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Abstract

By far, the most popular test for spatial correlation is the one based on Moran’s
(1950) I test statistic. Despite this, the available results in the literature concerning
the large sample distribution of this statistic are limited and have been derived under
assumptions that do not cover many applications of interest. In this paper we 3rst
give a general result concerning the large sample distribution of Moran I type test
statistics. We then apply this result to derive the large sample distribution of the
Moran I test statistic for a variety of important models. In order to establish these
results we also give a new central limit theorem for linear-quadratic forms. ? 2001
Elsevier Science S.A. All rights reserved.
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Keywords: Moran I test; Spatial autocorrelation; Asymptotic distribution; Central
limit theorem

1. Introduction

Spatial models have a long history in the regional science and geogra-
phy literature. 1 In recent years issues concerning spatial dependence between
cross sectional units have also received increasing attention in the economics
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1 See, e.g., Anselin (1988), Bennett and Hordijk (1986), CliA and Ord (1973, 1981), and

Cressie (1993), and references cited therein.
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literature. 2 One form of such dependence relates to spill-overs between the
dependent variables; another relates to spill-overs between the disturbance
terms, which leads to, among other things, the problem of spatial correlation.
The eCciency and properties of estimators as well as the properties of other
statistics will in general depend upon whether or not a model’s disturbance
terms are indeed spatially correlated. As a result, it is important to test for
the presence of spatial correlation.
By far, the most popular test for spatial correlation is the one based on the

Moran (1950) I test statistic. In essence this test statistic is formulated as a
(properly normalized) quadratic form in terms of the variables that are being
tested for spatial correlation. Moran’s original speci3cation standardizes the
variables by subtracting the sample mean, and then deEating by an appropriate
factor. CliA and Ord (1972, 1973, 1981) generalized Moran’s I statistic in
order to derive a test for spatial correlation in a linear regression model. The
CliA and Ord generalization is formulated in terms of a quadratic form of
estimated residuals. 3 The matrix appearing in the quadratic form is typically
referred to as the spatial weighting matrix. Assuming that the innovations
are i.i.d. normal CliA and Ord derive the large sample distribution of the
Moran I test statistic, and also derive its small sample moments. Sen (1976)
derives the large sample distribution of the Moran I test statistic under the
weaker assumption that the variables are i.i.d. distributed, given that certain
moment conditions hold. However, his analysis only covers Moran’s original
speci3cation and not CliA and Ord’s generalized speci3cation.
The conditions maintained by the above results concerning the large sam-

ple distribution of the Moran I test statistic are restrictive and rule out many
potential applications. For instance, the results do not allow for heteroskedas-
ticity in the innovations. As will become evident, this rules out many appli-
cations which relate to limited dependent variable models, even though such
models have become of increasing interest in the analysis of spatial data sets.
Furthermore there are no formal results in the literature which cover spatial
regression models where one of the regressors is a spatial lag of the de-
pendent variable, even though such models are widely used in applied work
and, indeed, primary interest often focuses on the coeCcient of the spatially
lagged dependent variable. Also, to the best of our knowledge, the results that
are available in the literature concerning the large sample distribution of the
Moran I statistic have only been derived under the null hypothesis of zero

2 Some recent applied and theoretical studies include Dubin (1988), Moulton (1990), De
Long and Summers (1991), Case (1991, 1993), Krugman (1991, 1995), Case et al. (1993),
Holtz-Eakin (1994), Besley and Case (1995), Shroder (1995), Conley (1996), Topa (1996),
Audretsch and Feldmann (1996), Ausubel et al. (1997), Kelejian and Prucha (1998, 1999),
Pinkse and Slade (1998), Pinkse (1999), and Lee (1999a,b,c).

3 The generalization contains Moran’s original speci3cation as a special case corresponding
to a model where the only regressor relates to the intercept.
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spatial correlation, but not under the alternative hypothesis, which is needed
in order to assess the power of the test. Furthermore, the available results
do not account for the triangular nature of the data even though, as illus-
trated below, this is implied by the speci3cation of many models considered
in practice. 4

For purposes of interpretation we note that the Moran I test statistic is
equivalent to the Lagrange multiplier test statistic derived from a linear re-
gression model without a spatial lag, as was demonstrated by Burridge (1980).
Other tests for spatial correlation have also been considered. We note that
most of these tests are again formulated as Lagrangian multiplier tests, where
the unrestricted model is speci3ed at diAerent degrees of generality. An in-
spection of those test statistics shows that they are essentially quadratic forms,
or in some cases linear-quadratic forms of estimated residuals; see, e.g.,
Anselin and Florax (1995) and Anselin et al. (1996). Therefore, large sam-
ple issues concerning these Lagrangian multiplier test statistics are essentially
identical to those concerning the Moran I test statistic, and so the gaps in
the literature concerning the asymptotic properties of Lagrangian multiplier
tests are analogous to those for the Moran I test statistic.
The purpose of this paper is to 3ll in these gaps in the literature, with a

particular focus on establishing the limiting distribution of the Moran I test
statistic for various limited dependent variable models (the Tobit, dichoto-
mous, polychotomous and a sample selection model) and for linear cross
sectional models which contain a spatially lagged dependent variable. Instead
of developing asymptotic results for each model separately, we 3rst derive a
set of general results concerning the asymptotic distribution of quadratic forms
based on estimated residuals, and then apply those results to formally establish
the asymptotic distribution of the Moran I test statistic for spatial correlation
in the models of interest. Our general results allow for heteroskedastic inno-
vations, for spatial lags in the dependent variable, for estimated disturbances
which depend nonlinearly on the data and estimated parameters, and for the
possible triangular nature of the data. We also give general results concerning
the consistent estimation of the asymptotic variance of linear-quadratic forms.
The results are such that applications to still other models of interest, as well
as to Lagrangian multiplier test statistics in a spatial context, will become
evident. Finally, our formal demonstrations are based on sets of low level
assumptions.

4 An exception is a recent paper by Pinkse (1999). That paper, which also provides novel
results concerning the large sample distribution of Moran I type test statistics, seems to have
been written independently at approximately the same time as this paper. In contrast to Pinkse
we allow for heteroskedastic innovations and for models with spatial lags in the dependent and
independent variables. We note that the two papers also diAer in various other aspects, and that
neither paper contains the other as a special case.
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Under the adopted setup the quadratic forms based on estimated residuals
are seen to be asymptotically equivalent to quadratic forms (or in certain
cases, to linear-quadratic forms) in the unobserved model innovations. As a
technical point of interest we note that the elements of the matrix of the latter
quadratic form will frequently depend on the sample size, i.e., form triangular
arrays. In deriving our asymptotic results we therefore needed a central limit
theorem for linear-quadratic forms that allows for heteroskedastic (possibly
nonnormally distributed) innovations, and that allows for the weights in the
linear-quadratic form to depend on the sample size. Since, to the best of
our knowledge, such a central limit theorem is not directly available in the
literature, we establish in this paper such a central limit theorem. 5

The paper is organized as follows. A linear model containing a spatially
lagged dependent variable is speci3ed in Section 2 which serves to motivate
certain essential issues. Our central limit theorem for linear-quadratic forms
in model innovations is given in Section 3. This section also contains results
relating to quadratic forms in estimated model disturbances, as well as results
relating to the estimation of the variance of linear-quadratic forms. Applica-
tions of our theoretical results to linear models containing spatially lagged
dependent variables, as well as to various limited dependent variable models
are given in Section 4. Suggestions for further work are given in Section 5.
Proofs are relegated to the appendix.
We adopt the following notation and conventions: Let Pn with n∈N be

some matrix; we then denote the (i; j)th element of Pn as pij;n. Similarly,
if rn is a vector, then ri;n denotes the ith element of rn. An analogous con-
vention is adopted for matrices and vectors that do not depend on the index
n, in which case the index n is suppressed on the elements. We say the
elements of the (sequence of) matrices Pn are uniformly bounded in abso-
lute value if sup16 i; j6 n;n¿ 1|pij;n|¡∞. As a matrix norm for Pn we choose
|Pn|=[tr(P′

nPn)]
1=2 where tr(:) denotes the trace operator. If Pn is a square

matrix, then P−1
n denotes the inverse of Pn. If Pn is singular, then P−1

n should
be interpreted as the generalized inverse of Pn. We say the row and column
sums of the (sequence of n×n) matrices Pn are uniformly bounded in absolute
value if

sup
16 i6 n;n¿ 1

n∑
j= 1

|pij;n|¡∞ and sup
16 j6 n;n¿ 1

n∑
i= 1

|pij;n|¡∞:

Furthermore we adopt the conventions of Dhrymes (1978, p. 523), con-
cerning vector diAerentiation. In particular, if  (�) is a scalar function and

5 Of course, various central limit theorems for quadratic forms have been considered in the
literature; see, e.g., Whittle (1964), Beran (1972), Sen (1976), Giraitis and Taqqu (1998) and
Pinkse (1999). Unfortunately, the assumptions maintained by those theorems are not satis3ed
within the context of the present paper.
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�=[�1; : : : ; �m]
′, then @ =@�=[@ =@�1; : : : ; @ =@�m]. Finally, throughout the pa-

per all random variables are assumed to be de3ned on some probability space
(�;F; P).

2. Testing for spatial autocorrelation: A preliminary discussion

As remarked in the introduction, an aim of this paper is to establish the
limiting behavior of the Moran I test statistic for a variety of limited depen-
dent variable models, and the linear spatial 3rst order autoregressive model
with 3rst order autoregressive disturbances—for short the spatial ARAR(1,1)
model, adopting the terminology of, e.g., Anselin (1988). Towards deriving
the limiting behavior of the Moran I test statistic for these particular models
we 3rst develop a set of general results concerning the limiting distribution
of linear-quadratic forms that can be used to establishing the limiting distri-
bution of the Moran I test statistic not only for these particular models but
for a wide class of models. The results can also be used to establish the
limiting distribution of various Lagrangian multiplier test statistics for spatial
autocorrelation. To motivate and put the general results into context we start
with a preliminary discussion of the Moran I test statistic within the context
of the widely used spatial ARAR(1; 1) model (n∈N): 6

yn = �0Mnyn + Xn�0 + un;

un =�0Mnun + �n; (2.1)

where yn is the n×1 vector of observations on the dependent variable, Xn is
the n×k matrix of observations on k exogenous variables, Mn is an n×n spa-
tial weighting matrix of known constants, �0 is the k×1 vector of regression
parameters, �0 and �0 are scalar autoregressive parameters with |�0|¡1 and
|�0|¡1; un is the n×1 vector of regression disturbances, and �n is an n×1
vector of innovations. The variables Mnyn and Mnun are typically referred to
as spatial lags of yn and un, respectively. 7 Since spatial weighting matrices
are often row normalized we allow for the elements of Mn to depend on n,
i.e., to form triangular arrays. For reasons of generality we also permit the

6 This model will be used throughout the paper to motivate and to give practical meaning to
some of the general results and corresponding catalogues of assumptions. Since this model is
also a focal point of the paper we specify in the following the model in a complete manner.
The speci3c results on the asymptotic properties of the Moran I test statistic for this model
will be summarized in Section 4.2.

7 We note that the subsequent discussion trivially extends to the case where we allow for dif-
ferent spatial weighting matrices for yn and un. Our speci3cation of a common spatial weighting
matrix was solely adopted for reasons of notational simplicity. As a point of interest we note
that this speci3cation is typically assumed in practice.
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elements of Xn and �n to depend on n. We condition our analysis on the real-
ized values of the exogenous variables and so, henceforth, Xn will be viewed
as a matrix of constants. We note that this speci3cation is consistent with
the exogenous variables being generated by a process that entails both spatial
correlation and heteroskedasticity. We also note that Xn may contain spatial
lags of exogenous variables. The spatial weights mij;n will typically be spec-
i3ed to be nonzero if cross sectional unit j relates to i in a meaningful way.
In such cases, units i and j are said to be neighbors. Usually neighboring
units are taken to be those units which are close in some dimension—e.g.,
geographic, technological, etc. Clearly the weighting matrix will reEect the
ordering of the data, which can be arbitrary.
The above spatial ARAR(1,1) model has been applied widely in the lit-

erature. It is an extension of the spatial model put forth by CliA and Ord
(1973, 1981), and a variant of the model considered by Whittle (1954). One
approach of estimating a spatial ARAR(1,1) model is by maximum likeli-
hood. However the computation of the maximum likelihood estimator may
be diCcult even for moderate sample sizes. In a recent paper Kelejian and
Prucha (1998) introduced an instrumental variable estimator for the above
model that is simple to compute and demonstrated its asymptotic normality
under a set of “low level” conditions. 8 This estimator is based on a gener-
alized moments estimator for the spatial autoregressive parameter. The latter
estimator was introduced in Kelejian and Prucha (1999).
Assume the following conditions concerning the spatial model (2.1): 9 All

diagonal elements of the spatial weighting matrix Mn are zero, and the ma-
trices I − �0Mn and I − �0Mn are nonsingular. The row and column sums
of the matrices Mn; (I − �0Mn)−1, and (I − �0Mn)−1 are uniformly bounded
in absolute value. The regressor matrices Xn have full column rank (for n
large enough), and the elements of Xn are uniformly bounded in absolute
value. The innovations {�i;n: 16 i6 n; n¿ 1} are distributed identically, and
for each n the innovations {�i;n: 16 i6 n} are distributed (jointly) indepen-
dently with E(�i;n)=0; E(�2i; n)=�2. The innovations are furthermore assumed
to have 3nite (4+�)th moments (for some �¿0). Now consider the following
instrumental variable estimator for �0 = (�0; �′

0)
′:

�̂n =(�̂n; �̂
′
n)

′=(D̂
′
nD̂n)−1D̂

′
nyn (2.2)

with D̂n =Hn(H ′
nHn)−1H ′

nDn and Dn =[Mnyn; Xn], and where Hn denotes some
n×p matrix of instruments (p¿ k + 1). This estimator was considered in

8 In general, the model in (2.1) cannot be estimated consistently by ordinary least squares
since, in general, the disturbances are asymptotically correlated with the spatial lag variable
Mnyn. Lee (1999b) demonstrates, however, that for an interesting subclass of models, cor-
responding to additional assumptions on the weighting matrix, ordinary least squares can be
consistent.

9 For a discussion of these assumptions see, e.g., Kelejian and Prucha (1998, 1999).
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Kelejian and Prucha (1998) at the 3rst stage of their two stage procedure. In
the following we assume that all additional regularity conditions maintained
in that paper also hold here, including that the elements of Hn are uniformly
bounded in absolute value. It then follows from that paper that

n1=2(�̂n − �0)=Pn[n−1=2F ′
n�n] + op(1); (2.3)

where Pn =(n−1D̂
′
nD̂n)−1n−1D′

nHn(n−1H ′
nHn)−1 with p limn→∞ Pn =P a 3nite

matrix, and F ′
n =H ′

n(I − �0Mn)−1 with n−1=2F ′
n�n

D→N(0; �2#F) where #F =
limn→∞ n−1 F ′

nFn.
Let û n =yn − Dn�̂n denote the vector of estimated disturbances based on

(2.1). Then the Moran I test statistic based on these estimated disturbances
and on some spatial weighting matrix Wn is given by

In =
Q∗

n

�̃Q∗
n

; Q∗
n = û′nWnû n; (2.4)

where �̃Q∗
n
is some normalizing factor. We allow for Wn 	=Mn to allow for

misspeci3cation of the spatial weighting matrix by the researcher, but other-
wise postulate that Wn satis3es the same assumptions as Mn.
Given the maintained assumptions we demonstrate in the appendix that

n−1=2û′nWnû n = n−1=2u′nWnun

− n−1u′n(Wn +W ′
n)Dnn1=2(�̂n − �0) + op(1): (2.5)

We also show in the appendix that n−1u′n(Wn +W ′
n)Dn −d′

n = op(1), and that
the elements of d′

n =E[n−1u′n(Wn+W ′
n)Dn] are uniformly bounded in absolute

value. Consequently we have from (2.3), observing that Pn =P + op(1) and
n−1=2F ′

n�n =Op(1):

n−1u′n(Wn +W ′
n)Dnn1=2(�̂n − �0)

= n−1u′n(Wn +W ′
n)Dn[n−1=2PnF ′

n�n + op(1)]

= n−1=2b′n�n + op(1) (2.6)

with b′n = − d′
nPF

′
n. Note that P is the probability limit of Pn and thus

bn is nonstochastic. Since, from (2.1), un =(I − �0Mn)−1�n it follows that
u′n Wnun = �′n An�n where An = 1

2(In −�0M ′
n)

−1(Wn+W ′
n)(In −�0Mn)−1. It then

follows from (2.5) and (2.6) that

n−1=2û′nWnû n = n−1=2[�′nAn�n + b′n�n] + op(1): (2.7)

Thus, the large sample distribution of Moran’s I statistic based on estimated
disturbances involves the large sample distribution of a linear-quadratic form
in innovations. In the appendix we also show that the elements of the n×1
vectors bn are uniformly bounded in absolute value, and that row and column
sums of the n×n matrices An are uniformly bounded in absolute value.
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Some comments are in order. First, as a preview, under the null hypothesis
of zero spatial autocorrelation �0 = 0, and so An = 1

2(Wn + W ′
n), which has

zeroes as its diagonal elements. If �0 	=0, the diagonal elements of An will
generally not be zero. It will become evident that this distinction concerning
the diagonal elements of An plays a crucial role in determining the power
of our proposed test. Second, the linear term in (2.6) is a consequence of
using estimated disturbances and the presence of a spatial lag in y. In the
absence of a spatial lag in y, i.e., �0 = 0, we have bn =0, since dn =0. Third,
we note that the elements of (In − �0Mn)−1 and hence those of An, will in
general depend on n, even if the elements of Wn and Mn do not depend
on the sample size. As a consequence we allow for triangular arrays in the
central limit theorem for linear-quadratic forms given below. We also allow
for the innovations to be heteroskedastic, so that the theorem can be applied
for testing purposes in a wide variety of limited dependent variable models,
as was remarked above.

3. Some useful large sample results for linear-quadratic forms

3.1. Central limit theorem for linear-quadratic forms

Consider the following linear-quadratic form:

Qn = �′nAn�n + b′n�n

=
n∑

i= 1

n∑
j= 1

aij;n�i;n�j;n +
n∑

i= 1
bi;n�i;n; (3.1)

where the �i;n are (real valued) random variables, and the aij;n and bi;n denote
the (real valued) coeCcients of the quadratic and linear form. We will make
use of the following set of assumptions:

Assumption 1. The real valued random variables of the array {�i;n: 16 i6 n;
n¿ 1} satisfy E�i;n =0. Furthermore, for each n¿ 1 the random variables
�1; n; : : : ; �n;n are totally independent.

Assumption 2. The elements of the array of real numbers {aij;n: 16 i; j6 n;
n ≥ 1} satisfy aij;n = aji;n and sup16 j6 n;n¿ 1

∑n
i= 1|aij;n|¡∞. 10 The elements

of the array of real numbers {bi;n: 16 i6 n; n¿ 1} satisfy
supn n

−1∑n
i= 1|bi;n|2+�1¡∞ for some �1¿0.

10 The assumption of symmetry of the elements of An is maintained w.l.o.g. since
�′nAn�n = �′n[(An + A′

n)=2]�n.
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Assumption 3. We assume that one of the following two conditions holds.
(a) sup16 i6 n; n¿ 1E|�i;n|2+�2¡∞ for some �2¿0 and aii;n =0.
(b) sup16 i6 n; n¿ 1E|�i;n|4+�2¡∞ for some �2¿0 (but possibly aii;n 	=0).
Given the above assumptions the mean, say +Qn , and the variance, say �2

Qn
,

of Qn is given by: 11

+Qn =
n∑

i= 1
aii;n�2

i; n; (3.2)

�2
Qn

= 4
n∑

i= 1

i−1∑
j= 1

a2ij; n�
2
i; n�

2
j; n +

n∑
i= 1

b2i; n�
2
i; n

+
n∑

i= 1
{a2ii; n[+(4)

i; n − �4
i; n] + 2bi;naii; n+

(3)
i; n };

with �2
i; n =E(�2i; n) and +(s)

i; n =E(�si; n) for s=3; 4. In the case where aii;n =0 we
have +Qn =0, and the last two terms in the expression for �2

Qn
are zero. 12

We now have the following central limit theorem for linear-quadratic forms:

Theorem 1. Suppose Assumptions 1–3 hold and n−1�2
Qn
¿ c for some c¿0.

Then
Qn − +Qn

�Qn

D→N(0; 1):13 (3.3)

Note that the theorem allows the elements of An to depend on n, and
does not restrict its diagonal elements to be zero. Furthermore, the theorem
allows the innovations �i;n to be heteroskedastic. As will be demonstrated
in Section 4, this permits the derivation of the limiting distribution of the
Moran I test statistic in a variety of limited dependent variable models. Fi-
nally, we note that Assumptions 1–3 are such that they do not depend upon
a particular ordering of the data. This is important in a spatial setting be-
cause, unlike for time series, there is typically no natural ordering of spatial
data.
Existing results on the limiting distribution of quadratic forms include pub-

lications by Whittle (1964), Beran (1972), Sen (1976) and Giraitis and Taqqu
(1998). In contrasting those results with the above theorem we note that the

11 For a derivation of the subsequent expressions, compare, e.g., the proof of Theorem 1 below.
12 We note that the variance of Qn can also be expressed as �2

Qn
=2

∑n
i = 1

∑n
j = 1a

2
ij;n�

2
i; n�

2
j;n +∑n

i = 1 b
2
i; n�

2
i; n +

∑n
i = 1{a2ii; n[+(4)

i; n − 3�4
i; n]+ 2bi;naii;n+

(3)
i; n }. Under normality the last two terms are

zero even if aii;n �=0. Given the last two terms are zero we can also write �2
Qn

=2tr(A′
n.nAnSn)+

b′nSnbn with Sn =diag(�2
i; n).

13We note that Theorem 1 also holds if the sample size is taken to be kn rather than n
(with kn ↑ ∞ as n → ∞).
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papers by Whittle, Beran, and Giraitis and Taqqu do not allow the weights
in the quadratic form to depend on the sample size. The latter two papers
actually assume that aij;n = a|i−j|. Sen allows for the weights to depend on
the sample size n, but his proof refers to a central limit theorem for a mar-
tingale diAerence sequence. His proof is hence not completely formal (unless
we assume additionally that weights do not depend on n). Beran and Sen as-
sume aii;n =0, and also assume that the �i;n = �i are i.i.d. Giraitis and Taqqu
assume that the �i;n = �i are products of linear process with i.i.d. innovations.
The recent central limit theorem given in Pinkse (1999) also postulates that
the random processes are i.i.d.

3.2. Asymptotic distribution of quadratic forms based on estimated
disturbances

In the following we develop results on the limiting behavior of quadratic
forms based on estimated disturbances, utilizing the above derived central
limit theorem for linear-quadratic forms. The underlying model speci3cation
will be kept fairly general to cover, in particular, the various limited depen-
dent variable models considered in Section 4 as well as the spatial ARAR(1,1)
model. More speci3cally, for the subsequent discussion we consider the fol-
lowing (possibly nonlinear) model:

gi;n(zn; �0)= ui;n; i=1; : : : ; n; (3.4)

with zn =(z1; n; : : : ; zn;n) and where zi;n denotes the 1× pz vector of endoge-
nous and exogenous variables corresponding to the ith unit, ui;n denotes the
disturbance term corresponding to the ith unit, and �0 denotes the p�×1 true
parameter vector. 14 We emphasize that in allowing for the gi;n to depend on
z1; n; : : : ; zn;n the speci3cation allows for spatial lags. In the following we will
write (3.4) more compactly as gn(zn; �0)= un with gn(zn; �)= (g1; n(zn; �); : : : ;
gn;n(zn; �))′ and un =(u1; n; : : : ; un;n).

The Moran I test statistic corresponding to model (3.4) would be based
on the quadratic form û′n Wnû n, where û n = gn(zn; �̂n) denotes the vector of
estimated residuals based on some estimator �̂n. We maintain the following
assumptions:

Assumption 4. The elements of the row and column sums of the real n×n
matrices Wn =(wij;n) are uniformly bounded in absolute value. 15

14 For the spatial ARAR(1,1) model we have zi;n =(yi;n; xi1; n; : : : ; xiK;n) and �0 = (�0; �′
0)

′.
15 We note that in this section we do not assume that the diagonal elements of Wn are zero.
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Assumption 5. The true parameter vector �0 is an interior element of 4 ⊆
Rp� .

Assumption 6. (a) The random variables of the array {zi;n: 16 i6 n; n¿ 1}
take their values in Z ⊆ Rpz . The functions

gi;n : Zn×4∗ → R; 16 i6 n; n¿ 1;

are Borel measurable for each �∈4∗, where 4 ⊆ 4∗ and 4∗ is an open sub-
set. Furthermore the functions gi;n(z1; : : : ; zn; :) are twice continuously partially
diAerentiable on 4∗ for each (z1; : : : ; zn)∈Zn.
(b) If gi;n(zn; �) is linear in �, let

6i;n(zn)=
∣∣∣∣@gi;n(zn; �)

@�

∣∣∣∣ ;
otherwise let

6i;n(zn)= sup
{
|gi;n(zn; �)|;

∣∣∣∣@gi;n(zn; �)
@�

∣∣∣∣ ;
∣∣∣∣@2gi;n(zn; �)

@�@�′

∣∣∣∣ : �∈4
}
;

then sup16 i6 n; n¿ 1 E(6i;n(zn))2¡∞.

We now have the following lemma concerning the asymptotic relationship
between n−1=2û′nWnû n and n−1=2u′nWnun:

Lemma 1. Suppose Assumptions 4–6 hold. Let �̂n be some estimator for �0
with n1=2(�̂n − �0)=Op(1). Then (abusing notation in an obvious way)

n−1=2û′nWnû n = n−1=2u′nWnun

+ n−1u′n(Wn +W ′
n)

@gn(zn; �0)
@�

n1=2(�̂n − �0) + op(1):

(3.5)

Furthermore

n−1û′n(Wn +W ′
n)

@gn(zn; �̂n)
@�

− n−1u′n(Wn +W ′
n)

@gn(zn; �0)
@�

= op(1):

(3.6)

The above lemma shows that in general the limiting distribution of
n−1=2û′nWnû n will diAer from that of n−1=2u′nWnun, unless the probability limit
of the term n−1u′n(Wn + W ′

n)[@gn(zn; �0)=@�] is zero. We note that this limit
will (given typical assumptions) be zero if @gn(zn; �0)=@� only depends on ex-
ogenous variables. This limit will also typically be zero if wii;n =0; Eui;n =0
and (ui;n; @gi;n(zn; �0)=@�) is distributed independently over i. For the spatial
ARAR(1,1) model we have n−1u′n(Wn +W ′

n)[@gn(zn; �0)=@�]= − n−1u′n(Wn +
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W ′
n)Dn, and Eq. (2.5) is seen to be a special case of (3.5). We note that for

this model the probability limit of this term is non-zero, due to the presence
of a spatial lag in the dependent variable. The last part of the lemma shows
how the term can be estimated consistently.
In many cases un will be linear in �n, where �n is the basic vector of inno-

vations. For example, for the spatial ARAR(1,1) model, un =(In−�0Mn)−1�n.
Furthermore in many cases, and again as illustrated by the spatial ARAR(1,1)
model, n1=2(�̂n − �0) will be (asymptotically) linear in �n. This motivates the
following assumption.

Assumption 7. There exists a linear-quadratic form Qn = �′nAn�n + b′n�n such
that

n−1=2u′nWnun + n−1u′n(Wn +W ′
n)

@gn(zn; �0)
@�

n1=2(�̂n − �0)

= n−1=2Qn + op(1); (3.7)

and where the elements of �n, An and bn satisfy Assumptions 1–3.

For the spatial ARAR(1,1) model the above assumption is clearly sat-
is3ed in light of (2.6). If the probability limit of the term n−1u′n(Wn +
W ′

n)[@gn(zn; �0)=@�] is zero, then we can take bn =0. We note that for the
spatial ARAR(1,1) model bn =0 in the absence of a spatial lag of yn (since
in that case dn =0).

Given the above assumption and given the assumptions of Lemma 1 hold,
it follows from that lemma that n−1=2û′nWnû n = n−1=2Qn + op(1), and conse-
quently the limiting behavior of n−1=2û′nWnû n is identical with that of n−1=2Qn.
For the spatial ARAR(1,1) model this was established in (2.7).
As before, let +Qn and �2

Qn
denote the mean and variance of the linear-

quadratic form Qn, and recall the explicit expressions for +Qn and �2
Qn

given
in (3.2). We next give a result concerning the asymptotic behavior of û′nWnû n=
�̂Qn , where �̂2

Qn
denotes some estimator for �2

Qn
. We note that in particular ap-

plications �̂2
Qn

may have been chosen such that the estimator is, e.g., consis-
tent under the null hypothesis of zero spatial autocorrelation, but inconsistent
under the alternative hypothesis. To cover such situations we allow for the
estimator �̂2

Qn
to be (possibly) inconsistent.

Theorem 2. Suppose Assumptions 4–7 hold and n−1�2
Qn
¿ c for some c¿0.

Let T�2
Qn

be a sequence of real numbers such that n−1�̂2
Qn

− n−1 T�2
Qn
= op(1)

and limn→∞ �2
Qn
= T�2

Qn
=72¿0. Then

û′nWnû n

�̂Qn

=7
(
Qn − +Qn

�Qn

)
+

+Qn

�̂Qn

+ op(1): (3.8)
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Consequently:
(a) If +Qn =0 (which is the case if aii;n =0); then

û′nWnû n

�̂Qn

D→N(0; 72):

(b) If |n−1=2+Qn | → ∞ as n → ∞; then for every constant 8¿0

lim
n→∞P

(∣∣∣∣ û
′
nWnû n

�̂Qn

∣∣∣∣¿8
)

=1:

We note that for the Moran I test statistic we have An = 1
2(Wn + W ′

n),
and hence aii;n =0, under the null hypothesis of zero spatial autocorrelation.
Result (a) in the above theorem thus provides a general result for the limiting
distribution of the Moran I test statistic under the null hypothesis. Clearly, if
�̂2
Qn

is a consistent estimator (in the sense that n−1�̂2
Qn
−n−1�2

Qn
= op(1)), then

7=1. Under the alternative hypothesis we will typically have aii;n 	=0-e.g.,
for the spatial ARAR(1,1) model A= 1

2(I − �0M ′)−1(W +W ′
n)(I − �0M)−1.

Result (b) in the above theorem provides a general result for the consistency
of the Moran I test statistic, i.e., for the power of the test to approach unity
as n → ∞, for an arbitrary signi3cance level of the test. The condition
|n−1=2+Qn | → ∞ is, e.g., satis3ed if 0¡const6�2

i; n and 0¡const6 aii;n.

3.3. Estimation of the variance of the linear-quadratic form

In Theorem 2 we employed an estimator for the variance �2
Qn

of the
linear-quadratic form Qn = �′nAn�n + b′n�n. In many situations, including the
case of the spatial ARAR(1,1) model and the models considered in the next
section, we have An =(Wn + W ′

n)=2 under the null hypothesis of zero spa-
tial autocorrelation. Let �̂2

i; n and +̂(s)
i; n denote estimators for �2

i; n and +(s)
i; n with

s=3; 4, and let b̂i; n denote estimators for the bi;n (since in practice bi;n will
typically be unobserved, unless bi;n =0). Recalling the expression for �2

Qn

given in (3.2), it is natural to consider the following estimator:

�̂2
Qn

=
n∑

i= 1

i−1∑
j= 1

(wij;n + wji;n)2�̂
2
i; n�̂

2
j; n +

n∑
i= 1

b̂
2
i; n�̂

2
i; n

+
n∑

i= 1
{w2

ii; n[+̂
(4)
i; n − �̂4

i; n] + 2b̂i; nwii;n+̂
(3)
i; n }: (3.9)

Of course, in many contexts we will have wii;n =0, but we do not postulate
this here for reasons of generality. 16

16 We note that if wii;n =0 the third and fourth moments of the innovations (and estimators
thereof) drop from the respective expressions considered in this section, and then any assump-
tions maintained with respect to those moments become mute.
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To accommodate the analysis of the test statistic both under the null and un-
der the alternative hypothesis we allow for the estimators �̂2

i; n, +̂
(s)
i; n (s=3; 4)

and b̂i; n to be possibly inconsistent. In the following assumption, let T�2
i; n,

T+(s)
i; n (s=3; 4) and Tbi;n denote nonstochastic sequences that the assumption re-
quires to exist. These could be the expected values of the estimators, or
alternatively, if the estimators are de3ned as functions of, say �̂n, then the
nonstochastic sequences may correspond to the value of those functions at
the expected value or probability limit of �̂n; for further interpretations see
also the discussion after Theorem 3 below. Also let

T�2
Qn

=
n∑

i= 1

i−1∑
j= 1

(wij;n + wji;n)2 T�2
i; n T�

2
j; n +

n∑
i= 1

Tb
2
i; n T�

2
i; n

+
n∑

i= 1
{w2

ii; n[ T+
(4)
i; n − T�4

i; n] + 2 Tbi;nwii;n T+
(3)
i; n }; (3.10)

denote the corresponding nonstochastic analogue of �̂2
Qn
. We maintain the

following assumption.

Assumption 8. (a) The estimators �̂2
i; n and +̂(s)

i; n satisfy

|�̂2
i; n − T�2

i; n|69n and |+̂(s)
i; n − T+(s)

i; n |69n; (3.11)

where 9n = op(1); and sup16 i6 n;n¿ 1 T�2
i; n¡∞ and sup16 i6 n;n¿ 1| T+(s)

i; n |¡∞
(s=3; 4).
(b) The estimators b̂i; n satisfy

|b̂i; n − Tbi;n|6:i;n n; (3.12)

where  n = op(1), the :i;n ∈R+ satisfy supn n
−1∑n

i= 1E:
2
i; n¡∞ and

supn n
−1∑n

i= 1| Tbi;n|2¡∞.

We now have the following theorem concerning the stochastic convergence
of �̂2

Qn
.

Theorem 3. Suppose Assumptions 4 and 8 hold. Then n−1(�̂2
Qn
− T�2

Qn
)= op(1)

with n−1 T�2
Qn
6 const¡∞:

Of course, if (wij;n + wji;n)=2= aij;n and Tbi;n = bi;n, and if T�2
i; n =�2

i; n, T+(s)
i; n =

+(s)
i; n (s=3; 4); then T�2

Qn
=�2

Qn
and the above theorem establishes the consis-

tency of �̂2
Qn

for �2
Qn
. We note that in this leading case the boundedness

conditions maintained in Assumption 8 concerning Tbi;n and T�2
i; n, T+(s)

i; n (s=3; 4)
are then automatically satis3ed under Assumptions 2 and 3.
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For a further interpretation of the assumptions of the theorem consider
again the above leading case. We note that in this case condition (3.11)
maintained in Assumption 8(a) can, e.g., be implied—as is easily veri3ed—
from either one of the following conditions.

Condition A. �2
i; n = hi;n(�0) where the functions hi;n :4∗ → R+ are continu-

ously partially diAerentiable,

sup
16 i6 n;n¿ 1

sup
�∈4

∣∣∣∣@hi;n(�)
@�

∣∣∣∣¡∞;

and �̂2
i; n = hi;n(�̂n) with n1=2(�̂n−�0)=Op(1). (If wii;n 	=0 analogous conditions

are also assumed to hold for the estimators of +(s)
i; n ; s=3; 4.)

Condition B. Assumptions 1, 3, 5 and 6 hold. Furthermore �2
i; n =�2 with

gi;n(zn; �0)= ui;n = �i;n, and �̂2
i; n = �̂2

n = n−1∑n
i= 1û

2
i; n with gi;n(zn; �̂n)= û i; n and

n1=2(�̂n− �0)=Op(1). (If wii;n 	=0 analogous conditions are also assumed to
hold for the estimators of +(s)

i; n ; s=3; 4.)
For an interpretation of Assumption 8(b) consider again the spatial

ARAR(1,1). From the discussion surrounding (2.5)–(2.7) we see that in this
case we have bn = −FnP′dn with d′

n =E(n−1u′n(Wn +W ′
n)Dn) and Fn =(In −

�0M ′
n)

−1Hn. (Recall that P is the probability limit of Pn, and hence bn is
nonstochastic.) Let Tbn = − HnP′dn. Then Tbn = bn under the null hypothesis
of zero spatial correlation. It seems natural to estimate Tbn by b̂n = −HnP′

nd̂n

with d̂
′
n = n−1û′n(Wn+W ′

n)Dn: Let <̂n =P′
nd̂n and <n =P′dn, then b̂i; n− Tbi;n = −∑p

r = 1hir;n(<̂r; n − <r;n). Taking :i;n =
∑p

r = 1|hir;n| and  n =
∑p

r = 1|<̂r; n − <r;n| we
have |b̂i; n − Tbi;n|6:i;n n. Since the hir;n are uniformly bounded in abso-
lute value it follows that supn n

−1∑n
i= 1 :2

i; n¡∞. As a by-product of the
proofs of the claims made in the discussion surrounding (2.5)–(2.7) we have
d̂n−dn = op(1). Consequently <̂n−<n = op(1) and  n = op(1), and thus Assump-
tion 8(b) holds for this setting.

4. Testing for spatial autocorrelation: Limited dependent variable models
and the ARAR(1,1) model

In the following we utilize the above general results to formally establish
the limiting behavior of the Moran I test statistic for spatial correlation for a
variety of limited dependent variable models, and for the spatial ARAR(1,1)
model. In particular, we will establish for each of these models the follow-
ing asymptotic normality result for the Moran I test statistic under the null
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hypothesis of zero spatial autocorrelation:

In =
Q∗

n

�̃Q∗
n

D→N(0; 1); (4.1)

where Q∗
n = û′nWnû n and �̃Q∗

n
is a normalization factor. The speci3cation of

the vector of estimated disturbances û n and the normalization factor �̃Q∗
n
will

be model speci3c. Recall that for the spatial ARAR(1,1) model we have
un =(In − �0Mn)−1�n and thus un = �n under the null hypothesis �0 = 0. More
generally we may think of the disturbance process to be of the form un ==n�n,
where =n is a n×n nonstochastic matrix. Under the null hypothesis of zero
spatial correlation we have =n = In and un = �n. In the following we will hence
also write Q∗

n = �̂′nWn�̂n under the null hypothesis of zero spatial autocorrela-
tion.
Throughout this section we will assume that the spatial weighting matrix

Wn satis3es Assumption 4 and that all of its diagonal elements are zero. We
also assume that for some constant cw and for all n¿1:

0¡cw6 n−1
n∑

i= 1

n∑
j= 1

(wij;n + wji;n)2: (4.2)

Clearly, a suCcient condition for (4.2) is that the elements of Wn are non-
negative, each row has at least one nonzero element, and the nonzero ele-
ments of Wn are uniformly bounded away from zero. In the following we
will also assume that all nonstochastic regressors are uniformly bounded in
absolute value. Furthermore, we maintain Assumption 5 concerning the pa-
rameter space 4 and the true parameter vector �0. We also assume that the
parameter space for the regression parameters is a subset of a compact set,
except in the case of the ARAR(1,1) model. 17

As will become clear, for the limited dependent variable models speci3ed
below the innovations entering the Moran I test statistic will typically be
heteroskedastic. As was discussed in the Introduction, results available in the
literature concerning the limiting distribution of the Moran I test statistic
assume that the innovations are homoskedastic, and hence do not cover these
models. 18

17 We note that for nonlinear estimation problems the parameter space is typically taken to be
compact; cp., e.g., PUotscher and Prucha (1997).
18 Anselin and Kelejian (1997) give a result concerning the large sample distribution of the

Moran I test statistic for a spatial ARAR(1,1) model. However, their result is based on a central
limit theorem for m-dependent variables and the assumption that the spatial weighting matrix
is band diagonal. Clearly, this assumption is restrictive and mostly covers situations where the
data expand “bandwise” in one direction, and is thus in essence geared more towards a time
series context.
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4.1. Limited dependent variable models

For each of the limited dependent variable models considered below the
normalization factor in the Moran I test statistic will be of the following
general form:

�̃2
Q∗

n
= (1=2)

n∑
i= 1

n∑
j= 1

(wij;n + wji;n)2�̂
2
i; n�̂

2
j; n

= tr(Wn.̂nWn.̂n +W ′
n.̂nWn.̂n); (4.3)

where .̂n =diag(�̂2
i; n). The variance estimators �̂2

i; n will be speci3ed explicitly
for each of the models considered.

4.1.1. The Tobit model
Consider the Tobit model (i=1; : : : ; n)

y∗
i = xi�0 + >i;

yi =

{
y∗
i if y∗

i ¿ 0;
0 otherwise;

(4.4)

where y∗
i is a latent variable, yi is the observed dependent variable, xi is

a non-stochastic 1×k vector of regressors, �0 is a k×1 vector of regression
parameters, and the >i’s are i.i.d. N(0; �2

v0) where �2
v0 is bounded by some

constants c� and C�: 0¡c�¡�v0¡C�¡∞. The model is furthermore assumed
to satisfy suCcient regularity conditions such that the maximum likelihood
estimators of �0 = (�′

0; �
2
v0)

′, say �̂n =(�̂
′
n; �̂

2
v0)

′, is n1=2-consistent. 19

Let 'N (:) and MN (:) denote the c.d.f. and p.d.f. of the standardized normal
distribution. Then, results given in Amemiya (1985, pp. 370–371) imply

yi =f(xi; �0) + �i (4.5)

with

f(xi; �0)=�v0'N

(
xi�0

�v0

)[
xi�0

�v0
+
MN (xi�0=�v0)
'N (xi�0=�v0)

]
(4.6)

and where E(�i)=0 and �2
i =E(�2i )= hi(�0) with

hi(�0) = �2
v0'N

(
xi�0

�v0

)[(
xi�0

�v0

)2

+ 1 +
xi�0

�v0

MN (xi�0=�v0)
'N (xi�0=�v0)

]

−f(xi; �0)2: (4.7)

19 Actually, for the subsequent result �̂n could be any n1=2-consistent estimators.
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Assume that �2
i =hi(�0)¿ const¿0 and let �̂i; n=yi−f(xi; �̂n) and �̂2

i; n=hi(�̂n).
In the appendix we demonstrate that under the above assumptions for the To-
bit model the Moran I test statistic converges in distribution to a standardized
normal, i.e., (4.1) holds. The result in (4.1) can now be used in the usual
way to test for the presence of spatial autocorrelation.

4.1.2. A dichotomous model
Consider the model (i=1; : : : ; n)

y∗
i = xi�0 + >i;

yi =

{
1 if y∗

i ¿ 0;
0 otherwise;

(4.8)

where y∗
i is a latent variable and yi is the observed binary dependent vari-

able. The vectors xi and �0 are as in Section 4.1.1, but >i is only assumed
to be i.i.d. with zero mean and c.d.f. '(:). (Note that we are distinguishing
between 'N de3ned above and '.) We assume furthermore that the distribu-
tion has continuous second order derivatives and is symmetric around zero, 20

and thus Pr(yi =1)='(xi�0) and Pr(yi =0)=1 − '(xi�0). Among others,
this speci3cation covers the probit as well as the logit model. We assume
again that the model satis3es suCcient regularity conditions such that the
maximum likelihood estimator of �0, say �̂n, is n1=2-consistent. (Here �0 =�0

and �̂n = �̂n.)
The above speci3cation clearly implies that

yi ='(xi�0) + �i; (4.9)

where E(�i)=0 and E(�2i )='(xi�0)[1 − '(xi�0)]. Assume that E(�2i )¿
const¿0 and let �̂i =yi −'(xi�̂n) and �̂2

i; n ='(xi�̂n)[1 − '(xi�̂n)]. In the
appendix we demonstrate that under the above assumptions the Moran I test
statistic converges in distribution to a standardized normal, i.e., (4.1) holds.
The result in (4.1) can now be used in the usual way to test for the presence
of spatial autocorrelation.

4.1.3. A sample selection model
Consider the sample selection model described in Amemiya (1985, pp. 385

–387):

y∗
1i = x1i�10 + >1i ;

y∗
2i = x2i�20 + >2i ;

20 Inspection of the appendix shows that this symmetry assumption could be dropped. The
assumption is only made to highlight the standard logit and probit cases.
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y2i =

{
y∗
2i if y∗

1i ¿ 0;
0 if y∗

1i6 0;
(4.10)

where y∗
1i and y∗

2i are latent variables, y2i is the observed dependent vari-
able, x1i and x2i are nonstochastic 1×k1 and 1×k2 vectors of regressors,
�10 and �20 are k1×1 and k2 ×1 parameter vectors, and (>1i ; >2i) is i.i.d.
as N(0; .0) where .0 = (�ij0) with 0¡c�¡|.0|¡C�¡∞. We assume again
that the model satis3es suCcient regularity conditions such that the maximum
likelihood estimator of �0 = (�′

10; �
′
20; �220; �120)′, say �̂n =(�̂

′
1n; �̂

′
2n; �̂22n; �̂12n)′,

is n1=2-consistent. 21

Results given in Amemiya imply that for those i for which y2i 	=0:

y2i =f(x1i ; x2i ; �0) + �i (4.11)

with

f(x1i ; x2i ; �0)= x2i�20 + �120
MN (x1i�10)
'N (x1i�10)

(4.12)

and where E(�i)=0 and E(�2i )= hi(�0) with

hi(�0)=�220 − �2
120

[
x1i�10

MN (x1i�10)
'N (x1i�10)

+
(
MN (x1i�10)
'N (x1i�10)

)2
]
: (4.13)

Assume that �2
i = hi(�0)¿ const¿0 and let �̂i; n =y2i−f(x1i ; x2i ; �̂n) and �̂2

i; n =
hi(�̂n). In the appendix we demonstrate that under the above assumptions for
the sample selection model the Moran I test statistic converges in distribution
to a standardized normal, i.e., (4.1) holds. The result in (4.1) can now be
used in the usual way to test for the presence of spatial autocorrelation.

4.1.4. A polychotomous model
Consider the polychotomous model which has m categories (i=1; : : : ; n;

j=1; : : : ; m):

Pr(yi = j)=Pj(xi; �0); (4.14)

where yi denotes the observed endogenous variable, xi is a nonstochastic
1×k vector of exogenous variables and �0 is a k×1 vector of parameters.
We assume that the functions Pj(:) possess bounded 3rst and second order
derivatives. We also assume that for all xi and all vectors � in the parameter
space 0¡Pj(xi; �)¡1 (j=1; : : : ; m). Among others, these speci3cations are
consistent with many ordered, as well as unordered polychotomous dependent

21 As demonstrated by Amemiya (1985, p. 386) the likelihood function for this model depends
on �110 only through �110=�110 and �120=�110. In the absence of further information �110 is not
identi3ed and we hence put �110 = 1. We note that the analysis can be readily extended to the
case where �110 can be identi3ed.
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variable models which are based on either the normal or logit speci3cations—
see, e.g., Maddala (1983, Chapter 2), and Green (1997, Chapter 19). We
assume again that the model satis3es suCcient regularity conditions such that
the maximum likelihood estimator of �0, say �̂n, is n1=2-consistent. (Here
�0 =�0 and �̂n = �̂n.)

Given the above specifation we have

yi =f(xi; �0) + �i; i=1; : : : ; n (4.15)

with

f(xi; �0)=
m∑

j= 1
jPj(xi; �0); (4.16)

and where E(�i)=0 and �2
i =E(�2i )= hi(�0) with

hi(�0)=
m∑

j= 1
j2Pj(xi; �0)−

[
m∑

j= 1
jPj(xi; �0)

]2

: (4.17)

Let �̂i; n =yi−f(xi; �̂n) and �̂2
i; n = hi(�̂n). In the appendix we demonstrate that

under the above assumptions the Moran I test statistic converges in distribu-
tion to a standardized normal, i.e., (4.1) holds. The result in (4.1) can now
be used in the usual way to test for the presence of spatial autocorrelation.

4.2. Spatial ARAR(1; 1) model

Next, consider again the spatial ARAR(1,1) model speci3ed in Section
2. As remarked, although this model was discussed in Section 2 in part to
motivate the theoretical developments in Section 3, this model is also of
interest in and of itself because it is widely used.
We continue to maintain all assumptions postulated in Section 2. In testing

for spatial correlation in the disturbances, i.e., in testing H0: �0 = 0 against
H1: �0 	=0, we can again utilize the Moran I test statistic given in (4.1).
Motivated by the results in Section 2 we now specify the normalization factor
in the Moran I test as

�̃2
Q∗

n
= (1=2)�̂4

n

n∑
i= 1

n∑
j= 1

(wij;n + wji;n)2 + �̂2
n

n∑
i= 1

b̂
2
i; n

= �̂4
ntr(WnWn +W ′

nWn) + �̂2
nb̂

′
nb̂n; (4.18)

where �̂2
n = n−1û′nû n and b̂n = −HnP′

nd̂n with d̂
′
n = n−1û′n(Wn+W ′

n)Dn. In the
appendix we demonstrate that the asymptotic normality result (4.1) for the
Moran I test statistic holds under the maintained assumptions if H0 is true.
This result can again be used in the usual way to test for the presence of
spatial autocorrelation. In the appendix we demonstrate also that under H1,
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and some additional mild assumptions, we have limn→∞ P(|In|¿C)=1 for all
C¿0. That is the test is consistent, in that under the alternative hypothesis
the power of the test tends to unity. 22

5. Concluding remarks

In this paper we formally derive the large sample distribution of Moran I
(type) test statistics for spatial correlation in the context of limited depen-
dent variable models (the Tobit, dichotomous, polychotomous and a sample
selection model), as well as for the widely used spatial ARAR(1,1) model.
Towards establishing these results we 3rst derive a set of general results
concerning the asymptotic distribution of quadratic forms based on estimated
residuals, and then apply those results to derive the asymptotic distribution of
the Moran I test statistic for the models of interest. The results are such that
applications to still other models are evident. The analysis also necessitated
the derivation of a new central limit theorem for linear-quadratic forms that
allows for heteroskedastic and nonnormally distributed innovations (and for
the elements of the linear-quadratic forms to constitute triangular arrays).
One suggestion for further research is to study, via Monte Carlo methods,

the actual distribution of the Moran I test statistic in 3nite samples under
the conditions considered in this paper, and to compare the actual distribu-
tion with the large sample distribution. In this regard, it would be especially
interesting to focus on limited dependent variable models, since there are no
Monte Carlo results in the literature relating to the Moran I test statistic for
such models. 23 Another suggestion for further research relates to the need of
developing appropriate estimation methods for (some of) these models if the
model’s disturbance terms are found to be spatially correlated.
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22 Since d′
n =E[n−1u′n(Wn +W ′

n)Dn] = (E[n−1u′n(Wn +W ′
n)Mnyn]; 01×k) we may alternatively

specify d̂
′
n =(n−1û′n(Wn + W ′

n)Mnyn; 01×k) without changing the result on the limiting distri-
bution of the Moran I test statistic.
23 For Monte Carlo results relating to the small sample distribution of the Moran I test statistic

in the context of a linear cross sectional regression model see Anselin and Florax (1995), and
Anselin and Kelejian (1997), as well as the references cited there-in.
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Appendix A.

Let {Xi;n; 16 i6 kn; n¿ 1} be an array of random variables de3ned on a
probability space (�;F; P) with E|Xi;n|¡∞. Let {Fi; n; 16 i6 kn; n¿ 1} be an
array of sub-sigma 3elds with Fi−1; n ⊆ Fi; n. We then call {Xi;n;Fi; n; 16 i6 kn;
n¿ 1} a martingale diAerence array if Xi;n is Fi; n-measurable and E(Xi;n |
Fi−1; n)=0 (with F0; n = {?; �}). In the following we shall use the following
central limit theorem for martingale diAerence arrays (with kn ↑ ∞ as n → ∞).

Theorem A.1. Let {Xi;n;Fi; n; 16 i6 kn; n¿ 1} be a square integrable mar-
tingale di=erence array. Suppose that for all �¿0

kn∑
i= 1

E[X 2
i; n I(|Xi;n|¿�) |Fi−1; n]

p→ 0 (A.1)

and
kn∑

i= 1
E[X 2

i; n |Fi−1; n]
p→ 1: (A.2)

Then
∑kn

i= 1 Xi;n
D→N(0; 1).

Remark. The above theorem is given in GUansler and Stute (1977, pp. 365),
and represents a special case of Corollary 3:1 in Hall and Heyde (1980). The
theorem is restated here for the convenience of the reader. It is a variant of
a central limit theorem by McLeish (1974); compare also Brown (1971). It
is readily seen that a suCcient condition for (A.1) is that

kn∑
i= 1

E[|Xi;n|2+8 |Fi−1; n]
p→ 0

for some 8¿0; cp., e.g., PUotscher and Prucha (1997, p. 235). In turn, applying
Chebychev’s inequality, it follows that a suCcient condition for the latter
condition is that

kn∑
i= 1

E{E[|Xi;n|2+8 |Fi−1; n]} → 0 (A.3)

for some 8¿0.

Proof of some assertions made in Section 2. We 3rst note that the following
results have been established in Kelejian and Prucha (1998) in the proof of
their Theorems 2 and 3:

E| Ty i;n|36 const¡∞;

n−1u′nDn =Op(1);

n−1u′n(Wn +W ′
n)Dn =Op(1);
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n−1D′
nDn =Op(1);

n−1D′
nWnDn =Op(1); (A.4)

where Tyn =Mnyn.
We now demonstrate that (2.5) holds. From (2.1) we have û n = un−Dn(�̂n−

�0) and so

n−1=2û′nWnû n = n−1=2u′nWnun

− n−1u′n(Wn +W ′
n)Dnn1=2(�̂n − �0)

+ (�̂n − �0)′[n−1D′
nWnDn][n1=2(�̂n − �0)]: (A.5)

In light of (2.3) and its discussion we have n1=2(�̂n − �0)=Op(1). Utilizing
(A.4) it then follows that the third term on the r.h.s. of (A.5) is op(1), which
proves the claim.
We next show that

d′
n =E[n−1u′n(Wn +W ′

n)Dn]=O(1); (A.6)

and that

n−1u′n(Wn +W ′
n)Dn − d′

n = op(1): (A.7)

To demonstrate this we use two evident results (see, e.g., Kelejian and Prucha,
1999): First, if Sn and Rn are two n×n matrices whose row and column sums
are uniformly bounded in absolute value, then so are the row and column
sums of SnRn. Second, maintaining this notation, if Tn is a conformable
matrix whose elements are uniformly bounded in absolute value, then so
are the elements of TnRn. Now recall that Dn =[Mnyn; Xn] and observe that
because of (2.1) we have

yn =(In − �0Mn)−1Xn�0 + (In − �0Mn)−1(In − �0Mn)−1�n;

un =(In − �0Mn)−1�n: (A.8)

In light of this and given the maintained assumptions it is readily seen that
all components of n−1u′n(Wn + W ′

n)Dn are composed of terms of the form
n−1B∗′

n �n and n−1�′nC
∗
n �n where B∗

n is a nonstochastic vector whose elements
are uniformly bounded in absolute value, and where C∗

n is a nonstochas-
tic matrix whose row and column sums are uniformly bounded in absolute
value. The claim in (A.6) now follows since E(n−1�′nC

∗
n �n)=�2n−1 tr(C∗

n ).
Next observe that var(n−1B∗′

n �n)=�2n−2B∗′
n B∗

n = o(1). Using the results of



242 H. H. Kelejian, I.R. Prucha / Journal of Econometrics 104 (2001) 219–257

Section 3.1 we have

var(n−1�′nC
∗
n �n) = �4n−2

n∑
i= 1

i−1∑
j= 1

(c∗ij; n + c∗ji; n)
2

+ (+(4) − �4)n−2
n∑

i= 1
c∗ii; n: (A.9)

The expressions on the r.h.s. are readily seen to be o(1)—cp. Kelejian and
Prucha (1999)—and thus var(n−1u′n(Wn+W ′

n)Dn)= o(1). The claim in (A.7)
now follows from Chebychev’s inequality.
Consider the vectors bn = −FnP′dn = −(In−�0M ′

n)
−1HnP′dn and the matri-

ces An = 1
2(In−�0M ′

n)
−1(Wn+W ′

n)(In−�0Mn)−1 and observe that the matrix P
and the vectors dn are of 3nite dimension. Given (A.6) and the assumptions
maintained with respect to (In − �0Mn)−1, Wn and Hn it follows from the
results given after (A.7) that the elements of bn and that the row and column
sums of the matrices An are uniformly bounded in absolute value.
For later use we establish furthermore that

n−1û′n(Wn +W ′
n)Dn − d′

n = op(1): (A.10)

Observe that n−1û′n(Wn+W ′
n)Dn = n−1u′n(Wn+W ′

n)Dn− (�̂n−�0)′n−1Dn(Wn+
W ′

n)Dn. The second term on the r.h.s. is op(1) in light of the consistency of
�̂n and (A.4), and hence (A.10) follows from (A.7).

Proof of Theorem 1. Clearly +Qn =
∑n

i= 1 aii;n�2
i; n in light of the independence

of the �i;n and since E�i;n =0. Next observe that

Qn − +Qn =
n∑

i= 1
Yi;n (A.11)

with 24

Yi;n = aii;n(�2i; n − �2
i; n) + 2�i;n

i−1∑
j= 1

aij;n�j;n + bi;n�i;n; i=1; : : : ; n: (A.12)

Consider the �-3elds F0; n = {∅; �}, Fi; n =�(�1; n; : : : ; �i; n), 16 i6 n. By con-
struction Fi−1; n ⊆ Fi; n, Yi;n is Fi; n-measurable, and it is easily seen that
E(Yi;n |Fi−1; n)=0: Thus {Yi;n;Fi; n; 16 i6 n; n¿ 1} forms a martingale diAer-
ence array. Consequently �2

Qn
=
∑n

i= 1 E(Y
2
i; n). The expression for the variance

of Qn given in the text before the theorem follows upon observing that

E(Y 2
i; n) = a2ii; n[+

(4)
i; n − �4

i; n] + 4
i−1∑
j= 1

a2ij; n�
2
i; n�

2
j; n + b2i; n�

2
i; n

+2bi;naii; n+
(3)
i; n : (A.13)

24 We adopt the convention that any sum with an upper index of less than one is zero.



H. H. Kelejian, I.R. Prucha / Journal of Econometrics 104 (2001) 219–257 243

Let Xi;n =Yi;n=�Qn , then {Xi;n;Fi; n; 16 i6 n; n¿ 1} also forms a martingale
diAerence array. We now prove that

Qn − +Qn

�Qn

=
n∑

i= 1
Xi;n

D→N(0; 1) (A.14)

by showing that the Xi;n satis3es the remaining conditions of Theorem A.1.
In particular, we demonstrate that the Xi;n satisfy condition (A.3), which
in turn is suCcient for (A.1), and that the Xi;n satisfy
condition (A.2).
We 3rst consider the case where Assumption 3(b) holds (in conjunction

with Assumptions 1 and 2) and take 0¡86min(�1; �2)=2. We note that un-
der the maintained moment assumptions on the �i;n there exists then a 3nite
constant, say Ke, such that �2

i; n6Ke, E|�i;n|36Ke, E|�i;n|sE|�j;n|s6Ke, and
E|�2i; n − �2

i; n|s6Ke for s6 2 + 8. We note further that under the maintained
assumptions on the aij;n and bi;n there exists a 3nite constant, say Kp, such
that

∑n
j= 1 |aij;n|6Kp and n−1∑n

j= 1 |bi;n|s6Kp for s6 2 + 8. Observe that∑n
j= 1 |aij;n|r6Kr

p for r¿ 1 and that
∑n

k = 1 |aik;n||ark;n|6∑n
k = 1 |aik;n|

∑n
k = 1 |ark;n|6K2

p .
In the following let q=2+ 8 and let 1=q+1=p=1. Using the triangle and

HUolder’s inequalities we then have

|Yi;n|q =

∣∣∣∣∣aii;n(�2i; n − �2
i; n) + 2�i;n

i−1∑
j= 1

aij;n�j;n + bi;n�i;n

∣∣∣∣∣
q

6 2q

[
|aii;n|1=p|aii;n|1=q|�2i; n − �2

i; n|+
i−1∑
j= 1

|aij;n|1=p|aij;n|1=q2|�i;n||�j;n|
]q

+2q|bi;n|q|�i;n|q

6 2q

[
i∑

j= 1
|aij;n|p=p

]q=p [|aii;n|q=q|�2i; n − �2
i; n|q

+
i−1∑
j= 1

|aij;n|q=q2q|�i;n|q|�j;n|q
]
+ 2q|bi;n|q|�i;n|q

6 22q(Kp)q=p
[
|aii;n||�2i; n − �2

i; n|q +
i−1∑
j= 1

|aij;n||�i;n|q|�j;n|q
]

+2q|bi;n|q|�i;n|q:
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Consequently
n∑

i= 1
E{E[|Yi;n|q |Fi−1; n]}

6 22q(Kp)q=p
n∑

i= 1

[
|aii;n|E|�2i; n − �2

i; n|q +
i−1∑
j= 1

|aij;n|E|�i;n|qE|�j;n|q
]

+2q
n∑

i= 1
|bi;n|qE|�i;n|q

6 22q(Kp)q=pKe

n∑
i= 1

i∑
j= 1

|aij;n|+ 2qKe

n∑
i= 1

|bi;n|q

6 n[22q(Kp)(q=p+1)Ke + 2qKpKe];

and thus
n∑

i= 1
E{E[|Xi;n|2+8|Fi−1; n]}

=
1

[n−1�2
Qn
]1+8=2

1
n1+8=2

n∑
i= 1

E{E[|Yi;n|2+8|Fi−1; n]}

6
1

[n−1�2
Qn
]1+8=2

1
n8=2 [2

2q(Kp)q=p+1Ke + 2qKpKe]:

Since 0¡c6 n−1�2
Qn

the r.h.s. of the last inequality goes to zero as n → ∞,
which proves that condition (A.3) holds.
Utilizing that the �i;n are independent with zero mean it follows that

E[Y 2
i; n|Fi−1; n]

= E




[
aii;n(�2i; n − �2

i; n) + 2�i;n
i−1∑
j= 1

aij;n�j;n + bi;n�i;n

]2
∣∣∣∣∣∣ �i−1; n; : : : ; �1; n




= a2ii; n(+
(4)
i; n − �4

i; n) + 4�2
i; n

i−1∑
j= 1

i−1∑
k = 1

aij;naik;n�j;n�k;n

+4[aii;n+
(3)
i; n + bi;n�2

i; n]
i−1∑
j= 1

aij;n�j;n + b2i; n�
2
i; n + 2aii;nbi;n+

(3)
i; n :

Recalling that �2
Qn
=
∑n

i= 1E(Y
2
i; n) and utilizing the expression for E(Y 2

i; n) in
(A.13) yields

n∑
i= 1

E[X 2
i; n |Fi−1; n]− 1 =

1
�2
Qn

n∑
i= 1

[E[Y 2
i; n |Fi−1; n]− E(Y 2

i; n)]
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=
1
�2
Qn

[
8

n∑
i= 1

�2
i; n

i−1∑
j= 1

j−1∑
k = 1

aij;naik;n�j;n�k;n

+4
n∑

i= 1
�2
i; n

i−1∑
j= 1

a2ij; n(�
2
j; n − �2

j; n)

+4
n∑

i= 1
[aii;n+

(3)
i; n + bi;n�2

i; n]
i−1∑
j= 1

aij;n�j;n

]

=
1

n−1�2
Qn

[8H1; n + 4H2; n + 4H3; n];

with

H1; n = n−1
n∑

i= 1
�2
i; n

i−1∑
j= 1

j−1∑
k = 1

aij;naik;n�j;n�k;n;

H2; n = n−1
n∑

i= 1
�2
i; n

i−1∑
j= 1

a2ij; n(�
2
j; n − �2

j; n);

H3; n = n−1
n∑

i= 1
[aii;n+

(3)
i; n + bi;n�2

i; n]
i−1∑
j= 1

aij;n�j;n:

Since 0¡c6 n−1�2
Qn

condition (A.2) holds if Hi; n
p→0 as n → ∞ for i=1; 2; 3.

Clearly EH1; n =0. Utilizing that the �i;n are independent with zero mean and
variance �2

i; n it is not diCcult (although somewhat tedious) to see that

EH2
1; n 6 2n−2

n∑
i= 1

i−1∑
r = 1

r−1∑
j= 1

|aij;n||arj;n|
j−1∑
k = 1

|aik;n||ark;n|�2
i; n�

2
r;n�

2
j; n�

2
k;n

6 2K4
e n

−2
n∑

i= 1

n∑
j= 1

|aij;n|
n∑

r = 1
|arj;n|

n∑
k = 1

|aik;n||ark;n|

6 n−12K4
e K

4
p → 0 as n → ∞:

This proves H1; n
p→0.

Next observe that

H2; n =
n−1∑
i= 1

9i;n(�2i; n − �2
i; n);

9i;n = n−1
n∑

j= i+1
�2
j; na

2
ji; n:

Given our assumptions the �2i; n − �2
i; n are independent with mean zero. Since

also E|�2i; n−�2
i; n|1+86Ke (with 8¿0) it follows that the �2i; n−�2

i; n are uniformly
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integrable. Furthermore

lim sup
n→∞

n−1∑
i= 1

9i;n = lim sup
n→∞

n−1
n−1∑
i= 1

n∑
j= i+1

�2
j; na

2
ji; n

6 Kelim sup
n→∞

n−1
n−1∑
i= 1

n∑
j= 1

a2ji; n6KeK2
p¡∞

and

lim
n→∞

n−1∑
i= 1

92
i; n = lim

n→∞n−2
n−1∑
i= 1

[
n∑

j= i+1
�2
j; na

2
ji; n

]2

6 K2
e lim
n→∞n−2

n−1∑
i= 1

n∑
j= 1

a2ji; n
n∑

k = 1
a2ki; n6 lim

n→∞n−1K2
e K

2
p = 0:

It now follows from the weak law of large numbers (for martingale diAerence
arrays) in Davidson (1994, p. 299), that H2; n

p→0.
The proof that H3; n

p→0 is analogous. Observe that

H3; n =
n−1∑
i= 1

’i;n�i;n;

’i;n = n−1
n∑

j= i+1
[ajj;n+

(3)
j; n + bj;n�2

j; n]aji;n:

The �i;n’i;n=|’i;n| are then independent with zero mean and uniformly inte-
grable given our moment assumptions. Furthermore

lim sup
n→∞

n−1∑
i= 1

|’i;n| 6 lim sup
n→∞

n−1
n−1∑
i= 1

n∑
j= i+1

[|ajj;n||+(3)
j; n |+ |bj;n|�2

j; n]|aji;n|

6 Kelim sup
n→∞

n−1
n∑

j= 1
[|ajj;n|+ |bj;n|]

n−1∑
i= 1

|aji;n|

6 2KeK2
p¡∞;

and

lim
n→∞

n−1∑
i= 1

’2
i; n 6 lim

n→∞n−2
n−1∑
i= 1

[
n∑

j= i+1
[|ajj;n||+(3)

j; n |+ |bj;n|�2
j; n]|aji;n|

]2

6 K2
e lim
n→∞n−2

n−1∑
i= 1

[
n∑

j= 1
[|ajj;n|+ |bj;n|]|aji;n|

]2

6 K2
e lim
n→∞n−2

n−1∑
i= 1

[
K2

p +
n∑

j= 1
|aj;n||aji;n|

]2

:
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Using HUolder’s inequality we have for q=2+ 8 and 1=q+ 1=p=1

n∑
j= 1

|bj;n||aji;n|6 n1=q
[
n−1

n∑
j= 1

|bj;n|q
]1=q [

n∑
j= 1

|aji;n|p
]1=p

6 n1=qKp:

Consequently

lim
n→∞

n−1∑
i= 1

’2
i; n6K2

e

[
lim
n→∞n−1=2(K2

p + n1=(2+8)Kp)
]2

= 0:

Applying again the weak law of large numbers (for martingale diAerence ar-
rays) in Davidson (1994, p. 299), gives H3; n

p→0. We have thus demonstrated
that also condition (A.2) holds, which completes the proof under Assumption
3(b).
The proof under Assumption 3(a) is identical to that under Assumption

3(b), except that under Assumption 3(a) all terms involving moments of
order higher than 2 + 8 drop out from the expressions since in this case
aii;n =0.

Proof of Lemma 1. Since û′nWnû n = û′n[(Wn + W ′
n)=2]û n we prove the re-

sult w.l.o.g. under the assumption that Wn is symmetric. By Assumption
6 the functions gi;n(zn; �), and hence gn(zn; �)′Wngn(zn; �), are twice con-
tinuously diAerentiable in �. Applying a second order Taylor expansion to
û′nWnû n = gn(zn; �̂n)′Wngn(zn; �̂n) yields (abusing notation in an obvious
way)

n−1=2û′nWnû n = n−1=2u′nWnun + 2n−1u′nWn
@gn(zn; �0)

@�
n1=2(�̂n − �0)

+
1
2
R1n

with

R1n = n−1=2(�̂n − �0)′
@2gn(zn; �̃n)′Wngn(zn; �̃n)

@�@�′
(�̂n − �0)

= n−1=2
p�∑

r = 1

p�∑
s= 1

@2gn(zn; �̃n)′Wngn(zn; �̃n)
@�r@�s

(�̂r;n − �r;0)(�̂s;n − �s;0)

= n−1=2
p�∑

r = 1

p�∑
s= 1

n∑
i= 1

n∑
j= 1

wij;n
@2gi;n(zn; �̃n)gj;n(zn; �̃n)

@�r@�s

×(�̂r;n − �r;0)(�̂s;n − �s;0);

and where �̃n is a vector of between values. We note that “strictly speaking”
the Taylor expansion can only be applied for realizations ! for which the
line segment between �̂n(!) and �0 lies in 4. Let �n denote this set of
realizations. Since �̂n − �0 = op(1) and �0 lies in the interior of 4 we have
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limn→∞P(�n)=1. For ease of presentation we do not explicitly account in
our arguments for this trivial complication. By Assumption 6.∣∣∣∣∣@

2gi;n(zn; �̃n)gj;n(zn; �̃n)
@�r@�s

∣∣∣∣∣
6

∣∣∣∣∣@
2gi;n(zn; �̃n)
@�r@�s

∣∣∣∣∣ |gj;n(zn; �̃n)|+
∣∣∣∣∣@gi;n(zn; �̃n)

@�r

∣∣∣∣∣
∣∣∣∣∣@gj;n(zn; �̃n)

@�s

∣∣∣∣∣
+

∣∣∣∣∣@gi;n(zn; �̃n)
@�s

∣∣∣∣∣
∣∣∣∣∣@gj;n(zn; �̃n)

@�r

∣∣∣∣∣+ |gi;n(zn; �̃n)|
∣∣∣∣∣@

2gj;n(zn; �̃n)
@�r@�s

∣∣∣∣∣
6 46i;n6j;n:

Therefore

|R1n| 6 4
p�∑

r = 1

p�∑
s= 1

’nn1=2|�̂r;n − �r;0||�̂s;n − �s;0|:

with ’n = n−1∑n
i= 1

∑n
j= 1|wij;n|6i;n6j;n. By Assumption 4, 6 and HUolder’s in-

equality

E’n 6 n−1
n∑

i= 1

n∑
j= 1

|wij;n|[E62
i; n]

1=2[E62
j; n]

1=2

6 K8n−1
n∑

i= 1

n∑
j= 1

|wij;n|6K8Kw¡∞;

where K8 and Kw are the suprema for E62
i; n and

∑n
j= 1|wij;n|. Consequently

’n =Op(1). Since n1=2|�̂r;n−�r;0|=Op(1) and |�̂s;n−�s;0|= op(1) by assumption
it follows that R1n = op(1). This proves the 3rst part of the lemma.

Applying a 3rst order Taylor expansion yields (abusing notation in an
obvious way)

n−1û′nWn
@gn(zn; �̂n)

@�
= n−1u′nWn

@gn(zn; �0)
@�

+
1
2
R2n

with

R2n =(�̂n − �0)′n−1 @
2gn(zn; �̃n)′Wngn(zn; �̃n)

@�@�′

and where �̃n is a vector of between values. Let r2s;n denote the sth element
of R2n, then

r2s;n = n−1
p�∑

r = 1

@2gi;n(zn; �̃n)gj;n(zn; �̃n)
@�r@�s

(�̂r;n − �r;0)

= n−1
p�∑

r = 1

n∑
i= 1

n∑
j= 1

wij;n
@2gi;n(zn; �̃n)gj;n(zn; �̃n)

@�r@�s
(�̂r;n − �r;0):
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By arguments analogous to those used in the 3rst part of the proof we have

|r2s;n|6 4
p�∑

r = 1
’n|�̂r;n − �r;0|:

Since ’n was shown to be Op(1) and |�̂r;n − �r;0| is op(1) it follows that
r2s;n = op(1). This proves the second part of the lemma.

Proof of Theorem 2. By Lemma 2, the assumptions of the theorem, and
recalling that Qn = �′nAn�n + b′n�n we have

n−1=2û′nWnû n = n−1=2Qn + op(1);

and consequently

û′nWnû n

�̂Qn

=
n−1=2û′nWnû n

[n−1�̂2
Qn
]1=2

=
n−1=2[Qn − +Qn]

[n−1�̂2
Qn
]1=2

+
n−1=2+Qn

[n−1�̂2
Qn
]1=2

+
op(1)

[n−1�̂2
Qn
]1=2

:

By assumption n−1�̂2
Qn

− n−1 T�2
Qn
= op(1) and limn→∞ �2

Qn
= T�2

Qn
=72¿0. Since

n−1�2
Qn

is additionally bounded away from zero we have [n−1�2
Qn
]1=2=

[n−1�̂2
Qn
]1=2 =7+ op(1) and op(1)=[n−1�̂2

Qn
]1=2 = op(1). Observing furthermore

that (Qn − +Qn)=�Qn =Op(1) yields

û′nWnû n

�̂Qn

=7
Qn − +Qn

�Qn

+
n−1=2+Qn

[n−1�̂2
Qn
]1=2

+ op(1):

Result (a) of the theorem now follows immediately from Theorem 1, after
setting +Qn =0 in the above expression.

By assumption c6 n−1�2
Qn

for some c¿0. In light of Assumptions 1–3 it is
not diCcult to see that n−1�2

Qn
6 c∗ for some c∗¡∞. Since limn→∞ �2

Qn
= T�2

Qn
=

72¿0 it follows that there exist constants Tc and Tc∗ such that for n large
enough 0¡ Tc6 n−1 T�2

Qn
6 Tc∗¡∞. Result (b) of the theorem now follows im-

mediately from the lemma below with �n =7(Qn − +Qn)=�Qn + op(1),
’n =[n−1�̂2

Qn
]1=2, fn =[n−1 T�2

Qn
]1=2 for Tc6 n−1 T�2

Qn
6 Tc∗ and fn =( Tc1=2+ Tc1=2∗ )=2

otherwise, and dn = n−1=2+Qn .

Lemma A.1. Let �n and ’n be a sequence of real valued random variables;
and let dn and fn be sequences of real numbers with 0¡K16fn6K2¡∞.
Suppose �n =Op(1); ’n − fn = op(1) and |dn| → ∞ as n → ∞. Then for
every constant <¿0 we have

lim
n→∞P(|�n + dn=’n|6 <)=0:
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Proof of Lemma. Choose some �¿0 and some K∗¿K2. Since �n =Op(1) it
follows that there exists a positive constant M� such that P(|�n|¿M�)6 �=2
for all n. Since ’n−fn = op(1) and fn6K2¡∞ it follows further that there
exists an index n� such that P(|’n|¿K∗)6 �=2 for all n¿ n�. Next observe
that

P(|�n + dn=’n|6 <)

=P(|�n + dn=’n|6 <; |�n|¿M�) + P(|�n + dn=’n|6 <; |�n|6M�)

6P(|�n|¿M�) + P(|�n + dn=’n|6 <; |�n|6M�)

6 �=2 + P(|�n + dn=’n|6 <; |�n|6M�; |’n|¿K∗)

+P(|�n + dn=’n|6 <; |�n|6M�; |’n|¡K∗)

6 �=2 + P(’n¿K∗) + P(|�n + dn=’n|6 <; |�n|6M�; |’n|¡K∗):

For n¿ n� we thus have

P(|�n + dn=’n|6 <)6 �+ P(|�n + dn=’n|6 <; |�n|6M�; |’n|¡K∗):

Now let �n = {!∈�: |�n(!)|6M�; |’n(!)|¡K∗}. Then |dn|=|’n(!)|¿
|dn|=K∗ for all !∈�n, n∈N. Since |dn| → ∞ as n → ∞ there exists an
index n∗� such that |dn|=K∗¿M� + 2< for all n¿ n∗� . Consequently, provided
that n¿ n∗� we have for all !∈�n

|�n(!) + dn=’n(!)|¿ |dn|=|’n(!)| − |�n(!)|¿ 2<:

Thus P(|�n+dn=’n|6 <; |�n|6M�; |’n|¡K∗)=0 for n¿ n∗� , and consequently
P(|�n + dn=’n|6 <)6 � for all n¿max{n�; n∗� }, which proves the claim.

Proof of Theorem 3. In light of Assumption 4 there exists a 3nite constant,
say Kw, such that n−1∑n

i= 1

∑i−1
j= 1 (wij;n + wji;n)26K2

w and w2
ii; n6K2

w; com-
pare the analogous discussion concerning the aij;n’s in the proof of Theorem
1. Furthermore, in light of Assumption 8 there exists a 3nite constant, say
Kr , such that n−1∑n

i= 1| Tbi;n|�6Kr for �6 2, and T�2
i; n6Kr and | T+(s)

i; n |6Kr

(s=3; 4). Now observe that

�̂2
i; n�̂

2
j; n − T�2

i; n T�
2
j; n = (�̂2

i; n − T�2
i; n) T�

2
j; n + (�̂2

i; n − T�2
i; n)(�̂

2
jn − T�2

j; n)

+ T�2
i; n(�̂

2
jn − T�2

j; n):

Assumption 8 then implies

|�̂2
i; n�̂

2
j; n − T�2

i; n T�
2
j; n|6 2Kr9n + 92

n:

Consequently∣∣∣∣∣1n
n∑

i= 1

i−1∑
j= 1

(wij;n + wji;n)2[�̂
2
i; n�̂

2
j; n − T�2

i; n T�
2
j; n]

∣∣∣∣∣ 6K2
w(2Kr9n + 92

n);
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n∑

i= 1
w2

ii; n[�̂
4
i; n − T�4

i; n]
∣∣∣∣ 6K2

w(2Kr9n + 92
n);

∣∣∣∣1n
n∑

i= 1
w2

ii; n[+̂
(4)
i; n − T+(4)

i; n ]
∣∣∣∣ 6K2

w9n: (A.15)

Similarly

|b̂2i; n − Tb
2
i; n|6 2| Tbi;n|:i;n n +:2

i; n 
2
n ;

|b̂2i; n�̂2
i; n − Tb

2
i; n T�

2
i; n| 6 2Kr| Tbi;n|:i;n n + Kr:2

i; n 
2
n

+2| Tbi;n|:i;n n9n +:2
i; n 

2
n 9n + | Tbi;n|29n;

|b̂i; n+̂
(3)
i; n − Tbi;n+

(3)
i; n |6Kr:i;n n +:i;n n9n + | Tbi;n|9n:

Observing that by HUolder’s and Lyapunov’s inequalities n−1∑n
i= 1| Tbi;n|:i;n6

K1=2
r B1=2

n and n−1∑n
i= 1:i;n6B1=2

n with Bn = n−1∑n
i= 1:

2
i; n it follows from the

above inequalities that∣∣∣∣1n
n∑

i= 1
[b̂

2
i; n�̂

2
i; n − b2i; n�

2
i; n]

∣∣∣∣ 6 2K3=2
r B1=2

n  n + KrBn 2
n

+2K1=2
r Bn n9n + Bn 2

n 9n + Kr9n; (A.16)

∣∣∣∣1n
n∑

i= 1
[b̂i; n+̂

(3)
i; n − bi;n+

(3)
i; n ]

∣∣∣∣ 6KrBn n + Bn n9n + Kr9n:

In light of Assumption 8 we have Bn =Op(1). Since  n = op(1) and 9n = op(1)
it is now evident from (A.15) and (A.16) and the triangle inequality that
n−1(�̂2

Qn
− T�2

Qn
)= op(1). The claim that n−1 T�2

Qn
6 const¡∞ is easily checked

in light of Assumptions 4 and 8.

Proof of Claims in Section 4.1. We 3rst prove claim (4.1) for the Tobit
model. The proof utilizes Theorems 2(a) and 3. To cast the Tobit model
(4.5)–(4.7) into the notation of those theorems let zn =(z1; n; : : : ; zn;n) with
zi;n =(yi; xi). The elements of xi are assumed to be bounded in absolute
value by some 3nite constant, say Cx. In the following let Z =R× TX with
TX =

∏k
i= 1 [ − Cx; Cx]. The parameter space for �0, say 4�, was assumed to

be an open subset of Rk . Furthermore, 4� was assumed to be contained
in a compact set. Hence there exists a 3nite constant, say C�, such 4� ⊆∏k

i= 1 [− C�; C�]. Now let 4=4�×(c�; C�) denote the parameter space, and
de3ne T4=

∏k
i= 1 [− C�; C�]×[c�; C�] and 4∗=

∏k
i= 1(−C�∗; C�∗)×(c�∗; C�∗)

with C�¡C�∗, C�¡C�∗, and 0¡c�∗¡c�. Observe that the sets 4, T4, and
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4∗ are open, compact and open, respectively, and satisfy 4 ⊆ T4 ⊆ 4∗ by
construction. Next de3ne

gi;n(z1; : : : ; zn; �)=y
i
− f(xi; �) (A.17)

for all zj =(y
j
; xj)∈Z , j=1; : : : ; n, and �=(�; �2

v)∈4∗. Then (4.5) can be
written as

ui;n = �i = gi;n(zn; �0)=yi − f(xi; �0): (A.18)

Furthermore we have

û i; n = �̂i = gi;n(zn; �̂n)=yi − f(xi; �̂n): (A.19)

We now check Assumptions 4–6. Assumption 4 is assumed to hold. As-
sumption 5 holds evidently since 4 is open. We next verify Assumption
6. Since MN (:) and 'N (:) are twice continuously diAerentiable, and since
supx∈ TX sup�∈4∗ |x�=�v|¡∞, it is readily seen that f(x; �), @f(x; �)=@� and
@2f(x; �)=@�@�′ are continuous on Z×4∗. (Note that the derivatives are well
de3ned since 4∗ is open.) Assumption 6(a) is hence clearly satis3ed. Since
TX and T4 are compact, and continuous functions are bounded in absolute value
on compact sets, it follows furthermore that there exists some 3nite constant
K such that

sup
�∈4

|xi�|6 sup
x∈ TX

sup
�∈ T4

|x�|¡K;

sup
�∈4

∣∣∣∣xi��v

∣∣∣∣ 6 sup
x∈ TX

sup
�∈ T4

∣∣∣∣x��v

∣∣∣∣¡K;

sup
�∈4

|f(xi; �)|6 sup
x∈ TX

sup
�∈ T4

|f(x; �)|¡K;

sup
�∈4

∣∣∣∣@gi;n(zn; �)
@�

∣∣∣∣ = sup
�∈4

∣∣∣∣@f(xi; �)@�

∣∣∣∣ 6 sup
x∈ TX

sup
�∈ T4

∣∣∣∣@f(x; �)@�

∣∣∣∣¡K;

sup
�∈4

∣∣∣∣@2gi;n(zn; �)
@�@�′

∣∣∣∣ = sup
�∈4

∣∣∣∣@2f(xi; �)@�@�′

∣∣∣∣ 6 sup
x∈ TX

sup
�∈ T4

∣∣∣∣@2f(x; �)@�@�′

∣∣∣∣¡K:

(A.20)

Observing that |yi|6 |y∗
i |6 |xi�0|+ |vi|6K + |vi| it follows further that

sup
�∈4

|gi;n(zn; �)|6 |yi|+ sup
�∈4

|f(xi; �)|6 |vi|+ 2K: (A.21)

Since Ev2i ¡C�¡∞ it follows immediately from (A.20) and (A.21) that also
Assumption 6(b) holds.
We next verify Assumption 7 with un = �n, Qn = �′nAn�n, An =(Wn +W ′

n)=2
and bn =0. We 3rst verify that the elements of �n, An and bn satisfy Assump-
tions 1–3. The conditions postulated in Assumption 2 for the elements of An
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and bn are trivially satis3ed, given the elements of Wn are assumed to satisfy
Assumption 4 and the elements of bn are taken to be zero. Given our dis-
cussion in Section 4.1.1 the innovations �i;n = �i clearly satisfy Assumption 1.
We next show that the innovations satisfy Assumption 3. More speci3cally,
since aii;n =wii;n =0 it suCces to demonstrate that Assumption 3(a) holds for,
say, �2 = 1. Now

E|�i|3 = E|yi − f(xi; �0)|36 4[E|yi|3 + |f(xi; �0)|3]

6 4


E|yi|3 +

[
sup
x∈ TX

sup
�∈ T4

|f(x; �)|
]3



6 4{E|yi|3 + K3}
6 4{E|vi|3 + 3KE|vi|2 + 3K2E|vi|+ 2K3}; (A.22)

where the last inequality utilizes that |yi|6K + |vi|. Since vi is i.i.d. normal
the expression on the r.h.s. of the last inequality equals a 3nite constant (that
does not depend on i), which proves that Assumption 3(a) holds.
Next consider condition (3.7) of Assumption 7. Clearly to verify this con-

dition it suCces to show that

n−1u′n(Wn +W ′
n)

@gi;n(zn; �0)
@�

= − 2n−1�′nAn
@f(xi; �0)

@�
= op(1);

(A.23)

since n1=2(�̂n − �0)=Op(1). The elements of @f(xi; �0)=@� are nonstochas-
tic and bounded in absolute value in light of (A.20). Since the elements
of Wn are assumed to satisfy Assumption 4 it follows that the elements of
An@f(xi; �0)=@� are uniformly bounded in absolute value. From the discussion
in Section 4.1.1 we have E�i =0 and �2

i =E�2i = hi(�0) with hi(�0) de3ned by
(4.7). In light of (A.22) the variances �2

i are bounded by some 3nite constant.
Consequently n−1�′nAn@f(xi; �0)=@� has mean zero and its variance covariance
matrix converges to zero; (A.23) now follows from Chebychev’s inequality
and thus (3.7) holds. We have now veri3ed all conditions of Assumption 7.
Now take �̂2

Qn
= �̃2

Q∗
n
, where the latter is de3ned in (4.1), and T�2

Qn
=�2

Qn

with

�2
Qn
=

1
2

n∑
i= 1

n∑
j= 1

(wij;n + wji;n)2�2
i �

2
j : (A.24)

Then clearly 7=1. Furthermore, given (4.2) and since �2
i = hi(�0)¿ const¿0

there exists some c¿0 such that n−1�2
Qn
¿ c.

The 3nal step in our proof is now to demonstrate that

n−1�̂2
Qn

− n−1�2
Qn
= op(1): (A.25)
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using Theorem 3. In the notation of that theorem we have �2
i; n = T�2

i; n =�2
i =

hi(�0), �̂2
i; n = hi(�̂n), and b̂i; n = Tbi;n = bi;n =0. To apply Theorem 3 we have

to verify Assumptions 4 and 8. Assumption 4 is postulated. Next consider
Assumption 8(a). Since wii;n =0 we can ignore all conditions involving third
and fourth moments. To prove |�̂2

i; n − �2
i; n|69n with 9n = op(1) it suCces

to prove Condition A, as was discussed after the theorem. Clearly @hi(�)=@�
exists and is continuous on 4∗. Again, since continuous functions are bounded
in absolute value on compact sets, there exists a 3nite constant, say K∗, such
that

sup
16 i6 n;n¿ 1

sup
�∈4

∣∣∣∣@hi(�)
@�

∣∣∣∣ 6 sup
x∈ TX

sup
�∈ T4

∣∣∣∣@h(x; �)@�

∣∣∣∣¡K∗;

where h(xi; �)= hi(�). Since n1=2(�̂n − �0)=Op(1) this veri3es Condition A.
Assumption 8(b) holds trivially.
Having demonstrated that all conditions maintained by Theorem 2(a) are

satis3ed claim (4.1) for the Tobit model follows directly from that theo-
rem. The proofs of claim (4.1) for the dichotomous, sample selection, and
polychotomous models are analogous.

Proof of Claims in Section 4.2. In the following let Tyn =Mnyn. To prove
the claims we use Theorems 2 and 3. To cast the spatial ARAR(1,1) into the
notation of those theorems de3ne gn(zn; �)=yn − Dn� where Dn =[ Tyn; Xn],
�=(�; �′)′, and zn =(z1; n; : : : ; zn;n) with zi;n =(yi;n; xi1; n; : : : ; xik;n). The param-
eter space 4=(−1; 1)×Rk . Furthermore we take Z =Rk+1 as the space for
the zi;n.

We now check Assumptions 4–6. Assumption 4 is assumed to hold. As-
sumption 5 also holds since 4 is open. To verify Assumption 6(a) take
4∗=4. The measurability and diAerentiability assumptions hold trivially
since gi;n is continuous in all arguments and linear in �, respectively. To ver-
ify Assumption 6(b) observe that 62

i; n = |@gi;n=@�|2 = Ty2
i; n +

∑k
j= 1x

2
ij; n. From

the 3rst result in (A.4) it follows that E Ty2
i; n6 const¡∞. Since xij;n are as-

sumed to be uniformly bounded in absolute value, Assumption 6(b) clearly
holds.
From the discussion surrounding (2.5)–(2.7) it is readily seen that condi-

tion (3.7) of Assumption 7 holds with An = 1
2(In − �0M ′

n)
−1(Wn + W ′

n)(In −
�0Mn)−1 and bn =−FnP′dn with Fn =(In−�0M ′

n)
−1Hn. Furthermore it follows

from that discussion that the elements of An and bn satisfy Assumption 2. As-
sumption 1 and 3(b) are postulated in the catalogue of model assumptions.
Thus also all conditions of Assumption 7 hold.
Next de3ne

T�2
Qn
=

1
2
T�4
n

n∑
i= 1

n∑
j= 1

(wij;n + wji;n)2 + T�2
n

n∑
i= 1

Tb
2
i; n;
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where T�2
n = n−1E(u′nun)= n−1E(�′nC

∗
n �n)=�2n−1 tr(C∗

n ) with C∗
n = (In −

�0Mn)−1(In −�0M ′
n)

−1, and where Tbn = −HnP′dn. Furthermore let �̂2
Qn
= �̃2

Q∗
n
.

Clearly �̂2
n = n−1û′nû n = n−1u′nun + op(1), since û n = un − Dn(�̂n − �0); �̂n is

n1=2-consistent, and given the results in (A.4). By analogous arguments as
those used to establish (A.9) we have var(n−1u′nun)= var(n−1�′nC

∗
n �n)= o(1).

Hence n−1u′nun − T�2
n = op(1) and consequently �̂2

n − T�2
n = op(1). This veri3es

Assumption 8(a) for �̂2
n and T�2

n (observing that T�2
i; n = T�2

n and wii;n =0). As-
sumption 8(b) for b̂i; n and Tbi;n was veri3ed at the end of Section 3.3. It now
follows from Theorem 3 that �̂2

Qn
− T�2

Qn
= op(1) as postulated in Theorem 2.

The expressions for the mean +Qn and variance �2
Qn

of the linear-quadratic
form Qn = �′nAn�n+b′n�n are given in (3.2). Now assume that H0: �0 = 0 holds.
In this case we have An = 1

2(Wn+W ′
n) and hence aii;n =0, bn = Tbn = −HnP′dn

and �2
i; n = T�2

n =�2. Thus in this case we have +Qn =0 and �2
Qn
= T�2

Qn
. In light

of (4.2) we also have n−1�2
Qn
¿ c for some c¿0. The claim that (4.1) holds

under H0 now follows directly from part (a) of Theorem 2.
Next assume that H1: �0 	=0 holds. Assume furthermore that n−1�2

Qn
¿0;

limn→∞ n−1�2
Qn
= s¿0; limn→∞ n−1 T�2

Qn
= Ts¿0 and limn→∞ n−1 tr(An)= a 	=0.

Then clearly n−1�2
Qn
¿ c for some c¿0 and limn→∞ �2

Qn
= T�2

Qn
¿0. Furthermore

|n−1=2+Qn |= n1=2|n−1 tr(An)| → ∞ for n → ∞. The claim that limn→∞ P(|In|¿
C) for arbitrary C¿0 now follows from part (b) of Theorem 2.
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