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Abstract

This book provides an overview of three generations of spatial econometric
models: models based on cross-sectional data, static models based on spatial
panels and dynamic spatial panel data models. The book not only presents different
model specifications and their corresponding estimators, but also critically dis-
cusses the purposes for which these models can be used and how their results
should be interpreted. Special attention is paid to the interpretation of spatial
spillover effects. Several of these models are illustrated using well-known datasets.
Furthermore, Matlab routines are provided with which the results reported in the
book can be replicated and with which researchers can run their own empirical
problems.

Keywords Spatial panels � Models � Dynamic effects � Spatial spillover effects �
Estimation methods
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Chapter 1
Introduction

Abstract This chapter introduces the topics the book will be dealing with.

Keywords Spatial dependence � Cross-sectional data � Spatial panels

1.1 Introduction

Spatial econometrics is a subfield of econometrics dealing with spatial interaction
effects among geographical units. Units could be zip codes, cities, municipalities,
regions, counties, states, jurisdictions, countries, and so forth depending on the
nature of the study. Spatial econometric models can also be used to explain the
behavior of economic agents other than geographical units, such as individuals,
firms, or governments, if they are related to each other through networks, but this
type of research, although growing, is less common.

Whereas the time-series literature focuses on the dependence among observa-
tions over time and uses the symbol ‘‘t-1’’ to denote variables lagged in time, the
spatial econometrics literature is interested in the dependence among observations
across space and uses the so-called spatial weights matrix W to describe the spatial
arrangement of the geographical units in the sample. It should be stressed here that
spatial econometrics is not a straightforward extension of time-series econometrics
to two dimensions. One obvious difference is that two geographical units can affect
each other mutually, whereas two observations in time cannot. According to Getis
(2007), another complicating factor is the wide variety of units of measurement
that are eligible for modeling spatial dependence (neighbors, distance, links, etc.)
as compared to measuring temporal dependence (time).

In the last decade, the spatial econometrics literature has exhibited a growing
interest in the specification and estimation of econometric relationships based on
spatial panels. Spatial panels typically refer to data containing time series obser-
vations of a number of geographical units. This interest can be explained by the
fact that panel data offer researchers extended modeling possibilities to explain

J. P. Elhorst, Spatial Econometrics, SpringerBriefs in Regional Science,
DOI: 10.1007/978-3-642-40340-8_1, � The Author(s) 2014
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causal relationships as compared to the single equation cross-sectional setting,
which was the primary focus of the spatial econometrics literature for a long time.
Panel data are generally more informative, and they contain more variation and
often less collinearity among the variables. The use of panel data results in a
greater availability of degrees of freedom, and hence increases efficiency in the
estimation. Panel data also allow for the specification of more complicated
behavioral hypotheses, including effects that cannot be addressed using pure cross-
sectional data (see Sect. 3.2 and Hsiao 2007 for more details).

This book provides an overview of three generations of spatial econometric
models. The first generation consists of models based on cross-sectional data. Key
contributions in this field are Anselin (1988, 2006), Griffith (1988), Haining
(1990), Cressie (1993), Anselin and Bera (1998), Arbia (2006), and LeSage and
Pace (2009). These models are discussed in Chap. 2. Since many issues have
already been covered in these previous contributions, this chapter mainly focuses
on insights that are relatively new and on issues that have led to discussion or
confusion.

The second generation comprises non-dynamic models based on spatial panel
data. These models might just pool time-series cross-sectional data, but more often
they control for fixed or random spatial and/or time-period specific effects.
A limited number of studies consider models with one equation for every unit in
the sample, where the slope coefficients of the explanatory variables might again
be assumed fixed or random. The multi-level model with both fixed and random
coefficients can also be classified to this class of models. Other studies consider a
set of equations, one for every time period or one for a set of multiple dependent
variables, extending each equation to include spatial interaction effects, known as
spatial SUR models. This second generation of models is extensively discussed in
Chap. 3.

The third generation of spatial econometric models encompasses dynamic
spatial panel data models. At the beginning of this century, there was no
straightforward estimation method for this type of models. This was because
methods developed for dynamic but non-spatial and for spatial but non-dynamic
panel data models produced biased estimators when these methods/models were
put together. Chapter. 4 provides an overview of the main methodological studies
that have attempted to solve this shortcoming.

Since this book is partly written from a practitioner’s point of view, it not only
presents different model specifications but also draws attention to and sometimes
critically discusses the purposes for which these specifications can be used. This is
important because the spatial econometric literature has also been criticized.
Recent examples are Partridge et al. (2012), Gibbons and Overman (2012),
McMillen (2012) and Corrado and Fingleton (2012) in a special issue of the
Journal of Regional Science. By illustrating and comparing the results of different
model specifications, it is shown that these critical studies have a point; some
models are indeed more promising than others.

2 1 Introduction

http://dx.doi.org/10.1007/978-3-642-40340-8_3
http://dx.doi.org/10.1007/978-3-642-40340-8_3
http://dx.doi.org/10.1007/978-3-642-40340-8_2
http://dx.doi.org/10.1007/978-3-642-40340-8_2
http://dx.doi.org/10.1007/978-3-642-40340-8_3
http://dx.doi.org/10.1007/978-3-642-40340-8_3
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Chapter 2
Linear Spatial Dependence Models
for Cross-Section Data

Abstract This chapter gives an overview of all linear spatial econometric models
with different combinations of interaction effects that can be considered, as well as
the relationships between them. It also provides a detailed overview of the direct
and indirect effects estimates that can be derived from these models. In addition, it
critically discusses the stationarity conditions that need to be imposed on the
spatial interaction parameters and the spatial weights matrix, as well as the row-
normalization procedure of the spatial weights matrix. The well-known cross-
sectional dataset of Anselin (1988), explaining the crime rate by household income
and housing values in 49 Columbus, Ohio neighborhoods, is used for illustration
purposes.

Keywords Interaction effects � Model overview � Stationarity conditions �
Normalization � Spatial spillover effects � Software � Crime

2.1 Introduction

Starting with a standard linear regression model, three different types of interaction
effects in a spatial econometric model can be distinguished: endogenous interac-
tion effects among the dependent variable (Y), exogenous interaction effects among
the independent variables (X), and interaction effects among the error terms (e).
Originally, the central focus of spatial econometrics has been the spatial lag model,
also known as the spatial autoregressive (SAR) model, and the spatial error model
(SEM), both with one type of interaction effect.1 The first model contains
endogenous interaction effects, and the second model interaction effects among the
error terms. The seminal book by Anselin (1988) and the testing procedure for a
spatial lag or a spatial error model based on the robust Lagrange Multiplier tests

1 In this book, we use the acronyms most commonly used in the spatial econometrics literature to
refer to the model specifications (see e.g., LeSage and Pace 2009).

J. P. Elhorst, Spatial Econometrics, SpringerBriefs in Regional Science,
DOI: 10.1007/978-3-642-40340-8_2, � The Author(s) 2014
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developed by Anselin et al. (1996) may be considered as the main pillar behind
this way of thinking.

In 2007 the interest for models containing more than one spatial interaction
effect increased. In his keynote speech at the first World Conference of the Spatial
Econometrics Association in 2007, Harry Kelejian advocated models that include
both endogenous interaction effects and interaction effects among the error terms
(based on Kelejian and Prucha 1998 and related work). This model is denoted by
the term SAC in LeSage and Pace (2009, p. 32), though without pointing out what
this acronym is standing for. Elhorst (2010) labels this model the Kelejian–Prucha
model after their article in 1998 since they were the first to set out an estimation
method for this model, also when the spatial weights matrix used to specify the
spatial lag and the spatial error structure is the same. Kelejian and Prucha them-
selves alternately use the terms SARAR or Cliff-Ord type spatial model.

In his presidential address at the 54th North American Meeting of the Regional
Science Association International in 2007, James LeSage advocated models that
include both endogenous and exogenous interaction effects. This idea is worked
out in the textbook which he published together with Kelley Pace in 2009 (LeSage
and Pace 2009). In analogy to Durbin (1960) for the time series case, Anselin
(1988) labeled the latter model as the spatial Durbin model (SDM).

Gibbons and Overman (2012) criticize the SAR, SEM and SDM models for
reasons of identification, and advocate the SLX (spatial lag of X) model. To
provide a better understanding, Section 2.2 first gives an overview of all linear
spatial econometric models with different combinations of interaction effects that
can be considered, as well as the relationships between them. Section 2.3 discusses
the stationarity conditions that need to be imposed on the spatial interaction
parameters and the spatial weights matrix. Section 2.4 explains and, more
importantly, also critically discusses the row-normalization procedure of the
spatial weights matrix. Too often this procedure leads to a misspecification
problem, which can easily be avoided. Section 2.5 examines the parameter space
on which the spatial interaction parameters are defined. Too often this parameter
space is simply assumed to be (-1, 1), just as in a time-series model. It is shown
that this interval in a second order spatial autoregressive process is too restrictive,
because it would lead to the exclusion of feasible and perhaps also relevant
parameter combinations. Section 2.6 discusses some strengths and weakness of
different estimation methods of spatial econometric models. Section 2.7 gives a
detailed overview of direct and indirect effects estimates. The latter are also known
as spatial spillover effects. Until recently, empirical studies used the coefficient
estimates of a spatial econometric model to test the hypothesis as to whether or not
spatial spillovers exist. However, LeSage and Pace (2009) point out that a partial
derivative interpretation of the impact from changes to the variables represents a
more valid basis for testing this hypothesis. By considering these partial deriva-
tives, it is shown that some models are more flexible in modeling spatial spillovers
than others. Section 2.8 lists software to estimate the models discussed in this
chapter and presents Matlab routines the author of this book has made available at
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his Web site. Section 2.9 empirically illustrates the results of different spatial
econometric models. Finally, Section 2.10 concludes.

2.2 A Taxonomy of Linear Spatial Dependence Models
for Cross-Section Data

The standard approach in most spatial analyses is to start with a non-spatial linear
regression model and then to test whether or not this so-called benchmark model
needs to be extended with spatial interaction effects. This approach is known as the
specific-to-general approach.2 The non-spatial linear regression model takes the
form

Y ¼ a iN þ Xbþ e ð2:1Þ

where Y denotes an N 9 1 vector consisting of one observation on the dependent
variable for every unit in the sample (i = 1,…,N), iN is an N 9 1 vector of ones
associated with the constant term parameter a to be estimated, X denotes an
N 9 K matrix of exogenous explanatory variables, b is an associated K 9 1 vector
with unknown parameters to be estimated, and e = (e1,…, eN)T is a vector of
disturbance terms, where ei is assumed to be independently and identically dis-
tributed for all i with zero mean and variance r2.3 Since the linear regression
model is commonly estimated by Ordinary Least Squares (OLS), it is often labeled
the OLS model.

The opposite approach is to start with a more general model containing, nested
within it as special cases, a series of simpler models that ideally should represent
all the alternative economic hypotheses requiring consideration. Generally, three
different types of interaction effects may explain why an observation associated
with a specific location may be dependent on observations at other locations. The
first are endogenous interaction effects, where the dependent variable of a par-
ticular unit A depends on the dependent variable of other units, among which, say,
unit B, and vice versa,

Dependent variable y of unit A$ Dependent variable y of unit B ð2:2Þ

Endogenous interaction effects are typically considered as the formal specifi-
cation for the equilibrium outcome of a spatial or social interaction process, in
which the value of the dependent variable for one agent is jointly determined with
that of neighboring agents. In the empirical literature on strategic interaction
among local governments, for example, endogenous interaction effects are

2 For an explanation of this terminology see Hendry (1995).
3 The superscript T indicates the transpose of a vector or matrix.
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theoretically consistent with the situation where taxation and expenditures on
public services interact with taxation and expenditures on public services in nearby
jurisdictions (Brueckner 2003).

The second are exogenous interaction effects, where the dependent variable of a
particular unit depends on independent explanatory variables of other units

Independent variable x of unit B $ Dependent variable y of unit A ð2:3Þ

Consider, for example, the savings rate. According to standard economic the-
ory, saving and investment are always equal. People cannot save without investing
their money somewhere, and they cannot invest without using somebody’s
savings. This is true for the world as a whole, but it is not true for individual
economies. Capital can flow across borders; hence the amount an individual
economy saves does not have to be the same as the amount it invests. In other
words, per capita income in one economy also depends on the savings rates of
neighboring economies. It should be stressed that, if the number of independent
explanatory variables in a linear regression model is K, the number of exogenous
interaction effects might also be K, provided that the intercept is considered as a
separate variable. In other words, not only the savings rate but also other
explanatory variables may affect per capita income in neighboring economies. It is
for this reason that in both the theoretical and the empirical literature on economic
growth and convergence among countries or regions, the economic growth vari-
able is taken to depend not only on the initial income level and the rates of saving,
population growth, technological change and depreciation in the own economy,
but also on those variables in neighboring economies (Ertur and Koch 2007;
Elhorst et al. 2010).

The third type of interaction effects are those among the error terms

Error term u of unit A $ Error term u of unit B ð2:4Þ

Interaction effects among the error terms do not require a theoretical model for
a spatial or social interaction process, but instead, are consistent with a situation
where determinants of the dependent variable omitted from the model are spatially
autocorrelated, or with a situation where unobserved shocks follow a spatial pat-
tern. Interaction effects among the error terms may also be interpreted to reflect a
mechanism to correct rent-seeking politicians for unanticipated fiscal policy
changes (Allers and Elhorst 2005).

A full model with all types of interaction effects takes the form

Y ¼ dWY þ aiN þ XbþWXhþ u ð2:5aÞ

u ¼ kWuþ e ð2:5bÞ

where WY denotes the endogenous interaction effects among the dependent var-
iable, WX the exogenous interaction effects among the independent variables, and
Wu the interaction effects among the disturbance term of the different units. We

8 2 Linear Spatial Dependence Models for Cross-Section Data
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will refer to model (2.5a, b) as the general nesting spatial (GNS) model4 since it
includes all types of interaction effects. d is called the spatial autoregressive
coefficient, k the spatial autocorrelation coefficient, while h, just as b, represents a
K 9 1 vector of fixed but unknown parameters to be estimated. W is a nonnegative
N 9 N matrix describing the spatial configuration or arrangement of the units in
the sample. The next section discusses stationarity conditions that need to be
imposed on W to obtain consistent estimators of the parameters in the GNS model.

Figure 2.1 summarizes a family of nine linear spatial econometric models,
among which are the OLS model in (2.1) on the right-hand side and the GNS
model in (2.5a, b) on the left-hand side. Each model to the right of the GNS model
can be obtained from that model by imposing restrictions on one or more of its
parameters. The restrictions are shown next to the arrows in Fig. 2.1. This figure
shows that there are spatial econometric models that are hardly considered or used
in econometric-theoretic and empirical research. The spatial Durbin error model
(SDEM), which contains exogenous interaction effects and interaction effects
among the error terms, is the best example. In this respect, it should be stressed
that there is a large gap in the level of interest in different types of interaction
effects between theoreticians and practitioners. Theoreticians are mainly interested
in the SAR and SEM models, as well as the SAC model that combines endogenous
interaction effects and interaction effects among the error terms, because of the
econometric problems accompanying the estimation of these models. Some of
these problems will be dealt with in the remainder of this chapter. The reason they
generally do not focus on spatial econometric models with exogenous interaction
effects is because the estimation of such models does not pose any econometric
problems; standard estimation techniques suffice under these circumstances.
Consequently, the SLX model is generally not part of the toolbox of researchers
interested in the econometric theory of spatial models.

2.3 Stationarity Conditions for d, k and W

Spatial weights matrices commonly used in applied research are: (i) p-order binary
contiguity matrices (if p = 1 only first-order neighbors are included, if p = 2 first
and second order neighbors are considered, and so on); (ii) inverse distance
matrices (with or without a cut-off point); (iii) q-nearest neighbor matrices (where
q is a positive integer); (iv) block diagonal matrices where each block represents a
group of spatial units that interact with each other but not with observations in
other groups. Generally, spatial weights matrices are symmetric, but there are
exceptions in which the spatial weights matrix is asymmetric. One example is a
commuting flow matrix used to explain regional labor market performance.

4 LeSage and Pace (2009) neither name nor assign an equation number to model (2.5a, b), which
reflects the fact that this model is typically not used in applied research.
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A symmetric matrix has the property that all its characteristic roots are real, also
when it is row-normalized (see Sect. 2.4) and becomes asymmetric as a result,
while an asymmetric matrix will also have complex characteristic roots.

Kelejian and Prucha (1998, 1999) and Lee (2004) make the following
assumptions to prove consistency of respectively the GMM estimator of the
parameters in the SAR and SAC models and the ML estimator in the SAR model.
The spatial weights matrix W is a nonnegative matrix of known constants. The
diagonal elements are set to zero by assumption, since no spatial unit can be
viewed as its own neighbor. The matrices IN-dW and IN-kW are non-singular,
where IN represents the identity matrix of order N. For a symmetric W, this
condition is satisfied as long as d and k are in the interior of (1/xmin, 1/xmax),
where xmin denotes the smallest (i.e. most negative) and xmax the largest real
characteristic root of W. If W is normalized subsequently, the latter interval takes
the form (1/xmin, 1), since the largest characteristic root of W equals unity in this
situation. If W is an asymmetric matrix before it is normalized, it may have
complex characteristic roots. LeSage and Pace (2009, pp. 88–89) demonstrate that
in that case d and k are restricted to the interval (1/rmin, 1), where rmin equals the
most negative purely real characteristic root of W after this matrix is row-nor-
malized. Kelejian and Prucha (1998, 1999) assume that d and k are restricted to the
interval (-1, 1). We come back to this in Sect. 2.5. Finally, one of the following
two conditions should be satisfied: (a) the row and column sums of the matrices
W, (IN-dW)-1 and (IN-kW)-1 before W is row-normalized should be uniformly
bounded in absolute value as N goes to infinity, or (b) the row and column sums of
W before W is row-normalized should not diverge to infinity at a rate equal to or
faster than the rate of the sample size N. Condition (a) is originated by Kelejian
and Prucha (1998, 1999), and condition (b) by Lee (2004). Both conditions limit
the cross-sectional correlation to a manageable degree, i.e. the correlation between
two spatial units should converge to zero as the distance separating them increases
to infinity. Below we discuss which of the four matrices introduced above satisfy
both conditions (a) and (b), which only satisfy (b), and which satisfy neither
(a) and (b).

When the spatial weights matrix is a p-order binary contiguity matrix and p is
small, (a) is satisfied. Normally, no spatial unit is assumed to be a neighbor to more
than a given number, say q, of other units. Automatically, condition (b) is also
satisfied. By contrast, when the spatial weights matrix is an inverse distance
matrix, (a) may not be satisfied. To see this, consider an infinite number of spatial
units that are arranged linearly. Let the distance of each spatial unit to its first left-
and right-hand neighbor be d; to its second left- and right-hand neighbor, the
distance 2d; and so on. When W is an inverse distance matrix and its off-diagonal
elements are of the form 1/dij, where dij is the distance between two spatial units
i and j, each row sum is 2 9 (1/d ? 1/(2d) ? 1/(3d) ? …), representing a series
that is not finite. This is perhaps the reason why some empirical applications
introduce a cut-off point d* such that wij = 0 if dij [ d*. However, since the ratio
2 9 (1/d ? 1/(2d) ? 1/(3d) ? …)/N?0 as N goes to infinity, condition (b) is
satisfied, which implies that an inverse distance matrix without a cut-off point does
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not necessarily have to be excluded in an empirical study for reasons of consis-
tency. Nevertheless, an inverse distance matrix is a border case, which explains
why it sometimes leads to numerical problems or unexpected outcomes in
empirical applications. This is because the number of units in the sample generally
does not go to infinity, but is finite.

Another situation occurs when all cross-sectional units are assumed to be
neighbors of each other and are given equal weights. In that case all off-diagonal
elements of the spatial weights matrix are wij = 1. Since the row and column sums
are N - 1, these sums diverge to infinity as N goes to infinity. In contrast to the
previous case, however, (N - 1)/N?1 instead of 0 as N goes to infinity. This
implies that a spatial weights matrix that has equal weights and that is row-
normalized subsequently, wij = 1/(N - 1), must be excluded for reasons of con-
sistency since it satisfies neither condition (a) nor (b). The alternative is a group
interaction matrix, introduced by Case (1991). Suppose there are G groups and that
there are Ng cross-sectional units in each group. Let wij = 1/(Ng - 1) if units i and
j belong to the same group, and zero otherwise. If both N and Ng tend to infinity,
with at least two units in each group, or if the number of units in each group does
not tend to infinity faster than or equal to the number of groups, condition (b) is
restored (Lee 2007).

2.4 Normalizing W

For ease of interpretation, it is common practice to normalize W such that the
elements of each row sum to unity. Since W is nonnegative, this ensures that all
weights are between 0 and 1, and has the effect that the weighting operation can be
interpreted as an averaging of neighboring values.

As an alternative, W might be normalized such that the elements of each
column sum to one. This type of normalization is sometimes used in the new social
economics literature (Leenders 2002). Note that the column elements of a spatial
weights matrix display the impact of a particular unit on all other units, while the
row elements of a spatial weights matrix display the impact on a particular unit by
all other units. Consequently, row normalization has the effect that the impact on
each unit by all other units is equalized, while column normalization has the effect
that the impact of each unit on all other units is equalized.

Although common practice, row normalization is not free of criticism. Kelejian
and Prucha (2010) demonstrate that normalization of the elements of the spatial
weights matrix by a different factor for each row as opposed to a single factor is
likely to lead to misspecification problem. This problem occurs especially when an
inverse distance matrix is row normalized, because its economic interpretation in
terms of distance decay will then no longer be valid (Anselin 1988, pp. 23–24;
Elhorst 2001). There are (at least) two reasons for this. First of all, because of row-
normalization the spatial weights matrix may become asymmetric, as a result of
which the impact of unit i on unit j is not the same as that of unit j on unit
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i. Secondly, as a consequence of row normalization remote and central regions will
end up having the same impact, i.e. independent on their relative location. The
following example may illustrate this. Consider a centrally located spatial unit and
a remote unit that both have two neighbors. The distance of the first unit to its
neighbors is d, while the distance of the second unit to its neighbors is a multiple
of d. Despite this difference in location, the entries in the inverse distance matrix
describing the spatial arrangement of the units in the sample will be 1/2 in both
cases, provided that the spatial weights matrix is row-normalized.

If W0 denotes the spatial weights matrix before normalization, Elhorst (2001)
and Kelejian and Prucha (2010) propose a normalization procedure where each
element of W0 is divided by its largest characteristic root, r0,max, to get W =

(1/r0,max)W0.5 Alternatively, one may normalize W0 by W = D–1/2W0D–1/2, where
D is a diagonal matrix containing the row sums of the matrix W0. The first
operation has the effect that the characteristic roots of W0 are also divided by
r0,max, as a result of which rmax = 1, just like the largest characteristic root of a
row-normalized matrix. However, the smallest (purely) real characteristic root of a
matrix that is normalized by a single factor is generally not the same as that of a
matrix that is row-normalized. The second operation has been proposed by Ord
(1975) and has the effect that the characteristic roots of W are identical to the
characteristic roots of a row-normalized W0. Importantly, the mutual proportions
between the elements of W remain unchanged as a result of these two normal-
izations. This is an important property when W represents an inverse distance
matrix, since it avoids that this matrix would lose its economic interpretation of
distance decay.

2.5 The Parameter Space of d and k

To investigate the asymptotic properties of the GMM estimator, Kelejian and
Prucha (1998, 1999, and related work) presume that d is restricted to the interval
(-1, 1). This presumption is based on earlier work of Kelejian and Robinson
(1995), who demonstrate that the restriction 1/rmin \ d\ 1/rmax, before W is row-
normalized, may be unnecessarily restrictive since any first-order spatial autore-
gressive process is defined for every d as long as the matrix (IN-dW) is non-singular.
The following example taken from Elhorst (2001) illustrates this. Let N = 2 and
W the corresponding spatial weights matrix of two spatial units whose off-diagonal
elements are unity, as a result of which rmin = -1 and rmax = 1. If e * N(0, r2IN),
then Y * N(0, (1 ? d)/(1 - d 2)r2IN), which shows that the variance of Y is finite
when the variance of e is finite for every d unless d = 1/rmin or d = 1/rmax. In other
words, the matrix (IN-dW) is non-singular and its inverse is finite only when d is not

5 We use the symbol r rather that x to denote that both symmetric and asymmetric spatial
weights matrices are covered here.
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equal to the reciprocal of just one of the two characteristic roots of the spatial
weights matrix W (see Kelejian and Prucha 2010 for a generalization). According to
Bell and Bockstael (2000), this feature is rather curious. The values of d that make
the problem undefined are related directly to the characteristic roots of W, which
will change if the sample size changes. With no further restrictions, the problem is
characterized by a non-continuous parameter space, changing with the addition or
the elimination of any observation. To avoid these difficulties and to facilitate the
estimation of d, as well as to ensure the invertibility of the matrix (IN-dW), Ord
(1981) suggests to restrict d to 1/rmin \ d\ 1/rmax before W is row-normalized and
to 1/rmin \ d\ 1 after this. Kelejian and Robinson (1995), on their turn, suggest to
restrict d to -1 \ d\ 1, to stress the similarity between time-series and spatial
econometrics. A first-order serial autoregressive process

yt ¼ qyt�1 þ et ð2:6Þ

with T observations is stationary if q lies in the interval (-1, 1). However, the
same interval for a first-order spatial autoregressive process would be too
restrictive. For normalized spatial weights, the largest characteristic root is indeed
+1, but no general result holds for the smallest characteristic root, and the lower
bound will be typically less than -1.

Although there might be some similarities for first-order models, substantive
differences occur when considering second-order models. The time-series litera-
ture (see Beach and MacKinnon 1978, and the references therein) has pointed out
that a second-order serial autoregressive process

yt ¼ q1yt�1 þ q2yt�2 þ et ð2:7Þ

with T observations is stationary if q1 ? q2 \ 1, 1 ? q2 - q1 [ 0 and q2 [ -1.
These constraints define a triangular region with vertices at (-2, -1), (0, 1) and
(2, -1).

A second-order spatial autoregressive process takes the form

Y ¼ d1W1Yþd2W2Yþe ð2:8Þ

where W1 and W2 are assumed to be normalized. This model as well as some
extensions of it have been considered in many studies. Examples are Brandsma
and Ketellapper (1979), Sherrell (1990), Hepple (1995), Bell and Bockstael
(2000), Bordignon et al. (2003), Lacombe (2004), Allers and Elhorst (2005),
McMillen et al. (2007), Ward and Gleditsch (2008); Dall’Erba et al. (2008), El-
horst and Fréret (2009), Lee and Liu (2010), Badinger and Egger (2011), and
Elhorst et al. (2012). However, most of these studies do not specify a parameter
space for d1 and d2. Only Lee and Liu (2010) and Badinger and Egger (2011)
mention that the sum of the absolute values of the two spatial parameters should be
less than one (|d1| ? |d2| \ 1). However, it can be easily seen that this constraint
proves to be too restrictive. The fact that d in a first-order spatial autoregressive
process should lie in the interval (1/rmin, 1) immediately determines four coordi-
nates of the stationarity region: (1, 0) and (1/r1,min, 0) in case d2 = 0, and (0, 1)
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and (0, 1/r2,min) in case d1 = 0. These four coordinates define a region that is wider
than the one assumed in Lee and Liu (2010) and Badinger and Egger (2011).
Additionally, these four coordinates demonstrate that the stationarity region does
not coincide with the time-series version of the model.

Elhorst et al. (2012) have developed the following procedure to determine the
exact boundaries of the curves connecting these four coordinates, depending on the
specification of W1 and W2. Consider the four quadrants defined by the two axes in
Fig. 2.2 and the angle a between d1 and the hypotenuse (h) that connects the origin
with the coordinates of a point located at the border of the feasible region, denoted
by (d�1; d

�
2). Since tanðaÞ ¼ d�2=d

�
1, we get

d�2 ¼ tanðaÞd�1; for � 270�\a\� 90� or � 90�\a\90� ð2:9Þ

Consequently, Eq. (2.8) can be rewritten as

Y ¼ d�1½W1 þ tanðaÞW2�Y þ e ¼ d�1W�Y þ e ð2:10Þ

This implies that the model is stationary for the following parameter combi-
nations (depending on a)

0\d1\1=rmax½W��; 0� d2� tanðaÞ=rmax½W��; 0� � a\90� ð2:11aÞ

0\d1\1=rmax½W��; tanðaÞ=rmax½W��\d2\0; �90
�
\a\0

� ð2:11bÞ

d1 ¼ 0; 1=rmin½W2�\d2\0 a ¼ �90
� ð2:11cÞ

1=rmin½W��\d1\0; tanðaÞ=rmax½W�� � d2� 0; �180� � a\� 90� ð2:11dÞ

1=rmin½W��\d1\0; 0\d2\ tanðaÞ=rmin½W��; �270
�
\a\� 180

� ð2:11eÞ

d1 ¼ 0; 0\d2\1=rmax½W2�; a ¼ �270
� ð2:11fÞ

where rmax[.] and rmin[.] are the largest (positive) and smallest (negative) purely
real characteristic roots of the matrix in square brackets. When W1 and W2 are

δ2 

II I ( *
1δ , *

2δ ) 
h

α δ1 

III IV

Fig. 2.2 d1 and d2 and the
four quadrants in a
two-dimensional space
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normalized, the largest characteristic root of the matrix d1W1 ? d2W2 in the first
quadrant is d1 ? d2. This implies that the model is stationary for values of d1 and
d2 in the first quadrant if d1 ? d2 \ 1. This expression shows that the parameter
space in the first quadrant is independent of W1 and W2 and thus identical to both
the time-series form and the definition given by Lee and Liu (2010) and Badinger
and Egger (2011). The curves connecting the coordinates in the other quadrants,
depend on W1 and W2 and, therefore, might define different parameter spaces.

Elhorst et al. (2012) illustrate the potential shape of the stationarity region for
different pairs of spatial weights matrices. Typically, the stationarity region takes
the form graphed (in blue) in Fig. 2.3. In addition, Fig. 2.3 graphs the rhombus (in
red) implied by the restriction |d1| ? |d2| \ 1 and the triangle (in green) that
corresponds to the stationarity region of the second-order serial autoregressive
process.

The rhombus in Fig. 2.3 shows that the naïve adoption of the restriction
|d1| ? |d2| \ 1 in a second-order spatial autoregressive process is not recom-
mended, because it would lead to the exclusion of feasible and perhaps also
relevant parameter combinations. Up to now, positive spatial autocorrelation has
been encountered in empirical data more frequently than negative spatial auto-
correlation, and researchers tend to consider negative autocorrelation less relevant.
Typically, if a particular variable increases (decreases) in one area, it also tends to
increase (decrease) in neighboring areas. However, Griffith and Arbia (2010)
present three examples of negatively spatially autocorrelated phenomena that are

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5
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-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2.3 The potential shape of the stationarity region of a second-order spatial autoregressive
process (source Elhorst et al. 2012)
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all based on the economic notion of competitive locational processes. If the
manifestation of a certain phenomenon in one area is at the expense of its
neighboring areas, then negative spatial autocorrelation is likely to occur. Let
(d1,d2) = (0.8, -0.3) or (d1,d2) = (1.1,-0.3) be the outcome of a spatial econo-
metric model. Based on the restriction |d1| ? |d2| \ 1, these combinations of
values would be rejected but based on the results presented in this section, they
should not be excluded. Additionally, as discussed in Griffith and Arbia (2010),
they also make sense from a theoretical point of view.

The triangle that corresponds to the stationarity region of the second-order
serial autoregressive process shows that the naïve adoption of the time-series
region is not recommended either. It would not only lead to the exclusion of
feasible parameter combinations, but also to include some infeasible ones.

In other words, the knowledge of the exact boundary is important, both for
estimation and inference. More discussion on these issues can also be found in
LeSage and Pace (2011). Elhorst et al. (2012) have made a Matlab routine
downloadable for free on their web sites to determine the exact boundaries of any
second-order spatial autoregressive process.6

2.6 Methods of Estimation

Spatial econometric models can be estimated by maximum likelihood (ML) (Ord
1975), quasi-maximum likelihood (QML) (Lee 2004), instrumental variables (IV)
(Anselin 1988, pp. 82–86), generalized method of moments (GMM) (Kelejian and
Prucha 1998, 1999), or by Bayesian Markov Chain Monte Carlo methods
(Bayesian MCMC) (LeSage 1997). In the next two chapters we extensively discuss
the ML estimation procedure of (dynamic) spatial panel data models. Due to the
overlap with the ML estimation procedure of cross-sectional spatial econometric
models, this section only discusses some strengths and weaknesses of the different
estimation methods. Furthermore, updated overviews of these estimation methods
can be found in the Handbook of Regional Science that appeared in 2013.

One advantage of QML and IV/GMM estimators is that they do not rely on the
assumption of normality of the disturbances e. Nonetheless, both estimators
assume that the disturbance terms ei are independently and identically distributed
for all i with zero mean and variance r2. One disadvantage of the IV/GMM
estimator is the possibility of ending up with a coefficient estimate for d in the
SAR model or for k in the SEM model outside its parameter space. Whereas these
coefficients are restricted to the interval (1/rmin, 1) by the Jacobian term in the log-
likelihood function of ML estimators or in the conditional distribution of the
spatial parameter of Bayesian estimators, they are unrestricted using IV/GMM
since these estimators ignore the Jacobian term.

6 http://www.regroningen.nl/elhorst and http://community.wvu.edu/*djl041/.
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To avoid computational difficulties was one of the reasons to develop IV/GMM
estimators (Kelejian and Prucha, 1998, 1999). Estimation of spatial econometric
models involves the manipulation of N 9 N matrices, such as matrix multiplica-
tion, matrix inversion, the computation of characteristic roots and/or Cholesky
decomposition. These manipulations may be computationally intensive and/or
may require significant amounts of memory if N is large. Since IV/GMM esti-
mators ignore the Jacobian term, many of these problems could be avoided. In
Chap. 4 of their book, however, LeSage and Pace (2009) produce conclusive
evidence that many of these computational difficulties have become a thing of the
past for ML and Bayesian estimators.

In spite of this, Fingleton and Le Gallo (2007, 2008), Drukker et al. (2013) and
Liu and Lee (2013) show that IV/GMM estimators are extremely useful in those
cases where linear spatial dependence models contain one or more endogenous
explanatory variables (other than the spatially lagged dependent variable) that
need to be instrumented, because of measurement errors in explanatory variables,
omitted variables correlated with included explanatory variables, or because of the
existence of an underlying (perhaps unspecified or unknown) set of simultaneous
structural equations. ML or Bayesian estimators of single equation models with a
spatial lag (i.e. the spatial lag model and the spatial Durbin model) and additional
endogenous variables do not feature in the spatial econometrics literature and
would be difficult, if not impossible, to derive. The same applies to single equation
models with a spatial error process (i.e. the spatial error model and the spatial
Durbin error model). By contrast, models including a spatial lag and additional
endogenous variables can be straightforwardly estimated by two-stage least
squares (2SLS). To instrument the spatially lagged dependent variable, Kelejian
et al. (2004) suggest [X WX … WgX], where g is a pre-selected constant.7 Typi-
cally, researchers take g = 1 or g = 2, dependent on the number of regressors and
the type of model. One potential problem in case of the spatial Durbin model is
that g should be at least two, since this model already contains the variables X and
WX on the right-hand side. This means that the number of potential strong
instruments diminishes considerably.

If one or more of the explanatory variables are endogenous, the set of instru-
ments must be limited to [Xex WXex … WdXex], where ‘ex’ denotes the X variables
that are exogenous. Furthermore, this set should be used to instrument the addi-
tional endogenous explanatory variables. A similar type of extension applies to
Kelejian and Prucha’s (1999) GMM estimator for models including a spatial error
process together with endogenous explanatory variables (Fingleton and Le Gallo
2007). In addition, Fingleton and Le Gallo (2008) consider a mixed 2SLS/GMM
estimator of the Kelejian-Prucha model extended to include endogenous explan-
atory variables.

7 Lee (2003) introduces the optimal instrument 2SLS estimator, but Kelejian et al. (2004) show
that the 2SLS estimator based on this set of instruments has quite similar small sample properties.
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Liu and Lee (2013) consider the IV estimation of the spatial lag model with
endogenous regressors when the number of instruments grows with the sample
size. They suggest a bias-correction procedure based on the leading-order many-
instrument bias. To choose among different instruments, they also suggest mini-
mizing an approximation of the mean square error of both the 2SLS and bias-
corrected 2SLS estimators.

In an overview paper, Drukker et al. (2013) consider the GMM estimation of
the Kelejian-Prucha model with endogenous regressors. Since the model contains
more endogenous explanatory variables than WY, they suggest (p. 693) ‘‘to use a
set of instruments as above … augmented by other exogenous variables expected
to be part of the reduced form of the system’’.

One major weakness of spatial econometric models is that the spatial weights
matrix W cannot be estimated but needs to be specified in advance and that eco-
nomic theory underlying spatial econometric applications often has little to say
about the specification of W (Leenders 2002). For this reason, it has become
common practice to investigate whether the results are robust to the specification of
W. The same spatial econometric model is estimated, say, S times, every time with
a different spatial weights matrix, to investigate whether the estimation results are
sensitive to the choice of W. One advantage of the Bayesian MCMC estimator is
that it offers a criterion, the Bayesian posterior model probability, to select the
spatial weights matrix that best describes the data. Whereas tests for significant
differences between log-likelihood function values, such as the LR-test, can for-
mally not be used if models are non-nested (i.e. based on different spatial weights
matrices), Bayesian posterior model probabilities do not require nested models to
carry out these comparisons. The basic idea is to set prior probabilities equal to 1/S,
making each model equally likely a priori, to estimate each model by Bayesian
methods, and then to compute posterior probabilities based on the data and the
estimation results of this set of S models. Successful applications of this meth-
odology can be found in LeSage and Page (2009, Chap. 6) and Seldadyo et al.
(2010).

A Monte-Carlo study of Stakhovych and Bijmolt (2009) demonstrates that a
weights matrix selection procedure that is based on ‘goodness-of-fit’ criteria
increases the probability of finding the true specification. If a spatial interaction
model is estimated based on S different spatial weights matrices and the log-
likelihood function value of every model is estimated, one may select the spatial
weights matrix exhibiting the highest log-likelihood function value. However,
since LR-tests may formally not be used, one better selects the spatial weights
matrix exhibiting the highest Bayesian posterior model probability. Alternatively,
one may use J-type statistics to discriminate between different specifications of
W (Anselin 1986; Kelejian 2008; Burridge and Fingleton 2010; Burridge 2012).

Harris et al. (2011) criticize these empirical approaches, because they would
only find a local maximum among the competing spatial weights matrices and not
necessarily a correctly specified W (unless it is unknowingly included in the set of
competing matrices considered). However, the Monte Carlo results found by
Stakhovych and Bijmolt (2009) partly refute this critique. Although there is a
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serious probability of selecting the wrong spatial weights matrix if spatial
dependence is weak (d or k are relatively small in magnitude), the consequences of
this poor choice are limited because the coefficient estimates are quite close to the
true ones. Conversely, although the wrong choice of a spatial weights matrix can
distort the coefficient estimates severely, the probability that this really happens is
small if spatial dependence is strong (d or k are relatively large in magnitude).

Corrado and Fingleton (2012) strongly argue for the use of more substantive
theory in empirical spatial econometric modeling, especially regarding W. Despite
their criticism, they point out that alternatives to W that have been proposed by
e.g., Folmer and Oud (2008) and Harris et al. (2011), such as entering variables in
the regression model that proxy spillovers, also require identifying assumptions. In
other words, this approach also involves an a priori specification of the spatial
relation between units in the sample.

2.7 Direct and Indirect (or Spillover) Effects

Many empirical studies use the point estimates of one or more spatial regression
model specifications (d, h and/or k) to draw conclusions as to whether or not spatial
spillovers exist. One of the key contributions of LeSage and Pace’s book (2009,
p. 74) is the observation that this may lead to erroneous conclusions, and that a
partial derivative interpretation of the impact from changes to the variables of
different model specifications represents a more valid basis for testing this
hypothesis. To illustrate this, they give an example of a spatially lagged indepen-
dent variable WX whose coefficient is negative and insignificant (ibid, Table 3.3),
while it’s spatial spillover effect is positive and significant (ibid, Table 3.4). The
explanation for this can be seen by the derivation below.

By rewriting the general nesting spatial (GNS) model in (2.5a, b) as

Y ¼ ðI � dWÞ�1ðXbþWXhÞ þ R ð2:12Þ

where R is a rest term containing the intercept and the error terms, the matrix of
partial derivatives of the expected value of Y with respect to the kth explanatory
variable of X in unit 1 up to unit N in time can be seen to be

oEðYÞ
ox1k

: oEðYÞ
oxNk

h i
¼

oEðy1Þ
ox1k

: oEðy1Þ
oxNk

: : :
oEðyN Þ
ox1k

: oEðyN Þ
oxNk

2
64

3
75

¼ ðI � dWÞ�1

bk w12hk : w1Nhk

w21hk bk : w2Nhk

: : : :

wN1hk wN2hk : bk

2
6664

3
7775

ð2:13Þ
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where wij is the (i, j)th element of W. This result illustrates that the partial
derivatives of E(Y) with respect to the kth explanatory variable have three
important properties. First, if a particular explanatory variable in a particular unit
changes, not only will the dependent variable in that unit itself change but also the
dependent variables in other units. The first is called a direct effect and the second
an indirect effect. Note that every diagonal element of the matrix of partial
derivatives represents a direct effect, and that every off-diagonal element repre-
sents an indirect effect. Consequently, indirect effects do not occur if both d = 0
and hk = 0, since all off-diagonal elements will then be zero [see (2.13)].

Second, direct and indirect effects are different for different units in the sample.
Direct effects are different because the diagonal elements of the matrix (IN-dW)-1

are different for different units, provided that d = 0 [see the diagonal elements of
(2.13)]. Indirect effects are different because both the off-diagonal elements of the
matrix (IN-dW)-1 and of the matrix W are different for different units, provided
that d = 0 and/or hk = 0 [see the off-diagonal elements of (2.13)].

Third, indirect effects that occur if hk = 0 are known as local effects, as
opposed to indirect effects that occur if d = 0 and that are known as global effects.
Local effects got their name because they arise only from a unit’s neighborhood
set; if the element wij of the spatial weights matrix is non-zero (zero), then the
effect of xjk on yi is also non-zero (zero). Global effects got their name because
they also arise from units that do not belong to a unit’s neighborhood set. This
follows from the fact that the matrix (IN-dW)-1, in contrast to W, does not contain
zero elements (provided that d = 0) [see W and (IN-dW)-1 in (2.13)]. If both
d = 0 and hk = 0, both global and local effects occur which cannot be separated
from each other.

Since both the direct and indirect effects are different for different units in the
sample, the presentation of these effects is a problem. If we have N spatial units
and K explanatory variables, we obtain K different N 9 N matrices of direct and
indirect effects. Even for small values of N and K, it may already be rather difficult
to report these results compactly. To improve the surveyability of the estimation
results of spatial regression model specifications, LeSage and Pace (2009) there-
fore propose to report one summary indicator for the direct effect, measured by the
average of the diagonal elements of the matrix on the right-hand side of (2.13), and
one summary indicator for the indirect effect, measured by the average of either
the row sums or the column sums of the off-diagonal elements of that matrix. The
average row effect represents the impact on a particular element of the dependent
variable as a result of a unit change in all elements of an exogenous variable, while
the average column effect represents the impact of changing a particular element
of an exogenous variable on the dependent variable of all other units. However,
since the numerical magnitudes of these two calculations of the indirect effect are
the same, it does not matter which one is used. Generally, the indirect effect is
interpreted as the impact of changing a particular element of an exogenous vari-
able on the dependent variable of all other units, which corresponds to the average
column effect.
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2.7.1 Direct and Indirect Effects of Different Spatial
Econometric Models

The direct and indirect effects corresponding to the different spatial econometric
models introduced in Sect. 2.2 and presented in Fig. 2.1 and for an arbitrary spatial
weights matrix are reported in Table 2.1 (Halleck Vega and Elhorst 2012).

If the OLS model is adopted, the direct effect of an explanatory variable is equal
to the coefficient estimate of that variable (bk), while its indirect effect is zero by
construction. If the OLS model is augmented with a spatially autocorrelated error
term to obtain the SEM model, the direct and the indirect effects remain the same.
This is because the disturbances do not come into play when considering the
partial derivative of the dependent variable with respect to changes in the
explanatory variables (see [2.13]). This property also holds for the extension of the
SAR, SLX and the SDM model with spatial autocorrelation, i.e. the SAC, SDEM
and the GNS model, respectively.

If the SLX or the SDEM model is adopted, the direct effect of an explanatory
variable is equal to the coefficient estimate of that variable (bk), while its indirect
effect is equal to the coefficient estimate of its spatial lagged value (hk). The
advantage of these models is that the direct and indirect effects do not require
further calculations and that both these effects might be different from one
explanatory variable to another.

Things get complicated when moving to one of the other models due to the
multiplication with the spatial multiplier matrix (I-dW)-1. Whereas the direct effect
of the kth explanatory variable in the OLS, SEM, SLX and SDEM models is bk,
the direct effect in the SAR and SAC models is bk premultiplied with a number
that will eventually be greater than or equal to unity. This can be seen by
decomposing the spatial multiplier matrix as follows

ðI�dWÞ�1 ¼ I þ dW þ d2W2 þ d3W3. . . ð2:14Þ

Since the non-diagonal elements of the first matrix term on the right-hand side
(the identity matrix I) are zero, this term represents a direct effect of a change in
X only. Conversely, since the diagonal elements of the second matrix term on the
right-hand side (dW) were assumed to be zero (see Sect. 2.2), this term represents

Table 2.1 Direct and spillover effects of different model specifications

Direct effect Indirect effect

OLS/SEM bk 0
SAR/SAC Diagonal elements

of (I-dW)-1bk

Off-diagonal elements
of (I-dW)-1bk

SLX/SDEM bk hk

SDM/GNS Diagonal elements
of (I-dW)-1(bk ? Whk)

Off-diagonal elements
of (I-dW)-1(bk ? Whk)

Source Halleck Vega and Elhorst (2012)
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an indirect effect of a change in X only. Furthermore, since W is taken to the power
1 here, this indirect effect is limited to first-order neighbors only, i.e. the units that
belong to the neighborhood set of every spatial unit. All other terms on the right-
hand side represent second- and higher-order direct and indirect effects. Higher-
order direct effects arise as a result of feedback effects, i.e. impacts passing through
neighboring units and back to the unit itself (e.g. 1?2?1 and 1?2?3?2?1). It
is these feedback effects that are responsible for the fact that the overall direct
effect is eventually greater than unity.8

One important limitation of the spatial lag model is that the ratio between the
indirect and the direct effect of a particular explanatory variable is independent of
bk. This is because bk in the numerator and bk in the denominator of this ratio
cancel each other out. This property implies that the ratio between the indirect and
direct effects in the spatial lag model is the same for every explanatory variable,
and that its magnitude depends on the spatial autoregressive parameter d and the
specification of the spatial weights matrix W only. In many empirical applications,
this is not very likely.

If the SDM model is adopted, both the direct effect and the indirect effect of a
particular explanatory variable will also depend on the coefficient estimate hk of
the spatially lagged value of that variable (see Table 2.1). The result is that no
prior restrictions are imposed on the magnitude of both the direct and indirect
effects and thus that the ratio between the indirect and the direct effect may be
different for different explanatory variables, just as in the SLX and SDEM model.
Due to this flexibility, the SLX, SDM, SDEM models are a more attractive point of
departure in an empirical study than other spatial regression specifications.

Figure 2.1 and Table 2.1 seem to indicate that the best strategy to test for
spatial interaction effects and to determine indirect effects is to start with the most
general model. The direct and indirect effects of the GNS model, which were
derived in Eq. (2.13), are similar to those of the SDM model. However, one major
problem is that the parameters of this GNS model are only weakly identified. The
empirical illustration in Sect. 2.9 will show that the SDM and the SDEM models
are already difficult to distinguish from each other. This problem is strengthened
when estimating the GNS model; it often leads to a model that is overparame-
terized. Parameters have the tendency to become insignificant as a result of which
this model does not outperform the SDM and SDEM models.

8 This also holds if the spatial autoregressive parameter is negative. The first term that produces
feedback effects is d2W2. This term will always be positive. The second term is d3W3. Since d is
restricted to the interval (1/rmin, 1) and the non-negative elements of W after row-normalisation
are smaller than or equal to 1, the diagonal elements of d3W3 are smaller in absolute value than
those of d2W2. Since the series d2W2 ? d3W3 ? d4W4 ? … alternates in sign if d is negative, the
sum of the diagonal elements of the matrix represented by this series will always be positive.
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2.7.2 Testing for Spatial Spillovers

The estimated indirect effects of the independent explanatory variables should
eventually be used to test the hypothesis as to whether or not spatial spillovers
exist, rather than the coefficient estimate of endogenous interaction effects (WY)
and/or the coefficients estimates of the exogenous interaction effects (WX).
However, one difficulty is that it cannot be seen from the coefficient estimates and
the corresponding standard errors or t-values (derived from the variance–covari-
ance matrix) whether the indirect effects in models containing endogenous inter-
action effects (SAR, SAC, SDM, GNS) are significant. This is because the indirect
effects are composed of different coefficient estimates according to complex
mathematical formulas and the dispersion of these indirect effects depends on the
dispersion of all coefficient estimates involved (see Table 2.1). For example, if the
coefficients d, bk and hk in the spatial Durbin model happen to be significant, this
does not automatically mean that the indirect effect of the kth explanatory variable
is also significant. Conversely, if one or two of these coefficients are insignificant,
the indirect effect may still be significant.

One possible way to calculate the dispersion of the direct and indirect effects is
to apply formulas for the sum, the difference, the product and the quotient of
random variables (see, among others, Mood et al. 1974, pp. 178–181). However,
due to the complexity of the matrix of partial derivatives and because every
empirical application will have its own unique number of observations (N) and
spatial weights matrix (W), it is almost impossible to derive one general approach
that can be applied under all circumstances. In order to draw inferences regarding
the statistical significance of the direct and indirect effects, LeSage and Pace
(2009, p. 39) therefore suggest simulating the distribution of the direct and indirect
effects using the variance–covariance matrix implied by the maximum likelihood
estimates.

The variance–covariance matrix of the parameter estimates of the GNS model
takes the form (rewritten from Anselin 1988, pp. 64–65 without heteroskedasticity)

Varðâ; b̂; ĥ; d̂; k̂; r̂2Þ

¼

1
r2 ðB~XÞT B~X 1

r2 ðB~XÞT B ~Wd
~Xĉ

: traceð ~Wd
~Wd þ B ~WdB�1Þ þ 1

r2 ðB ~Wd
~XĉÞTðB ~Wd

~XĉÞ
: :

: :

2
66664

0 0

traceð ~WT
k B ~WdB�1 þW ~WdB�1Þ 1

r2 traceðB ~WdB�1Þ
traceð ~Wk

~Wk þ ~WT
k

~WkÞ 0

: N
2r4

3
77775

�1

ð2:15Þ
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where B ¼ I � k̂W, ~Wd ¼ WðI � d̂WÞ�1, ~Wk ¼ WðI � k̂WÞ�1, ~X ¼
iN X WX½ � and ĉ ¼ â b̂T ĥT

� �T
to simplify notation. Since this matrix is

symmetric the lower diagonal elements are not shown.
One particular parameter combination drawn from this variance–covariance

matrix (indexed by d) can be obtained by

½ ad bT
d hT

d dd kd r2
d �

T ¼ PT#þ ½ â b̂ ĥ d̂ k̂ r̂2 �T ð2:16Þ

where P denotes the upper-triangular Cholesky decomposition of the variance–
covariance matrix and # is a vector of length 4 ? 2K (the number of parameters
that have been estimated) containing random values drawn from a normal distri-
bution with mean zero and standard deviation one. If D parameter combinations
are drawn like this9 and the (in)direct effect of a particular explanatory variable is
determined for every parameter combination, the overall (in)direct effect can be
approximated by computing the mean value over these D draws and its signifi-
cance level (t-value) by dividing this mean by the corresponding standard devia-
tion. If lkd denotes the indirect effect of the kth explanatory variable of draw d, the
overall indirect effect over all draws and the corresponding t-value will be

�lk (ind: eff: kth var:Þ ¼ 1
D

XD

d¼1

lkd ð2:17aÞ

t - value of ind:eff: kth var:ð Þ ¼ �lk

,
1

D� 1

XD

d¼1

ðlkd � �lkÞ2
" #

ð2:17bÞ

Given the t-value of this indirect effect, one can finally test whether the kth
variable causes spatial spillover effects.

There are two possible approaches to program this. One is to determine the
matrix on the right-hand side of (2.13) for every draw and then to calculate the
direct and indirect effects corresponding to this draw. The disadvantage of using
this approach is that (IN-dW) needs to be inverted for every draw, which will be
rather time-consuming and even might break down due to memory problems in
case N is large. The other approach, proposed by LeSage and Pace (2009,
pp. 114–115), is to exploit the decomposition shown in Eq. (2.14) and to store the
traces of the matrices I up to and including W100 on the right-hand side of (2.14) in
advance. The calculation of the direct and indirect effects then no longer requires
the inversion of the matrix (IN-dW) for every parameter combination drawn from
the variance–covariance matrix in (2.15), but only a matrix operation based on the
stored traces which, as a result, does not require much computational effort.

9 The default value is 1,000, but for models with large N this number might be decreased.
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2.8 Software

Software packages and/or routines to estimate spatial econometric models are
Stata, Geoda, R and Matlab. The latter three are all freely downloadable. The
results to be reported in the next section have been estimated using Matlab rou-
tines. At www.spatial-econometrics.com, the routines SAR, SEM and SAC can be
downloaded, written by James LeSage, to estimate to SAR, SEM and SAC models,
respectively. By changing the argument X of these routines into [X WX] it is also
possible to estimate the SDM, SDEM and GNS models.

One disadvantage of the routines made available at this Web site is that the
Jacobian term, ln| IN-dW |, ln| IN-kW | or both, in the log-likelihood functions of
these models is approached by a numerical approach. To overcome potential
numerical difficulties one might face in evaluating the log determinant, Pace and
Barry (1997) and Barry and Pace (1999) propose computing this determinant once
over a grid of values for the parameter d (k) ranging from 1/rmin to 1/rmax prior to
estimation. This only requires the determination of the smallest and largest
characteristic root of W. They suggest a grid based on 0.001 increments for d over
the feasible range. Given these predetermined values for the determinant of (IN-
dW), one can quickly evaluate the log determinant of (IN-dW) for a particular
value of d. To compute the log determinant over the feasible range for small values
of N (\ 500), they compute Rilog|1ii|, where 1ii (i = 1,…, N) denotes the diagonal
elements of the upper triangular LU decomposition matrix of (IN-dW). When the
sparse structure of the spatial weights matrix is exploited, the required computa-
tion time of this decomposition can be reduced from order N3 to order N2. For
larger values of N (� 500), they suggest approaching the log determinant for a
particular value of d over the feasible range by

1
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j¼1
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k¼1
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.
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dk�k
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ð2:18Þ

where zj denotes an N 9 1 vector of independent standard normal variates. The
precision of this estimate can be manipulated by means of the tuning parameters
J (the number of simulations generated over which the estimate is averaged) and
H (the number of elements in the sum of ratios of quadratic forms). The required
computation time of this simulation approach can be reduced to order NlogN and
allows for the estimation of models with very large numbers of observations in the
cross-sectional domain.

The disadvantage of this approach is that the parameter estimate of d (k) and
therefore of b changes slightly every time the routine is run again. Generally,
researchers do not appreciate this. This problem can be avoided by calculating the
log determinant by

ln jI � dWj ¼
X

i
lnð1� dxiÞ ð2:19Þ
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where xi (i = 1,…,N) denote the characteristic roots of W. Generally, this cal-
culation works well for values of N smaller than 1,000. At www.regroningen.nl the
routines SARp, SEMp and SACp have been made available, written by Paul
Elhorst, to estimate the SAR, SEM and SAC models based on (2.19). Furthermore,
by changing the argument X of these routines into [X WX] it is also possible to
estimate the SDM, SDEM and GNS models. The advantage of these routines is
that the estimation results will be exactly the same every time this routine is run.10

The routine ‘‘demo_crime_rates’’ posted at this Web site can be used to reproduce
the estimation results reported in Tables 2.2 and 2.3 in the next section. By
changing the specification of Y, X, W and N in these routines and by reading a
different data set, researchers can use this file to estimate these models for their
own research problems.

2.9 Empirical Illustration

To demonstrate the performance of the different spatial econometric models in an
empirical setting, Anselin’s (1988) cross-sectional dataset of 49 Columbus, Ohio
neighborhoods is used to explain the crime rate as a function of household income
and housing values. The spatial weights matrix W is specified as a row-normalized
binary contiguity matrix, with elements wij = 1 if two spatial neighborhoods share
a common border, and zero otherwise. It should be stressed that this specification
of the spatial weights matrix is also used in Anselin (1988). The estimation results
are reported in Table 2.2 and the direct and spatial spillover effects in Table 2.3.
Eight different models are considered. The GNS model includes all types of
interaction effects, while the other models ignore one or more interaction effects. If
a particular entry in Table 2.2 is empty, the interaction effect reported in the left
column is not present in the model. The parameter estimates are obtained by
applying ML.

One of the main questions is which model best describes the data. One of the
criterions that may be used for this purpose is the likelihood ratio (LR) test based
on the log-likelihood function values of the different models. The LR test is based
on minus two times the difference between the value of the log-likelihood function
in the restricted model and the value of the log-likelihood function of the unre-
stricted model: -2*(logLrestricted - logLunrestricted). This test statistic has a Chi
squared distribution with degrees of freedom equal to the number of restrictions
imposed.

10 One of the constants in the log-likelihood function of the routines of James LeSage is ln(p),
while this should be ln(2p). This error is probably based on Anselin’s (1988) textbook, where the
same mistake is made. See, e.g., Eqs. (6.15), (8.4), and p. 181. This innocent error has been
removed from the SARp, SEMp and SACp routines.
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The log-likelihood function value of the OLS model increases from 13.776 to
17.075 when this model is extended to include exogenous interaction effects (WX),
known as the SLX model. The LR-test of the SLX model versus the OLS model
takes the value of 6.598 with 2 degrees of freedom (df), while the 5 % critical
value is 6.0. This implies that the OLS model needs to be rejected in favor of the
SLX model. However, if the OLS is extended to include endogenous interaction
effects (WY) or interaction effects among the error terms (Wu), the log-likelihood
function value increases even more, even though in these two cases only one
interaction effect is added to the model. Whether it is this SAR or SEM model that
better describes the data is difficult to say, since these two models are not nested.
One solution is to test whether the spatial lag model or the spatial error model is
more appropriate to describe the data, provided that the OLS model is taken as
point of departure. For this purpose, one may use the classic LM-tests proposed by
Anselin (1988), or the robust LM-tests proposed by Anselin et al. (1996).11 Both
the classic and the robust tests are based on the residuals of the OLS model and
follow a Chi squared distribution with 1 degree of freedom. Using the classic tests,
both the hypothesis of no spatially lagged dependent variable and the hypothesis of
no spatially autocorrelated error term must be rejected at five per cent significance;
the LM test for the spatial lag amounts to 9.36 and for the spatial error to 5.72.
When using the robust tests, the hypothesis of no spatially lagged dependent
variable must still be rejected, though only at ten per cent significance, whereas the
hypothesis of no spatially autocorrelated error term can no longer be rejected; the
robust LM test for the spatial lag amounts to 3.72 and for the spatial error to 0.08.
This indicates that on the basis of these robust LM tests the spatial lag model is
more appropriate.

Another solution is to consider the SAC model, which considers both endog-
enous interaction effects and interaction effects among the error terms, and
therefore nests both the SAR and SEM models. The SAC model produces coef-
ficient estimates of the WY and the Wu variables that are not significantly different
from their counterparts in the SAR model and the SEM model, respectively.12

Similarly, the LR-test of the SAC model versus the SAR model takes the value of
0.312 with 1 df, and the LR-test of the SAC model versus the SEM model the
value of 2.292 with 1 df, while the 5 % critical value in both cases is 3.84. This
implies that it is difficult to choose among these three models. However, since the
coefficient of WY is significant in the SAC model, whereas the coefficient of Wu is
not, and the log-likelihood function value of the SAR model is higher than that of
the SEM model, the SAR model seems to be the better choice.

11 The latter tests are called robust because the existence of one type of spatial dependence does
not bias the test for the other type of spatial dependence.
12 The coefficient of the spatially autocorrelated error term in the SAC model amounts to 0.166.
The corresponding t-value is so low that this coefficient plus two times its standard error also
covers the coefficient estimate of the spatially autocorrelated error term in the SEM model of
0.562. The fact that the latter is significant does not change this conclusion.
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Another way to look at the SAR, SEM and SLX models, on their turn, is to
consider the SDM model, since the SDM model nests these three models. The
SDM appears to outperform the SLX model (LR-test 54.370, 2 df, critical value
5.99), but not the SAR model (LR-test 1.994, 1 df, critical value 3.84) and the
SEM model (LR-test 3.974, 2 df, critical value 5.99). Alternatively, one might
consider the SDEM model which also nests the SLX and the SEM models. The
SDEM model also appears to outperform the SLX model (LR-test 53.998, 1 df,
critical value 3.84) but not the SEM model (LR-test, 3.592, 1 df, critical value
3.84). Whether it is the SDM model or the SDEM model that better describes the
data is difficult to say, since these two models are not nested. Unfortunately,
estimation of the GNS model which nests these two models does not provide an
answer. The increase of the log-likelihood function value when estimating this
model is so small that, on the basis of the results reported in Table 2.2, it is
impossible to draw any conclusion as to whether it is SDM, SDEM or GNS that
best describes the data. In contrast to the SAC model, the extension to the GNS
model also provides no answer whether endogenous interaction or error correlation
effects are more important.

We now consider the direct and indirect effects estimates of the different
explanatory variables (see Sect. 2.7) to see whether they can be used as an
additional mean to select the best model. The general pattern that emerges from
Table 2.3 is the following. First, the differences between the direct effects and the
coefficient estimates reported in Table 2.2 are relatively small. In the OLS, SEM,
SLX and SDEM models they are exactly the same by construction; in the SAR,
SDM, SAC and the GNS models they may be different due to the endogenous
interaction effects WY. These interaction effects cause feedback effects, i.e.,
impacts affecting crime rates in certain neighborhoods that pass on to surrounding
neighborhoods and back to the neighborhood instigating the change. For example,
the direct effect of the income variable in the GNS model amounts to -1.032,
while the coefficient estimate of this variable is -0.951. This implies that the
feedback effect is -1.032-(-0.951) = -0.081. This feedback effect corresponds
to 8.5 % of the coefficient estimate.

Second, the differences between the direct effects estimates in the different
models appear to be relatively small. The direct effects of the income variable
range between -0.942 in the SEM model and -1.109 in the SLX model. Only in
the OLS model the magnitude of the direct effect of -1.597 is much greater. Just
as the LM and LR test results, it indicates that the OLS model needs to be rejected.
Since this model accounts neither for spatial interaction effects nor for spatial
spillover effects, the direct effect is overestimated (in absolute value). Similarly,
the coefficient of the house value variable ranges between -0.274 in the OLS
model and -0.302 in the SEM model. Overall, it seems as if it does not matter
which model is used to obtain the direct effects estimates. Also the t-values do not
differ to any great extent, except for the t-value of the direct effect generated for
the house value variable. There are two explanations for this. One is that the
significance level of the spatial autoregressive coefficient of the WY variable in the
GNS models falls considerably, because this variable competes with the spatial
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autocorrelation coefficient of the Wu variable. This result also occurred in the SAC
model. If endogenous interaction effects and interaction effects among the error
terms are separated from each other, both coefficients turn out to be significant, but
if they are combined both become insignificant. Another explanation is that the t-
values of the coefficient estimates in the different models are relatively stable,
except for the GNS model. The t-values of the variables in this model have the
tendency to go down.

In contrast to the direct effects estimates, the differences between the spillover
effects are extremely large. Still, one can observe some general patterns. The OLS,
SAR, SEM and SAC models produce no or wrong spillover effects compared to
the SDM, SDEM and GNS models. For example, whereas the spillover effect of
the house value variable is positive in the SLX, SDM, SDEM and GNS models, it
is zero by construction in the OLS and SEM models, negative in the SAC model,
and negative and weakly significant in the SAR model. The negative and also
weakly significant effect in the SAR model can be explained by the fact that this
model suffers from the problem that the ratio between the spillover effect and the
direct effect is the same for every explanatory variable. Consequently, this model
is too rigid to model spillover effects adequately. The negative but insignificant
effect in the SAC model can be explained by the fact that this model resembles the
SAR model: the spatial autocorrelation coefficient of Wu appears to be insignifi-
cant, whereas the spatial autoregressive coefficient of WY does not, as a result of
which the SAC model is hampered by the same problem as the SAR model. This
was pointed out earlier in Table 2.1; mathematically, the SAR and SAC models
share the same direct and indirect effects estimates.

The spillover effects produced by the SLX, SDM, SDEM and GNS models are
more or less comparable to each other. In these models, the spillover effect of the
income variable ranges from -1.157 to -1.477 and of the house value variable
from 0.112 to 0.192. By contrast, the t-values do not. The t-values in the SLX
model are relatively high. This can be explained by the fact that the SLX has been
rejected in favor of the SDM and the SDEM models based on the LR tests.
Furthermore, the t-values in the GNS model are relatively low. As recently pointed
out by Gibbons and Overman (2012), the explanation for this finding is that
interaction effects among the dependent variable on the one hand and interaction
effects among the error terms on the other hand are only weakly identified.
Considering them both, as in the GNS model, strengthens this problem; it leads to
a model that is overparameterized, as a result of which the significance levels of all
variables tend to go down. This finding is worrying since the interpretation of both
types of interaction effects is completely different. A model with endogenous
interaction effects posits that the crime rate in one neighborhood depends on that in
other neighborhoods, and on a set of neighborhood characteristics. By contrast, a
model with interaction effects among the error terms assumes that the crime rate in
one neighborhood depends on a set of observed neighborhood characteristics and
unobserved characteristic omitted from the model that neighborhoods have in
common. Nevertheless, both models appear to produce spillover effects that are
comparable to each other, both in terms of magnitude and significance.
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2.9.1 Conclusion

The conclusion from the empirical analysis is twofold. First, for various reasons
the OLS, SAR, SEM, SLX, SAC and GNS models need to be rejected. The OLS
and SLX models are outperformed by other, more general models. The spillover
effects of the SEM model are zero by construction, while the results of more
general models show that the spillover effect of the income variable is significant.
The SAR and SAC models suffer from the problem that the ratio between the
spillover effect and the direct effect is the same for every explanatory variable.
Consequently, the spillover effect of the housing value variable gets a wrong sign.
Finally, the GNS model is overparameterized, as a result of which the t-values of
the coefficient estimates and the effects estimates have the tendency to go down. In
sum, only the SDM and SDEM model produce acceptable results. Second, it is not
clear which of these two models best describes the data. Even though both models
produce spillover effects that are comparable to each other, both in terms of
magnitude and significance, this is worrying since these two models have a dif-
ferent interpretation.

2.10 Conclusion

Originally, the central focus of spatial econometrics has been on the spatial lag
model (SAR) and the spatial error model (SEM) with one type of interaction effect.
The results shown in this chapter make clear that this approach is too limited and
that the focus should shift to the spatial Durbin model (SDM) and the spatial
Durbin error model (SDEM). At the same time, new test procedures should be
developed to choose among these two models, which is difficult because both
models tend to produce spillover effects that are comparable to each other in terms
of magnitude and significance, and because interaction effects among the depen-
dent variable on the one hand and interaction effects among the error terms on the
other hand are only weakly identified. Precisely for this reason, the general nesting
spatial (GNS) model is not of much help either. It generally leads to a model that is
overparameterzed, as a result of which the significance levels of the variables tend
to go down.

Recently, Gibbons and Overman (2012) criticized the SAR, SEM and SDM
models. They demonstrate that the reduced form of these models is similar to a
model with first, second and higher order exogenous interaction effects, and argue
that this reduced form can hardly be distinguished from the SLX model that only
contains first order exogenous interaction effects.

Another major weakness of spatial econometric models is that the spatial
weights matrix W needs to be specified in advance, although there are exceptions,
and that economic theory underlying spatial econometric applications often has
little to say about the specification of W. For this reason, it has become common
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practice to investigate whether the results are robust to the specification of W, or to
test different specifications against each other using the log-likelihood function
value, Bayesian posterior model probabilities, or the J-test. In this respect, Corrado
and Fingleton (2012) strongly argue for the use of more substantive theory in
empirical spatial econometric modeling, especially regarding the modeling of W.

In view of these critical notes, Halleck Vega and Elhorst (2012) are currently
doing research on finding a better and broader13 modeling strategy to determine
the spatial econometric model, including the spatial weights matrix W, that best
describes the data.
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Chapter 3
Spatial Panel Data Models

Abstract This chapter provides a survey of the specification and estimation of
spatial panel data models. Five panel data models commonly used in applied
research are considered: the fixed effects model, the random effects model, the
fixed coefficients model, the random coefficients model, and the multilevel model.
Today a (spatial) econometric researcher has the choice of many models. First, he
should ask himself whether or not, and, if so, which type of spatial interaction
effects should be accounted for. Second, he should ask himself whether or not
spatial-specific and/or time-specific effects should be accounted for and, if so,
whether they should be treated as fixed or as random effects. A selection frame-
work is demonstrated to determine which of the first two types of spatial panel data
models considered in this chapter best describes the data. The well-known Baltagi
and Li (2004) panel dataset, explaining cigarette demand for 46 US states over the
period 1963 to 1992, is used to illustrate this framework in an empirical setting.

Keywords Spatial panels � Estimation � Bias correction � Fixed vs. Random �
Model comparison � Spatial spillover effects � Cigarette demand

3.1 Introduction

The spatial econometrics literature has exhibited a growing interest in the speci-
fication and estimation of econometric relationships based on spatial panels since
the turn of this century. This interest can be explained by the increased availability
of more data sets in which a number of spatial units are followed over time, and by
the fact that panel data offer researchers extended modeling possibilities as
compared to the single equation cross-sectional setting, which was the primary
focus of the spatial econometrics literature for a long time.

The extension of the general nesting spatial model for a cross-section of
N observations, presented in Eq. (2.5), to a space-time model for a panel of
N observations over T time periods is obtained by adding a subscript t, which runs
from 1 to T, to the variables and the error terms of that model

J. P. Elhorst, Spatial Econometrics, SpringerBriefs in Regional Science,
DOI: 10.1007/978-3-642-40340-8_3, � The Author(s) 2014
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Yt ¼ dWYt þ aiN þ XtbþWXthþ ut ð3:1aÞ

ut ¼ kWut þ et ð3:1bÞ

This model can be estimated along the same lines as the cross-sectional model,
provided that all notations are adjusted from one cross-section to T cross-sections
of N observations. The same applies to the other spatial econometric models which
can be obtained by imposing restrictions on one or more parameters of the
parameters in the GNS model: OLS, SAR, SEM, SLX, SAC, SDM, and SDEM.
These restrictions are similar to those shown in Fig. 2.1.

The main objection to pooling the data like this is that the resulting model does
not account for spatial and temporal heterogeneity. Spatial units are likely to differ
in their background variables, which are usually space-specific time-invariant
variables that do affect the dependent variable, but which are difficult to measure
or hard to obtain. Examples of such variables abound: one spatial unit is located at
the seaside, the other just at the border; one spatial unit is a rural area located in the
periphery of a country, the other an urban area located in the center; norms and
values regarding labor, crime and religion in one spatial unit might differ sub-
stantially from those in another unit, etc. Failing to account for these variables
increases the risk of obtaining biased estimation results. One remedy is to intro-
duce a variable intercept li representing the effect of the omitted variables that are
peculiar to each spatial unit considered. In sum, spatial specific effects control for
all time-invariant variables whose omission could bias the estimates in a typical
cross-sectional study.

Similarly, the justification for adding time-period specific effects ntð Þ is that
they control for all spatial-invariant variables whose omission could bias the
estimates in a typical time-series study (Arrelano 2003; Hsiao 2003; Baltagi 2005).
Examples of such variables also exist: one year is marked by economic recession,
the other by a boom; changes in legislation or government policy can significantly
affect the functioning of an economy as from the date of implementation, as a
result of which before and after observations might be significantly different from
one another.

The space–time model in (3.1) extended with spatial specific and time-period
specific effects reads as

Yt ¼ qWYt þ aiN þ XtbþWXthþ lþ ntiN þ ut ð3:2aÞ

ut ¼ kWut þ et ð3:2bÞ

where l ¼ l1; . . .;lNð ÞT . The spatial and time-period specific effects may be
treated as fixed effects or as random effects. In the fixed effects model, a dummy
variable is introduced for each spatial unit and for each time period (except one to
avoid perfect multicollinearity), while in the random effects model, li and nt are
treated as random variables that are independently and identically distributed with
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zero mean and variance r2
l and r2

n, respectively. Furthermore, it is assumed that the
random variables li; nt and eit are independent of each other.

The discussion on the stationarity conditions on the spatial weights matrix W,
the normalization procedure of W, the parameter space on which d and k are
defined, and the direct and indirect effects discussed in the previous chapter also
apply to the models that will be presented in this chapter. One difference is that the
assumption that the row and column sums of W before row-normalization should
not diverge to infinity at a rate equal to or faster than the rate of the sample size N,
which is made in the cross-sectional setting, is not explicitly made in a panel data
setting. In this respect, a couple of studies have paid attention to a spatial weights
matrix with equal weights, that is, a matrix where all off-diagonal elements are
defined as 1/(N-1). Lee (2004) and Kelejian and Prucha (2002) prove that this
matrix leads to inconsistent parameter estimates in a cross-sectional setting, since
the ratio between the row sums of this matrix before normalization and the sample
size, (N-1)/N, converges to one instead of zero as N goes to infinity. By contrast,
in a panel data setting, this spatial weights matrix causes no problems, provided
that time-period effects are not included (see Kelejian and Prucha 2002; Kelejian
et al. 2006). However, if time-period fixed effects are also considered, the esti-
mators to be discussed in this chapter become inconsistent again if this situation
occurs.

The organization of this chapter is as follows. First, the estimation procedure of
standard panel data models, the fixed effects and random effects model, without
any spatial interaction effects is discussed in Section 3.2. Next, Section 3.3 out-
lines the modifications that are needed to estimate the fixed effects model and the
random effects model extended to include endogenous interaction effects or
interaction effects among the error terms. It is to be noted that these two extensions
also cover the SDM and SDEM models. The only thing that needs to be changed is
extending the set of explanatory variables to include exogenous interaction effects,
X = [X WX]. The estimation method of the SAR model can then be used to
estimate the SDM model and of the SEM model to estimate the SDEM model. In
contrast to the previous chapter, the SAC and GNS models are not considered
since their empirical relevance appeared to be relatively small. Section 3.4 dis-
cusses the pros and cons of treating the spatial and time-period specific effects as
fixed or random. Section 3.5 deals with issues relevant for model comparison and
selection that have not been discussed in the previous chapter, and that require
attention when having data in panel. In Section 3.6, a demand model for cigarettes
is estimated based on panel data from 46 U.S. states over the period 1963–1992 to
empirically illustrate the different spatial econometric models and their effects
estimates. This data set is taken from Baltagi (2005) and has been used for
illustration purposes in many other studies too. Two routines will be presented to
help the researcher choose among different spatial econometric models. The first
routine provides (robust) LM tests, generalizing the classic LM-tests proposed by
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Burridge (1980) and Anselin (1988) and the robust LM-tests proposed by Anselin
et al. (1996) from a cross-sectional setting to a spatial panel setting.1 The second
routine contains a framework to test the spatial lag, the spatial error model, and the
spatial Durbin model against each other, as well as a framework to choose among
fixed effects, random effects or a model without fixed/random effects.

Although the fixed or random effects model accommodates spatial (and tem-
poral) heterogeneity to a certain extent, the problem remains as to whether the data
in such a model are pooled correctly. When spatial heterogeneity is not completely
captured by the intercept, a natural generalization is to let the slope parameters of
the regressors vary as well. The slope parameters can also be considered fixed or
randomly distributed between spatial units. Section 3.7 deals with these fixed and
random coefficients models. Section 3.8 continues with multi-level models which
consist of a mix of fixed and random coefficients. These models are useful when
analyzing data at two or more different levels, such as regions within different
countries of the European Union. Section 3.9 considers the spatial SUR model,
which are different from fixed and random coefficient models in that the coeffi-
cients do not vary over space but over time or over different dependent variables.
Finally, Section 3.10 concludes.

3.2 Standard Models for Spatial Panels

To explain the estimation procedure of the fixed and random effects model in this
section and the extensions with spatial interaction effects in the next section, the
notation in vector form is left for the moment. Instead, a notation in terms of
individual observations is used. In addition to this, time-specific effects are left
aside. It simplifies notation, while the extension with time-specific effects is
straightforward, unless otherwise stated.

A pooled linear regression model with spatial specific effects but without spatial
interaction effects reads as

yit ¼ xitbþ li þ eit ð3:3Þ

where i is an index for the cross-sectional dimension (spatial units), with
i ¼ 1; . . .;N, and t is an index for the time dimension (time periods), with
t ¼ 1; . . .; T . In the remainder of this book it is assumed that the data are sorted
first by time and then by spatial unit, whereas the classic panel data literature tends
to sort the data first by spatial unit and then by time. When yit and xit of these

1 Baltagi et al. (2003) are the first to consider the testing of spatial interaction effects in a spatial
panel data model. They derive a joint LM test which tests for spatial error autocorrelation and
spatial random effects, as well as two conditional tests which test for one of these extensions
assuming the presence of the other.
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T successive cross-sections of N observations are stacked, an NT 9 1 vector is
obtained for Y and an NT 9 K matrix for X.

3.2.1 Fixed Effects Model

If the spatial specific effects are treated as fixed effects, the parameters of the
model in (3.3) can be estimated in three steps. First, the spatial fixed effects li are
eliminated from the regression equation by demeaning the y and x variables. This
transformation takes the form

y�it ¼ yit �
1
T

XT

t¼1

yit and x�it ¼ xit �
1
T

XT

t¼1

xit ð3:4Þ

Second, the transformed regression equation y�it ¼ x�itbþ e�it is estimated by

OLS: b ¼ X�T X�
� ��1

X�T Y� and r2 ¼ Y� � X�bð ÞT Y��X�bð Þ= NT�N�Kð Þ. This
estimator is known as the least squares dummy variables (LSDV) estimator. The
main advantage of the demeaning procedure is that the computation of b involves
the inversion of a K � K matrix rather than (K ? N) 9 (K ? N) as in (3.3). This
would slow down the computation and worsen the accuracy of the estimates
considerably for large N.

Instead of estimating the demeaned equation by OLS, it can also be estimated
by ML. Since the log-likelihood function of the demeaned equation is

LogL ¼ �NT

2
log 2pr2
� �

� 1
2r2

XN

i¼1

XT

t¼1

y�it � x�itb
� �2 ð3:5Þ

the ML estimators of b and r2 are b ¼ X�T X�
� ��1

X�T Y� and
r2 ¼ Y��X�bð ÞT Y��X�bð Þ

�
NT , respectively. In other words, the ML estimator

of r2 is slightly different from the LSDV estimator in that it does not correct for
degrees of freedom. The asymptotic variance matrix of the parameters is (see
Greene 2008, p. 519)

Asy:Varðb; r2Þ ¼
1
r2 X�T X� 0

0 NT
2r4

� ��1

ð3:6Þ

Finally, the spatial fixed effects may be recovered by

li ¼
1
T

XT

t¼1

yit � xitbð Þ; i ¼ 1; . . .;N ð3:7Þ

It should be stressed that the spatial fixed effects can only be estimated con-
sistently when T is sufficiently large, because the number of observations available
for the estimation of each li is T. Importantly, sampling more observations in the
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cross-sectional domain is no solution for insufficient observations in the time
domain, since the number of unknown parameters increases as N increases, a
situation known as the incidental parameters problem. Fortunately, the inconsis-
tency of li is not transmitted to the estimator of the slope coefficients b in the
demeaned equation, since this estimator is not a function of the estimated li.
Consequently, the incidental parameters problem does not matter when b are the
coefficients of interest and the spatial fixed effects li are not, which is the case in
many empirical studies. Finally, it should be stressed that the incidental parameters
problem is independent of the extension of the model with spatial interaction
effects.

In case the spatial fixed effects li do happen to be of interest, their standard
errors may be computed as the square roots of their asymptotic variances (see
Greene 2008, p. 196).

Asy:Var l̂ið Þ ¼
r̂2

T
þ r̂2 1

T

XT

t¼1

xit

 !
X�T X�
� ��1 1

T

XT

t¼1

xit

 !T

ð3:8Þ

An alternative and equivalent formulation of (3.3) is to introduce a mean
intercept a, provided that Rili ¼ 0. Then the spatial fixed effect li represents the
deviation of the i-th spatial unit from the individual mean (see Hsaio 2003, p. 33).

3.2.2 Random Effects Model

To obtain the ML parameter estimates of the random effects model, an iterative
two-stage estimation procedure may be used (Breusch 1987). The log-likelihood of
the random effects model in (3.3) is

LogL ¼ �NT

2
log 2pr2
� �

þ N

2
log /2 � 1

2r2

XN

i¼1

XT

t¼1

y�it � x�itb
� �2

; ð3:9Þ

where / denotes the weight attached to the cross-sectional component of the data,

with 0�/2 ¼ r2= Tr2
l þ r2

� �
� 1, and the symbol � denotes a transformation of

the variables dependent on /

y�it ¼ yit � ð1� /Þ 1
T

XT

t¼1

yit and x�it ¼ xit � ð1� /Þ 1
T

XT

t¼1

xit ð3:10Þ

If / ¼ 0, this transformation simplifies to the demeaning procedure of Eq. (3.4)
and hence the random effects model to the fixed effects model.

Given /, b and r2 can be solved from their first-order maximizing conditions:

b ¼ X�T X�
� ��1

X�T Y� and r2 ¼ Y��X�bð ÞT Y��X�bð Þ=NT . Conversely, / may be
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estimated by maximizing the concentrated log-likelihood function with respect to
/, given b and r2,

LogL ¼� NT

2
log

XN

i¼1

XT

t¼1

yit � 1� /ð Þ 1
T

XT

t0¼1

yit0

 (

� xit � 1� /ð Þ 1
T

XT

t0¼1

xit0

" #
b

!2
9=
;þ

N

2
log /2

ð3:11Þ

The use of /2 instead of / ensures that both the argument of logð/2Þ and of
H /2� �

are positive (see Magnus 1982 for details). The asymptotic variance matrix
of the parameters is

Asy:Varðb;/; r2Þ ¼
1
r2 X�T X� 0 0

0 Nð1þ 1
/2Þ � N

r2

0 � N
r2

NT
2r4

2
64

3
75
�1

ð3:12Þ

One can test whether the spatial random effects are significant by performing a
LR test of the hypothesis H0 : / ¼ 1.2 This test statistic has a Chi squared dis-
tribution with one degree of freedom. If the hypothesis is rejected, the spatial
random effects are significant.

Finally, it is to be noted that the random effects model may always include a
constant term, in which case the number of independent variables is K ? 1 rather
than K.

3.3 Estimation of Spatial Panel Data Models

This section outlines the modifications that are needed to estimate the fixed effects
model and the random effects model extended to include a spatially lagged
dependent variable or a spatially autocorrelated error. The description spatially
lagged dependent variable or shorter spatial lag is synonymous with endogenous
interaction effects and the description spatially autocorrelated error or shorter
spatial error is synonymous with interaction effects among the error terms.

It is assumed that W is constant over time and that the panel is balanced. It
should be noted that the estimators discussed in this chapter can be modified for a
spatial weights matrix that changes over time due to changes of economic envi-
ronments, that is, if the elements of W are based on economic/socioeconomic
distances or demographic characteristics. Lee and Yu (2012a) show that the
(quasi) ML estimator of spatial dynamic panel data models if the spatial weights

2 / ¼ 1 implies r2
l ¼ 0, since r2

l may be calculated from / by r2
l ¼

1�/2

/2
r2

T .
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matrix is time varying due to changes of economic environments is consistent and
asymptotically normal. By contrast, even though these estimators can also be
modified for unbalanced panels due to missing observations, their asymptotic
properties, in the event of missing observations, may become problematic if the
reason why data are missing is not known. There are a couple of papers now
dealing with missing observations within spatial panels (Pfaffermayr 2009; Wang
and Lee 2013), but a general approach is still not available.

The spatial lag model can be specified as

yit ¼ d
XN

j¼1

wijyjtþxitbþ li þ eit ð3:13Þ

where wij is an element of the spatial weights matrix W, while the spatial error
model reads as

yit ¼ xitbþ li þ uit ð3:14aÞ

uit ¼ k
XN

j¼1

wijuit þ eit ð3:14bÞ

3.3.1 Fixed Effects Spatial Lag Model

According to Anselin et al. (2006), the extension of the fixed effects model with a
spatially lagged dependent variable raises two complications. First, the endoge-
neity of Rjwijyjt violates the assumption of the standard regression model that
E Rjwijyjt

� �
eit

	 

¼ 0. In model estimation, this simultaneity must be accounted for.

Second, the spatial dependence among the observations at each point in time may
affect the estimation of the fixed effects.

In this section, the ML estimator is derived to account for the endogeneity of
Rjwijyjt. The log-likelihood function of model (3.13) if the spatial specific effects
are assumed to be fixed is

LogL ¼ �NT

2
logð2pr2Þ þ T log jIN � dWj

� 1
2r2

XN

i¼1

XT

t¼1

yit � d
XN

j¼1

wijyjt � xitb� li

 !2 ð3:15Þ

where the second term on the right-hand side represents the Jacobian term of the
transformation from e to y taking into account the endogeneity of Rjwijyjt (Anselin
1988, p. 63).
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The partial derivatives of the log-likelihood with respect to li are

oLogL
oli

¼ 1
r2

XT

t¼1

yit � d
XN

j¼1

wijyjt � xitb� li

 !
¼ 0; i ¼ 1; . . .;N ð3:16Þ

When solving li from (3.16), one obtains

li ¼
1
T

XT

t¼1

yit � d
XN

j¼1

wijyjt � xitb

 !
; i ¼ 1; . . .;N ð3:17Þ

This equation shows that the standard formula for calculating the spatial fixed
effects, Eq. (3.7), applies to the fixed effects spatial lag model in a straightforward
manner. Nevertheless, Lee and Yu (2010a, b) show that there are cases, dependent
on N and T, in which corrections for some parameters need to be made for the
cross-sectional dependence among the observations at each point in time. This is
discussed in subsection 3.3.3 below.

Substituting the solution for li into the log-likelihood function, and after
rearranging terms, the concentrated log-likelihood function with respect to b, d and
r2 is obtained

LogL ¼ �NT

2
log 2pr2
� �

þ T log jIN � dWj

� 1
2r2

XN

i¼1

XT

t¼1

y�it � d
XN

j¼1

wijyjt

" #�
�x�itb

 !2

ð3:18Þ

where the asterisk denotes the demeaning procedure introduced in Eq. (3.4).
Anselin and Hudak (1992) have spelled out how the parameters b, d and r2 of a

spatial lag model can be estimated by ML starting with cross-sectional data. This
estimation procedure can also be used to maximize the concentrated log-likelihood
function in (3.18) with respect to b, d and r2. The only difference is that the data
are extended from a cross-section of N observations to a panel of N 9 T obser-
vations. This estimation procedure consists of the following steps.

First, stack the observations as successive cross-sections for t = 1,…,T to
obtain NT 9 1 vectors for Y* and IT �Wð ÞY�, and an NT 9 K matrix for X* of the
demeaned variables. Note that these calculations have to be performed only once
and that the NT 9 NT diagonal matrix IT �Wð Þ does not have to be stored. This
would slow down the computation of the ML estimator considerably for large data
sets. Second, let b0 and b1 denote the OLS estimators of successively regressing Y*

and IT �Wð ÞY� on X*, and e�0 and e�1 the corresponding residuals. Then the ML
estimator of d is obtained by maximizing the concentrated log-likelihood function

LogL ¼ C � NT

2
log e�0 � de�1

� �T
e�0 � de�1
� �h i

þ T log IN � dWj j ð3:19Þ

where C is a constant not depending on d. Unfortunately, this maximization
problem can only be solved numerically, since a closed-form solution for d does
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not exist. However, since the concentrated log-likelihood function is concave in d,
the numerical solution is unique (Anselin and Hudak 1992). Just as in Chap. 2
(Section 2.8), the Jacobian term might be approached by a numerical approach to
speed up computation time. The disadvantage of this approach is that the
parameter estimate of d and therefore of b change slightly every time the routine is
run again. For this reason, the Matlab routines to estimate spatial panel data
models made available at www.regroningen.nl also offer the opportunity to choose
between the exact approach (default N \ 1000) and the numerical approach
(default N [ 1000). See Section 2.8 for a more detailed discussion.

Third, the estimators of b and r2 are computed, given the numerical estimate of d,

b ¼ b0 � db1 ¼ X�T X�
� ��1

X�T Y� � d IT �Wð ÞY�½ 	 ð3:20aÞ

r2 ¼ 1
NT

e�0 � de�1
� �T

e�0 � de�1
� �

ð3:20bÞ

Finally, the asymptotic variance matrix of the parameters is computed for
inference (standard errors, t-values). This matrix takes the form (since this matrix
is symmetric the upper diagonal elements are left aside)

Asy:Varðb; d; r2Þ ¼
X�T X�

r2

X�T IT� ~Wð ÞX�b
r2 T � tr ~W ~W þ ~WT ~W

� �
þ bT X�T IT� ~WT ~Wð ÞX�b

r2

0 T
r2 trð ~WÞ NT

2r4

2
664

3
775

�1

ð3:21Þ

where ~W ¼ W IN � dWð Þ�1 and ‘‘tr’’ denotes the trace of a matrix. The differences
with the asymptotic variance matrix of a spatial lag model in a cross-sectional
setting (see Anselin and Bera 1998; Lee 2004) are the change in dimension of the
matrix X* from N to N 9 T observations and the summation over T cross-sections
involving manipulations of the N 9 N spatial weights matrix W. For large values of
N the determination of the elements of the variance matrix may become compu-
tationally impossible. In that case the information may be approached by the
numerical Hessian matrix using the maximum likelihood estimates of b, d and r2.

3.3.2 Fixed Effects Spatial Error Model

Anselin and Hudak (1992) have also spelled out how the parameters b, k and r2 of a
linear regression model extended to include a spatially autocorrelated error term
can be estimated by ML starting with cross-sectional data. Just as for the spatial lag
model, this estimation procedure can be extended to include spatial fixed effects and
from a cross-section of N observations to a panel of N 9 T observations. The log-
likelihood function of model (3.14a, b) if the spatial specific effects are assumed to
be fixed is
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LogL ¼ �NT

2
log 2pr2
� �

þ T log IN � kWj j

� 1
2r2

XN

i¼1

XT

t¼1

y�it � k
XN

j¼1

wijyjt

" #�
� x�it � k

XN

j¼1

wijxjt

" #� !
b

( )2

ð3:22Þ

Given k, the ML estimators of b and r2 can be solved from their first-order
maximizing conditions, to get

b ¼ X� � k IT �Wð ÞX�½ 	T X� � kðIT �WÞX�½ 	
� ��1

� X� � k IT �Wð ÞX�½ 	T Y� � k IT �Wð ÞY�½ 	
ð3:23aÞ

r2 ¼ eðkÞT eðkÞ
NT

ð3:23bÞ

where e kð Þ ¼ Y� � k IT �Wð ÞY� � X� � kðIT �WÞX�½ 	b. The concentrated log-
likelihood function of k takes the form

LogL ¼ �NT

2
log eðkÞT eðkÞ
	 


þ T log IN � kWj j ð3:24Þ

Maximizing this function with respect to k yields the ML estimator of k, given
b and r2. An iterative procedure may be used in which the set of parameters b and
r2 and the parameter k are alternately estimated until convergence occurs. The
asymptotic variance matrix of the parameters takes the form

Asy:Var b; k; r2
� �

¼

1
r2 X�T X�

0 T�trð ~~W ~~W þ ~~W
T ~~WÞ

0 T
r2 trð ~~WÞ NT

2r4

2
64

3
75

�1

ð3:25Þ

where ~~W ¼ WðIN � kWÞ�1. The spatial fixed effects can finally be estimated by

li ¼
1
T

XT

t¼1

yit � xitbð Þ; i ¼ 1; . . .;N ð3:26aÞ

3.3.3 Bias Correction in Fixed Effects Models

The estimation of the fixed effects models is based on the demeaning procedure
spelled out in Baltagi (2005). Lee and Yu (2010a) label this procedure the direct
approach but show that it will yield biased estimates of (some of) the parameters.
Starting with the SAC model, and using rigorous asymptotic theory, they ana-
lytically derive the size of these biases. If the model contains spatial fixed effects
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but no time-period fixed effects, the parameter estimate of r2 will be biased if N is
large and T is fixed. If the model contains both spatial and time-period fixed
effects, the parameter estimates of all parameters will be biased if both N and T are
large. By contrast, if T is fixed the time effects can be regarded as a finite number
of additional regression coefficients similar to the role of b. On the basis of these
findings, Lee and Yu (2010a) propose two methods to obtain consistent results.
Instead of demeaning, they propose an alternative procedure to wipe out the spatial
(and time-period) fixed effects, which reduces the number of observations avail-
able for estimation by one observation for every spatial unit in the sample, i.e.,
from NT to N(T-1) observations in case of spatial fixed effects and (N-1)(T-1)
observations in case of both spatial and time period fixed effects. This procedure is
labeled the transformation approach.

The second approach Lee and Yu propose to obtain consistent results is a bias
correction procedure of the parameters estimates obtained by the direct approach
based on maximizing the likelihood function that is obtained under the transfor-
mation approach. This section adopts the bias correction procedure and translates
the biases Lee and Yu (2010a) derived for the SAC model to successively the
SAR, SEM, SDM and SDEM models.

First, if the SAR, SEM, SDM and SDEM models contain spatial fixed effects
but no time-period fixed effects, the parameter estimate r̂2 of r2 obtained by the
direct approach will be biased. This bias can easily be corrected (BC) by (Lee and
Yu 2010a, Eq. 18)

r̂2
BC ¼

T

T � 1
r̂2 ð3:26bÞ

This bias correction will have hardly any effect if T is large. However, most
spatial panels do not meet this requirement. Mathematically, the asymptotic var-
iance matrices of the parameters of the SAR, SEM, SDM and SDEM models do
not change as a result of this bias correction. This is the thrust of the bias cor-
rection procedure Lee and Yu (2010a) present as a result of Theorem 2 in their
paper. Therefore, we may apply the algebraic expressions of the variance matrix
when using the direct approach. It concerns the variance matrix in Eq. (3.21) for
the SAR model and in Eq. (3.25) for the SEM model. In case of the SDM and the
SDEM models, X is replaced by X = [X WX], respectively. Since r̂2

BC replaces r̂2

numerically, the standard errors and thus the t-values of the parameter estimates in
the SAR, SEM, SDM and SDEM models will change.

Conversely, if the SAR, SEM, SDM and SDEM models contain time-period
fixed effects but no spatial fixed effects, the parameter estimate r̂2 of r2 obtained
by the direct approach can be corrected by

r̂2
BC ¼

N

N � 1
r̂2 ð3:27Þ
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This bias correction is taken from Lee et al. (2010), who consider a block
diagonal spatial weights matrix where each block represents a group of (spatial)
units that interact with each other but not with observations in other groups. Since
this setup is equivalent to a spatial panel data model with time dummies where
spatial units interact with each other within the same time period but not with
observations in other time periods, it might also be used here. From Eq. (3.27), it
can be seen that this bias correction will hardly have any effect if N is large, as in
most spatial panels.

If the SAR, SEM, SDM and SDEM models contain both spatial and time-period
fixed effects, other parameters need to be bias corrected too. Furthermore, the bias
correction will be different for each model. The bias correction in the GNS model
would take the form

b̂

ĥ

d̂
k̂
r̂2

2
66664

3
77775

BC

¼

1K

1K

1
1
T

T�1

2
66664

3
77775



b̂

ĥ

d̂
k̂
r̂2

2
66664

3
77775
� 1

N
�R b̂; ĥ; d̂; k̂; r̂2
� �h i�1

0K

0K
1

1�d̂
1

1�k̂
1

2r̂2

2
666664

3
777775

2
666664

3
777775

ð3:28Þ

where R b̂; ĥ; d̂; k̂; r̂2
� �

represents the expected value of the second-order deriv-
atives of the log-likelihood function multiplied by -1/(NT) (Lee and Yu, 2010a,
Eq. 53) and the symbol 
 denotes the element-by-element product of two vectors
or matrices (also known as the Hadamard product). The bias correction for the
parameters of the other models are obtained by striking out irrelevant rows from
the matrix expressions in Eq. (3.28); 2 and 4 for the SAR model, 2 and 3 for the
SEM model, 4 for the SDM model and 3 for the SDEM model. The expressions are
based on Lee and Yu (2010a, Eq. 34). Mathematically, the asymptotic variance
matrices of the parameters of the SAR, SEM, SDM and SDEM models do not
change as a result of the bias correction. This is the thrust of the bias correction
procedure Lee and Yu (2010a) present as a result of theorems 4 and 5 in their
paper. However, since the bias corrected parameter estimates replace the param-
eter estimates of the direct approach numerically, the standard errors and t-values
of the parameter estimates do change.

3.3.4 Random Effects Spatial Lag Model

The log-likelihood of model (3.13) if the spatial effects are assumed to be random is

LogL ¼� NT

2
log 2pr2
� �

þ T log IN � dWj j þ N

2
log /2

� 1
2r2

XN

i¼1

XT

t¼1

y�it � d
XN

j¼1

wijyjt

" #�
�x�itb

 !2 ð3:29Þ
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where the symbol � denotes the transformation introduced in Eq. (3.10) dependent
on /. Given /, this log-likelihood function is identical to the log-likelihood
function of the fixed effects spatial lag model in (3.15). This implies that the same
procedure can be used to estimate b, d and r2 as described above Eqs. (3.19, 3.20a,
b), but that the superscript * must be replaced by •. Given b, d and r2, / can be
estimated by maximizing the concentrated log-likelihood function with respect to
/

LogL ¼ �NT

2
log eð/ÞT eð/Þ
	 


þ N

2
log /2 ð3:30Þ

where the typical element of e(/) is

eð/Þit ¼yit � 1� /ð Þ 1
T

XT

t¼1

yit � d
XN

j¼1

wijyjt � 1� /ð Þ 1
T

XT

t¼1

XN

j¼1

wijyjt

" #

� xit � 1� /ð Þ 1
T

XT

t¼1

xit

" #
b

ð3:31Þ

Again an iterative procedure may be used where the set of parameters b, d and
r2 and the parameter / are alternately estimated until convergence occurs. This
procedure is a mix of the estimation procedures used to estimate the parameters of
the fixed effects spatial lag model and those of the non-spatial random effects
model.

The asymptotic variance matrix of the parameters takes the form

Asy � Var b; d; h; r2
� �

¼
1
r2 X�T X�

1
r2 X�T IT � ~W

� �
X�b T � tr ~W ~W þ ~WT ~W

� �
þ 1

r2 bTX�T IT � ~WT ~W
� �

X�b

0 � 1
r2 trð ~WÞ N T þ 1

u2

� �

0 T
r2 trð ~WÞ � N

r2
NT
2r4

2
666664

3
777775

�1

ð3:32Þ

3.3.5 Random Effects Spatial Error Model

The log-likelihood of model (3.14a, b) if the spatial effects are assumed to be
random is (Anselin 1988; Elhorst 2003; Baltagi 2005)

LogL ¼ �NT

2
log 2pr2
� �

� 1
2

log Vj j þ T � 1ð Þ
XN

i¼1

log Bj j

� 1
2r2

eT 1
T

iT iT
T � V�1

� �
e� 1

2r2
eT IT �

1
T

iT iT
T

� �
� BT B
� �

e

ð3:33Þ
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where V ¼ TuIN þ BT B
� ��1

,3 B ¼ IN�kW and e ¼ Y�Xb. It is the matrix
V that complicates the estimation of this model considerably. First, the Pace and
Barry (1997) procedure to overcome numerical difficulties one might face in
evaluating log Bj j ¼ log IN�kWj j cannot be used to calculate log Vj j ¼
log TuIN þ BTB

� ��1








. Second, there is no simple mathematical expression for the

inverse of V. Baltagi (2006) solves these problems by considering a random effects
spatial error model with equal weights, i.e., a spatial weights matrix W whose off-
diagonal elements are all equal to 1/(N–1). Due to this setup, the inverse of V and a
feasible GLS estimator of b can be determined mathematically. Furthermore, by
considering a GLS estimator the term log|V| in the log-likelihood function does not
have to be calculated.

Elhorst (2003) suggests to express log Vj j as a function of the characteristic
roots of W based on Griffith (1988, Table 3.1).

log jVj ¼ log TuIN þ BT B
� ��1








 ¼

XN

i¼1

log Tuþ 1

1� kxið Þ2

" #
ð3:34Þ

Furthermore, he suggests adopting the transformation

y
it ¼ yit � k
XN

j¼1

wijyjt þ
XN

j¼1

pij � 1� kwij

� �	 
 1
T

XT

t¼1

yjt

( )
ð3:35Þ

and the same for the variables xit, where pij is an element of an N 9 N matrix

P such that PT P ¼ V�1. P can be the spectral decomposition of V-1, P ¼ K�1=2R,
where R is an N 9 N matrix of which the i-th column is the characteristic vector ri

of V, which is the same as the characteristic vector of the spatial weights matrix
W (see Griffith 1988, Table 3.1), R ¼ r1; . . .; rNð Þ, and K a N 9 N diagonal matrix
with the ith diagonal element the corresponding characteristic root,

ci ¼ Tuþ 1=ð1�kxiÞ2. A similar procedure has been adopted by Yang et al.
(2006). It is clear that for large N the numerical determination of P can be
problematic. However, Hunneman et al. (2007) find that if W is kept symmetric by
using one of the alternative normalizations discussed in Section 2.4, this procedure
works well within a reasonable amount of time for values of N up to 4000.

3 Note that u ¼ r2
l

.
r2 is different from / in the non-spatial random effects model and in the

random effects spatial lag model.
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As a result of (3.34) and (3.35), the log-likelihood function simplifies to

LogL ¼� NT

2
log 2pr2
� �

� 1
2

XN

i¼1

log 1þ T/ 1� kxið Þ2
� �

þ T
XN

i¼1

log 1� kxið Þ � 1
2r2

e
T e

ð3:36Þ

where e0 ¼ Y0�X0b. b and r2 can be solved from their first-order maximizing

conditions: b ¼ X0TX0
� ��1

X0TY0 and r2 ¼ Y0�X0b
� �T

Y0�X0b
� �.

NT . Upon

substituting b and r2 in the log-likelihood function, the concentrated log-likeli-
hood function of k and u is obtained

LogL ¼C � NT

2
log e k;uð ÞT e k;uð Þ
	 


� 1
2

XN

i¼1

log 1þ Tu 1� kxið Þ2
� �

þ T
XN

i¼1

log 1� kxið Þ
ð3:37Þ

where C is a constant not depending on k and u and the typical element of e(k,u)
is

eðk; hÞit ¼ yit � k
XN

j¼1

wijyjt þ
XN

j¼1

f½pðk;/Þij�ð1� kwijÞ	
1
T

XT

t¼1

yjtg

� ½xit � k
XN

j¼1

wijxjt þ
XN

j¼1

f½pðk;/Þij�ð1� kwijÞ	
1
T

XT

t¼1

xjtg	b
ð3:38Þ

The notation pij ¼ pðk;uÞij is used to indicate that the elements of the matrix
P depend on k and u. One can iterate between b and r2 on the one hand, and k and
u on the other, until convergence. The estimators of b and r2, given k and u, can
be obtained by OLS regression of the transformed variable Y0 on the transformed
variables X0. However, the estimators of k and u, given b and r2, must be attained
by numerical methods because the equations cannot be solved analytically.

The asymptotic variance matrix of this model has been derived by Baltagi et al.
(2007). In this paper, they develop diagnostics to test for serial error correlation,
spatial error correlation and/or spatial random effects. They also derive asymptotic
variance matrices provided that one or more of the corresponding coefficients are
zero. One objection to this study is that serial and spatial error correlation are
modeled sequentially instead of jointly. Elhorst (2008a) demonstrates that jointly
modeling serial and spatial error correlation results in a trade-off between the serial
and spatial autocorrelation coefficients and that ignoring this trade-off causes
inefficiency and may lead to non-stationarity. However, if the serial autocorrelation
coefficient is set to zero, this problem disappears. Consequently, the asymptotic
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variance matrix that is obtained if the serial autocorrelation coefficient is set to zero
exactly happens to be the variance matrix of the random effects spatial error model.

One difference is that Baltagi et al. (2007) do not derive the asymptotic variance
matrix of b, k, u and r2, but of b, k, rl

2 and r2. This matrix takes the following
form4

Asy:Varðb; k; r2
l; r

2Þ ¼
1
r2 X
T X


0 T�1
2 tr Cð Þ2þ 1

2 tr RCð Þ2

0 T
2r2 tr RCV�1

� �
T2

2r4 tr V�1
� �2

0 T�1
2r2 tr Cð Þ þ 1

2r2 tr RCR½ 	 T
2r4 tr RV�1

� �
1

2r4 T � 1ð ÞN þ tr Rð Þ2
h i

2
666664

3
777775

�1

ð3:39Þ

where C ¼ WTBþ BTW
� �

BTB
� ��1

and R ¼ V�1 BTB
� ��1

. Since u ¼ r2
l=r

2, the
asymptotic variance of u can be obtained using the formula (Mood et al. 1974,
p. 181)

varðuÞ ¼ /2 varðr2
lÞ

ður2Þ2
þ varðr2Þ
ðr2Þ2

� 2
varðr2

l; r
2Þ

ður2Þr2

" #
ð3:40Þ

In conclusion, we can say that the estimation of the random effects spatial error
model is far more complicated than that of the other spatial panel data models.

3.4 Fixed or Random Effects

The spatial econometrics literature is characterized by an overwhelming supply of
papers taking the random effects specification as point of departure rather than the
fixed effects specification. Baltagi et al. (2003) consider the testing of spatial error
correlation in a model with spatial random effects. Baltagi et al. (2007) extend this
study to include serial autocorrelation. Kapoor et al. (2007) consider GMM esti-
mation of a spatial error model with time-period random effects. Pfaffermayr (2009)
considers maximum likelihood estimation of a random effects SAC model not only
for a balanced but also for an unbalanced spatial panel data set. Montes-Rojas
(2010) considers the testing of serial error correlation in a random effects spatial lag
model. Parent and LeSage (2010, 2011) set out the Bayesian MCMC estimator of a
dynamic spatial panel data model. Baltagi and Liu (2011) extend the Kelejian-
Prucha (1998) and Lee (2003) instrumental variables estimators of the spatial lag

4 Note that the matrix Z0 in Baltagi et al. (2007, pp. 39–40) has been replaced by

Z0 ¼ Tr2
lIN þ r2 B

0
B

� ��1
� ��1

¼ 1
r2 TuIN þ ðB

0
BÞ�1

� ��1
¼ 1

r2 V�1.
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model to the random effects spatial lag model. Baltagi and Pirotte (2010) focuses on
inference based on standard non-spatial panel data estimators if the true model is a
random effects model with either a spatial autoregressive or spatial moving average
error process. Millo (2013) describes the software implementation of panel data
models with random effects, a spatially lagged dependent variable and serially
correlated errors if they are estimated by ML. Baltagi et al. (2012) consider the
testing of spatial autocorrelation in both the remainder error term and the spatial
random effects.

The popularity of the random effects specification can be explained by three
reasons. First, it may be considered as a compromise solution to the all or nothing
way of utilizing the cross-sectional component of the data. Panel data models with
controls for spatial fixed effects only utilize the time-series component of the data,
whereas these models without such controls employ both time-series and cross-
sectional components. The parameter / in random effects models, which can take
values on the interval [0, 1], may be used to estimate the weight that may be
attached to the cross-sectional component of the data. If this weight equals 0, the
random effects model reduces to the fixed effects model; if it goes to 1, it con-
verges to its counterpart without controls for spatial fixed effects.

Second, the random effects model avoids the loss of degrees of freedom
incurred in the fixed effects model associated with a relatively large N. Besides, the
spatial fixed effects can only be estimated consistently when T is sufficiently large,
because the number of observations available for the estimation of each li is
T. Recall, however, that the inconsistency of li is not transmitted to the estimator
of the slope coefficients b, since it is not a function of the estimated li. In other
words, the incidental parameters problem does not matter when b are the coeffi-
cients of interest and the spatial fixed effects li are not, which is the case in most
empirical studies.

Third, it avoids the problem that the coefficients of time-invariant variables or
variables that only vary a little cannot be estimated. This is the main reason for
many studies not to control for spatial fixed effects, for example, because such
variables are the main focus of the empirical analysis. It should be realized,
however, that if one or more relevant explanatory variables are omitted from the
regression equation, when they should be included, the estimator of the coefficients
of the remaining variables will be biased and inconsistent (Greene 2008,
pp. 133–134). This also holds true for spatial fixed effects and is known as the
omitted regressor bias. One can test whether the spatial fixed effects are jointly
significant by performing a Likelihood Ratio (LR) test of the hypothesis H0:
l1 = … = lN = a, where a is the mean intercept. The corresponding test statistic
is –2 s, where s measures the difference between the log-likelihood of the
restricted model and that of the unrestricted model. The LR test has a Chi squared
distribution with degrees of freedom equal to the number of restrictions that must
be imposed on the unrestricted model to obtain the restricted model, which in this
particular case is N–1. Thanks to the availability of the log-likelihood of the
restricted as well as of the unrestricted model when applying ML estimation
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methods, the LR test can be carried out instead of, or in addition to, the classical
F-test spelled out in Baltagi (2005, p. 13).

Despite its popularity, the question whether the random effects model is also an
appropriate specification is often left unanswered. Three conditions should be
satisfied before the random effects model may be implemented. First, the number
of units should potentially be able to go to infinity. Second, the units of obser-
vation should be representative of a larger population. Whether these two condi-
tions are satisfied in spatial research is at least controversial, as discussed below.
Finally, the traditional assumption of zero correlation between the random effects
li and the explanatory variables needs to be made, which in general is particularly
restrictive.

There are two types of asymptotics that are commonly used in the context of
spatial observations: (a) The ‘infill’ asymptotic structure, where the sampling
region remains bounded as N !1. In this case more units of information come
from observations taken from between those already observed; and (b) The
‘increasing domain’ asymptotic structure, where the sampling region grows as
N !1. In this case there is a minimum distance separating any two spatial units
for all N. According to Lahiri (2003), there are also two types of sampling designs:
(a) The stochastic design where the spatial units are randomly drawn; and (b) The
fixed design where the spatial units lie on a nonrandom field, possibly irregularly
spaced. The spatial econometric literature mainly focuses on increasing domain
asymptotics under the fixed sample design (Cressie 1993, p. 100; Griffith and
Lagona 1998; Lahiri 2003). Although the number of spatial units under the fixed
sample design can potentially go to infinity, this design is incompatible with the
increasing domain asymptotic structure. If there is a minimum distance separating
spatial units and the researcher wants to collect data for a certain type of spatial
units within a particular study area, there will be an upper bound on the number of
spatial units. Furthermore, when data on all spatial units within a study area are
collected it is questionable whether they are still representative of a larger popu-
lation. For a given set of regions, such as all counties of a state or all regions in a
country, the population may be said ‘to be sampled exhaustively’ (Nerlove and
Balestra 1996, p. 4),5 and ‘the individual spatial units have characteristics that
actually set them apart from a larger population’ (Anselin 1988, p. 51). In other
words, if the data happen to be a random sample of the population, unconditional
inference about the population necessitates estimation with random effects. If,
however, the objective is limited to making conditional inferences about the
sample, then fixed effects should be specified. In this respect Beenstock and
Felsenstein (2007) point out that the random effects model should be the default
option in principle, since researchers are usually interested in making uncondi-
tional inferences about the population and the fixed effects model would lead to an
enormous loss of degrees of freedom. However, ‘if the sample happens to be the

5 This remark through Balestra and Nerlove is striking especially since they are the devisers of
the random effects model (Balestra and Nerlove 1966).

3.4 Fixed or Random Effects 55



population’ (Beenstock and Felsenstein 2007, p. 178), specific effects should be
fixed because each spatial unit represents itself and has not been sampled ran-
domly. Similar observations have been made by Beck (2001, p. 272), ‘the critical
issue is that the spatial units be fixed and not sampled, and that inference be
conditional on the observed units’ [see also Hsaio (2003, p. 43) for a more general
explanation].

In spatial research there is a prominent reason why investigators generally do
not draw a limited sample of units from a particular study area, but rather work
with cross-sectional or space-time data of adjacent spatial units located in
unbroken study areas. This is because otherwise the spatial weights matrix cannot
be defined and the impact of spatial interaction effects cannot be consistently
estimated. Only when neighboring units are also part of the sample, it is possible to
measure the impact of these neighboring units. In other words, this type of research
just requires that the data covers the whole population, since it would break down
when having a random sample of the population.

Many studies that derive test statistics for spatial effects or that develop esti-
mation methods for the parameters in spatial panel data models with random
effects overlook this issue and therefore can be criticized for not paying (sufficient)
attention to the reasoning behind the random effects specification. The motivation
to consider random effects rather than fixed effects in one of the first studies that
derived a Lagrange Multiplier (LM) test for spatial interaction effects when
combining time-series cross-section data consists of all-in-all one single sentence
(Baltagi et al. 2003, p. 124): ‘Heterogeneity across the cross-sectional units is
usually modeled with an error component model’. This observation is represen-
tative for other studies dealing with the random effects model. Generally, one
needs to read these studies several times to find any motivation in favor of the
random effects specification, often without result.

In conclusion, we can say that the fixed effects model is generally more
appropriate than the random effects model since spatial econometricians tend to
work with space-time data of adjacent spatial units located in unbroken study
areas, such as all counties of a state or all regions in a country. To explain cigarette
demand using a panel of 46 U.S. states over the period 1963–1992, Yang et al.
(2006) adopt a dynamic spatial panel data model with random effects. However,
since these states cover almost the whole U.S., a fixed effects model would have
been a better choice (Elhorst 2005). We come back to this empirical application in
Section 3.6.

To test the assumption of zero correlation between the random effects li and the
explanatory variables, the Hausman specification test might be used (Baltagi 2005,
pp. 66–68). The hypothesis being tested is H0: h = 0, where

h ¼ dT varðdÞ½ 	�1d ð3:41Þ

d ¼ b̂FE � b̂RE

varðdÞ ¼ r̂2
RE X�T X�
� ��1� r̂2

FE X�TX�
� ��1
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Note the reverse sequence with which d and var(d) are calculated. This test
statistic has a Chi squared distribution with K degrees of freedom (the number of
explanatory variables in the model, excluding the constant term). Hausman’s
specification test can also be used when the model is extended to include spatial
error autocorrelation or a spatially lagged dependent variable. Since the spatial lag
model has one additional explanatory variable, the test statistic for this model,

which should be calculated by d ¼ b̂T d̂
h iT

FE
� b̂T d̂
h iT

RE
, has a Chi squared

distribution with K ? 1 degrees of freedom. To calculate var(d) in this particular
case, one should extract the first K ? 1 rows and columns of the variance matrices
in (3.21) and (3.32). Lee and Yu (2012b) formally derive the Hausman test for a
general spatial panel data model, which nests various spatial panel data models
existing in the literature.6 If the hypothesis is rejected, the random effects models
must be rejected in favor of the fixed effects model.

In addition, one might test the hypothesis H0: / ¼ 0 to see whether the random
effects should be rejected in favor of the fixed effects model. Recently, Debarsy
(2012) has extended the Mundlak approach to the SDM model to help the applied
researcher to determine the adequacy of the random effects specification of this
spatial econometric model.

3.5 Model Comparison and Selection

To test for spatial interaction effects in a cross-sectional setting, Burridge (1980)
and Anselin (1988) developed Lagrange Multiplier (LM) tests for a spatially
lagged dependent variable and for spatial error correlation. Anselin et al. (1996)
also developed robust LM tests which test for a spatially lagged dependent variable
in the local presence of spatial error autocorrelation and for spatial error auto-
correlation in the local presence of a spatially lagged dependent variable. These
tests have become very popular in empirical research.7 Recently, Anselin et al.
(2006) also specified the classical LM tests for a spatial panel

LMd ¼
½eTðIT �WÞY=r̂2	2

J
and LMk ¼

½eTðIT �WÞe=r̂2	2

T � TW
ð3:42Þ

6 Mutl and Pfaffermayr (2011) derive the Hausman test when the fixed and random effects
models are estimated by 2SLS instead of ML.
7 Software programs, such as Spacestat and Geoda, have built-in routines that automatically
report the results of these tests. Matlab routines have been made available at http://
oak.cats.ohiou.edu/*lacombe/research.html by Donald Lacombe and at www.regroningen.nl
by Paul Elhorst.
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where e denotes the residual vector of a pooled regression model without any
spatial or time-specific effects or of a panel data model with spatial and/or time
period fixed effects. Finally, J and TW are defined by

J ¼ 1
r̂2

IT �Wð ÞXb̂
� �T

INT � XðXT XÞ�1XT
� �

IT �Wð ÞXb̂þ TTW r̂2
h i

ð3:43Þ

TW ¼ tr WW þWT W
� �

ð3:44Þ

Elhorst (2010b) shows that the robust counterparts of these LM tests for a
spatial panel take the form

robust LMd ¼
eT IT �Wð ÞY=r̂2 � eT IT �Wð Þe=r̂2½ 	2

J � TTW
; ð3:45Þ

robust LMk ¼
eT IT �Wð Þe=r̂2 � TTW=J � eT IT �Wð ÞY=r̂2½ 	2

TTW 1� TTW=J½ 	 ð3:46Þ

The classical and robust LM tests are based on the residuals of the non-spatial
model with or without spatial and/or time-period fixed effects and follow a Chi
square distribution with one degree of freedom. Alternatively, one may use con-
ditional LM tests which test for the existence of one type of spatial dependence
conditional on the other. A mathematical derivation of these tests for a spatial
panel data model with spatial fixed effects can be found in Debarsy and Ertur
(2010). The difference between these robust and conditional LM tests is that the
first are based on the residuals of non-spatial models and the second on the ML
residuals of the spatial lag or spatial error model.

Applied researchers often find weak evidence in favor of spatial interaction
effects when time-period fixed effects are also accounted for. The explanation is
that most variables tend to increase and decrease together in different spatial units
along the national evolution of these variables over time. Examples are the evo-
lutions of the labor force participation rate and the unemployment rate over the
business cycle (Elhorst 2008b; Zeilstra and Elhorst 2012). In the long term, after
the effects of shocks have been settled, variables return to their equilibrium values.
In equilibrium, neighboring values tend to be more similar than those further apart,
but this interaction effect is often weaker than its counterpart over time. The
mathematical explanation is that time-period fixed effects are identical to a spa-
tially autocorrelated error term with a spatial weights matrix whose elements are
all equal to 1/N, including the diagonal elements. When this spatial weights matrix
would be adopted, one obtains

yit �
XN

j¼1

wijyjt ¼ yit �
1
N

XN

j¼1

yjt and xit �
XN

j¼1

wijxjt ¼ xit �
1
N

XN

j¼1

xjt ð3:47Þ

which is equivalent to the demeaning procedure of Eq. (3.4) but then for fixed effects
in time. Even though spatial weights matrices with non-zero diagonal elements are
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unusual in spatial econometrics, these expressions show that accounting for time-
period fixed effects is one way to correct for spatial interaction effects among the
error terms. If, in addition to time-period fixed effects, a spatial error term is con-
sidered with a spatial weights matrix with zero diagonal elements, the magnitude of
this spatial interaction effect will automatically fall as a result. Using Monte Carlo
simulation experiments, Lee and Yu (2010b) show that ignoring time-period fixed
effects may lead to large upward biases (up to 0.45) in the coefficient of the spatial lag.

3.5.1 Goodness-of-fit

The computation of a goodness-of-fit measure in spatial panel data models is
difficult because there is no precise counterpart of the R2 of an OLS regression
model with disturbance covariance r2I to a generalized regression model with
disturbance covariance matrix r2X X 6¼ Ið Þ. Most empirical researchers use

R2ðe;XÞ ¼ 1� eTXe

ðY � �YÞTðY � �YÞ
or R2ð~eÞ ¼ 1� ~eT~e

ðY � �YÞTðY � �YÞ
ð3:48Þ

where �Ydenotes the overall mean of the dependent variable in the sample and e is
the residual vector of the model. Alternatively, eTXe can be replaced by the
residual sum of squares of transformed residuals ~eT~e.

One objection to the measures in (3.48) is that there is no assurance that adding
(eliminating) a variable to (from) the model will result in an increase (decrease) of
R2. This problem is at issue in the fixed effects spatial error model, the random
effects spatial lag model and the random effects spatial error model, because the
coefficients k, h or u may change when changing the set of independent variables.
The problem is not at issue in the fixed effects spatial lag model, but note another
problem in Eq. (3.50) below. This is because the demeaning procedure was only
meant to speed up computation time and to improve the accuracy of the estimates
of b. If the R2 is calculated after the spatial fixed effects have been added back to
the model, it will have the same properties as the R2 of the OLS model.

An alternative goodness-of-fit measure that meets the above objection is the
squared correlation coefficient between actual and fitted values (Verbeek 2000,
p. 21).

corr2ðY; ŶÞ ¼
ðY � �YÞTðŶ � �YÞ
	 
2

ðY � �YÞTðY � �YÞ	½ðŶ � �YÞTðŶ � �YÞ
	 
 ð3:49Þ

where Ŷ is an NT 9 1 vector of fitted values. Unlike the R2, this goodness-of-fit
measure ignores the variation explained by the spatial fixed effects. The argumen-
tation is that the estimator of b in the fixed effects model is chosen to explain the time-
series rather than the cross-sectional component of the data, as well as that the spatial
fixed effects capture rather than explain the variation between the spatial units
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(Verbeek 2000, p. 320). This is also the reason why the spatial fixed effects are often
not computed, let alone reported. The difference between R2 and corr2 indicates how
much of the variation is explained by the fixed effects, which in many cases is quite
substantial. A similar type of argument applies to spatial random effects.

Another difficulty is how to cope with a spatially lagged dependent variable. If
the spatial lag is seen as a variable that helps to explain the variation in the
dependent variable, the first measure (R2) should be used. By contrast, if the spatial
lag is not seen as variable that helps to explain the variation in the dependent
variable, simply because it is a left-hand side variable in principle, the second
measure (corr2) should be used. The latter measure is adopted by LeSage (1999) to
calculate the goodness-of-fit of the spatial lag model in a cross-sectional setting.8

In vector notation, the reduced form of the spatial lag model in Eq. (3.3) is

Y ¼ INT � d IT �Wð Þ½ 	�1 Xbþ sT � INð Þlþ e½ 	 ð3:50Þ

From this equation it can be seen that the squared correlation coefficient
between actual and fitted values in spatial lag models, no matter whether l is fixed
or random, should also account for the spatial multiplier matrix

INT � d IT �Wð Þ½ 	�1.
The two measures for the different spatial panel data models are listed in

Table 3.1. It shows that in the fixed and random effects spatial lag model not only
the spatially lagged dependent variable, but also the spatial fixed or random effects
are ignored when calculating the squared correlation coefficient between actual
and fitted values.

Table 3.1 Two goodness-of-fit measures of the four spatial panel data models

Fixed effects spatial lag model
R2 e; INð Þ e ¼ Y � d

_

ðIT �WÞY � Xb̂� ðsT � INÞl̂
Corr2

corr2 Y�; INT � d̂ IT �Wð Þ
h i�1

X�b̂

� �

Fixed effects spatial error model
R2ð~eÞ ~e ¼ Y � k̂ðIT �WÞY � X � k̂ðIT �WÞX

h i
b̂� ðsT � INÞl̂

Corr2 corr2ðY�;X�b̂Þ
Random effects spatial lag model
R2ð~eÞ ~e ¼ Y� � d̂ðIT �WÞY� � X�b

Corr2

corr2 Y; INT � d̂ðIT �WÞ
h i�1

Xb̂

� �

Random effects spatial error model
R2ð~eÞ ~e ¼ Y
 � X
b̂

Corr2 corr2 Y;Xb̂
� �

R2 e; INð Þ and R2ð~eÞ are defined by Eq. (3.48), corr2 is defined by Eq. (3.49)

8 See the routine ‘‘sar’’ posted at LeSage’s website \www.spatial-econometrics.com[.
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3.6 Empirical Illustration

To demonstrate the performance of the different spatial econometric models in an
empirical setting, Baltagi and Li’s (2004) panel data dataset is used to explain
cigarette demand in 46 US states spanning a period of 30 years, from 1963 to
1992. The dependent variable is real per capita sales of cigarettes, which is
measured in packs per person aged 14 years and older. The explanatory variables
are average retail price of a pack of cigarettes and real per capita disposable
income. All variables are taken in logs, as is done in Baltagi and Li (2004). The
data is available at www.wiley.co.uk/baltagi/. Details on data sources are given in
Baltagi and Levin (1986, 1992) and Baltagi, Griffin, and Xiong (2000). For an
adapted version refer to www.regroningen.nl/elhorst. This data set is also used in
Elhorst (2005, 2012, 2013), Debarsy et al. (2012), and Kelejian and Piras (2012).
The spatial weights matrix W is specified as a row-normalized binary contiguity
matrix, with elements wij = 1 if two states share a common border, and zero
otherwise. It should be stressed that this specification of the spatial weights matrix
is also used in Elhorst (2005, 2012, 2013). Debarsy et al. (2012) specify a row-
normalized W based on state border miles in common between the states. Kelejian
and Piras (2012) assume interaction effects between states if the price of cigarettes
in adjacent states is lower than in the home state.

3.6.1 Software

At www.regroningen.nl the routines sar_panel_FE and sem_panel_FE have been
made available, written by Paul Elhorst, to estimate the SAR and SEM models
without fixed effects, with spatial fixed effects, with time-period fixed effects, or
with both spatial and time-period fixed effects. Furthermore, by replacing the
argument X of these routines by [X WX] it is also possible to estimate the SDM
and SDEM models. In addition, the routines sar_panel_RE and sem_panel_RE can
be used to estimate the SAR/SDM and SEM/SDEM models including spatial
random effects. The demonstration file ‘‘demoLMsarsem_panel’’ posted at the
Web site can be used to reproduce the results of non-spatial models without or
with different sets of fixed effects and of the (robust) LM tests to test for spatial
dependence reported in Table 3.2 below. The demonstration file ‘‘demopanels-
compare’’ can be used to reproduce the results that will be reported in Tables 3.3
and 3.4. This program covers the code of all conceivable models; by changing the
specification of Y, X, W, N and T in this routine, by reading a different data set, and
by selecting the relevant code depending on the results produced by the different
test statistics, the researcher can use these demonstration files to estimate these
models for his or her own research problem.
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Table 3.2 Estimation results of cigarette demand using panel data models without spatial
interaction effects

Determinants (1) (2) (3) (4)

Pooled OLS Spatial fixed effects Time-period
fixed effects

Spatial and time-period
fixed effects

Log(P) -0.859
(-25.16)

-0.702
(-38.88)

-1.205
(-22.66)

-1.035
(-25.63)

Log(Y) 0.268
(10.85)

-0.011
(-0.66)

0.565
(18.66)

0.529
(11.67)

Intercept 3.485
(30.75)

r2 0.034 0.007 0.028 0.005
R2 0.321 0.853 0.440 0.896
LogL 370.3 1425.2 503.9 1661.7
LM spatial lag 66.47 136.43 44.04 46.90
LM spatial error 153.04 255.72 62.86 54.65
Robust LM

spatial lag
58.26 29.51 0.33 1.16

Robust LM
spatial error

144.84 148.80 19.15 8.91

Notes: t-values in parentheses

Table 3.3 Estimation results of cigarette demand: spatial Durbin model specification with
spatial and time-period specific effects

Determinants (1) (2) (3)

Spatial and time-
period
fixed effects

Spatial and time-period
fixed effects
bias-corrected

Random spatial effects,
Fixed time-period effects

W*Log(C) 0.219 (6.67) 0.264 (8.25) 0.224 (6.82)
Log(P) -1.003 (-25.02) -1.001 (-24.36) -1.007 (-24.91)
Log(Y) 0.601 (10.51) 0.603 (10.27) 0.593 (10.71)
W*Log(P) 0.045 (0.55) 0.093 (1.13) 0.066 (0.81)
W*Log(Y) -0.292 (-3.73) -0.314 (-3.93) -0.271 (-3.55)
Phi 0.087 (6.81)
r2 0.005 0.005 0.005
R2 0.901 0.902 0.880
Corrected R2 0.400 0.400 0.317
LogL 1691.4 1691.4 1555.5
Wald test spatial lag 14.83 (p = 0.006) 17.96 (p = 0.001) 13.90 (p = 0.001)
LR test spatial lag 15.75 (p = 0.004) 15.80 (p = 0.004) 14.48 (p = 0.000)
Wald test spatial error 8.98 (p = 0.011) 8.18 (p = 0.017) 7.38 (p = 0.025)
LR test spatial error 8.23 (p = 0.016) 8.28 (p = 0.016) 7.27 (p = 0.026)

Notes t-values of coefficient estimates and p-values of test results in parentheses, corrected R2 is
R2 without the contribution of fixed effects
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3.6.2 Cigarette Demand

Table 3.2 reports the estimation results when adopting a non-spatial panel data
model and test results to determine whether the spatial lag model or the spatial
error model is more appropriate. When using the classic LM tests, both the
hypothesis of no spatially lagged dependent variable and the hypothesis of no
spatially autocorrelated error term must be rejected at 5 % as well as 1 % sig-
nificance, irrespective of the inclusion of spatial and/or time-period fixed effects.
When using the robust tests, the hypothesis of no spatially autocorrelated error
term must still be rejected at 5 % as well as 1 % significance. However, the
hypothesis of no spatially lagged dependent variable can no longer be rejected at
5 % as well as 1 % significance, provided that time-period or spatial and time-
period fixed effects are included.9 Apparently, the decision to control for spatial
and/or time-period fixed effects represents an important issue.

To investigate the (null) hypothesis that the spatial fixed effects are jointly
insignificant, one may perform a likelihood ratio (LR) test.10 The results (2315.7,
with 46 degrees of freedom [df], p \ 0.01) indicate that this hypothesis must be
rejected. Similarly, the hypothesis that the time-period fixed effects are jointly
insignificant must be rejected (473.1, 30 df, p \ 0.01). These test results justify the
extension of the model with spatial and time-period fixed effects, which is also
known as the two-way fixed effects model (Baltagi 2005).

Up to this point, the test results point to the spatial error specification of the
two-way fixed effects model. However, if a non-spatial model on the basis of
(robust) LM tests is rejected in favor of the spatial lag model or the spatial error
model, one should be careful to endorse one of these two models. LeSage and Pace
(2009, Chap. 6) recommend to also consider the spatial Durbin model. The results
obtained by estimating the parameters of this model can then be used to test the
hypotheses H0: h = 0 and H0 : hþ db ¼ 0. The first hypothesis examines whether
the spatial Durbin can be simplified to the spatial lag model, and the second
hypothesis whether it can be simplified to the spatial error model (Burridge 1981).
Both tests follow a Chi squared distribution with K degrees of freedom. If the
spatial lag and the spatial error model are estimated too, these tests can take the
form of a Likelihood Ratio (LR) test. If these models are not estimated, these tests
can only take the form of a Wald test. LR tests have the disadvantage that they
require more models to be estimated, while Wald tests are more sensitive to the
parameterization of nonlinear constraints (Hayashi 2000, p.122).

9 Note that the test results satisfy the condition that LM spatial lag ? robust LM spatial
error = LM spatial error ? robust LM spatial lag (Anselin et al. 1996).
10 These tests are based on the log-likelihood function values of the different models. Table 3.2
shows that these values are positive, even though the log-likelihood functions only contain terms
with a minus sign. However, since r2 \ 1, we have –log(r2) [ 0. Furthermore, since this positive
term dominates the negative terms in the log-likelihood function, we eventually have LogL [ 0.
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If both hypotheses H0: h = 0 and H0 : hþ db ¼ 0 are rejected, then the spatial
Durbin best describes the data. Conversely, if the first hypothesis cannot be
rejected, then the spatial lag model best describes the data, provided that the
(robust) LM tests also pointed to the spatial lag model. Similarly, if the second
hypothesis cannot be rejected, then the spatial error model best describes the data,
provided that the (robust) LM tests also pointed to the spatial error model. If one of
these conditions is not satisfied, i.e. if the (robust) LM tests point to another model
than the Wald/LR tests, then the spatial Durbin model should be adopted. This is
because this model generalizes both the spatial lag and the spatial error model.

The spatial econometrics literature is divided about whether to apply the spe-
cific-to-general approach or the general-to-specific approach (Florax et al. 2003;
Mur and Angula 2009). The testing procedure outlined above mixes both
approaches. First, the non-spatial model is estimated to test it against the spatial
lag and the spatial error model (specific-to-general approach). In case the non-
spatial model is rejected, the spatial Durbin model is estimated to test whether it
can be simplified to the spatial lag or the spatial error model (general-to-specific
approach). If both tests point to either the spatial lag or the spatial error model,
it is safe to conclude that that model best describes the data. By contrast, if the
non-spatial model is rejected in favor of the spatial lag or the spatial error model
while the spatial Durbin model is not, one better adopts this more general model.
One weakness of this testing procedure is that the SDEM model is not considered.
This is a relatively new issue, currently under investigation by Halleck Vega and
Elhorst (2012), discussed before in Section 2.10.

The results that are obtained by estimating the SDM model are reported in
Table 3.3. The first column gives the results when this model is estimated using
the direct approach and the second column when the coefficients are bias corrected
according to Eq. (3.28), after eliminating the fourth row. These results show that
the differences between the coefficient estimates of the direct approach and of the
bias corrected approach are small for the independent variables (X) and r2. By
contrast, the coefficients of the spatially lagged dependent variable (WY) and of the
independent variables (WX) appear to be quite sensitive to the bias correction
procedure. This is the main reason why the bias correction procedure is part of the
Matlab routines dealing with the fixed effects spatial lag and the fixed effects
spatial error model (the routines ‘‘sar_panel_FE’’ and ‘‘sem_panel_FE’’). Fur-
thermore, bias correction is the default option in these SAR and SEM panel data
estimation routines, but the user can set an input option (info.bc = 0) to turn off
bias correction, resulting in uncorrected parameter estimates.

The Wald test (8.98, with 2 degrees of freedom [df], p = 0.011) and the LR test
(8.23, 2 df, p = 0.016) indicate that the hypothesis whether the spatial Durbin
model can be simplified to the spatial error model, H0 : hþ db ¼ 0, must be
rejected. Similarly, the hypothesis that the spatial Durbin model can be simplified
to the spatial lag model, H0: h = 0, must be rejected (Wald test: 14.83, 2 df,
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p = 0.006; LR test: 15.75, 2 df, p = 0.004). This implies that both the spatial error
model and the spatial lag model must be rejected in favor of the spatial Durbin
model.

The third column in Table 3.3 reports the parameter estimates if li is treated as
a random variable rather than a set of fixed effects. Hausman’s specification test
can be used to test the random effects model against the fixed effects model. The
results (30.61, 5 df, p \ 0.01) indicate that the random effects model must be
rejected. Another way to test the random effects model against the fixed effects
model is to estimate the parameter ‘‘phi’’ (/2 in Eq. [3.29]), which measures the
weight attached to the cross-sectional component of the data and which can take
values on the interval [0, 1]. If this parameter equals 0, the random effects model
converges to its fixed effectscounterpart; if it goes to 1, it converges to a model
without any controls for spatial specific effects. We find phi = 0.087, with t-value
of 6.81, which just as Hausman’s specification test indicates that the fixed and
random effects models are significantly different from each other.

The coefficients of the two explanatory variables in the non-spatial model are
significantly different from zero and have the expected signs. In the two-way fixed
effects version of this model (the last column of Table 3.2), higher prices restrain
people from smoking, while higher income levels have a positive effect on ciga-
rette demand. The price elasticity amounts to -1.035 and the income elasticity to
0.529. However, as the spatial Durbin model specification of this model was found
to be more appropriate, we identify these elasticities as biased. To investigate this,
it is tempting to compare the coefficient estimates in the non-spatial model with
their counterparts in the two-way spatial Durbin model, but this comparison is
invalid. Whereas the parameter estimates in the non-spatial model represent the
marginal effect of a change in the price or income level on cigarette demand, the
coefficients in the spatial Durbin model do not. For this purpose, one should use
the direct and indirect effects estimates derived from Eq. (2.13). These effects are
reported in Table 3.4. The reason that the direct effects of the explanatory vari-
ables are different from their coefficient estimates is due to the feedback effects
that arise as a result of impacts passing through neighboring states and back to the
states themselves. These feedback effects are partly due to the coefficient of the
spatially lagged dependent variable W�Log Cð Þ½ 	, which turns out to be positive
and significant, and partly due to the coefficient of the spatially lagged value of the
explanatory variable itself. The latter coefficient turns out to be negative and
significant for the income variable W�Log Yð Þ½ 	, and to be positive but insignificant
for the price variable W�Log Pð Þ½ 	. The direct and indirect effects estimates and
their t-values are computed using the two methods explained in Section 2.7: the

first estimate is obtained by computing IN � dWð Þ�1 for every draw, while the
second estimate is obtained by storing the traces of the matrices I up to and
including W100 in advance.
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Since the differences are negligible, we focus on the first numbers below. For
large values of N, however, it is generally better to turn off the first method and to
apply the second method in order to reduce computation time.

In the two-way fixed effects spatial Durbin model (column (2) of Table 3.4) the
direct effect of the income variable appears to be 0.594 and of the price variable to
be -1.013. This means that the income elasticity of 0.529 in the non-spatial model
is underestimated by 10.9 % and the price elasticity of -1.035 by 2.1 %. Since the
direct effect of the income variable is 0.594 and its coefficient estimate 0.601, its
feedback effect amounts to -0.007 or -1.2 % of the direct effect. Similarly, the
feedback effect of the price variable amounts to 0.012 or 1.2 % of the direct effect.
In other words, these feedback effects turn out to be relatively small. By contrast,
whereas the indirect effects in the non-spatial model are set to zero by construc-
tion, the indirect effect of a change in the explanatory variables in the spatial
Durbin model appears to be 21.7 % of the direct effect in case of the price variable
and -33.2 % in case of the income variable. Furthermore, based on the t-statistics
calculated from a set of 1,000 simulated parameter values, these two indirect
effects appear to be significantly different from zero. In other words, if the price or
the income level in a particular state increases, not only cigarette consumption in
that state itself but also in that of its neighboring states will change; the change in
neighboring states to the change in the state itself is in the proportion of
approximately 1 to -4.6 in case of a price change and 1 to -3.0 in case of an
income change.

Up to now, many empirical studies used point estimates of one or more spatial
regression model specifications to test the hypothesis as to whether or not spatial

Table 3.4 Direct and indirect effects estimates based on the coefficient estimates of the spatial
Durbin model reported in Table 3.3

Determinants (1) (2) (3)

Spatial and time-
period
fixed effects

Spatial and time-period
fixed effects
bias-corrected

Random spatial effects,
Fixed time-period effects

Direct effect Log(P) -1.015 -1.014 -1.013 -1.012 -1.018 -1.018
(-24.34) (-25.44) (-24.73) (-23.93) (-24.64) (-25.03)

Indirect effect Log(P) -0.210 -0.211 -0.220 -0.215 -0.199 -0.195
(-2.40) (-2.37) (-2.26) (-2.12) (-2.28) (-2.19)

Total effect Log(P) -1.225 -1.225 -1.232 -1.228 -1.217 -1.213
(-12.56) (-12.37) (-11.31) (-11.26) (-12.43) (-12.21)

Direct effect Log(Y) 0.591 0.594 0.594 0.594 0.586 0.583
(10.62) (10.44) (10.45) (10.67) (10.68) (10.53)

Indirect effect Log(Y) -0.194 -0.194 -0.197 -0.196 -0.169 -0.171
(-2.29) (-2.27) (-2.15) (-2.18) (-2.03) (-2.06)

Total effect Log(Y) 0.397 0.400 0.397 0.398 0.417 0.412
(5.05) (5.19) (4.61) (4.62) (5.45) (5.37)

Left column IN � dWð Þ�1 computed every draw, right column IN � dWð Þ�1 calculated by Eq.
(2.14)
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spillovers exist. The results above illustrate that this may lead to erroneous con-
clusions. More specifically, whereas the coefficient of the spatial lagged value of
the price variable is positive and insignificant, it’s indirect or spillover effect is
negative and significant.

The results reported in Table 3.4 illustrate that the t-values of the indirect
effects compared to those of the direct effects are relatively small, -24.73 versus
-2.26 for the price variable and 10.45 versus -2.15 for the income variable.
Experience shows that one needs quite of lot of observations over time to find
significant coefficient estimates of the spatially lagged independent variables and,
related to that, significant estimates of the indirect effects. It is one of the obstacles
to the spatial Durbin model in empirical research. Since most practitioners use
cross-sectional data or panel data over a relatively short period of time, they often
cannot reject the hypothesis that the coefficients of the spatially lagged indepen-
dent variables are jointly insignificant (H0: h = 0), as a result of which they are
inclined to accept the spatial lag model. However, one important limitation of the
spatial lag model is that the ratio between the direct and indirect effects is the same
for every explanatory variable by construction (Elhorst 2010a). In other words,
whereas we find that the ratio between the indirect and the direct effects is positive
and significant for the price variable (21.7 %) and negative and significant
(-33.2 %) for the income variable, these percentages cannot be different from
each other when adopting the spatial lag model. In this case, both would amount to
approximately 27.1 %. Therefore, practitioners should think twice before aban-
doning the spatial Durbin model, since not only significance levels count but also
flexibility.

The finding that own-state price increases will restrain people not only from
buying cigarettes in their own state (elasticity -1.01) but to a limited extent also
from buying cigarettes in neighboring states (elasticity -0.22) is not consistent
with Baltagi and Levin (1992). They found that price increases in a particular
state—due to tax increases meant to reduce cigarette smoking and to limit the
exposure of non-smokers to cigarette smoke— encourage consumers in that state
to search for cheaper cigarettes in neighboring states. Since Baltagi and Levin
(1992) estimate a dynamic but non-spatial panel data model, an interesting topic
for further research is whether our spatial spillover effect will change sign when
considering a dynamic spatial panel data model. This is investigated in the next
chapter.

3.7 Fixed and Random Coefficients Models

In the previous sections spatial heterogeneity was captured by the intercept, but a
natural generalization would be to let the slope parameters of the regressors vary
as well. Just as the intercept, the slope parameters can also be considered fixed or
randomly distributed between spatial units.
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If the parameters are fixed but different across spatial units, each spatial unit is
treated separately. If Yi ¼ Xibi þ ei represents the i-th equation in a set of
N equations, with the observations stacked by spatial unit over time, the N separate
regressions can be related by assuming correlation between the error terms in
different equations, a phenomenon that is known as contemporaneous error cor-
relation. Such a specification is reasonable when the error terms for different
spatial units, at a given point in time, are likely to reflect some common
immeasurable or omitted factor. In full-sample notation, the set of N equations can
be written as

Y1

Y2

:
YN

2
664

3
775 ¼

X1 0 : 0
0 X2 : 0
: : : :
0 0 : XN

2
664

3
775

b1

b2

:
bN

2
664

3
775þ

e1

e2

:
eN

2
664

3
775 ð3:51Þ

where E eið Þ ¼ 0;E eie
T
j

� �
¼ r2

ijIT and i; j ¼ 1; . . .;N. This model is also known as
the seemingly unrelated regressions (SUR) model.

If the parameters are treated as outcomes of random experiments between
spatial units, the data can be pooled into one model in order to estimate the
unknown parameters. This is known as the Swamy random coefficients model
(Swamy 1970):

Yi ¼ Xibþ ei; E(eiÞ ¼ 0; E(eie
T
i Þ ¼ r2

i IT ð3:52aÞ

bi ¼ bþ vi; E(viÞ ¼ 0; Eðviv
T
i Þ ¼ V ð3:52bÞ

where the vector bi applying to a particular spatial unit is the outcome of a random
process with a common-mean coefficient vector b and covariance matrix V, which

is a symmetric K 9 K matrix. In addition, it is assumed that E eie
T
j

� �
¼ 0 and

E viv
T
j

� �
¼ 0 for i 6¼ j and that the random vectors ei and vi are independent of

each other.

3.7.1 Fixed Coefficients Spatial Error Model

The fixed coefficients or SUR model given in (3.51), with one equation for every
spatial unit over time and with contemporaneous error correlation, does not have to
be changed to cope with the spatial error case since the set of rij i; j ¼ 1; . . .;Nð Þ
already reflects the interactions between the spatial units. In the literature, this is
regarded as an advantage because no a priori assumptions are required about the
nature of interactions over space (White and Hewings 1982). The explanation is
that the specification of a particular spatial weight matrix does not alter the esti-
mates of the response parameters b, because the estimate of each rij would
immediately adapt itself to the value of wij by which it is multiplied. As the SUR
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model is discussed in almost every econometric textbook, and it is available in
almost every commercial econometrics software package, it hardly requires any
further explanation.

The standard method to attain the maximum likelihood estimates of the
parameters in a SUR model is by iterating the feasible GLS procedure. In every
iteration, the residuals of the separate regressions are used to update the elements
of the covariance matrix rij ¼ eT

i ej=T , until convergence. It should be observed
that the estimates of bi and rij obtained by iterating the feasible GLS procedure are
equivalent to those that would be obtained by maximizing the log-likelihood
function of the model, assuming that there are no restrictions on the response
parameters b across or within the equations.

The efficiency gain in the fixed coefficients spatial error model is greater, the
greater the correlation of the error terms, the less correlation exists among vari-
ables across equations, and the more correlation exists among variables within an
equation (Fiebig 2001). When rij = 0 for i 6¼ j, joint estimation of the set of
N equations is not required. Shiba and Tsurumi (1988) provide a complete set of
LM and LR tests for this null hypothesis. A hypothesis of particular interest is the
homogeneity restriction of equal coefficient vectors bi. This hypothesis can be
investigated using F or LR tests (Greene 2008).

3.7.2 Fixed Coefficients Spatial Lag Model

The set of N equations, with one equation for every spatial unit over time, in a
model with fixed coefficients and spatially lagged dependent variables can be
expressed as

Y1 Y2 . . . YN½ 	

1 �d21 : �dN1

�d12 1 : �dN2

: : : :

�d1N �d2N : 1

2
6664

3
7775

¼

X1 0 : 0

0 X2 : 0

: : : :

0 0 : XN

2
6664

3
7775

b1

b2

:

bN

2
6664

3
7775þ

e1

e2

:

eN

2
6664

3
7775

ð3:53Þ

or equivalently

YC ¼ XBþ e;EðeÞ ¼ 0;E eeT
� �

¼ R� IN with R ¼ riiIT i ¼ 1; . . .;Nð Þ
ð3:54Þ
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Each equation can also be written as

Yi ¼ Y1. . .Yi�1Yiþ1. . .YN Xi½ 	 �

di1

:
dii�1

diiþ1

:
diN

bi

2
666666664

3
777777775
þ ei � Zigi þ ei: ð3:55Þ

Note that the ds as well as the bs are assumed to differ across spatial units.
Furthermore, the assumption of contemporaneous error correlation is dropped, and

the assumption E eie
T
j

� �
¼ rijIT is changed to E eie

T
i

� �
¼ riiIT and E eie

T
j

� �
¼ 0

for i 6¼ j. Although the latter is not strictly necessary, this change is made to
discriminate between the spatial error specification and the spatial lag
specification.

The log-likelihood function and the first-order maximizing conditions of a
linear simultaneous equations model are given in Hausman (1975, 1983). Due to
dropping the assumption of contemporaneous error correlation, the full informa-
tion maximum likelihood (FIML) estimator of each single gi is

gi ¼ ẐT
i Zi

� ��1
ẐT

i Yi ð3:56aÞ

where Ẑi ¼ ðXBC�1Þi Xi

	 

; while rii ¼

Yi � Zigið ÞT Yi � Zigið Þ
T

ð3:56bÞ

The matrix XBC�1 consists of N columns. In the case where Yj j ¼ 1; . . .;Nð Þ is
an explanatory variable of Yi i ¼ 1; . . .;Nð Þ, the j-th column of XBC�1 is part of
the matrix of estimated values of Zi. The matrix of estimated values of Zi, Ẑi,
consists of (N–1 ? K) columns: (N–1) columns with respect to the spatially lagged
dependent variables explaining Yi, and K columns with respect to the independent
variables explaining Yi. Note that the estimated values of Zi can also be seen as
instrumental variables (Hausman 1975, 1983). Since the estimated values of Zi at
the right-hand side of (3.56b) depend on g, Eqs. (3.56a, b) define no closed form
solution for g. One can attempt to solve for g by the Jacobi iteration method. Since
a solution g = f(g) is required, the Jacobi iteration method iterates according to
ghþ1 ¼ fðghÞ. This method is available in some commercial econometric software
packages.

Because a fixed coefficients spatial lag model has different spatial autoregres-
sive coefficients d for different spatial units, it follows that the Jacobian term,
Tln|C|, cannot be expressed in function of the characteristic roots of the spatial
weight matrix. This difference with the fixed coefficients spatial error model
complicates the numerical determination of the FIML estimator. As an alternative,
one can use two stage least squares (2SLS), since this estimator has the same
asymptotic distribution as the FIML estimator. The benefit of the 2SLS estimator
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is that it is considerably easier to compute. The incurred cost is a loss in
asymptotic efficiency, because 2SLS does not take account of possible restrictions
on the coefficients within the matrices B and C.

3.7.3 Additional Remarks

A disadvantage of a model with different parameters for different spatial units is
the large number of parameters to be estimated: (N 9 K) different regression
coefficients (b) and (�N(N ? 1)) different (r) parameters of the (symmetric)
covariance matrix in the spatial error model, and (N 9 K+N(N–1)) different
regression coefficients (b, d) and N different (r) parameters of the (diagonal)
covariance matrix in the spatial lag model. These models are therefore only of use
when T is large, and N is small. Another practical problem is that the value of N in
most commercial econometrics software is restricted.

Driscoll and Kraay (1998) have pointed out that if N is too large relative to T, it
will not be possible to estimate all parameters in a manner that yields a nonsingular
estimate. In this case, it is necessary to place prior restrictions on the parameters in
order to reduce the dimensionality of the problem. However, even if these
restricted estimators are feasible, the quality of the asymptotic approximation used
to justify their use is suspect, unless the ratio N/T is close to zero.

One way to reduce the number of parameters of the covariance matrix to 2N in
the spatial error model, which at the same time re-establishes the use of the spatial
weight matrix, is obtained by imposing the restrictions rij ¼ wiwij for i 6¼ j. These
restrictions are reasonable if one has prior information about the nature of inter-
actions over space. Under these restrictions, the elements of the covariance matrix
must be updated by

rii ¼
eT

i ei

T
; wi ¼

XN

j¼1;j6¼i

wije
T
i ej=T

XN

j¼1;j6¼i

wij ð3:57Þ

in each iteration. Similarly, the number of regression coefficients in the spatial lag
model can be reduced to (N 9 K+N). Under these circumstances we obtain

C ¼

1 �d2w21 : �dNwN1

�d1w12 1 : �dNwN2

: : : :
�d1w1N �d2w2N : 1

2
664

3
775 and Ẑi ¼

XN

j¼1

wij½XBC�1	 j ð3:58Þ

where XBC�1
	 
 j

denotes the j-th column of the matrix XBC�1. Although these
restrictions simplify the estimation procedure, use of the Jacobi iteration method
cannot be avoided.

In both cases, the number of parameters still depends on N, causing the
appropriateness of the asymptotic approximation to be suspect. An alternative,
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more rigorous, way to reduce the number of parameters is to make a compromise
between estimating a uniform equation that is valid for all spatial units, and a
separate equation for each single spatial unit. First, homogeneous spatial units are
joined within groups, and then a separate equation is considered for each group.
Schubert (1982) uses this approach in building an interregional labor market model
for Austria, and Murphy and Hofler (1984) in estimating a regional unemployment
rate equation for the US. Froot (1989) suggests this approach, in more formal
terms, in the accounting and finance literature in order to deal with cross-sectional
time series data of firms. In addition, one can choose between spatial dependence
among the observations within groups (as in Froot 1989), or spatial dependence
between groups. The former may be applicable when neighboring spatial units are
grouped, and the latter when spatial units with comparable characteristics are put
together. Let P denote the number of groups p ¼ 1; . . .;Pð Þ, and Np the number of
spatial units in each group, so that RpNp ¼ N. Then, the number of parameters for
spatial dependence within groups reduces to P� K þ Rp1=2Np Np þ 1

� �
in the

spatial error model, and to P� K þ RpNp Np � 1
� �

in the spatial lag model. In the
case of spatial dependence between groups, the number of parameters reduces to
P� K þ 1=2P Pþ 1ð Þ in the spatial error model, and to P� K þ P P� 1ð Þ þ P in
the spatial lag model.

Another possibility of dealing with spatial error autocorrelation is to employ
groups and a nonparametric covariance estimation technique (such as GMM). The
GMM technique avoids the estimation of the parameters of the covariance matrix
(Driscoll and Kraay 1998). However, these parameter reduction techniques as well
as the nonparametric covariance estimation technique (Driscoll and Kraay 1998,
fn. 5) rule out applications where the parameters are allowed to vary across all
spatial units, which constitutes the initial purpose of the fixed coefficients model.

3.7.4 Random Coefficients Spatial Error Model

The number of parameters to be estimated can also be reduced by treating the
coefficients in the regression equation as outcomes of random experiments
between spatial units. Consequently, the number of response coefficients no longer
grows with the number of spatial units. This approach also improves the efficiency
of the estimators due to the availability of substantially more degrees of freedom.
Unfortunately, the random effects approach does not reduce the number of
parameters of the covariance matrix in the spatial error model, or the number of
parameters associated with the spatially lagged dependent variables in the spatial
lag model. Therefore, a large value of N relative to T remains a problem.

The random coefficient model with spatial error autocorrelation can be specified
as in Eqs. (3.52a, b), incorporating the extension

E(eie
T
j Þ ¼ rijIT ð3:59Þ
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Note that we change the notation slightly by using rii for i = j instead of ri
2 as

in Eq. (3.52a). Similar to the fixed coefficients model, no prior assumptions are
required about the nature of the interactions over space. In this model, the random

vector Y � YT
1 ; . . .;YT

N

� �T
can be assumed to be distributed with mean Xb, where

X � XT
1 ; . . .;XT

N

� �T
, and covariance matrix

R ¼

X1VXT
1 þ r11IT r12IT : r1NIT

r21IT X2VXT
2 þ r22IT : r2NIT

: : : :

rN1IT rN2IT : XNVXT
N þ rNNIT

2
6664

3
7775

¼DðIN � VÞDT þ ðRr � ITÞ

ð3:60Þ

where D is a NT 9 NK block-diagonal matrix, D ¼ diag X1; . . .;XN½ 	, and Rr is a
N 9 N matrix with Rr = (rij). The ML and the GLS estimator of b are known to
be equivalent (Lindstrom and Bates 1988), and equal to

b̂ ¼ XTR�1X
� ��1

XTR�1Y ð3:61Þ

although the major problem is that R contains unknown parameters R ¼ RðRr;VÞ
that must also be estimated. There are two ways to proceed. A feasible GLS
estimator of b can be constructed on the basis of a consistent estimate of Rr and
V. To obtain this estimator, the following steps must be carried out. First, estimate
the model assuming that all response parameters are fixed and different for dif-
fering spatial units. We use the mnemonic FC to refer to these estimates. This
model is actually the fixed coefficients model without restrictions on the covari-
ance matrix as given in Eq. (3.51). This step results in estimates for bFC

i and rFC
ij .

Second, estimate V by (see Swamy 1974)

V ¼ 1
N � 1

S� 1
N

XN

i¼1

r̂FC
ii ðXT

i XiÞ�1

þ 1
NðN � 1Þ

XN

i¼1

XN

j¼1;j6¼i

r̂FC
ij ðXT

i XiÞ�1XT
i XjðXT

j XjÞ�1

ð3:62aÞ

where S ¼
XN

i¼1

b̂FC
i �

1
N

XN

i¼1

b̂FC
i

 !
b̂FC

i �
1
N

XN

i¼1

b̂FC
i

 !T

ð3:62bÞ

The estimator of V, although unbiased, may not be positive definite. To ensure
the positive definiteness of the estimated matrix, one can also use the consistent
estimator V = 1/(N–1) 9 S (for details, see Swamy 1970). Finally, estimate the
common-mean coefficient vector b by GLS according to Eq. (3.61). A distinct
problem of the final step is that it requires a matrix inversion of order (N 9 T). As
an alternative, the inverse of R can be computed with the expression
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R�1 ¼ðR�1
r � ITÞ

� ðR�1
r � ITÞD DTðR�1

r � ITÞDþ IN � V�1
	 
�1

DT R�1
r � IT

� � ð3:63Þ

which requires the inversion of three matrices, one of order K (V), one of order
N (Rr), and one of order N 9 K for the matrix between square brackets. In the case
where T is large and/or K � T, this alternative computation is to be preferred,
although the inversion of a matrix of order N 9 K may still create computational
difficulties in some of the commercial econometric software packages.

Despite the mathematical equivalence, the feasible GLS estimator of b does not
coincide with the ML estimator of b. This is the case because the feasible GLS
estimator of b is based on a consistent but not on the ML estimate of Rr and V. The
statistical literature shows that ML estimation of b, Rr and V, although possible, is
laborious. There are three reasons for this. First, Rr and V cannot be solved
algebraically from the first-order maximizing conditions of the log-likelihood
function. Consequently, Rr and V must be solved by numerical methods. Second, a
common estimation problem is associated with the restrictions on the parameters
of the covariance matrix. A variance estimate should be nonnegative, and a
covariance matrix estimate should be nonnegative definite. Moreover, it must be
feasible that an estimate takes on values at the boundary of the parameter space.
Thus, a variance estimate may be zero, and a covariance matrix estimate may be a
nonnegative definite matrix of any rank. In fact, such boundary cases provide
useful exploratory information during the model building process. It is desirable
that numerical algorithms for ML estimators can successfully produce the defined
estimates for all possible samples including those where the maximum is attained
at the boundary of the parameter space. However, this parameter space problem
often causes difficulties with existing ML algorithms (Shin and Amemiya 1997,
p. 190). Third, although some studies assert to have developed efficient and
effective algorithms for the likelihood-based estimation of the parameters, they
generally assume that Eðeie

T
i Þ ¼ r2IT and Eðeie

T
j Þ ¼ 0 for i; j ¼ 1; . . .;N and i 6¼ j

instead of Eðeie
T
j Þ ¼ r2

ijIT (Jenrich and Schluchter 1986; Lindstrom and Bates
1988, p. 1014, left column; Longford 1993; Goldstein 1995; Shin and Amemiya
1997, p. 189). This naturally simplifies the parameter space problem, and it is
therefore not clear whether these algorithms work for the more general case.

3.7.5 Random Coefficients Spatial Lag Model

A full random parameter model with spatial lags of the dependent variables does in
fact not exist. The main reason for this is that the assumption of a random element
in the coefficients of lagged dependent variables raises intractable difficulties at the
level of identification and estimation (Kelejian 1974; Balestra and Negassi 1992;
Hsaio 1996). Instead, a mixed model can be used that contains fixed coefficients
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for the spatial dependent variables, and random coefficients for the exogenous
variables. This model reads as

Yit ¼ d1iY1t þ . . .þ dii�1Yi�1t þ diþ1tYiþ1t þ . . .þ dNtYNt þ Xitbi þ eit ð3:64Þ

A problem that causes this model not to be used very often is the number of
observations needed for its estimation. The minimum number of observations on
each spatial unit amounts to (N ? K), as the number of regressors is (N–1 ? K).
Most panels do not meet this requirement, even if N is small. Provided that
information is available about the nature of interactions over space, we therefore
impose the restrictions dij ¼ diwij for j 6¼ i, in order to attain

Yit ¼ di

XN

j¼1

wijYjt þ Xitbi þ eit � diYiðwÞ þ Xitbi � Zitgi þ et ð3:65Þ

In this case, the minimum number of observations needed on each spatial unit
reduces to (K ? 1), which is independent of N.

Stacking the observations by time for each spatial unit and taking account of
Eq. (3.52a, b), the full model can be expressed as
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� diag½Y1ðwÞ; . . .:;YNðwÞ	 � dþ Xbþ diag½X1; . . .;XN 	 � vþ e

ð3:66Þ

The covariance matrix of the composite disturbance term diag½X1; . . .;XN 	 �
vþ e is block-diagonal with the i-th diagonal block given by

Ui ¼ XiVXT
i þ r2

i IT ð3:67Þ

Similar to the spatial error case, there are two ways to proceed. A feasible GLS
estimator of d and b may be constructed, extended to instrumental variables and
based on a consistent estimate of r2

1; . . .; r2
N and V. Alternatively, d; b; r2

1; . . .; r2
N
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and V may be estimated by ML.11 The following feasible GLS analog instrumental
variables estimator is suggested by Bowden and Turkington (1984, chap. 3).12

Let Xi denote the (T 9 K) matrix of the exogenous variables in the i-th equa-
tion, Zi the (T 9 (1 ? K)) matrix of the spatially lagged dependent variable and
the exogenous variables in the i-th equation, and X the (T 9 KALL) matrix of all the
explanatory variables in the full model, where KALL equals (N(1 ? K)). Conse-
quently, the inversion of the matrix XTX of order (KALL 9 KALL) may constitute a
problem when N and/or K are large.

First, estimate the model assuming that all coefficients are fixed. We again use
the mnemonic FC to refer to these estimates. The model is in effect the fixed
coefficients model extended with spatially lagged dependent variables as described
above in Eqs. (3.53–3.55), but now we stick to the use of instrumental variable

estimators. This results in the following estimates for gFC
i and r2;FC

i

ĝFC
i ¼ ZT

i XðXT XÞ�1XT Zi

h i�1
ZT

i XðXT XÞ�1XT Yi ð3:68aÞ

r̂2;FC
i ¼ ðYi � Ziĝ

FC
i Þ

TðYi � Ziĝ
FC
i Þ

T � K
ð3:68bÞ

Second, estimate V by (see Balestra and Negassi 1992; Hsiao and Tahmiscioglu
1997)

V̂ ¼ 1
N � 1

XN

i¼1

b̂
FC

i �
1
N

XN

i¼1

b̂
FC

i

 !
b̂
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i �
1
N

XN

i¼1

b̂
FC

i

 !T

ð3:69Þ

Let Zp
i denote the predictive values from the multi-equation regression of

Zi = [Yi(w) Xi] on X, with the observations for each spatial unit weighted by U�1
i

Zp
i ¼ X XTU�1

i X
� ��1

XTU�1
i Zi ¼ Yp

i wð ÞXi½ 	: ð3:70Þ

The inverse of Ui can be computed by the expression

U�1
i ¼

1

r2
i

IT �
1

r2
i

Xi V�1 þ 1

r2
i

XT
i Xi

� ��1 1

r2
i

XT
i ð3:71Þ

as a result of which the formula for Zp
i changes to

11 One application of this model in the literature is of Sampson et al. (1999), but this paper does
not describe the estimation procedure in detail.
12 Bowden and Turkington start from the regression equation Y ¼ Xbþ l, where E llTð Þ ¼ X,
and some of the X variables are endogenous. Let Z denote the set of instrumental variables.

Then, the GLS analog instrumental variables estimator is b ¼ XpTX�1XP
� ��1

XpTX�1Y, where
Xp ¼ ZðZTX�1ZÞ�1

ZTX�1X.
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Finally, estimate the parameters d and b by
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ð3:73Þ

where U�1
i can be substituted for the expression given in Eq. (3.71).

3.7.6 Additional Remarks

Although the random coefficients spatial error and spatial lag models have only
K response coefficients b, and thus ((N–1) 9 K) less parameters than their fixed
counterparts, the problem that N may be too large relative to T remains. This
implies that techniques to reduce the number of r or d parameters, as already
presented for the fixed coefficients model, also apply to the random coefficients
model. To test the homogeneity restriction of equal coefficient vectors b a v2 test
may be used (see Greene 2008). The estimation of the parameters of a random
coefficients model is obviously not a simple calculation, but it is feasible. A
practical problem is that the fixed coefficients, which must be estimated first,
cannot be determined when T is smaller than K. In this case, one has to resort to
studies asserting to have developed efficient and effective algorithms for the
likelihood-based estimation of the parameters (see above).

Similar to the random effects model not necessarily being an appropriate
specification when observations on space-time data of adjacent units in unbroken
study areas are used (see Section 3.4), the random coefficients model may not be
either. In that case, the fixed coefficients model is compelling, even when N is large.
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3.8 Multilevel Models

Many empirical studies use regional data across multiple countries, especially
studies that try to explain regional phenomena in different member states of the
European Union.The data in these studies may be said to be grouped at two
different levels. Regions are so-called level 1 units grouped within countries that
are the level 2 units. According to Goldstein (1995, pp. 1–2), the existence of such
groupings should not be ignored in the empirical analysis. While most macro-
economic studies focus on how national characteristics affect the dependent var-
iable, one may also view the possibility that the dependent variable observed at the
regional level deviates from the national average due to local circumstances.
Similarly, while many regional studies based on European data focus on how
regional characteristics affect the dependent variable, one may also view this
process as embedded in country-level institutional peculiarities, since even among
the fairly homogenous group of EU member countries, institutions do differ.
Consequently, working at a single level, estimating a macroeconomic equation
based on macro data or a regional economic equation based on regional data, is
likely to lead to a distorted representation of reality. A single-level model assumes
that the data do not follow a hierarchical structure, and thus that all the relevant
variation is at one scale. A modeling strategy which does not allow for these
national institutions effectively assumes that regions are independent of each other.
This is evidently not a safe assumption to make as these national institutions
influence the dependent variable at the regional level. For example, whereas it is
reasonable to assume that the dependent variable observed in one region is
independent of that of a region in another country, the dependent variable of two
regions within one country cannot be assumed to be independent within the same
country, as both regions share the same institutional framework. Proceeding with a
standard regression analysis under the false assumption of independent observa-
tions leads to standard errors for the estimates that are too small, giving false
impressions of the importance of explanatory variables.

A two-level model takes the hierarchical structure between regions and coun-
tries into account by modeling the variation at both levels. In this model a dis-
tinction is made between explanatory variables that vary between countries only
and explanatory variables that also vary between regions within countries. The
former may be denoted as national-level variables and the latter as regional-level
variables. The coefficients of the regional-level variables may vary from one
country to another and be treated as random, while the coefficients of the national-
level variables are the same for all countries and should be treated as fixed. This
mixed random and fixed coefficients model reads as

Ycrt ¼ Xcrtbc þ Zctaþ ecrt ð3:74aÞ

bc ¼ bþ vc ð3:74bÞ
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EðecrtÞ ¼ 0;VarðecrtÞ ¼ r2
c ð3:74cÞ

EðvcÞ ¼ 0; VarðvcÞ ¼ V ð3:74dÞ

where c (¼ 1,…, N) refers to a country, r refers to a region (¼ 1,…, Rc with Rc the
number of regions in country c), and t (¼ 1,…, T) refers to a given time period. Ycrt

is the dependent variable in region r of country c at time t, Xcrt is a vector of
explanatory variables measured in region r of country c at time t, and Zct is a
vector of explanatory variables in region r but only observed at the national level
of country c at time t, since these variables do not differ between regions within
countries. ecrt is a heteroskedastic disturbance term with variance rc

2, which is
assumed to be different for different countries. b represents a vector of random
response parameters and a a vector of fixed response parameters in the regression
equation. The bc applying to a particular country is the outcome of a random
process with common-mean-coefficient vector b and covariance matrix V. When
the vectors b and bc (c = 1,…, N) are of size K, V is of size K 9 K.

This model belongs to the class of mixed linear models. Frees (2004) gives a
general and detailed overview of the mathematical and statistical fundamentals of
this class of models, as well as substantive applications across the social sciences.
These mixed models are also known as two-level or multilevel models, the dif-
ference being that in this type of model as well as in many regional economic
applications the error term is commonly assumed to be homoskedastic,
var(ecrt) = r2 for every country c.13 However, it is better to consider a general-
ization of the two-level model since the assumption of a homoskedastic error term
often needs to be rejected in favor of a heteroskedastic error term, r2

c 6¼ r2 for
different countries c (see Frees 2004, pp. 45–52).

Two other problems that frequently occur when using space–time data are serial
dependence between the observations of each spatial unit over time and spatial
dependence between the observations of the spatial units at each point in time. To
deal with serial dependence, one might add the dependent variable lagged in time
to the model. Similarly, to deal with spatial dependence, one might add the
dependent variable lagged in space. Although high or low values of the dependent
variable in a particular region often go hand in hand with similar values in sur-
rounding regions, the latter extension may be criticized. This is because the
dependent variable often also tends to go up and down in different regions along
the national evolution of this variable over time. In general, there are three
explanations for these observations. One is business cycle effects, which affect all
regions and countries. To control for these effects, one might include time-specific
effects. Another is country-specific common spatial interaction effects to all
regions. If the government of a particular country changes its national institutional
framework, that is, if it changes one of the national factors Z affecting the

13 Applications based on the multilevel approach in regional economic research are Jones
(1991), Ward and Dale (1992), Gould and Fieldhouse (1997), McCall (1998), Elhorst and Zeilstra
(2007), Chasco and Lopez (2009), and Zeilstra and Elhorst (2012).
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dependent variable in Eq. (3.74a), the dependent variable of all regions located in
that country may change. This clustering of regional observations within countries
implies spatial dependence. Not accounting for this clustering effect, that is, not
controlling for institutional variables observed at the national level may lead to
biased results. According to Corrado and Fingleton (2012), these group effects
(read: institutional variables) also differ advantageously from the use of regional or
country dummy variables that capture the effects of several omitted variables.
A final explanation is unobserved national or subnational variables. To account for
these unobserved variables, one might incorporate a spatial autoregressive process
among the error terms within countries. The best-known spatial dependence model
starts with a first-order spatial autoregressive process in the error terms
ect ¼ kcWcect þ lct, where ect and lct are written in vector form for each cross-
section of regions in country c at time t, and lct
Nð0; r2IRcÞ. In addition,
Wc c ¼ 1; . . .;Nð Þ is an Rc 9 Rc non-negative matrix with zeros on the diagonal to
describe the spatial arrangement of the regions in country c, and kc is the spatial
autocorrelation coefficient, which is assumed to be fixed but different for various
countries. Consequently, the covariance matrix of the error terms in Eq. (3.74c)
becomes

EðectÞ ¼ 0; VarðectÞ ¼ r2
c ðIRc � kcWcÞTðIRc � kcWcÞ
	 
�1¼ r2

cXc ð3:75Þ

Summing up, to account for spatial dependence among regions within coun-
tries, the model controls for country-specific common spatial interaction effects to
all regions, for spatial autocorrelation and for time-specific effects. Especially if
the underlying theoretical model does not suggest endogenous interaction effects
among the dependent variable observed in different regions, this model represents
a strong alternative. Arbia and Fingleton (2008) confirm that the justification of an
interaction effect in the dependent variable is a problem for spatial econometrics.

The estimation procedure of this model largely follows the procedures set out in
the previous section. A more detailed description can also be found in Elhorst and
Zeilstra (2007). A Matlab routine of this estimation procedure is downloadable for
free at www.regroningen.nl.

3.9 Spatial SUR Models

Anselin (1988, pp. 137–150) derives the log-likelihood function for a fixed
coefficient model that includes spatial error autocorrelation or a spatially lagged
dependent variable, but his case considers response coefficients that vary over time
rather than across space, as in Sects. 3.7 and 3.8. This model is called spatial SUR.
A full spatial SUR model with all types of interaction effects takes the form

Yt ¼ dtWYt þ atiN þ Xtbt þWXtht þ ut; ut ¼ ktWut þ et; t ¼ 1; ::; T ð3:76Þ
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with EðetÞ ¼ 0, Eðet1e
T
t2Þ ¼ rt1;t2IT for t; t1; t2 ¼ 1; . . .; T . The ML estimation

procedure of this model is described in Anselin (ibid) and Mur et al. (2010,
Appendix). Alternatively, one may use this setup to estimate different types of
dependent variables. Generally, the dependent variable is then not indexed by
t running from 1 to T but by m running from 1 to M. Allers and Elhorst (2011) use
this setup to estimate a simultaneous model of fiscal policy interactions. The
regression coefficients in their model do not vary over time but over the different
types of public services. Similarly, Kelejian and Prucha (2004) set out the GMM
estimation procedure of a spatial SUR model with different dependent variables.
Baltagi and Bresson (2011) describe the ML estimation procedure of a spatial SUR
model with different dependent variables when having data in panel rather than in
cross-section. This exercise is repeated in Baltagi and Pirotte (2011), but then with
model equations further extended to include spatial random effects (though
without spatial lag).

Several of these studies also derive LM or robust LM tests for a spatial lag or
for a spatial error, jointly or in each single equation, among which Hepple (1997),
Mur et al. (2010), and Baltagi and Bresson (2011). Applications of spatial SUR
models can further be found in Rey and Montouri (1999), Fingleton (2001, 2007),
Egger and Pfaffermayr (2004), Moscone et al. (2007), Wang and Kockelman
(2007), LeGallo and Chasco (2008), and Lauridsen et al. (2010).

Below the ML estimation procedure of a spatial SUR model is described if the
parameters need to satisfy adding-up restrictions. This procedure is a simplified
version of the model presented in Allers and Elhorst (2011). In this study it is
shown that a theoretical model of local expenditures on public services and tax-
ation with fiscal policy interactions among local governments that face a budget
constraint can be written as a linear expenditure system (LES) by adopting a
Stone-Geary social welfare function. This social welfare function reads as

VðE1; . . .;EMÞ ¼
XM

m¼1

bm logðEm � amÞ ð3:77aÞ

where
XM

m¼1

bm ¼ 1 ð3:77bÞ

The welfare V derived from expenditures on a particular public service m, Em, is
a function of the service level in excess of the committed or subsistence level am,
and of preferences, which determine bm (the functional forms of am and bm will be
introduced below). Note that the Stone-Geary function can only usefully be
applied in cases where all public services are normal and all pairs of public
services are net substitutes. As long as local public services are categorized into a
limited number of broad groups, these conditions are likely to be met. Another
limitation is that the Stone-Geary function is only defined if Em [ am for all
expenditure categories, known as the limited domain problem.
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Maximizing this social welfare function subject to the budget constraint

XM
m¼1

Em ¼ P ð3:78Þ

yields the LES which denoted in terms of individual observations takes the form

Eim ¼ dm

XN

j¼1

wijEjm þ am þ bm Pi �
XM

n¼1

dn

XN

j¼1

wijEjn � an

 !" #
þ eim ð3:79Þ

where Eim represents the expenditures of jurisdiction i on public service
m (m = 1,.., M). These expenditures are equal to committed expenditure on this
service am, including expenditures due to policy interaction effects, plus a fraction
bm of discretionary income, which is the income that remains after all committed
expenditures have been financed. Note that a different index (n instead of m) is used
to compute the sum of these committed expenditures. Further note that tax revenues
can also be taken up in this model by treating them as negative expenditures.

The parameter dm represents the importance of interaction effects and can be
either negative or positive. In the spillover model (Brueckner 2003), dm is likely to
be negative. Here, dmRwijEjm represents the contribution of service levels in other
jurisdictions to the locally available service level, as a result of which, subsistence
levels provided by the local government can be lower than without spillovers. In
the yardstick competition model (Brueckner 2003), dm is likely to be positive.
Here, dmRwijEjm describes the service level that citizens take for granted because it
concerns services that inhabitants of other jurisdictions also enjoy.

One advantage of the LES is that it is not necessary to distinguish prices and
quantities. Existing empirical work generally studies interactions in expenditure
levels not service levels, since a difficult issue is the lack of adequate output
measures for public services and the difficulties in deriving unit costs for public
services from factor input prices (see Aaberge and Langørgen 2003, for an
extensive discussion). Although other demand systems may be more flexible, the
LES is one of the few systems where prices (p) and quantities (q) are not separated
from each other, as a result of which expenditure data suffices (E = pq). This
increases the empirical applicability of the LES relative to other systems.

Following Pollak and Wales (1981), the system can be extended by ‘‘trans-
lating’’ am and bm. Discretionary income spending can be made dependent on local
preferences

bm
i ¼ bm0 þ

XG

g¼1

bmgXig ð3:80Þ

where Xig are exogenous variables that determine the share of discretionary
income that is spent on public service m in jurisdiction i, and bmg (g = 0,…, G) are
unknown coefficients to be estimated. The share of discretionary income now
depends on variables that are different from one jurisdiction to the other (Xig). For
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this reason bi
m should contain the subscript i. Further note that the nature and the

number of exogenous variables is the same for each service sector, but that the
coefficients are normally different for different public services.

Although regulations and public pressure set minimum service standards across
governments, implying that am is the same for every jurisdiction, expenditures
associated with those uniform minimum requirements am may, just as in Jackman
and Papadachi (1981) and Aaberge and Langørgen (2003), taken to depend on
exogenous variables Simh h ¼ 1; . . .;Hmð Þ. The symbol S instead of X is used here
to distinguish these two different sets of variables. For example, a community with
a large share of schoolchildren in its population needs to spend more per capita to
attain a certain educational service level than other communities. This yields

am
i ¼ am0 þ

XHm

h¼1

amhSimh ð3:81Þ

where amh h ¼ 0; . . .;Hmð Þ are unknown coefficients to be estimated. Note that the
nature and the number of the exogenous variables Smh, in contrast to the variables
Xg, may be different for different public services. The full model for every single
government i involving a system of M equations can then be written as

Ei1 ¼
XN

j¼1

d1wijEj1 þ a10 þ
XH1

h¼1

a1hSi1h þ ðb10 þ
XG

g¼1

b1gXigÞUi þ ei1 ð3:82aÞ

� � � � � �

EiM ¼
XN

j¼1

dMwijEjM þ aM0 þ
XHM

h¼1

aMhSiMh

þ ðbM0 þ
XG

g¼1

bMgXigÞUi þ eiM

ð3:82bÞ

XM
m¼1

bm0 ¼ 1;
XM
m¼1

bmg ¼ 0 for g ¼ 1; . . .;G; ð3:82cÞ

EðeimÞ ¼ 0; EðeimeT
inÞ ¼ rmn for m; n ¼ 1; . . .;M; ð3:82dÞ

where the term Ui � Pi �
PM
n¼1

PN
j¼1

dnwijEjn þ an0 þ
PHn

h¼1
anhSinh

( )
denotes discre-

tionary income. The adding-up restrictions in Eq. (3.82c) ensure that expenditures of
government i sum to Gi. The error terms in the different equations are assumed to be
correlated, which except for SUR is also known as contemporaneous error correla-
tion. Such a specification is reasonable when the error terms for different expenditure
categories are likely to reflect some common immeasurable or omitted factors.
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The system of equations in (3.82) demonstrates the differences with many
previous studies of fiscal policy interaction based on the single equation spatial lag
model. They differ in three respects since they set

anh ¼ 0 as part of Ui; for n ¼ 1; . . .;M; h ¼ 0; . . .;Hn ð3:83aÞ

dn ¼ 0 as part of Ui; for n ¼ 1; . . .;M ð3:83bÞ

rmn ¼ 0; for m 6¼ n; m; n ¼ 1; . . .;M ð3:83cÞ

The first restriction shows why the LES, even though it is based on the
assumption that all public services are normal and to be substitutes of each other, is
more general than a set of different single equation studies. In a single equation
model, expenditures on a particular public service are seen as depending on their
own cost variables Smh only, whereas in the LES they also appear to depend on the
cost variables of other public services. This is because the LES explicitly takes
account of the local government’s budget constraint. The second restriction shows
that the expenditures on a particular public service not only interact with the same
expenditures of other governments, but also with the expenditures of those gov-
ernments on other public services. This result can again be attributed to the local
government’s budget constraint. The third restriction demonstrates that a set of
single equation models imposes zero correlations between the error terms of the
different equations of the model, leading to a loss of efficiency: the parameter
estimates will be correct, but their confidence intervals will increase.

Kapteyn et al. (1997) already dealt with the problem of interdependent pref-
erences within a linear expenditure system, but they use a simpler model, and were
only able to estimate the reduced form parameters. Anselin (1988, pp. 138–145
and pp. 157–162) extensively describes how to estimate a spatial SUR model by
ML, but does not deal with the problem that the linear expenditure system is
nonlinear in both the a, b and d parameters and the explanatory variables,14 that
the system of equations has cross-equation restrictions, since the same a and d
parameters enter into all of the equations, and the likelihood function contains a
Jacobian term that as a result is far more complicated.

The log-likelihood function of the model in (3.82) is

Log L ¼ �N
2

ln jXj � 1
2

eTðX�1 � INÞeþ ln jJj ð3:84Þ

Usually, one equation is eliminated to avoid any singularity caused by the
adding-up restrictions. Theoretically, the results are invariant no matter which

14 The linear expenditure system in its basic form is linear in the variables but nonlinear in the
parameters. However, Barnum and Squire (1979) have shown that it can be rewritten in such a
way that linear estimation techniques can still be used to estimate the parameters. Since the linear
expenditure system extended to include interaction effects is also nonlinear in its variables, linear
estimation techniques can no longer be used. The same applies to the techniques spelled out in
Anselin (1988), which are partially linear.
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equation is eliminated. If the Mth equation is eliminated, X is a symmetric
(M-1) 9 (M-1) matrix, X = [rij] (i, j = 1, …, M-1), and e is an N(M-1) 9 1
vector containing the residuals of the model. These residuals are assumed to be
sorted first by equation (i.e., type of public services) and then by spatial unit.
J denotes the Jacobian term of the transformation from the vector of error terms e

to the vector of the dependent variables E. This Jacobian term should be calculated
over all M equations. Consequently, J is an MN 9 MN matrix that takes the
following form

J ¼ IMN �
d1W : 0
: : :
0 : dMW

2
4

3
5þ

d1B1 
W : dMB1 
W
: : :

d1BM�1 
W : dMBM�1 
W
d1BM0 
W : dMBM0 
W

2
664

3
775 ð3:85Þ

where the symbol 
 denotes the element-by-element product of two vectors or
matrices (also known as the Hadamard product). Furthermore,

Bm ¼
bm

1 : bm
1

: : :
bm

N : bm
N

2
4

3
5 for m ¼ 1; . . .;M ð3:86Þ

where bi
m (i = 1,…, N; m = 1,…, M-1) is defined by Eq. (3.80). Finally, the

elements bm
i of the matrix BM (m = M) should be calculated as

bM
i ¼ bM0 þ

XG

g¼1
bMgXig ¼ 1�

XM�1

m¼1
bm0�

XG

g¼1

XM�1

m¼0
bmgXig

� �
ð3:87Þ

to account for the adding-up restrictions in (3.82c). X = [rij] can be estimated by
its first-order maximizing condition

X̂ ¼ 1
N

XN

i¼1

eie
T
i ð3:88Þ

where ei is a M 9 1 vector of residuals of the M equations in the system of
jurisdiction i. Upon inserting the estimated variance–covariance matrix in the log-
likelihood function, the concentrated log-likelihood function of the a, b and d
parameters is obtained

LogLC ¼ C � N
2

ln
1
N

XN

i¼1

eie
T
i

 !
þ ln Jj j ð3:89Þ

where C is a constant not depending on a, b and d. Neither of these parameters can
be solved analytically from the first-order maximizing conditions. Moreover, the
maximum for one of these parameters cannot be found in isolation from the others.
This implies that a numerical procedure must be used to find these parameters
simultaneously, as well as to approach the asymptotic variance matrix of the
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parameters by the inverse of the Hessian matrix needed for inference (standard
errors, t-values). A Matlab routine is available at www.regroningen.nl.

3.10 Conclusion

This chapter gives a systematic overview of panel data models extended to include
spatial error autocorrelation or a spatially lagged dependent variable. In addition, it
is shown that these two models can be extended to SDEM and the SDM models by
changing the set of explanatory variables X into X = [X WX]. Each spatial panel
data has its own specific problems models, which can be summarized as follows.

Estimation of the spatial fixed effects model can be carried out with standard
techniques developed by Anselin (1988, pp. 181–182), and Anselin and Hudak
(1992), but the regression equation must first be demeaned. This model is rela-
tively simple. One methodological shortcoming is the incidental parameters
problem. For short panels, where T is fixed and N ? ?, the coefficients of the
spatial fixed effects cannot be estimated consistently. However, this problem does
not matter when b are the coefficients of interest while the spatial fixed effects are
not. Moreover, the problem disappears in panels where N is fixed and T ? ?.

Lee and Yu (2010a) have shown that the parameter estimate of r2 in the spatial
fixed effects model will be biased in short panels (T is fixed and N ? ?), pro-
vided that time-period fixed effects are not included. If time-period fixed effects
are also included, the parameter estimates of all parameters will be biased. Bias
correction procedures under these circumstances have been formulated for the
SAR, SEM, SDM and SDEM models.

Estimation of the spatial random effects model can be carried out by maximum
likelihood, although it requires a specific approach. The iterative two-stage pro-
cedure needed to maximize the log-likelihood function of the random effects
spatial lag model appears to be simpler than the procedure for the random effects
spatial error model. The parameters of the random effects spatial error and spatial
lag model can be consistently estimated when N ? ?, T ? ?, or both N,
T ? ?. A major problem is that the random effects model is not an appropriate
specification when space-time data of adjacent spatial units located in unbroken
study areas are used. In addition, the assumption of zero correlation between the
random effects and the explanatory variables is particularly restrictive. Hence, the
fixed effects model is compelling, even when N is large, and T is small. A Haus-
man specification test may be used to test the random effects against the fixed
effects model.

A fixed coefficients spatial error model with varying coefficients for different
spatial units is equivalent to a seemingly unrelated regressions model. Although
the estimation of this model is standard, the number of equations allowed in
commercial econometric software packages is often limited. A fixed coefficients
spatial lag model with different coefficients for different spatial units is almost
equivalent to a simultaneous linear equation model. Estimation of this model by
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maximum likelihood is complicated by the fact that the Jacobian term cannot be
expressed in function of the characteristic roots of the spatial weight matrix. As a
result, the Jacobi iteration method has to be used, but this method that is available
only in a limited number of commercial software packages. As an alternative, one
can resort to the use of 2SLS, but this method does not account for restrictions on
the coefficients within the coefficient matrices. A formidable problem of fixed
coefficients models is the large number of parameters causing the estimators to be
infeasible. Furthermore, even if the estimators are made feasible by introducing
restrictions on the parameters, the quality of the asymptotic approximation used to
justify the approach remains rather suspect, unless the ratio N/T tends to zero. The
latter can eventually be achieved by joining spatial units within groups, or by
considering separate equations for each group.

Maximum likelihood estimation of the random coefficients model extended to
spatial error autocorrelation or to spatially lagged dependent variables is possible,
although it is laborious. It is simpler to use feasible GLS to estimate the random
coefficients model with spatial error autocorrelation, and to use feasible GLS in
combination with instrumental variables to estimate the random coefficients model
comprising spatially lagged dependent variables. These estimators may still be
difficult to compute, because they require matrix inversions of large orders,
depending on the number of spatial units and the number of explanatory variables.
In the random coefficients model containing spatially lagged dependent variables a
random element in the coefficients of the spatially lagged dependent variables
should be avoided, because it creates intractabilities with respect to both identi-
fication and estimation. Although the number of parameters in the random coef-
ficients spatial error and spatial lag models are smaller than in their fixed
coefficients counterparts, N may still be too large relative to T in typical spatial
panel datasets. This may cause the estimators to be infeasible or asymptotically
suspect. Finally, just as the random effects model, the random coefficients model
may not be an appropriate specification when space-time data of adjacent spatial
units located in unbroken study areas are used.

Multilevel models recognize that data may be grouped at two different levels,
among which regions across multiple countries. To account for spatial dependence
among regions within countries, a model has been developed that controls for
country-specific common spatial interaction effects to all regions, for spatial
autocorrelation and for time-specific effects.

The interest for spatial SUR models is increasing. They are different from fixed
and random coefficient models in that the coefficients do not vary over space but
over time or over different dependent variables. Generally, the estimation procedure
of these models is a straightforward extension of the estimation procedure of single
equation spatial econometric models based on cross-sectional data Eqs. (2.5a, b) or
on panel data Eq. (3.13) or Eqs. (3.14a, b), but there are exceptions. One such
exception is the linear expenditure system of fiscal policy interactions obtained
from the Stone-Geary social welfare function. The number of empirical applica-
tions of simultaneous equations models compared to single equation studies is still
limited.
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At his Web site www.regroningen.nl, Elhorst has provided Matlab software to
estimate spatial panel data models, among which the spatial lag model, the spatial
error model, and the spatial Durbin model extended to include spatial and/or time-
period fixed effects or extended to include spatial random effects. These routines
are documented in Elhorst (2012) and feature:

1. A generalization of the classic and the robust LM tests to a spatial panel data
setting;

2. The bias correction procedure proposed by Lee and Yu (2010a) if the spatial
panel data model contain spatial and/or time-period fixed effects;

3. The direct and indirect effects estimates of the explanatory variables proposed
by LeSage and Pace (2009);

4. A framework to test the spatial Durbin model against the spatial lag and the
spatial error model;

5. A framework to choose among fixed effects, random effects or a model without
fixed/random effects.

Similar routines written in R have been developed by Millo and Piras (2012).
According to Anselin (2010), spatial econometrics has reached a stage of maturity
through general acceptance of spatial econometrics as a mainstream methodology;
the number of applied empirical researchers who use econometric techniques in
their work also indicates nearly exponential growth. The availability of more and
better software, not only for cross-sectional data but also for spatial panels and not
only written in Matlab or R but recently also in easier accessible packages such as
Stata, might encourage even more researchers to enter this field.
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Chapter 4
Dynamic Spatial Panels: Models, Methods
and Inferences

Abstract This chapter provides a survey of the existing literature on the speci-
fication and estimation of dynamic spatial panel data models, a collection of
models for spatial panels extended to include one or more of the following vari-
ables and/or error terms: a dependent variable lagged in time, a dependent variable
lagged in space, a dependent variable lagged in both space and time, independent
variables lagged in time, independent variables lagged in space, serial error
autocorrelation, spatial error autocorrelation, spatial-specific and time-period
specific effects. The well-known Baltagi and Li (2004) panel dataset, explaining
cigarette demand for 46 US states over the period 1963 to 1992, is used to
investigate whether the extension of a non-dynamic to a dynamic spatial panel data
specification increases the explanatory power of the model.

Keywords Dynamic Effects � Estimation methods � Stationarity conditions �
Endogeneity � Non-stability � Spatial spillover effects � Cigarette demand

4.1 Introduction

This chapter provides a survey of the existing literature on the specification and
estimation of dynamic spatial panel data models. Ideally, a dynamic model in
space and time should be able to deal with (i) serial dependence between the
observations on each spatial unit over time, (ii) spatial dependence among the
observations at each point in time, (iii) unobservable spatial and/or time-period
specific effects, and (iv) endogeneity of one or more of the regressors other than
dependent variables lagged in space and/or time. The first problem is the domain
of the voluminous time-series econometrics literature (Hamilton 1994; Enders
1995; Hendry 1995), the second problem of the spatial econometrics literature
(Anselin 1988; Anselin et al. 2008; LeSage and Pace 2009), and the last two

J. P. Elhorst, Spatial Econometrics, SpringerBriefs in Regional Science,
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problems of the panel data econometrics literature (Hsiao 2003; Arrelano 2003;
Baltagi 2005), to mention just a few well-known textbooks in these fields.

At the turn of this century there was no straightforward estimation procedure
for dynamic spatial panel data models. This was because methods developed for
dynamic but non-spatial and for spatial but non-dynamic panel data models pro-
duced biased estimates when these methods/models were put together. The liter-
ature to be reviewed in this chapter includes the main methodological studies that
have attempted to solve this shortcoming. The survey also examines the reasoning
behind different model specifications and the purposes for which they can be used,
which should be useful for practitioners.

4.2 A Generalized Dynamic Model in Space and Time

This section initially focuses on a dynamic model in space and time that gener-
alizes several simpler models that have been considered in the literature. It should
be stressed that this generalized model suffers from identification problems and
thus is not useful for empirical research. However, when these econometric models
are arranged in a framework and their mutual relationships exemplified, it may
help to identify which models are the most likely candidates to study space–time
data, dependent on the purpose of a particular empirical study.

The most general model when written in vector form for a cross-section of
observations at time t reads as

Yt ¼ sYt�1 þ dWYt þ gWYt�1 þ Xtb1 þWXtb2 þ Xt�1b3 þWXt�1b4 þ Ztpþ vt

ð4:1aÞ

vt ¼ qvt�1 þ kWvt þ lþ ntiN þ et ð4:1bÞ

l ¼ jWlþ f ð4:1cÞ

where Yt denotes an N 9 1 vector consisting of one observation of the dependent
variable for every spatial unit (i = 1, …, N) in the sample at time t (t = 1, …, T),
Xt is an N 9 K matrix of exogenous explanatory variables, and Zt is an
N 9 L matrix of endogenous explanatory variables. A vector or a matrix with
subscript t-1 denotes its serially lagged value, while a vector or a matrix
premultiplied by W denotes its spatially lagged value. The N 9 N matrix W is a
non-negative matrix of known constants describing the spatial arrangement of the
units in the sample. Its diagonal elements are set to zero by assumption, since no
spatial unit can be viewed as its own neighbor. The parameters s, d and g are the
response parameters of successively the dependent variable lagged in time, Yt-1,
the dependent variable lagged in space, WYt, and the dependent variable lagged in
both space and time, WYt-1. The restrictions that need to be imposed on these
parameters and on W to obtain a stationary model are set out in the next section.
The K 9 1 vectors b1, b2, b3 and b4 represent response parameters of the

96 4 Dynamic Spatial Panels: Models, Methods and Inferences



exogenous explanatory variables, and p is an L 9 1 vector of response parameters
of the endogenous explanatory variables in the model.

The N 9 1 vector vt reflects the error term specification of the model, which is
assumed to be serially correlated and to be spatially correlated; q is the serial
autocorrelation coefficient and k is the spatial autocorrelation coefficient. In con-
trast to Eq. (4.1a), an error term lagged in both space and time, Wvt-1, is not
included in Eq. (4.1b), since it is uncommon in the literature. The N 9 1 vector
l = (l,…, lN)T contains spatial specific effects, li, and are meant to control for all
spatial specific, time-invariant variables whose omission could bias the estimates
in a typical cross-sectional study (Baltagi 2005). Similarly, nt (t = 1, …, T) denote
time-period specific effects, where iN is an N 9 1 vector of ones, meant to control
for all time-specific, unit-invariant variables whose omission could bias the esti-
mates in a typical time-series study. These spatial and time-period specific effects
may be treated as fixed or as random effects. In addition to this, the spatial specific
effects are assumed to be spatially autocorrelated with spatial autocorrelation
coefficient j. Finally, et = (e1t, …, eNt)

T and f are vectors of i.i.d. disturbance
terms, whose elements have zero mean and finite variance r2 and rf

2, respectively.

4.3 Stationarity

To achieve stationarity in a dynamic spatial panel data model, restrictions need to
be imposed on the parameters of the model and on the spatial weights matrix
W. The restrictions that need to be imposed on j and W in a cross-sectional
equation like (4.1c) have been shown and extensively discussed in Sect. 2.3.

Elhorst (2008a) demonstrates that the characteristic roots of the matrix

q IN�kWð Þ�1 in a space–time equation like (4.1b) should lie within the unit circle.
Since the smallest and largest characteristic roots of this matrix take the form q/
(1-kxmin) and q/(1-kxmax), or vice versa (dependent on whether q is positive or
negative), stationarity in time requires the conditions

qj j\1� kxmax if k� 0 ð4:2cÞ

qj j\1� kxmin if k\0 ð4:2cÞ

These stationarity conditions are graphed in Fig. 4.1a and show that a trade-off
exists between the serial and spatial autocorrelation coefficients.

Finally, Elhorst (2001) derives that the characteristic roots of the matrix

sIN þ gWð ÞðIN�dWÞ�1 in a space–time equation like (4.1c) should lie within the
unit circle (re-derived in Parent and LeSage 2011), which is the case when

s[ 1� dþ gð Þxmax if dþ g� 0 ð4:3aÞ

s[ 1� dþ gð Þxmin if dþ g\0 ð4:3bÞ
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�1þ d� gð Þxmax\s if d� g� 0 ð4:3cÞ

�1þ d� gð Þxmin\s if d� g\0 ð4:3dÞ

If k is replaced by d ? g and q by s, then the stationarity condition between
d ? g on the one hand and s on the other are similar to those graphed for k and q
in Fig. 4.1a. This implies that there exists a trade-off between the serial autore-
gressive coefficient and the sum of the two spatial autoregressive coefficients. The
stationarity conditions between d and g, given s, are graphed in Fig. 4.1b. This
figure shows that the stationarity region of the two spatial autoregressive coeffi-
cients takes the form of a rhombus. The location and the size of this rhombus
depend on s and the smallest and largest characteristic roots of the spatial weights
matrix.

The graphs in Fig. 4.1 make clear that the stationarity region implied by the
restriction |s| ? |d| ? |g| \ 1, put forward in Yu et al. (2008), is too restrictive. For
example, whereas the combination of values (s, d, g) = (0.1,0.9,-0.1) based on the
restriction |s| ? |d| ? |g| \ 1 should be rejected, it is not based on the results
presented here. This is because the largest characteristic root of the matrix

sIN þ gWð Þ IN�dWð Þ�1 is smaller than one for this combination of values. By
contrast, the stationarity region implied by the restriction |s| ? |d| ? |g| \ 1, put
forward in Lee and Yu (2010a), is not restrictive enough. For example, whereas
the combination of values (s, d, g) = (1.1,-0.2,0.0) is permitted by the restriction
|s| ? |d| ? |g| \ 1, it should be rejected based on the results presented here. This is

because the largest characteristic root of the matrix sIN þ gWð Þ IN�dWð Þ�1 is
greater than one for this combination of values, indicating that the model would
explode under these circumstances.

If a model appears to be unstable, that is, if the parameter estimates do not
satisfy one of the stationarity conditions, Lee and Yu (2010a) propose to take

ω ω
δ+η δ

ρ

δ

Fig. 4.1 Stationary regions of different model equations. a Stationarity region of d ? g and s in
Eq. (4.1a), and of k and q in Eq. (4.1b), b Stationarity region of d and g, given s, in Eq. (4.1a).
m1, m2 m3, and m4 denote points of intersection with the horizontal or vertical axes, where
m1 ¼ 1þs

xmax
[ 0, m2 ¼ 1�s

xmax
[ 0, m3 ¼ 1þs

xmin
\0, and m4 ¼ 1�s

xmin
\0

98 4 Dynamic Spatial Panels: Models, Methods and Inferences



every variable in Eq. (4.1a) in deviation of its spatially lagged value. Mathemat-
ically, this is equivalent with multiplying Eq. (4.1a) by the matrix IN�Wð Þ. The
largest characteristic root xmax in the stationarity conditions (4.3a) and (4.3c) may
then be replaced by xmax-1, the second largest characteristic root of the spatial
weights matrix W. Since these newly obtained restrictions are less restrictive than
the original ones, the spatial first-differenced model might be stable as a result.

In conclusion, we can say that the stationarity conditions on the spatial and
temporal parameters shown in (4.2) and (4.3) go beyond the standard condition
|s| \ 1 in serial models and the standard condition 1/xmin \ d\1/xmax in spatial
models, and that they are considerably more difficult to work with.

The stationarity conditions that need to be imposed on the N 9 N spatial
weights matrix W in a panel data setting are set forth in Yu et al. (2008). The
matrix IN�pW for p = d, k should be nonsingular, and the row and column sums

of the matrices W and IN�pWð Þ�1 should be uniformly bounded in absolute value
as N goes to infinity. In addition,

X1
h¼1

abs IN � dWð Þ�1 sIN þ gWð Þ
h ih
� �

ð4:4Þ

should be uniformly bounded. Let xi (i = 1, …, N) denote the characteristic roots
of W and RN the corresponding N 9 N matrix of normalized characteristic vectors,

then this formula may be rewritten as Rhabs RNDN RNð Þ�1
h ih
� �

, where DN is a

diagonal matrix whose diagonal elements are (s ? gxi)/(1-dxi) (i = 1, …, N).
This expression represents the stationarity region of the parameters s, g, and d
shown in Fig. 4.1. Just as in the previous chapter, the assumption that the row and
column sums of W before row-normalization should not diverge to infinity at a rate
equal to or faster than the rate of the sample size N, which is made in the cross-
sectional setting, is not explicitly made in a panel data setting, unless time-period
fixed effects are also considered.

4.4 Feasible Models

Figure 4.2 presents two regressions equations that have extensively been discussed
in the econometric literature: the dynamic model without spatial interaction effects
and the spatial model without dynamic effects. After a brief discussion of these
two types of models, we will consider a taxonomy of dynamic models in both
space and time.
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4.4.1 Dynamic but Non-Spatial Panel Data Models

A panel data model without spatial interaction effects and without dynamic effects
(i.e., a static panel data model) can be estimated by the least-squares dummy
variables (LSDV) estimator if the spatial specific effects l are treated as fixed
effects, and by the generalized least-squares (GLS) estimator if the spatial specific
effects l are treated as random effects (Hsiao 2003, Chap. 3; Baltagi 2005,Chap. 2 ).
The most serious estimation problem caused by the extension of this model with a
dependent variable lagged in time, Yt-1, is that these two estimators become
inconsistent if T is fixed, regardless of the size of N (Hsiao 2003, Chap. 4; Arrelano
2003; Baltagi 2005, Chap. 4). This is because the right-hand variable Yt-1 is cor-
related with the spatial specific effect l, and uncorrelatedness of regressors and
disturbances is one of the basic conditions that needs to be satisfied in regression
analysis. Three procedures to remove this inconsistency if T is fixed have been
developed.

The first and most popular procedure is generalized method-of-moments
(GMM). By defining and solving a set of moment conditions that need to be
satisfied at the true values of the parameters to be estimated, one obtains a set of
exogenous variables correlated with Yt-1 but orthogonal to the errors, which as a
results can be used to instrument Yt-1. The Arrelano and Bond (1991) difference
GMM estimator is based on moment conditions after taking first differences to
eliminate the spatial specific effects. Typically, this GMM estimator instruments
DYt-1 by the variables Y1 up to Yt-2 and X1 up to Xt-1 (t� 3). In practice, the
difference GMM estimator has been shown to perform poorly on data with per-
sistent series. The explanation is that, under these circumstances, the lagged levels
of variables tend to have only weak correlation with the first-differenced lagged
dependent variable. The Blundell and Bond (1998) system GMM estimator has

+ 

δ=η=0                

ββ = =

τ=η=0

β = =

General
Model 

Dynamic
non-spatial

model 

Spatial
non-dynamic

model 

Specific results for 
03 ≠β ; Xt-1 regressors

0≠π ; endogenous regressors
0≠γ ; serial autocorrelation

Specific results for 
023 4

42

≠β ; WXt regressors
0≠π ; endogenous regressors
0≠λ ; spatial autocorrelation
0≠κ ; spatially correlated

specific effects

Mixtures
See Fig. 4.3 

β 0

β 0

Fig. 4.2 Two feasible models that ignore either spatial or dynamic effects
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been shown to offer much increased efficiency and less finite sample bias com-
pared to the difference GMM estimator, since this estimator also utilizes lagged
first differences for the equation in levels. Typically, this GMM estimator also
instruments Yt-1 by the variables DY1 up to DYt-2 and DX2 up to DXt-1 (t� 3). See
Baltagi (2005) for a summary of the main results and the main references, and
Kukenova and Monteiro (2009) for a more detailed mathematical exposition.

The second procedure applies maximum likelihood (ML) based on the
unconditional likelihood function of the model. Regression equations that include
variables lagged one period in time are often estimated conditional upon the first
observations. Nerlove (1999, p. 139), however, points out that conditioning on
those initial values is an undesirable feature, especially when the time dimension
of the panel is short. If the process generating the data in the sample period is
stationary, the initial values convey a great deal of information about this process
since they reflect how it has operated in the past. By taking account of the density
function of the first observation of each time-series of observations, the uncon-
ditional likelihood function is obtained. This procedure has been applied suc-
cessfully to random effects dynamic panel data models formulated in levels
(Bhargava and Sargan 1983). Unfortunately, the unconditional likelihood function
does not exist when applying this procedure to the fixed effects model, even
without exogenous explanatory variables. The reason is that the coefficients of the
fixed effects cannot be estimated consistently, since the number of these coeffi-
cients increases as N increases. The standard solution to eliminate these fixed
effects from the regression equation by demeaning the Y and X variables also does
not work, because this technique creates a correlation of order (1/T) between the
serial lagged dependent variable and the demeaned error terms, known as the
Nickell (1981) bias, as a result of which the common parameter s cannot be
estimated consistently. Only when T tends to infinity, does this inconsistency
disappear. More recently, Hsiao et al. (2002) have suggested an alternative
procedure for the fixed effects dynamic panel data model. This procedure first-
differences the model to eliminate the spatial fixed effects and then considers the
unconditional likelihood function of the first-differenced model taking into account
the density function of the first first-differenced observations on each cross-sec-
tional unit. They find that this likelihood function is well defined, depends on a
fixed number of parameters and satisfies the usual regularity conditions. There-
upon, they conclude that the ML estimator is consistent and asymptotically nor-
mally distributed when N tends to infinity, regardless of the size of T. They also
find that the ML estimator is asymptotically more efficient than the GMM
estimator.

The third procedure is to bias-correct the LSDV estimator. Kiviet (1995), Hahn
and Kuersteiner (2002) and Bun and Carree (2005) develop bias correction pro-
cedures when both the number of cross-sectional units (N) and the number of time
points (T) in the sample go to infinity such that the limit of the ratio of N and
T exists and is bounded between zero and infinity (0 \ lim(N/T) \?). The only
problem is that in most empirical studies based on space–time data the most
relevant asymptotics are believed to be N tends to infinity and T is fixed. When T is
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fixed, the spatial-specific effects must be eliminated by first-differencing, whereas
first-differencing is not necessary when T tends to infinity.

Specific problems occur when the dynamic panel data model is also extended to
include a serially autocorrelated error term, q = 0, regressors lagged in time,
Xt-1, or endogenous regressors, Zt. The consistency of the difference and system
GMM estimators relies on the assumptions that there is no first-order serial
autocorrelation in the errors of the level equation, and that the instruments are truly
exogenous and therefore valid to define the moment conditions. The Arrelano and
Bond (1991) test for serial autocorrelation tests the hypothesis that there is no
second-order serial correlation in the first-differenced residuals, which in turn
implies that the errors from the level equation are serially uncorrelated. However,
correlation coefficients of observations on variables made in single spatial units
one year, two years, up to T-1 years apart tend to be large and to diminish only
slightly over time (Elhorst 2008b). Consequently, the null hypothesis of no serial
autocorrelation of the error terms must often be rejected. One remedial reaction
could be to re-estimate the model using methods that assume that the errors are
generated by a first-order serial autoregressive process, but this approach has been
severely criticized. Rather than improving an initial model when it appears to be
unsatisfactory, Hendry (1995, Chap. 4) argues that it is better to start with a more
general model containing a series of simpler models nested within it as special
cases. The general model Hendry recommends as a generalization of the first-order
serial autocorrelation model for time-series data is the first-order serial autore-
gressive distributed lag model, a linear dynamic regression model in which the
dependent variable Yt is regressed on Yt-1 and the explanatory variables Xt and
Xt-1. For this reason, dynamic panel data models extended to include explanatory
variables Xt-1 are more popular than dynamic panel data models extended to
include serial autocorrelation. Another reason is that the econometric literature has
paid much attention to estimators of the covariance matrix that are robust to serial
autocorrelation and heteroskedasticity, affecting inferences regarding the statistical
significance of the explanatory variables in the model (Newey and West 1987;
Greene 2008).

If one or more of the explanatory variables are endogenous (Zt), they need to be
instrumented too. Since the GMM estimator already instruments Yt-1, this esti-
mator can easily be extended to include additional endogenous explanatory vari-
ables. See Kukenova and Monteiro (2009) how to adjust the GMM estimator when
having both endogenous and exogenous explanatory variables (Zt and Xt).

4.4.2 Taxonomy of Dynamic Models in Space and Time

When imposing the parameter restrictions s = g = 0 and b3 = b4 = 0 on
Eq. (4.1), as shown in Fig. 4.2, one obtains the spatial Durbin model. The ins and
outs of this model have been extensively discussed in the previous chapter and
therefore will not be repeated here.
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Figure 4.3 presents seven different models that have mixed dynamics in both
space and time. A first set of studies (model 1 in Fig. 4.3) have mixed space and
time in the error term specification. The parameters in Eqs. (4.1b) and (4.1c) that
are allowed to vary and those that have been not been included in these studies are
reported below in parentheses. Baltagi et al. (2003) consider the testing of spatial
error correlation in a model with spatial random effects (k, l; but q, n, j not
included). Baltagi et al. (2007) extend this study to include serial autocorrelation
(q, k, l; but n,j not included). Elhorst (2008a) considers ML estimation of a model
with serial and spatial autocorrelation (q,k; but l, n, j not included). Kapoor et al.
(2007) consider GMM estimation of a spatial error model with time-period random
effects (k,n; but q, l, j not included). Baltagi et al. (2012) consider the testing of
spatial autocorrelation in both the remainder error term and the spatial random
effects (k, l, j; but q, n not included). Finally, Montes-Rojas (2010) considers the
testing of serial error correlation and spatial random effects in a spatial lag model
(d, q, l; but n, j not included). This short overview shows that not every model
combination has been considered yet. It is questionable, however, whether more
research is needed in this direction. First, the fixed effects model is often more
appropriate than the random effects model when modeling spatial panel data (see
the discussion in Sect. 3.4). Second, Lee and Yu (2010a) argue that the fixed effects
model is robust to and also computationally simpler than the random effects model.

Equation (4.1c) can be rewritten as f ¼ IN�jWð Þ�1
l. Consequently, if l is treated

as a vector of fixed effects for every spatial unit in the sample, so can f without
having to estimate the parameter j. Likewise, if l is treated as a vector of random

1. ε t-1 + Wε t

2. Yt-1 + Wε t

3. Yt-1 + WYt + WYt-1 + Xt + WXt

4. Yt-1 + WYt + WYt-1 + Xt , no WXt

5. Yt-1 + WYt-1 + Xt + WXt, no WYt

6. Yt-1 + WYt + WYt-1 + Xt + WXt 

Restriction on coefficient of WYt-1

7. Yt-1 + WYt + Xt + WXt, no WYt-1

Fig. 4.3 Dynamic spatial
panel data models that have
been considered in the
literature
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effects for every spatial unit in the sample, a vector of fixed effects for every spatial
unit in the sample f can replace l without having to estimate the parameter j. In
other words, by controlling for spatial fixed effects, spatial autocorrelation among
the spatial specific effects is automatically accounted for, no matter whether these
effects are fixed or random and without having to estimate the magnitude of this
form of spatial error autocorrelation. Third, spatial interaction effects among the
dependent variable Y and/or the independent variables X are more important than
spatial interaction effects among the error terms; when ignoring WY and/or WX
variables, the estimator of the remaining parameter estimates will lose its property
of being consistent. By contrast, when ignoring spatial interaction effects among
the error term, Wvt, the estimator of the remaining parameter estimates will ‘only’
lose its property of being efficient. Fourth, these type of models cannot be used to
determine short-term effects and indirect (spatial spillover) effects (see model 1 in
Table 4.1), which are often the main purpose of the analysis.

Perhaps more important is the development of estimators of the covariance
matrix that are robust to serial autocorrelation, spatial autocorrelation, and het-
eroskedasticity, as already pointed out above. Newey and West (1987) derive a
consistent estimator of the covariance matrix robust to serial autocorrelation and
heteroskedasticity. Similarly, Kelejian and Prucha (2010) derive a consistent
estimator of the covariance matrix robust to spatial autocorrelation and heter-
oskedasticity. Whether these two estimators can be combined and be used in a
panel data setting still needs to be investigated. Pesaran and Tosetti (2011) are
among the first to consider such an estimator. This study, however, estimates one
equation for every spatial unit in the sample, which requires T to be large while
T in most space–time studies tends to be small, and does not consider WYt and
WXt variables in the deterministic regression equation. Whether this approach is
still practicable and whether the parameters are identified if this model is extended
to include WYt and WXt variables is an interesting topic for further research.

A second set of studies (model 2 in Fig. 4.3) have mixed space and time by
specifying the deterministic regression equation as a dynamic panel data model
and the stochastic error term specification as a spatial error model. Elhorst (2005)
considers ML estimation of this model extended to include spatial and time-period
fixed effects, and Yang et al. (2006) ML estimation of this model extended to
include spatial random effects (but no time-specific effects). Practice has shown
that this setup of separating deterministic dynamic effects in time and stochastic
interaction effects among different units across space is beneficial. First, it offers
the opportunity to control for independent variables lagged in time, Xt-1. When
interaction effects among different units across space are taken up in the regression
equation rather than the error term specification, identification of the parameters
requires the elimination of the variables Xt-1 (Anselin et al. 2008). Besides, it also
offers the opportunity to adjust the error specification such that endogeneous Zt

variables can be controlled for, also when the model is estimated by ML (see
Elhorst 2008b). Second, the forecast performance of these models tends to be
much better than that of dynamic panel data model that do not control for spatial
autocorrelation (Elhorst 2005; Kholodilin et al. 2008). The disadvantage of this
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type of models, however, is that they cannot be used to determine indirect (spatial
spillover) effects (see model 2 in Table 4.1).

A third set of studies (model 3 in Fig. 4.3) have considered a spatial Durbin
model extended to include dynamic effects. These studies mainly deal with growth
and convergence among countries or regions (Ertur and Koch 2007; Elhorst et al.
2010). Typically, these studies regress economic growth on economic growth in
neighboring economies, on the initial income level in the own and in neighboring
economies, and on the rates of saving, population growth, technological change
and depreciation in the own and in neighboring economies. Elhorst et al. (2010)
demonstrate that this economic growth model can be represented by the dynamic
regression equation

Yt ¼ sYt�1 þ dWYt þ gWYt�1 þ Xtb1 þWXtb2 þ vt ð4:5Þ

which may be labeled a dynamic spatial Durbin model. By rewriting this model as

Yt ¼ ðI � dWÞ�1ðsI þ gWÞYt�1 þ ðI � dWÞ�1 Xtb1 þWXtb2ð Þ
þ ðI � dWÞ�1vt

ð4:6Þ

the matrix of partial derivatives of the expected value of Y with respect to the kth
explanatory variable of X in unit 1 up to unit N at a particular point in time can be
seen to be

oEðYÞ
ox1k

� � � oEðYÞ
oxNk

h i
t
¼ ðI � dWÞ�1 b1kIN þ b2kW½ �: ð4:7Þ

These partial derivatives denote the effect of a change of a particular explan-
atory variable in a particular spatial unit on the dependent variable of all other
units in the short term. Similarly, the long-term effects can be seen to be

oEðYÞ
ox1k

� � � oEðYÞ
oxNk

h i
¼ ½ð1� sÞI � ðdþ gÞW��1 b1kIN þ b2kW½ �: ð4:8Þ

The expressions in (4.7) and (4.8) show that short-term indirect effects do not
occur if both d = 0 and b2k = 0, while long-term indirect effects do not occur if both
d = -g and b2k = 0. Debarsy et al. (2012) found similar expressions and also derive
formulas for the path along which an economy moves to its long-term equilibrium.

The results reported in Table 4.1 show that this dynamic spatial Durbin model
(model 3) can be used to determine short-term and long-term direct effects, and
short-term and long-term indirect (spatial spillover) effects. Using the expressions
in (4.7) and (4.8), it is also possible to indicate the disadvantages of certain
parameter restrictions put forward in previous studies.

The first restriction is b2 = 0 (model 4 in Fig. 4.3 and Table 4.1). This model is
considered in Yu et al. (2008), Lee and Yu (2010b), and Bouayad-Agha and Védrine
(2010). The disadvantage of this restriction is that local indirect (spatial spillover)
effects are set to zero by construction, as a result of which the indirect effects in
relation to the direct effects become the same for every explanatory variable, both in
the short term and in the long term. If this ratio happens to be p percent for one
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variable, it is also p percent for any other variable. This is because b1k in the
numerator and b1k in the denominator of this ratio cancel each other out. For
example, the ratio for the kth explanatory variable in the short term takes the form

ðI � dWÞ�1ðb1kINÞ
h irsum

= ðI � dWÞ�1ðb1kINÞ
h id

¼

ðI � dWÞ�1
h irsum

= ðI � dWÞ�1
h id

;

ð4:9Þ

which shows that it is independent of b1k and thus the same for every explanatory
variable. A similar result is obtained when considering this ratio in the long term.

The second restriction that might be imposed is d = 0 (model 5 in Fig. 4.3 and
Table 4.1). This model is considered in LeSage and Pace (2009, Chap. 7) and
Korniotis (2010). The disadvantage of this restriction is that the matrix (I-dW)-1

degenerates to the identity matrix and thus the global short-term indirect (spatial
spillover) effect of every explanatory variable to zero. In other words, this model is
less suitable if the analysis focuses on spatial spillover effects in the short term.

The third restriction that might be imposed is g = -sd (model 6 in Fig. 4.3 and
Table 4.1). This restriction is put forward in Parent and LeSage (2010, 2011). The
advantage of this restriction is that the impact of a change in one of the explanatory
variables on the dependent variable can be decomposed into a spatial effect and a
time effect; the impact over space falls by the factor dW for every higher-order
neighbor, and over time by the factor s for every next time period (see Elhorst
2010a for a mathematical derivation). The disadvantage is that the indirect (spatial
spillover) effects in relation to the direct effects remain constant over time for
every explanatory variable. The ratio of the kth explanatory variable takes the form

ðI � dWÞ�1 b1kIN þ b2kWð Þ
h irsum

= ðI � dWÞ�1 b1kIN þ b2kWð Þ
h id

ð4:10Þ

both in the short term and the long term. In other words, if it is p percent for one
variable in the short term, it is also p percent for that variable in the long term.

The fourth restriction that might be imposed is g = 0 (model 7 in Fig. 4.3 and
Table 4.1). This model restriction is considered in Franzese and Hays (2007),
Kukenova and Monteiro (2009), Elhorst (2010b), Jacobs et al. (2009), and Brady
(2011). Although this model also limits the flexibility of the ratio between indirect
and direct effects, it seems to be the least restrictive model. More empirical
research is needed to find out whether this is really the case.

4.5 Methods of Estimation

Three methods have been developed in the literature to estimate models that have
mixed dynamics in both space and time. One method is to bias-correct the max-
imum likelihood (ML) or quasi-maximum likelihood (QML) estimator, one
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method is based on instrumental variables or generalized method of moments (IV/
GMM), and one method utilizes the Bayesian Markov Chain Monte Carlo
(MCMC) approach. These methods are (partly) based on previous studies dis-
cussed in the previous section.

Yu et al. (2008) construct a bias corrected estimator for a dynamic model (Yt-1,
WYt and WYt-1) with spatial fixed effects. Lee and Yu (2010c) extend this study to
include time-period fixed effects. They first estimate the model by the ML esti-
mator for the spatial lag model with spatial (and time-period) fixed effects, con-
ditional upon the first observation of every spatial unit in the sample due to the
regressors Yt-1 and WYt-1. Next, they provide a rigorous asymptotic theory for
their ML estimator and suggest a bias corrected ML estimator when both the
number of spatial units (N) and the number of time points (T) in the sample go to
infinity such that the limit between N and T exists and is bounded between zero
and infinity (0 \ lim(N/T) \?). In the words of Lee and Yu (2010b, p. 2), this
condition implies that ‘T ? ? where T cannot be too small relative to N’. The
bias correction is derived for both normally distributed error terms (ML) and for
error terms that do not rely on the normality assumption. In the latter case the first
four moments are required (QML). Finally, it is to be noted that this bias corrected
ML estimator can also be used when either the variable Yt-1 or the variable WYt-1

is eliminated from the model.
Elhorst (2010b) investigates the small sample properties of the bias corrected ML

estimator. For this purpose, he extends the unconditional ML estimator proposed by
Hsiao et al. (2002) with the variable WYt, as well as the Bhargava and Sargan (1983)
approximation that is used to determine the expected value and the variance of the
first first-differenced observations in the sample. One of his conclusions is that the
parameter estimate d of the variable WYt is still considerably biased when using
this unconditional ML estimator. However, if the parameter estimate d is based
on the bias corrected ML estimator and the other parameters, given d, on the
unconditional ML estimator, then this so-called mixed estimator outperforms the
bias corrected estimator of Yu et al. (2008) for small values of T (T = 5).

Korniotis (2010) constructs a bias corrected LSDV estimator for a dynamic panel
data model (Yt-1,WYt-1) with spatial fixed effects, also assuming 0\lim(N/T)\?.
The bias correction in this study is different from that in Yu et al. (2008), since the
LSDV estimator does not have to account for endogenous interaction effects WYt.

A couple of studies have considered IV/GMM estimators, building on previous
work of Arrelano and Bond (1991), and Blundell and Bond (1998). Elhorst
(2010b) extends the Arrelano and Bond difference GMM estimator to include
endogenous interaction effects and finds that this estimator can still be severely
biased, especially with respect to the parameter estimate d of the variable WYt. He
notes a bias of 0.061. The explanation for this can be found in Lee and Yu (2010b).
They find that a 2SLS estimator like the Arrelano and Bond GMM estimator which
is based on lagged values of Yt-1, WYt-1, Xt and WXt is not consistent due to too
many moments, and that the dominant bias is caused by the endogeneity of the
variable WYt rather than the variable Yt-1. To avoid these problems, they propose

108 4 Dynamic Spatial Panels: Models, Methods and Inferences



an optimal GMM estimator based on linear moment conditions, which are stan-
dard, and quadratic moment conditions, which are implied by the variable WYt,
and therefore not standard in dynamic panel data models. They prove that this
GMM estimator is consistent, also when T is small relative to N.

Both Kukenova and Monteiro (2009), and Jacobs et al. (2009) consider a
dynamic panel data model (Yt-1, WYt) and extend the system GMM estimator of
Blundell and Bond (1998) to account for endogenous interaction effects (WYt).
The former study also considers endogenous explanatory variables Zt, and the
latter spatially autocorrelated error terms Wet. The main argument of applying
GMM estimators rather than traditional spatial maximum likelihood estimators is
that the former can also be used to instrument endogenous explanatory variables
(other than the variables Yt-1 and WYt).

Both studies find that the system GMM estimator substantially reduces the bias
in the parameter estimate of the WYt variable, and that the system GMM estimator
outperforms the Arrelano and Bond difference GMM estimator. The main message
of these studies seems to be that the bias Lee and Yu (2010b) have recently found to
occur in theory may reduce so strongly that they become acceptable in practice. In
Jacobs et al. (2009), the bias in d of the variable WYt amounts to 0.50 % of the true
parameter value, on average. On the other hand, Monte Carlo simulation experi-
ments can only cover a limited number of situations and therefore do not prove that
these results hold in general. Kukenova and Monteiro (2009), for example, only
consider positive values for the spatial autoregressive coefficient s of the variable
WYt. Furthermore, in some cases both studies also find biases that are rather large.
For T = 10, N = 50, and d = 0.3, for example, Kukenova and Monteiro (2009,
appendix 6.C) find a bias of -0.0219, or 7.3 % of the true parameter value. Com-
parably, Jacobs et al. (2009, Table A.1) find an increasing bias, up to 6.1 % of the
true parameter value, in the spatial autoregressive coefficient s of the variable WYt,
provided that spatial autocorrelation in the error terms is not accounted for. When
correcting for spatial error correlation, this bias considerably diminishes, but then
the bias in the spatial autocorrelation coefficient k increases Table 4.2.

Parent and LeSage (2010, 2011) point out that the Bayesian MCMC approach
considers conditional distributions of each parameter of interest conditional on the
others, which leads to some computational simplification. Just as in Elhorst (2001,
2005, 2010b), they treat the first period cross-section as endogenous, using the
Bhargava and Sargan (1983) approximation. They find that the correct treatment of
the initial observations (endogenous instead of exogenous) is important, especially
in cases when T is small. Since Yu et al. (2008) and Elhorst (2010b) find that
maximizing the log-likelihood function leads to biased estimates of the spatial
autoregressive parameter d of the variable WYt, the former when considering the
log-likelihood conditional upon the first cross-section of observations and the latter
when considering the unconditional log-likelihood, the question arises whether the
Bayesian MCMC estimator is not also subject to a bias. For T = 5, N = 50, and
d = 0.7, for example, Parent and LeSage (2011, Table 4.3) find a bias of 0.0149,
or 2.13 % of the true parameter value.
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4.6 Non-Stability

The estimation of a dynamic spatial panel data model gets more complicated if it
turns out that the condition s + d + g\ 1 is not satisfied, i.e., if the model is
unstable. To get rid of possible unstable components in Yt, Lee and Yu (2010a),
and Yu et al. (2012) propose to transform the model in spatial first-differences, that
is, by taking every variable in the dynamic spatial panel data model in deviation of
its spatially lagged value. If the following spatial dynamic panel data model

Yt ¼ sYt�1 þ dWYt þ gWYt�1 þ Xtbþ lþ ntiN þ et ð4:11Þ

is taken as point of departure, this operation is mathematically equivalent with
multiplying (4.11) by the matrix (I–W)

ðI �WÞYt ¼ sðI �WÞYt�1 þ dWðI �WÞYt þ gWðI �WÞYt�1

þ ðI �WÞXtbþ ðI �WÞlþ ðI �WÞet
ð4:12Þ

where we made use of the property (I–W)W = W(I–W). The resulting equation
has some important properties, which require further explanation. First, since nt(I–
W)iN = 0, all time-period fixed effects are eliminated from the model. Note that
these fixed effects do remain effective, since the estimation of a model formulated
in levels produces the same parameter estimates as the estimation of that model
reformulated in spatial first-differences without time fixed effects. The reason to
renounce the first approach is that we also want to remove the inconsistency
caused by the possibly unstable character of Yt. Second, just as first differencing in
time would reduce the number of observations available for estimation, so does
first differencing in space; the former by one for every country and the latter by
one for every time period. Third, since we assumed that eit has zero mean and
variance r2, the variance of (I–W)et is r2R, where R = (I–W) (I–W)T. This change
of the variance–covariance matrix from r2I into r2R needs to be accounted for
when estimating the parameters of Eq. (4.12).

Since the eigenvalues of the matrix (I–W) are equal to 1-xi (i = 1, …, N),
where each xi denotes a particular eigenvalue of the spatial weights matrix W, and
the largest eigenvalue of W is one (xmax = 1), provided that W is normalized, at
least one eigenvalue of the matrix (I–W) will be zero. This implies that the
determinant of (I–W) equals zero and thus that this matrix does not have full rank.
If (I–W) does have rank N-1 instead of N, so does R.1 Let KN-1 denote the (N-1)
9 (N-1) diagonal matrix of nonzero eigenvalues of R, and FN,N-1 the corre-
sponding orthonormal N 9 (N-1) matrix of eigenvectors. Then we can transform

Eq. (4.12) by the matrix P ¼ K
�1=2
N�1 FT

N;N�1, to get

1 If W has more than just one eigenvalue that is equal to 1, say p, the number N-1 must be
adjusted to N-p.
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PðI �WÞYt ¼ sPðI �WÞYt�1 þ dPWðI �WÞYt þ gPWðI �WÞYt�1

þ PðI �WÞXtbþ PðI �WÞlþ PðI �WÞet
ð4:13Þ

This transformation has three effects. First, since P is a (N-1) 9 N matrix, the
transformation Yt

* = P(I-W)Yt reduces the length of Yt
* to N-1. The same applies

to the length of the transformed matrices or vectors Xt
*, l* and et

*. It is the perfect
linear combination among the observations due to the multiplication of Eq. (4.11)
by the matrix (I-W) that causes the number of observations to go down. Note
however that this decrease in the number of observations is merely a reduction in
the number of degrees of freedom, since the information of all N observations is
still implied in the data. Second, since the transformation P reverses the trans-
formation (I-W) (except for degrees of freedom), we have Eðe�t e�Tt Þ ¼ r2IN�1.
Third, since

W� � PW I �Wð Þ ¼ K�1=2FT
N;N�1WFN;N�1K

1=2 (see Lee and Yu, 2010a),
Eq. (4.13) can be rewritten as

Y�t ¼ sY�t�1 þ dW�Y�t þ gW�Y�t�1 þ X�t bþ l� þ e�t ð4:14Þ

whose parameters can be consistently estimated by the same bias corrected (Q)ML
estimator that is used to estimate Eq. (4.11). Yu et al. (2012) formally show that
the transformed model will be stable if sþ xmax�1ðdþ gÞ\1, where xmax�1

denotes the second largest eigenvalue of the spatial weights matrix W. Importantly,
the latter restriction is less restrictive than the original restriction sþ dþ g\1.

In sum, there are three differences between Eqs. (4.14) and (4.11). First, the
number of degrees of freedom in each time period is N-1 instead of N. Second,
time-period fixed effects are wiped out, although their effectiveness has not. Third,
the matrix W is replaced by W*. It is important to note that the row elements of
W*, in contrast to those in W, do not necessarily sum up to one. Nevertheless, the
N-1 eigenvalues of W* are identical to those of W that remain after the unit
eigenvalue of W is excluded.

Yu et al. (2012) show that the dynamic spatial panel data model in (4.11) also
has a revealing error correction model (ECM) representation

DYt ¼ ðI � dWÞ�1½ðs� 1ÞI þ ðdþ gÞW�Yt�1þ
ðI � dWÞ�1Xtbþ ðI � dWÞ�1½lþ nt0iN þ et�

ð4:15Þ

where DYt = Yt–Yt-1 denotes first differences in time, the change of the dependent
variable in time. This equation may be rewritten as

DYt ¼ dWDYt þ ðs� 1ÞYt�1 þ ðdþ gÞWYt�1 þ Xtbþ lþ nt0iN þ et ð4:16Þ

which in turn can also be obtained from Eq. (4.11) by subtracting Yt-1 from and
adding qWYt-1 to both sides of this equation and rearranging terms. Equa-
tion (4.16) shows that the change in the dependent variable in period t is explained
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not only by the initial level of the dependent variable of the spatial unit itself in the
preceding year (Yt-1), but also by the initial levels of the dependent variables of
other spatial units countries in the preceding period (WYt-1). The coefficient of the
initial level in the spatial unit itself, (s-1), is smaller than zero, indicating that an
increase of the dependent variable becomes more likely if the initial value of that
variable is relatively low. The sign of the coefficient of the initial levels in other
spatial units, (d ? g), is expected to be positive, indicating that an increase of the
dependent variable becomes also more likely if the initial value of that variable in
other spatial units is already relatively high.

The mathematical formulas of the direct and indirect effects of a change in one
of the explanatory variables on the dependent variable Y in the short term and in
the long term have been shown in Eqs. (4.7) and (4.8). If a study focuses on the
error correction model representation and, related to that, on the direct and indirect
effects estimates of changes in the explanatory variables on the change in the
dependent variable, DYt, these effects estimates at a particular point in time t take
the form

oEðDYÞ
ox1k

: oEðDYÞ
oxNk

h i
t
¼

oDy1
ox1k

: oDy1
oxNk

: : :
oDyN

ox1k
: oDyN

oxNk

2
4

3
5

t

¼ ðI � dWÞ�1bk ð4:17Þ

Since these effects are independent from the time index, the right-hand side of
(4.17) in contrast to the left-hand side no longer contains the symbol t.

In a similar fashion, one can calculate the effects estimates of convergence.
Using the ECM presentation in Eq. (4.15), we get

oE DYtð Þ
oYt�1

¼ I � dWð Þ�1 s� 1ð ÞI þ dþ gð ÞW½ � ð4:18Þ

The average diagonal element of this matrix measures the strength of the
convergence effect of the spatial units themselves, and the average row sum of the
off-diagonal elements the convergence effect of other spatial units.

A specific situation occurs if s ? d ? g = 1. Yu et al. (2012) label this situ-
ation as spatial cointegration, after conventional cointegration in the time series
literature. The cointegration matrix is (I-W) and the cointegration rank is the
number of eigenvalues of W that are smaller than 1, which is N-1 (but note
footnote 1). If s ? d ? g = 1, we have

oE DYtð Þ
oYt�1

¼ s� 1ð Þ I � dWð Þ�1 I �Wð Þ ð4:19Þ

If W is normalized, the total effect of this partial derivative equals zero by
construction. This is due to the perfect linear combination among the observations
caused by the matrix (I–W). The direct effect of this matrix is 1, since the diagonal
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elements of I are one and of W are zero. The indirect effect of this matrix is -1,
since the off-diagonal elements of I sum up to zero and of W to one, provided that
W is row-normalized. In sum, the total effect is 1-1 = 0. In other words, the
change in the dependent variable in different spatial units over time does not
converge if this variable turns out to be spatially cointegrated.

It should be noted that the direct and indirect effects on the change in the
dependent variable, DYt, are identical to the short-term direct and indirect effects
of changes in the explanatory variables on the level of the dependent variable Yt.
This property, however, does not hold for the long-term effects. Mathematically,
the long-term effects boil down to [(1-s)I-(d+g)W]-1bk.. If the model is spatially
cointegrated, the matrix in square brackets is singular, as a result of which the
long-term direct and indirect effects are not defined. This justifies the treatment of
s ? d ? g = 1 as a special case and the focus on DYt rather than Yt.

In a study on financial liberalization of 62 countries over the period 1976–2005,
Elhorst et al. (2013) estimate a dynamic spatial panel data model in levels, as well
as a model reformulated in spatial first-differences. They find that the coefficient
estimates of the first specification point to unstable components in the dependent
variable, whereas the coefficient estimates of the second specification do not. Up to
now, this is one of the few empirical studies that have found that taking spatial
first-differences is an effective tool to obtain a stable model.

4.7 Empirical Illustration

Baltagi and Li (2004) estimate a demand model for cigarettes based on a panel
from 46 U.S. states in which real per capita sales of cigarettes by persons of
smoking age (14 years and older) measured in packs of cigarettes per capita (Cit) is
regressed on the average retail price of a pack of cigarettes measured in real terms
(Pit) and on real per capita disposable income (Yit). Moreover, all variables are
taken in logs. Whereas Baltagi and Li (2004) use the first 25 years for estimation
to reserve data for out of sample forecasts, we use the full data set covering the
period 1963–1992. This dataset can be downloaded freely from www.wiley.co.uk/
baltagi/, while an adapted version is available at www.regroningen.nl/elhorst.
More details, as well as reasons to include state-specific effects (li) and time-
specific effects (nt), were given in the previous chapter.

Column (1) of Table 4.2 reports the estimation results when adopting a non-
dynamic spatial Durbin model with spatial and time-period fixed effects. In the
previous chapter it was found that the model specification with spatial and time-
period fixed effects outperformed its counterparts without spatial and/or time-
period fixed effects, as well as the random effects model.
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The main shortcoming of a non-dynamic spatial Durbin model is that it cannot be
used to calculate short-term effect estimates of the explanatory variables. This is
made clear in Table 4.3, which reports the corresponding effects estimates of the
models presented in Table 4.2; since a non-dynamic model only produces long-term
effects estimates, the cells reporting short-term effects estimates are left empty.

Table 4.3 Effects estimates of cigarette demand using different model specifications

Determinants (1) Non-dynamic spatial
Durbin model with fixed effects

(2) Dynamic spatial
Durbin model with fixed effects

Short-term direct -0.262 (-11.48)
effect Log(P)

Short-term indirect 0.160 (3.49)
effect Log(P)

Short-term direct 0.099 (3.36)
effect Log(Y)

Short-term indirect -0.018 (-0.45)
effect Log(Y)

Long-term direct -1.013 (-24.73) -1.931 (-9.59)
effect Log(P)

Long-term indirect -0.220 (-2.26) 0.610 (0.98)
effect Log(P)

Long-term direct 0.594 (10.45) 0.770 (3.55)
effect Log(Y)

Long-term indirect -0.197 (-2.15) 0.345 (0.48)
effect Log(Y)

Table 4.2 Estimation results of cigarette demand using different model specifications

Determinants (1) Non-dynamic spatial Durbin
model with fixed effects

Dynamic spatial Durbin model
with fixed effects

log(C)-1 0.865
(65.04)

W*log(C) 0.264 0.076
(8.25) (2.00)

W*log(C)-1 -0.015
(-0.29)

log(P) -1.001 -0.266
(-24.36) (-13.19)

log(Y) 0.603 0.100
(10.27) (4.16)

W*log(P) 0.093 0.170
(1.13) (3.66)

W*log(Y) -0.314 -0.022
(-3.93) (-0.87)

R2 0.902 0.977
logL 1691.4 2623.3

Notes t-values in parentheses
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The direct effects estimates of the two explanatory variables reported in column
(1) of Table 4.3 are significantly different from zero and have the expected signs.
Higher prices restrain people from smoking, while higher income levels have a
positive effect on cigarette demand. The price elasticity amounts to-1.013 and the
income elasticity to 0.594. Note that these direct effects estimates are different
from the coefficient estimates of -1.001 and 0.603 reported in column (1) of
Table 4.2 due to feedback effects that arise as a result of impacts passing through
neighboring states and back to the states themselves.

The spatial spillover effects (indirect effects estimates) of both variables are
negative and significant. Own-state price increases will restrain people not only
from buying cigarettes in their own state, but to a limited extent also from buying
cigarettes in neighboring states (elasticity -0.220). By contrast, whereas an income
increase has a positive effect on cigarette consumption in the own state, it has a
negative effect in neighboring states. We come back to this result below. Further
note that the non-dynamic spatial Durbin model without spatial and time-period
effects indicates a positive rather than a negative spatial spillover effect of price
increases, and that only a positive outcome would be consistent with Baltagi and
Levin (1992), who found that price increases in a particular state—due to tax
increases meant to reduce cigarette smoking and to limit the exposure of non-
smokers to cigarette smoke—encourage consumers in that state to search for
cheaper cigarettes in neighboring states. However, there are two reasons why this
comparison is invalid. First, whereas Baltagi and Levin’s (1992) model is
dynamic, it is not spatial. They do consider the price of cigarettes in neighboring
states, but not any other spatial interaction effects. Second, whereas our model
contains spatial interaction effects, it is not (yet) dynamic. For these reasons it is
interesting to consider the estimation results of our dynamic spatial panel data
model.

Column (2) of Table 4.3 reports the direct and indirect effects of the dynamic
model, both in the short term and long term. Consistent with microeconomic
theory, the short-term direct effects appear to be substantially smaller than the
long-term direct effects; -0.262 versus-1.931 for the price variable and 0.099
versus 0.770 for the income variable. This is because it takes time before price and
income changes fully settle. The long-term direct effects in the dynamic spatial
Durbin model, on their turn, appear to be greater (in absolute value) than their
counterparts in the non-dynamic spatial Durbin model; -1.931 versus -1.013 for the
price variable and 0.770 versus 0.594 for the income variable. Apparently, the non-
dynamic model underestimates the long-term effects. The short-term spatial
spillover effect of a price increase turns out to be positive; the elasticity amounts to
0.160 and is highly significant (t-value 3.49). This finding is in line with the
original finding of Baltagi and Levin (1992) in that a price increase in one state
encourages consumers to search for cheaper cigarettes in neighboring states. The
negative spatial spillover effect of a price increase we found earlier for the non-
dynamic spatial Durbin model demonstrates that a non-dynamic approach falls
short here. Although greater and again positive, we do not find empirical evidence
that the long-term spatial spillover effect of a price increase is also significant. A
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similar result is found by Debarsy et al. (2012). It is to be noted that they estimate
the parameters of the model by the Bayesian MCMC estimator developed by
Parent and LeSage (2010, 2011), whereas we use the bias corrected ML estimator
developed by (Lee and Yu 2010c). Furthermore, the spatial weights matrix used in
that study is based on lengths of state borders in common between each state and
its neighboring states, whereas we use a binary contiguity matrix.

The long-term spatial spillover effect of the income variable derived from the
dynamic spatial panel data model appears to be positive, which suggests that an
income increase in a particular state has a positive effect on smoking not only in
that state itself, but also in neighboring states. Furthermore, the spatial spillover
effect is smaller than the direct effect, which makes sense since the impact of a
change will most likely be larger in the place that instigated the change. However,
the spatial spillover effect of an income increase is not significant. A similar result
is found by Debarsy et al. (2012). Interestingly, the spatial spillover effect of the
income variable in the non-dynamic spatial panel data model appeared to be
negative and significant. Apparently, the decision whether to adopt a dynamic or a
non-dynamic model represents an important issue. Some researchers prefer sim-
pler models to more complex ones (Occam’s razor). One problem of complex
models is overfitting, the fact that excessively complex models are affected by
statistical noise, whereas simpler models may capture the underlying process
better and may thus have better predictive performance. However, if one can trade
simplicity for increased explanatory power, the complex model is more likely to be
the correct one.

To investigate whether the extension of the non-dynamic model to the dynamic
spatial panel data model increases the explanatory power of the model, one may
test whether the coefficients of the variables Yt-1 and WYt-1 are jointly significant
using an LR-test. The outcome of this test (2 9 (2623.3-1691.4) = 1863.8 with 2
df) evidently justifies the extension of the model with dynamic effects.

4.8 Conclusion

At the turn of century there was no straightforward estimation procedure for
dynamic spatial panel data models. Today, they can be estimated by bias-corrected
ML or QML, IV/GMM, and Bayesian MCMC methods. However, many problems
remain. One problem is the bias in the coefficient d of the variable WYt; not every
method is able to tackle that bias sufficiently. Another problem is the performance
of some estimators when T is small; treating the initial observations endogenous
instead of exogenous maybe beneficial under these circumstances. A third problem
is that not every estimator is able to deal with endogenous explanatory variables
other than the dependent variables lagged in space and/or time. A final problem is
that the stationarity conditions that need to be imposed on the parameters of the
model are not always implemented correctly.
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A dynamic panel data model can take several forms. In this chapter we pre-
sented the most popular ones. Each form appeared to have certain shortcomings.
Dependent on the purpose of a particular empirical study, it is the researcher to
determine which form is most appropriate.
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