; values are generated with 0, = (

9, 1, g2, 01, 02) = (.01,

W; and W, are from Queen Contiguity, and equal.
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Table 10.4b. Empirical sd and average of estimated standard errors of M-Estimator

STL Model, T = 7, m = 5, Parameter configurations as in Table 10.4a.

n =50 n=100 n =200
err v sd se se rse sd se se rse sd se se rse
1 1] .025 .027 .025 .024 | .017 .018 .017 .017 | .012 .012 .012 .012
1].080 .088 .081 .080 | .058 .060 .058 .057 | .041 .042 .041 .041
5 (.019 .019 .018 .019 | .012 .012 .012 .013 | .009 .008 .009 .009
2 | .046 .049 .047 .048 | .031 .032 .032 .032 | .023 .023 .023 .024
2| .042 044 042 .044 | .030 .030 .030 .032 | .021 .021 .022 .023
2 1].026 .029 .025 .025 | .018 .019 .017 .017 | .012 .013 .012 .012
1| .184 .046 .082 .174 | 131 .029 .058 .126 | .091 .020 .041 .091
5 (.019 .021 .019 .019 | .013 .013 .012 .013 | .009 .008 .009 .009
2 | .046 .052 .047 .048 | .032 .033 .031 .032 | .023 .024 .023 .024
2 | .042 .047 .042 .044 | .031 .031 .030 .032 | .022 .021 .022 .023
3 1].025 .028 .025 .024 | .018 .018 .017 .017 | .012 .013 .012 .012
11].137 .060 .081 .126 | .096 .039 .058 .092 | .068 .026 .041 .066
5 |.018 .020 .018 .019 | .012 .012 .012 .013 | .009 .008 .009 .009
.2 | .048 .050 .046 .048 | .031 .033 .032 .032 | .023 .023 .023 .024
2| .042 045 .042 044 | .030 .030 .030 .032 | .022 .021 .022 .023
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Table 10.5a. Empirical Mean(sd) of CQMLE and M-Estimator, STLE Model, T =3, m=5

n=>50 n=100 n =200

err 1 CQMLE M-Est COMLE M-Est CQMLE M-Est
1 1| 1.0076(.031) 9995(.031) | 1.0092(.024) | .9999(.025) | 1.0057(.016) | .9999(.016)
1 .9287(.133) 9437(.138) 9622(.099) | .9746(.102) .9723(.070) | .9841(.071)

.3 .2578(.033) 3000(.035) .2663(.021) | .2992(.022) .2685(.014) 2999(.015)

2 .1966(.073) 1957(.075) 1877(.059) | .1967(.060) .2030(.037) 1987(.038)

2 .2209(.084) 2055(.091) 2240(.047) | .2037(.049) .2019(.037) 2005(.039)

2| .1463(.185) 1459(.191) 1846(.132) | .1745(.135) | .1785(.092) 1838(.094)

2 1| 1.0084(.031) | 1.0003(.032) | 1.0091(.025) | .9998(.025) | 1.0055(.016) | .9997(.016)
1 .9288(.264) 9448(.273) .9591(.195) | .9717(.201) .9713(.140) | .9832(.144)

.3 .2564(.035) 2986(.036) .2661(.022) | .2988(.022) .2685(.015) | .2998(.015)

2 .1989(.073) 1983(.076) .1895(.060) | .1985(.060) .2043(.036) 1999(.037)

2 .2168(.082) 2008(.089) .2211(.047) | .2008(.050) .2015(.036) 2003(.039)

2 .1367(.184) 1358(.190) 1805(.131) | .1702(.134) .1799(.090) 1855(.092)

3 1| 1.0066(.031) .9985(.031) | 1.0084(.025) | .9991(.025) | 1.0054(.016) | .9995(.016)
1 .9318(.201) 9476(.208) 9644(.148) | .9769(.152) .9727(.102) | .9846(.105)

.3 .2590(.034) 3014(.036) 2679(.022) | .3008(.022) .2689(.015) | .3003(.015)

2 .1983(.071) 1978(.073) .1879(.060) | .1969(.060) .2046(.037) 2003(.038)

2 .2193(.081) 2035(.087) .2207(.047) | .2003(.049) .2009(.037) 1998(.040)

2 .1412( 184) 1403(.190) .1852(.133) | .1750(.135) .1794(.093) 1849(.095)

Note: Par = ¢ = (3, o> oy, Py A, A2, Az)’; err =1 (normal), 2 (normal mixture), and 3 (chi-square).

X; values are generated with 6, =

(9, 1, P2, 01, 02) = (.01,

Wi, W, and Ws are all from Queen Contiguity, and equal.

Z. L. Yang, SMU

ECON747, Term | 2024-25

.5,.5,3, 1), as in Footnote 1.

63/75



Table 10.5b. Empirical sd and average of estimated standard errors of M-Estimator

STLE Model, T = 3, m = 5, Parameter configurations as in Table 10.5a.

n =50 n=100 n =200

err v sd se se rse sd se se rse sd se se rse
1 1|.081 .035 .031 .030 | .025 .026 .025 .025 | .016 .017 .016 .016
11].138 .156 .136 .132 | .102 .106 .099 .098 | .071 .073 .071 .070

.3 |.035 .038 .035 .035 | .022 .023 .021 .022 | .015 .015 .015 .015

.2 |.075 .080 .071 .071 | .060 .062 .059 .060 | .038 .039 .038 .038

2 ].091 .079 .085 .108 | .049 .043 .049 .060 | .039 .033 .039 .050

2| .191 209 .184 .186 | .135 .141 132 132 | .094 .096 .093 .094

2 1].032 .039 .031 .030 | .025 .028 .025 .024 | .016 .017 .016 .016
11.273 .109 137 239 | .201 .065 .099 .187 | .144 .042 .071 .139

3| .036 .042 .034 .035 | .022 .024 .021 .022 | .015 .016 .015 .015

.2 |.076 .089 .070 .069 | .060 .067 .059 .059 | .037 .041 .038 .038

.2 |.089 .088 .083 .104 | .050 .047 .049 .059 | .039 .034 .039 .049

2| 190 .243 .184 177 | 134 154 132 130 | .092 .102 .093 .092

3 1].031 .037 .031 .030 | .025 .027 .025 .025 | .016 .017 .016 .016
1 208 124 137 187 | .152 .079 .099 .142 | .105 .052 .071 .104

3 ].036 .040 .035 .035 | .022 .023 .021 .022 | .015 .015 .015 .015

.2 |.073 .084 .070 .069 | .060 .065 .059 .059 | .038 .040 .038 .038

.2 | .087 .084 .084 .106 | .049 .045 .049 .059 | .040 .033 .039 .050

2| .190 .224 183 .181 | .135 .147 131 130 | .095 .098 .093 .094

Z. L. Yang, SMU

ECON747, Term | 2024-25

64/75



10.7. Empirical Applications

Public Capital Productivity. To facilitate the practical applications of the
proposed methods, we provide an empirical illustration using the well
known data set on public capital productivity of Munnell (1990).

@ The dataset gives indicators related to public capital productivity for
48 US states observed over 17 years (1970-1986).

@ The dataset can be downloaded from
http://pages.stern.nyu.edu/~wgreene/Text/Edition6/tablelist6.htm

@ This dataset has been extensively used for illustrating the applications
of the regular panel data models (see, e.g., Baltagi, 2013).

@ In the spatial framework, it was used by Millo and Piras (2012) for
illustrating the QML and GMM estimation of fixed effects and random
effects spatial panel data models,

@ and by Yang et al. (2016) for illustrating the bias-correction and
refined inferences for fixed effects spatial panel data models.
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In Munnel (1990), the empirical model specified is a Cobb-Douglas
production function of the form:

INY =08 +p61InKi + B2In Ko + B3In L+ 54Unemp + ¢,

with state specific fixed effects, where
@ Y is the gross social product of a given state,
@ Kj is public capital,
@ K is private capital,
@ Lis labour input and
@ Unemp is the state unemployment rate.

This model is now extended by adding the dynamic effect and one or more
spatial effects. The spatial weights matrix W takes a contiguity form with
its (/,j)th element being 1 if states i and j share a common border,
otherwise 0. The final W is row normalised. For models with more than
one spatial term, the corresponding W’s are taken to be the same.
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Each of the five models discussed in this lecture is estimated using
@ (a) full data,
@ (b) data from the last six years (T + 1 = 6),

@ and (c) data from first six years.

Table 10.6a summarize the CQMLE, FQMLE, M-Est and the standard
error of the M-Est for the SE model, as for this model the full QMLE is
available (Su and Yang, 2015). From the results we see that
@ (/) the dynamic and sk effects are highly significant in all models,
@ (ii) three methods give quite different estimates of dynamic effect,
@ and (iii) the FQMLE of p improves over CQMLE in that it is much
closer to the M-estimate in particular when T is small.
@ FQMLE uses m = 6, and the time mean of the regressors as the
predictor for the initial differences. The results are quite robust to the
value of m, but not quite to the choice of the predictors.
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Table 10.6a. CQMLE, FQMLE, , M-Est and its t-Ratio based on Munnell Data: SE Model

Full Data

Last 6 Years

First 6 Years

CQM FQM M-Est t-ratio

CQM FQM M-Est t-ratio

CQM FQM M-Est

t-ratio

B
B2
B3
Ba
o5

p
A3

-.0433 -.0234 -.0467 -1.877
-.0393 -.0309 -.0702 -2.796
.2644 .2008 .1654 3.329
-.0024 -.0026 -.0028 -5.306
.0001 .0001 .0001 5.931
7772 .8283 .914017.222
.7592 .7550 .7697 20.665

-.1008 -.1124 -.0852
-.0305 -.0336 -.0501
.7840 .6504 .5971
-.002-.0018 -.0021
.0000 .0000 .0000 5.366
4409 .5728 .6265 7.162
7133 .7460 .7638 14.021

-1.373
5.526
-3.590

-2.440|-.
.0644 .0106 -.0714
4192 .3532 .3161
-.0028 -.0031 -.0031
.0000 .0000 .0000
4594 5942 .6521
7114 7120 .7155

0851 -.0922 -.0810

-1.136
-.639
2.353
-4.389
3.998
4.018
13.842

Table 10.6b summarize the results for the other four models. The results

show that, for any model estimated and data used,

@ (/) the dynamic effect is alway significant,

@ (ii) there is alway at least one spatial effect that is significant,

@ and (iii) the CQMLE is always significantly smaller than the
corresponding M-estimate.

@ The empirical results are consistent with the theories.
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Table 10.6b. CQMLE, M-Est and its t-Ratio based on Munnell Data: Other Models

Full Data

Last 6 Years First 6 Years

CQMLE

M-Est t-ratio

CQMLE M-Est  t-ratio | CQMLE

M-Est

t-ratio

Model
-0.0620
0.0296
0.3045
-0.0025
0.0001
0.5333
0.2131

-0.0598 -1.8194
0.0105 0.3514
0.2480 3.1542

-0.0027 -4.0988
0.0001 9.5094
0.6132 7.0194
0.2046 4.3797

-0.1850 -0.1692 -2.5069 | -0.0165
-0.0365 -0.0540 -1.1542| -0.1081
0.9917 0.9012 10.4729| 0.3916
-0.0016 -0.0019 -2.5384 | -0.0018
0.0001 0.0001 8.6974| 0.0001
0.1625 0.2448 4.4754| 0.2849
0.2077 0.1991 4.4475| 0.3767

-0.0079
-0.2194
0.2369
-0.0018
0.0001
0.4801
0.4134

-0.1005
-2.7020
1.2416
-2.5330
3.5254
2.8386
4.0345

SLE Model

B4
B2
B3
Ba
g

p
A
A3

-0.0412
-0.0364
0.2649
-0.0024
0.0001
0.7752
-0.0235
0.7753

-0.0454 -1.6237
-0.0675 -1.3981
0.1685 1.4418
-0.0027 -3.9247
0.0001 5.1623
0.9092 5.9496
-0.0123 -0.3143
0.7757 17.6446

-0.0888 -0.0755 -1.8749| -0.1023
-0.0197 -0.0373 -0.8777| 0.4341
0.7585 0.5904 5.3430| 0.4201
-0.0021 -0.0023 -3.5416 | -0.0025
0.0000 0.0000 4.8590| 0.0000
0.4515 0.6189 8.0173| 0.3754
-0.0804 -0.0789 -0.8565 | -0.3615
0.7800 0.8015 10.7070| 0.8878

-0.0829
0.0429
0.3343

-0.0031
0.0000
0.6123

-0.1289
0.7789

-1.1113
0.1011
2.2261

-3.8491
2.9107
2.9549

-0.4139
4.2353
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Table 4.6b. Cont'd

Full Data Last 6 Years First 6 Years

CQMLE  M-Est t-ratio | CQMLE  M-Est  t-ratio| CQMLE M-Est  t-ratio
STL Model
(31 ]-0.0383 -0.0343 -1.2882| -0.1367 -0.1072 -3.0105| -0.0791 -0.0727 -0.8560
B> | 0.0215 0.0040 0.1641|-0.0158 -0.0262 -0.6303| 0.1456 0.0937 0.8758
B3| 0.2414 0.1844 2.9434| 0.7215 0.5669 5.5058| 0.4769 0.4040 4.3346
B4 | -0.0011 -0.0012 -3.4687 | -0.0014 -0.0017 -2.8457| -0.0017 -0.0018 -3.1086
02| 0.0001 0.0001 6.1872| 0.0000 0.0000 5.0666| 0.0000 0.0000 4.9172
p| 0.7547 0.8474 12.1490| 0.4757 0.6365 7.2715| 0.4258 0.5700 4.6003
A1 | 0.6662 0.681 15.2637| 0.4890 0.5409 7.9038| 0.5533 0.5565 10.9247
Ao | -0.6350 -0.6747 -11.3723| -0.466 -0.5797 -6.4991 | -0.5343 -0.5775 -4.5748
STLE Model
(1] -0.0399 -0.0432 -1.7639| -0.1255 -0.1071 -2.8461 | -0.0657 -0.0322 -0.2979
B> | -0.0370 -0.0617 -1.3938| -0.0180 -0.0264 -0.5836| 0.1254 0.0584 0.5115
B3| 0.2146 0.1353 1.2129| 0.7684 0.5690 3.7925| 0.4517 0.3512 2.5418
B4 | -0.0023 -0.0026 -3.5825| -0.0017 -0.0017 -2.3548| -0.0015 -0.0012 -1.1755
02| 0.0000 0.0001 4.5221| 0.0000 0.0000 5.0517| 0.0000 0.0000 4.2264
p| 0.7973 09164 6.2388| 0.4484 0.6349 5.3390| 0.4367 0.6001 3.8399
A | -0.5538 -0.5566 -5.3667| 0.4137 0.5381 3.6888| 0.5976 0.6711 3.9109
Ao | 0.4985 0.5331 4.8853|-0.4138 -0.5770 -3.6064 | -0.5514 -0.6536 -3.4999
A3 | 0.9074 0.9059 31.9162| 0.2058 0.0078 0.0237|-0.1215 -0.3409 -0.6752
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Cigarette Demand in the US

Please see "Computing Lab 6" for details.
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