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Spatial econometrics

Spatial econometrics concerns spatial dependence among geographical
units or social interaction among economic agents or social actors, e.g.,
neighbourhood effects, spillover, copy-catting, network, and peer effects.

It has received an increased attention by regional scientists,
economists, econometricians, and statisticians.

Standard econometric techniques often fails in the presence of spatial
interactions. Spatial econometric models and methods extend the
standard ones to capture the spatial interactions.

They have been applied not only in specialized fields such as regional
science, urban economics, real estate and economic geography,

but also increasingly in more traditional fields of economics, including
demand analysis, labour economics, public economics, international
economics, agricultural and environmental economics,

and finance for issues, e.g., asset pricing with spatial interaction
(Kou, et al., 2017), stock market comovements, and more.
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Course Contents

This course introduces common spatial econometric models, and common
methods of estimation and inference:

1 spatial linear regression models,
2 spatial panel data models,
3 dynamic spatial panel data models.

These models extend the classical linear regression models, panel data
models, and dynamic panel data models, by adding the following terms:

spatial lag dependence,

spatial Durbin effect,

spatial error dependence,

to capture the endogenous social effects (Manski, 1993), contextual
effects, and cross-sectional (spatial) dependence that results from the
‘interactions’ among geographical units, economic agents or social actors.
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Spatial effects are modeled by spatial weight matrices or connectivity
matrices, and spatial parameters.

For each type model,

common inference methods, such as quasi-maximum likelihood
(QML), M-estimation, and GMM, are introduced,

empirical illustrations are presented, and

Matlab routines are provided so that one can conduct his/her own
empirical analyses by adapting/extending these codes.

In addition, refined and robust inferences methods will be introduced.

Lecture 1 introduces common spatial econometric models and common
spatial weight matrices, presents some background knowledge on QML,
M-, and GMM estimation methods, and discuss some popular applications
of spatial models and recent developments in spatial software tools.
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Brief History of Spatial Econometrics

The term spatial econometrics was coined by Jean Paelinck, a Belgium
Econometrician, in the early 1970s to designate a growing body of the
regional science literature that dealt primarily with estimation and testing
problems encountered in the implementation of multiregional econometric
models. See page 7 of the book: Anselin (1988).

The dependence among the cross-sectional units can be considered to to
lie at the core of the disciplines of the regional science and geography, as
expressed in Tobler’s (1979) first law of geography:

"everything is related to everything else, but near
things are more related than distant things."

See also the books of Paelinck and Klaassen (1979), LeSage and Pace
(1999), and Elhorst (2014).
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While the concept of spatial dependence originated from the notion of
relative space or relative location, which emphasizes the effect of distance
or neighborhood, the notation of space or location can easily be extended
beyond the strict Euclidean space inducing

economic distance,

policy distance,

inter-personal distance,

financial networks,

international trade,

social networks, etc.

Hence, spatial dependence is a phenomenon that exists in a wide range
of applications in the social sciences and economics.
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Spatial Linear Regression (SLR) Model

The SLR model extends the classical linear regression model:

Yn = Xnβ + un, (1.1)

by adding one or more of the following terms:
1 spatial lag (SL) term: λW1nYn,
2 spatial Durbin (SD) term: W3nX ∗

n γ,
3 spatial error (SE) term: un = ρW2nun + vn,

where

Yn (n × 1), Xn (n × p), β, and un have the usual interpretations,

X ∗
n : a submatrix of Xn excluding the column of ones, etc,

Wrn, r = 1, 2, 3: known n × n spatial weight matrices, and

λ, ρ and γ are the parameters corresponding to, respectively, the SL,
SE, and SD effects.
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Spatial Panel Data (SPD) Model

The SPD model extends the classical panel data model:

Ynt = Xntβ + Znγ + µn + αt1n + unt , t = 1, . . . , T , (1.2)

by adding one or more of the following: λW1nYnt , ρW2nunt and W3nX ∗
ntγ,

being, respectively, the SL, SE and SD effects, where

Xnt : n × p matrix or time-varying regressors,

Zn: n × q matrix of time-invariant regressors,

µn is an n × 1 vector of unit-specific effects,

{αt} are the time-specific effects,

1n is an n-vector of ones, and other quantities are similarly defined.

The µn and {αt} are called: (i) fixed effects if they are allowed to be
correlated with the time-varying regressors Xnt in an arbitrary manner; (ii)
random effects if they are uncorrelated with Xnt ; or (iii) correlated
random effects if they are correlated with Xnt linearly.

Z. L. Yang, SMU ECON747, Term I 2024-25 8 / 43



Dynamic Spatial Panel Data (DSPD) Model

The DSPD model extends the classical dynamic panel data model:

Ynt = ρYn,t−1 + Xntβ + Znγ + µn + αt1n + unt , t = 1, . . . , T , (1.3)

by adding the SL, SE, or SD terms as in the SPD models. It can be further
extended by adding a space-time effect λWnYn,t−1.

Challenges with the DSPD model:
1 it incurs the incidental parameters problem (number of parameters

increase with the increase of sample size),
2 it gives rise to the initial values problem (the distribution of the initial

observations Yn0 depends on the past values which are
unobservables).

Remarks: For all the spatial econometric models, the spatial weight
matrices can be the same. The SL and SE effects can go for higher order.
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Spatial Weight Matrix

Spatial weight matrix Wn = {wij , i , j = 1, . . . , n} is an n × n matrix that
measures the ‘connectivity’ among the n spatial units. The construction of
Wn is a subject matter, depending on the actual problem considered.

Contiguity-based Weights: wij = 1 when units i and j are ‘neighbors’,
and wi,j = 0 otherwise. Popular ones include:

Rook, Bishop, or Queen Contiguity: in a regular grid, the
neighbors are those with common edge, or common vertex, or
combination of both, in analogy with the move of Rook, Bishop or
Queen in the game of chess (Anselin, 1988, p.18);

Circular World: units immediate ahead or behind of a given
spatial unit are considered as neighbors of this unit, e.g., “5 ahead
and 5 behind” (Kelejian and Prucha, 1999, p. 520);

Group Interaction: when n spatial units are naturally from R
groups, the members within each group are neighbors, but the
members from different groups are not (Case, 1991; Lee, 2004).
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Weights based on Physical Distance: The concept of neighbors can be
extended to mean areal units with (i) common border, (ii) within a given
centroid distance of each other, or (iii) closest in terms of centroid
distance, etc., resulting Wn with elements 1 or 0 as above:

Common Border Weights: wij = 1 if units i and j share common
border, and 0 otherwise;

K-Nearest Neighbors Weights: wij = 1 if units j(= 1, . . . , K )

are the K units closest to the unit i in terms of centroid distance;

Radial Distance Weights: wij = 1 for dij ≤ δ, where dij is the
distance between units i and j , and δ is the distance cutoff value,
giving the distance-based contiguity.
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Spatial weights wij can also be defined directly in terms of the actual
distance dij between units i and j , or in terms of the length `ij of the
common boarder between units i and j :

Power Distance Weights: wij = d−α
ij , where α is any positive

exponent;

Exponential Distance Weights: wij = exp(−αdij), where α is
a positive exponent;

Shared-Boundary Weights: wij = `ij/
∑

k 6=i `ik , proportion of i − j
boundary in the total boundary of unit i .
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Weights based on Social or Economic Distance: Other specification of
spatial weights are possible as well (Anselin and Bera, 1998., p.244).

In sociometrics, the weights reflect whether or not two individual
belong to the same social network (Doreian, 1980).

In economics applications, the use of spatial weights based on
“economic” distance has been suggested, among others, in Case et
al. (1993). Specifically, they suggest to use weights of the form

wij = 1/|xi − xj |,

where xi and xj are observations on “meaningful” socioeconomic
characteristics such as per capita income or percentage of the
population in a given racial or ethic group.
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The final form of Wn is such that wii = 0 (excluding self-influence), and Wn

is row normalized, i.e., each element is divided by its row sum.

Possible endogeneity in spatial weight matrix.

Anselin and Bera (1998, p.244) made an important note:
in the standard estimation and testing problems, the weights
matrix is taken to be exogenous. Therefore, indicators for the
socioeconomic weights should be chosen with great care to
ensure their exogeneity, unless their endogeneity is considered
explicitly.

Qu and Lee (2015) started research on endogenous spatial weights,
where the elements wij are constructed by some other economic variables
Zn = X2nΓ + εn with εn being correlated with vn. As such, Wn is
endogenous.
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Roles of Spatial Terms

Consider a spatial contiguity-based weight matrix with n = 12 spatial units:

Wn =

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 1/2 1/2 0 0 0 0 0
2 0 0 0 0 0 0 1/3 1/3 1/3 0 0 0
3 0 0 0 1/4 0 1/4 1/4 1/4 0 0 0 0
4 0 0 1/3 0 1/3 0 0 0 0 1/3 0 0
5 0 0 0 1/2 0 1/2 0 0 0 0 0 0
6 1/3 0 1/3 0 1/3 0 0 0 0 0 0 0
7 1/3 1/3 1/3 0 0 0 0 0 0 0 0 0
8 0 1/4 1/4 0 0 0 0 0 0 1/4 1/4 0
9 0 1/2 0 0 0 0 0 0 0 0 1/2 0

10 0 0 0 1/3 0 0 0 1/3 0 0 0 1/3
11 0 0 0 0 0 0 0 1/3 1/3 0 0 1/3
12 0 0 0 0 0 0 0 0 0 1/2 1/2 0

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;
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SLR Model with Spatial Error: Yn = Xnβ + un, un = ρWnun + vn.

Let {ui} and {vi} be the elements of un and vn, respectively. From the SE
structure and the given Wn, we have, e.g.,

u1 = ρ(u6 + u7)/2 + v1;
u4 = ρ(u3 + u5 + u10)/3 + v4.

In general, un = (In − ρWn)
−1vn, where In is the N × n identity matrix.

If {vi}
iid∼ (0, σ2

v ), then
Var(un) = σ2

v [(In − ρWn)
′(In − ρWn)]

−1.
⇒ Var(Yn) = σ2

v [(In − ρWn)
′(In − ρWn)]

−1.

However, E(Yn) = Xnβ, the same as the regular linear model.

Spatial error induces cross-sectional dependence among disturbances
{ui}, and thus changes the variance of the response Yn, but does not
induce changes in the mean of Yn.
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SLR Model with Spatial Lag: Yn = λWnYn + Xnβ + un.

Let x ′i be the i th row of Xn. From the model and the given Wn, we have,

Y1 = λ(Y6 + Y7)/2 + x ′1β + u1,

Y7 = λ(Y1 + Y2 + Y3)/3 + x ′7β + u7, etc.

In general, Yn = (In − λWn)
−1(Xnβ + un).

If {ui}
iid∼ (0, σ2

u), then

E(Yn) = (In − λWn)
−1Xnβ,

Var(Yn) = σ2
u[(In − λWn)

′(In − λWn)]
−1.

Spatial lag induces not only the cross-sectional dependence in un and
thus in Yn, but also also the endogenous (interaction) effects on the
means of the responses! The latter highlight the difference between a
spatial model with SL effect and a spatial model with SE effect.
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SLR Model with Spatial Durbin effect: Yn = β01n + Xnβ1 + WnXnγ + un.

For example, Y1 = β0 + x ′1β1 + [(x6 + x7)
′/2]γ + u1.

The mean of the response Y1 of the spatial unit 1 is affected not only
by its own regressors’ values x1, but also by the regressors’ values
of the neighboring spatial units 6 and 7, and similarly for the means
of the responses of other spatial units.

The term Spatial Durbin first appeared in Anselin (1988, p. 40), for
its analogy to the suggestion by Durbin (1960) for time series models.

SD term induces the local effects (from the immediate neighbors), in
contrast to the SL effect which induces the global effects (from the
immediate neighbors, neighbors of the immediate neighbors, etc.).

Change in, e.g., Y1 caused by the change in x1 is referred to as the
direct effect; and changes in other Y ′s caused by the change in x1

are referred to as the indirect effects that could be local, or global.
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Maximum Likelihood Estimation

The maximum likelihood (ML) estimator holds special place among
estimators (Cameron and Trivedi, 2005, p.139), as

it is the most efficient estimator among estimators which are
consistent and asymptotically normal, and

the principle behind the ML estimation lays out a foundation based on
which many other more general methods are obtained such as
quasi-ML estimation and M-estimation.

The likelihood principle, due to a pioneer statistician R. A. Fisher
(1922), is to choose, as an estimator of parameter vector θ0, a value of
θ that maximizes the likelihood of observing the actual sample data.

The joint probability density function (pdf) or joint probability mass function
(pmf) of random observations can be interpreted as “the likelihood’ for a
particular sample to be observed”.
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Let f (y|θ) be the joint pdf of random n-vector Y indexed by a vector θ of
unknown parameters, given the exogenous regressors’ values X and
exogenous spatial weight matrices.

Now, f (y|θ) is viewed as a function of θ and is denoted by Ln(θ|y) or
simply Ln(θ).

Then Ln(θ) is called the likelihood function of θ based on the
observed vector y on Y .

Maximizing Ln(θ) is equivalent to maximizing the loglikelihood
`n(θ) = ln Ln(θ), and

θ̂n = arg maxθ∈Θ `n(θ), (1.4)

is the so-called maximum likelihood estimator (MLE) of θ, where Θ

denotes the parameter space.

A simple interpretation of the MLE θ̂n is: θ̂n is the best ‘guess’ of the
value of θ based on the observed data in that the observed vector y
most likely ‘came’ from the ‘population’ represented by f (y|θ̂n).
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There are some important properties of the ML principle.

Let Sn(θ) = ∂
∂θ `n(θ), then, Sn(θ) is called score function.

At the true value θ0 of θ, Sn(θ0) is called efficient score.

For standard ML estimation problems, θ̂n defined in (1.4) is equivalent
to

θ̂n = arg{Sn(θ) = 0}. (1.5)

Let ‘E’ denote the expectation with respect to the true pdf f (y|θ0), then

E[Sn(θ0)] = 0, (1.6)

The expectation of the outer product of the efficient score vector:

In ≡ In(θ0) = E[Sn(θ0)S′n(θ0)], (1.7)

is called the Fisher Information, commonly known as the (expected)
information matrix.
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The well-known information matrix equality (IME) holds under true `(θ):

−E[Hn(θ0)] = E[Sn(θ0)S′n(θ0)], (1.8)

where Hn(θ0) = ∂
∂θ′ Sn(θ0), called the Hessian matrix. The negative

Hessiam matrix is referred to as the Observed Information Matrix.

The proof of (1.6) goes as follows:

E[Sn(θ0)] =

∫
Sn(θ0)f (y|θ0)dy

=

∫
∂`n(θ0)

∂θ
f (y|θ0)dy

=

∫
∂ ln f (y|θ0)

∂θ
f (y|θ0)dy =

∫
∂

∂θ
f (y|θ0)dy

=
∂

∂θ

∫
f (y|θ0)dy =

∂

∂θ
(1) = 0,

where differentiation and integration are assumed to be interchangeable,
which is typically valid if the range of y does not depend on θ.
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The proof of (1.8) goes as follows. Note that Hn(θ) = ∂2

∂θ∂θ′ `n(θ). We have

E[Hn(θ0)] =

∫
∂2`n(θ0)

∂θ∂θ′
f (y|θ0)dy

=

∫
∂Sn(θ0)

∂θ′
f (y|θ0)dy

=

∫
∂

∂θ′
[
Sn(θ0)f (y|θ0)

]
dy−

∫
Sn(θ0)

[
∂

∂θ′
f (y|θ0)

]
dy

=

∫
∂

∂θ′
[
Sn(θ0)f (y|θ0)

]
dy−

∫
Sn(θ0)S′n(θ0)f (y|θ0)dy

=
∂

∂θ′

∫
Sn(θ0)f (y|θ0)dy−

∫
Sn(θ0)S′n(θ0)f (y|θ0)dy

= 0− E[Sn(θ0)S′n(θ0)]

= −In.

Under some ‘regularity conditions’, we have
√

n(θ̂n − θ0)
D−→ N(0, limn→∞ nI−1

n ). (1.9)
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Quasi Maximum Likelihood Estimation

In practice, the true distribution of Y , say g(y|θ), is often unknown, the
‘chosen’ distribution f (y|θ) can best be an approximation to g(y|θ). Thus,

Ln(θ) defined in terms of f (y|θ) is a wrong (quasi) likelihood function.
Would maximizing the quasi-likelihood Ln(θ) still lead to a consistent
estimator for θ0? Would the asymptotic normality result still hold?

It is well known that for a maximum likelihood type estimator, or
M-estimator, to be consistent, it is necessary that

plim 1
n Sn(θ0) = 0, (1.10)

which boils down by requiring that lim 1
n E[Sn(θ0)] = 0.

However, this is not guaranteed if f (y|θ) is a misspecification.

Very interestingly, we can show that for a certain choice of f (y|θ) that
partially specifies g(y|θ) in the sense that its first two moments
matches these of g(y|θ), consistency can also be achieved.

One such a choice is the Gaussian (normal) distribution.
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Let Y ∼ (µn,Σn), i.e., the true joint pdf g(y|θ0) is correctly specified for the
first two moments only: E(Y ) = µn ≡ µn(β0) and Var(Y ) = Σn ≡ Σn(γ0).

If the ‘chosen’ distribution is a normal, i.e., f (y|θ0) ∼ N[µ(β0),Σ(γ0)], then
the quasi loglikelihood is

`n(θ) = −n
2

ln(2π)− 1
2

ln |Σn(γ)|− 1
2

[
y−µn(β)

]′
Σ−1

n (γ)
[
y−µn(β)

]
, (1.11)

where , and θ = (β′, γ′)′. The quasi score function is

Sn(θ)=


µ̇′n(β)Σ−1

n (γ)
[
y− µn(β)

]
,

−tr[Σ−1
n (γ)Σ̇nk (γ)] +

[
y−µn(β)

]′
Σ−1

n (γ)Σ̇nk (γ)Σ−1
n (γ)

[
y−µn(β)

]
,

for k = 1, . . . , dim(γ), where µ̇′n(β) = ∂
∂β µn(β) and Σ̇nk (γ) = ∂

∂γk
Σn(γ).

Note: for a matrix function A(ρ) of scalar parameter ρ, positive definite (p.d.) ∀ρ,
(a) ∂

∂ρ
A(ρ)−1 = −A(ρ)−1[ ∂

∂ρ
A(ρ)]A(ρ)−1,

(b) ∂
∂ρ

log |A(ρ)| = tr[A(ρ)−1 ∂
∂ρ

A(ρ)],

where tr(·) = trace of a matrix, see Horn and Johnson (1985).
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Clearly,
E[Sn(θ0)] = 0,

whether or not f (y|θ) = g(y|θ), as the quasi score Sn(θ0) is a
linear-quadratic (LQ) function of un = y− µn(β0)!

As long as the two distribution have the same first two moments, the
expectation of Sn(θ0) equals zero.
See Huber (1967) for the original ideas of QML estimation.
See also White (1982) for a similar interpretation and for the related
information matrix test.

Maximizing `n(θ) gives the quasi (Gaussian) MLE, or QMLE θ̂n of θ if
f (y|θ) 6= g(y|θ), which become MLE if f (y|θ) = g(y|θ). The Gaussian
QMLE θ̂n would be still consistent and asymptotically normal. The
difference is that its asymptotic variance becomes

Var(θ̂n)
a
= J−1

n (θ0)In(θ0)J−1
n (θ0), (1.12)

where Jn(θ0) = −E[Hn(θ0)].

Z. L. Yang, SMU ECON747, Term I 2024-25 26 / 43



Thus, in case that the true underlining distribution of a model is
nonnormal, but normal (Gaussian) likelihood is used, the resulting
estimator would still be consistent and asymptotically normal. This
makes the Gaussian QML estimation method very attractive.

A limitation of the QML method is that it cannot be applied to models
with additional endogenous regressors where endogeneity is of
implicit form, unlike the endogenous ‘spatial’ regressor WY .

More general results hold for all distributions from the exponential
family (see Cameron and Trivedi, 2005, Sec. 5.7).
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M-Estimation

The term ‘M-estimator’ was coined by Huber (1964) to mean the maximum
likelihood type estimator (see also Huber, 1969). An M-estimator θ̂n of a
p × 1 vector of parameters θ is defined is defined in two ways:

(a) as the solution of a maximization problem and
(b) as the root of a set of estimating equations.

In case (a), θ̂n is defined as

θ̂n = arg maxθ∈Θ Qn(θ), (1.13)

for real valued, random criterion function Qn(θ).

In case (b), θ̂n is defined as

θ̂n = arg{Ψn(θ) = 0}, (1.14)

for p × 1 vector-valued estimating function Ψn(θ).
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The asymptotic behavior of the M-estimator θ̂n is similar to that of the QML
estimator. In particular, it is consistent and asymptotically normal.

Under regularity conditions, the M-estimator θ̂n is such that θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N[0, lim
n→∞

nΣ−1
n (θ0)Γn(θ0)Σ

−1
n (θ0)],

where Γn(θ0) = Var[Ψn(θ0)] and Σn(θ0) = −E[ ∂
∂θ′ Ψn(θ0)].

The original formulation of the M-estimation is in terms of Qn or Ψn

which is the sum of n independent quantities. However, this can be
generalized to allow either function to have more general forms to suit
for the estimation of more general models such as the spatial
econometric models considered in this course.

See van der Vaart (1998) for more general formulations of
M-estimation strategy, including the methods for proving its
asymptotic properties.

See also White (1994) for the relevant asymptotic methods.
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Generalized Method of Moments Estimation

The generalized method of moments (GMM), developed by Lars Peter
Hansen in 1982 as a generalization of the method of moments which was
introduced by Karl Pearson in 1894, is a generic method for estimating
parameters in statistical models.

Usually it is applied in the context of semiparametric models, where
the parameter of interest is finite-dimensional, whereas the full shape
of the distribution function of the data may not be known, and
therefore maximum likelihood estimation is not applicable.

The method requires that certain moment conditions be specified
for the model. These moment conditions are functions of the model
parameters and the data, such that their expectation is zero at the
true values of the parameters.

The GMM method then minimizes a certain norm of the sample
moment conditions.
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In its most compact form, the GMM estimator θ̂n minimizes the following
object function:

Qn(θ) = g′n(θ)Ωngn(θ), (1.15)

where gn(θ) is a r × 1 vector of sample moments, θ is a p × 1 vector of
parameters (p ≤ r), and Ωn is the weights matrix.

Under certain regularity conditions, the GMM estimator θ̂n defined above
is consistent, i.e., θ̂n

p−→ θ0, and asymptotically normal, i.e.,
√

n(θ̂n − θ0)
D−→ N[0, lim

n→∞
n(Σ′nΩnΣn)

−1(Σ′nΩnΓnΩnΣn)(Σ
′
nΩnΣn)

−1],

where Γn = Var[gn(θ0)] and Σn = −E[ ∂
∂θ′ gn(θ0)].

GMM estimator is efficient in the class of all estimators that do not use any
extra information aside from that contained in the moment conditions.

Choice of weights matrix Ωn is an issue of concern.

Choice of moment conditions is another issue of concern.
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Optimal GMM. If Γn is ‘known’, then one can choose Ωn = Γ−1
n . In this

case, the asymptotic variance-covariance (VC) matrix of the GMM
estimator simplifies to

(ΣnΓ
−1
n Σn)

−1,

a similar form to the asymptotic VC matrix of an M-estimator.

When r = p, the model is said to be just-identified. In this case, Ωn is
simply taken to be the identity matrix, and the GMM estimator becomes
the method of moments (MM) estimator defined as

θ̂n = arg{g′n(θ) = 0}. (1.16)

Clearly, the MM estimator is also the M-estimator defined earlier. In this
case, Σn is also invertible, and the asymptotic VC matrix can be written as
Σ−1

n ΓnΣ
−1
n .
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Selected Applications

Neighborhood Crime. In illustrating the applications of spatial linear
regression models, Anselin (1988, p.187) used neighborhood crime data
(readme) corresponding to 49 contiguous neighborhood in Columbus,
Ohio, in 1980. These neighborhood correspond to census tracts, or
aggregates of a small number of census tracts, where

Crime: the combined total of residential burglaries and vehicle thefts
per thousand household in the neighborhood (the response variable).

Income and House: the explanatory variables representing income
and housing values in thousand dollars.

East: a dummy variable indicates whether the ‘neighborhood’ in the
east or west of a main north-south transportation axis.

In addition, the neighborhood centroid coordinates (X and Y) are also
given, as well as the list of neighbors of each spatial unit
(neighborhood) that gives a first-order contiguity spatial weight matrix.
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Boston House Price. The data, given by Harrison and Rubinfeld (1978),
and corrected and augmented with longitude and latitude by Gilley and
Pace (1996), contains 506 observations (1 observation per census tract)
from Boston Metropolitan Statistical Area, and can be found in R (spdep).
The response variable MEDV and 13 explanatory variables are:

MEDV: median value (corrected) of owner-occupied homes in 1000’s;

crime: per capita crime rate by town;

zoning: proportion of residential land zoned for lots over 25,000
square feet;

industry: proportion of non-retail business acres per town;

charlesr: Charles River dummy variable (= 1 if tract bounds river);

nox: nitric oxides concentration (parts per 10 million);

room: average number of rooms per dwelling;

houseage: proportion of owner-occupied units built prior to 1940;
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distance: weighted distances to five Boston employment centres;

access: index of accessibility to radial highways;

taxrate: full-value property-tax rate per 10,000;

ptratio: pupil-teacher ratio by town;

blackpop: 1000(Bk− 0.63)2 where Bk is the proportion of blacks by
town;

lowclass: lower status of the population proportion.

The spatial weight matrix is constructed using the Euclidean distance in
terms of longitude and latitude. A threshold distance, e.g., 0.05, is chosen,
which gives a Wn matrix with 19.08% non-zero elements.
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Public Capital Productivity. The statewide capital productivity data of
Munnell (1990) give indicators related to public capital productivity for 48
US states observed over 17 years (1970-1986). .

In Munnel (1990), the empirical model specified is a Cobb-Douglas
production function, with state-specific fixed effects µ:

ln Y = β0 + β1 ln K1 + β2 ln K2 + β3 ln L + β4Unemp + µ + ε,

where Y is the gross social product of a given state,

K1 is public capital,

K2 is private capital,

L is labour input and Unemp is the state unemployment rate.

The model can be extended by adding SL, SE, SD, or dynamic effect. The
spatial weights matrix W takes a contiguity form with its (i , j)th element
being 1 if states i and j share a common border, otherwise 0.
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Cigarette Demand. This is another well known panel data that has been
applied under various panel data model frameworks, non-spatial or
spatial, fixed effects or random effects, static or dynamic. In particular, the
demand equations for cigarettes for United States were estimated, based
on a panel of 46 states over 30 time periods (1963-1992), given as
CIGAR.TXT on the Wiley web site associated with book of Baltagi (2005).

Y = Cigarette sales in packs per capita (the response variable).

X1 = Price per pack of cigarettes;

X2 = Population (Pop);

X3 = Population above the age of 16;

X4 = Consumer price index with (1983=100);

X5 = Per capita disposable income;

X6 = Minimum price in adjoining states per pack of cigarettes.

Several time dummies corresponding to the major policy interventions
in 1965, 1968 and 1971 can be added into the model.

Spatial weights can be the first-order contiguity matrix.
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Spatial Software Tools

Major software include Matlab, STATA, Python, and R. See Computer
Labs for more information on their installations and use.

The Matlab codes provided in this course are sufficient for the applications
of common spatial econometrics models and methods introduced.

Additional useful sources include:

GeoDa under The Center of Spatial Data Science, University of Chicago, is a
free software package for spatial data analysis developed by Luc Anseline.

Spatial Econometrics Toolbox by James LaSage privide some matlab codes
for spatial analyses.

spdep is an R package containing some R functions for spatial analyses.

Paul Elhorst lists some matlab codes for spatial panel data analyses.

The book, Fischer and Getis (2010), gives a comprehensive coverage on
spatial software, methods and applications.
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Basics on Econometrics and Matrix Algebra

Some background knowledge on multiple linear regression models, panel
data models, and matrix theory would help learning of spatial econometric
models and methods.

For basics on multiple linear regression models required for the
learning of SLR models, read Chapters 1-5 of Greene (2012).

For basics on standard panel data models, read Chapters 1-5, and 8
of Baltagi (2005).

For basics on matrix algebra, read Appendix A of Anderson (2003);

or Appendix A of Greene (2022, 8th Ed.).
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