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C H A P T E R  F O U R T E E N

Spatial Econometrics
Luc Anselin*

1 INTRODUCTION

Spatial econometrics is a subfield of econometrics that deals with spatial interac-
tion (spatial autocorrelation) and spatial structure (spatial heterogeneity) in regres-
sion models for cross-sectional and panel data (Paelinck and Klaassen, 1979;
Anselin, 1988a). Such a focus on location and spatial interaction has recently
gained a more central place not only in applied but also in theoretical econometrics.
In the past, models that explicitly incorporated “space” (or geography) were
primarily found in specialized fields such as regional science, urban, and real
estate economics and economic geography (e.g. recent reviews in Anselin, 1992a;
Anselin and Florax, 1995a; Anselin and Rey, 1997; Pace et al., 1998). However,
more recently, spatial econometric methods have increasingly been applied in
a wide range of empirical investigations in more traditional fields of economics
as well, including, among others, studies in demand analysis, international eco-
nomics, labor economics, public economics and local public finance, and agricul-
tural and environmental economics.1

This new attention to specifying, estimating, and testing for the presence of
spatial interaction in the mainstream of applied and theoretical econometrics can
be attributed to two major factors. One is a growing interest within theoretical
economics in models that move towards an explicit accounting for the interaction
of an economic agent with other heterogeneous agents in the system. These
new theoretical frameworks of “interacting agents” model strategic interaction,
social norms, neighborhood effects, copy-catting, and other peer group effects,
and raise interesting questions about how the individual interactions can lead
to emergent collective behavior and aggregate patterns. Models used to estimate
such phenomena require the specification of how the magnitude of a variable of
interest (say crime) at a given location (say a census tract) is determined by the
values of the same variable at other locations in the system (such as neighbor-
ing census tracts). If such a dependence exists, it is referred to as spatial auto-
correlation. A second driver behind the increased interest in spatial econometric
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techniques is the need to handle spatial data. This has been stimulated by the
explosive diffusion of geographic information systems (GIS) and the associated
availability of geocoded data (i.e. data sets that contain the location of the obser-
vational units). There is a growing recognition that standard econometric tech-
niques often fail in the presence of spatial autocorrelation, which is commonplace
in geographic (cross-sectional) data sets.2

Historically, spatial econometrics originated as an identifiable field in Europe
in the early 1970s because of the need to deal with sub-country data in regional
econometric models (e.g. Paelinck and Klaassen, 1979). In general terms, spatial
econometrics can be characterized as the set of techniques to deal with meth-
odological concerns that follow from the explicit consideration of spatial effects,
specifically spatial autocorrelation and spatial heterogeneity. This yields four
broad areas of interest: (i) the formal specification of spatial effects in econometric
models; (ii) the estimation of models that incorporate spatial effects; (iii) speci-
fication tests and diagnostics for the presence of spatial effects; and (iv) spatial
prediction (interpolation). In this brief review chapter, I will focus on the first
three concerns, since they fall within the central preoccupation of econometric
methodology.

The remainder of the chapter is organized as follows. In Section 2, I out-
line some foundations and definitions. In Section 3, the specification of spatial
regression models is treated, including the incorporation of spatial dependence
in panel data models and models with qualitative variables. Section 4 focuses
on estimation and Section 5 on specification testing. In Section 6, some practical
implementation and software issues are addressed. Concluding remarks are
formulated in Section 7.

2 FOUNDATIONS

2.1 Spatial autocorrelation

In a regression context, spatial effects pertain to two categories of specifications.
One deals with spatial dependence, or its weaker expression, spatial autocorrelation,
and the other with spatial heterogeneity.3 The latter is simply structural instabil-
ity, either in the form of non-constant error variances in a regression model
(heteroskedasticity) or in the form of variable regression coeffcients. Most of the
methodological issues related to spatial heterogeneity can be tackled by means of
the standard econometric toolbox.4 Therefore, given the space constraints for this
chapter, the main focus of attention in the remainder will be on spatial dependence.

The formal framework used for the statistical analysis of spatial autocorrelation
is a so-called spatial stochastic process (also often referred to as a spatial random
field), or a collection of random variables y, indexed by location i,

{yi, i � D}, (14.1)

where the index set D is either a continuous surface or a finite set of discrete
locations. (See Cressie (1993), for technical details.) Since each random variable is
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“tagged” by a location, spatial autocorrelation can be formally expressed by the
moment condition,

cov[yi, yj] = E[yiyj] − E[yi] · E[yj] ≠ 0, for i ≠ j (14.2)

where i, j refer to individual observations (locations) and yi (yj) is the value of a
random variable of interest at that location. This covariance becomes meaning-
ful from a spatial perspective when the particular configuration of nonzero i, j
pairs has an interpretation in terms of spatial structure, spatial interaction or the
spatial arrangement of the observations. For example, this would be the case
when one is interested in modeling the extent to which technological innovations
in a county spill over into neighboring counties.

The spatial covariance can be modeled in three basic ways. First, one can
specify a particular functional form for a spatial stochastic process generating
the random variable in (14.1), from which the covariance structure would follow.
Second, one can model the covariance structure directly, typically as a func-
tion of a small number of parameters (with any given covariance structure cor-
responding to a class of spatial stochastic processes). Third, one can leave the
covariance unspecified and estimate it nonparametrically.5 I will review each of
these approaches in turn.

SPATIAL STOCHASTIC PROCESS MODELS
The most often used approach to formally express spatial autocorrelation is
through the specification of a functional form for the spatial stochastic process
(14.1) that relates the value of a random variable at a given location to its value at
other locations. The covariance structure then follows from the nature of the
process. In parallel to time series analysis, spatial stochastic processes are cate-
gorized as spatial autoregressive (SAR) and spatial moving average (SMA)
processes, although there are several important differences between the cross-
sectional and time series contexts.6

For example, for an N × 1 vector of random variables, y, observed across space,
and an N × 1 vector of iid random errors ε, a simultaneous spatial autoregressive
(SAR) process is defined as

(y − µi) = ρW(y − µi) + ε , or (y − µi) = (I − ρW)−1ε, (14.3)

where µ is the (constant) mean of yi, i is an N × 1 vector of ones, and ρ is the
spatial autoregressive parameter.

Before considering the structure of this process more closely, note the presence
of the N × N matrix W, which is referred to as a spatial weights matrix. For each
location in the system, it specifies which of the other locations in the system
affect the value at that location. This is necessary, since in contrast to the un-
ambiguous notion of a “shift” along the time axis (such as yt−1 in an autoregressive
model), there is no corresponding concept in the spatial domain, especially when
observations are located irregularly in space.7 Instead of the notion of shift, a
spatial lag operator is used, which is a weighted average of random variables at
“neighboring” locations.8
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The spatial weights crucially depend on the definition of a neighborhood set
for each observation. This is obtained by selecting for each location i (as the row)
the neighbors as the columns corresponding to nonzero elements wij in a fixed
(nonstochastic) and positive N × N spatial weights matrix W.9 A spatial lag for y
at i then follows as

[Wy]i = 
    

∑ ⋅
=j N

ij jw y
1, . . . , 

, (14.4)

or, in matrix form, as

Wy. (14.5)

Since for each i the matrix elements wij are only nonzero for those j � Si (where
Si is the neighborhood set), only the matching yj are included in the lag. For ease
of interpretation, the elements of the spatial weights matrix are typically row-
standardized, such that for each i, Σjwij = 1. Consequently, the spatial lag may be
interpreted as a weighted average (with the wij being the weights) of the neighbors,
or as a spatial smoother.

It is important to note that the elements of the weights matrix are nonstochastic
and exogenous to the model. Typically, they are based on the geographic arrange-
ment of the observations, or contiguity. Weights are nonzero when two locations
share a common boundary, or are within a given distance of each other. How-
ever, this notion is perfectly general and alternative specifications of the spatial
weights (such as economic distance) can be considered as well (Anselin, 1980,
ch. 8; Case, Rosen, and Hines, 1993; Pinkse and Slade, 1998).

The constraints imposed by the weights structure (the zeros in each row),
together with the specific form of the spatial process (autoregressive or moving
average) determine the variance–covariance matrix for y as a function of two
parameters, the variance σ2 and the spatial coefficient, ρ. For the SAR structure
in (14.3), this yields (since E[y − µi] = 0)

cov[(y − µi), (y − µi)] = E[(y − µi)(y − µi)′] = σ2[(I − ρW)′(I − ρW)]−1.
(14.6)

This is a full matrix, which implies that shocks at any location affect all other
locations, through a so-called spatial multiplier effect (or, global interaction).10

A major distinction between processes in space compared to the time domain
is that even with iid error terms εi, the diagonal elements in (14.6) are not con-
stant.11 Furthermore, the heteroskedasticity depends on the neighborhood struc-
ture embedded in the spatial weights matrix W. Consequently, the process in y
is not covariance-stationary. Stationarity is only obtained in very rare cases, for
example on regular lattice structures when each observation has an identical
weights structure, but this is of limited practical use. This lack of stationarity has
important implications for the types of central limit theorems (CLTs) and laws of
large numbers (LLNs) that need to be invoked to obtain asymptotic properties
for estimators and specification test, a point that has not always been recognized
in the literature.
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DIRECT REPRESENTATION
A second commonly used approach to the formal specification of spatial
autocorrelation is to express the elements of the variance–covariance matrix in a
parsimonious fashion as a “direct” function of a small number of parameters and
one or more exogenous variables. Typically, this involves an inverse function of
some distance metric, for example,

cov[εi, εj] = σ2f (dij, ϕ), (14.7)

where εi and εj are regression disturbance terms, σ2 is the error variance, dij is the
distance separating observations (locations) i and j, and f is a distance decay
function such that     

∂
∂

f
d   < 0  and | f(dij, ϕ)| ≤ 1, with ϕ � Φ as a p × 1 vector of

parameters on an open subset Φ of Rp. This form is closely related to the vario-
gram model used in geostatistics, although with stricter assumptions regarding
stationarity and isotropy. Using (14.7) for individual elements, the full error
covariance matrix follows as

E[εε′] = σ2Ω(dij, ϕ), (14.8)

where, because of the scaling factor σ2, the matrix Ω(dij, ϕ) must be a positive
definite spatial correlation matrix, with ωii = 1 and |ωij| ≤ 1, ∀ i, j.12 Note that, in
contrast to the variance for the spatial autoregressive model, the direct repres-
entation model does not induce heteroskedasticity.

In spatial econometrics, models of this type have been used primarily in the
analysis of urban housing markets, e.g. in Dubin (1988, 1992), and Basu and
Thibodeau (1998). While this specification has a certain intuition, in the sense that
it incorporates an explicit notion of spatial clustering as a function of the distance
separating two observations (i.e. positive spatial correlation), it is also fraught
with a number of estimation and identification problems (Anselin, 2000a).

NONPARAMETRIC APPROACHES
A nonparametric approach to estimating the spatial covariance matrix does not
require an explicit spatial process or functional form for the distance decay. This
is common in the case of panel data, when the time dimension is (considerably)
greater than the cross-sectional dimension (T >> N) and the “spatial” covariance
is estimated from the sample covariance for the residuals of each set of location
pairs (e.g. in applications of Zellner’s SUR estimator; see Chapter 5 by Fiebig in
this volume).

Applications of this principle to spatial autocorrelation are variants of the well
known Newey–West (1987) heteroskedasticity and autocorrelation consistent
covariance matrix and have been used in the context of generalized methods of
moments (GMM) estimators of spatial regression models (see Section 4.3). Conley
(1996) suggested a covariance estimator based on a sequence of weighted aver-
ages of sample autocovariances computed for subsets of observation pairs that
fall within a given distance band (or spatial window). Although not presented as
such, this has a striking similarity to the nonparametric estimation of a semi-
variogram in geostatistics (see, e.g. Cressie, 1993, pp. 69–70), but the assumptions
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of stationarity and isotropy required in the GMM approach are stricter than
those needed in variogram estimation. In a panel data setting, Driscoll and Kraay
(1998) use a similar idea, but avoid having to estimate the spatial covariances by
distance bands. This is accomplished by using only the cross-sectional averages
(for each time period) of the moment conditions, and by relying on asymptotics
in the time dimension to yield an estimator for the spatial covariance structure.

2.2 Aymptotics in spatial stochastic processes

As in time series analysis, the properties of estimators and tests for spatial series
are derived from the asymptotics for stochastic processes. However, these prop-
erties are not simply extensions to two dimensions of the time series results. A
number of complicating factors are present and to date some formal results for
the spatial dependence case are still lacking. While an extensive treatment of this
topic is beyond the scope of the current chapter, three general comments are in
order. First, the intuition behind the asymptotics is fairly straightforward in that
regularity conditions are needed to limit the extent of spatial dependence (memory)
and heterogeneity of the spatial series in order to obtain the proper (uniform)
laws of large numbers and central limit theorems to establish consistency and
asymptotic normality. In this context, it is important to keep in mind that both
SAR and SMA processes yield heteroskedastic variances, so that the application
of results for dependent stationary series are not applicable.13 In addition to the
usual moment conditions that are similar in spirit to those for heterogeneous
dependent processes in time (e.g. Pötscher and Prucha, 1997), specific spatial
conditions will translate into constraints on the spatial weights and on the para-
meter space for the spatial coefficients (for some specific examples, see, e.g. Anselin
and Kelejian, 1997; Kelejian and Prucha, 1999b; Pinkse and Slade, 1998; Pinkse,
2000). In practice, these conditions are likely to be satisfied by most spatial weights
that are based on simple contiguity, but this is not necessarily the case for general
weights, such as those based on economic distance.

A second distinguishing characteristic of asymptotics in space is that the limit
may be approached in two different ways, referred to as increasing domain
asymptotics and infill asymptotics.14 The former consists of a sampling structure
where new “observations” are added at the edges (boundary points), similar to
the underlying asymptotics in time series analysis. Infill asymptotics are appro-
priate when the spatial domain is bounded, and new observations are added in
between existing ones, generating a increasingly denser surface. Many results for
increasing domain asymptotics are not directly applicable to infill asymptotics
(Lahiri, 1996). In most applications of spatial econometrics, the implied structure
is that of an increasing domain.

Finally, for spatial processes that contain spatial weights, the asymptotics re-
quire the use of CLT and LLN for triangular arrays (Davidson, 1994, chs. 19, 24).
This is caused by the fact that for the boundary elements the “sample” weights
matrix changes as new data points are added (i.e. the new data points change the
connectedness structure for existing data points).15 Again, this is an additional
degree of complexity, which is not found in time series models.
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3 SPATIAL REGRESSION MODELS

3.1 Spatial lag and spatial error models

In the standard linear regression model, spatial dependence can be incorporated
in two distinct ways: as an additional regressor in the form of a spatially lagged
dependent variable (Wy), or in the error structure (E[εiεj] ≠ 0). The former is
referred to as a spatial lag model and is appropriate when the focus of interest is
the assessment of the existence and strength of spatial interaction. This is inter-
preted as substantive spatial dependence in the sense of being directly related to
a spatial model (e.g. a model that incorporates spatial interaction, yardstick com-
petition, etc.). Spatial dependence in the regression disturbance term, or a spatial
error model is referred to as nuisance dependence. This is appropriate when the
concern is with correcting for the potentially biasing influence of the spatial
autocorrelation, due to the use of spatial data (irrespective of whether the model
of interest is spatial or not).

Formally, a spatial lag model, or a mixed regressive, spatial autoregressive
model is expressed as

y = ρWy + Xβ + ε, (14.9)

where ρ is a spatial autoregressive coefficient, ε is a vector of error terms, and the
other notation is as before.16 Unlike what holds for the time series counterpart of
this model, the spatial lag term Wy is correlated with the disturbances, even
when the latter are iid. This can be seen from the reduced form of (14.9),

y = (I − ρW)−1Xβ + (I − ρW)−1ε , (14.10)

in which each inverse can be expanded into an infinite series, including both the
explanatory variables and the error terms at all locations (the spatial multiplier).
Consequently, the spatial lag term must be treated as an endogenous variable
and proper estimation methods must account for this endogeneity (OLS will be
biased and inconsistent due to the simultaneity bias).

A spatial error model is a special case of a regression with a non-spherical
error term, in which the off-diagonal elements of the covariance matrix express
the structure of spatial dependence. Consequently, OLS remains unbiased, but
it is no longer efficient and the classical estimators for standard errors will be
biased. The spatial structure can be specified in a number of different ways, and
(except for the non-parametric approaches) results in a error variance–covariance
matrix of the form

E[εε′] = Ω(θ), (14.11)

where θ is a vector of parameters, such as the coefficients in an SAR error
process.17
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3.2 Spatial dependence in panel data models

When observations are available across space as well as over time, the additional
dimension allows the estimation of the full covariance of one type of associa-
tion, using the other dimension to provide the asymptotics (e.g. in SUR models
with N << T). However, as in the pure cross-sectional case, there is insufficient
information in the NT observations to estimate the complete (NT )2 covariance
matrix cov[yit, yjs] ≠ 0, (with i ≠ j and t ≠ s) without imposing some structure.
For small N and large T, the asymptotics in the time domain can be exploited to
obtain a nonparametric estimate of cross-sectional dependence, while time de-
pendence must be parameterized. Similarly, for large N and small T, the asymp-
totics in the spatial domain can be exploited to yield a nonparametric estimate
of serial (time) dependence, while spatial dependence must be parameterized.
As in the pure cross-sectional case, the latter requires the use of a spatial weights
matrix. In each of these situations, asymptotics are only needed in one of the
dimensions while the other can be treated as fixed.

When both spatial as well as serial dependence are parameterized, a range
of specifications can be considered, allowing different combinations of the two.
For ease of exposition, assume that the observations are stacked by time period,
i.e. they can be considered as T time slices of N cross-sectional units. Restricting
attention to “lag” dependence, and with f(z) as a generic designation for the
regressors (which may be lagged in time and/or space), four types of models can
be distinguished.

1. pure space-recursive, in which the dependence pertains to neighboring loca-
tions in a different period, or,

yit = γ[Wyt−1]i + f(z) + εit, (14.12)

where, using the same notational convention as before, [Wyt−1]i is the ith
element of the spatial lag vector applied to the observations on the depend-
ent variable in the previous time period (using an N × N spatial weights
matrix for the cross-sectional units).

2. time–space recursive, in which the dependence relates to the same location as
well as the neighboring locations in another period, or,

yit = λyit−1 + γ[Wyt−1]i + f(z) + εit (14.13)

3. time–space simultaneous, with both a time-wise and a spatially lagged depen-
dent variable, or,

yit = λyit−1 + ρ[Wyt]i + f(z) + εit (14.14)

where [Wyt]i is the ith element of the spatial lag vector in the same time
period.
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4. time–space dynamic, with all forms of dependence, or,

yit = λyit−1 + ρ[Wyt]i + γ[Wyt−1]i + f(z) + εit. (14.15)

In order to estimate the parameters of the time–space simultaneous model,
asymptotics are needed in the cross-sectional dimension, while for the time–
space dynamic model, asymptotics are needed in both dimensions. For the other
models, the type of asymptotics required are determined by the dependence
structure in the error terms. For example, the pure space-recursive model with
iid errors satisfies the assumptions of the classical linear model and can be esti-
mated by means of OLS.

Spatial lag and spatial error dependence can be introduced into the cross-
sectional dimension of traditional panel data models in a straightforward way.
For example, in a spatial SUR model, both autoregressive as well as regression
parameters are allowed to vary by time period, in combination with a nonpara-
metric serial covariance. The spatial lag formulation of such a model would be
(in the same notation as before):

yit = ρt[Wyt] i + x ′itβt + εit (14.16)

with var[εit] = σ t
2 and E[ε itεis] = σts.18

An important issue to consider when incorporating spatial dependence in panel
data models is the extent to which fixed effects may be allowed. Since the estima-
tion of the spatial process models requires asymptotics in the cross-sectional
domain (N → ∞), fixed effects (i.e. a dummy variable for each location) would
suffer from the incidental parameter problem and no consistent estimator exists.
Hence, fixed cross-sectional effects are incompatible with spatial processes and
instead a random effects specification must be considered.

3.3 Spatial dependence in models for
qualitative data

Empirical analysis of interacting agents requires models that incorporate spatial
dependence for discrete dependent variables, such as counts or binary outcomes
(Brock and Durlauf, 1995). This turns out to be quite complex and continues to be
an active area of research. While an extensive discussion of the technical aspects
associated with spatial discrete choice models is beyond the scope of the current
chapter, the salient issues may be illustrated with a spatial version of the probit
model, which has recently received considerable attention.19

The point of departure is the familiar expression for a linear model in a latent
(unobserved) dependent variable yi*

yi* = xi′β + εi, (14.17)

where εi is a random variable for which a given distribution is assumed (e.g. the
normal for the probit model). The realization of yi* is observed in the form of
discrete events, yi = 1 for yi* ≥ 0, and yi = 0 for yi* < 0. The discrete events are
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related to the underlying probability model through the error term, for example,
yi* ≥ 0 implies −xi′β < εi, and, therefore,

E[yi] = P[yi = 1] = Φ[xi′β], (14.18)

where Φ is the cumulative distribution function for the standard normal.
Spatial autocorrelation can be introduced into this model in the form of a

spatial autoregressive process for the error term εi in (14.17), or

ε i = λ
  
∑

j
ij jw ε  + ui, (14.19)

where λ is an autoregressive parameter, the wij are the elements in the ith row
of a spatial weights matrix, and ui may be assumed to be iid standard normal.
As a consequence of the spatial multiplier in the autoregressive specification,
the random error at each location now becomes a function of the random errors
at all other locations as well. Its distribution is multivariate normal with N × N
variance–covariance matrix

E[εε′] = [(I − λW)′(I − λW)]−1. (14.20)

As pointed out above, besides being nondiagonal, (14.20) is also heteroskedastic.
Consequently, the usual inequality conditions that are at the basis of (14.18) no
longer hold, since each location has a different variance. Moreover, P[−x′iβ < εi]
can no longer be derived from the univariate standard normal distribution, but
rather must be expressed explicitly as the marginal distribution of a N-dimen-
sional multivariate normal vector, whose variance–covariance matrix contains
off-diagonal elements that are a function of the autoregressive parameter λ. This
is non-standard and typically not analytically tractable, which greatly compli-
cates estimation and specification testing. Similar issues are faced in the spatial
lag model for a latent variable.20

4 ESTIMATION

4.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation of spatial lag and spatial error regression
models was first outlined by Ord (1975).21 The point of departure is an assump-
tion of normality for the error terms. The joint likelihood then follows from the
multivariate normal distribution for y. Unlike what holds for the classic regres-
sion model, the joint loglikelihood for a spatial regression does not equal the sum
of the loglikelihoods associated with the individual observations. This is due to
the two-directional nature of the spatial dependence, which results in a Jacobian
term that is the determinant of a full N × N matrix, e.g. |I − ρW|.

For the SAR error model, the loglikelihood is based on the multivariate normal
case, for example, as used in the general treatment of Magnus (1978). Since
ε ~ MVN(0, Σ), it follows that, with ε = y − Xβ and Σ = σ2[(I − λW)′(I − λW)]−1,
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lnL = −(N/2) ln (2π) − (N/2) ln σ2 + ln|I − λW|

−(1/2σ2)(y − Xβ)′(I − λW)′(I − λW)(y − Xβ). (14.21)

Closer inspection of the last term in (14.21) reveals that, conditional upon λ (the
spatial autoregressive parameter), a maximization of the loglikelihood is equiva-
lent to the minimization of the sum of squared residuals in a regression of a
spatially filtered dependent variable y* = y − λWy on a set of spatially filtered
explanatory variables X* = X − λWX. The first order conditions for SML indeed
yield the familiar generalized least squares estimator:

SML = [(X − λWX)′(X − λWX)]−1(X − λWX)′(y − λWy) (14.22)

and, similarly, the ML estimator for σ2 follows as:

å2
ML = (e − λWe)′(e − λWe)/N (14.23)

with e = y − XSML. However, unlike the time series case, a consistent estimator for
λ cannot be obtained from the OLS residuals and therefore the standard two-step
FGLS approach does not apply.22 Instead, the estimator for λ must be obtained
from an explicit maximization of a concentrated likelihood function (for details,
see Anselin, 1988a, ch. 6, and Anselin and Bera, 1998).

The loglikelihood for the spatial lag model is obtained using the same general
principles (see Anselin, 1988, ch. 6 for details) and takes the form

lnL = −(N/2) ln (2π) − (N/2) ln σ2 + ln|I − ρW|

−(1/2σ2)(y − ρWy − Xβ)′(y − ρWy − Xβ). (14.24)

The minimization of the last term in (14.24) corresponds to OLS, but since this
ignores the log Jacobian ln|I − ρW|, OLS is not a consistent estimator in this
model. As in the spatial error model, there is no satisfactory two-step procedure
and estimators for the parameters must be obtained from an explicit maximiza-
tion of the likelihood. This is greatly simplified since both SML and å2

ML can be
obtained conditional upon ρ from the first order conditions:

SML = (X′X)−1X′(y − ρWy), (14.25)

or, with S0 = (X′X)−1X′y, e0 = y − XS0, SL = (X′X)−1X′Wy, eL = y − XSL,

SML = S0 − ρSL (14.26)

and

å2
ML = (e0 − ρeL)′(e0 − ρeL)/N. (14.27)
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This yields a concentrated loglikelihood in a single parameter, which is straight-
forward to optimize by means of direct search techniques (see Anselin (1980,
1988a) for derivations and details).

Both spatial lag and spatial error models are special cases of a more general
specification that may include forms of heteroskedasticity as well. This also
provides the basis for ML estimation of spatial SUR models with spatial lag
or spatial error terms (Anselin, 1980, ch. 10). Similarly, ML estimation of error
components models with spatial lag or spatial error terms can be implemented
as well. Spatial models with discrete dependent variables are typically not
estimated by means of ML, given the prohibitive nature of evaluating multiple
integrals to determine the relevant marginal distributions.23

Finally, it is important to note that models with spatial dependence do not fit
the classical framework (e.g. as outlined in Rao, 1973) under which the optimal
properties (consistency, asymptotic efficiency, asymptotic normality) of ML
estimators are established. This implies that these properties do not necessarily
hold and that careful consideration must be given to the explicit formulation
of regularity conditions. In general terms, aside from the usual restrictions on
the variance and higher moments of the model variables, these conditions boil
down to constraints on the range of dependence embodied in the spatial weights
matrix.24 In addition, to avoid singularity or explosive processes, the parameter
space for the coefficient in a spatial process model is restricted to an interval other
than the familiar −1, +1. For example, for an SAR process, the parameter space
is 1/ωmin < ρ < 1/ωmax, where ωmin and ωmax are the smallest (on the real line)
and largest eigenvalues of the spatial weights matrix W. For row-standardized
weights, ωmax = 1, but ωmin > − 1, such that the lower bound on the parameter
space is less than −1 (Anselin, 1980). This must be taken into account in practical
implementations of estimation routines.

4.2 Spatial two-stage least squares

The endogeneity of the spatially lagged dependent variable can also be addressed
by means of an instrumental variables or two-stage least squares (2SLS) approach
(Anselin, 1980, 1988a, 1990; Kelejian and Robinson, 1993; Kelejian and Prucha,
1998). As demonstrated in Kelejian and Robinson (1993), the choice of an instru-
ment for Wy follows from the conditional expectation in the reduced form (14.10),

E[y|X] = (I − ρW)−1Xβ = Xβ + ρWXβ + ρ2W2Xβ + . . . . (14.28)

Apart from the exogenous variables X (which are always instruments), this in-
cludes their spatial lags as well, suggesting WX as a set of instruments.

Under a set of reasonable assumptions that are easily satisfied when the spatial
weights are based on contiguity, the spatial two-stage least squares estimator
achieves the consistency and asymptotic normality properties of the standard
2SLS (see, e.g. the theorems spelled out in Schmidt, 1976).25 A straightforward
extension is the application of 3SLS to the spatial SUR model with a spatial lag
(Anselin, 1988a, ch. 10).
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4.3 Method of moments estimators

Recently, a number of approaches have been outlined to estimate the coefficients
in a spatial error model as an application of general principles underlying the
method of moments. Kelejian and Prucha (1999a) develop a set of moment condi-
tions that yield estimation equations for the parameter of an SAR error model.
Specifically, assuming an iid error vector u, the following three conditions read-
ily follow

E[u′u/N] = σ2

E[u′W′Wu/N] = σ2(1/N)tr(W′W) (14.29)

E[u′Wu/N] = 0

where tr is the matrix trace operator. Replacing u by e − λWe (with e as the
vector of OLS residuals) in (14.29) yields a system of three equations in the
parameters λ, λ2, and σ2. Kelejian and Prucha (1999a) suggest the use of nonlinear
least squares to obtain a consistent generalized moment estimator for λ from this
system, which can then be used to obtain consistent estimators for the β in an
FGLS approach. Since the λ is considered as a nuisance parameter, its signifi-
cance (as a test for spatial autocorrelation) cannot be assessed, but its role is to
provide a consistent estimator for the regression coefficients.26

A different approach is taken in the application of Hansen’s (1982) generalized
method of moments estimator (GMM) to spatial error autocorrelation in Conley
(1996). This estimator is the standard minimizer of a quadratic form in the sam-
ple moment conditions, where the covariance matrix is obtained in nonparametric
form as an application of the ideas of Newey and West (1987). Specifically, the
spatial covariances are estimated from weighted averages of sample covariances
for pairs of observations that are within a given distance band from each other.
Note that this approach requires covariance stationarity, which is only satisfied
for a restricted set of spatial processes (e.g. it does not apply to SAR error
models).

Pinkse and Slade (1998) use a set of moment conditions to estimate a probit
model with SAR errors. However, they focus on the induced heteroskedasticity
of the process and do not explicitly deal with the spatial covariance structure.27

The relative efficiency of the new methods of moments approaches relative to
the more traditional maximum likelihood techniques remains an area of active
investigation.

4.4 Other estimation methods

A number of other approaches have been suggested to deal with the estimation
of spatial regression models. An early technique is the so-called coding method,
originally examined in Besag and Moran (1975).28 This approach consists of
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selecting a subsample from the data such that the relevant neighbors are removed
(a non-contiguous subsample). This in effect eliminates the simultaneity bias in
the spatial lag model, but at the cost of converting the model to a conditional one
and with a considerable reduction of the sample size (down to 20 percent of the
original sample for irregular lattice data). The advantage of this approach is that
standard methods may be applied (e.g. for discrete choice models). However, it
is not an efficient procedure and considerable arbitrariness is involved in the
selection of the coding scheme.

Another increasingly common approach consists of the application of com-
putational estimators to spatial models. A recent example is the recursive im-
portance sampling (RIS) estimator (Vijverberg, 1997) applied to the spatial probit
model in Beron and Vijverberg (2000).

A considerable literature also exists on Bayesian estimation of spatial models,
but a detailed treatment of this is beyond the current scope.

5 SPECIFICATION TESTS

5.1 Moran’s I

The most commonly used specification test for spatial autocorrelation is derived
from a statistic developed by Moran (1948) as the two-dimensional analog of a
test for univariate time series correlation (see also Cliff and Ord, 1973). In matrix
notation, Moran’s I statistic is

I = [N/S0)(e′We/e′e), (14.30)

with e as a vector of OLS residuals and S0 = ΣiΣjwij, a standardization factor
that corresponds to the sum of the weights for the nonzero cross-products. The
statistic shows a striking similarity to the familiar Durbin–Watson test.29

Moran’s I test has been shown to be locally best invariant (King, 1981) and
consistently outperforms other tests in terms of power in simulation experiments
(for a recent review, see Anselin and Florax, 1995b). Its application has been
extended to residuals in 2SLS regression in Anselin and Kelejian (1997), and to
generalized residuals in probit models in Pinkse (2000). General formal condi-
tions and proofs for the asymptotic normality of Moran’s I in a wide range of
regression models are given in Pinkse (1998) and Kelejian and Prucha (1999b).
The consideration of Moran’s I in conjunction with spatial heteroskedasticity is
covered in Kelejian and Robinson (1998, 2000).

5.2 ML based tests

When spatial regression models are estimated by maximum likelihood, inference
on the spatial autoregressive coefficients may be based on a Wald or asymptotic
t-test (from the asymptotic variance matrix) or on a likelihood ratio test (see
Anselin, 1988a, ch. 6; Anselin and Bera, 1998). Both approaches require that the
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alternative model (i.e. the spatial model) be estimated. In contrast, a series of test
statistics based on the Lagrange Multiplier (LM) or Rao Score (RS) principle only
require estimation of the model under the null. The LM/RS tests also allow for
the distinction between a spatial error and a spatial lag alternative.30

An LM/RS test against a spatial error alternative was originally suggested by
Burridge (1980) and takes the form

LMerr = [e′We/(e′e/N)]2/[tr(W2 + W′W)]. (14.31)

This statistic has an asymptotic χ2(1) distribution and, apart from a scaling factor,
corresponds to the square of Moran’s I.31 From several simulation experiments
(Anselin and Rey, 1991; Anselin and Florax, 1995b) it follows that Moran’s I has
slightly better power than the LMerr test in small samples, but the performance
of both tests becomes indistinguishable in medium and large size samples. The
LM/RS test against a spatial lag alternative was outlined in Anselin (1988c) and
takes the form

LMlag = [e′Wy/(e′e/N)]2/D, (14.32)

where D = [(WXβ)′(I − X(X′X)−1X′)(WXβ)/σ2] + tr(W2 + W′W). This statistic also
has an asymptotic χ2(1) distribution.

Since both tests have power against the other alternative, it is important to take
account of possible lag dependence when testing for error dependence and vice
versa. This can be implemented by means of a joint test (Anselin, 1988c) or by
constructing tests that are robust to the presence of local misspecification of the
other form (Anselin et al., 1996).

The LM/RS principle can also be extended to more complex spatial alterna-
tives, such as higher order processes, spatial error components and direct rep-
resentation models (Anselin, 2000), to panel data settings (Anselin, 1988b), and
to probit models (Pinkse, 1998, 2000; Pinkse and Slade, 1998). A common charac-
teristic of the LM/RS tests against spatial alternatives is that they do not lend
themselves readily to a formulation as an NR2 expression based on an auxiliary
regression. However, as recently shown in Baltagi and Li (2000a), it is possible
to obtain tests for spatial lag and spatial error dependence in a linear regression
model by means of Davidson and MacKinnon’s (1988) double length artificial
regression approach.

6 IMPLEMENTATION ISSUES

To date, spatial econometric methods are not found in the main commercial
econometric and statistical software packages, although macro and scripting
facilities may be used to implement some estimators (Anselin and Hudak, 1992).
The only comprehensive software to handle both estimation and specification
testing of spatial regression models is the special-purpose SpaceStat package
(Anselin, 1992b, 1998). A narrower set of techniques, such as maximum likelihood
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estimation of spatial models is included in the Matlab routines of Pace and Barry
(1998), and estimation of spatial error models is part of the S+Spatialstats add-on
to S-Plus (MathSoft, 1996).32

In contrast to maximum likelihood estimation, method of moments and 2SLS
can easily be implemented with standard software, provided that spatial lags can
be computed. This requires the construction of a spatial weights matrix, which
must often be derived from information in a geographic information system.
Similarly, once a spatial lag can be computed, the LM/RS statistics are straight-
forward to implement.

The main practical problem is encountered in maximum likelihood estima-
tion where the Jacobian determinant must be evaluated for every iteration in a
nonlinear optimization procedure. The original solution to this problem was sug-
gested by Ord (1975), who showed how the log Jacobian can be decomposed in
terms that contain the eigenvalues of the weights matrix ωi,

ln|I − ρW| = ln (   ).1
1

−
=
∑ ρωi
i

n

(14.33)

This is easy to implement in a standard optimization routine by treating the
individual elements in the sum as observations on an auxiliary term in the log-
likelihood (see Anselin and Hudak, 1992). However, the computation of the
eigenvalues quickly becomes numerically unstable for matrices of more than
1,000 observations. In addition, for large data sets this approach is inefficient in
that it does not exploit the high degree of sparsity of the spatial weights matrix.
Recently suggested solutions to this problem fall into two categories. Approxi-
mate solutions avoid the computation of the Jacobian determinant, but instead
approximate it by a polynomial function or by means of simulation methods (e.g.
Barry and Pace, 1999). Exact solutions are based on Cholesky or LU decomposi-
tion methods that exploit the sparsity of the weights (Pace and Barry, 1997a,
1997b), or use a characteristic polynomial approach (Smirnov and Anselin, 2000).
While much progress has been made, considerable work remains to be done to
develop efficient algorithms and data structures to allow for the analysis of very
large spatial data sets.

7 CONCLUDING REMARKS

This review chapter has been an attempt to present the salient issues pertaining
to the methodology of spatial econometrics. It is by no means complete, but it is
hoped that sufficient guidance is provided to pursue interesting research direc-
tions. Many challenging problems remain, both methodological in nature as well
as in terms of applying the new techniques to meaningful empirical problems.
Particularly in dealing with spatial effects in models other than the standard
linear regression, much needs to be done to complete the spatial econometric
toolbox. It is hoped that the review presented here will stimulate statisticians and
econometricians to tackle these interesting and challenging problems.
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Notes
* This paper benefited greatly from comments by Wim Vijverberg and two anonymous

referees. A more comprehensive version of this paper is available as Anselin (1999).
1 A more extensive review is given in Anselin and Bera (1998) and Anselin (1999).
2 An extensive collection of recent applications of spatial econometric methods in eco-

nomics can be found in Anselin and Florax (2000).
3 In this chapter, I will use the terms spatial dependence and spatial autocorrelation

interchangeably. Obviously, the two are not identical, but typically, the weaker form
is used, in the sense of a moment of a joint distribution. Only seldom is the focus on
the complete joint density (a recent exception can be found in Brett and Pinkse (1997)).

4 See Anselin (1988a), for a more extensive discussion.
5 One would still need to establish the class of spatial stochastic processes that would

allow for the consistent estimation of the covariance; see Frees (1995) for a discussion
of the general principles.

6 See Anselin and Bera (1998) for an extensive and technical discussion.
7 On a square grid, one could envisage using North, South, East and West as spatial

shifts, but in general, for irregular spatial units such as counties, this is impractical,
since the number of neighbors for each county is not constant.

8 In Anselin (1988a), the term spatial lag is introduced to refer to this new variable, to
emphasize the similarity to a distributed lag term rather than a spatial shift.

9 By convention, wii = 0, i.e. a location is never a neighbor of itself. This is arbitrary, but
can be assumed without loss of generality. For a more extensive discussion of spatial
weights, see Anselin (1988a, ch. 3), Cliff and Ord (1981), Upton and Fingleton (1985).

10 See Anselin and Bera (1998) for further details.
11 See McMillen (1992) for an illustration.
12 The specification of spatial covariance functions is not arbitrary, and a number of

conditions must be satisfied in order for the model to be “valid” (details are given in
Cressie (1993, pp. 61–3, 67–8 and 84–6)).

13 Specifically, this may limit the applicability of GMM estimators that are based on a
central limit theorem for stationary mixing random fields such as the one by Bolthausen
(1982), used by Conley (1996).

14 Cressie (1993, pp. 100–1).
15 See Kelejian and Prucha (1999a, 1999b).
16 For ease of exposition, the error term is assumed to be iid, although various forms of

heteroskedasticity can be incorporated in a straightforward way (Anselin, 1988a, ch. 6).
17 Details and a review of alternative specifications are given in Anselin and Bera (1998).
18 For further details, see Anselin (1988a, 1988b). A recent application is Baltagi and Li

(2000b).
19 Methodological issues associated with spatial probit models are considered in Case

(1992), McMillen (1992), Pinkse and Slade (1998) and Beron and Vijverberg (2000).
20 For an extensive discussion, see Beron and Vijverberg (2000).
21 Other classic treatments of ML estimation in spatial models can be found in Whittle

(1954), Besag (1974), and Mardia and Marshall (1984).
22 For a formal demonstration, see Anselin (1988a) and Kelejian and Prucha (1997).
23 For details, see, e.g. McMillen (1992), Pinkse and Slade (1998), Beron and Vijverberg

(2000), and also, for general principles, Poirier and Ruud (1988).
24 For a careful consideration of these issues, see Kelejian and Prucha (1999a).
25 For technical details, see, e.g. Kelejian and Robinson (1993), Kelejian and Prucha

(1998).



SPATIAL ECONOMETRICS 327

26 A recent application of this method is given in Bell and Bockstael (2000). An extension
of this idea to the residuals of a spatial 2SLS estimation is provided in Kelejian and
Prucha (1998).

27 See also Case (1992) and McMillen (1992) for a similar focus on heteroskedasticity in
the spatial probit model.

28 See also the discussion in Haining (1990, pp. 131–3).
29 For example, for row-standardized weights, S0 = N, and I = e′We/e′e. See Anselin and

Bera (1998) for an extensive discussion.
30 Moran’s I is not based on an explicit alternative and has power against both (see

Anselin and Rey, 1991).
31 As shown in Anselin and Kelejian (1997) these tests are asymptotically equivalent.
32 Neither of these toolboxes include specification tests. Furthermore, S+Spatialstats has

no routines to handle the spatial lag model.
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