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This study develops a methodology of inference for a widely used Cliff–Ord type spatial model containing
spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing
for unknown heteroskedasticity in the innovations. We first generalize the GMM estimator suggested in
Kelejian and Prucha (1998, 1999) for the spatial autoregressive parameter in the disturbance process. We
also define IV estimators for the regression parameters of the model and give results concerning the joint
asymptotic distribution of those estimators and the GMM estimator. Much of the theory is kept general
to cover a wide range of settings.
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1. Introduction

In recent years the economics literature has seen an increasing
number of theoretical and applied econometric studies involving
spatial issues.1 While this increase in interest in spatial models in
economics is relatively recent, spatial models have a long history
in the regional science and geography literature.2 One of the most
widely referencedmodel of spatial interactions is one that was put
forth by Cliff and Ord (1973, 1981). This model is a variant of the
model considered by Whittle (1954). In its simplest (and original)
form the model only considers spatial spillovers in the dependent
variable, and specifies the endogenous variable corresponding to a
cross sectional unit in terms of a weighted average of endogenous

∗ Corresponding author. Tel.: +1 301 405 3499.
E-mail address: prucha@econ.umd.edu (I.R. Prucha).

1 Some recent applications of spatial models are, e.g., Audretsch and Feldmann
(1996), Baltagi et al. (2007a), Bell and Bockstael (2000), Besley and Case (1995),
Betrand et al. (2000), Case (1991), Case et al. (1993), Cohen and Morrison Paul
(2004), Hanushek et al. (2003), Holtz-Eakin (1994), Sacredote (2001), Shroder
(1995), and Topa (2001). Contributions to the theoretical econometric literature
include, e.g., Baltagi and Li (2004, 2001a,b), Baltagi et al. (2007b, 2003), Bao and
Ullah (2007), Conley (1999), Das et al. (2003), Driscoll and Kraay (1998), Kapoor
et al. (2007), Kelejian and Prucha (2007a, 2004, 2002, 2001, 1999, 1998), Korniotis
(2005), Lee (2007a,b, 2004, 2003, 2002), Pinkse and Slade (1998), Pinkse et al.
(2002), Robinson (2007a, forthcoming), and Su and Yang (2007).
2 See, e.g., Anselin (1988), Bennett and Hordijk (1986), Cliff and Ord (1973, 1981),
and Cressie (1993) and the references cited therein.
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variables corresponding to other cross sectional units, plus a
disturbance term. This model is typically referred to as a spatial
autoregressivemodel, theweighted average is typically referred to
as a spatial lag, the corresponding parameter as the autoregressive
parameter, and the matrix containing the weights as the spatial
weights matrix. A generalized version of this model also allows
for the dependent variable to depend on a set of exogenous
variables and spatial lags thereof. A further generalization allows
for the disturbances to be generated by a spatial autoregressive
process. Consistent with the terminology developed by Anselin
and Florax (1995) we refer to the combined model as a spatial
autoregressivemodelwith autoregressive disturbances of order (1,
1), for short SARAR(1, 1). We note that this model is fairly general
in that it allows for spatial spillovers in the endogenous variables,
exogenous variables and disturbances.
Somewhat surprisingly, even though the SARAR(1, 1) model

has been a modeling tool for many years, until recently there has
been a lack of formal results concerning estimation methods for
this model. One method that has been employed to estimate this
model is the (quasi) maximum likelihood (ML) procedure, where
the likelihood function corresponds to the normal distribution.
Formal results concerning the asymptotic properties of the ML
estimator have been established only recently in an important
contribution by Lee (2004). Given that the likelihood function
involves the determinant of a matrix whose dimensions depend
on the sample size and an unknown parameter, there can
be significant difficulties in the practical computation of this
estimator especially if the sample size is large, as it might be
if the spatial units relate to counties, single family houses, etc.
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In part because of this Kelejian and Prucha (1999) introduced
a generalized moments (GM) estimator for the autoregressive
parameter of the disturbance process that is simple to compute and
remains computationally feasible even for large sample sizes. In
Kelejian andPrucha (1998)weused thatGMestimator to introduce
a generalized spatial two stage least squares estimator (GS2SLS) for
the regression parameters of the spatial SARAR(1, 1) model that
is again simple to compute, and demonstrated its consistency and
asymptotic normality.3
All of the above estimators for the SARAR(1, 1) model were

introduced and their asymptotic properties were derived under
the assumption that the innovations in the disturbance process
are homoskedastic. The lack of an estimation theory that allows
for heteroskedasticity, and the lack of corresponding joint hy-
pothesis tests for the presence of spatial dependencies in the en-
dogenous variables, exogenous variables and/or disturbances, is a
serious shortcoming. Spatial units are often heterogeneous in im-
portant characteristics, e.g., size, and hence the homoskedastic-
ity assumption may not hold in many situations (conditionally
and unconditionally). It is readily seen that if the innovations are
heteroskedastic, the ML estimator considered in Lee (2004) is in-
consistent, and the asymptotic distribution given in Kelejian and
Prucha (1998) for the GS2SLS estimator is not appropriate. One im-
portant goal of this study is therefore to develop a methodology of
inference for the SARAR(1, 1) model that allows for heteroskedas-
tic innovations. In developing this theory we will adopt a modu-
lar approach such that much of the theory not only applies to the
SARAR(1, 1) model, but can also be utilized in different settings in
future research.
In more detail, in this paper we introduce a new class of

GM estimators for the autoregressive parameter of a spatially
autoregressive disturbance process that allows for heteroskedastic
innovations. Our GM estimators are again computationally simple
even in large samples. We determine their consistency; unlike in
our earlier paper we also determine, under reasonably general
conditions, their asymptotic distribution. Loosely speaking, in
deriving those results we essentially only maintain that the
disturbances are n1/2-consistently estimated (where n is the
sample size) and that the estimator of the model parameters
employed in estimating the disturbances is asymptotically linear
in the innovations. As a result the methodology developed in this
paper covers a wide range of (linear and nonlinear) models and
estimators, in addition to the SARAR(1, 1) model and estimators
specific for that model. We furthermore derive results concerning
the joint distribution of the GM estimators and estimators of the
regression parameters to facilitate joint tests. While the results are
presented for the case of two step estimation procedureswhere the
spatial autoregressive parameter and the regression parameters
are estimated in separate steps, the analysis can be readily adapted
to one step procedures where all parameters are estimated in a
single (but numerically more involved) step.
The general theory is then applied to develop inference

methodology for the SARAR(1, 1) model. In particular, we use
the GM estimator in constructing a GS2SLS estimator for the
regression parameters of the SARAR(1, 1) model and demonstrate
the consistency and asymptotic normality of this estimator. We
also provide results concerning the joint distribution of the GM
estimator and the GS2SLS estimator, which permits, among other
things, testing the joint hypothesis of the absence of spatial
spillovers stemming from the endogenous variables, exogenous
variables or disturbances.

3 The formulation of the GS2SLS estimator is based on an approximation of the
ideal instruments. Recently Lee (2003) and Kelejian et al. (2004) extended the
analysis to include the use of ideal instruments. Das et al. (2003) analyzed the small
sample properties of the GS2SLS (as well as those of other estimators). They find
that in many situations the loss of efficiency due to the approximation of the ideal
instruments is minor.
Another concern with the existing literature on Cliff–Ord type
models, including in the above cited literature on the SARAR(1,
1) models, is the specification of the parameter space for spatial
autoregressive parameters. In virtually all of the literature it is
assumed that the parameter space for autoregressive parameters
is the interval (−1, 1), or a subset thereof. Onemay conjecture that
this traditional specification of the parameter space received its
motivation from the time series literature. However, as discussed
in detail below, choosing the interval (−1, 1) as the parameter
space for the autoregressive parameter of a spatial model is not
natural in the sense that the spatial autoregressive parameter
always appears in those models in product form with the spatial
weightsmatrix. Hence equivalentmodel formulations are obtained
by applying an (arbitrary) scale factor to the autoregressive
parameter and its inverse to the weights matrix. Of course,
applying a scale factor to the autoregressive parameter leads
to a corresponding re-scaling of its parameter space. In this
paper we therefore allow for a more general specification of the
parameter space. Even if a scale factor is used that results in the
parameter space being the interval (−1, 1), this scale factor and
correspondingly the autoregressive parameter will then typically
depend on the sample size. In contrast to the existing literature we
thus allow for the parameters to depend on the sample size. Our
discussion of the parameter space and possible normalizations of
the spatialweightsmatrix also points out potential pitfallswith the
frequently used approach of row-normalizing the spatial weights
matrix.
The paper is organized as follows: The generalized SARAR(1, 1)

model is specified and interpreted in Section 2. This section also
contains a discussion of the parameter space of the autoregressive
parameter. In Section 3 we define and establish the large sample
properties of our suggested GM estimators for the autoregressive
parameter of a spatially autoregressive disturbance process. In this
section we also provide results concerning the joint large sample
distribution of the GM estimators and a wide class of estimator of
the regression parameters. We also develop HAC type estimators
for the large sample variance-covariance matrix of the suggested
estimators. Section 4 contains results relating to the suggested
instrumental variable estimators of the regression parameters of
the SARAR(1, 1) model and their joint large sample distribution
withGMestimators. Concluding remarks are given in the Section 5.
Technical details are relegated to the Appendices.
It proves helpful to introduce the following notation: Let An

with n ∈ N be some matrix; we then denote the (i, j)-th element
of An as aij,n. Similarly, if vn is a vector, then vi,n denotes the i-th
element of vn. An analogous convention is adopted for matrices
and vectors that do not depend on the index n, in which case the
index n is suppressed on the elements. If An is a square matrix,
then A−1n denotes the inverse of An. If An is singular, then A−1n
should be interpreted as the generalized inverse of An. At times
it will also be helpful to denote the generalized inverse more
explicitly as A+n . With ai.,n and a.i,n we denote the i-th row and
column of An, respectively, and with ai.n and a.in those of A

−1
n . If

An is a square symmetric nonnegative matrix, then A1/2n denotes
the unique symmetric and nonnegative square root of An. If An is
nonsingular, then A−1/2n denotes (A−1n )

1/2. Further, we say the row
and column sums of the (sequence of) matrices An are bounded
uniformly in absolute value if there exists a constant cA <∞ (that
does not dependent of n) such that

max
1≤i≤n

n∑
j=1

|aij,n| ≤ cA and max
1≤j≤n

n∑
i=1

|aij,n| ≤ cA for all n ∈ N

holds. As a point of interest, we note that the above condition
is identical to the condition that the sequences of the maximum
column sum matrix norms and maximum row sum matrix norms
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of An are bounded; cp. Horn and Johnson (1985, pp. 294–5).
For definiteness, let A be some vector or matrix, then ‖A‖ =
[Tr(A′A)]1/2. We note that this norm is submultiplicative, i.e., ‖AB‖
≤ ‖A‖ ‖B‖.

2. Model

In this section we specify the generalized SARAR(1, 1) model
and discuss the underlying assumptions.

2.1. Specification

Suppose a cross section of n spatial units is observed, and the
interactions between those spatial units can be described by the
following model:
yn = Xnβn + λnWnyn + un
= Znδn + un (1)

and
un = ρnMnun + εn, (2)

with Zn = [Xn,Wny] and δn =
[
β ′n, λn

]′. Here yn denotes the n× 1
vector of observations of the dependent variable, Xn denotes the
n× kmatrix of non-stochastic (exogenous) regressors,Wn andMn
are n × n non-stochastic matrices, un denotes the n × 1 vector of
regression disturbances, εn is an n × 1 vector of innovations, λn
and ρn are unknown scalar parameters, and βn is a k × 1 vector
of unknown parameters. The matrices Wn and Mn are typically
referred to as spatial weight matrices, and λn and ρn are typically
called spatial autoregressive parameters. The analysis allows for
Wn = Mn, which will frequently be the case in applications. All
quantities are allowed to depend on the sample size.
The vectors yn = Wnyn and un = Mnun are typically referred

to as spatial lags of yn and un, respectively. We note that all
quantities are allowed to depend on the sample size and so some
of the exogenous regressors may be spatial lags of exogenous
variables. Thus the model is fairly general in that it allows for
spatial spillovers in the endogenous variables, exogenous variables
and disturbances.
The spatial weight matrices and the autoregressive parameters

are assumed to satisfy the following assumption.

Assumption 1. (a) All diagonal elements of Wn and Mn are zero.
(b) λn ∈ (−aλn, a

λ
n), ρn ∈ (−a

ρ
n , aρn ) with 0 < a

λ
n, a

λ
n ≤ a

λ < ∞
and 0 < aρn , aρn ≤ a

ρ <∞. (c) Thematrices In−λWn and In−ρMn
are nonsingular for all λ ∈ (−aλn, a

λ
n), and ρ ∈ (−a

ρ
n , aρn ).

Assumption 1(a) is clearly a normalization rule. Assump-
tion 1(b) concerning the parameter space of λn and ρn will be dis-
cussed in the next subsection. Assumption 1 (c) ensures that yn and
un are uniquely defined by (1) and (2) as

yn = (In − λnWn)
−1 Xnβn + (In − λnWn)

−1 un, (3)
un = (In − ρnMn)−1 εn.
As remarked in Section 1, spatial units are often heterogeneous

in important characteristics, e.g., size. For that reason it is
important to develop an estimation theory that allows for the
innovations to be heteroskedastic. Therefore, we maintain the
following set of assumptions with respect to the innovations.

Assumption 2. The innovations {εi,n : 1 ≤ i ≤ n, n ≥ 1} satisfy
Eεi,n = 0, E(ε2i,n) = σ 2i,n with 0 < aσ ≤ σ 2i,n ≤ aσ < ∞,

and sup1≤i≤n,n≥1 E
∣∣εi,n∣∣4+η < ∞ for some η > 0. Furthermore,

for each n ≥ 1 the random variables ε1,n, . . . , εn,n are totally
independent.

The above assumption also allows for the innovations to depend
on the sample size n, i.e., to form triangular arrays. We note that
even if the innovations do not depend on n, the elements of yn
and un would still depend on n in light of (3) since the elements
of the inverse matrices involved would generally depend on n. We
maintain the following assumption concerning the spatial weight
matrices.

Assumption 3. The row and column sums of the matricesWn,Mn,
(In−λnWn)

−1 and (In−ρnMn)−1 are boundeduniformly in absolute
value.

Given (3), Assumption 2 implies that Eun = 0, and that the VC
matrix of un is given by

Eunu′n = (In − ρnMn)
−1 6n

(
In − ρnM′n

)−1
where 6n = diag(σ 2i,n). This specification allows for fairly
general patterns of autocorrelation and heteroskedasticity of the
disturbances. It is readily seen that the row and column sums of
products of matrices, whose row and column sums are bounded
uniformly in absolute value, are again uniformly bounded in
absolute value; see, e.g., Kelejian and Prucha (2004, Remark A.1).
Because of this, Assumptions 2 and 3 imply that the row and
column sums of the variance-covariance (VC) matrix of un (and
similarly those of yn) are uniformly bounded in absolute value,
thus limiting the degree of correlation between, respectively, the
elements of un (and of yn). That is, making an analogy to the time
series literature, these assumptions ensure that the disturbance
process and the process for the dependent variable exhibit a
‘‘fading’’ memory.4

2.2. Parameter space for an autoregressive parameter

Assumption 1(b) defines the parameter space for the autore-
gressive parameters. In discussing this assumptionwe focus onWn
andλn. (An analogous discussion applies toMn andρn.) In the exist-
ing literature relating to Cliff–Ord models the parameter space for
the autoregressive parameter is typically taken to be the interval
(−1, 1) and the autoregressive parameter is assumed not to de-
pend on the sample size. However, in applications it is typically
found that for un-normalized spatial weight matrices, In − λWn
is singular for some values of λ ∈ (−1, 1). To avoid this situa-
tion, many applied researchers normalize each row of their spatial
weight matrices in such a way that In−λWn is non-singular for all
λ ∈ (−1, 1). We now discuss the implications of various normal-
izations of the spatial weight matrix.
Suppose cn denotes a scalar normalization factor. Clearly, this

normalization factor may depend on the sample size. For example,
someof our results below relate to the case inwhich cn corresponds
to the maximal row or column sum of the absolute values of the
elements of Wn. Given such a normalizing factor, an equivalent
specification of model (1) for yn is obtained if λnWn is replaced
by λ∗nW

∗
n where λ

∗
n = cnλn and W∗n = Wn/cn. It is important to

observe that even if λn and its corresponding parameter space do
not depend onn,λ∗n and its implied parameter spacewill dependon
the sample size as a result of thenormalization of the spatialweight
matrix.5 It is for this reason that we allow in Assumption 1 for the
elements of the spatial weight matrices, and the autoregressive
parameters and the corresponding parameter spaces to depend on
n. Of course, Assumption 1 also covers the casewhere the true data
generating process corresponds to a model where autoregressive
parameters do not depend on n.
Assumption 1 defines the parameter space for λn as an interval

around zero such that In − λWn is nonsingular for values λ in
that interval. The following trivial lemma gives bounds for that
interval.

4 Of course, the extent of correlation is limited in virtually all large sample
analysis; see, e.g., Amemiya (1985, ch. 3, 4) and Pötscher and Prucha (1997, ch. 5,
6).
5 The parameter space for λ∗n is given by (−cna

λ
n, cna

λ
n).
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Lemma 1. Let τn denote the spectral radius of Wn; i.e.,

τn = max
{∣∣ν1,n∣∣ , . . . , ∣∣νn,n∣∣}

where ν1,n, . . . , νn,n denote the eigenvalues of Wn. Then In − λWn is
nonsingular for all values of λ in the interval (−1/τn, 1/τn).6

Clearly, if we select (−1/τn, 1/τn) as the parameter space for
λn, then all eigenvalues of λnWn are less than one in absolute
value. Thus if we interpret (1) as an equilibrium relationship,
then this choice of the parameter space rules out unstable Nash
equilibria. Of course, we obtain an equivalent specification of the
model if instead of working withWn weworkwith the normalized
weights matrix W∗n = Wn/τn and select the interval (−1, 1) as
the parameter space for λ∗n = λnτn. Assumption 1 is sufficiently
general to cover both cases.
For large sample sizes the computation of the eigenvalues on

Wn is difficult. The following lemma gives boundaries, which are
simple to compute, for a (sub)set of values of λ for which In−λWn
is nonsingular.

Lemma 2. Let

τ ∗n = min

{
max
1≤i≤n

n∑
j=1

∣∣wij,n∣∣ , max
1≤j≤n

n∑
i=1

∣∣wij,n∣∣} .
Then τn ≤ τ ∗n and consequently In−λWn is nonsingular for all values
of λ in the interval (−1/τ ∗n , 1/τ

∗
n ).

The above lemma suggests (−1/τ ∗n , 1/τ
∗
n ) as an alternative (al-

though somewhat more restrictive) specification of the parameter
space. Of course, we obtain an equivalent model specification if we
normalize the spatial weightmatrix by τ ∗n and if we choose (−1, 1)
as the parameter space for the autoregressive parameter. Since the
spectral radius is bound by any matrix norm, other norms in place
of themaximumabsolute row and column sumnorms can be used,
but τ ∗n is especially easy to compute.
Rather than to normalize Wn by τn or τ ∗n , in much of the

empirical literature the spatial weight matrices are normalized
such that each row sums to unity. The motivation for this
normalization is that if Wn is row-normalized then In − λWn is
nonsingular for all values of λ in the interval (−1, 1); this can
be readily confirmed via Lemma 2. However, this normalization
is quite different than those described above in that in row-
normalizing a matrix one does not use a single normalization
factor, but rather a different factor for the elements of each row.
Therefore, in general, there exists no corresponding re-scaling
factor for the autoregressive parameter that would lead to a
specification that is equivalent to that corresponding to the un-
normalized weight matrix. Consequently, unless theoretical issues
suggest a row-normalized weight matrix, this approach will in
general lead to a misspecified model.
The above discussion provides the motivation for our specifica-

tion that the autoregressive parametersmay depend on n. Further-
more, since some of the regressorsmay be spatial lags, we allow all
of the model parameters to depend on the sample size.

3. GM estimator for the autoregressive parameter ρn

In the following we introduce a class of GM estimators for
ρn that can be easily computed, and prove their consistency and
asymptotic normality under a set of general assumptions. We note
that the discussion in this section only maintains model (2) for
the disturbances un, but not necessarily (1) for yn. Thus the results

6 In someof the spatial literature the following closely related claim can be found:
In−λWn is nonsingular for all values of λ in the interval (1/νn,min, 1/νn,max), where
νn,min and νn,max denote the smallest and largest eigenvalue ofWn , respectively. This
claim is correct for the case in which all eigenvalues ofWn are real and νn,min < 0
and νn,max > 0. Since, e.g., the eigenvalues ofWn need not be real, this claim does
not hold in general.
will also be useful in other settings such as cases where yn is
determined by a nonlinear model; see, e.g. Kelejian and Prucha
(2001, p. 228). The estimators put forth below generalize the GM
estimator for ρn introduced in Kelejian and Prucha (1999). In
contrast to that earlier paper we now allow for heteroskedastic
innovations εi,n, and optimal weighting of the moment conditions.
We also do not confine the parameter space for ρn to be the
interval (−1, 1), and allow ρn to depend on n. In our earlier
paper we only demonstrated the consistency of the estimator. In
the following we also derive the asymptotic distribution of the
considered estimators.

3.1. Definition of the GM estimator for ρn

In the following let ũn denote some predictor of un. Further-
more, for notational convenience let un = Mnun and un = Mnun =
M2nun, and correspondingly, ũn = Mnũn, and ũn = M2nũn. Similarly,
let εn = Mnεn. It is readily seen that under Assumptions 1 and 2
we have the following moment conditions:

n−1Eε′nεn = n
−1Tr

{
Mn
[
diagni=1(Eε

2
i,n)
]
M′n
}
, (4)

n−1Eε′nεn = 0.

It proves convenient to rewrite these conditions as

n−1E
[
ε′nA1,nεn
ε′nA2,nεn

]
= 0 (5)

with

A1,n = M′nMn − diag
n
i=1(m

′

.i,nm.i,n), A2,n = Mn.
Under Assumptions 1 and 3 it is readily seen that the diagonal
elements of A1,n and A2,n are zero and that the row and column
sums ofA1,n andA2,n are bounded uniformly in absolute value; see,
e.g., Remark A.1 in Kelejian and Prucha (2004).
Our GM estimators for ρn are based on these moments.

Specifically, note that in the light of (2) εn = (In − ρnMn)un =
un − ρnun and so εn = un − ρnun. Substituting these expressions
into (4) or (5) yields the following two equation system:

γn − 0nαn = 0 (6)

where αn = [ρn, ρ2n ]
′ and the elements of 0n =

[
γrs,n

]
r,s=1,2 and

γn =
[
γ1,n, γ2,n

]′ are given by
γ11,n = 2n−1E

{
u
′

nun − Tr
[
Mn
[
diagni=1(ui,nui,n)

]
M′n
]}

= 2n−1Eu′nM
′

nA1,nun, (7)

γ12,n = −n−1E
{
u
′

nun + Tr
[
Mn
[
diagni=1(u

2
i,n)
]
M′n
]}

= −n−1Eu′nM
′

nA1,nMnun,

γ21,n = n−1E(u′nun + u′nun)
= n−1Eu′nM

′

n(A2,n + A′2,n)un,

γ22,n = −n−1Eu′nun
= −n−1Eu′nM

′

nA2,nMnun,
γ1,n = n−1E

{
u′nun − Tr

[
Mn
[
diagni=1(u

2
i,n)
]
M′n
]}

= n−1Eu′nA1,nun,
γ2,n = n−1Eu′nun

= n−1Eu′nA2,nun.

Now let 0̃n =
[
γ̃rs,n

]
r,s=1,2 and γ̃n =

[
γ̃1,n, γ̃2,n

]′ denote
corresponding estimators for the elements of 0n and γn, which
are obtained from the above expressions for the elements of 0n
and γn by suppressing the expectations operator, and replacing
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the disturbances un, un, and un by their predictors ũn, ũn, and ũn,
respectively. Then, the empirical analog of the relationship in (6) is

γ̃n − 0̃nαn = υn, (8)
where υn can be viewed as a vector of regression residuals. Our GM
estimators of ρn, say ρ̃n, are now defined as weighted nonlinear
least squares estimators based on (8). That is, let Υ̃n be a 2 ×
2 symmetric positive semidefinite (moments) weighting matrix;
then ρ̃n is defined as
ρ̃n = ρ̃n(Υ̃n)

= argmin
ρ∈[−aρ ,aρ ]

{[̃
γn − 0̃n

[
ρ

ρ2

]]′
Υ̃n

[
γ̃n − 0̃n

[
ρ

ρ2

]]}
. (9)

We note that the objective function for ρ̃n remains well defined
even for values of ρn for which In − ρnMn is singular, which
allows us to take the optimization space for ρ̃n to be any compact
interval that contains the true parameter space. For computational
efficiency it is best to use the formulae for the elements of 0̃n
and γ̃n corresponding to the first expression on the r.h.s. of (7)

and to compute ũn and ũn recursively as ũn = Mnũn and ũn =
Mnũn. In this fashion one can avoid the computation ofM2n, i.e., the
computation of the product of two n× nmatrices.
We now relate the above estimator for the autoregressive

parameter to the GM estimator introduced in Kelejian and Prucha
(1999). Under homoskedasticity, σ 2 = σ 2i,n and so E[n

−1ε′nεn] =

σ 2, E[n−1ε′nεn] = σ 2n−1Tr
{
MnM′n

}
, and E[n−1ε′nεn] = 0. These

three moment conditions underlie the GM estimator suggested in
Kelejian and Prucha (1999). Substituting the first of these moment
conditions into the second yields

E
[
1
n
ε′nεn

]
= E[n−1ε′nεn]n

−1Tr
{
MnM′n

}
, (10)

E
[
1
n
ε′nεn

]
= 0,

which is clearly a special case of (4) under homoskedasticity.
It is not difficult to see that the GM estimator suggested in
our previous paper can be viewed as being based on the two
moment conditions in (10) with Υ̃n = diag(υn, 1) and υn =
1/
[
1+

[
n−1Tr

{
MnM′n

}]2]. 7
3.2. Consistency of the GM estimator for ρn

To establish consistency of ρ̃n we postulate the following
additional assumptions.

Assumption 4. Let ũi,n denote the i-th element of ũn. We then
assume that

ũi,n − ui,n = di.,n1n
where di.,n and1n are 1×p and p×1 dimensional random vectors.
Let dij,n be the j-th element of di.,n. Then, we assume that for some
δ > 0 E

∣∣dij,n∣∣2+δ ≤ cd < ∞ where cd does not depend on n, and
that n1/2 ‖1n‖ = Op(1).

Assumption 5. (a) The smallest eigenvalue of 0′n0n is uniformly
bounded away from zero.8 (b) Υ̃n − Υn = op(1), where Υn are
2× 2 non-stochastic symmetric positive definite matrices. (c) The
largest eigenvalues of Υn are bounded uniformly from above, and

7 If we rewrite the moment conditions in (10) in the form corresponding to (5),
then A1,n = M′nMn − n

−1Tr
(
MnM′n

)
In and A2,n = Mn.

8 That is, λmin(0
′

n0n) ≥ λγ > 0 where λγ does not depend on n. More
specifically, in general Γn depends on Mn , ρn , σ 21,n, . . . σ

2
n,n . Denoting this
the smallest eigenvalues of Υn are uniformly bounded away from
zero.

Assumption 4 implies n−1
∑n
i=1

∥∥di.,n∥∥2+δ = Op(1), which
was maintained in Kelejian and Prucha (1999), and so is slightly
stronger than their assumption. Assumption 4 should be satisfied
for typical linear spatial models where ũi is based on n1/2-
consistent estimators of regression coefficients, di.,n denotes the
i-th row of the regressor matrix, and 1n denotes the difference
between the parameter estimator and the true parameter values.
In the next sectionwewill actually demonstrate that Assumption 4
holds for the estimated residuals of model (1) based on an
instrumental variable procedure. Assumption 4 should also be
satisfied for typical non-linear models provided the response
function is differentiable in the parameters, and the derivatives are
(uniformly over the parameter space) bounded by some random
variable with bounded 2 + δ moments; compare Kelejian and
Prucha (1999).
Assumption 5 ensures that the smallest eigenvalue of 0′nΥn0n

is uniformly bounded away from zero and will be sufficient to
permit us to demonstrate that ρn is identifiably unique w.r.t. the
nonstochastic analog of the objective function of the GMestimator.
This analog is given by the function in curly brackets on the
r.h.s. of (9) with γ̃n, 0̃n and Υ̃n replaced by γn, 0n and Υn. Under
homoskedasticity and Υ̃n = Υn specified as at the end of the
previous subsection this assumption is in essence equivalent to
Assumption 5 in Kelejian and Prucha (1999).
Clearly Assumption 5 requires 0n to be nonsingular, or equiv-

alently that
[
tr
(
M′nA1,nMnSu,n

)
, tr
(
M′nA2,nMnSu,n

)]′ is linearly in-
dependent of

[
tr
(
M′n(A1,n + A′1,n)Su,n

)
, tr
(
M′n(A2,n + A′2,n)Su,n

)]′,
which is readily seen by observing that Eu′nM

′
nAi,nMnun = tr(

M′nAi,nMnSu,n
)
and n−1Eu′nM

′
n(Ai,n + A′i,n)un = tr(M′n(Ai,n +

A′i,n)Su,n) where Su,n = (In − ρnMn)−1 6n(In − ρnM′n)
−1. It is not

difficult to see that this linear independence condition is an analog
to the identification conditions postulated in Lee (2007b), Assump-
tion 5(b), relating to quadratic forms under homoskedasticity.
We note that while Assumption 5 should be satisfied in many

settings, it does not cover situations where all elements of the
spatial weights matrix converge to zero uniformly as n → ∞ –
see Lee (2004) – since in this case the elements of 0n would tend
to zero. On the other hand, Assumption 5 does not generally rule
out settings where Mn is row normalized, there is an increasing
number of nonzero elements in each row, and the row sums of
the absolute values of the non-normalized elements are uniformly
bounded.
The vector of derivatives (multiplied by minus one) of the

moment conditions (6) w.r.t. ρn is given by Jn = 0n[1, 2ρn]′. As
expected, the limiting distribution of the GM estimator ρ̃n will be
seen to depend on the inverse of J′nΥ nJn. Assumption 5 also ensures
that J′nΥ nJn is nonsingular.
Because of the equivalence of matrix norms it follows from

Assumption 5 that the elements of Υn and Υ −1n are O(1).
We can now give our basic consistency result for ρ̃n.

Theorem 1. Let ρ̃n = ρ̃n(Υ̃n) denote the GM estimator defined by
(9). Then, provided the optimization space contains the parameter
space, and given Assumptions 1–5,

ρ̃n − ρn
p
→ 0 as n→∞.

dependence as Γn = Γn(Mn, ρn, σ 21,n, . . . σ
2
n,n) the assumption should be

understood as to postulate that

inf
n
λmin

[
Γn(Mn, ρn, σ 21,n, . . . , σ

2
n,n)
′Γn(Mn, ρn, σ 21,n, . . . , σ

2
n,n)
]
> 0.

In this sense the assumption allows for λγ to depend on the sequence of spatial
weights matrices Mn , and on the true values of the autoregressive parameters ρn
and variances.
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Clearly the conditions of the theorem regarding Υ̃n and Υn are
satisfied for Υ̃n = Υn = I2. In this case the estimator reduces to
the nonlinear least squares estimator based on (8). This estimator
can, e.g., be used to obtain initial consistent estimates of the
autoregressive parameter. Choices of Υ̃n that lead to an efficient
GM estimator for ρn (but require some consistent initial estimate
of ρn) will be discussed below in conjunction with the asymptotic
normality result.

3.3. Asymptotic distribution of the GM estimator for ρn

Let Dn = [d′1.,n, . . . , d
′
n.,n]
′ where di.,n is defined in

Assumption 4 so that ũn−un = Dn1n. To establish the asymptotic
normality of ρ̃n we need some additional assumptions.

Assumption 6. For any n×n realmatrixAnwhose rowand column
sums are bounded uniformly in absolute value

n−1D′nAnun − n
−1ED′nAnun = op(1).

A sufficient condition for Assumption 6 is, e.g., that the columns
of Dn are of the form πn + 5nεn, where the elements of πn are
bounded in absolute value and the row and column sums of 5n
are uniformly bounded in absolute value; see Lemma C.2. This will
indeed be the case inmany applications. In the next sectionwewill
verify that this assumption holds for themodel given by (1) and (2),
and where Dn equals the (negative of the) design matrix Zn.

Assumption 7. Let1n be as defined in Assumption 4. Then

n1/21n = n−1/2T′nεn + op(1),

where Tn is a n × p dimensional real nonstochastic matrix whose
elements are uniformly bounded in absolute value.

As remarked above, typically 1n denotes the difference
between the parameter estimator and the true parameter values.
Assumption 7 will be satisfied by many estimators. In the next
section we verify that this assumption indeed holds for the
considered instrumental variable estimators for the parameters of
model (1).
It may be helpful to provide some insight concerning the

variance of the limiting distribution of the GM estimator n1/2(̃ρn−
ρn) given below. To that effect we note that an inspection of the
derivation of this limiting distribution in Appendix C shows that it
depends on the limiting distribution of the (properly normalized)
vector of quadratic forms

vn = n−1/2


1
2
ε′n(A1,n + A′1,n)εn + a′1,nεn
1
2
ε′n(A2,n + A′2,n)εn + a′2,nεn

 (11)

where for r = 1, 2 the n × n matrices Ar,n are defined in (5), and
where the n× 1 vectors ar,n are defined as

ar,n = Tnαr,n (12)

with

αr,n = n−1E
[
D′n
(
In − ρnM′n

)
(Ar,n + A′r,n) (In − ρnMn)un

]
.

From (11) and (12) we see that, in general, the limiting distribution
of n1/2(̃ρn − ρn)will depend on the limiting distribution of n1/21n
via the matrix Tn, unless αr,n = 0. Clearly, if Dn is not stochastic,
then αr,n = 0. Within the the context of model (1) and with Dn
equal to the (negative of the) design matrix Zn this would be the
case if the model does not contain a spatial lag of the endogenous
variable.
Observing further that the diagonal elements of the matrices

Ar,n are zero it follows from Lemma A.1 that the VC matrix of the
vector of quadratic forms in (11) is given by 9n = (ψrs,n) where
for r, s = 1, 2
ψrs,n = (2n)−1tr

[(
Ar,n + A′r,n

)
6n
(
As,n + A′s,n

)
6n
]

+ n−1a′r,n6nas,n. (13)
We now have the following result concerning the asymptotic

distribution of ρ̃n. We note that the theorem does not assume
convergence of the matrices involved.

Theorem 2 (Asymptotic Normality). Let ρ̃n be the weighted nonlin-
ear least squares estimators defined by (9). Then, provided the opti-
mization space contains the parameter space, given Assumptions 1–7,
and given that λmin(9n) ≥ c∗Ψ > 0, we have

n1/2(̃ρn − ρn) = (J′nΥnJn)
−1J′nΥn9

1/2
n ξn + op(1) (14)

where

Jn = 0n

[
1
2ρn

]
, (15)

ξn = 9−1/2n vn
d
→N(0, I2).

Furthermore n1/2(̃ρn − ρn) = Op(1) and

�ρ̃n(Υn) = (J
′

nΥnJn)
−1J′nΥn9nΥnJn(J

′

nΥnJn)
−1
≥ const > 0. (16)

The above theorem implies that the difference between the
cumulative distribution function of n1/2(̃ρn − ρn) and that of
N
[
0,�ρ̃n

]
converges pointwise to zero, which justifies the use of

the latter distribution as an approximation of the former.9

Remark 1. Clearly �ρ̃n(9−1n ) = (J′n9
−1
n Jn)−1 and �ρ̃n(Υn) −

�ρ̃n(9
−1
n ) is positive semi-definite. Thus choosing Υ̃n as a

consistent estimator for 9−1n leads to an efficient GM estimator.
Such a consistent estimator will be developed in the next
subsection. As discussed in the proof of the above theorem, the
elements of9n are uniformly bounded in absolute value and hence
λmax (9n) ≤ c∗∗Ψ for some c

∗∗
Ψ <∞. Since by assumption also 0 <

c∗Ψ ≤ λmin(9n) it follows that the conditions on the eigenvalues
of Υn postulated in Assumption 5 are automatically satisfied by
9−1n We note that9n is, in general, only identical to the VC matrix
of the moment vector in (5) if ar,n = 0. The terms involving ar,n
reflect the fact that the GM estimator is based on estimators of the
disturbances un and not on the true disturbances. As noted above,
Jn equals the vector of derivatives (multiplied by minus one) of the
moment conditions (6) w.r.t. ρn, and thus �ρ̃n(Υn) has the usual
structure, except that here 9n is not identical to the VC matrix of
the moment vector.

Remark 2. From (11), (12), (14) and (15) we see that n1/2(̃ρn −
ρn) depends linearly on a vector of linear quadratic forms in the
innovations εn plus a term of order op(1). This result is helpful in
establishing the joint distribution of ρ̃n with that of estimators of
some of the other model parameters of interest. In particular, it
may be of interest to derive the joint limiting distribution of n1/21n
and n1/2(̃ρn − ρn). By Assumption 7, n1/21n is asymptotically
linear in εn and hence the joint limiting distribution can be
readily derived using the CLT for linear quadratic forms given in
Appendix A. We will illustrate this below within the context of IV
estimators for model (1).

We next introduce a consistent estimator for �ρ̃n . For this
purpose let

J̃n = 0̃n
[
1
2ρ̃n

]
(17)

9 This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the
discussion on pp. 86–87 in that reference.
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where 0̃n is defined above by (7) and the discussion after that
equation. We next define a HAC type estimator for 9n whose
elements are defined by (13). For this purpose let
6̃n = diagi=1,...,n(̃ε

2
i,n)

with ε̃n = (In − ρ̃nMn) ũn. We furthermore need to specify
an estimator for ar,n = Tnαr,n. The matrix Tn introduced in
Assumption 7 will in many applications be of the form

Tn = FnPn with Fn = Hn or Fn =
(
In − ρnM′n

)−1 Hn, (18)
where Hn is a real nonstochastic n× p∗ matrix of instruments, and
Pn is a real nonstochastic p∗×pmatrix,with p as inAssumption7. In
Section 4wewill consider instrumental variable estimators for the
parameters of model (1) and (2). In that section we will see that if
1n corresponds to these instrumental variable estimators, then the
matrix Tn will indeed have the above structure, and where Pn can
be estimated consistently by some estimator P̃n. We now define
our estimator for Tn as10

T̃n = F̃nP̃n with F̃n = Hn or F̃n =
(
In − ρ̃nM′n

)+ Hn. (19)
In light of (12) it now seems natural to estimate ar,n by

ãr,n = T̃nα̃r,n (20)
with
α̃r,n = n−1

[
D′n
(
In − ρ̃nM′n

)
(Ar,n + A′r,n) (In − ρ̃nMn) ũn

]
.

Given the above we now introduce the following HAC type
estimator 9̃n = (ψ̃rs,n)where for r, s = 1, 2

ψ̃rs,n = (2n)−1tr
[(
Ar,n + A′r,n

)
6̃n
(
As,n + A′s,n

)
6̃n
]

+ n−1̃a′r,n6̃ñas,n. (21)

Furthermore, based on 9̃n we define the following estimator for
�ρ̃n :

�̃ρ̃n = (̃J
′

nΥ̃ñJn)
+̃J′nΥ̃n9̃nΥ̃ñJn(̃J

′

nΥ̃ñJn)
+. (22)

The next theorem establishes the consistency of 9̃n and �̃ρ̃n .

Theorem 3 (VC Matrix Estimation). Suppose all of the assumptions
of Theorem 2, apart from Assumption 5, hold and that additionally all
of the fourth moments of the elements of Dn are uniformly bounded.
Suppose furthermore that (a) that the elements of the nonstochastic
matricesHn are uniformly bounded in absolute value, (b) supn |ρn| <
1 and the row and column sums of Mn are bounded uniformly in
absolute value by, respectively, one and some finite constant (possibly
after a renormalization of the weights matrix and parameter space as
discussed in Section 2.2), and (c) P̃n − Pn = op(1) with Pn = O(1).
Then

9̃n − 9n = op(1), 9̃
−1
n − 9

−1
n = op(1).

If furthermore Assumption 5 holds, then also

�̃ρ̃n − �ρ̃n = op(1).

The hypothesis of zero spatial correlation in the disturbances,
i.e., H0 : ρn = 0, can now be tested in terms of N

[
0, �̃ρ̃n

]
.

Remark 3. We note that the above theorem also holds if ρ̃n is
replaced by any other estimator ˜̃ρn with n1/2 (̃̃ρn − ρn) = Op(1).
In case Fn = Hn condition (b) can be dropped. The consistency
result for 9̃−1n verifies that this estimator for 9−1n can indeed be
used in the formulation of an efficient GM estimator, as discussed
after Theorem 2.

10 The reason for using the generalized inverse is that ρ̃n defined by (9) is not
forced to lie in the parameter space, and thus In − ρ̃nMn may be singular (where
the probability of this event goes to zero as the sample size increases).
Remark 4. The modules underlying the derivation of Theorems 2
and 3 can be readily extended to cover a wider class of estimators.
A crucial underlying ingredient is the CLT for vectors of linear
quadratic forms given in Appendix A, which was used to establish
the limiting distribution of the vector of linear quadratic forms
(11); that CLT is based on Kelejian and Prucha (2001). We
emphasize that while in (5) we consider two moment conditions,
all of the above results generalize trivially to the case where the
GM estimator for ρn corresponds tommoment conditions

n−1E[Eε′nA1,nεn, . . . , ε
′

nAm,nεn]
′
= 0, (23)

where the diagonal elements of Ar,n are zero and the row and
column sums of Ar,n are bounded uniformly in absolute value. The
focus of this paper is on two-step estimation procedures, which is
motivated by their computational simplicity, generality of the first
step (where residualsmay come fromnonlinearmodels) and, since
at least under homoskedasticity, Monte Carlo experiments suggest
that very little efficiency is lost, see, e.g., Das et al. (2003). Given
instruments Hn, one-step GMM estimators for all parameters,
i.e., ρn, λn, βn, of the SARAR(1, 1) model could be defined by
augmenting those moment conditions (23) by the conditions

n−1EH′nεn = n
−1E[h′.1,nεn, . . . ,h

′

.p∗,nεn]
′
= 0 (24)

with

εn = (In − ρnMn)(yn − Xnβn − λnWnyn).

The limiting distribution of the stacked moment vector follows
immediately from the CLT for vectors of linear quadratic forms.
Theorem3establishes consistent estimation of theVCmatrix of the
vector of (normalized) linear quadratic forms (11). Estimation of
the VC matrix of the vector of (normalized) linear quadratic forms
corresponding to the stacked moment conditions (23) and (24),
is analogous. In fact, in this case estimation simplifies in that the
components of the vector are either quadratic or linear, and the
elements of the linear terms hr,n are observed.11

3.4. Joint asymptotic distribution of GM estimator for ρn and
estimators of other model parameters

In the following we discuss how the above results can be
extended to obtain the joint asymptotic distribution of the GM
estimator for ρn and of other estimators that are asymptotically
linear in the innovations εn, i.e., that are of the form considered
in Assumption 7. As remarked above, the IV estimators for the
regression parameters of model (1) and (2) considered in the next
section will be of this form. Based on the joint distribution it will
then be possible to test a joint hypothesis concerning ρn and other
model parameters.
In the following we will give results concerning the joint

asymptotic distribution of ρ̃n − ρn and 1n as considered in
Assumptions 4 and 7 in conjunction with the estimation of the
disturbances un. Clearly, in general it will be of interest to have
the available results not only concerning the joint asymptotic
distribution of ρ̃n − ρn and 1n, but also concerning other
estimators, say, 1∗n that are of the general form considered in
Assumption 7. To avoid having to introduce further notation we
give our result in terms of ρ̃n − ρn and 1n, but then comment on
what changes would be needed in the formulae to accommodate
other estimators 1∗n in place of 1n. The discussion assumes that
Tn = FnPn and T̃n = F̃nP̃n as defined in the previous subsection.

11 Several months after completing this paper we became aware of a paper
by Lin and Lee (forthcoming) that considers an SAR(1) model with unknown
heteroskedasticity. That paper is complementary to this one, with a focus and
extensive discussion of one-step estimation procedures for thatmodel among other
things. That paper does not discuss specification issues regarding the parameter
space of the autoregressive parameters, which are considered in this paper.
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In light of the above discussionwe expect that the joint limiting
distribution of n1/2(̃ρn−ρn) and n1/21nwill depend on the limiting
distribution of

[
n−1/2F′nεn, v

′
n

]′. Observing again that the diagonal
elements of the matrices Ar,n are zero it follows from Lemma A.1
that the VCmatrix of this vector of linear and linear quadratic form
is given by

9◦,n =

[
9∆∆,n 9∆ρ,n
9′∆ρ,n 9n

]
(25)

with9∆∆,n = n−1F′n6nFn,9∆ρ,n = n
−1F′n6n

[
a1,n, a2,n

]
andwhere

9n is defined by (13).We shall also employ the following estimator
for9◦,n:

9̃◦,n =

[
9̃∆∆,n 9̃∆ρ,n

9̃
′

∆ρ,n 9̃n

]
(26)

with 9̃∆∆,n = n−1̃F′n6̃ñFn, 9̃∆ρ,n = n
−1̃F′n6̃n

[̃
a1,n, ã2,n

]
andwhere

9̃n is defined by (21).
We now have the following result concerning the joint limiting

distribution of n1/2(̃ρn − ρn) and n1/21n.

Theorem 4. Suppose all of the assumptions of Theorem 3 hold, and
λmin(9◦,n) ≥ c∗Ψ◦ > 0. Then[

n1/21n
n1/2(̃ρn − ρn)

]
=

[
P′n 0
0 (J′nΥnJn)

−1J′nΥn

]
91/2
◦,n ξ◦,n + op(1), (27)

ξ◦,n = 9
−1/2
◦,n

[
n−1/2F′nεn, v

′

n

]′ d
→N(0, Ip∗+2).

Furthermore let

�◦,n =

[
P′n 0
0 (J′nΥnJn)

−1J′nΥn

]
9◦,n

[
Pn 0
0 ΥnJn(J′nΥnJn)

−1

]
, (28)

�̃◦,n =

[̃
P′n 0
0 (̃J′nΥ̃ñJn)

+̃J′nΥ̃n

]
9̃◦,n

[̃
Pn 0
0 Υ̃ñJn(̃J′nΥ̃ñJn)

+

]
(29)

then 9̃◦,n − 9◦,n = op(1), �̃◦,n − �◦,n = op(1), and 9◦,n = O(1),
�◦,n = O(1).

The above theorem implies that the difference between the
joint cumulative distribution function of n1/2

[
1′n, (̃ρn − ρn)

]′ and
that of N

[
0,�◦,n

]
converges pointwise to zero, which justifies the

use of the latter distribution as an approximation of the former. The
theorem also states that �̃◦,n is a consistent estimator for�◦,n.

Remark 5. The above result generalizes readily to cases where
we are interested in the joint distribution between ρ̃n − ρn and
some other estimator, say, 1∗n , where n

1/21∗n = n−1/2T∗′n εn +
op(1), T∗n = F∗nP

∗
n and T̃n = F̃∗nP̃

∗
n , assuming that analogous

assumptions are maintained for this estimator. In particular,
the results remain valid, but with 9∆∆,n = n−1F∗′n 6nF

∗
n ,

9∆ρ,n = n−1F∗′n 6n
[
a1,n, a2,n

]
, 9̃∆∆,n = n−1̃F∗′n 6̃ñF

∗
n , 9̃∆ρ,n =

n−1̃F∗′n 6̃n
[̃
a1,n, ã2,n

]
, and Pn, P̃n replaced by P∗n , P̃

∗
n .

4. Instrumental variable estimator for δn

As remarked, the consistency and asymptotic normality results
developed in an important paper by Lee (2004) for the quasi-
ML estimator for the SARAR(1, 1) model defined by (1) and (2)
under the assumption of homoskedastic innovations do not carry
over to the case where the innovations are heteroskedastic. In
fact, under heteroskedasticity the limiting objective function of the
quasi-ML estimator would generally not be maximized at the true
parameter values, and therefore the quasi-ML estimator would
be inconsistent. Also, the asymptotic normality results developed
by Kelejian and Prucha (1998), Kelejian et al. (2004) and Lee
(2003) for instrumental variable (IV) estimators of the SARAR(1,
1) model do not carry over to the case where the innovations are
heteroskedastic. In the followingweprovide results concerning the
asymptotic distribution of IV estimators allowing the innovations
to be heteroskedastic. More specifically, we will show that the
considered IV estimators satisfy certain conditions such that their
asymptotic distribution can be readily obtained via Theorem 4.We
also allow for a more general definition of the parameter space
of the spatial autoregressive parameters to avoid certain pitfalls
discussed in Section 2.

4.1. Instruments

It is evident from (3) that in general Wnyn will be correlated
with the disturbances un, whichmotivates the use of IV estimation
procedures.Wemaintain the following assumptionsw.r.t. the n×k
regressor matrices Xn, and the n× p∗ instrument matrices Hn.

Assumption 8. The regressor matrices Xn have full column rank
(for n large enough). Furthermore, the elements of the matrices Xn
are uniformly bounded in absolute value.

Assumption 9. The instrument matricesHn have full column rank
p∗ ≥ k+1 (for all n large enough). Furthermore, the elements of the
matricesHn are uniformly bounded in absolute value. Additionally
Hn is assumed to, at least, contain the linearly independent
columns of (Xn,MnXn).

Assumption 10. The instruments Hn furthermore satisfy:
(a) QHH = limn→∞ n−1H′nHn is finite, and nonsingular.
(b) QHZ = p limn→∞ n−1H′nZn and QHMZ = p limn→∞ n−1H′nMnZn
are finite and have full column rank. Furthermore, let
QHZ∗(ρn) = QHZ − ρnQHMZ, then the smallest eigenvalue of
Q′HZ∗(ρn)Q

−1
HHQHZ∗(ρn) is bounded away from zero uniformly in

n.
(c) QHΣH = limn→∞ n−1H′n6nHn is finite and nonsingular.
The above assumptions are similar to those maintained in

Kelejian and Prucha (1998, 2004), and Lee (2003), and so a
discussion which is quite similar to those given in these papers
also applies here. Regarding the specification of the instruments
Hn observe first that

E(Wnyn) = Wn (In − λnWn)
−1 Xnβn =

∞∑
i=0

λinW
i+1
n Xnβn (30)

provided that the characteristic roots of λnWn are less than one
in absolute value; compare Lemmas 1 and 2 concerning the
choice of the parameter space for λn. The instrument matrices
Hn will be used to instrument Zn = (Xn,Wnyn) and MnZn =
(MnXn,MnWnyn) in terms of their predicted values from a least
squares regression on Hn, i.e., Ẑn = PHnZn and M̂nZn = PHn
MnZn with PHn = Hn(H′nHn)

−1H′n. Towards approximating the
ideal instruments E(Zn) = (Xn,WnE(yn)) and E(MnZn) =
(MnXn,MnWnE(yn)) it seems reasonable, in light of (30), to take
Hn to be a subset of the linearly independent columns of
(Xn,WnXn,W2

nXn, . . . ,W
q
nXn,MnXn,MnWnXn, . . . ,MnWq

nXn)
(31)

where q is a pre-selected finite constant.12 We note that if Hn
is selected as in (31) it follows from Assumptions 3 and 8 that
its elements will be bounded in absolute value as postulated
in Assumption 9. Assumption 9 ensures that Xn and MnXn are
instrumented by themselves. Finally we note that the assumption
that Hn has full column rank could be relaxed at the expense of
working with generalized inverses.

12 In Kelejian et al. (2004), who considered the case of homoskedastic innovations,
the instruments were determined more generally by taking q as a function of the
sample size n, i.e., qn , such that qn → ∞ as n → ∞. Their Monte Carlo results
suggest that q = 2 may be sufficient for many applications.
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4.2. Definition, consistency and asymptotic normality

Towards estimating the model (1) and (2) we propose a
three step procedure. In the first step the model is estimated by
two stage least squares (2SLS) using the instruments Hn. In the
second step the autoregressive parameter, ρn, is estimated using
the generalized moments estimation approach from Section 3
based on the 2SLS residuals obtained via the first step. In
the third step, the regression model in (1) is re-estimated by
2SLS after transforming the model via a Cochrane–Orcutt-type
transformation to account for the spatial correlation.
More specifically, the first step 2SLS estimator is defined as:

δ̃n = (̂Z′nZn)
−1̂Z′nyn, (32)

where Ẑn = PHnZn = (Xn, Ŵnyn) and Ŵnyn = PHnWnyn. In the
second step we estimate ρn by the GM procedure defined by (9)
based on the 2SLS residuals ũn = yn − Zñδn. We denote the GM
estimator again as ρ̃n.
The next lemma shows that various assumptions maintained

in Section 3 w.r.t. the estimator of the regression parameters
and estimated residuals are automatically satisfied by the 2SLS
estimator δ̃n and the corresponding residuals.

Lemma 3. Suppose Assumptions 1–3 and 8–10 hold, and supn
∥∥βn∥∥

<∞. Let Dn = −Zn, then the fourth moments of the elements of Dn
are uniformly bounded, Assumption 6 holds, and:

(a) n1/2(̃δn − δn) = n−1/2T′nεn + op(1) with Tn = FnPn and where

Pn = Q−1HHQHZ[Q′HZQ
−1
HHQHZ]

−1,

Fn =
(
In − ρnM′n

)−1 Hn.
(b) n−1/2T′nεn = Op(1).
(c) Pn = Op(1) and P̃n − Pn = op(1) for

P̃n = (n−1H′nHn)
−1(n−1H′nZn)

×[(n−1Z′nHn)(n
−1H′nHn)

−1(n−1H′nZn)]
−1.

The condition supn
∥∥βn∥∥ <∞ is trivially satisfied if βn = β. Of

course, parts (a) and (b) together imply that δ̃n is n1/2-consistent
for δn.
Clearly ũn = un + Dn1n with Dn = −Zn and 1n = δ̃n − δn.

Lemma 3 shows that in essence under Assumptions 1–3 and 8–10
the 2SLS residuals automatically satisfy the conditions postulated
in Assumptions 4, 6 and 7 with Dn = −Zn, 1n = δ̃n − δn and
Tn as specified in the lemma. Consequently the results concerning
consistency and asymptotic normality of the GM estimator for ρn
in Theorems 1 and 2 apply in particular to the GM estimator ρ̃n
based on 2SLS residuals. Lemma 3 also establishes that the fourth
moments of the elements ofDn = −Zn are uniformly bounded. The
lemma also gives an explicit expression for Pn and P̃n and verifies
the conditions postulated w.r.t. to those matrices in Theorems 3
and 4. Hence the results of those two theorems also cover the GM
estimator ρ̃n and the 2SLS estimator δ̃n. In particular, Theorem 4
gives the joint limiting distribution of n1/2(̃ρn − ρn) and n1/21n =
n1/2(̃δn − δn) where Dn = −Zn, the matrices Pn, Fn, P̃n are as in
Lemma 3, and F̃n =

(
In − ρ̃nM′n

)+ Hn.13
We now turn to the third step. Applying a Cochrane–Orcutt-

type transformation to (1) yields
yn∗(ρn) = Zn∗(ρn)δn + εn, (33)

13 An alternative estimation approach is to use a HAC procedure to estimate the
variance covariancematrix of the 2SLS estimator. Such an approachwas considered
in Pinkse et al. (2002) and Kelejian and Prucha (2007a). While such an approach is
more robust, it does not yield a simple testing strategy for a joint test of spatial
dependencies in the endogenous, exogenous and disturbances.
where yn∗(ρn) = yn − ρnMnyn and Zn∗(ρn) = Zn − ρnMnZn. Our
estimator δ̂n for δn in this third step is now defined as the 2SLS
procedure applied to the transformed model (33) after replacing
ρn by ρ̃n. That is,

δ̂n = [̂Zn∗(̃ρn)′Zn∗(̃ρn)]−1̂Zn∗(̃ρn)′yn∗(̃ρn) (34)

where Ẑn∗(̃ρn) = PHnZn∗(̃ρn). To express the dependence of δ̂n on
ρ̃n we also write δ̂n = δ̂n(̃ρn).
The next lemma shows again that various assumptions

maintained in Section 3 w.r.t. the estimator of the regression
parameters and estimated residuals are automatically satisfied
by the generalized spatial 2SLS estimator δ̂n and corresponding
residuals.

Lemma 4. Suppose the assumptions of Lemma 3, and let δ̂n(̂ρn) be
as defined by (34), where ρ̂n is any n1/2-consistent estimator for ρn
(such as the GM estimator ρ̃n based on 2SLS residuals). Then

(a) n1/2 [̂δn(̂ρn) − δn] = n−1/2T∗′n εn + op(1) with T∗n = F∗nP
∗
n and

where

P∗n = Q−1HHQHZ∗(ρn)[Q′HZ∗(ρn)Q
−1
HHQHZ∗(ρn)]

−1

F∗n = Hn.

(b) n−1/2T∗′n εn = Op(1).
(c) P∗n = Op(1) and P̃

∗
n − P∗n = op(1) for

P̃∗n = (n
−1H′nHn)

−1(n−1H′nZn∗(̂ρn))

×
[
(n−1Z′n∗(̂ρn)Hn)(n

−1H′nHn)
−1(n−1H′nZn∗(̂ρn))

]−1
.

Frequently we will be interested in the joint distribution
of the generalized spatial 2SLS estimator δ̂n(ρ̂n) and the GM
estimator ρ̃n. In light of Lemmas 3 and 4 the limiting distribution

of n1/2
[
(̂δn − δn)

′, (̃ρn − ρn)
]′
now follows immediately from

Theorem 4 and Remark 5 after that theorem, with 1∗n = δ̂n − δn.
The asymptotic variance covariance matrix and its corresponding
estimator are given by (28) and (29) with modifications as
described in Remark 5 and Dn = −Zn. The expressions for the
matrices Pn, Fn, P̃n are as in Lemma 3, and F̃n =

(
In − ρ̃nM′n

)+ Hn.
The expressions for the matrices P∗n , F

∗
n , P̃
∗
n are as in Lemma 4, and

F̃∗n = Hn. The joint distribution can then be used to test in particular
the joint hypothesis H0 : λn = ρn = 0 in the usual manner.
Finally, consider the estimated residuals corresponding to δ̂n,

i.e., ũ∗n = yn − Zn̂δn = un + Dn1∗n . Clearly, in light of Lemma 4 we
could use those residuals to define a corresponding GM estimator
based on those residuals, and a discussion analogous to that after
Lemma 3would also apply applies here. Of course, further iterative
procedures are possible, and their asymptotic properties would
again be covered by the asymptotic theory developed above.

Remark 6. The estimation theory of Section 3 was developed
under a set of fairly general assumptions. The results given in
this section are illustrative as to how Assumptions 4, 6 and
7 can be implied for the 2SLS and GS2SLS estimator of the
SARAR(1, 1) model from the more primitive Assumptions 8–10.
The assumption that Xn is nonstochastic rules out the presence
of endogenous regressors (apart from the spatial lag Wnyn). Now
suppose that Xn =

[
Xn, Yn

]
and correspondingly Dn = −Zn =

−
[
Xn, Yn,Wnyn

]
, where Xn satisfies Assumptions 8–10, with Xn

replaced by Xn (including in the formulation of the instruments),
and where Yn is a matrix of endogenous variables. Then given the
fourth moments of the elements of Dn are uniformly bounded, and
Assumption 6 holds, parts (a), (b) and (c) of Lemmas 3 and 4 still
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hold but with Ẑn = PHnZn =
[
Xn, PHnYn, PHnWnyn

]
and

Ẑn∗(̃ρn) = PHnZn∗(̃ρn)

=
[
(In − ρ̃nMn)Xn, PHn (In − ρ̃nMn) Yn,

PHn (In − ρ̃nMn)Wnyn
]
.

In specifying a full system of equations analogous to Kelejian
and Prucha (2004) one could furthermore develop more primitive
conditions that ensure the moment condition for the elements of
Dn as well as Assumption 6.

5. Some Monte Carlo results

In order to obtain some insights relating to the small
sample properties of our suggested estimators, as well as the
quasi-maximum likelihood estimator, we undertook a limited
Monte Carlo study. Because of space constraints we do not
report the details of that study here; however, those details
can be found in Kelejian and Prucha (2007b). In essence the
results of that Monte Carlo study were quite consistent with
the theoretical results presented above. Specifically, in our
considered caseswith heteroskedastic innovations the generalized
spatial 2SLS/GM estimators had very little bias even in small
samples. In contrast, the ML estimators were significantly biased.
Furthermore, the ML biases did not decline with the sample
size. We also note that the rejection rates of tests corresponding
to the generalized spatial 2SLS/GM estimators were close to
the nominal value of 0.05, suggesting that the derived large
sample distribution and the estimators of the asymptotic variance
covariance matrix determined above provide indeed useful small
sample appoximations. On the other hand, rejection rates for the
ML estimators exibited serious biases ranging from 0.176 to 1.000.
In the cases we considered with homoskedastic innovations

both the generalized spatial 2SLS/GM estimators and ML estima-
tors showed very little bias. In addition, the loss of efficiency of the
generalized spatial 2SLS/GM estimators relative to the ML estima-
tors was generally modest.

6. Summary and suggestions for further research

In this paper we introduce a new class of GM estimators
for the autoregressive parameter of a spatially autoregressive
disturbance process allowing for innovations with unknown
heteroskedasticity. The estimation theory for the GM estimators
is developed in a modular fashion under a fairly general set
of assumptions, and should cover many (linear and nonlinear)
models. The general theory is then utilized to establish the
consistency and asymptotic normality of IV estimators for the
regression parameters for an important class of spatial models,
frequently referred to as SARAR(1, 1) models. The paper provides
results concerning the joint asymptotic distribution of the GM
estimator for the autoregressive parameter of the disturbance
process and IV estimators for the model regression parameters.
Among other things, the results allow for a joint test that the
autoregressive parameters corresponding to the spatial lags of the
dependent variable and disturbance term are both zero We also
provide a discussion of the specification of the parameter space
for SARAR(1, 1) models. We demonstrate that a computationally
simple re-scaling of the weights matrix leads to an equivalent
model containing a (re-scaled) autoregressive parameter which
has a user-friendly parameter space. Unfortunately, previous
studies in the literature have often re-scaled their weights matrix
in such a way that the ‘‘before and after’’ scaled models are not
equivalent.
One suggestion for further research is to extend the results

to panel data. A further suggestion for future research would be
a comprehensive Monte Carlo study which focuses on the small
sample properties of the considered estimators. Such a study may
also consider comparisons with the quasi-ML estimator (specified
under homoskedasticity).
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Appendix A. CLT for vectors of linear quadratic forms

In the following we state, for the convenience of the reader, a
central limit theorem (CLT) for vectors of linear quadratic forms
with heteroskedastic innovations. This CLT is based on a CLT given
in Kelejian and Prucha (2001) for the scalar case. We first state
a lemma that collects useful results on the mean and VC matrix
between (and as a special case the variance of) linear quadratic
forms.

Lemma A.1. Let ζ = (ζ1, . . . , ζn)
′ be a random vector with zero

mean and positive definite variance covariancematrix4, let A = (aij)
andB = (bij) be n×nnonstochastic symmetricmatrices, and let a and
b be n×1 nonstochastic vectors. Consider the decomposition4 = SS′,
let A∗ = (aij,∗) = S′AS and B∗ = (bij,∗) = S′BS, and let a∗ = S′a
and let b∗ = S′b. Furthermore let η = (η1, . . . , ηn)

′
= S−1ζ.

Then assuming that the elements of η are independently distributed
with zero mean, unit variance, and finite third and fourth moments
E(η3i ) = µ

(3)
ηi
and E(η4i ) = µ

(4)
ηi
we have

E(ζ′Aζ+ a′ζ) = tr(A∗) = tr(A4),
cov(ζ′Aζ+ a′ζ, ζ′Bζ+ b′ζ) = 2tr(A4B4)+ a′4b

+

n∑
i=1

aii,∗bii,∗
[
µ(4)ηi − 3

]
+

n∑
i=1

(ai,∗bii,∗ + bi,∗aii,∗)µ(3)ηi .

Remark A.1. The above expression for the covariance exploits the
independence of the elements of η. A convenient way to obtain
these expressions is to re-write the linear quadratic form as a sum
of martingale differences as, e.g., in Kelejian and Prucha (2001,
Appendix A). If the diagonal elements of A∗ and B∗ are zero the last
two terms drop out from the expression for the covariance, and so
one need only assume the existence of second moments. The last
two terms also drop out from the expression for the covariance in
the casewhere ζ – or equivalentlyη – is normally distributed, since
in this case µ(3)ηi = 0 and µ

(4)
ηi
= 3. Of course, the variance of a

linear quadratic form is obtained as the special case where A = B
and a = b. Obviously, in case A and B are not symmetric the above
formulae applywithA and B replaced by (A+A′)/2 and (B+B′)/2.

Consider the linear quadratic forms (r = 1, . . . ,m)

Qr,n = ξ′nAr,nξn + a′r,nξn

where ξn = (ξ1,n, . . . , ξn,n)
′ is an n × 1 random vector,

Ar,n = (aij,r,n)i,j=1,...,n is an n × n nonstochastic real matrix, and
ar,n = (a1,r,n, . . . , an,r,n)′ is an n × 1 nonstochastic real vector.
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Wemaintain the following assumptions:

Assumption A.1. The real valued random variables of the array
{ξi,n : 1 ≤ i ≤ n, n ≥ 1} satisfy Eξi,n = 0. Furthermore, for each
n ≥ 1 the random variables ξ1,n, . . . , ξn,n are totally independent.

Assumption A.2. For r = 1, . . . ,m the elements of the array of
real numbers {aij,r,n : 1 ≤ i, j ≤ n, n ≥ 1} satisfy aij,r,n =
aji,r,n and sup1≤j≤n,n≥1

∑n
i=1

∣∣aij,r,n∣∣ < ∞. The elements of the
array of real numbers {ai,r,n : 1 ≤ i ≤ n, n ≥ 1} satisfy
supn n−1

∑n
i=1

∣∣ai,r,n∣∣2+η1 <∞ for some η1 > 0.
Assumption A.3. For r = 1, . . . ,m one of the following two
conditions holds:
(a) sup1≤i≤n,n≥1 E

∣∣ξi,n∣∣2+η2 <∞ for some η2 > 0 and aii,r,n = 0.
(b) sup1≤i≤n,n≥1 E

∣∣ξi,n∣∣4+η2 < ∞ for some η2 > 0 (but possibly
aii,r,n 6= 0).
Let µQr,n and σQrs,n denote the mean of Qr,n and the covariance

between Qr,n and Qs,n, respectively, for r, s = 1, . . . ,m. Then it
follows immediately from Lemma A.1 that under Assumptions A.1
and A.3

µQr,n =

n∑
i=1

aii,r,nσ 2i,n,

σQrs,n = 2
n∑
i=1

n∑
j=1

aij,r,naij,s,nσ 2i,nσ
2
j,n +

n∑
i=1

ai,r,nai,s,nσ 2i,n

+

n∑
i=1

aii,r,naii,s,n
[
µ
(4)
i,n − 3σ

4
i,n

]
+

n∑
i=1

(ai,r,naii,s,n + ai,s,naii,r,n)µ
(3)
i,n

where σ 2i,n = Eξ 2i,n, µ
(3)
i,n = Eξ 3i,n and µ

(4)
i,n = Eξ 4i,n. In case

Assumption A.3(a) holds, the mean of Qr,n is zero and the last two
terms drop out from the expression for the variance.
In the following we give a CLT for the m × 1 vector of linear

quadratic forms

Vn =
[
Q1,n, . . . , Qm,n

]′
.

Let µVn = EVn = [µQ1,n , . . . , µQm,n ]
′ and ΣVn = [σQrs,n ]r,s=1,..,m

denote the mean and VC matrix of Vn, respectively. We then have
the following theorem.

Theorem A.1. Suppose AssumptionsA.1–A.3 hold and n−1λmin(ΣVn)

≥ c for some c > 0. Let ΣVn =
(
6
1/2
Vn

) (
6
1/2
Vn

)′
, then

6
−1/2
Vn (Vn − µVn)

d
→N(0, Im).

Remark A.2. Since the diagonal elements of a positive definite
matrix are greater than or equal to the smallest eigenvalue of that
matrix it follows that n−1λmin(6Vn) ≥ c implies that n

−1σQn,ii ≥ c.
Therefore this assumption automatically implies the assumption
maintained in Theorem 1 of Kelejian and Prucha (2001) w.r.t. the
variance of a linear quadratic form for each of the linear quadratic
formsQr,n. Of course, the theorem remains valid, if all assumptions
are assumed to hold for n > n0 where n0 is finite.
Proof of Theorem A.1. Let α be some arbitrarym× 1 vector with
‖α‖ = 1, let

πn = (π1,n, . . . , πm,n) = n1/2α′6
−1/2
Vn ,

and define

Qn = n1/2α′6
−1/2
Vn Vn

=

m∑
r=1

πr,nξ
′

nAr,nξn +
m∑
r=1

πr,na′r,nξn = ξ
′

nCnξn + d′nξn,
where Cn =
∑m
r=1 πr,nAr,n and dn =

∑m
r=1 πr,nar,n. Observe that

µQn = EQn = n
1/2α′Σ

−1/2
Vn µVn =

m∑
r=1

πr,nµQr,n ,

σ 2Qn = var(Qn) = nα
′6
−1/2
Vn 6Vn6

−1/2′
Vn α = n.

To prove the theorem, using the CramerWold device, it suffices
to show that

α′6
−1/2
Vn (Vn − µV ,n) =

Qn − µQn

σQn

d
→N(0, 1). (A.1)

To show that (A.1) holds we verify that ξn and Cn and dn satisfy
the conditions of Theorem 1 in Kelejian and Prucha (2001).
Assumptions A.1 and A.3 are identical to Assumptions 1 and 3 in
Kelejian and Prucha (2001). Furthermore, n−1σ 2Qn = 1. Thus it
suffices to verify that Assumption 2 in Kelejian and Prucha (2001)
holds for the elements of Cn and dn.
Clearly λmax(n6−1Vn ) = 1/λmin(n

−16Vn) ≤ 1/c. By Proposition
43 in Dhrymes (1978, p. 470) the matrices n6−1Vn = n6

−1/2′
Vn 6

−1/2
Vn

and n6−1/2Vn 6
−1/2′
Vn have the same characteristic roots. Thus

‖πn‖
2
= α′(n6−1/2Vn 6

−1/2′
Vn )α ≤ λmax(n6

−1/2
Vn 6

−1/2′
Vn ) ‖α‖2 =

λmax(n6−1Vn ) ≤ 1/c < ∞, and hence
∣∣πr,n∣∣ ≤ cπ where cπ =

1/
√
c.
Observe that∣∣cij,n∣∣ = m∑

r=1

∣∣πr,n∣∣ ∣∣aij,r,n∣∣ ≤ cπ m∑
r=1

∣∣aij,r,n∣∣
and hence

sup
1≤j≤n,n≥1

n∑
i=1

∣∣cij,n∣∣ ≤ cπ m∑
r=1

sup
1≤j≤n,n≥1

n∑
i=1

∣∣aij,r,n∣∣ <∞
in light of Assumption A.2. This shows that the elements of Cn
satisfy Assumption 2 in Kelejian and Prucha (2001).
Next observe that∣∣di,n∣∣2+η1 ≤ [ m∑

r=1

∣∣πr,n∣∣ ∣∣ai,r,n∣∣]2+η1 ≤ c2+η1π

[
m∑
r=1

∣∣ai,r,n∣∣]2+η1
≤ c2+η1π m2+η1

m∑
r=1

∣∣ai,r,n∣∣2+η1
and hence

sup
n
n−1

n∑
i=1

∣∣di,n∣∣2+η1
≤ c2+η1π m2+η1

m∑
r=1

sup
n
n−1

n∑
i=1

∣∣ai,r,n∣∣2+η1 <∞
in light of Assumption A.2. Therefore the elements of dn satisfy
Assumption 2 in Kelejian and Prucha (2001). �

Appendix B. Proofs for Section 2

Proof of Lemma 1. Clearly In − λWn is non-singular for λ = 0.
For λ 6= 0 we have det(In − λWn) = (−λ)n det(Wn − λ

−1In).
Consequently In − λWn is non-singular for values of λ−1 6∈
{ν1,n, . . . , νn,n}. In particular, In− λWn is non-singular for

∣∣λ−1∣∣ >
τn. Rewriting this last inequality as |λ| < τ−1n completes the
proof. �

Proof of Lemma 2. As an immediate consequence of Geršgorin’s
Theorem – see, e.g., Horn and Johnson (1985, pp. 344–346) – we
have τn = max{

∣∣ν1,n∣∣ , . . . , ∣∣νn,n∣∣} ≤ τ ∗n . The claim now follows
from Lemma 1. �
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Appendix C. Proofs for Section 3

Remark C.1. Suppose the row and column sums of the np ×
np matrices An = (aij,n) are bounded uniformly in absolute
value by some finite constants cA, then

∑np
i=1

∣∣aij,n∣∣q ≤ cqA for
q > 1. This result is trivially seen to hold since

∑np
i=1

∣∣aij,n∣∣q =
cq−1A

∑np
i=1

∣∣aij,n∣∣ ∣∣aij,n/cA∣∣q−1 ≤ cq−1A
∑np
i=1

∣∣aij,n∣∣ ≤ cqA .
In this appendix we shall make use of several lemmata.

Because of space constraints we do not provide explicit proofs
for these lemmata. However, explicit proofs are given in the
underlyingworking paper, Kelejian and Prucha (2007b), which can
be obtained from the authors.

Lemma C.1. Suppose the row and column sums of the real non-
stochastic n×nmatrices An are uniformly bounded in absolute value.
Let un be defined by (2) and let ũn denote a predictor for un. Suppose
Assumptions 1–4 hold then:

(a) n−1E
∣∣u′nAnun∣∣ = O(1), var(n−1u′nAnun) = o(1) and

n−1ũ′nAnũn − n
−1Eu′nAnun = op(1).

(b) n−1E
∣∣d′.s,nAnun∣∣ = O(1), s = 1, . . . , p, where d.s,n denotes the

s-th column of Dn, and

n−1D′nAnũn − n
−1ED′nAnun = op(1).

(c) If furthermore Assumption 6 holds, then

n−1/2ũ′nAnũn = n
−1/2u′nAnun + α

′

nn
1/21n + op(1)

withαn = n−1ED′n(An+A′n)un. (Of course, in light of (b)we have
αn = O(1) and n−1D′n(An + A′n)̃un − αn = op(1).)

Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

Proof of Theorem 1. The existence and measurability of ρ̃n is
assured by, e.g., Lemma 3.4 in Pötscher and Prucha (1997).
The objective function of the weighted nonlinear least squares
estimator and its corresponding non-stochastic counterpart are
given by, respectively,

Rn(ω, ρ) =
[̃
0n(ρ, ρ

2)′ − γ̃n
]′
Υ̃n
[̃
0n(ρ, ρ

2)′ − γ̃n
]

Rn(ρ) =
[
0n(ρ, ρ

2)′ − γn
]′
Υn
[
0n(ρ, ρ

2)′ − γn
]
.

To prove the consistency of ρ̃n we show that the conditions of,
e.g., Lemma 3.1 in Pötscher and Prucha (1997) are satisfied for
the problem at hand. We first show that ρn is an identifiably
unique sequence of minimizers of Rn. Observe that Rn(ρ) ≥ 0 and
that Rn(ρn) = 0. From (6) we have γn = 0n[ρn, ρ

2
n ]
′. Utilizing

Assumption 5 we then get

Rn(ρ)− Rn(ρn) = Rn(ρ)

=
[
ρ − ρn, ρ

2
− ρ2n

]
0′nΥn0n

[
ρ − ρn, ρ

2
− ρ2n

]′
≥ λmin(Υn)λmin(0

′

n0n)
[
ρ − ρn, ρ

2
− ρ2n

] [
ρ − ρn, ρ

2
− ρ2n

]′
≥ λ∗ [ρ − ρn]2

for some λ∗ > 0. Hence for every ε > 0 and nwe have:

inf
{ρ∈[−aρ ,aρ ]:‖ρ−ρn‖≥ε}

[Rn(ρ)− Rn(ρn)]

≥ inf
{ρ∈[−aρ ,aρ ]:‖ρ−ρn‖≥ε}

λ2
∗
[ρ − ρn]2 = λ∗ε2 > 0,

which proves that ρn is identifiably unique. Next let 8n =
[0n,−γn] and 8̃n = [̃0n,−γ̃n], then
∣∣Rn(ω, ρ)− Rn(ρ)∣∣
=

∣∣∣[ρ, ρ2, 1] [8̃′nΥ̃n8̃n −8′nΥn8n] [ρ, ρ2, 1]′∣∣∣
≤

∥∥∥8̃′nΥ̃n8̃n −8′nΥn8n∥∥∥ ∥∥ρ, ρ2, 1∥∥2
≤

∥∥∥8̃′nΥ̃n8̃n −8′nΥn8n∥∥∥ [1+ (aρ)2 + (aρ)4].
As is readily seen from the respective second expressions on
the r.h.s. of (7), the elements of 8n and 8̃n are all of the form
n−1Eu′nAnun and n

−1ũ′nAnũn where the row and column sums
of An are bounded uniformly in absolute value. It now follows
immediately from Lemma C.1 that 8̃n − 8n

p
→ 0, and that the

elements of 8̃n and 8n are, respectively, Op(1) and O(1). The
analogous properties are seen to hold for the elements of Υ̃n and
Υn in light of Assumption 5. Given this it follows from the above
inequality that Rn(ω, ρ)− Rn(ρ) converges to zero uniformly over
the optimization space [−aρ, aρ], i.e.,

sup
ρ∈[−aρ ,aρ ]

∣∣Rn(ω, ρ)− Rn(ρ)∣∣
≤

∥∥∥8̃′nΥ̃n8̃n −8′nΥn8n∥∥∥ [1+ (aρ)2 + (aρ)4] p→ 0
as n→∞. The consistency of ρ̃n now follows directly fromLemma
3.1 in Pötscher and Prucha (1997). �

Wemake use of the following lemma.

Lemma C.2. Let un be defined by (2) and let Dn = [d′1.,n, . . . , d
′
n.,n]
′,

where di.,n is defined in Assumption 4. Suppose Assumptions 1–3 hold,
and suppose furthermore that the columns of Dn are of the formπn+
5nεn, where the elements of πn are bounded in absolute value and
the row and column sums of 5n are uniformly bounded in absolute
value. Then (a) Ed4ij,n ≤ const < ∞, and thus the moment condition
in Assumption 4 is automatically implied, and (b) Assumption 6 is
automatically implied.

Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

Proof of Theorem 2. Define

qn(ρn,1n) = γ̃n − 0̃n

[
ρn
ρ2n

]
=

[
n−1ũ′nC1,nũn
n−1ũ′nC2,nũn

]
(C.1)

with Cr,n = (1/2)
(
In − ρnM′n

)
(Ar,n + A′r,n) (In − ρnMn), and

where the matrices Ar,n are defined by (5), r = 1, 2. The
second equality in (C.1) is seen to hold in light of the discussion
surrounding Eqs. (4)–(9). For later use we observe that the rows
and column sums of Cr,n are uniformly bounded in absolute value;
see, e.g., Remark A.1 in Kelejian and Prucha (2004).
We have shown in Theorem 1 that the GM estimator ρ̃n defined

in (9) is consistent. Apart on a set whose probability tends to zero
the estimator satisfies the following first order condition

qn(̃ρn,1n)′Υ̃n
∂qn(̃ρn,1n)

∂ρ
= 0.

Substituting the mean value theorem expression

qn(̃ρn,1n) = qn(ρn,1n)+
∂qn(ρn,1n)

∂ρ
(̃ρn − ρn)

into the first order condition yields

∂qn(̃ρn,1n)
∂ρ ′

Υ̃n
∂qn(ρn,1n)

∂ρ
n1/2(̃ρn − ρn)

= −
∂qn(̃ρn,1n)

∂ρ ′
Υ̃nn1/2qn(ρn,1n) (C.2)

where ρn is some in-between value. Observe that
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∂qn(ρ,1n)
∂ρ

= −0̃n

[
1
2ρ

]
(C.3)

and consider the nonnegative scalars

4̃n =
∂qn(̃ρn,1n)

∂ρ ′
Υ̃n
∂qn(ρn,1n)

∂ρ

=

[
1
2ρ̃n

]′
0̃
′

nΥ̃n0̃n

[
1
2ρn

]
, (C.4)

4n =

[
1
2ρn

]′
0′nΥn0n

[
1
2ρn

]
.

In proving Theorem 1we have demonstrated that 0̃n−0n
p
→ 0 and

that the elements of 0̃n and 0n are Op(1) and O(1), respectively. By
Assumption 5 we have Υ̃n−Υn = op(1) and also that the elements
of Υ̃n and Υn are Op(1) and O(1), respectively. Since ρ̃n and ρn are
consistent and bounded in absolute value, clearly

4̃n −4n
p
→ 0 (C.5)

as n → ∞, and furthermore 4̃n = Op(1) and 4n = O(1). In
particular 4n ≤ λ∗∗Ξ where λ

∗∗
Ξ is some finite constant. In light of

Assumption 5 we have4n ≥ λmin(Υn)λmin(0′n0n)(1+ 4ρ
2
n ) ≥ λ

∗
Ξ

for some λ∗Ξ > 0. Hence 0 < 4−1n ≤ 1/λ
∗
Ξ <∞, and thus we also

have4−1n = O(1). Let 4̃
+

n denote the generalized inverse of 4̃n. It
then follows as a special case of Lemma F1 in Pötscher and Prucha
(1997) that 4̃n is nonsingular eventually with probability tending
to one, that 4̃+n = Op(1), and that

4̃
+

n −4
−1
n

p
→ 0 (C.6)

as n→∞.
Premultiplying (C.2) by 4̃+n and rearranging terms yields

n1/2(̃ρn − ρn) =
[
1− 4̃+n 4̃n

]
n1/2(̃ρn − ρn)

− 4̃
+

n
∂qn(̃ρn,1n)

∂ρ ′
Υ̃nn1/2qn(ρn,1n).

In light of the above discussion the the first termon the r.h.s. is zero
on ω-sets of probability tending to one. This yields

n1/2(̃ρn − ρn) = −4̃
+

n
∂qn(̃ρn,1n)

∂ρ ′
Υ̃nn1/2qn(ρn,1n)+ op(1).

(C.7)

Observe that

4̃
+

n
∂qn(̃ρn,1n)

∂ρ ′
Υ̃n −4

−1
n

[
1
2ρn

]′
0′nΥn = op(1). (C.8)

In light of (C.1) and Lemma C.1 the elements of n1/2qn(ρn,1n)
can be expressed as (r = 1, 2)

n−1/2ũ′nCr,nũn = n
−1/2u′nCr,nun + α

′

r,nn
1/21n + op(1)

where
αr,n = 2n−1ED′nCr,nun.
Furthermore, the lemma implies that the elements of αr,n
are uniformly bounded in absolute value. Utilizing un =

(In − ρnMn)−1 εn and Assumption 7 we have

n1/2qn(ρn,1n) = n−1/2


1
2
ε′n(A1,n + A′1,n)εn + a′1,nεn
1
2
ε′n(A2,n + A′2,n)εn + a′2,nεn

+ op(1)
(C.9)

where ar,n = Tnαr,n, r = 1, 2. Observe that the elements of
ar,n are uniformly bounded in absolute value. As discussed before
Theorem 2 in the text, the VC matrix of the vector of quadratic
forms on the r.h.s. of (C.9) is given by 9n where the elements of
that matrix are given in (13). These elements can be written more
explicitly as

ψrs,n =
1
2n

n∑
i=1

n∑
j=1

(aij,r,n + aji,r,n)(aij,s,n + aji,s,n)σ 2i,nσ
2
j,n

+
1
n

n∑
i=1

ai,r,nai,s,nσ 2i,n. (C.10)

By assumption λmin(9n) ≥ const > 0. Since the matrices Ar,n,
the vectors ar,n, and the innovations εn satisfy all of the remaining
assumptions of the central limit theorem for vectors of linear
quadratic forms given above as Theorem A.1 it follows that

ξn = −9
−1/2
n n−1/2


1
2
ε′n(A1,n + A′1,n)εn + a′1,nεn
1
2
ε′n(A2,n + A′2,n)εn + a′2,nεn


d
→ N(0, I2). (C.11)

Since the row and column sums of the matrices Ar,n are uniformly
bounded in absolute value, and since the elements of ar,n and the
variances are uniformly bounded by finite constants it is readily
seen from (C.10) that the elements of 9n, and hence those of 9

1/2
n

are uniformly bounded. It now follows from (C.7), (C.8) and (C.11)
that

n1/2(̃ρn − ρn) = 4−1n

[
1
2ρn

]′
0′nΥn9

1/2
n ξn + op(1). (C.12)

Observing that 4n = J′nΥnJn, where Jn = 0n[1, 2ρn]′, this
establishes (14). Since all of the nonstochastic terms on the r.h.s.
of (C.12) are O(1) it follows that n1/2(̃ρn−ρn) = Op(1). Next recall
that 0 < λ∗Ξ ≤ 4n ≤ λ

∗∗
Ξ <∞. Hence

4−1n J′nΥn9nΥnJn4
−1
n ≥ λmin (9n) [λmin (Υn)]

2 λmin(0
′

n0n)

× (1+ 4ρ2n )/(λ
∗∗

Ξ )
2
≥ const > 0.

This establishes the last claim of the theorem. �

A part of proving Theorem 3 will be to show that Ψ̃n − Ψn =
op(1). Observe that the elements can be written as

ψ̃rs,n = ψ̃
∗

rs,n + ψ̃
∗∗

rs,n, and ψrs,n = ψ
∗

rs,n + ψ
∗∗

rs,n (C.13)
with

ψ̃∗rs,n = (2n)
−1

n∑
i=1

n∑
j=1

aij,ñε2i,ñε
2
j,n,

ψ∗rs,n = (2n)
−1

n∑
i=1

n∑
j=1

aij,nσ 2i,nσ
2
j,n,

ψ̃∗∗rs,n = n
−1α̃′r,nP̃

′

ñF
′

n6̃ñFnP̃nα̃s,n,

ψ∗∗rs,n = n
−1α′r,nP

′

nF
′

n6nFnPnαs,n, (C.14)
where aij,n = (aij,r,n + aji,r,n)(aij,s,n + aji,s,n).
The next two lemmata will be used to show that ψ̃∗rs,n−ψ

∗
rs,n =

op(1).

Lemma C.3. Suppose Assumptions1–3hold. LetΛn = n−1(σ2n)
′Anσ2n

and Λn = n−1(ε2n)
′Anε2n with σ

2
n = (σ 21,n, . . . , σ

2
n,n)
′ and ε2n =

(ε21,n, . . . , ε
2
n,n)
′, and where the n × n matrices An are real non-

stochastic and symmetric. Suppose further that the diagonal elements
of the matrices An are zero and that their row and column sums are
uniformly bounded in absolute value. Then EΛn = Λn = O(1)
and var(Λn) = o(1), and hence Λn − Λn

p
→ 0 as n → ∞, and

Λn = Op(1).
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Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

Lemma C.4. Suppose Assumptions 1–4 hold. Let εn = (In − ρnMn)
un, and let ε̃n = (In − ρ̃nMn) ũn with ũn = un + Dn1n and
Dn = [d′1.,n, . . . , d

′
n.,n]
′, and where ρ̃n can be any estimator that

satisfies n1/2(̃ρn − ρn) = Op(1). Define Λ̃n = n−1(̃ε2n)
′An(̃ε2n),Λn =

n−1(ε2n)
′Anε2n with ε̃

2
n = (̃ε

2
1,n, . . . , ε̃

2
n,n)
′, ε2n = (ε

2
1,n, . . . , ε

2
n,n)
′, and

where the n × n matrices An are real nonstochastic and symmetric.
Suppose further that the diagonal elements of the matrices An are
zero and that their row and column sums are uniformly bounded in
absolute value, and that Ed4ij,n ≤ Kd < ∞. Then, Λ̃n − Λn

p
→ 0 as

n→∞, and Λ̃n = Op(1).

Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

The next two lemmata will be used to show that ψ̃∗∗rs,n−ψ
∗∗
rs,n =

op(1), where ψ̃∗∗rs,n and ψ
∗∗
rs,n are defined in (C.13) and (C.14).

Lemma C.5. Suppose Assumptions 1–4 hold. Let εn = (In − ρnMn)
un, and let ε̃n = (In − ρ̃nMn) ũn with ũn = un + Dn1n and
Dn = [d′1.,n, . . . , d

′
n.,n]
′, and where ρ̃n can be any estimator that

satisfies ρ̃n − ρn = op(1). Let an and bn be n × 1 vectors whose
elements are uniformly bounded in absolute value by c <∞ and let
6n = diagi=1,...,n(σ 2i ) and 6̃n = diagi=1,...,n(̃ε

2
i,n). Then:

(a) n−1a′n6̃nbn − n
−1a′n6nbn = op(1) and n

−1a′n6nbn = O(1).
(b) There exist random variables ςn that do not depend on an and bn
such that∣∣n−1a′n6̃nbn − n−1a′n6nbn∣∣ ≤ K(c)(1+ ςn)
with ςn = op(1) andwhere K(c) <∞ is a constant that depends
monotonically on c (as well as on some other bounds maintained
in the assumptions).

Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

Lemma C.6. Suppose Assumptions 1–4 hold. Furthermore assume
that supn |ρn| < 1, and the row sums and column sums of Mn
are bounded uniformly in absolute value by, respectively, one and
some finite constant. Let εn = (In − ρnMn)un, and let ε̃n =
(In − ρ̃nMn) ũn with ũn = un + Dn1n and Dn = [d′1.,n, . . . , d

′
n.,n]
′,

and where ρ̃n can be any estimator that satisfies ρ̃n−ρn = op(1). Let

Fn = F̃n = Hn
or

Fn = (In − ρnMn)−1 Hn and F̃n = (In − ρ̃nMn)+ Hn,

whereHn is an n×p∗matrixwhose elements are uniformly bounded in
absolute value, let 6n = diagi=1,...,n(σ 2i ) and 6̃n = diagi=1,...,n(̃ε

2
i,n),

then n−1̃F′n6̃ñFn − n
−1F′n6nFn = op(1) and n

−1F′n6nFn = O(1).
14

Proof. A proof of the lemma is given in Kelejian and Prucha
(2007b). �

Proof of Theorem 3. We first demonstrate that Ψ̃n − Ψn = op(1),
utilizing the expressions for the elements of Ψ̃n andΨn in (C.13) and
(C.14). Observe that under themaintained assumption the row and
column sums of the absolute elements of thematrices Ar,n and As,n
are uniformly bounded, and thus clearly are those of the matrices
An = (aij,n) with aij,n = (aij,r,n + aji,r,n)(aij,s,n + aji,s,n). It then
follows directly from Lemmas C.3 and C.4 that ψ̃∗rs,n−ψ

∗
rs,n = op(1),

ψ∗rs,n = O(1) and ψ̃
∗
rs,n = Op(1).

14 We would like to thank Benedikt Pötscher for very helpful comments on parts
of the proof of this lemma.
Observing that the row and column sums of
(
In − ρnM′n

)
(Ar,n+

A′r,n) (In − ρnMn) are bounded uniformly in absolute value it
follows from Lemma C.1 that α̃r,n − αr,n = op(1), αr,n = O(1)
and hence α̃r,n = Op(1). By assumption P̃n − Pn = op(1), Pn =
O(1), and hence P̃n = Op(1). Observe that by Lemma C.6 we have
n−1̃F′n6̃ñFn − n

−1F′n6nFn = op(1), n
−1F′n6nFn = O(1), and hence

n−1̃F′n6̃ñFn = Op(1). Thus ψ̃
∗∗
rs,n − ψ

∗∗
rs,n = op(1), ψ

∗∗
rs,n = O(1), and

ψ̃∗∗rs,n = Op(1). Hence 9̃n−9n = op(1),9n = O(1) and 9̃n = Op(1).
By Assumption 5 we have Υ̃n − Υn = op(1), Υn = O(1) and

thus Υ̃n = Op(1). Let 4n = J′nΥnJn and 4̃n = J̃′nΥ̃ñJn, then, as
demonstrated in the proof of Theorem 2, J̃n = Op(1), Jn = O(1),
4̃
+

n = Op(1) and 4
−1
n = Op(1), and furthermore J̃n − Jn

p
→ 0 and

4̃
+

n − 4−1n
p
→ 0 as n → ∞. (There is a slight difference in the

definition of 4̃n here and in the proof of Theorem 2, which does
not affect the claim.) Given the above results it is now obvious that
�̃ρ̃n − �ρ̃n = op(1). �

Proof of Theorem 4. We concentrate again on the case Fn =(
In − ρnM′n

)−1 Hn. The first line in (27) is seen to hold in
light of Assumption 7 and Theorem 2. We next verify that
ξ◦,n

d
→N(0, Ip∗+2) utilizing the central limit theorem for vectors of

linear quadratic forms given above as Theorem A.1. By assumption
λmin(9◦,n) ≥ c∗Ψ◦ > 0. In proving Theorem 2 we verified that
the innovations εn and the elements of ar,n and Ar,n appearing
in vn all satisfy the conditions of the central limit theorem. Since
the row and column sums of

(
In − ρnM′n

)−1 and the elements of
Hn are uniformly bounded in absolute value it follows that the
elements of Fn are also uniformly bounded in absolute value. Thus
all conditions of TheoremA.1 are satisfied,which verifies the claim.
In proving Theorems 2 and 3 we have shown that 9̃n −

9n = op(1), 9n = O(1) and thus 9̃n = Op(1). By analogous
argumentation it is readily seen that the other sub-matrices of 9̃◦,n
and 9◦,n have the same properties, and thus 9̃◦,n − 9◦,n = op(1)
and 9◦,n = O(1). By assumption P̃n − Pn = op(1), Pn = O(1) and
thus P̃n = Op(1), and furthermore Υ̃n − Υn = op(1), Υn = O(1)
and thus Υ̃n = Op(1). In proving Theorem 2 we have verified
that J̃n − Jn

p
→ 0, Jn = O(1) and J̃n = Op(1), and furthermore

that (̃J′nΥ̃ñJn)
+
− (J′nΥnJn)

−1
= op(1), (̃J′nΥ̃ñJn)

+
= Op(1) and

(J′nΥnJn)
−1
= O(1). The claim that �̃◦,n − �◦,n(Υn) = op(1) and

�◦,n = O(1) is now obvious. �

Appendix D. Proofs for Section 4

Proof of Lemma 3. Utilizing (3) it follows fromAssumptions 3 and
8 and supn

∥∥βn∥∥ < ∞ that all columns of Zn = [Xn,Wnyn] are of
the form ϑn = πn +5nεn, where the elements of the n× 1 vector
πn are bounded in absolute value and the row and column sums
of the n × n matrix 5n are uniformly bounded in absolute value
by some finite constant; compare, e.g., Remark A.1 in Kelejian and
Prucha (2004). The claims that the fourth moments of Dn = −Zn
are uniformly bounded by a finite constant, and that Assumption 6
holds, now follows directly from Lemma C.2.
Clearly

n1/2(̃δn − δn) = P̃′nn
−1/2F′nεn

where P̃n is defined in the lemma and Fn =
(
In − ρnM′n

)−1 Hn.
Given Assumption 10 clearly P̃n = Pn + op(1) and Pn = O(1),
with Pn defined in the lemma. Since by Assumption 3 the row and
column sums of (In − ρnMn)−1 are uniformly bounded in absolute
value, and since by Assumption 9 the elements ofHn are uniformly
bounded in absolute value, it follows that the elements of Fn are
uniformly bounded in absolute value. By Assumption 2, E(εn) = 0
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and its diagonal VC matrix, 6n, has uniformly bounded elements.
Therefore, En−1/2F′nεn = 0 and the elements of VC(n

−1/2F′nεn) =
n−1F′n6nFn are also uniformly bounded in absolute value. Thus,
by Chebyshev’s inequality n−1/2F′nεn = Op(1), and consequently
n1/2(̃δn − δn) = P′nn

−1/2F′nεn + op(1) and P′nn
−1/2F′nεn = Op(1).

This completes the proof recalling that Tn = FnPn. �

Proof of Lemma 4. Note from (1) and (2) that

yn∗(ρ̂n) = Zn∗(ρ̂n)δn + εn − (ρ̂n − ρn)Mnun
and hence

n1/2 [̂δn(ρ̂n)− δn]

=
[
n−1̂Z′n∗(ρ̂n)Zn∗(ρ̂n)

]−1
n−1/2̂Z′n∗(ρ̂n)

[
εn − (ρ̂n − ρn)Mnun

]
= P̃∗′n

[
n−1/2F∗′n εn − (ρ̂n − ρn)n

−1/2F∗∗′n εn
]
,

where P̃∗n is defined in the lemma, and with F∗n = Hn and F∗∗n =(
In − ρnM′n

)−1M′nHn. In light of Assumption 10, and since ρ̂n is
n1/2-consistent, it follows that

n−1̂Z′n∗(ρ̂n)Zn∗(ρ̂n)− Q′HZ∗(ρn)Q
−1
HHQHZ∗(ρn) = op(1).

Since by Assumption 10 we have Q′HZ∗(ρn)Q
−1
HHQHZ∗(ρn) = O(1)

and [Q′HZ∗(ρn)Q
−1
HHQHZ∗(ρn)]

−1
= O(1) it follows that

[n−1̂Z′n∗(ρ̂n)Zn∗(ρ̂n)]
−1
− [Q′HZ∗(ρn)Q

−1
HHQHZ∗(ρn)]

−1
= op(1);

compare, e.g., Pötscher and Prucha (1997), Lemma F1. In light of
this it follows further that P̃∗n − P∗n = op(1) and P∗n = O(1), with
P∗n defined in the lemma. By argumentation analogous to that in
the proof of Lemma 3 it is readily seen that n−1/2F∗′n εn = Op(1)
and n−1/2F∗∗′n εn = Op(1). Consequently n1/2 [̂δn(ρ̂n) − δn] =
P∗′n n

−1/2F∗′n εn + op(1) and P
∗′
n n
−1/2F∗′n εn = Op(1), observing again

that ρ̂n − ρn = op(1). This completes the proof recalling that
T∗n = F∗nP

∗
n . �
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