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This paper is concerned with the estimation of the autoregressive parameter
in a widely considered spatial autocorrelation model. The typical estimator for
this parameter considered in the literature is the (quasi) maximum likelihood
estimator corresponding to a normal density. However, as discussed in this
paper, the (quasi) maximum likelihood estimator may not be computationally
feasible in many cases involving moderate- or large-sized samples. In this paper
we suggest a generalized moments estimator that is computationally simple
irrespective of the sample size. We provide results concerning the large and
small sample properties of this estimator.

1. INTRODUCTION

There exists a large body of literature that considers autocorrelation of the
disturbances across cross-sectional units for panel data, that is, data that are
observed both across cross-sectional units and over time. However, the estimation of
models that permit for autocorrelation of the disturbances across cross-sectional
units for cases in which the data are only observed in one time period has, until
recently, only received relatively little attention in the theoretical econometrics
literature. For example, in most econometric textbooks there is no discussion
relating to spatial models when only a single cross section of data is available.? This
is unfortunate because issues relating to geographic proximity, transportation,
spillover effects, etc., suggest that such models are important. Indeed, in recent years
there have been a number of theoretical and applied econometric studies involving
spatial issues, which include contributions by Case (1991), Conley (1996), Delong and
Summers (1991), Dubin (1988), Kelejian and Robinson (1993), Moulton (1990),
Quah (1992) and Topa (1996).

*Manuscript received February 1995; revised December 1997.

! We would like to thank Michael Binder, Benedikt Pétscher, You-Qiang Wang, an anonymous
referee, and the editors for helpful comments and Dennis Robinson for providing some of the
weighting matrices.

2 Of course, if panel data are available one can consider, for example, a seemingly unrelated
regression model, or an error component model to permit for cross sectional correlation, and
estimate the cross-sectional correlations via the time dimension of the panel if the time dimension is
sufficiently large.

3 There is an extensive literature relating to spatial models in the regional science and geography
literature; see, for example, Anselin (1988), Bennett and Hordijk (1986), Cliff and Ord (1973, 1981),
and Cressie (1993) and the references cited therein. For critical comments, see Kelejian and
Robinson (1995).
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One of the most widely referenced models of spatial autocorrelation is one that
was put forth by Cliff and Ord (1973, 1981). This model is a variant of the model
considered by Whittle (1954) and is sometimes referred to as a spatial autoregressive
(SAR) model (see, for example Anselin 1988). In the SAR model, the disturbance
term corresponding to a cross-sectional unit is, as discussed in more detail below,
modeled as a weighted average of disturbances corresponding to other cross-sec-
tional units, plus an innovation. This weighted average involves a scalar parameter,
say p, and a set of weights that describe the spatial interactions. The innovations are
typically assumed to be i.i.d. N(0, o). In a regression framework, the parameters of
interest would then be p, o and the vector of regression coefficients. Typically, the
spatial weights do not involve unknown parameters.*

Regression models containing spatially correlated disturbance terms based on the
SAR model are typically estimated by the (quasi) maximum likelihood (ML) estima-
tor, where the likelihood function corresponds to the normal distribution. We use
the term (quasi) ML estimator rather than the term ML estimator to cover
specifications where the actual distribution is permitted to differ from the normal
distribution, as is the case in our analysis below. Given appropriate conditions, these
(quasi) ML estimators should be consistent and asymptotically normally distributed.
However, to the best of our knowledge, formal results establishing these properties
under a specific set of low-level assumptions do not seem to be available for the
SAR model considered here. We note, however, that Mardia and Marshall (1984)
give a general result concerning the consistency and asymptotic normality of the ML
estimator for regression models with general disturbance covariances, provided that
the disturbances are normally distributed. Clearly, their theorem will cover many
Gaussian spatial processes. However, in a formal sense their theorem is not
applicable to the typical SAR model, even in the case where the disturbances are
normally distributed. The reason for this is that Mardia and Marshall assume that
the elements of the disturbance covariance matrix do not depend on the sample size.
As will be seen below, this assumption is not satisfied for the typical SAR model.®

A practical difficulty with the (quasi) ML method in SAR models is that the
estimation of p entails significant computational complexities. As our discussion will
make clear, these complexities can be overwhelming if the spatial weights are not
symmetric, which is typically the case in practice, even if the sample size is only
moderate, or if the sample size is large, which is also the case in various applications

* See, for example, Anselin (1988, 1990) and the references cited therein. For an empirical study
involving a parameterized weighting matrix, see Dubin (1988).

> Of course, the general literature on (quasi) ML estimation contains various sets of sufficient
conditions under which (quasi) ML estimators are consistent and asymptotically normally dis-
tributed; see, for example, Gallant and White (1988), Heijmans and Magnus (1986, 1987), and
Potscher and Prucha (1991a, 1991b) for recent contributions in the econometrics literature as well as
for other references. One approach to formally establish the asymptotic properties of the (quasi) ML
estimators under a specific set of low-level assumptions for the SAR model considered here would
be to formally establish that those assumptions are covered by one of the sets of sufficient conditions
given in the general literature on (quasi) ML estimation. We note, however, that such a demonstra-
tion may be involved. Also, if N cross sections are observed not only for one but for T periods,
spatial autocorrelation can be modeled in a general fashion via a seemingly unrelated regression
model, and standard large sample theory can be applied to the case in which N is fixed and T — oo,
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(e.g., there are more than 3000 counties in the United States). These practical
difficulties are troublesome since, as Cliff and Ord (1981, p. 153) suggest, thus far
the only available alternative to the (quasi) ML estimator of p in the SAR model is
a moments estimator, which was suggested by Ord (1975). This estimator, however, is
generally not seriously considered because of its inefficiency (see, for example, Ord
1975, p. 122).°

The purpose of this paper is twofold. First, on a theoretical level, we suggest an
estimator for the parameter p in the SAR model based on a “generalized” moments
approach. This estimator is, relative to the (quasi) ML estimator, computationally
simple. We then provide a formal proof for the consistency of the estimator under
an explicit set of conditions. We note that these conditions do not involve the
assumption of normality. Second, we give Monte Carlo results relating to, among
other things, the small sample distribution of our suggested estimator and the
(quasi) ML estimator. These results suggest that under a variety of distributions,
including the normal distribution, our estimator of p is “virtually as efficient” as the
(quasi) ML estimator, defined as the maximizer of the likelihood function corre-
sponding to the normal distribution.

In the context of a regression model, we also demonstrate that, under typical
assumptions, p is a nuisance parameter in the sense that the feasible generalized
least squares (feasible GLS) estimator based on a consistent estimator of p is
asymptotically equivalent to the GLS estimator. Therefore, the importance of our
results concerning the estimation of p also relate to the computational simplicity of
feasible GLS estimators. As a by-product, we also establish the limiting distribution
of those estimators. We note that this requires the use of a central limit theorem for
triangular arrays.

Recently, in an interesting dissertation, Conley (1996) has considered a class of
generalized method of moments estimators within a spatial setting. Rather than to
assume a specific model for the generation of the data, he maintains that the data
are stationary and spatially mixing. Clearly, avoiding specific modeling assumptions
is appealing with regard to issues of potential misspecification. On the other hand,
Conley’s stationarity assumption may be restrictive in many applied settings. Also,
this assumption is in general not satisfied by the class of spatial ARMA processes as
defined, for example, in Anselin and Florax (1995), including the SAR model
considered here, because of the nature of the spatial weighting matrices used in
modeling those processes.” Additionally, the derivation of asymptotic results for
M-estimators, and in particular, generalized method of moments estimators, typically
involves a demonstration that the objective function of the estimator converges
uniformly over the parameter space to its asymptotic counterpart. Provided that the
functions forming the objective function are “first moment continuous,” that a

8 Also, this estimator is specified as the solution of a single quadratic equation and hence, in
general, is not well defined unless a further selection mechanism between the two possible roots is
specified.

" As a further technical detail, let (z;) denote the data generating process, and let 6 denote the
vector of unknown parameters. Then Conley considers moments of the form Eg(z;,6)=0, i=
1,..., N, where g is some vector valued function. In contrast, the moments utilized in this paper are
of the form Eg; y(zy,...,2y,0)=0,i=1,...,N.
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“local” law of large numbers holds, and given compactness of the parameter space,
the desired uniform convergence follows immediately from Wald’s (1949) approxi-
mation technique (see, for example, Potscher and Prucha 1989, pp. 680-681). Conley
maintains “first moment continuity” as an assumption toward establishing uniform
convergence. However, in particular applications, a verification of this high-level
assumption may be “involved.” In this paper we deduce the needed uniform
convergence from a set of lower-level assumptions. We note further that Conley’s
dissertation also provides a treatment of covariance matrix estimators in a spatial
setting.

The SAR model is specified and interpreted in Section 2. This section also
contains a discussion relating to (quasi) maximum likelihood estimation. Our estima-
tor and a variation of it are defined and discussed in Section 3. Results showing that
p is a nuisance parameter in a regression framework are given in Section 4. The
Monte Carlo study is described and results relating to our suggested estimators, as
well as to the (quasi) maximum likelihood estimator, are given in Section 5. Section 6
contains suggestions for further work. All proofs are relegated to the Appendix.

2. THE SPATIAL AUTOREGRESSIVE MODEL
In the SAR model an N X 1 disturbance vector u is generated as follows:
) u=pMu+e

where M is an N X N matrix of known constants, p is a scalar parameter, which is
typically referred to as the spatial autoregressive parameter, and € is an N X 1 vector
of innovations. For reasons that will become evident, M is often referred to as a
spatial weighting matrix. For reasons of generality, we permit the elements of M and
€ to depend on N, that is, to form triangular arrays. However, for simplicity of
notation, we do not indicate this possible dependence on N explicitly in the
following.

It proves helpful to introduce the following notational conventions: In general, we
denote the ith element of a vector v as v; and the (i, j)th element of a matrix A4 as
a;;. Correspondingly, we denote the ith row and jth column of A as a; and a ;.
Given this notation, the typical assumptions of the SAR model are as follows®:

ASSUMPTION 1. The innovations €,,..., €y are independently and identically dis-
tributed (for all N) with zero mean and variance o2, where 0 < a?<b with b <,
Additionally, the innovations are assumed to possess finite fourth moments.

AsSSUMPTION 2. (a) All diagonal elements of M are zero. (b) | p| < 1. (c) The matrix
1 — pM is nonsingular for all | p| < 1.

Given these assumptions, it follows from Eq. (1) that u=(I— pM) . Thus
E(u) =0 and E(uu') = Q(p), where

) Q(p)=a*(I—pM) (I-pM')"!

8 Generalizations and variations on these assumptions have been considered (see, for example,
Anselin 1988 and Cliff and Ord 1973, 1981).
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We note that, in general, the elements of (I — pM)~! will depend on the sample size
N. As a consequence, in general, the elements of u also will depend on N and thus
form a triangular array, even if the elements of € do not depend on N. It also
follows that, in general, the elements of Q( p) will depend on N.°

The specification in Eq. (1) implies that u,= pXN. m u;+ €, i=1,...,N. In a
cross-sectional setting, the nonzero weights m;; are often specified to be those which
correspond to units which relate to the ith unit in a meaningful way. Such units are
often said to be neighbors of unit i. As one example, if the cross-sectional units are
geographic regions, one might take m,; # 0 if the ith and jth regions are contiguous
and m;; = 0 otherwise. In this setting, each disturbance consists of a weighted sum of
disturbances in related regions and a term that is i.i.d. over the regions. Clearly,
Assumption 2(a) is a normalization of the model, Assumption 2(b) is a stability
condition for certain specifications of M, and Assumption 2(c) ensures that the
disturbance vector u is uniquely defined in terms of the innovation vector €.!° One
implication of a model such as Eq. (1) is that, unlike for most time series models, 1,
need not be zero for j >i. Thus one distinguishing feature of a spatial model is that
the ith disturbance term may be directly related to both “future” and “past”
disturbances. Also, in a spatial model there is typically no natural order for .
arranging the sample.

Assuming for the moment that u is observable and normally distributed, the log
likelihood for the model in Eq. (1) is, using evident notation, given by

N
3) In(#) = — 7[111(02) +In(27)]

1
— —Z?u’(l— pM"Y(I— pM)u + In|lI — pM]||

As remarked earlier, the normality of u is not one of our maintained assumptions,
and hence we refer to the maximizers of Eq. (3) as (quasi) ML estimators. In the
following we denote these (quasi) ML estimators for p and o> as pyy, and 65,
respectively. As is evident from Eq. (3), the computation of the (quasi) ML estima-
tors involves the repeated evaluation of the determinant of the N XN matrix
I—pM. To minimize the computational burden, Ord (1975) suggested that the
troublesome term in Eq. (3) be expressed as In[[I — pM|| = N | In(]1 — pA,]), where
A; denotes the ith eigenvalue of M. The advantage of this approach is that (since M
is a known matrix) the eigenvalues of M only have to be computed once at the
outset of the numerical optimization procedure employed in finding the (quasi) ML
estimates and not repeatedly at each of the necessary numerical iterations. However,
this still leaves the researcher with the task of finding the eigenvalues of the N X N
matrix M. Unless M has a particular structure, this task is typically “challenging,”
especially if N is large—recall, for example, that there are over 3000 counties in the

? As remarked in the Introduction, this violates one of the assumptions maintained by Mardia and
Marshall’s (1984) theorem regrading the consistency and asymptotic normality of ML estimators for
Gaussian processes. ’

10 Kelejian and Robinson (1995) give results that suggest that Assumption 2(c) is satisfied for
many specifications of M considered in the literature.
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United States. In fact, in many cases it will be practically impossible to compute
those eigenvalues accurately based on computing technology typically available to
empirical researchers. As an illustration, in some of the Monte Carlo experiments
reported below we use “idealized” symmetric M matrices in which each spatial unit
has the same number of neighbors, say J. Clearly, for those matrices, all eigenvalues
are real. However, when we employed a standard subroutine for computing the
eigenvalues of a general matrix from the IMSL program library the routine reported
eigenvalues with imaginary parts that differed substantially from zero even for the
moderate sample size N = 400, when the number of neighbors J was 6 or larger.!
In fact, some of the reported imaginary parts differed from zero by more than .5 in
absolute value. Only when we employed a subroutine that utilized the symmetric
nature of those M matrices were we able to compute the eigenvalues accurately.
Since, in practice, spatial weighting matrices are typically not symmetric, this
suggests that an accurate computation of the (quasi) ML estimator may not be
feasible in many cases even for moderate sample sizes.!? Given these computational
problems, it is clearly important to have an alternative to the (quasi) ML estimator,
which

is computationally feasible for general weighting matrices M, and large sample
sizes N.

3. DEFINITION AND CONSISTENCY OF A GENERALIZED MOMENTS
ESTIMATOR OF p

Suppose u defined in Eq. (1) represents the disturbance vector in a model, and
based on that model, #& is a predictor of u. For notational convenience, let # = Mu
and & = MMu, and correspondingly, & = Mii, and 1 = MMii. Similarly, let €= Me
and note that under Assumptions 1 and 2:

1 1 1
! — 52 zrz | — 2N 1 ' =1 —
4) E[Ne e] o E[Ne e] o*N 'Tr(M'M) E[Ne e] 0

Our generalized moments estimator for p is based on these three moments.
Specifically, noting from Eq. (1) that e=u — pii and so =1 — pii, consider the
following three-equation system implied by Egs. (1) and (4):

(5) Tyl p.p% 0] = yy=0

"' The IMSL subroutine employed was DEVLGR, which itself is based on subroutines from the
EISPACK program library. It seems that other packages such as MATLAB also employ routines
from EISPACK.

2 we also experimented with MATLAB 4.2 for Windows, using a PC with a Pentium 133-MHz
processor and 32 MB of memory, to calculate the eigenvalues for our “idealized” M matrices. In
those experiments we encountered “out of memory” errors for M matrices with N > 2000 and
J =10, even when using a routine for sparse symmetric matrices. In terms of computational time, it
took, for example, 22 minutes to compute the eigenvalues in the case N = 1500 and J = 10, again
using a routine for sparse symmetric matrices. The subsequent computation of the (quasi) ML
estimator based on those eigenvalues and using TSP 4.2 only took seconds. The computation of our
generalized moments estimator, which does not require the computation of eigenvalues, also took
only seconds.
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where

[ 2w L ra 1 ] [ L ) |
Y (u'n) I, (u'n) N (u'u)
r 2 p(5 eam Lo ! pam
v | SE@E SE@E) oMY | e | G E@)

L i e 0 g
. T Aa'u —1= . 1=
N (u'u+u'n) N (7'n) | N (uu)_

Now consider the following analogue to Eq. (5) in terms of sample moments based
on i:

(6) Gyl p, % 0] —gy=ry(p,0?)
where
i 2 -2 _1:,: 1 1 i 1 ..,.._
Nuu N uu Nuu
G 22 e Lo oM Lo
O e A Al B i
1 .= ~ o~ _1-: 0 1 ~
. l—+—l— == s
_N(uu uu) —Nuu | —Nuu_

and where the 3 X 1 vector vy( p, o2) can be viewed as a vector of residuals. We
now define our generalized moments estimator for p and o ? as the nonlinear least
squares estimator, say py,s v and N s,n» corresponding to Eq. (6). More specifi-
cally,

(7
(Dnrs,n> Ons,v) = argmin{vN(B,gz)’vN(f,_qz):BE [-a,a].0%e [O’b]}
where a > 1.

REMARK 1. Note that Eq. (7) implies that | py; s v/ <a with a > 1. Since | p| <1,
if the bound a is sufficiently large, py; s y is essentially the unconstrained nonlinear
least squares estimator of p. The existence and measurability of Py, s vy and Gy ¢ v
is ensured by, for example, Lemma 2 in Jennrich (1969).

In the following, let P(p)=(I— pM)~'. We now specify three additional as-
sumptions.

ASSUMPTION 3. (a) The sums EN.\|lm| and TN ||lm;| are bounded by, say,
¢ < forall 1<i, j<N, N2> 1. (b) The sums L \|p;(p)l and L. |p,(p)l are
bounded by, say, c, < forall 1 <i, j <N, N>1, | pl <1, where c,, may depend on p.
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ASSUMPTION 4. Let ii; denote the ith element of ii, where again we suppress the
dependence of @i and its elements on N for notational convenience. We then assume
that there exist (finite dimensional) random vectors d; and Ay such that |i, — u,| <
Idinll 1A Il with N~YEX | [ld, 1177 ° = O,(1) for some 8> 0 and N'/?||Ay | = O,(1).1

ASSUMPTION 5.  The smallest eigenvalue of 'y, Iy is bounded away from zero, that
is, Apin(Ti Ty) = Ay > 0, where A, may depend on p and o?.

REMARK 2. (a) In practice, spatial models are often formulated in such a way
that each cross-sectional unit has a limited number of “neighbors” regardless of the
sample size (see, for example, Case 1991 and Kelejian and Robinson 1995). In such
cases, the weighting matrix M is sparse for large N, and so Assumption 3(a) would
be satisfied. As a point of information, we note that in many of these cases the
elements of M are taken to be nonnegative and row normalized in that X;m,;; = 1. In
still other cases, the weighting matrix does not contain zeros, but its elements are
assumed to decline rapidly in certain directions because they are defined in terms of
variables such as distance (see for example, Dubin 1988 and De Long and Summers
1991). Again, under further reasonable (but idealized) conditions, Assumption 3(a)
would be expected to hold.

(b) Recall from Eq. (2) that Q= o 2PP’. Assumption 3(b) then implies that
N7IZN Zf’=1|wi,~| is bounded, thus limiting the degree of correlation.!* In a time
series context this condition ensures that the process possesses a fading memory. We
also note that Assumption 3(b) is closely related to Condition A5 in Mandy and
Martins-Filho (1994) in their study of large sample properties of feasible GLS
estimators.

REMARK 3. Assumption 4 should be satisfied for most cases in which i is based
on N'2-consistent estimators of the regression coefficients. For example, using
evident notation, consider the nonlinear regression model y; = f(x;, B) + u;. Let ﬁN
denote the nonlinear least squares estimator, and let i; =y, — f(x,, By). Assuming
that f is continuously differentiable and applying the mean value theorem, it is
readily seen that [, — u,| <|ld;yll |1A Il with d;y = supﬁlﬁf(xi,ﬁ)/o"ﬁl and Ay = ﬁN
— B. Under typical assumptions maintained for the nonlinear regression model, d;
and A, will satisfy the conditions postulated in Assumption 3 (see, for example,
Potscher and Prucha 1986).

REMARK 4. It will become evident that Assumption 5 is an identifiability con-
dition. '

B For definiteness, let A be some vector or matrix; then || 4|l = [T+(A4' A)]'/2. We note that this
norm is submultiplicative, that is, | AB|l < || AlllBll. We also define | 4| as the vector or matrix of
absolute values.

4 — - -

! OAl/>serve that N7'EV, EY jlogl< o> N7T'EN BN S0 lpul Ipyl = o >N 71

LA S i i pyl < o2l < oo,
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Our basic result is Theorem 1, whose proof is given in the Appendix.

THEOREM 1. Let py; gy and 6y.s y be the nonlinear least squares estimators
defined by Eq. (7). Then, given Assumptions 1 to 5,

R R P
(Pves,nsOns,n) = (pyo?) asN—o

An obvious variation on py; s y in Theorem 1 is based on an overparameteriza-
tion of Eq. (6). Specifically, let ¢=p> a=(p,¢,0%), and let ay ¢y =
(PoLs, N> @oLs. N> OoLs, n) be the ordinary least squares estimator of a based on Eq.
(6). Then, it is evident from the proof of Theorem 1 that, under the same conditions,

~ ~ a2 2
(POLS,NaGDOLs,NaUOLs,N) - (p,p,0%) as N— o

4. AN APPLICATION TO THE GENERALIZED LEAST SQUARES MODEL

As discussed, the vector u defined in Eq. (1) often will represent the vector of
disturbances of some econometric model. In such cases, p often will be a nuisance
parameter in the sense that the asymptotic distribution of some estimator of the
model parameters of interest will be the same if p is known or if p is replaced by a
consistent estimator. In many of these cases it will be possible to estimate the
disturbances N!'/?-consistently in a first step. The force of Theorem 1 is that based
on those estimated disturbances, a simple and consistent estimator of p is available.

In the following we illustrate this point within the context of a linear regression
model with spatially autoregressive disturbances. In particular, consider the follow-
ing model:

(8) y=XB+u

where y is the N X1 vector of observations on the dependent variable, X is the
N X K matrix of observations on the explanatory variables, 8 is the K X 1 vector of
unknown model parameters, and u is the vector of disturbances assumed to be
generated by Eq. (1). As discussed in Section 2, in general, the elements of u and
hence those of y will depend on N. For reasons of generality, we also permit the
elements of X to depend on N, but again, we do not indicate this possible
dependence on N explicitly. We maintain the following typical assumptions for
the regressor matrix X and the variance covariance matrix (8) of the disturbance
vector u.

ASSUMPTION 6. The elements of X are nonstochastic and bounded in absolute value
by c,,0<c, <. Also, X has full column rank, and the matrix Q= lim_, , N"1X'X
is finite and nonsingular. Furthermore, the matrices Q (p) =lim,_ ., N7 X'Q(p)~ X
and Q,(p)=1limy_, ., N"'X'Q( p)X are finite and nonsingular for all | p| < 1.

The true GLS estimator for B is defined as 85 =[X'Q(p) ' X1"'X'Q(p)~ly,
and the feasible GLS estimator for 8 corresponding to some estimator of p, say py;,
is defined as B9 =[X'Q(py) X1 'X'Q(py)" 'y (where A~ ! denotes the
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Moore-Penrose generalized inverse of a matrix A, if that matrix is singular). The
following theorem first establishes the asymptotic distribution of BN and then shows
that B£C has the same asymptotic distribution as B if j is a consistent estimator
for p. All proofs are relegated to the Appendix.

THEOREM 2. Given that Assumptions 1 to 3 and 6 hold:

(a) The true GLS estimator ﬁ,? is a consistent estimator for B, and
~ D _
NI/Z[BIg_B] ey N[O’ngx( P) 1]

(b) Let py be a consistent estimator for p. Then the true GLS estimator ﬁ,\(,; and
the feasible GLS estimator B5C have the same asymptotic distribution.

(c) Suppose further that &2 is a consistent estimator for o? Then
GRINTIX'Q(py) ' X171 is a consistent estimator for o*Q (p)~ L.

As remarked in the Introduction, for the spatial model considered here, a rigorous
proof of the asymptotic distribution of the GLS estimator BN requires the use of a
central limit theorem for triangular arrays (even if the elements of M and X do not
depend on N). Such a central limit theorem is given in the Appendix.

Theorem 2 assumes the existence of a consistent estimator of p and o2 We
demonstrate in the Appendix that under Assumptions 1 to 3 and 5 and 6 the
ordinary least squares (OLS) estimator By =[X'X]"'X'y is N'/?consistent. Given
this, the corresponding residuals i, =y, —x;. ,éN satisfy Assumption 4 with d; = |x; |
and Ay= By — B. Thus, via the suggested generalized moments estimator and
Theorem 1, these residuals can be used to obtain consistent estimators of p and o 2.
According to Theorem 2, these estimators can then be used in formulating a feasible
GLS estimator (and an estimator for its asymptotic variance covariance matrix) with
the feasible and true GLS estimator being asymptotically equivalent.

5. A MONTE CARLO MODEL STUDY

It is of interest to analyze the small sample properties of the generalized moments
estimators py; s and pors and compare them with those of the (quasi) maximum
likelihood estimator pg,,, defined as the maximizer of the normal log likelihood
function (3). For this purpose, we have conducted a two-part Monte Carlo study.
The first part of the Monte Carlo study is based on “idealized” weighting matrices
M that differ in size and in the number of neighbors. For these idealized weighting
matrices, the number of neighbors per unit is taken to be the same in each of the
respective matrices. For future reference, we note that, for a given sample size, the
number of neighbors per unit can be viewed as a measure of the sparseness of that
matrix. In using these idealized weighting matrices, we can readily explore the
effects of sample size and number of neighbors on the small sample properties of
our considered estimators. Of course, the use of idealized weighting matrices raises

5 We note that Pour (and 63, ) denote the (joint) maximizers of the normal log likelihood
function (3), even if the actual distribution is not normal.
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the concern that results corresponding to those matrices may not be representative
of results corresponding to “real world” matrices. The second part of the Monte
Carlo study is hence based on real-world weighting matrices.

For both parts of the Monte Carlo study we consider three distributions of € and
seven selections of p. As discussed in more detail below, we consider a total of 36
cases for each distribution of e. The results for each case are based on 500 Monte
Carlo replications. To summarize the results of the respective Monte Carlo experi-
ments, we estimate response functions. It turns out that the estimated response
functions based on idealized and real-world weighting matrices are not “signifi-
cantly” different.! The estimates for the response functions reported below hence
will be based on both sets of weighting matrices. These response functions also can
be used to interpolate results for other cases.

We now describe the design of the Monte Carlo experiments in more detail. Note
first from Eq. (1) that ¢ is a scale factor for u, as well as for # and ¥, in that their
standard deviations are proportional to o. Because of this, the estimators for p
defined earlier do not depend on o2 Hence, without loss of generality, we took
o?=1in generating the data for all the experiments considered; however, in all the
experiments, o2 was viewed as an unknown parameter concerning estimation.

The first distribution for e explored in the experiments is the normal. More
specifically, we assume that the ¢; are i.i.d. N(0,1). This case is viewed as a base case
for the small sample comparisons, since in this case py ;. is actually the maximum
likelihood estimator. The second distribution considered is a normalized version of
the log normal. More specifically, we assume in this case that € =/[exp(§;)—
exp(.5)]/[exp(2) — exp(1)]°, where the ¢; are i.i.d. N(0,1). The normalization implies
that the ¢ are iid. (0,1). This distribution was considered because it is not
symmetric. The third distribution considered is a normalized version of a mixture of
normals in which one normally distributed random variable is contaminated by
another that has a larger variance. More specifically, we assume here that €, =[A;
+ (1= 1)¢1/(5.95)°, where the A, are i.i.d. Bernoulli variables with Prob(A, = 1) =
95, the ¢; are i.i.d. N(0,1), and the ¢ are iid. N(0,100). Also, the processes (A;),
(¢,) and (¢,) are assumed to be jointly independent. Again, the normalization implies
that ¢, is i.i.d. (0,1). This case was considered because the implied distribution has
thicker tails than the normal.'’ In particular, for the specification considered
Ee¢!/(Ee?)* =14.15.

As mentioned, the first part of the Monte Carlo study is based on idealized
weighting matrices M. For each of the three distributions of € we consider 15 cases
that relate to seven selections of p, three selections of the weighting matrix M, and
three selections of the sample size N. We note that the total number of combina-
tions of these selections of p, M, and N would lead to 7 X 3 X 3 = 63 cases for each
distribution of e. To keep the Monte Carlo study manageable, we consider only 15
of those cases per distribution of € but summarize the results of the Monte Carlo
experiments in terms of response functions. The three specifications of the weighting

18 For our “test of significance,” we employed the Chow test in a classical fashion. While in this
context this testing procedure is not a formal one, it should be illustrative.
7 We note that mixtures of normals are frequently used to model the effects of outliers.
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matrices M differ in terms of sparseness and therefore in terms of the extent of
implied autocorrelation concerning the disturbance terms u; defined by Eq. (1). In
the first specification, which we henceforth refer to as “1 ahead and 1 behind,” M
was selected such that each element of u is directly related to the one immediately
after and immediately before it. In doing this, we specified a “circular” world so that,
for example, u,, is directly related to u; and to u,_; and, similarly, u; to u, and u,.
Furthermore, we specified M such that all nonzero elements of M are equal and
that the respective rows sum to unity. That is, in this case, each row of M has two
nonzero elements that are equal to 3. Correspondingly, the next two specifications
of M are “3 ahead and 3 behind” and “5 ahead and 5 behind,” again in a circular
world. The nonzero elements of M in these two cases are, respectively, taken as +
and 15.'® Let J denote the average number of neighbors for each unit. We can then
characterize the preceding matrices with J = 2, 6, 10, respectively.

The second part of the Monte Carlo experiment is based on three real-world
weighting matrices M. In particular, these matrices represent the spatial weighting
matrices for 58, 100, and 254 counties in the states of California, North Carolina,
and Texas. For these matrices, two counties are defined as neighbors if they are in
the same state and if a 50-mile circle centered at the population center of one
county includes the population center of the other county. Neighbors are indicated
by nonzero elements in the M matrix. These nonzero elements are specified to be
equal in each row and to sum to unity in each row. Again, we characterize these
matrices by -their average number of neighbors, that is, with J=3.8, 10.9, 6.6,
respectively. Given seven selections of p, the three real-world weighting matrices
lead to 7 X 3 = 21 additional cases per distribution.

Table 1 gives results on two characteristics of the distributions of py; ¢, Pors. and
Pour. for each of the 15 + 21 =36 cases (defined in terms of N, J, and p) for each
of the three disturbance distributions considered. These characteristics are closely
related to the standard measures of bias and root mean squared error (RMSE) but,
unlike these measures, are assured to exist. Our measure of bias is defined as the
difference between the median and the true parameter value. Our measure corre-
sponding to the RMSE is defined as [bias®+ (IQ/1.35%]'/2, where IQ is the
interquantile range. That is, IQ = ¢, — ¢,, where ¢, is the .75 quantile and ¢, is the
.25 quantile. If the distribution is normal, IQ/1.35 is (apart from rounding errors)
equal to the standard deviation. In the following we will refer to our measures
simply as bias and RMSE. The results in Table 1 are Monte Carlo estimates of these
measures based on quantiles computed from the empirical distributions correspond-
ing 500 Monte Carlo replications. Before discussing response functions for the
RMSEs, we note some points.

The average absolute biases are generally similar for pg,,;, and py; s but higher
for po.s for all three cases of considered distributions. The biases, while typically
negative, are relatively small in absolute value. The RMSEs for pj,,, and py; s are
also generally very close in magnitude and considerably lower than those relating to

8 We emphasize that the estimators for p considered in this paper do not depend on the
particular ordering of the data. Thus any M matrix obtained from a rearrangement of the data
would yield the same results.
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TABLE 1A
BIASES AND RMSE OF ESTIMATORS FOR p, NORMAL ERROR DISTRIBUTION
Bias RMSE
N J P ﬁQML ﬁNLs ﬁOLs ﬁQML ﬁNLs ﬁOLs
49. 2.0 —-0.90 .0034 —.0012 —.0205 0364 .0439 2111
49, 2.0 0.90 —.0051 —.0031 .0222 .0351 .0436 2155
49. 6.0 —-0.50 —.0008 —.0345 —.0155 2879 2952 2973
49. 6.0 0.50 —.0193 —.0184 —.0078 1599 1649 4807
49. 10.0 0.00 —.0294 —.0416 —.0210 3139 3410 1245
58. 3.8 —0.90 .0205 —.0068 —.0429 1110 1190 4705
58. 3.8 -0.50 0175 —.0126 0217 1615 1715 2964
58. 38 —-0.25 .0113 -.0127 .0246 1663 1836 2173
58. 3.8 0.00 —.0023 —.0153 —.0076 .1691 1814 2991
58. 38 0.25 —.0080 —.0135 .0423 1610 1632 4441
58. 38 0.50 —.0139 —-.0132 .1085 1332 1324 6179
58. 38 0.90 —.0070 —.0049 1209 .0434 .0475 .5320
100. 2.0 0.00 .0019 .0013 .0029 .0903 .0907 .0931
100. 6.0 —-0.50 .0006 —.0106 —.0128 1925 2043 .2000
100. 6.0 0.50 —.0092 —.0064 .0141 1076 1121 3553
100. 10.0 -0.25 —.0068 —.0234 .0067 2292 2431 4278
100. 10.0 0.25 —.0145 —.0167 .0448 1734 1751 .5031
100. 10.9 —-0.90 —.0143 —.0275 —.0477 2871 3195 3025
100. 10.9 —0.50 —.0165 —.0249 —.0554 2762 2958 3431
100. 10.9 -0.25 —.0148 —.0234 —.0300 2573 2721 3937
100. 10.9 0.00 —.0147 —-.0198 —.0227 .2390 2432 4449
100. 109 0.25 —.0197 -.0150 —.0105 2024 2058 4635
100. 10.9 0.50 —.0123 —.0128 —.0007 1588 1618 4610
100. 10.9 0.90 —.0061 —.0042 .0140 .0510 .0622 3492
254. 6.6 —-0.90 .0126 —.0039 —.0158 .0617 .0960 1543
254. 6.6 —-0.50 —.0020 —.0059 .0026 1068 1206 1249
254. 6.6 -0.25 —.0012 —.0085 —.0042 1116 1171 1221
254. 6.6 0.00 .0017 —.0080 .0016 .1093 1097 - 1525
254. 6.6 0.25 —.0041 —.0058 .0137 .0953 .0972 1795
254. 6.6 0.50 —-.0074 —.0061 .0195 .0763 .0795 2025
254. 6.6 0.90 —.0042 —.0029 .0139 .0267 .0303 1642
400. 2.0 —-0.25 —.0010 —.0017 —.0035 .0464 .0463 .0628
400. 2.0 0.25 —.0026 —.0021 -.0019 .0449 0461 .0606
400. 6.0 0.00 —.0093 —.0114 —.0022 0811 .0833 .1408
400. 10.0 —0.90 —.0189 —.0122 —-.0251 1379 1557 1466
400. 10.0 0.90 —.0017 —.0018 —.0086 .0201 0213 1435
Column averages
of absolute values .0093 .0121 .0231 1378 .1466 2999

Pors- This suggests that the generalized moments estimator py; ¢ and the (quasi)
maximum likelihood estimator fp,,,; possess very similar small sample properties,
under both normality and nonnormality. We conjecture that a reason for this is that
Pomr and py; ¢ are both, in essence, defined in terms of second-order moments.
Given the similarity of the small sample properties of py,, and py, s, a major
advantage of the generalized moments estimator py,; ¢ as compared with the (quasi)
maximum likelihood estimator pgy,,, seems to be that py; ¢ remains readily com-
putable even for large sample sizes N and general spatial weighting matrices M, as
was discussed in some detail at the end of Section 2. We note, however, that the
overparameterization underlying the definition of p,; ¢ is costly in terms of small
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TABLE 1B
BIASES AND RMSE OF ESTIMATORS FOR p, LOG-NORMAL ERROR DISTRIBUTION
Bias RMSE
N J p Pomr Pnrs Pors Pomr Pnrs Pors
49, 2.0 —0.90 .0036 —.0030 —.0087 .0337 .0357 .2005
49, 2.0 0.90 —.0013 —.0038 .0042 .0299 .0358 .2013
49. 6.0 —0.50 .0018 —.0008 - —.0183 2348 .2706 2827
49. 6.0 0.50 —.0041 —.0010 .0451 1426 .1456 4277
49, 10.0 0.00 —.0211 —.0138 0158 2789 3165 .5880
58. 38 —0.90 .0521 —.0317 —.2430 1642 .1485 7087
58. 3.8 —-0.50 0277 —.0556 .0199 1948 1936 3784
58. 3.8 —-0.25 —.0031 —.0557 .0675 1832 1942 3569
58. 3.8 0.00 —.0147 —.0586 .0676 1532 .1884 4968
58. 38 0.25 —.0225 —.0479 .1685 1478 1755 7617
58. 3.8 0.50 —.0223 —.0326 .2603 1362 1428 1.0143
58. 3.8 0.90 —.0106 —.0111 1848 .0504 .0540 .8143
100. 2.0 0.00 —.0016 —.0014 —.0007 .0870 .0851 .0851
100. 6.0 -0.50 .0058 —.0040 —.0093 1653 1816 1816
100. 6.0 0.50 —.0007 —.0007 .0117 .0938 .0953 .3031
100. 10.0 —-0.25 —.0085 —.0143 .0155 2268 .2405 .3735
100. 10.0 0.25 —.0116 —.0110 .0434 1718 1745 4255
100. 10.9 —0.90 —.0038 —.0177 —.0306 2547 .2920 2772
100. 10.9 —-0.50 —.0002 —.0169 —.0269 2423 .2706 .3407
100. 10.9 —-0.25 —.0018 —.0163 —.0218 .2306 2535 3927
100. 10.9 0.00 —.0091 —.0123 —.0102 2029 2272 4627
100. 10.9 0.25 —.0134 —.0094 —.0029 1789 1891 .5049
100. 10.9 0.50 —.0135 —.0083 .0057 1412 1451 .5032
100. 10.9 0.90 —.0091 —.0055 .0192 .0516 .0558 .3820
254. 6.6 —0.90 .0395 —.0155 —.0215 .0851 .0983 1734
254, 6.6 —-0.50 .0033 —.0158 .0105 .1038 .1109 1321
254. 6.6 —-0.25 —.0044 —.0132 .0280 1032 1079 1415
254. 6.6 0.00 —.0052 —.0076 .0458 .0949 .1002 .2061
254. 6.6 0.25 —.0056 —.0060 .0646 .0862 .0889 2697
254, 6.6 0.50 —.0067 —.0041 .0854 0727 .0708 2978
254. 6.6 0.90 —.0058 —.0019 .0661 .0296 .0286 2211
400. 2.0 —-0.25 —.0012 —.0014 .0013 .0442 .0442 .0573
400. 2.0 025 —.0009 —.0015 —.0012 .0434 .0444 .0600
400. 6.0 0.00 .0010 .0007 —.0053 .0827 .0874 1352
400. 10.0 —0.90 —.0066 —.0057 —.0077 1417 1538 1452
400. 10.0 0.90 —.0013 —.0003 .0027 .0194 .0217 1366
Column averages
of absolute values .0096 .0141 .0456 1307 1408 .3456

sample efficiency. For example, on average, the RMSE corresponding to p,; ¢ is
more than twice as large as those of py,¢ and py,,,. For this reason, we will
henceforth focus attention only on py; ¢ and pgyyy -

Observations concerning the response of the RMSEs to the sample size N, the
average number of neighbors J of the weighting matrix M, and the value of p are
not readily apparent from Table 1. For this reason, we describe the general results in
the table via response functions. In doing this, we estimate separate response
functions for py; s and pgyyy for each of the three distributions considered. These
six functions have the same form but different parameters. These response functions
describe the results in Table 1 and should be useful for inferring corresponding
results for experiments that have “similar” sets of parameter values.
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TABLE 1C
BIASES AND RMSE OF ESTIMATORS FOR p, CONTAMINATED ERROR DISTRIBUTION
Bias RMSE
N J p ﬁQML ﬁNLS ﬁOLS ﬁQML ﬁNLS ﬁOLS
49. 2.0 —0.90 .0021 .0005 .0094 0257 .0268 0.1630
49. 2.0 0.90 .0005 .0016 .0031 0252 .0273 0.1667
49. 6.0 —0.50 .0148 .0035 .0049 1947 2219 0.2329
49. 6.0 0.50 —.0020 .0012 .0120 1183 1206 0.3708
49. 10.0 0.00 .0023 —.0042 .0605 2289 2505 0.5745
58. 3.8 —0.90 .0563 —.0215 —.2058 .1679 1218 0.7515
58. 3.8 —0.50 0377 —.0395 —.0112 1707 1637 0.3739
58. 3.8 -0.25 0224 —.0388 .0520 1370 1677 0.3178
58. 38 0.00 —.0035 —.0319 .0892 1203 .1687 0.5490
58. 3.8 0.25 —.0117 —.0261 .2298 1345 1596 0.9347
58. 3.8 0.50 -.0110 —.0171 3210 1271 1345 1.2607
58. 3.8 0.90 —.0040 —.0058 .2363 .0508 .0524 0.7936
100. 2.0 0.00 —.0034 —.0020 —.0023 0582 .0582 0.0621
100. 6.0 -0.50 .0051 .0081 .0006 .1493 1514 0.1615
100. 6.0 0.50 .0035 .0043 .0060 0832 .0851 0.2636
100. 10.0 —-0.25 0122 .0016 .0210 .1984 1975 0.3424
100. 10.0 0.25 .0013 .0017 .0479 .1384 .1403 0.3728
100. 10.9 —0.90 .0358 .0084 .0078 2505 2614 0.2890
100. 10.9 —0.50 .0301 .0056 .0095 2313 .2390 0.3676
100. 10.9 -0.25 0232 .0040 0277 2158 2193 0.4303
100. 10.9 0.00 .0173 .0032 .0463 1871 1952 0.4862
100. 10.9 0.25 .0104 .0035 .0547 1635 1650 0.5121
100. 10.9 0.50 —.0009 .0023 .0654 1264 1264 0.5069
100. 10.9 0.90 —.0018 —.0004 .0713 .0455 .0484 0.3719
254. 6.6 —0.90 .0458 —.0132 —.0256 .0872 .0961 0.1961
254, 6.6 —0.50 .0086 —.0102 .0148 1012 .1069 0.1289
254. 6.6 —0.25 .0007 —.0075 .0338 .0891 .1046 0.1685
254. 6.6 0.00 .0006 —.0075 .0598 0846 1037 0.2428
254. 6.6 0.25 —.0035 —.0046 .0981 .0838 0921 0.3248
254. 6.6 0.50 —.0062 —.0041 1165 0737 .0760 0.3618
254. 6.6 0.90 —.0055 —.0022 .0887 0290 0315 0.2571
400. 2.0 -0.25 .0000 —.0002 —.0019 0369 .0360 0.0490
400. 2.0 0.25 —.0002 .0001 .0024 .0363 .0361 0.0535
400. 6.0 0.00 —.0021 —.0031 —.0008 0791 0775 0.1252
400. 10.0 —0.90 .0004 —.0049 .0026 1356 1419 0.1341
400. 10.0 0.90 —.0011 —.0013 .0033 0177 .0195 0.1232
Column averages
of absolute values .0108 .0082 .0568 .1168 1229 3561
Let s=1,...,36 denote the sth case considered in Table 1 corresponding to a

particular distribution. Using evident notation, we then specify the response func-
tions for the RMSE of p = py,,, or p= py, ¢ for a particular distribution as follows:

©)

RMSE( psIN;, s, ps)

=N;1/? eXP[‘ll +ay(1/J5) +asp, +ay( p,/Js) +as Psz]

where ay,..., a5 are parameters to be estimated using the data from Table 1 on the
corresponding 36 cases. We estimate a4, ..., a5 by least squares (taking logs on both

sides).
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A few points concerning the response function in Eq. (9) should be noted. First,
rather than being empirically determined, the exponent of the sample size is taken
as —1 because of evident large sample considerations. Second, the function in
Eq. (9) is relatively simple but yet nonnegative and able to accommodate certain
patterns that might be suggested from time series considerations. For example, for
an AR(1) model (with autocorrelation coefficient p), the variance in the asymptotic
distribution of the (quasi) maximum likelihood estimator for p is, under typical
assumptions, proportional to 1— p21° It should be noted that this variance is
symmetric about, and maximized at, zero; in addition, it approaches its minimum
value as p approaches the “critical” points +1. Although the spatial models
considered in our Monte Carlo study are not identical to an AR(1) model, one might
nevertheless expect the relationship between the RMSE and the parameter p to
peak at some point and then decline as p approaches “critical” points at which
I — pM is singular. For all the spatial weighting matrices considered in our experi-
ments, the smallest positive critical point is 1.0; however, the largest negative critical
point is equal to —1 only for the case in which J = 2; for all other cases considered,
the largest negative critical point is less than — 1. In allowing for an interaction term
between p and 1/J in Eq. (9), our response function permits a priori that the
RMSEs might peak at a value of p that varies with J. There is also another avenue
by which J might affect the RMSEs. Specifically, recall that u;= pu;+ ¢, The
weighting matrices considered in the experiments are such that #; is a straight
average of the disturbances that correspond to the “neighbors” of the ith region.
Because of this, the variance of #; (relative to that of u;) should be inversely related
to J, the average number of neighbors. Ceteris paribus, one might expect large values
of J to be associated with large RMSEs because estimation efficiency is typically an
increasing function of regressor variances. Finally, other forms of the response
functions were considered but were dominated by the form in Eq. (9).

The estimation results for the six response functions are given in Table A in the
Appendix. Overall, the results in that table suggest that the response functions fit
the data well. The R? values and the t-ratios are all quite high, suggesting both a
tight fit and that each term considered is important. For all cases considered, the
estimated value of as is negative, and so each function peaks at a given value of p
and then declines. The estimates of the coefficients are such that this “maximizing”
value of p declines as J increases. For all cases considered, if J > 2 the value of p at
which each function peaks is negative but greater than —.25. For all cases in which
J =2, this “maximizing” value of p is very close to zero, namely, between —.03 and
.04. The estimated coefficients are also such that increases in J are, again in all
cases, associated with increases in the RMSEs. These results are consistent with
prior notions. Graphs of the estimated response functions for the case of a normal
error distribution are given in Figures 1 and 2 for pyyy;, and pyys. Of course, in this
case the (quasi) ML estimator py,,, is the ML estimator. The graphs for the case of
a log-normal and contaminated error distribution are similar but are not given here
to conserve space.

19 See, for example, Johnston (1984, p. 329).
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The Monte Carlo results reported here correspond to the case in which the
disturbances u; are observable. We also performed corresponding experiments
involving estimated disturbances, but we do not report here the details of those
experiments because of space limitations. Those experiments suggest that the
statements based on Table 1 and Table A in the Appendix concerning the relative
efficiency of the three estimators carry over qualitatively to cases in which p is
estimated from estimated disturbances.

6. SUGGESTIONS FOR FURTHER WORK

The autocorrelation model considered in this paper is sometimes referred to as a
spatial autoregressive model of order one in that only one “spatial lag” of the
disturbance term, represented by pMu in Eq. (1), is being considered. Higher-order
spatial models involving more than one spatial lag of the disturbance term (for
example, using evident notation, p;Mu + -+ +p, M,u) as well as of the innovation
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term (for example, € + p,, M, 1€+ - +p, .M, €) also have been considered in
the literature. It should be of interest to extend the generalized moments approach
suggested in this paper to those models and to determine corresponding large
sample properties.

APPENDIX
In proving Theorem 1, we have to consider the following moments:
% y=N"'wu=N"(C y)e, C, y=P'P
S n=N"'u'l =N_1e’(C27N)e, C, y=P'MP
O y=N'"0i=N"'e'(Cyy)e, C;y=P'M'MP

S y=N"'Ta=N"'€'(C, y)e, C,y=P' (M)’ MP
(A1)
95 y=N"'TE=N"e'(Cs y)e, Csy=P'(M')’M?P

9y =N"wT=N"€(Cqn)e, Coy=PM?P
9y y=NT1ZE=N"€'(Cy )&,  Coy=M'M
Y y=NT'ee=N"e'(Cs y)e, Cgy=M

The corresponding moments based on i, % and i in place of, respectively, u, & and
u will be denoted by 5‘,,, ~n» h=1,...,6. In the following we will suppress the
subscript N for the matrices C, y and their elements, A =1,...,8. To prove
Theorem 1, we need several lemmata.

LEMMA 1. Under Assumption 3 the elements of the matrices C,, defined in Eq. (A.1)
have the following properties, h =1,...,8: £ lc, ;1<c, £ \lc;, ;1< ¢ for all N> 1
and 1 <i, j <N for some 0 < ¢ < . Furthermore, N_*L) | TN (c;, ;; + ¢, ;)% = o(D).

Proor. The first claim follows because by Assumption 3 the row and column
sums of the absolute values of the elements of the matrices P and M are bounded,
and this property is preserved under matrix multiplication.”” Next, observe that the
row and column sums of the absolute values of the elements of the matrices C;, + C;,
and [C,, + C,1C,, + C},] are then bounded by 2¢ and 4c?, respectively. The second
claim of the lemma now follows because N™*LNX, =Y (¢, ;; +¢, ;) =N"*Tr{[C,
+ClC,+C B <4c?/N—>0as N— o, |

LEMMA 2. Under Assumptions 1 to 3, the moments O, y have the following
properties, h=1,...,8: EO; y=0(1) and var(®, y)=0(), and hence O, y—
ES, y > 0 as N>, and &, y = 0,(1).

N20 To see this, consl\ijder matrices Ay =N(a,- i) By =(b;; ,},v), and Dy =(d;; y)=A4 N?jN' Suppose
Lililanl < cp Eiiilagnl < ey Tililby nl < €y Zjoylbyj yl < ¢ Then LiLildj; yl <
T TR dla, v Ibyj 1= TR 1lbej, v EX lag, vl < ¢, Similarly, 2j'v=1|dij,f\/| < C4Cpe
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ProOOF. By Lemma 1, all elements ¢, ;; are bounded in absolute value. Hence
E9, y=0?N'EN, n ” = O(1). Observe further that var(9, v)=N"2[(p, —
O'A)EfV:l chut 0'42 N EN ey + e ) T with w, = Ee?, since cov(; €,€66)=0
unless i=r and j = s, or i =ys and j=r. Clearly, a sufficient condition for var(:%, )
=o(1) is that N7*LN £ (¢, ;s + ¢, ;)% = o(1), which holds in light of Lemma 1.
The last two claims follow from Chebychev’s inequality and, for example, Corollary
5.1.1.2 in Fuller (1976, p. 186), respectively. |

LEMMA 3.  Consider random variables v; y, w; y, U; y, and w;  and assume that
= 0
(A2) 15; v — v, NI < Diya W, v —w; yI<DiyTy

where D, 'no DIy, TN, and Ty are, respectively, nonnegative random variables with
N7IEN (DY) = 0(1) NTIEN (D})?=0,(1), 74 =0,(D), TN op(l). Suppose
furthermore that N7'EN, v?y = 0,(1) and N IE,N ywly = 0,(1). Then

:
—1vN =~ ~
NTEN 0w y = NVEN 0, ywiy = 0 as N> oo,

Proor. Observe that

’ IZUINWIN—N ZUINWIN
i=1

N N
SN YD = v wlwe yl = NTE 0,y —wi o ]
i=1 i=1

N
+N7T Y 15, v — v ;1P v —wi ]
i=1

N 172 N 12
. [N-l » (DM] [N—l zw,-%N] ”
i=1 i=1

i=1

N 12 N 172
"‘[N_IZ(D;VN 2] [N_IZU?,N] ™
i=1

N 172 N 172

_ v - w \2 v W

"‘[N "2 (Diy 2] [N "2 (D) ] TNTN
i=1 i=1

The last inequality follows from Eq. (A.2) and Holder’s inequality. Since 75 = 0,(1)
and 7y = 0,(1), the claim in the lemma follows by observing that all other terms are
bounded in probability. O

LEMMA 4.  Under Assumptions 1 to 4, 5,,’,\, -, 5 OasN—->o»forh=1,...,6.

1, N

Proor. To prove the lemma, it suffices to show, in light of Lemma 3, that u;,
i;, and the ii;, u;, u,; satisfy the properties malntalned for v; y and 7; y in that
lemma. First, observe that by Lemma 2, N™'EY  u? = 0,(1), N"'EL lﬁz—Op(l)
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and N™'ZX @7 = O,(1). Next, observe that by Assumption 4 we have i, —u,| <
Ild; MITA G Il with N~ lZfV d 128 = 0,(1) for some 8> 0 and NY2|Ayll=0 (D).
Since N™'EN ld,yIIP < [N"TEN. 1”le||2+3]2/(2+6) by Lyapunov’s inequality, u; fand
ii; clearly satisfy the properties mamtamed for v; y and 7; y in Lemma 3. Next,
observe that

N N N
_ p—1 _

Z ]mijlp =ch ! Z Imij][]mij]/cm] <ch, ! E lmijl <ch

=1 =1 j=1

and that

and

mjs( ﬂs - us)

Klh
I [VJ b3
N:II
. M -
3
M=

Hence, using the triangle and Holder’s inequalities with g =2+ and (1/q) +
1/p)=1,

N
lu, — Z m,'jl ”djN””AN”
N 1/p N 1/q
< Zlm,-jlp Z”djNHq ”AN“SDN?N
j=1 j=1
- N N
u,—u;l< Z Z mjslﬂdlel Al

j
N 1/q

N /pr N _
< Z Imijl Z |mjs|p] Z ”dsN”q] ”AN” SDN?N
s=1 s=1

with Dy =c, [N~ Pyl 1Hd,\,ll“’]l/q, DN =c2[N~ IZN 1||dN||q]1/‘7 and Ty =

Nl/‘IIIANII By Assumptlon 4, Dy=0 (1), Dy = 0,(1) and 7 =0,(1). Hence %, and
it; as well as #; and u, also satisfy the propertles maintained for v; y and 7; y in
Lemma 3, and thus the claims of Lemma 4 follow from Lemma 3. O

PrOOF OF THEOREM 1. The existence and measurability of py, s v and &y s v
are ensured by, for example, Lemma 2 in Jennrich (1969). The objective function of
the nonlinear least squares estimator and its corresponding nonstochastic counter-

part are given by, respectively,
Ry(0) = [Gu(p: 0% 0?) —gn] [Gu(po 0% 0?) — 2]

Ru(8) = [Tn(p:0% 0?) — w| [Tl 2% 22) — ]
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where §=(p, c?)". To prove the consistency of ( py, s y» Gnrs, v)> We show that the
conditions of, for example, Lemma 3.1 in Potscher and Prucha (1991a) are satisfied
for the problem at hand. We first show that 8= (p,c?) is identifiably unique
[where 6= (p, o2)" denotes the vector of true parameters]. Observe that because of
Eq. (5), '

EN(.Q) _RN(O)
— [B_p’Bz_pz,gz_Uz]F;VFN[B_p’Bz_pz’gz_02]/
ZAmin(F[(IFN)[B_pa_p2_p2’g2_02][£_p’£2_P2,gz_0'2],

>\ p=p.a?=a?|[p—p.a?— | = Al 6l
Hence for every € > 0 and any N, we have

inf  [Ry(8) —Ry(6)] = inf A Jl0— 617 =h.e?>0
(g:16—6ll= €} (g:116—-6ll= €}

which proves that 6 is identifiably unique. Next, let Fy =[Gy, —gy] and &, =
[Ty, — vy then for p€la,al and o2 <0, b].

IRy(8) _RN(Q)I = l[f,fz,gz,l][F/vFN_ (D}\/(DN][Ba_PZ,Q'Z,l]']
<|IEFy — @7 Dyl p, p?, o2, 111

<|IFFy— ®yPul[1 +a® + a* + b?]

Since Lemmata 2 and 4 imply that F, — @, % 0 and that the elements of Fy and
@ are, respectively, O,(1) and O(1), it follows that R,(8) — Ry(8) converge to
zero uniformly over the (extended) parameter space, that is,

sup IRy(0) — Ry(0) <|[FyFy— ®y®yl[1+a®+a* + 5] 5 0

pel—a,al,g*<(0,b]

as N — . The consistency of (py.s n» Gyrs, y) now follows directly from Lemma
3.1 in Potscher and Prucha (1991a). ]

The proof of Theorem 2 requires a central limit theorem (CLT) for triangular
arrays. The CLT below follows readily from a corollary to the Lindeberg-Feller CLT
for triangular arrays using the Cramer-Wold device. That corollary is, for example,
given in Billingsley (1979, p. 319, Problem 27.6).%!

! More precisely, we use a slight generalization of that corollary where the assumption that the
random variables of interest are constructed from a sequence of i.i.d. random variables is replaced
by the assumption that they are constructed from a triangular array of identically distributed and
(within each sample) independent random variables.
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THEOREM A. Let {v;y,1 <i <N, N > 1} be a triangular array of random variables
that are identically distributed, and for each N (jointly) independent with Ev; 5= 0 and
Eviy=02%0<0?<w, Let {zij,N,l <i<N,N=>=1}, j=1,..., K, be triangular arrays
of real numbers that are bounded in absolute value, that is, c, = supy sup; . v, j < xlz;j n|
<. Further, let {Vy:n=1} and {Z\:n=1} with Vy=(v;p);=1,  y and Zy=
(z;jn)i=1,... N;j=1,...,x denote corresponding sequences of N X 1 random vectors and
N X K real matrices, respectively, and let lim _,,, N"'Z\yZ,\, = Q be finite and positive

definite. Then N™V2Z\Vy, 5 N, a?Q).

PROOF OF THEOREM 2. To prove part (a) of the theorem, observe that N/*[ B¢
—B1=[N"1Z'Z]"IN~V?Z'e, where Z=(I— pM)X. Note that, in general, the
elements of Z will depend on the sample size N. However, for notational simplicity
we will not denote this dependence explicitly in the following. Observe further that
under the maintained assumptions the elements of Z are bounded in absolute value
by (1 +¢,,)c, and that limy_,, N"'Z'Z=0Q,(p) is finite and nonsingular. Recall
that the innovations €, ..., €y are identically distributed and for each N (jointly)
independent with Ey;N=0... with mean zero and variance o> Hence it follows

from Theorem A that N~1/2Z"¢ 5 N[0, O'ZQX( p)] and consequently N'/2[ B¢ — B]
2N [o, azgx( p)~'1. Of course, this also implies that B$ is consistent.

We prove part (b) of the theorem by showing that N'/?[ 8§ — BfC] 50 as
N — o, To prove this, it suffices to show that

(A3) N X[y -0 X S0
and
(A4) N2x () - 0(p) e S0

Clearly, Q(pp) 1= Q(p) 1 =(p—py ) M+M")+(p>— p:)M'M. Hence
(A5) N“X’[Q(ﬁw)_l—ﬂ(p)”]X
=(p—pn) N X' (M+M)X+(p>—py)N"'X'M'MX
and
(A6) N-V2X'[Q(5y) = 0(p) M|u
=(p—py)NV2X' (M+M"Yu+ (p*>—p2 )N V2X'M'Mu
N N

Under the maintained assumptions, the elements of N7'X'(M+M')X and
N™1X'M'MX are bounded in absolute value by 2c2c,, and c2c2, respectively (see
footnote 20). Condition (A.3) then follows from (A.5), since py is assumed to be
consistent.

Next, consider the terms N™V2X'M'u, N~V/2X'Mu, and N~ '/2X'M'Mu. Clearly,
the expected value of each element of these vectors is zero. The variance-covariance
matrices of these vectors are given by, respectively,

N'X'®dX s=1,2,3,
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with &, =M'PP'M, ®,=MPP'M’', ®;=M'MPP'M'M. Since the row and column
sums of the absolute values of the matrices P and M are bounded, it follows that
the row and column sums of the matrices ®, are also bounded by some finite
constants, say, ¢, (s = 1,2,3); see footnote 20. Since the elements of X are bounded
in absolute value by c,, it then follows that the elements of the variance covariance
matrices N™'X'®, X are bounded in absolute value by c2c, < o (s = 1,2,3). It then
follows from, for example, Corollary 5.1.1.2 in Fuller (1976), that the elements of
N7V2X'M'u, N"'?>X'Mu, and N™'/2X'M'Mu are O,(1). Condition (A.4) is now
seen to hold from (A.6) because py is assumed to be consistent.

Part (¢) of the theorem follows immediately from (A.3) and Assumption 6 and the
fact that 62 is a consistent estimator for o 2. O

Next, we prove that under Assumptions 1 to 3 and 5 and 6 the OLS estimator By
is N'/2-consistent, as was claimed in the discussion after Theorem 2. Observe that
NV By— Bl=[N"'X'X]"'N~1/2Z'e, with Z defined here as Z = (I — pM')"'X.
Note again that, in general, the elements of Z will depend on the sample size N. By
assumption lim ,_,, N™'Z'Z =lim, _,,, N"'X"Q( p) X = Q ( p) is finite and nonsin-
gular, and the innovations e€,,..., €y are identically distributed, and for each N
(jointly) independent with mean zero and variance o 2. Hence it follows from

Theorem A that N~ Y2Z'e 3 N[0, 020 (p)]. Observing that Q, =

limy ., N"'X'X is finitt and nonsingular, it follows that N[ B, — B]
D _
= NI0,0:'0.(p)0; '] O
The following table contains the estimation results for the response functions for
Pomr. and Py, ¢ discussed in Section 5.

TABLE A
THE RESPONSE FUNCTIONS FOR fp 57, AND Py g

Parameter Estimates

Estimator a, a, a5 a, as R*"
Normal Error Distribution

Pomr 1.11015 —2.77568 —0.98016 2.03430 —1.14638 91
(16.88) (11.49) (9.46) (4.92) (11.53)

PnLs 1.12976 —2.77091 —1.04065 2.17021 —0.97829 .93
(20.10) (13.42) (11.75) 6.14) (11.51)

Log-Normal Error Distribution

Pomr 1.01024 —2.70593 —0.98919 1.85930 —0.97475 92
(15.25) (11.12) (9.48) (4.46) 9.74)

PNLS 1.08550 —2.77321 —1.06518 2.19157 —0.96662 .94
(18.99) (13.21) (11.83) (6.10) (11.19)

Contaminated Error Distribution

Pou1 0.93495 —3.07788 —1.04396 2.10490 —0.85946 .90
(12.40) (1111 (8.78) (4.44) (7.54)

PnLs 1.01993 —3.13841 —1.04142 2.24336 —0.92679 .93
(16.09) (13.47) (10.43) (5.63) 9.67)

*The R? statistic is the square of the correlation coefficient between the RMSE and its
response function prediction based on the values in Table 1. The numbers in parentheses
are t-ratios (in absolute value).
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