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I. INTRODUCTION

Econometric theory and practice have been dominated by a focus on the time di-
mension. In stark contrast to the voluminous literature on serial dependence over
time (e.g., the extensive review in King 1987), there is scant atlention paid to its
counterpart in cross-sectional data, spatial autocorrelation. For example, there is
no reference 1o the concept nor to its relevance in estimation or specification test-
ing in any of the commonly cited econometrics texts, such as Judge et al. (1982},
Greene (1993), or Poirier (1995), or even in more advanced ones, such as Fomby
et al. (1984), Amemiya (1985}, Judge et al. (1995), and Davidson and MacKinnon
(1993) (a rare exception is Johnston 1984). In contrast, spatial autocorrelation and
spalial statistics in general are widely accepted as highly relevant in the analysis of
cross-sectional data in the physical sciences, such as in statistical mechanics, ecol-
ogy. forestry, geology, soil science, medical imaging, and epidemiology (for a recent
review, see National Research Council 1991). s

In spite of this lack of recognitton in “mainstream™ econometrics, applied
workers saw the need to explicitly deal with problems caused by spatial autocorrela-
tion in cross-sectional data used in the implementation of regional and multiregional
econometric models. In the early 1970s, the Belgian economist Jean Paelinck coined
the term “spatial econometrics™ to designate a field of applied econometrics dealing

237



238 ANSELIN AND BERA

with .owasm:o: and specification problems that arose from this. In their classic book:
Spatial Econometrics, Paelinck and Klaassen (1979) outlined five nrmumcno_wm:. 3 m
.:5 mm_.mu (1) the role of spatial interdependence in spatial models: (2) the as E:M ”o

in mﬂw:m_ wn_.mzo:m“ (3) the importance of explanatory factors _onm,.om in oprmw 8 EM .
@ differentiation between ex post and ex ante interaction; and {5) explicit — ﬁ_mﬂ.
ing of space (Paelinck and Klaassen 1979, pp. 5-11; see m_.m.a Hordijk Msm _uhwmsm_m
1976, mmmr.znr 1982). In Anselin (1988a, p. 7}, spatial econometries is defined more
?dw&.w as “the collection of techniques that deal with the peculiarities caused b

space in the m”:u:m:.nm_ analysis of regional science models.” The latter incor| c::u
regions, _onm:oﬂ.u and spatial interaction explicitly and form the basis of most Won M
m.:%Enm_ sa.:r in urban and regional economics, real estate economics, :ﬁ:mvoh..“..
tion economices, and economic geography. The emphasis on the model as the starting

point differentiates spatial econometrics from the broader field of spatial statistics

although they share a common methodological framework. Much of the contributions

1o spatial econometrics have appeared in specialized journals i i Clence
and analylical geography, such as the .m.u:wanm af xmwu.ahah .m.n_U“Mn_m: MMWMN_H__M ,MMM”””
n:&. Urban Economics, Papers in Regional Science, ?REQR@:DM Regional .mn.ﬁ.:«m
Review, Geographical Analysis, end Environment and Planning A. Early reviews ..R
the _.m."._m,..m:ﬁ methodological issues are given in Hordijk (1974, 1979), Barels M:.._
Hordijk {1977), Arora and Brown {1977), Paelinck and Ewmmma_“ Cc.wcv. mmzm_,m and
Ketellapper (1979), Cliff and Ord (1981), Blommestein (1983), and >s.mm:= Go.mc
.Hommm_. 1988b). msc_.m.u.momi nm.:mn:o:m of papers dealing with spatial mn.oscﬂm:_m
Hw%ﬂawﬂ,mwwﬂw_u& in Anselin (1992a), Anselin and Florax (1995a), and Anselin

. xmnm.zzw. an attention to the spatial econometric perspective has started to ap-
Pear in mainstream empirical economics as well. This focus on spatial dependence
_._mm. occurred in a range of fields in economics, ot only in urban,
regional economics, where the importanee of location and spatial in

a_mE..w_.:m_. but also in public economics, agricultural and environm
and industrial organization.

economics that explicitly

real estate, and
teraction is fun-
ental economics,
. Recent aMmEv_mmw of empirical studies in mainstream
. Incorporated spatial dependence i
m:m_v@.m of U.S. state expenditure E:E.:M in nmmw et al. C@MM. ”HMHMH““”M”HL_M
recreation expenditures by mumcipalities 1n the Los Angeles ,..mmmoz in Murdoch
et al. (1993), pricing in agricultural markets in LeSage (1993), potential spillovers
?2.: public infrastructure investments in Holtz-Eakin (1994) .z_a n_.mao_.EmMm:o: Mm
agricultural land values in Benirschka and Binkley (1994), :_Mw choice of retail sales
contracls by integrated oil companies in Pinkse and Slade (1995) m_a:nmmm ?::E.w.
tion among local governments in Brucckner (1996}, and models om.sm:osm. decisions
to ratify environmental controls in Beron et al. (1996) and Murdoch et al ﬁwom
Substantively, this follows from a renewed focu . :

. : 3 on Marshailian externalities, spa-
tial spillovers, copy-catting, -

and othe: forms of behavior where an economic actor
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mimics or reacts to the actions of other actors, for example in the new economic
geography of Krugman (1991}, in theories of endogenous growth (Romer 1986), and
in analyses of local political economy (Besley and Case 1995). Second, a number
of imporiant policy issues have received an explicil spatial dimension, such as the
designation of larget areas or enterprise zones in development economics and the
identification of underserved morigage markets in urban areas. A more practical
reason is the increased availability of large socioeconomic data sets with detailed
spatial information, such as county-level economic information in the REIS CD-
ROM (Regional Economic Information System) of the .S, Department of Commerce,
and tract-level data on mortgage transactions collected under the Housing Mortgage
Disclosure Act (HMDA) of 1975,

From a methodological viewpoint, spatial dependence is not only important
when it is part of the model, be it in a theoretical or policy framework, bul it can
also arise due to certain misspecifications. For instance, often the cross-sectional
data used in model estimation and specification lesting are imperfect, which may
cause spatial dependence as a side effect. For example, census tracts are not housing
markets and counties are not labor markets, but they are used as proxies to record
transactions in these markets. Specifically, a mismatch between the spatial unit of
ohservation and the spatial extent of the economic phenomena under consideration
will result in spatial measurement errors and spatial autocorrelation between these
errors in adjoining locations (Anselin 1988a).

In this chapter, we review the methodological issues related to the explicit
treatment of spatial dependence in linear regression models. Specifically, we focus
on the specification of the structure of spatial dependence (or spatial autocorrela-
tion), on the estimation of models with spatial dependence and on specification tests
to detect spatial dependence in regression models, Our review is organized accord-
ingly into three main sections. We have limited the review to cross-sectional settings
for linear regression models and do not consider dependence in space-time nor mod-
els for limited dependent variables. Whereas there is an established body of theory
and methodology to deal with the standard regression case, this is not (yet) the case
for techmques to analyze the other types of medels. Both areas are currently the sub-
ject of active ongoing research (see, e.g., some of the papers in Anselin and Florax

1995z). Also, we have chosen to focus on a classical framework and do not consider
Bayesian approaches to spahial econometrics (e.g., Hepple 1995a, 1995b, LeSage
1997).

In our review, we allempt to outline the extent to which general econometric
principles can be applied Lo deal with spatial dependence. Spatial econometrics is
often erroneously considered to consist of a straightforward extension of techniques
to handle dependence in the ime domain to two dimensions. In this chapter, we
emphasize the limitations of such a perspective and stress the need to explicitly
tackle the spatial aspects of model specification, estimation, and diagnostic testing.
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II. THE PROBLEM OF SPATIAL AUTOCORRELATION

We begin this review with a cleser lock al the concept of spatial dependence, or 1ts
weaker expression, spatial autocorrelation, and how it differs {rom the more familia1
serial correlation in the time domain. While, in a strict sense, spatial autocotrela-
tion and spatial dependence clearly are not synonymous, we will use the terms inte1-
changeably. In most applications, the weaker term autocorrelation {as a moment of
the joint distribution) is used and only seldom has the focus been on the joint density
as such (a recent exceplion is the semiparametric framework suggested in Brelt and
Pinkse 1997).

In econometrics, an attention to serial carrelation has been the domain of time-
series analysis and the typical focus of interest in the specification and eslimation
of models for cross-sectional data is heleroskedasticity. Until recently, spatial auto-
correlation was largely ignored in this context, or treated in the form of groupwise
equicorrelation, e.g., as the result of certain survey designs (King and Evans 1980}.
In other disciplines, primarily in physical sciences, such as geology (Isaaks and
Srivastava 1989, Cressie 1991) and ecology (Legendre 1993), but also in geogra-
phy (Griffith 1987, Haining 1990) and in social network analysis in sociology and
psychology (Dow et al. 1982, Doreian et al. 1984, Leenders 1995), the dependence
across “space” (in its most general sense) has been much more central. For example.
Tobler’s {1979} “first law of geography” states that “everything is related to every-
thing else, but closer things mote so,” suggesting spatial dependence to be the rule
rather than exception. A large body of spatial statistical techniques has heen devel-
oped to deal with such dependencies (for a recent comprehensive review, see Cresse
1993; other classic references are Cliff and Ord 1973, 1981, Ripley 1981, 1988, Up-
ton and Fingleton 1985, 1989). Useful in this respect is Cressie’s (1993) taxonomy
of spatial data strucures differentiating between pont patterns, geosiatistical data,
and lattice data. In the physical sciences, the dominant underlying assumption tends
1o be that of a continuous spatial surface, necessitating the so~called geostatistical
perspective rather than discrete observation points (or regions) in space, for which
the so-called lattice perspective is relevant, The latter 1s more appropnate for eco-
nomic data, since it is to some extent an extension of the ordering of observations on
a one-dimensional time axis 1o an ordering in a two-dimensional space. It will be the
almost exclusive facus of our review.

The traditional emphasis in econometrics on heterogeneity in cross-sectional
data is not necessanly misplaced, since the distinclion between spatial heterogene-
ity and spatial autocorrelation is not always obvious. More specifically, in a single
cross section the two may be observationally equivalent. For example, when a spatial
cluster of exceptionally large residuals 15 observed for a regression model, it cannot
be ascertained without [urther structure whether this 1s an instance of heteroskedas-
ticity (i.e., clustering of outliers) or spatial aulocorrelation {a spatial stochastic pro-
cess vielding clustered outliers). This problem is knawn in the literature as “true”
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contagion versus “apparent” contagion and is a major methodological issue in fields
such as epidemiology (see, e.g.. Johnson and Kotz 1969, Chapter 9, for a formal dis-
tinction between different forms of contagious distributions). The approach taken in
spatial econometrics is to impose structure on the problem through the specifica-
tion of a model, coupled with extensive specification testing for potential departures
from the null model. This emphasis on the “model” distinguishes (albeit rather sub-
tly) spatial econometrics from the broader field of spatial statistics (see also Anselin
1988, p. 10, for further discussion of the distinction between the two). In our re-
view, we deal almost exclusively with spatial autocorrelation. Once this aspect of
the model is specified, the heterogeneity may be added in a standard manner (see
Anselin 1988a, Chap. 9, and Anselin 1990a).

In this section, we first focus on a formal definition of spatial autocorrelation.
This is followed by a consideration of how it may be operationalized in tests and
econometric specifications by means of spatial weights and spatial lag operators.
We close with a review of different ways in which spatial autocorrelation may be
incorporated in the specification of econometric models in the form of spatial lag
dependence, spatial error dependence, or higher-order spatial processes.

A Defining Spatial Autocorrelation

Spatial autocorrelation can be loosely defined as the coincidence of value .&E:.E.E
with locational similarity. In other words, high or low values for a random variable
tend to cluster in space (positive spatial autocorrelation), or locations tend to wm.mE...
rounded by neighbors with very dissimilar values (negative spatial autocorrelation}.
Of the two types of spatial autocorrelation, positive autocorrelation is by far the more
intuitive. Negative spatial autocorrelation implies a checkerboard pattern of <£=.mm
and does not always have a meaningtul substantive interpretation (for a .mo_.nn_m_ .m._m-
cussion, see Whittle 1954). The existence of positive spatial autocorrelation implies
that 2 sample contains less information than an uncorrelated counterpart. In A.E.mm_.
lo properly carry out statistical inference, this loss of information must be explicitly
acknowledged in estimation and diagnostics tests. This is the essence of the problem
of spatial autocorrelation in applied econometrics. .

A erucial issue in the definition of spatial autocorrelation is the notion of “lo-
cational similarity,” or the determination of those locations for which the values of
the random variable are correlated. Such locations are referred to as “neighbors,”
though strictly speaking this does not necessarily mean that they :on@ to be ao:.o.
cated (for a more formal definition of neighbors in terms of the conditional density
function, see Anselin 1988a, pp. 16-17; Cressie 1993, p. 414).

More formally, the existence of spatial autocorrelation may be expressed by
the follewing momeni condition:

Cov(y,, %) = E(iyp) — Evi) - Eyj) #0 fori # j {1)
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where y; and y; are observations on a random variable at locations i and j in space,
and i, j can be points (e.g., locations of stores, metropolitan areas, measured as lati-
tude and longitude) or areal units (e.g., stales, counties or census tracts). Of course,
there is nothing spatial per se o the nonzero covariance in (1). R only becomes spatial
when the pairs of £, j locations for which the correlation is nonzero have a meaningful
interpretation in terms of spatial structure, spatial interaction or spatial arrangement
of observations.

For a set of N observations on cross-sectional data, it is impossible to es-
timate the potentially N by N covariance terms or correlations direetly from the
data. This is a fundamental problem in dealing with spatial autocorrelation and ne-
cessitates the imposition of structure. More specifically, in order for the problem
to become tractable, it is necessary to impose sufficient constraints on the N by
N spatial interaction {covariance) matrix such that a finite number of parameteis
characterizing the correlation can be efficiently estimated. Note how this contrasts
with the situation where repeated observations are available, e.g., in panel data
sets. In such instances, under the proper conditions, the elements of the covan-
ance matrix may be estimated &xplicitly, in a vector autorcgressive approach (for a
review, see Liitkepohl 1991) or by means of so-called generalized cstimating ecqua-
tions (Liang and Zeger 1986, Zeger and Liang 1986, Zeger et al. 1988, Albert and
McShane 1995).

In contrast, when the N observations are considered as fixed effects in space,
there is insufficient information in the dala to estimate the N by N interactions. In-
creasing the sample size does not help, since the number of interactions increases
with N2, or, in other words, there is an incidental parameter problem. Aliernatively,
when the locations are conceptualized in a random-effects framework. sufficient con-
straints must be imposed 1o prectude that the range of interaction implied by a par-
ticular spatial stochastic process increases faster than the sample size as asympluincs
are invoked to obtain the properties of estimators and test statistics.

Two main approaches exist in the literature to impose constraints on the in-
teraclion. In geostatistics, all pairs of locations are sorted according to the distance
that separales them, and the strength of covariance {correlation) between them is ex-
pressed as a continuous function of this distance, in a so-called variogram or semu-
variogram (Cressie 1993, Chap. 2). As pointed out, the geostatistical petspective 1s
seldom taken in empirical economics, since it necessitates an undetlying process
that is continuous over space. In such an approach, observations (points) are consil-
ered to form a sample from an underlying continuous spatial process, which is hard
Lo maintain when the data consist of counlies or census tracts. A possible excep-
tion may be the study of real estate data, where the locations of transactions may be
conceptualized as points and analyzed using a geostatistical framework, as in Dubm
(1988, 1992). Such an approach is termed “direct representation” 1n the literature,
since the elements of the covariance {or correlation) matrix are modeled directly a5
functions of distances.
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Our main focus in this review will be on the second approach, the so-called
lattice perspective. For each data point, a relevant “neighborhood set”” must be de-
fined, consisting of those other locatians that (potentially) interact with it. For each
observation i, this yields a spatial ordering of locations j € S; (where S; is the neigh-
borhood set), which can then be exploited to specify a spatial stachastic process. The
covariance struchure between observations is thus not modeled directly, but follows
from the particular form of the stochastic process. We return to this issue below. First,
we review the operational specification of the neighborhood set for each observation
by means of a so-called spatial weights matrix.

B. Spatial Weights

A spatial weights matrix is a N by N positive and symmetric matrix W which ex-
presses for each observation (row) those locations (columns) that belong to its neigh-
bothood set as nonzero elements. More formally, w;; = 1 when i and j are neighbers,
and w;; = 0 otherwise. By convention, the diagonal elements of the weights matrix
are set to zero. For ease of interpretation, the weights matrix is often standardized
such that the elements of a row sum to one. The elements of a row-standardized
weights matrix thus equal wj; = w;/ 2_; wij. This ensures that all weights are be-
tween 0 and 1 and facilitates the interpretation of operations with the weights matrix
as an averaging of neighboring values (see Section IL.C). It also ensures that the spa-
tial parameters in many spatial stochastic processes are comparable between mod-
els. This is not intuitively obvious, but relates to constraints imposed in a maximum
likelihood estimation framework. For the latter to be valid, spatial autoregressive pa-
ramelers must be constrained to lie in the interval 1/wmin to 1/@max, where wmin and
@max are respectively the smallest {on the real line) and largest eigenvalues of the ma-
trix W (Anselin 1982). For a row-standardized weights matrix, the largest eigenvalue
is always +1 (Ord 1975), which {acilitates the interpretation of the autoregressive
coefficient as a “correlation” (for an altemnative view, see Kelejian and Robinson
1995). A side effect of row standardization is that the resulting matrix is likely to
become asymmetric (since M”\. w; # 3_; w;), even though the original matrix may
have been symmetric. In the calculation of several estimators and test statistics, this
complicates computational matters considerably.

The specification of which elements are nonzero in the spatial weights matrix
is a matter of considerable arbitrariness and a wide range of suggestions have been
oftered in the literature. The “traditional” approach relies on the geography or spa-
tial anangement of the observations, designating areal units as “neighbors” when
they have a border in common (first-order contiguity) or are within a given distance
of each other; i.e., wyj = 1 fordy < 3§, where d;; is the distance between units i
and j, and 8 is a distance cutoff value (distance-based contiguity). This geographic
approach has been generalized to so-catled Chiff-Ord weights that consist of a func-
tion of the relative length of the common border, adjusted by the inverse distance
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between two observations (Cliff and Ord 1973, 1981). Formally, Cliff-Ord weaghts
may be expressed as:

B

i dg (2)

where b;; is the share of the common border between units i and j in the perimeter of i
(and hence b;; does not necessarily equal bj;), and o and 8 are parameters. More gen-
erally, the weights may be specified to express any measure of “potential interaction”
vmz_qmm: units i and j (Anselin 1988a, Chap. 3). For example, this may be related
directly to spatial interaction theory and the notion of potential, with w; = 1 Jde m
wj; = e ~P4ii or more complex distance metrics may be implemented Cwm_mm:: H.wmo
g..hm.oor et al. 1993). Typically, the parameters of the distance function are set m.
priori {e.g., @ = 2, to reflect a gravity function) and not estimated jointly with the
other coefficients in the model. Clearly, when they are estimated jointly, the resulling
specification will be highly nonlinear (Anselin 1980, Chap. 8, Ancot et al. 1986
Bolduc et al. 1989, 1992, 1995). .

Other specificatioris of spatial weights are possible as well. In sociometiics
the weights reflect whether or not two individuals belong to the same social :o:..cu____
(Doreian 1980). In economic applicatiens, the use of weights based on “economic™
distance has been suggested, amang others, in Case et al. (1993). Specifically. they
suggest to use weights (before row standardization) of the form wy; = 1/lx, — 1,1,
where x; and x; are obhservations on “meaningful™ socioecenomic crE.an:m:m?
such as per capila income or percentage of the population in a given racial or ethnic
group.

It is important to keep in mind that, irrespective of how the spatial weights
are specified, the resulting spatial process must satisfy the necessary regularity con-
ditions such that asymptotics may be invoked to obtain the properties of estimators*
w:& test statistics. For example, this requires constraints on the extent of the 1ange of
interaction and/or the degree of heterogeneity implied by the weights matrices jthe
so-called mixing conditions; Anselin 1988a, Chap. 5). Specifically, this means that
weights must be nonnegative and remain finite, and that they correspond to a proper
metric (Anselin 1980). Clearly, this may pose a problem with socioeconomic weighls
when z; = x; for some observation pairs, which may be the case for poorly chosen
economic determinants (e.g., when two states have the same percentage in a given
racial group). Similarly, when multiple observations belong to the same areal umt
{e.g., different banks located in the same county) the distance between them must
v.m set to something other than zero (or 1/d;, — o). Finally, in the standard estima-
tion and testing approaches, the weights matrix is taken to be exogenous. Thesetore,
indicators for the socioeconomic weights should be chosen with great care to en-

sure .”rmr..nxommzmm? unless their endogeneity is considered explicitly in the model
specification.
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Operationally, the derivation of spatial weights from the location and spatial
arrangement of observations must be carried out by means of a geographic informa-
tion system, since for all but the smallest data sets a visual inspection of a map is im-
practical {for implementation details, see Anselin et al. 1993a, 1993b, Anselin 1995,
Can 1996). A mechanical construction of spatial weights, particularly when based
on a distance crilerion, may easily result in observations to become “unconnected”
or isolated islands. Conseguently, the row in the weights matrix that corresponds to
these observations will consist of zero values. While not inherently invalidating es-
timation or testing procedures, the unconnected observations imply a loss of degrees
of freedom, since, for all practical purposes, they are eliminated from consideration
in any “spatial” model. This must be explicitly accounted for.

C. Spatial Lag Operator

In time-series analysis, values for “neighboring” observations can be easily ex-
pressed by means of a backward- or forward-shift operator on the one-dimensional
time axis, yielding lagged variables y:_ or ¥+, where k 1s the desired shift (or lag).
By contrast, there is no equivalent and unambiguous spatial shift operator. Only on
a regular grid structure is there a potential solution, although not as straightforward
as in the time domain. Following the sozcalled rook criterion for contiguity, each grid
cell or vertex on a regular lattice, (i, j), has four neighbors: (i+1, j) (east), (i1, j)
(west), (i, j + 1) (north), and (i, j — 1) (south). Corresponding to this are four spa-
tially shifted variables: ¥i41., ¥i~1.j» %.j+1» and ¥,j—1, each of which may require
its own parameter in a spatial process model. However, the rook criterion is not the
only way spatial neighbors may be defined on a regular lattice, nor docs the number
of neighbors necessarily equal 4. For example, following the queen criterion, each
observation has eight neighbors, yielding eight spatially shifted variables; the four
for the rook criterion, as well s y;—1,j+1. Yi—1,j=1, ¥i+1,j+1 and Yi41,j—1, 3gain each
possibly with its own parameter. This notion of a spatial shift operator on a regular
lattice has received only limited attention in the literature, mostly with a theoretical
focus and primarily in statistical mechanics, in so-called Ising models (for details,
see Cressie 1993, pp. 425-426).

On an irregular spatial structure, which characterizes most economic appli-
cations, this formal notien of spatial shift is impractical, since the number of shifts
would differ by observation, thereby making any statistical analysis extremely un-
wieldy. Instead, the concept of a spatial lag operator is used, which consists of a
weighted average of the values at neighboring locations. The weights are fixed and
exogenous, similar to a distributed lag in time series. Formally, a spatial lag operator
is obtained as the product of a spatial weights matrix W with the vector of observa-
tions on a random variable y, or Wy. Each element of the resulting spatially lagged
variable equals Mw. w;;%, i.e.. a weighted average of the y values in the neighbor set
S;, since wy = Ofor j ¢ S;. Row standardization of the spatial welghts matrix en-
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sures that a spatial lag operation yields a smoothing of the neighboring values, since
the positive weights sum to one.

Higher-order spatial lag operators are defined in a recursive manner, by ap-
plying the spatial weights matrix to a lower-order lagged variable. For example, a
m.gc:m-o_.mmu spatial lag is obtained as W(Wy), or W2y. However, in contrast to
lime series, where such an operation is unambiguous, higher-order spatial operators
yield redundant and circular neighbor relations, which must be eliminated to ensure

proper estimation and inference (Blommestein 1985, Blommestein and Koper 1992,
Anselin and Smimov 1996).

. In spatial econometries, spatial autocorrelation is modeled by means of a func-
tional relationship between a variable. ¥, or error term, ¢, and its associated spatial
lag, respectively Wy for a spatially lagged dependent variable and We for a spatially
lagged error term. The resulting specifications are referred to as spatial leg and spa-
tial error models, the general properties of which we consider next.

D. Spatial Lag Dependence

Spatial lag dependence in-a regression model is similar to the inclusion of a serially
autoregressive term for the dependent variable (3,_) in a lime-series context. In

spatial econometrics, this is referred to as a mixed regressive, spatial autoregressive
model (Anselin 1988a, p. 35). Formally,

y=pWy+XB+e (3

where y is a N by 1 vector of observations on the dependent variable, Wy 1s the
corresponding spatially lagged dependent variable for weights matrix W, X isa N
by K matrix of abservalions on the explanatory (exogenous) variables, ¢ is a ¥ by
1 veetor of error lerms, p is the spatial autoregressive parameter, and 8 is a K by
1 vector of regression coelficients. The presence of the spatial lag term Wy on the
right side of (3) will induce a nonzero correlation with the error term, similar to the
presence of an endogenous variable, but dilferent from a serially lagged dependent
variable in the time-series case. In the latter model, %:—1 18 uncorrelated with £ 1n
the absence of serial carrelation in the errors. In contrast, (Wy); is always correlated
with &, irrespective of the correlation structure of the errars, Moreover, the spatal
lag for a given observation i is not only correlated with the error term at i, but also with
the error terms at all other locations. Therefore, unlike what holds in the time-series
case, an ordinary least-squares estimator will not be consistent for this specification
(Anzelin 1988a, Chap. 6). This can be seen from a slight reformulation of the model:

y=U0—-pW) ' XB+ (A~ pW) ¢ 4

The matrix inverse (I — pW)~! is a full matix, and not triangular as in the ime-
series case (where dependence is only one-directional), yielding an infinite senes
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that involves error terms at all locations, (I4-pW 402 W24+ 2 W3+ . )&, It therefore
readily follows that (Wy); contains the element g;, as well as other g;, j # i. Thus,

E{(Wy)iei] = EH{W(I — pW) ' elies1 £ 0 6)]

The spatial dynamics embedded in the structure of the spatial process model (3)
determine the form of the covariance between the observations at different locations
(i.e., the spatial autocorrelation). For the mixed regressive, spatial autoregressive
model this can easily be seen to equal (I — PWYIQI — pW')~}, where Q is the
variance matrix for the error term ¢ (note that for a row-standardized spatial weights
matrix, W # W'). Without loss of generality, the latter can be assumed o be diagonal
and homoskedastic, or, @ = o1, and hence, Vary] = o2(I — pW)~1(I — pW")~!
The resulting variance matrix is full, implying that each location is correlated with
every other location, but in a fashion that decays with the order of contiguity (the
powers of W in the series expansion of {I — pW)N.

The implication of this particular variance structure is that the simultaneity
embedded in the Wy term must be explicitly accounted for, either in a maximum
likelihood estimation framework, or by using a proper set of instrumental variables.
We turn to this issue in Section III. When a spatially lagged dependent variable
15 ignored in a model specification, but present in the underlying data generating
process, the resulting specification error ig of the omitted variable type. This implies
that OLS estimates in the nonspatial model (i.e., the “standard™ approach) will be
biased and inconsistent.

The interpretation of a significant spatial autoregressive coefficient o is not
always straightforward. Two situations can be distinguished. In one, the significant
spatial lag term indicates true contagion or substantive spatial dependence, i.e., it
measures the extent of spatial spillovers, copy-catting or diffusion. This interpreta-
tion is valid when the actors under consideration match the spatial unit of ohservation
and the spillover is the result of a theoretical model. For example, this holds for the
models of farmers’ innovation adoption in Case (1992), state expenditures and tax
setting behavior in Case et al. (1993) and Besley and Case (1995), strategic inter-
action among California cities in the choice of growth controls in Brueckner (1996),
and in the median voter model for recreation expenditures of Murdoch et al. {1993).
Alternatively, the spatial lag model may be used to deal with spatial autocorrelation
that results from a mismatch between the spatial scale of the phenomenon under
study and the spatial scale at which it is measured. Clearly, when data are based
on administratively determined units such as census tracts or blocks, there is no
good reason to expect economic behavior to conform to these units. For example,
this interpretation is useful for the spatial autoregressive models of urban housing
and mortgage markets in Can (1992), Can and Megbolugbe (1997), and Anselin and
Can (1996). Since urban housing and mortgage markets operate at a different spatial
scale than census tracts, positive spatial autocorrelation may be expected and will
in fact result in the sample containing less information than a truly “independent”
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sample of observations. The inclusion of a spatially lagged dependent variable in the
model specification is a way to correct for this loss of information. In vther words,
it allows for the proper interpretation of the significance of the exogenous variables
in the model (the X}, after the spatial effects have been corrected for, or filiered out
(see also Getis 1995 for a discussion of allernative approaches to spatial [iltering).
More formally, the spatial lag model may be reexpressed as

(I—pW)y =XB+e¢ {6)

where (1 — pW)y is a spatially filtered dependent variable, i.e., with the effect of
spatial autocorrelation taken out. This is roughly similar to first differencing of the
dependent variable in time series, except that a value of p = 1 is not in the allowabile
parameter space for (3) and thus p must be estimated explicitly (Section III).

E. Spatial Error Dependence

A second way to incorporate spatial autocorrelation in a regression model is to spec-
ify a spatial process for the disturbance terms, The resulting error covariance will be
nonspherical, and Lhus OLS estimates, while still unbiased, will be inefficient. More
efficient estimators are obtained by taking advantage of the ﬁm:mn:_.m_. structure of
the error covariance implied by the spatial process. Different spatial processes lead
to different error covariances, with varying implications about the range and extent
of spatial interaction in the model. The most common specification is a spatial au-
toregressive process in the error lerms:

y=X8+¢ (7}
i.e., a linear regression with error vector g, and
e=iVe+E {8)

where A is the spatial autoregressive coefficient for the error lag We (to disunguish
the notation from the spatial autoregressive coefficient p in a spatial lag ::;:?;
and £ is an uncorrelated and (without loss of generality) homoskedastic error teim
Alternatively, this may be expressed as

y=XB+ (M=~ 2wyt (9
From this follows the error covariance as
Elee'l = a*(1 — AW) NI — aW") ™ = a2[( — AW)' (1 — AW)]™! (10}

a structure identical to that for the dependent variable in the spatial lag model
Therefore, a spatial autoregressive error process leads to a nonzero eror covas-
ance belween evety pair of ohservations, but decreasing in magnitude with the ni-
der of contiguity. Moreover, the complex structure in the inverse matrices m (M)
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yields nonconstant diagonal elements in the error covariance matrix, thus inducing
heteroskedasticity in &, irrespective of the heteroskedasticity of £ (an illuminating
pumerical illustration of this feature is given in McMillen 1992). We have 2 much
simpler situation for the case of aulocorrelation in the time-series context where the
model is written as & = A&—1 + & Therefore, this is a special case of (8) with

oo0o¢g - . - 00
. 1 o0 .. .00
W=wr'=l010.--00
oo0o0 - .- -10

where each obsetvation is connected to only its immediate past value. As we know,
for this case, Var(g,) = a2/(} —22) for all t. That is, autocorrelation daes not induce
heteroskedasticity. In a time-series model, heteroskedasticity can come only through
£, given the above AR(1) model.

A second complicating factor in specification testing is the great degree of
similarity between a spatial lag and a spatial error model, as suggested by the error
covariance structure. In fact, after premultiplying both sides of (9) by (I — AW) and
moving the spatial lag term to the right side, a spatial Durbin model results {Anselin
1980): =

y =MWy + XB—\WXB+§ a1

This mode} has a spatial lag structure (but with the spatial autoregressive parameter
A from (8)) with a well-behaved error term §. However, the equivalence between (7)-
(8) and (11) imposes a set of nonlinear common factor constraints on the coefficients.
Indeed, for (11} to be a proper spatial error model, the coefficients of the lagged ex-
pgenous variables WX must equal minus the product of the spatial autoregressive
coefficient A and the coefficients of X, for a total of K constraints {for technical de-
tails, see Anselin 1988a, pp. 226-229).

Spatial error dependence may be interpreted as a nuisance (and the parameter
A as a nuisance parameter) in the sense that it reflects spatial autocorrelation in
measurement errors or in variables that are otherwise not crucial to the model (i.e.,
the “ignored” variables spillover across the spatial units of observation). It primarily
causes a problem of inefficiency in the regression estimates, which may be remedied
by increasing the sample size or by exploiting consistent estimates of the nuisance
parameter. For example, this is the interpretation offered in the model of agricultural
land values in Benirschka and Binkley (1994).

The spatial autoregressive error model can also be expressed in terms of spa-
tially filtered variables, but slightly different from (6). Afier moving the spatial lag
vaniable in (11) to the left hand side, the following expression results:

(A-AW)y = (1= MWXB+E (12)
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This is a regression mode! with spatially filtered dependent and explanatory vari-
ables and with an uncorrelated error texm £, similar to first differencing of both y
and X in time-series models. As in the spatial lag model, L = 1 is outside the pa-
rameter space and thus A must be estimated jointly with the other coefficients of the
model (see Section III).

Several alternatives to the spatial autoregressive error process (8) have been
suggested in the literature, though none of them have been implemented much in

practice. A spatial moving average error process is specified as (Cliff and Ord 1981,
Haining 1988, 1990):

e=yWE+E (13)

where y is the spatial moving average coefficient and £ is an uncorrelated error term
This process thus specifies the error term at each location te consist of a location-
(1}

specific part, £; (“innovation”), as well as a weighted average (smoothing} of the
errors al neighboring locations, W&. The resulting error covariance matrix is

E[ee'] = A+ yW) (I + y W) = Z[1+ p(W + W) + y¥*WW'] (14}

Note that in contrast to (10), the structure in (14) does not yield a full covariance ma-
trix. Nonzero covariances are only found for first-order (W + W'} and second-order
(WW’) neighbors, thus implying much less overall interaction than the autoregres-
sive process. Again, unless all observations have the same number of neighbors and
identical weights, the diagonal elements of (14) will not be constant, inducing het-
eroskedasticity in &, irrespective of the nature of .

A very similar structure to (13} is the spatial error compenents model of Kele-
jian and Robinson {1993, 1995}, in which the disturbance is a sum of two indepen-
dent error terms, one associated with the “region” (a smoothing of neighboring ertors)
and one which is location-specific:

e=WE+ {15
with £ and ¥ as independent error components. The resulting error covariance 13
Elec') = o3 1+ i WW' (10

where Qw and Qw are the variance components associated with respectively the
location-specific and regional error parts. The spatial interaction implied by (16)
is even more limited than for (14), pertaining only to the first- and second-order
neighbors contained in the nonzero elements of WW’. Heteroskedasticity 1s implied
unless all locations have the same number of neighbors and identical weights, a sit-
uation excluded by the assumptions needed for the proper asymptotics in the model
(Kelejian and Robinson 1993, p. 301).

In sum, every type of spatially dependent error process induces heteroskedas-
ticity as well as spatially autocorrelated errors, which will greatly complicate spec-
ification testing in practice. Note that the “direct representation™ approach hased
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on geostatistical principles does not suffer from this problem. For example, in Du-
bin (1988, 1992), the elements of the error covariance matrix are expressed di-
rectly as functions of the distance d;; between the corresponding observations, e.g.,
Eleig;} = u\_aatm@.\ v2) with y; and y2 as parameters, Since e~di/r2 = ], irrespec-
tive of the value of ya, the errors £ will be homoskedastic unless explicitly modeled
otherwise.

F  Higher-Order Spatial Processes

Several authors have suggested processes that combine spatial lag with spatial errer
dependence, though such specifications have seen only limited applications. The
most general form is the spatial autoregressive, moving-average (SARMA) process
outlined by Huang (1984). Formally, a SARMA(p, q) process can be expressed as

y=p1Wiy + p2Wey + -+ ppWpy + & an
for the spatial autoregressive part, and
e=piWME+yaWob+--+ v Wb +§ (18)

for the moving-average pani, in the same notation as above. For greater generality, a
regressive component XB can be added to (I7) as well. The spatial aulocorrelation
pattern resulting from this general formulation is highly complex. Models that imple-
ment aspects of this form are the second-order SAR specification in Brandsma and
Ketellapper (1979a) and higher-order SAR models in Blommestein (1983, 1985).

A slightly diffesent specification combines a first-order spatial autoregressive
lag with a first-order spatial autoregressive error (Anselin 1980, Chap. 6; Anselin
1988a, pp. 60—65). It has been applied in a number of empirical studies, most no-
tably in the work of Case, such as the analysis of household demand (Case 1987,
1991), of innovation diffusion (Case 1992), and local public finance (Case et al.
1993, Besley and Case 1995). Formally, the model can be expressed as a combi-
nation of (3) with (8), although care must be taken to differentiate the weights matrix
used in the spatial lag process from that in the spatial error process:

y=pWy+Xp+e 19

e=AWoe +E (20)
After some algebra, combining (20) and (19) yields the following _...w&_omm form:

y = pWiy + AWy — ApWeWiy + XB — AW Xn +& (1)

i e., an extended form of the spatial Durbin specification but with an additional set of
nonlinear constraints on the parameters. Note that when W, and W2 do not overlap, for
example when they pertain to different orders of contiguity, the product WaW, =0
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and AN: reduces to a biparametric spatial lag formulation, albeit with additional
constraints on the parameters. On the other hand, when W) and Ws are the same
mrn parameters p and X are only identified when at least one exogenous <m=.mm,r_m _m”
included in X (in addition to the constant term) and when the nonlinear constraints

are enforced (Anselin 1980, p. 176). When W, = Wy = W, the model becomes
y=(p+ )Wy — oWy + XB — \WXB + & (22)

n_mm.lw. the coefficients of Wy and W2y alone do not allow for a separale identi-
mnm:on._ of p and A. Using the nonlinear constraints between the B and —ApB (the
nomma_em:ﬂw.cn X and WX) yields an estimate of A, but this will only be unique when
the n.oam:msro. are strictly enforced. Similarly, an estimate of A may resull in two
possible estimates for p {one using the coefficient of Wy, the other of W2y) unless
the .:a:::aE, constraints are strictly enforced. This considerably complicates mmy.T
mation strategies for this model. In contrast, a SARMA(L, 1) model does not suffer
from this problem. ,

In ﬁ:viow_ practice, an alternative perspective on the need for higher-order
processes is to consider them to be a result of a poorly specified weights matrix rather
than as a realistic data generating process. For example, if the weights matrix in a
%m:m_ ._wm model underbounds the true spatial interaction in the data, there will be
remaining spatial error autocorrelation. This may lead one to implement a higher-
order process, while for a properly specified weights matrix no such process is needed
(see Florax and Rey 1995 for a discussion of the effects of misspecified weights). In
practice, this will require a careful specification search for the proper form of .:5
spatial dependence in the model, an issue to which we return in Section IV, First, we

nonm_ma_.. the estimation of regression models that incorporate spatial autecorrelation
of a spatial lag or error form.

. ESTIMATING SPATIAL PROCESS MODELS b

mmq:z.&. to when serial dependence is present in the time domain, classical sam-
mrzm theory no longer holds for spatially autocorrelated data, and nszm:o:. and
inference must rely on the asymptotic properties of stochastic processes. In essence
rather than considering NV observations as independent pieces of information :_ow,
are conceptualized as a single realization of a process. In order to carry out :.:E:-
ingful inference on the parameters of such a process, constraints must be imposed
on both heterogeneily and the range of interaction. While many properties of m.m..:-
mators for spatial process models may be based on the same principles as developed
for dependent (and heterogeneous) processes in the time domain (e.g., the formal
properties outlined in White 1984, 1994), there are some important differences as
u...mz. Before covering specific estimation procedures, we discuss these differences
in some detail, focusing in particular on the notion of stationarity in space and the
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distinction between simultaneous and conditional spatial processes. Next, we turn
to a review of maximum likelihood and instrumental variables estimators for spatial
regression models. We elose with a brief discussion of operational implementation
and software issues.

A Spatial Stochastic Processes

As in the time domain, in order to carry out meaningful inference for a spatial pro-
vess, some degree of equilibrium must be assumed in the sense that the stochastic
generating mechanism is taken to work uniformly over space. In a strict sense, a
notion of “spatial stationarity” accomplishes this objective since it imposes the con-
dition that any joint distribution of the random variable under consideration over a
subset of the locations depends only on the relative position of these observations in
terms of their relative orientation (angle) and distance. Even stricter is a notion of
isotropy, for which only distance matters and orientation is irrelevant. For practical
purposes, the notions of stationarity and isotropy are 100 demanding and not veri-
fiable. Hence, weaker conditions are typically imposed in the form of stationarity
of the first {mean) and second moments (variance, covariance, or spatial autocor-
relation). Even weaker requirements follow from the so-called intrinsic hypothesis
in geostatistics, which requires only stationarity of the variance of the increments,
leading to the notion of a variogram (for technical details, see Ripley 1988, pp. 6-7;
Cressie 1993, pp. 52-68).
For stationary processes in the time domain, the careful inspection of auto-
covariance and autocorrelation functions is a powerful aid in the identification of
the model, e.g., following the familiar Box-Jenkins approach (Box et al. 1994). One
could transpose this notion o spatial processes and consider spatial autocorrela-
tion functions indexed by order of contiguity as the basis for mode! identification.
However, as Hooper and Hewings (1981) have shown, this is only appropnate fora
very restrictive class of spatial processes on regular lattice structures. For applied
work in empirical economics, such restrictions are impractical and the spatial de-
pendence in the model must be specified explicitly by means of the spatial lag and
spatial error structures reviewed in the previous section. Inference may be based
on the asymptotic properties (central limit theorems and laws of large numbers) of
so-called dependent and heterogeneous processes, as developed in White and Do-
mowitz (1984) and White (1984, 1994). Central to these notions is the concept of
mixing sequences, allowing for a trade-off between the range of dependence and the
extent of heterogeneity (see Anselin 1988a, pp. 45-46 for an intuitive extension of
this to spatial econometric models). While rigorous proofs of these properties have
not been derived for the explicit spatial case, the notion of a spatial weights matrix
based on a proper metric is general enough to meet the criteria imposed by mixing
conditions. In a spatial econometric approach then, a spatial lag model is considered
ta be a special case of simultaneity or endogeneity with dependence, and a spatial
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(26) versus (25). This also has implications for the substantive interpretation of the
model results, as illustrated for an analysis of retail pricing of gasoline in Haining
(1984).
In practice, it is often easier to estimate a conditional model, especially for
nonnormal distributions (e.g., auto-Poisson, autologistic). Also, a conditional speci-
fication is more appropriate when the focus is on spatial prediction or interpolation.
For general estimation and inference, however, the constraints imposed on the type
and range of spatial interaction in order for the conditional density to be proper
are often highly impractical in empirical work. For example, an auto-Poisson model
(conditional model for spatially autocorrelated counts) only allows negative autocor-
relation and hence is inappropriate for any analysis of clustering in space.

In the remainder, out focus will be exclusively on simultaneously specified
models, which is a more natural approach from a spatial econometric perspective

{Anselin 1988a, Cressie 1993, p. 410).

B. Maximum Likelihood Estimation

The first comprehensive treatment of maximum likelihood estimation of regression

models that incorporate spatial autocorrelation in the form of a spatial lag or a spatial

error term was given by Ord (1975). The point of departure is a joint normal density

for the errors in the model, from which the*likelihood function is derived. An impor-
1ant aspect of this likelihood function is the Jacobian of the transformation, which
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in the same notation as used in Section II. This expression clearly illustrates why
in contrast to the time-seties case, ordinary least squares (i.e., the minimization cm
the last term in (28)) is not maximum likelihood, since it ignores the mmcorm.‘nz term
From the ueual first-order conditions, the ML estimates for 8 and 62 in a mvm:m_._mm

del i i i
Msoom Mm.mm.w M%M_Moa as (for details, see Ord 1975, Anselin 1980, Chap. 4: Anselin

By = (X'X)'X'(N— pW)y (29)
and
o = (y — oWy — XBu1Y (y — pWy — XBu1)
ML N (30)

Conditional upon p, these estimates are simply OLS applied to the spatially filtered
dependent variable and the explanatory variables in (6). Substitution of ﬁmou.m_:_ (30)

in .—:.w log-likelihood function yields a concentrated log-likelihood as a nonlinear
funection of a single parameter p:

=-——1In

2 N

N {eq.— perY (ep —
L. o= £e) (0 = o) | 4 S 1nql — g 631

where eg and e; are residuals in a regression of y on X and Wy on X, respectively (for
moors_.o& details, see Anselin 1980, Chap. 4). A maximum likelihood estimate for p
is obtained from a numerical optimization of the concentrated log-likelihood function
@C. Based on the framework outlined in Heijmans and Magnus (1986a, 1986h)

it can be shown that the resulting estimates have the usual asymptotic ?dvm&am”

En-:.m.:m consistency, normality, and asymptotic efficiency. The asymptotic variance
matrix follows as the inverse of the informatien matrix

AsyVarlp, 8, 0%

(AT + ugwyw + PAXEYVAXB) (XWAXBY (W)™
g o? ot
= X'WaXB XX
Q.m ﬂt O
ﬁ tr(Wa) 2
a2 0 AN
7 264
(32)

where Wy = W(I — pW)~! to simplify notation. Note that while the covariance
Tn?_nm: B and the error variance is zero, as in the standard regression model, this
is not nr,a case for p and the error variance. This lack of block diagonality .:.ﬂ the
informatien matrix for the spatial lag model will lead to some interesting results on
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the structure of specification tests, to which we turn in Section IV. It is yet another
distinguishing characteristic between the spatial case and its analog in time series.

Maximum likelihood estimation of the models with spatial error autocorrela-
tion that were covered in Section ILE can be approached by considering them as
special cases of general parametrized nonspherical error terms, for which Elee']l =
a2§2(9), with @ as a vector of parameters. For example, from {32) for a spatial au-
toregressive error term, it follows that

Q@) ={d - AW)Ya -] (33)

As shown in Anselin (1980, Chap. 5), maximum likelihood estimation of such spec-
ifications can be carried out as an application of the general framework outlined in
Magnus (1978). Most spatial processes satisfy the necessary regularity conditions,
although this is not necessarily the case for direct representation models (Mardia
and Marshall 1984, Warnes and Ripley 1987, Mardia and Watkins 1989). Under the
assumption of normality, the log-likelihood function takes on the usual form:

L= ..w In{Q )| — m In(27) — m Inte?)
(34)

- XBYAm) 0 — 4P).
Nq 2 -
for example, with ()) as in (33). First-order conditions yield the familiar general-
jzed least-squares estimates for B, conditional upon A

B = IX'QATATIXQRM) Ny (35)

For a spatial autoregressive error process, QL= (0 -AWYd — AW), so that
for known A, the maximum likelihood estimates are equivalent to OLS applied to the
spalially filtered variables in (12). Note that for other forms of error dependence, the
GLS expression (35) will involve the inverse of an N by N error covariance matrix.
For example, for the spatial moving average errors, as in(13), (! =I+y(W+
W) + y2WW'T"), which does not vield a direct expression in terms of spatially
transformed y and X.

Obtaining a consistent estimate for A is not as straightforward as in the time-
series case, As pointed out, OLS does not yield a consistent estimate in a spatial lag
model. It therefore cannol be used to obtain an estimale for A from a regression of
residuals e on We, as in the familiar Cochrane-Orcutt procedure for serially autore-
gressive errors in the time domain. Instead, an explicit optimization of the likelihood
function must be carried out. One approach is to use the iterative solution of the first-
order conditions in Magnus (1978, p. 283):

! ,{9Q7!

a8 =\ ek

u e (36)



258  ANSEUN AND BERA

where ¢ = y — X are GLS residuals. For a spatial autoregressive error process,
3Q-1/0n = —W — W' + AW’'W. Solution of condition (36) can be obtained by
numerical means. Alternatively, the GLS expression for 8 and similar solution of
the first-order conditions for o2 can be substituted into the log-likelihood function
to yield a concentrated log-likelihood as a nonlinear function of the autoregressive
parameter A (for technical details, see Anselin 1980, Chap. 5):

Lc= |m In Aﬂv + ) In(l - Awy) (37)

withu'u = y}y;, —y] X1[X; XL]7 X}y, and y;, and X, as spatially filtered variables.
respectively y — AWy and X — AWX. The Jacobian term follows from In [S2(A)}] =
2In |l — AW| and the Ord simplification in terms of eigenvalues of W.

The asymptotic variance for the ML estimates conforms to the Magnus (1978)
and Breusch (1980} general form and is block diagonal between the regression
(B) and error variance parameters o2 and . For example, for a spatial autoregres-
sive error, the asymptotic variance for the regression coefficients is AsyVar[f] =
o?[X,X;}}. The variance block for the error parameters is

Nj2¢* |..|:A W) B
2
AsyVar[o?, A] = d (38)
tr(Wy) 3 ,
o7 te(Wg)* + (W W)

where, for ease of notation, Wy = W({l - AW)~}. Due to the block-diagonal form
of the asymptotic variance matrix, knowledge of the precision of A does not alfect
the precision of the 8 estimates. Consequently, if the latter is the primary inter-
est, the complex inverse and trace expressions in (38) need not he computed, as
in Benirschka and Binkley (1994}. A significance test for the spatial error parame<
ter can be based on a likelihood ratio test, in a straightforward way (Anselin 1988a,
Chap. 8).

Higher-order spatial processes can be estimated using the same general prin-
ciples, although the resulting log-likelihood function will be highly nonlinear and the
use of a concentrated log-likelihood becomes less useful {Anselin 1980, Chap. 6)

The fit of spatial process models estimated by means of maximum likelikood
procedures should not be based on the traditional B2, which will be misieading in
the presence of spatial autocorrelation. Instead, the fit of the model may be assessed
by comparing the maximized log-likelihood or an adjusted form to take into account
the number of parameters in the models, such as the familiar AIC (Anselin 1988b).

C. GMMIV Estimation

The view of a spatially lagged dependent variable Wy in the spatial lag model as a
R . S c T el L AR cmrnanh
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10 estimation (Anselin 1980, 1988a, Chap. 7; 1990b). Since the main problem is the
correlation between Wy and the error term in (3), the choice of proper instruments
for Wy will yield consistent estimates. However, as usual, the efficiency of these
estimates depends crucially on the choice of the instruments and may be poor in
small samples. On the other hand, in contrasi to the maximum likelihood approach
just outlined, IV estimation does not require an assumption of normality.

Using the standard econometric results (for a review, see Bowden and Turk-
ington 1984), and with Q as a P by N matrix (P > K + 1) of instruments (including
K “exogenous” variables from X), the IV or 25LS estimate follows as

Biv =[ZQQQ'QZI' 2@ O ¢y (39)

with Z = [Wy X], AsyVar(Biv) = o2[Z’QQ'Q'¢Z], and 6? = (y — ZBw)’
(y — ZBw)/N.

Clearly, this approach can also be applied to models where other endogenous
variables appear in addition to the spatially lagged dependent variable, as in a si-
multaneous equation context, provided that the insirument set is augmented to deal
with this additional endogeneity. It also forms the basis for a bootstrap approach to
the estimation of spatial lag models (Anselin 1990b). Moreover, it is easily extended
to deal with more complex error structures, e.g., reflecting forms of heteroskedastic-
ity or spatial error dependence (Anselin 1988a, pp. 86—88). The formal properties of
such an approach are derived in Kelejtan and Robinson (1993) for a general methods
of moments estimator (GMM) in the model y = pWy + XB + £ with spatial error
components, & = WE + . The GMM estimator Lakes the form

Bowm = [Z'QQIRQ) '@ Z' 2’0 QO Q'y (40)

where £ is a consistent estimate for the error covariance matrix. The asymptotic vari-
ance for Bomm is [Z' QL)1 @' Z]~. For the spatial error components model,
Kelejian and Robinson (1993, pp. 302-304) suggest an estimate for Q= @l+
P2 WW’', with @) and 2 as the least-squares estimates in an auxilliary regression
of the squared IV residuals (y — Zp1v) on a constant and the diagonal elements
of WW'

A particularly attractive application of GLS-IV estimation in spatial lag mod-
els is a special case of the familiar While heteroskedasticity-consistent covariance
estimator (White 1984, Bowden and Turkington 1984, p. 91). The estimator is as in
(40). but Q'$2Q is estimated by Q'Q2Q, where { is a diagonal mitrix of squared IV
residuals, in the usual fashion. This provides a way to obtain consistent estimates
fur the spatial autoregressive parameter p in the presence of heteroskedasticity of
unknown form, often a needed feature in applied empirical work.

A crucial issue in instrumental variables estimation is the choice of the instru-
ments. In spatial econometrics, several suggestions have been made to guide the se-
lection of instruments for Wy (for a review, see Anselin 1988a, pp. 84-86; Land and
Neana 1002} Racantly. Keleiian and Robinsen (1993 n. 302) formally demonstrated
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HMMWMMMH&W o.m Bcum in _.rn spatiat lag model with instruments consisting of first-
e m:..m er-order spatially _mm.mmm explanatory variables (WX, W2X, etc.)
. mmm%”ﬂw.”m”w“ﬁ:ﬂ ‘.u._”_ M_“mﬁcﬂ_aima__ <m~_.mm_u_mm approach is thai estima-
. ns ol standard econometric software, provide
M””mna_“w:mwwwmm_ “Mmmm_nnwwo _uMa chEvEmm as the _.mmc.z of commen matrix Euz:w.”m“_hﬂm
s . ). In contrast, _rm._:mx::::_ likelihood approach requires
utines to implement the nonlinear optimization of the log-likelihood

ﬁo OQ.—‘uGﬂHuﬁHm—.ﬂﬂm m ml—u w.
T 0 —ﬂ@ —_.._QOB— . ﬂﬂ y i
_ - v e next n-.:.-._ o some c.muﬁ\-n.N:.D:”— 158U€S .nﬂ—n——.ﬂn— io

D. Operational Implementation and Hltustration

T . .
h M:w””MW”o:.m &._ the widely available econometric software packages contain specific
o implement maximum likelihood estimati i : |
ation of spatial p
routr ment . process models o1
o Mo_wm.“”” qmwﬂn__mnw_“_o: ,m_m_m for spatial autocorrelation in regression madels. This
on to the analysis of the lattice data stru .
! a > ctures that are most rel
’ . . : evant
_m mM_EE:_ou_. econornics na.::.mm_m with a relatively large range of software for spatial
b Nm_www_”.”m.: Mr_ﬂ vrww_om_rmo“..w:nmm. geared to point patlerns and geostatistical
. s of these are the GSLIB library (Deuts
: ch and Journel 1992) and il
; he
%ﬂm—” _w“._mm_”w:mﬁ__m_mﬂ mﬂwm“_cz to the S-PLUS statistical software (MathSoft 1996)
er does include some analyses for lattice ¢ irmaticnimlimited 13
. BiEE ala, estimation is limited t
maximum likelihood of spatial erro i e
r models with anloregressi i
structures, However, the spati: i and spocification dismmn.
. ] spatial lag model is not ification di
e ol e £ covered and specification diagnos-
Th - i i
ot M ”E_.w m.m_w conlained mo?.,..mnm package specifically geared Lo spatial econo-
metrc :a ysis in vmomm_m:. (Anselin 1992b, 1995). It contains both maximum hike-
o an :,._mm_.:z_m_:m_ variables eslimators for spatial lag and error models, as well
mo_.mmwpw. Ju .N.M:Smrw rﬂa._.a.,m_amﬁ_um:n specifications and a wide range of diagnostics
o _map”m effects. _? addition, Mﬁmnami also includes extensive features to carry out
P X ory spalia mm".m analysis as well as ulilities 1o create and manipulate spatial
weig| .‘m ﬁEEnam and interface with geographic information systems. |
mm:Sn:QM_,M M:.m _Wo_ q_sm._cq M_.En:amﬁ issues that must be resolved to implement the
spatial lag and spatial error models. The first i : .
: ’ s, irst is the need to construct
.M.qu”mﬁ_ ._m.mmmm variables from observations on the dependent variable or residual
:._Ea.s _m_m” H_m“‘._w,.ma“: for both instrumental variables {IV, 2SLS, GMM) as well a=
um likelihood estimation. In principl a a il
: | . xiple, the lag can be computed ¢
matrix multiplication of the spati i i e of e
. : spatial weights matrix W with the vec
mat on of th . : vector of obseiva-
ma_M, say M\Q. This is straightforward to implement in most econometric software
Mmimmmam m al contain matrix algebra routines (specific examples for Gauss, Splus.
i ep, B” and Shazam are given in Anselin and ITudak 1992, Table 2, p m—\:.
a w:“.n:nm, hawever, ::.w size of the matrix that can be manipulaled by economet-
¢ software is severely limited and insufficient for most empirical applications, un-
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less sparse matrix routines can be exploited (avoiding the need to store a full N by
N matrix). This is increasingly the case in state-of-the-art matrix algebra packages
(e.&., Matlab, Gauss), but still fairly uncommon in application-oriented economet-
ric software; hence, the computation of spatial lags will typically necessitale some
programming effort on the part of the user (the construction of spatial lags based on
sparse spalial weights formats in SpaceStat is discussed in Anselin 1995). Once the
apatial lagged dependent variables are computed, IV estimation of the spatial lag
mode! can be carried out with any standard econometric package.

The other major operational issue pertains only to maximum likelihood esti-
mation. It is the need to manipulate large matrices of dimension equal to the number
of observations in the asymptotic variance matrices (32) and (38) and in the Jaco-
bian term (27} of the log-likelihoods (31) and (37). In contrast to the time-geries case,
the matrix W is not triangular and hence a host of computational simplifications are
not applicable. The problem is most serious in the computation of the asymptotic
variance matrix of the maximum likelihood estimates. The inverse matrices in both
Wy = W(1—pW)™ of (32) and Wp = W(l — AW)~! of (38) are full matrices which
do not lend themselves to the application of sparse matrix algorithms. For low values
of the autoregressive paramelers, a power expansion of (1 — pW) ™ or (1 - AWyt
may be a reasonable approximation to the inverse, €.g., (- Wyl =3 Pkt
error. with k=0,1,.... K, such that p% < 8, where disa sufficiently small value.
However, this will involve some computing effort in the construction of the powers of
the weights matrices and is increasingly burdensome for hi gher values of the autore-
gressive parameter. In general, for all practical purposes, the size of the problem for
which an asymptetic variance matrix can be computed is constrained by the largest
\natrix inverse that can be carried out with acceptable numerical precisionina given
software/hardware environment. In current deskiop settings, this typically ranges
from a few hnndred 1o a few thousand observations. While this makes it impossible
to compute asymptotic ¢-tests for all the parameters in spatial models with very large

numbers of observations, it does not preclude asymptotic inference. In fact, as we ar-
gued in Section 1ILB, due to the block diagonality of the asymptotic variance matrix
in the spatial error case, asymptotic (-slatistics can be constructed for the estimated
# coefficients without knowledge of the precision of the autoregressive parameter A
(see also Benirschka and Binkley 1994, Pace and Barry 1996). Inference on the au-
toregressive parameter can be based on a likelihood ratio test (Anselin 1983a, Chap.
6). A similar approach can be taken in the spatial lag model. However, in contrast
to the error case, asymptolic t-lests can no longer be constructed for the estimated 8
coefficients, since the asymptotic variance matrix (32) is not block diagonal. Instead,
likelihood ratio tests must be considered explicitly for any subset of coefficients of
interest (requiring a separale optimization for each specification; see Pace and Barry
1997).
With the primary objective of abtaining consistent estimates for the parameters
in spatial regression models, a pumber of authors have suggested ways to manipu-



262  ANSELIN AND BERA

late m_ov_.:mn stalistical and econometric software packages in order to maximize th

Fm.__rorroomm (28) and (37). Examples of such efforts are routines for ML _u,.ou i
tion of the spatial lag and spatial autoregressive error model in mwm:z SAS om EW-
Limdep, Shazam, Rats and S-PLUS (Bivand 1992, Griffith 1993 >=m¢m== m._smm”__w
dak 1992, Anselin et al. 1993b). The commeon theme E:o:m.,rnm,m approaches is to
find a way to convert the log-likelihoods for the spatial models to a form mEm.:mr_u_ >
for use with standard nonlinear optimization routines. Such routines proceed i ¢
mentally, in the sense that the likelihood is built up from a sum om—um_mEn:_ :.m__nﬂ
correspond to individual observations. At first sight, the Jacobian term in the ...m al u_
models sa.E_n_ preclude this. However, taking advantage of the Ord decom o&.%o 0

terms .&. eigenvalues, pseudo-observations can be constructed for the n_oaﬂiw om.“_““
] mo.o?m:. Specifically, each term 1 — pw; is considered to correspond to a .mmc._c-
variable w;, and is summed over all “observations.” For example, for the s M:E la

model, the log-likelihood (ignering constant terms) can be mxvamm,mm& as g’ Y

L= M In(l — pw;) — _:Mwuv - B—MWW._ — x;8)?
i . o

(41)

which _u_._m the format expected by most nonlinear optimization routines. Examples
Mw ana:om_ mEv._oEnEm:cnm. are listed in Anselin and Hudak {1992, H.m,h_c ﬂw _u.
m_._ %:“”m MM@M.NH@Mo%hNn code for various econometric software packages is given
One problem with this approach is that the asymptotic variance matrices com-
puted 3. the routines tend 1o be based on a numerical approximation and .% not
:anm.mmm:__v.~ correspond to the analytical expressions in (32) and (38). This may lead
lo mrm_.: differences in inference depending on the sofiware package that is EHQ_
A>=mwr= and Hudak 1992, Table 10, p. 533). An alternative approach that does not
require the computation of eigenvalues is based on aparse matrix algorithms to effi-
sz.:m compute the determinant of the Jacobian at each iteration of the optimization
routine. While this allows the estimation of models for very large data sets (tens of
thousands of observations), {or example, by using the specialized routines in the Mat-
ﬂ.ﬂw mmm“,.m_.c. ”r“w mn.nm not solve the asymptolic variance matnix problem. Inference
refore ikeli i isti i i
therelor “_Mm wh‘i mmwn“. M”._w_un%w%_ooﬁ_ ratio statistics (for details and implementation,
To ___cm:.m,m the various spatial models and their estimation, the results for
mrm parameters in a simple spatial model of crime estimated for 49 neighbothonds
in nc_.zawnm. Ohio, are presented in Table 1. The model and results are based c..a
>=mar4 {(1988a, pp. 187-196) and have been used in a number of papers to rmE.r.
mark different estimators and specification tests (e.g., McMillen 1992, Geus _omm
Angelin et al. 1996, LeSage 1997). The data are also available for downloading <E
the mtemet from http://www.rri.wvu.edu/spacestat.htm. The estimates reported m
Table 1 include OLS in the standard regression model, OLS (inconsistent) Zﬁ v
and heteroskedastic-robust IV for the spatial lag model, and ML for the m_um.:m_ n_:c_.
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Table §  Estimates in a Spatial Model of Crime®

0oLs Lag-OLS  LagML  LaglIV Lag-GIVE  Erm-ML

Constant 68.629 38.783 45.079 43.963 46.667 59.893

(4.73) {9.32) {7.18) (11.23) (1.61) {5.37)
P 0.549 0.431 0.453 0.419
0.153) {0.118) {0.191) 0.139)
Income -1.597 --0.886 —-1032 -1010 ~1.185 —0.941
(0.334) (0.358) {0.305) (0.389) {0.434) (0.331)
Housing -0274 —0.264 —0266  —0.266 —0.234 —0.302
value (0.103) (0.092) (0.088) (0.092) (0.173) (0.090)
A 0.562
(0.134)
R? 0.552 0,652 0.620 0,633
Log-lik -187.38 —182.39 —183.38

oD ata are for 49 neighbothoods in Columbus, Ohio, 1980. Dependent variable is per capita residen-
tial burglaries and vehicle thefts. Income and housing values are in thousand dollars. A first-order
contiguily spatial weights matrix was used to construct the spatial lags.

model. The spatial lags for the mucmnsocmtémm_u_nm (WX) were used as insiruments
in the IV estimation, In addition to the estimates and their standard errors, the fit of
the different specifications estimated by ML is compared by means of the maximized
log-likelihood. For OLS and the IV estimates, the R? is listed. However, this should
be interpreted with caution, since R? is inappropriate as a measure of fit when spa-
tial dependence is present. All estimates were obtained by means of the SpaceStat
software,
A detailed interpretation of the results in Table 1 is beyond the scope of this
chapter, but a few noteworthy {eatures may be pointed out. The two spatial models
provide a superior fit relative to OLS, strongly suggesting the presence of spatial de-
pendence. Of the two, the spatial lag model fits better, indicating it is the preferred
alternative. Given the lack of an underlying behavioral model (unless one is willing to
make heroic assumptions to aveid the ecological fallacy problem), the results should
be interpreted as providing consistent estimates for the coefficients of income and
housing value after the spatial dependence in the crime variable is filtered out. The
most affected coefficient (besides the constant term) pertains tothe income variable,
and is lowered by about a third while remaining highly significant. The esimates
for the autoregressive coelficient vary substantially between the inconsistent and
biased OLS and the consistent estimates, but the Lag-IV coefficient has a consider-
ably higher standard error. In some instances, OLS can thus yield “betler” estimates
in an MSE sense relative to IV. Diagnostics in the Lag-ML model indicate strong re-
maining presence of heteroskedasticity (the spatial Breusch-Pagan test from Anselin
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1988a, p. ﬂwm.. yields a highly significant value of 25.35, p < 0.00001). The rabust
rmm-oz.m estimates supporl the importance of this effect: the mma:::m. for ‘._z. :.,T
toregressive parameler is quite close 1o the ML value while obtain; nga m“m ::..E.. n:‘
m.3m=m~ standard error relative to both OLS and the nonrobust IV. Ec_.mcf.mﬁ. :._Mzon.ﬁ.
timate _.o.q the Housing variable is no longer significant. This again m__:e.n‘_‘..zm _r-
complex interaction between heterogeneity and spatial dependence TR

IV. TESTS FOR SPATIAL DEPENDENCE

As it happened in the mainsiream econometrics literature, the initial stages of d
,‘.n_ov:_m:,. in spatial econometrics were characterized by an maw:w»m.n cﬂ est E?
tion. Pm. discussed in the last section, Cliff and Ord (1973) and opr..wmr._ mo_.z_.z__..:m“
nrm.amx:::.:, likelihood approach which goes to back to work of Whittle Com.éw —.:
Em_nm:.mm:_l econometrics, the test for serial correlation developed by Durbin and
Watson C@Uo. 1951) was the first explicit specification test for the regression model.
It has gained widespread acceptance since its inception. However, routine tesiin
FH other specifications (such as homoskedasticity, normality, mxomm.zmz and w::ﬁm;
tional mo:ﬁv. did not take prominence until the early mmmr:mm...} major vwmmr::czmr
was the _.m.&_moo.aé of the Rao (1947) score (RS) test (known as the Lagrange mult-
pliertest in econometrics). The RS test became very popular due to its computational
mmma.oojvm..mm to the other two asymptotically “equivalent” test procedures, namel
%Wo___vrarrooa _.E,mo (LR} and Wald (W) tesis (see Godfrey 1988 and Bera m_.z_ac:w.m
In a similar fashion, the origins of specification testing in spatial economettics
can be :.mnnm back to Moran’s (1950a, 1950b) test for autocorrelation, This test laid
in onn__.p:G until it was revived by Cliff and Ord (1972). It received ».E.__Hm,_. :: Lrs
by w:ﬁamm (1980) as an RS test. However, the early spatial econometrics :_2_..“..=.E.M 4
on testing was dominated by the Wald and LR tests (for example, see w_.m_,._n_o.m_n_ and
_Aa:u:mvvo_.. 19794, 1979b; Anselin 1980). Since the latter require the mmcn,_m:c_ﬂ of
the alternative model by means of nonlinear optimization (as discussed in Seclion
I11), the advantages of basing a test on the least-squares regression of the null model
offered by the RS test, were quickly realized. During the last 15 years, a number ...m
such tests were developed (see Anselin 1988a, 1988c). .
>E.o_”_mr mainsiream economelrics and spalial econometrics literature went

through m_z..:m_. developments in terms of specification testing, the implementation
of the tests in spatial models turns out to be quite different from the standard case
.m..on wu.n.mEEn. most of MEm RS mvon.mmnmzc: tests cannot be written in the familiay

NR mo:: (where R® is a coefficient of determination) nor they can be computed
by running any antificial regression. In addition, the interaction between m_um:w_ _L
dependence and spatial error dependence 1n terms of specificalion testing is m:ar M
and more complex than ils standard counterpart. There are, however, sotne no:.:.mo:
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threads. As in the standard case, most of the tests for dependence in the spatial
mode! can be constructed based on the OLS residuals. In our discussion we will em-
phasize the similarities and the differences between specification testing in spatial
econometric models and the standard case.

We start the remainder of the section with a discussion of Moran’s [ stalistic
and stress its close connection to the familiar Durbin-Watson test. Moran’s I was.
not developed with any specific kind of dependence as the alternative hypothesis,
although it has been found to have power against a wide range of forms of spatial
dependence. We next consider a test developed in the same spirit by Kelejian and
Robinson (1992). This is followed by a focus on tests for specific alternative hypoth-
esis in the form of either spatial lag or spatial error dependence. Tests for these two
kinds of autocorrelations are not independent even asymplotically, and their sepa-
sate applications when other or both kinds of autocorrelations are present will lead
to unreliable inference. Therefore, it is natural to discuss a test for joint lag and er-
ror autocorrelations. However, the problem with such a test is that we cannot make
any specific inference regarding the exact nature of dependence when the joint null
hypothesis is rejected. One approach to deal with this problem is to test for spa-
tal error autocorrelation after estimating a spatial lag model, and vice versa. This,
however, requires ML estimation, and the simplicity of tests based on OLS residuals
is lost. We therefore consider a recently developed set of diagnostics in which the
O1S-based RS test for error (lag) dependehce is adjusted to 1ake into account the
local presence of lag (error) dependence (Anselin et al. 1996). We then provide a
brief review of the small-sample properties of the various tests. Finally, the section
is closed into a discussion of implementation issues and our illustrative example of
the spatial model of crime.

A Moran's I Test

Moran’s {1950a, 1950b) I test was originally developed as a two-dimensional analog
of the test of significance of the serial correlation coefficient in univariate time series.
CHiff and Ord (1972, 1973) formally presented Moran’s [ statistics as

N [e'We
=l== 42)
] 5o \ e ﬁ
where ¢ =y — X B is a vector of OLS residuals, f = (X'X)~' Xy, W is the spatial
weights matrix, N is the number of observations, and S, is a mﬁﬁ@ﬁ&sm&oz factor
equal to the sum of the spatial weights, 32wy Fora row-standardized weights
matrix W, S, simplifies to NV (since each row sum equals 1) and the statistic becomes

¢'We
I=— 43)
ele
Motan did not derive the statistic from any basic principle; instead, it was suggested
as a simple test for correlation between nearest neighbors which generalized one
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of his earlier tests in Moran (1948). Consequently,
interpretations. The first striking characteristic is t
and the familiar Durbin-Watson (DW) statisic

the test could be given different
he similarity between Moran's f

e'Ae
DW = —— j
pp (44
where
[1 -1 o o ... o o 0]
-1 2 -1 o ... g 0 0
0O -1 2 -1 ... 9 0 0
A=1 . . . . . :
0 0 0 o0 ... -3 2 —~1
[0 0 0 0 - 0 -1 1|
Therefore, both statistics equal the ratio of quadratic forms in OLS residuals and they

differ only in the specification of the int

erconnectedness between the observations
(neighboring locations). It is well know

n that the DW test is a uniformly most power-
ful (UMP) test for one sided alternatives with error distribution & = Ag,_ &, (see

e.g., King 1987). Similarly Moran’s / possesses some optimality propertics. Mote

precisely, Cliff and Ord (1972) established a link between the LR and { tests. If we
take the allernative model as (8), i.e.,

e=Me+ &

then the LR siatistic for testing Hy: A = Q against the aliernative ;X =X, when
¢ and 02 are known, is proportional to
e'We
7 {45)
eI+ A16)e

where G is a function of W. Therefore, I approaches the LR
it can be shown to be consistent for Ho: h =
later, Burridge (1980) also showed that / is eq
{or y = Oiin the spatial moving average proce.
Since we know that the LR and RS tests are asymptotically equivalent under the
null and local alternatives, CIiff and Ord's result regarding asymptotic equivalence
of f and LR becomes very apparent. King and Hillier (1985) derived the locaily
best invariant (LBI) test for the wider problem of testing Hy: A = 0 against H,
A > 0 when the covariance matrix of the regression disturbance is of the known form
a2Q()) {asin our (10)), and showed the test 1o be 1dentical to the one-sided version
of the RS test. Combining this result with that of Burridge {1980), we can conclude
that Moran’s I must be an LBI test, which was demonstrated by King (1981).

statisticas L} — 0, and
0 against H,: A # 0. As we discuss
uivalent to the RS test for A = 0 in 8
ss (13)) with an unscaled denominator.
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. . !
is i basis of an asymptotically norma
ice the test is implemented on the ly racine
tand _nﬂﬁwﬂﬂﬂnwmﬂcm obtained by subtracting the nﬂvaﬂnom _“S__:m M”“_ M“.Jm.ﬂum. M
the sta e . istic like I is that un s A=
iation. One advantage of statistic like =0
En&m—ﬂﬂ“ﬂﬂgw MM_M ¢'e is distributed as central x2. CLiff and Ord (1972} exploite
and n '

this to derive the first two moments as

tr(MW) (46)
ED=J"%
and .
e(MWMW') + w(MW)? + (i(MW)Y (E(DF 47)
Vi = (N-KYN-K+2)

XX is a row-standardized immm—:m.am—:u. .

g Hﬁmﬂm..“m.mwru_mnﬁﬁ Mw.m_w_m—u.wmm__umu.wmav.m-_uc:sm zﬂ: W“. 1 W:.o.m“mn W%M”M-.mh%
the hounds in

T ek Homm wrv —“quﬂho_.”“.“““ .hw%ﬂ“.mmwmn“_ ”Em difficulties. ﬁmmm_mmm..wmmvm
e m_mao. _ M__o uwwc_.m of Imhof (1961) and Koerts and >_uq.mrm_.=mn S:o:.
g :m__“mni.mnm_ values of I can be computed by ==Ea=nm_m_ﬁ.m“ o_rnh.
B ot ou“uwaa_ [ in terms of the eigenvalues Y1 V2o VN-K o . . other
M___mﬂwpmwm.hm“ﬂ.“m. and N — K independent N A.m. 1) variables &1, 82, . ... on-K}

specifically,
N-K

N-K ) (48)
= _.&w .m_.
! M “w \ MU_. -

i=1
Then
N-K s
Pr(J < IolHo) = Pe| Y (vi — Io)é; < OlHo

i=1

(49)

:O L] _—_Wﬂ M : v; - i m o - hﬂ varia ﬁﬁm. MHH__—.—QM 5
11 A &Qvun iIsa iﬂp“m—nﬂﬁ— su m. AZ V k.— Il T
. t= t

method simplifies the probability in (49) to

1 1 % sin{a(u)} (50)

Pl < bolHo) =5 = 2 | Lp(a) du

where
1% Loy}
) = M tan{(y; — lo)u
h—:hw 2 2 arc

N—K
bwy = [0 + (v — )1

i=1
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The integral in (50) can be evaluated by numerical integration (for more on this, sce
Tiefelsdorf and Boots 1995),

It is instructive to note that the computation of exact critical values of the DW
statistic involves the same calculations as for Moran’s I except that the y; is the
eigenvalues of MA, where A is the fixed matrix given by in (44). Even with the recent
dramatic advances in compuler technology, it will take some time for practitioners
to use the above numerical integration technique to implement Moran’s 1 test.

B. Kelejian-Robinson Test

The test developed by Kelejian and Robinson (1992) is in the same spirit of Moran's
1 in the sense that it is not based on an explicit specification of the generating process
of the disturbance term. At the same time the test does not require the model to be
linear or the disturbance term to he normally distributed. Although the Lest does not

attempt to identify the cause of spatial dependence, Kelejian and Robinson (1992)
made the following assumption about spatial autocorrelation:

Coviei, &) = 6y = Zjur 1)

where Z;; is 1 by ¢ vector which can be constructed from the independent variahles
X, is ¢ by 1 vector of parameters, and i, j are contiguous in the sense that they are
neighbors in a general spatial “ordering” of the abservations. The null hypothesis of
no spatial correlation can be tested by Ho : @ = 0 in (51).

For a given sample of size IV, let € denote by by 1 vector o;’s which are nat
zero for i < j. Therefore, a test for @ = 0 can be achieved by running a regression af
€ on the observation matrix £ which is of dimension hy by q consisting of Z;; values
Since we do not observe the elements of C, they are replaced by the cross product of

OLS residuals, ¢;¢;. The resulting hy by 1 vector is denoted by €. The test is based

on § = (Z'Z)"'2'C and is given by
PZ'Zy
4

[}

KR =

(52)

where 3 is a consistent estimator of o%. For example, we can use [e'e/N]? or (€ -
9t ~ va\rz?uwh.c:%:ﬁo"QHPK_» 3 kw ?m:ﬁm_nrm-m.._:p_ﬂ

with g degrees of freedom), where Z denotes convergence in distribution. Putting
§=(Z'Z)~12'C, KR can be expressed as

Czznz2¢

= pr (53)

Since for the implementation of the test we need the distribution only undes the null
hypothesis, it is legitimate to replace 0% by a consistent estimate under @ = 0
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P . 0:
Note that under Hg, C'C/hy £ &%, where +> means convergence in probability.

Therefore, an asymptotically equivalent form of the test is

&z@znz'e
&

which has the familiar NR? form. Here R? is the uncentered coefficient of determi-
nation of € on Z and hy is the sample size of this regression, .

It is also not difficult to see an algebraic connection between KR and Moran's
I. From (43)

hy - (54)

2
(¢We)? 1

I?= =
(¢'e)? N2a4

N N
2.2 Wieie

i=1 j=1

2222 ﬂ\m;ﬂsaﬁm*m__v?amav Ammv
MUMU zun..ﬂh

Using (53), we can write

hy hy . ﬁw
kR =330 Blh . (56

i=] j=l

where p;; are the elements of Z(Z'Z)"'Z’. Given that £.'s contain terms like ee,
k < I, 1t appears that the I% and KR statistics have similar algebraic structure.

C. Tests for Spatial Error Autocorrelation

In contrast to the eatlier two tests, the alternative hypothesis is now stated explicitly
through the data generating process of £ as in (8), i.e.,

e=)We+&

and we test & = 0. All three general principles of testing, namely LR, ﬁ and RS
can be applied. Out of the three, the RS test as described in Rao (1947) is the most
convenient one to use since it requires estimation only under the ::.: hypothesis.
" That is, the RS test can be based on the OLS estimation of the regression Eomn_. .
Silvey (1959) derived the RS test using the Lagrange multiplier(s) of a constrained
optimization problem. .
Burridge (1980) used Silvey’s form to test A = 0, although the Rao’s score
form, namely

RS = d'G)I(H) ' d(®) (57)
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is more popular and much easier to use. In (57), d(6} = 3 i

W...an.:.. I = .Imﬁmnhmmv\mevmavq 18 prmﬁr‘,wcq:,m_wo: ENN.MNW%MHJ.“_HMH_M_W
%rm“mrc& ?:.n:o? and @ is the restricted (under the tested hypothesis) .:mam:E.n:
ikelihood nm:w.mﬁow of the parameter vector 8. For the spatial error autocorrelatin
mode! .m = (B, 02, AY and the log-likelihood function is given in (34). T} .ﬂ 1 ;
essentially based on the score with respect to A, i.e., on TS

_aL g'We
oA 0 o2 58

ds

We can immediately see the connection of this to Moran’

s I statistic. Aft
Z(0) under Hy, from (36), we have the test statistic i

RS; = m.luw = _”m..ﬂ\m\m‘mww
T T (59)

where 7' = t1( ««M + W)W). Therefore, the test requires only OLS estimates, and
%:Wm_?ta.wxmm = xiltis mm_anwmm::m toput W = WT (Section I1.E) and obtain
nu:lﬁx_l_w m___m RS, = (N - 13A% where A = 3 ee, 1/ Y, me in the time-senes
» m urridge ﬁ@mov derived the RS test (59} using the estimates of the Lagrange
multiplier following Sitvey (1959). The Lagrangian function for this problem is

LR - -
(6, u) = L(B) — pua (60)

where 2 i i agrz ipli
her {4 is the associaled Lagrange multiplier. From the first-order conditions, we

ALk, u)
ax

Le.,

110 .
A= @lu;

and this results in the same statistic RS,.
dotil A striking feature of :_m. RS test is its invariance to different alternatives (for
ails, see Bera and McKenzie 1986), The RS test uses the slope 3£/06 a1 8 = @
and there may be many likelihood functions (models) which have the mm...:m slo %Mﬂ @..
If we specify the alternative hypothesis as a spatial moving-average process :_ w._ and
test Hy : y = 0, we obtain the same Rao’s score statistic RS;. Therefore, RS; will
be locally optimal for both autoregressive and moving-average m:ﬁ.:m_?»w _w:“ th
m_m.o means that when the null hypothesis is rejected, the test does nat ﬁmc.ia_o .ﬂ_“a
guidance regarding the nature of the disturbance process, even when other um%mc_w.

(61)
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of the spatial model are resolved. This also raises the question whether RS, will
be inferior to other asymptotically equivalent tests such as LR and W, with respect
to power, since it does not use the precise information contained in the alternative
hypothesis. In the context of the standard regression model, Monte Carlo results of
Godfrey (1981) and Bera and McKenzie (1986) suggest that there is no sethack in
the performance of RS test compared to the LR test. In Section IV.G, we discuss the
finite sample performance of RS, and other tests.

Computationally, the W and LR tests are more demanding since they require
ML estimation under the alternative, and the explicit forms of the tesls are more
complicated. For instance, let us consider the W test which can be computed using
the ML estimate A by maximizing (34) with respect to B, a2, and A. We can write the
W statistic as (Anselin 1988a, p. 104)

N .
WSy = e )
AsyVar(A)
where AsyVar (1) can be obtained from (38) as
w21 |
AsyVar(}) = | tr(W3) + w(WpWp) — firt 2m : (63)

For implementation we need to replace A by A in the above expression. In the stan-
dard time-series regression case the results are much simpler. For example, AsyVar
[@2, 3] is a diagonal matrix and AsyVar(2) is simply (1 — A /(N — 1). Therefore
the Wald test statistic can be simply written as

- 2
il w; (64)
1-—A2
Note that under A = 0, the asymptotic variance (1 —22)/(N —1) reduces 1o 1/(N —

1). the expression for >mw<m~9u used in the time series case to test the significance
of A.

%MH =

The LR statistic can be easily obtained using the concentrated log-likelihood
function L in (37). We can write
LR, = 2[L¢c - L] (65)

where the “hat” denotes that the quantities are evaluated at the unrestricted ML
estimates B, &2, and . It is easy to see that LR, reduces to (Anselin 1988a, p. 104)

N
LR, = N[in&® ~n 8?1 +2)_ In(1 — Aoy) (66)

i=1

The appearance of the last term in (66} differentiate the spatial dependence situation
from the serial correlation case for lime-series data.
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Finally, for higher-order spatial processes, it is easy to generalize the RS statis-
tic (59). For example, if we consider a gth-order spatial autoregressive model

mﬂw_w«\_m+».__ﬁ\mm+...+».eﬂ\em+m

(67)
andtest Ho: A =Xy =-.. = Aq = 0, the RS statistic will be given by
q ! =212
[e'Wie/o°]
RSy.a, = W” T (68)

where T} = tr[ W/ W;+ EM_L =1,2,..., 9. Under the null of no spatial dependence,

RSy .0, 2 kw. Thercfore, the test statistic for higher-order dependence is simply
the sum of corresponding individual tests. The same test statistic will result when
a moving average model as in (18) is taken as the alternative instead of (67). As
expected, the Wald and LR tests in this context will be more complicated as they
require ML estimation of Ay, Ao, .. ., Ay

D. Tests for Spatial Lag Dependence

In this section, we consider tests on the null hypothesis Hy : p = 0 in (3) using the
log-likelihood function (26). Once again the RS test is the easiest one to use, and
Anselin (1988¢) derived it explicitly (his equation (32)). The score with respect to p
is

aL e'w
o= =22 (69)
p=0

The inverse of the information matrix is given in (30). The complicating feature of
this matrix is that even under p = 0, it is not block diagonal; the (p, ) term is
equal to (X'WXB)/a?, obtained by putling p = 0:ie.,, Wy = W. This absence .
of block diagonality causes two problems. First, as we mentioned in Section 1L, the
presence of spatial dependence implies that a sample contains less information than
an independent counterpart. This can now be easily demonstrated using (30). In the
ahsence of dependence (0 = 0 in (3)), the ML estimate of B will have variance
a%(X'X)~! which is the inverse of the information. But when p # 0, 10 compute the
variance of the ML estimate of 8 we need 10 add a positive-definite part to a2 (X' X)~!

due to absence of block diagonality. Second, to abtain the asymplotic variance of d

“_.
even under p

= 0 from (30), we cannot ignore one of the off-diagonal terms. Ths
was not the case for d, in Section IV.C. Asymptotic variance of d; was obtaned

just using the (2, 2) element of (36) (sce (59)). For the spatial lag model, asymptotic
variance of d,, is obtained from the reciprocal of the (1,1) element of
(W2 + W'W]+ (WXB[WXB)fo? (X'WXBY /o2 ] e
. ; i)
(X'WXB)/a? (X'X)/o?
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Since under p = 0, Wy = W and t(W) = 0, the expression is T ot R«ﬁmwx_
M(WXP) + Ta?)/o?, where T is given in (59). Therefore, the RS statistic 1s giv
by
&, _1eWy/o’F
RSe=7="1
where in 71, B, and o? are replaced by B and &7, respectively. Under Ho : p = 0,

i i imizati log-likelihood
s B .2 the Wald and LR tests will require maximization of the B: :
M_"”_Mslo”ﬂ mM—m‘u ow (29). Let 5 be the ML estimate of p. To get the asymptotic M.msma..HM”
Since the Wald test requires estimatl
f 5, we need the (1, 1) element of (30). st

“_._%au the alternative hypothesis (i.e., p # 0),the (1, 3) m._anE _”_A ﬁuﬁv\&q M”H _HMM
be nonzero and the resulting expression will more complicated than 1 mnm : ﬂ
{Anselin 1988a, p. 104). The LR statistic will have the same form as in (66) excep
for the last term:

(11)

) (72)
LR, = N[In&* ~ In&%] +2 3 in(1 — pw)
i=l
i i than its Wald
s mation is already performed, LR, is much easier to compute I .

: ﬂ.www“ﬂﬁ—__ohm_mmwmba“ Wﬂc_r Wald and LR statistics will be asymptotically dis-
€0 :
tributed as x3.

E Testing in the Possible Presence of Both Spatial Error and
Lag Autocorrelation

The test described in the Sections IV.C and IV.D nmn_ be _n_.ﬂ._m@ as ozm;m”h““eh”m
igned to test a single specification ass
tests in the sense that they are designe .
i { the model. For example, we discus 1
rect specification for the rest o 0 haa
isti Hp : A = 0 assuming that p :

d LR, statistics for the null hypothesis Hp . . *
”M.__rm :wE_.a of the information malrix, these tests will not be valid n<m.= M.mwaaﬂﬂ-:
ically, when p # 0. For instance, we noted that under :M .:».F.m_c - mlm_.oo »

s th isti i distributed as central x* with one de
the three statistics are asymptotically
i i = 0. To evaluate the effects of nonzero p
eedom. This result is valid only when p = 0. :
WMoMm”.: WS;, and LR;, let us write the model when both the spatial error and lag
autocorrelation are present:

u\ubﬂ\_.ﬂuﬁ.khuﬁrm .va
e=AWoe+ & m\(zﬁo.o.n: A

where W) and Wy are spatial weights matrices associated with the mvm__w&__w __M.mmmm
. i ive disturbances, respectively. hec
.ndent variable and the spatial autoregressive distul
M_M.m“.mm”:c: ILF that for model (73) 10 be identified, it is necessary that W) # Wp or
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that the matrix X contain at least one exogenous variable in addition to the constant

term. An alternative specification of spatial moving-average error process for g as in
(13),

e =AW5¢ + ¢ (74

has no such problems and it also leads to identical results in terms of tes! statistics
discussed here. Using the results of Davidson and MacKinnon (1987) and Saikko-
nen (1989), we evaluate the impact of local presence of p on the asympiotic null

distribution of RS,, LR, and WS;. Let p = §/~/N, 8 « 00, then it can be shown
that under Hy : A = 0, all three tests as

with noncentrality parameter
82T%, -
NTyp ()

ymptotically converge to a noncentral A3,

R, =

where T; = u{ W; W, + W/W), j =1, 2 (note that Ty = 7). Therefore, the tests will
reject the null of error autocorrelation even when A =
of the lag dependence. In a similar way we can express the asymptotic distributions
of RSy, LR, and WS,. Under p = 0 and local presence of error dependence, say,

A =T1/+/N, 1 < 00.Inthis case the distributions remain X
parameter

0 due to the local presence

but with a noncentrality

T3 g2
R, = Z_NU (76)

where D = (W XB)'M(W, X8) + Ty 0% Therefore, again we will have unwanted
“power” due lo the presence of local error dependence. In the noncentralily param-
elers R, and Ry, the crucial quantity is 7}5/v/N, which can be interpreled as the
covariance between the scores o, and d,. Note that if Tyy = 0, then both R, and
Ry vanish, and local presence of one kind of dependence cannot affect the test fm
the ather one. The trace term T = e[ W + W, W

2} which will only be zero when
the nonzero elements in each row/eolumn of the weights matrices Wy and W da net

overlap. In other words, this will be the case when the pattern of spatial dependence

in the lag term and in the error term pertaintoa completely different set of netghhbuors
for each observation, However, in the typical case where W,

extent) then the noncentrality parameter will not vanish.

For valid statistical inference there is a need to 1ake account of possible |
dependence while we test for error dependence,
two different approaches are suggested. One is 1o test joinly for Hy: A = p = 0n

(73) using the RS principle so that the test can be implemented with OLS residuals
(see Anselin 1988c). The resulting joint test statistic is given by

o

= W (or overlap to any

g
and vice versa. In Anselin (1988¢)

I SV, B .
RSy, = B! acmm.w.iéﬁwlw&ia {17)

SPATIAL DEPENDENCE IN LINEAR REGRESSION Mopels 275

here E = (Dfo*)Tes — (T12)%. Note that this joint test not only mnvwnmmuﬂs d
Msm d., but also on their interaction factor with a coefficient Tiz. m...u_Gnnm.mE: A: vOm—.m..m.
Tob i d quite easily using on
licated but can be computed qu :
B e o  resaion si ifi tly when the spatial weights matrces
residuals. Also the expression simplifies greatly : e
umed to be the same which is the case in most app .
“_ W&ﬁ”@“..@mmw: =Ty =Twe=T= (W' + W)W, and (77) reduces to
1= - 1

&2 (dy — d,)? (78)
T + 5-2(D — Ta?)

Nm»b e

i :.m_kuiwrasea_mm_.mmmom
1 A = p = 0, RS;, will converge to a cen ... . f
%:m.mw _.H“m c_wmawsmn Mm this two degrees of freedom, the statistic will qmm——_:- in _.MMW ““m
..Mﬂow nﬁ.::_um..ma_ to the proper one-directional 1est when enly oam am__ M ,s.oﬂ \)\E
: i i ider the presence of only A = .
1 ificati y To see this consider the p .
of misspecification is present. . e e RSy i
= 0. In this case the noncentrality paramete 1 ]
em._:rm“u:_m £2N'T. Due to the higher degrees of freedom of the joint 8”_ zmwﬂ_uﬂ”
ﬂwﬂ expect some loss of power (Dasgupta and Perlman 1974). >=n.= er v_.“opma_
c ith x_m is that since it is an omnibus test, il the null hypothesis _.m nmm ‘ A.:“
._.“__m not “Huwm:u—n 10 infer whether the misspecification is due to lag or error depe
maano._r second approach is lo carry out an RS test for one form cm. Emmmﬁwﬁ\.mmn_,mzoﬂ in
a model where the other form is unconstrained. For example, hr_m Mczm“ﬂw ”m mnm. =_M_m
i i f p, i.e., based on
1l hypothesis Hg : A = 0 in the presence 0 . ul
Mnow_”___umxmhws likelihood estimation of the spatial lag model. The resulting statistic

RS,;), is given as

2 )
Ty — (T ;umﬁ.a\wu

where the “hat” denotes quantities are evaluated at the Emu.:.:”_ ~._ran_~_ﬂcc“_= MM”m
mates of the parameters of the model Y = oWy + X8 +|m o _w_\_wwq . MJ cans

f nonlinear optimization. In (79) Ta14 m-m:@m for [ WeWh A™" + W, _u .mr "
M :o:~ pWi. Under Ho : & = 0, RS, will converge to a central x sa.u_ A”rm
degree of freedom. Similarly, an RS test can be mmg_owom for _.:”_ _ m %n“: ’ M=§m_-
presence of error dependence {Anselin et al. 1996). This test statis

ten as

RSy, =

(&' B BW T (80)

km_a_p = :.o — mabﬁ.nwu:_mt

where £ is a vector of residuals in the ML estimation of w__w. nuil E&m—_ .iw_.~ __«wvm_w.“
AR errors, y = XB + (I — AWp)~'§ with 6 = (B, h, 0%, and B = 1 — AWa.
tetms in the denominator of (80) are
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Hy = te W3 + w(BW, B~y (W B~ 4 (BMXP) (BW XB)
ol
(BXYBW\ X8
ol
t(WoB~'YBW\B~! + tr Wo Wy B~
0

L
Hg, =

— r.Y
and Var(f is the estimated variance-covariance matrix for the parameter vector &

It is also possible to obtain the W and LR statistics in the above three cases,

though these will involve the estimation of a spatial model with two parameters, rc-
: )

quiring considerably more complex nonlinear optimization. In contrast, RS, . and
RSp)a are theoretically valid statistics that have the potential to identify ___am vw_h.,m&._.w
source(s) of misspecification and can be derived from the resulls of the Emu:E_um:ca
o._. the log-likelihood functions (32) and (26). However, this is clearly more computa-
tionally demanding than tests based on OLS residuals, We now turn to an m_.._:mcmnz

w.rm_ Mnnoiv:mrnm carrying oul the tests without maximum likelihood estimation of
and p. E

F. Robust Test in the Presence of Local Misspecification

It is not possible to robustify tests in the presence of global misspecification (1.

A and p taking values far away from zero). However, using the general mc?.cm&m
of Wmnm.mnm Yoon (1993), Anselin et al. (1996) suggested tests which are rohust io
local misspecifications, as defined in the previous subsection. The idea is to m&:ﬁ
the one-directional score tesis RS, and RS » by taking account of the noncentiahty
parameters R, and Ry, given in (75) and (76), so that under the null the resulting
test statistics have central Rw distributions. :

The modified test for Hy : A = 0 in the local presence of p is given by [
_ TM» - ﬂ-m@.w@lfm.h_w

RS} =
A Typ — (N2)?52D &)
When W, = Wy = I, RS} becomes —
RSy = T D 4P ,
T(1-152D) (®2)

Comparing x.w.m in (81) and RS, in (59), it is nwmm_ that the adjusted test modifes i
RS, by correcting for the presence of p through d, and T3, where the latter quantity

Hmv”amnnﬂm the covariance between d, and dp. Under Hy: A = 0 (and p = 8/v'N) .
m.mw. converges to a central x? distribution; i.e., RS} has the same asymptotic distn-

ution as RS, v»m.om on the correct specification, This therefore produces asymptoti-
cally the correcl size in the presence of local lag dependence. Also as noted for RS*,
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we only need OLS estimation thus circumventing direct estimation of the nuisance
parameter p. However, there is a price to be paid for robustification and simplicity
in estimation. Consider the case when there is no lag dependence (p = 0), but only
spatial error dependence through A = 7/+/N. Under this setup, the noncentrality
parameters of RS and RS} are respectively t2Ty/N and 2 (To2 — u.muqubl_vxz ;
Since .nnﬁuuo.nbl_ /N = 0, the asymptotic power of RS} will be less than that of
RS, when there is no lag dependence. The above quantity can be regarded as a cost
of robustification. Once again, note its dependence on Tj. I is also instructive 1o
compare RS} with Anselin’s RSy, in (79). It is readly seen that RSy, does not
have the mean correction factor. RSy, uses the restricted ML estimator of p {under
A = 0) for which d, = 0. We may view RSy}, as the spatial version of Durbin’s k
statistic, which can also be derived from the general RS principle. Unlike Durbin’s
k, however, RSy}, cannot be computed using the OLS residuals.

In a similar way, the adjusted score test for Hp : p = 0, in the presence of local
misspecification involving spatial-dependent error process can be expressed as

_ [y — TuTp' &Y

RS* = = (83)
P 52D — (T12)2T,,"
Tnder W) = Wa = W, the above expression simplifies to
&w.m.- = ﬁ&lﬁ - NPHM Amwh.v
# §2D-T

All our earlier discussion of RS} also applies to RS7,.

Finally, consider the relationship among the five statistics RS,, RS,, RS},
RS, and RS,, given in (59), (71), (82), (84), and (78} respectively. RS, is not the
sum of RS, and RS,; i.e., there is no additivity of the score tests along the lines
discussed in Bera and Jarque (1982) and Bera and McKenzie (1987). From (77), it
is clear that additivity follows only if Tj2 = O or T = 0 for the case of W = Wa,
i.e.. when d; and d,, are asymptotically uncorrelated. In that case also RS} = RSx
and RS}, = RS, (see {81), (59), (83), and (71)). Hence, for T = 0, the conventional
one-directional tests RS, and RS, are asymptotically valid in the presence of local
misspecification. However, as noted earlier T > 0 and Ti2 > 0 when Wi and W
have some overlap in the neighbor structure. Under these circumstances {which are
the most common situation encountered in practice), the following very intriguing
resull 1s obtained: -

RSy, = RS} + RS, = RS: + RS, @85)

1¢., the two-directional test for A and p can be decomposed into the sum of the ad-
justed one-directional test of one type of alternative and the unadjusted form for the
other. By construction, under A = p = 0, RS} and RS, are asymptotically inde-
pendently distributed, which cannot be said about RS, and RS, By applying all the
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M”.MM“:EWQ and adjusted tests EE mx_..uo.m::m the result (85), it is possible to ident)fy
xact nature of dependence in practice (Anselin et al. 1996). Finally, we should
”_..mnu_d:.n....: :E».rmnm.:mm of the mo.:imxzw of the Wald and LR tests, it is :.:. possible
o derive their adjusted versions that would be valid under local misspectfication.

. .
QM::—W:Q: c— —UO—._— P m:& b-

G. Small Sample Properties

ugxm have nof.w..mm anumber of procedures for testing spatial dependence. For case of
implementation, we have emphasized Rao’s score test which in man a.._mmm nm n_c
noﬂ.zm::mn_ based on the OLS residuals. As we indicated, all these _nﬂwmmﬁ. vm .N.E 3
totic nature; i.e., their justification derives [rom the presence of <m.” .r:. .....m.”.”. _...”:.-
That is, however, not the case in most applications. The small mmaw_w mw_._hc._._._“_U m.n..
of the above tests both in terms of size and power is of major concern S._u_“mo:_::.“””.._r
There are only a few papers on the finite sample properties of tests ..5 s m_:._
gmcw:mo:nm. compared to the vast literature on those for testing for #1& nc_._.%“__ ,
MMM ﬂ”_:_n”mn_om. ﬂ_m_w Mam summarized in King (1987). Bartels and :o_..&.._.r (1977) .u.:_h.”__H
e behavior o oran’s . However, their focus was -
ferent residuals, and they found that OLS residuals give _._u__w ﬂ“w M,“ﬂ_ﬁm_mw.wh;_“___.
and Ketellapper (1979b) included the LR test (LR ) in their study rc. : uc_._.cw __“”“
poorly oo_z.—.u_.mm to /. Both Lhese studies were quile limited in ﬁmzz.m of a mwz.#z num-
ber n.za replications, few sample sizes, the use of only one type (irre =_,ma..<2 _:_
matrix and :u.a narrow range of altemmalive values for the E:mncn.a_mzwz ncm_,.n:.._wh___....
A first extensive set of Monte Carlo simulations was carried out by Anselin EE. Re
2@@5.. z_u.o oo._:vm..mm Moran’s  to RS, and RS, for different weights matnces : :M
error distributions. In terms of size, the small sample distributions of the mE.F._,.....“_ ]
nhzdm_um:mmm close to their theoretical counterparts, except for m_:,. m::.:_oﬁ.ﬂ“.m.
Mmzolm, mww..:_h “anm__m: Mm ma.:an_._ Moran’s m had power against both kinds of depen-
e ] lag and error mEoo:_.._.n_m:c:m. RS and RS, had highest pawer fo
respective designated alternatives, These tests were found to POSSESS SUDPEND
performance, but they fall short of providing a good strategy for identifyi ~ * e ._
nature of dependence. roete
. %.smm__n m%w F _o_.mx.ﬁ 995b) ?S_.:_m the most comprehensive set of simulation
0 Ea” hey carried out experiments for both regular (rook and queen) and
:o:_.mmcr.w. s.n._m_z matrices, single- and multidirectional alternatives, and ?_..ﬂ__:a -
ent error distributions, and included all the tesis discussed earlier mwcmc. the ﬂ_mw_._
E._MH _...wr:.wmmm. The results are 1oo extensive to discuss in delail, and here we ?.o.iw.
Mw ¥ mw owm mcﬁawé of the main findings. First, the eatlier results of Anselin and
y (1991) were confirmed on the power of / against any form of dependence and
the oplimality of the RS tests against the alternatives for which they were desi ._“nn_
Second, the specification of the spatial weights matrix impacted the _uma?_,_:..,._%oo of
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all tests, with a higher power obtained in the rook case. Third, as in Anselin and
Rey (1991), higher powers were achieved by lag tests relative to tests against error
dependence. This is important, since the consequences of ignoring lag dependence
are more serious. Fourth, the KR statistic did not perform well. For example, when
the errors were generated as lognormal, it significantly over rejected the true null hy-
pothesis in all configurations. There are two possible explanations. One is its higher
degrees of freedom. Another is that its power depends on the degree of autocorre-
lation in the explanatory variables which substitute for the weights matrix (compare
(55) and (56)). It is interesting to note that White's (1980) test for heteroskedasticity
which is very similar to KR encounters problems of the same type. Fifth, the most
striking result is that the adjusted tests RS} and RSp* performed remarkably well.
They had reasonable empirical sizes, remaining within the confidence interval in all
cases. In terms of power they performed exactly the way they were supposed to. For
instance, when the data were generated under p > 0, A = 0, although RS, had the
most power, the powers of RS}, was very close to that of RS,. That is, the price paid
for adjustments that were not needed wurned out to be small. The real superiority of
RS* was revealed when A > 0 and p = 0. It yielded low rejection frequencies even
‘ - . . a
for A = 0.9. The correction for error dependence in RS?, worked in the right direc-
tion when no lagged dependence was present for all configurations. When p > 0,
the power function of RS}, was seen to be almost unaffected by the values of A, even
for those far away from zero (global misspecification). For these alternatives RS,
also had good power, but could not point to the correct alternative when only one
kind of dependence is present. RS} also performed well though not as spectacularly
a8 RS} The adjusted tests thus seem more appropriate to test for lag dependence
in the presence of error correlation than for the reverse case. Again, this is impor-
tant since ignoring lag dependence has more severe consequences. Based on these
results Anselin and Florax (1995b) suggested a simple decision rule. When RS, is
mote significant than RS, and RS% is significant while RS} is not, a lag depen-
dence is the likely alternative. In a similar way presence of error dependence can
be identified through RS}. Finally, the finite-sample performance of tests against
higher-order dependence RSx1, (see (68)) and the joint test RS,, were satisfactory,
although these type of tests provide less insightful guidance for an effective specifi-
cation search. For joint and higher-order alternatives, these tests are optimal, and in
practice they should be used along with the unadjusted and adjusted one-directional

{asts,

H. Operational Implementation and Hlustration

As is the case for the estimation of spatial regression models, specification tests for
spatial dependence are notably absent from econometric software, with the exception
of SpaceStat (Anselin 1992b, 1995). Moreover, as pointed out, these tests cannot be

abtained in the usual N R? format, which lends itself to straightforward implemen-
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tation by means of auxiliary or augmented regressions. The closest to this situation
is the Kelejian-Robinson test (54), provided one has an easy way to select the pairs

of neighboring data points from the data. Typically, specification tests for spatial de-

pendence must be implemented explicitly either by wriling special-purpose software
or by taking advantage of macros in econometric and statistical software. As in max-
imum likelihood estimation, the size of the weighls matrix may be a constraint when
the number of observations is large. This is particularly the case for Moran’s I, where
several operations are involved in the computation of the expected value and vem-
ance (46) and (47). Examples of the implementation of this test for small data sets in
standard econometric software are given in Anselin and Hudak {1992) and Anseln
et al. {1993b), for Shazam, Rats and Limdep, among others.

Given their importance for applied work, we now briefly describe implemen-
tation strategies for the RS tests for spatial error and spatial lag autocorrelation. RS,
(59) and RS, (71). First, note that the squared expression in the numerator equals
N times a regression coefficient of an auxiliary regression of respectively We on e
{in (59)) and Wy on e (in (71)). Once the lags are constructed, these coefficients can
be obtained using standard software. The denominator in the expressions i shightly
more complex. The trace elements T = tr(WW)+ tr{ W' W) can easily be seen lo
equal, respectively, J_, 2 wiwiand 3, Mk_.ﬁsiu. When the spatial weights ma-
trix eonsists of simple row-standardized conliguity weights, each element w, for a
given i equals 1/k;, where k; is the number of neighbors for observation i Hence.
3 Y w)? = Y ,(1/k;), which can easily be computed. The othe: trace term
is Y Mg_ wiwy; = M”_.G\F.:MH. 8ij/k;], where 8; is a binary variable mdicating
whether or not w;; # 0. This requires only slighly more work to compute, simils
to the sorting needed to establish the neighbor pairs in the Kelejian-Robinson test
Most importantly, the trace operations can be carried out without having to store a
full matrix in memory, taking advantage of the sparse nature of spatial weights {for
technical details, see Anselin 1995). Of course, for symmetric weights, the two traces
are equal. In practice, this may occur when all observations are considered to have
an equal number of neighbors, as in Pace and Barry (1996). The other term in the
denominator of (71) is the residual sum of Squares in a regression with WXb (1.¢, the
spatial lags for the predicted values from the QLS regression) on X, which can he
obtained in a straightforward way.

To illustrate the various specification tests, we list the results of Moran's [, KR,
and the RS and LR tests for the spatial model of ¢rime in Table 2 {using a shghtly dil-
ferent notation, most of these results are reported in Table 2, p. 87 of Anselin et al
1996). All results are part of the standard SpaceStat regression diagnostic ontput.
They reflect a situation that is often encountered in practice:
Moran’s / and KR, as well as of both one-directional RS and
tial dependence is a problem, although without further investi
which form of spatial dependence is the proper alter
provided by the robust tests RS}

strong significance of
LR tests. Clearly, spa-
gation it is not obvious
native. Convincing evidenes is
and xm.u. While the former is not at all ssgnificant,
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Table2 Specification Tests against Spatial Dependence®

Estimates Test {(equation number) Value p-value
oLs Moran's f (z-value) (43} 2.95 Mwww
DLS Kelejian-Robinson {54) 11.55 o.ooo
OLS RS, (18) 9.44 c.cm
OLS RS, (39 572 c..um
0OLS RS} (82) 0.08 o.ocn
OLS RS, (71) Nww c.cm
e ve 9.97 0.002
Lag-ML LR, (12) 85 00
Lag-ML RS, (79) 4..00 O.com
Er-ML LR; (66) : el
Err-ML RS ;5 (80) 1.76 .

aSource: From Anselin (1988a, Chap. 12; 1992a, Chap. 26; 1995) and
Amselip et al. (1996).

i sston
the latter is significant at p slightly higher _rm.: 0.05. In o_rn__..m M“Mw”. :.““Hﬂm -
of spatial error autocorrelation that may be.given by an ::n— B
Moran’s I is spurious, since no evidence of such mcﬁa_ow_.nn AT m—
bustifying for spatial lag dependence. .Hzm,nmm. a m.._umcmr_ mm mo
alternative, consistent with the estimation results in Table 1.

V. CONCLUSIONS

. . . is, we
In our review of methods to deal with spatial dependence in Mmmnmmm_on .wm_w:._.w__w - “..o
i istinguishing characleristics of spatial econometrics
¢ emphasized the distinguishing ¢ . : °
"W”_B?mﬁmmam analysis. We highlighted the concept of —m_um:&min“.mr_m M.:“M w”._“w rwwm
. _ i ich allow for the formal speciiication o .
ed spatial lag operator which a . cific :
_”“n m_mwnn M much more general concept than its counterpart in trme. In the __om...“”.wo
:o».v& m.mx_:»_ regression models, the maximum likelihood m@@..dmnw mcmm s ” =
eo.. revalent and requiring nonlinear optimization o.n the likelihoo _“_:2_”._5.25__
m...ﬂm.:?_:m results from serial correlation in time series do not hold _u: n nm “H o
ﬂ;owmn:usu the explicil manipulation of matrices of di 3m:m.o=mam.~=w= mﬂ. vaa_ummom et
[ i i 1 | effects in regression madels
of observations. Diagnostics for spatia . b vl i
i hey do not boil down to simple sig
the powertul score principle, but t . i T
of ;,H.Mb&mns_zm in an auxiliary ..mmnmmm_m? as they Mo for :..”Momwﬂﬂ sesling and
i i n and space
The differences between the time doma e
challenging, in terms of theory as well as from an wE.._.rn._ _.n_.mvnnﬂim. ,_H“M “M.aa._m.
w_._v._anp of active research efforts to develop diagnostics for muluple sou
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mvmnhmnm:ou. to discriminate between heterogeneity and spatial dependence, and
to estimate models for complex forms of interaction in realistic data settings. Fx-
tensions to the space-time domain and to models for limited dependent variables
are particularly challenging. We hope that our review of the fundamentat n::nm?w
and hasic methods will stimulate others to both apply these techniques as well as to
pursue solutions for the remaining research questions.
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