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APPENDIX A

Q
MATRIX ALGEBRA

A.1 TERMINOLOGY

A matrix is a rectangular array of numbers, denoted

A = [aik] = [A]ik =

⎡
⎢⎣

a11 a12 · · · a1K

a21 a22 · · · a2K

· · ·
an1 an2 · · · anK

⎤
⎥⎦ . (A-1)

The typical element is used to denote the matrix. A subscripted element of a matrix is always
read as arow,column. An example is given in Table A.1. In these data, the rows are identified with
years and the columns with particular variables.

A vector is an ordered set of numbers arranged either in a row or a column. In view of the
preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one
column. Thus, in Table A.1, the five variables observed for 1972 (including the date) constitute a
row vector, whereas the time series of nine values for consumption is a column vector.

A matrix can also be viewed as a set of column vectors or as a set of row vectors.1 The
dimensions of a matrix are the numbers of rows and columns it contains. “A is an n × K matrix”
(read “n by K”) will always mean that A has n rows and K columns. If n equals K, then A is a
square matrix. Several particular types of square matrices occur frequently in econometrics.

• A symmetric matrix is one in which aik = aki for all i and k.
• A diagonal matrix is a square matrix whose only nonzero elements appear on the main

diagonal, that is, moving from upper left to lower right.
• A scalar matrix is a diagonal matrix with the same value in all diagonal elements.
• An identity matrix is a scalar matrix with ones on the diagonal. This matrix is always

denoted I. A subscript is sometimes included to indicate its size, or order. For example,
I4 indicates a 4 × 4 identity matrix.

• A triangular matrix is one that has only zeros either above or below the main diagonal. If
the zeros are above the diagonal, the matrix is lower triangular.

A.2 ALGEBRAIC MANIPULATION OF MATRICES

A.2.1 EQUALITY OF MATRICES

Matrices (or vectors) A and B are equal if and only if they have the same dimensions and each
element of A equals the corresponding element of B. That is,

A = B if and only if aik = bik for all i and k. (A-2)

1Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (A-1), and a vector as a boldfaced
lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a column vector.
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TABLE A.1 Matrix of Macroeconomic Data

Column

2 3 5
1 Consumption GNP 4 Discount Rate

Row Year (billions of dollars) (billions of dollars) GNP Deflator (N.Y Fed., avg.)

1 1972 737.1 1185.9 1.0000 4.50
2 1973 812.0 1326.4 1.0575 6.44
3 1974 808.1 1434.2 1.1508 7.83
4 1975 976.4 1549.2 1.2579 6.25
5 1976 1084.3 1718.0 1.3234 5.50
6 1977 1204.4 1918.3 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 1507.2 2417.8 1.6342 10.28
9 1980 1667.2 2633.1 1.7864 11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing
Office, 1983).

A.2.2 TRANSPOSITION

The transpose of a matrix A, denoted A′, is obtained by creating the matrix whose kth row is
the kth column of the original matrix. Thus, if B = A′, then each column of A will appear as the
corresponding row of B. If A is n × K, then A′ is K × n.

An equivalent definition of the transpose of a matrix is

B = A′ ⇔ bik = aki for all i and k. (A-3)

The definition of a symmetric matrix implies that

if (and only if) A is symmetric, then A = A′. (A-4)

It also follows from the definition that for any A,

(A′)′ = A. (A-5)

Finally, the transpose of a column vector, a, is a row vector:

a′ = [a1 a2 · · · an].

A.2.3 MATRIX ADDITION

The operations of addition and subtraction are extended to matrices by defining

C = A + B = [aik + bik]. (A-6)

A − B = [aik − bik]. (A-7)

Matrices cannot be added unless they have the same dimensions, in which case they are said to be
conformable for addition. A zero matrix or null matrix is one whose elements are all zero. In the
addition of matrices, the zero matrix plays the same role as the scalar 0 in scalar addition; that is,

A + 0 = A. (A-8)

It follows from (A-6) that matrix addition is commutative,

A + B = B + A. (A-9)
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and associative,

(A + B) + C = A + (B + C), (A-10)

and that

(A + B)′ = A′ + B′. (A-11)

A.2.4 VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. The inner product, or dot product, of two
vectors, a and b, is a scalar and is written

a′b = a1b1 + a2b2 + · · · + anbn. (A-12)

Note that the inner product is written as the transpose of vector a times vector b, a row vector
times a column vector. In (A-12), each term a j bj equals bj a j ; hence

a′b = b′a. (A-13)

A.2.5 A NOTATION FOR ROWS AND COLUMNS OF A MATRIX

We need a notation for the ith row of a matrix. Throughout this book, an untransposed vector
will always be a column vector. However, we will often require a notation for the column vector
that is the transpose of a row of a matrix. This has the potential to create some ambiguity, but the
following convention based on the subscripts will suffice for our work throughout this text:

• ak, or al or am will denote column k, l, or m of the matrix A,
• ai , or a j or at or as will denote the column vector formed by the transpose of row

i, j, t , or s of matrix A. Thus, a′
i is row i of A.

(A-14)

For example, from the data in Table A.1 it might be convenient to speak of xi , where i = 1972
as the 5 × 1 vector containing the five variables measured for the year 1972, that is, the transpose
of the 1972 row of the matrix. In our applications, the common association of subscripts “i” and
“ j” with individual i or j , and “t” and “s” with time periods t and s will be natural.

A.2.6 MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n × K matrix A and a K × M matrix B, the product matrix, C = AB, is an n × M matrix
whose ikth element is the inner product of row i of A and column k of B. Thus, the product matrix
C is

C = AB ⇒ cik = a′
i bk. (A-15)

[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in the first
must be the same as the number of rows in the second, in which case they are conformable for
multiplication.2 Multiplication of matrices is generally not commutative. In some cases, AB may
exist, but BA may be undefined or, if it does exist, may have different dimensions. In general,
however, even if AB and BA do have the same dimensions, they will not be equal. In view of
this, we define premultiplication and postmultiplication of matrices. In the product AB, B is
premultiplied by A, whereas A is postmultiplied by B.

2A simple way to check the conformability of two matrices for multiplication is to write down the dimensions
of the operation, for example, (n × K) times (K × M). The inner dimensions must be equal; the result has
dimensions equal to the outer values.
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Scalar multiplication of a matrix is the operation of multiplying every element of the matrix
by a given scalar. For scalar c and matrix A,

cA = [caik]. (A-16)

The product of a matrix and a vector is written

c = Ab.

The number of elements in b must equal the number of columns in A; the result is a vector with
number of elements equal to the number of rows in A. For example,⎡

⎣
5
4
1

⎤
⎦ =

⎡
⎣

4 2 1
2 6 1
1 1 0

⎤
⎦

⎡
⎣

a
b
c

⎤
⎦ .

We can interpret this in two ways. First, it is a compact way of writing the three equations

5 = 4a + 2b + 1c,

4 = 2a + 6b + 1c,

1 = 1a + 1b + 0c.

Second, by writing the set of equations as
⎡
⎣

5
4
1

⎤
⎦ = a

⎡
⎣

4
2
1

⎤
⎦ + b

⎡
⎣

2
6
1

⎤
⎦ + c

⎡
⎣

1
1
0

⎤
⎦ ,

we see that the right-hand side is a linear combination of the columns of the matrix where the
coefficients are the elements of the vector. For the general case,

c = Ab = b1a1 + b2a2 + · · · + bKaK. (A-17)

In the calculation of a matrix product C = AB, each column of C is a linear combination of the
columns of A, where the coefficients are the elements in the corresponding column of B. That is,

C = AB ⇔ ck = Abk. (A-18)

Let ek be a column vector that has zeros everywhere except for a one in the kth position.
Then Aek is a linear combination of the columns of A in which the coefficient on every column
but the kth is zero, whereas that on the kth is one. The result is

ak = Aek. (A-19)

Combining this result with (A-17) produces

(a1 a2 · · · an) = A(e1 e2 · · · en) = AI = A. (A-20)

In matrix multiplication, the identity matrix is analogous to the scalar 1. For any matrix or vector
A, AI = A. In addition, IA = A, although if A is not a square matrix, the two identity matrices
are of different orders.

A conformable matrix of zeros produces the expected result: A0 = 0.

Some general rules for matrix multiplication are as follows:

• Associative law: (AB)C = A(BC). (A-21)
• Distributive law: A(B + C) = AB + AC. (A-22)
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• Transpose of a product: (AB)′ = B′A′. (A-23)
• Transpose of an extended product: (ABC)′ = C′B′A′. (A-24)

A.2.7 SUMS OF VALUES

Denote by i a vector that contains a column of ones. Then,
n∑

i=1

xi = x1 + x2 + · · · + xn = i′x. (A-25)

If all elements in x are equal to the same constant a, then x = ai and
n∑

i=1

xi = i′(ai) = a(i′i) = na. (A-26)

For any constant a and vector x,
n∑

i=1

axi = a
n∑

i=1

xi = ai′x. (A-27)

If a = 1/n, then we obtain the arithmetic mean,

x̄ = 1
n

n∑
i=1

xi = 1
n

i′x, (A-28)

from which it follows that
n∑

i=1

xi = i′x = nx̄.

The sum of squares of the elements in a vector x is
n∑

i=1

x2
i = x′x; (A-29)

while the sum of the products of the n elements in vectors x and y is
n∑

i=1

xi yi = x′y. (A-30)

By the definition of matrix multiplication,

[X′X]kl = [x′
kxl ] (A-31)

is the inner product of the kth and lth columns of X. For example, for the data set given in
Table A.1, if we define X as the 9 × 3 matrix containing (year, consumption, GNP), then

[X′X]23 =
1980∑

t=1972

consumptiont GNPt = 737.1(1185.9) + · · · + 1667.2(2633.1)

= 19,743,711.34.

If X is n × K, then [again using (A-14)]

X′X =
n∑

i=1

xi x′
i .
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This form shows that the K × K matrix X′X is the sum of n K × K matrices, each formed from
a single row (year) of X. For the example given earlier, this sum is of nine 3 × 3 matrices, each
formed from one row (year) of the original data matrix.

A.2.8 A USEFUL IDEMPOTENT MATRIX

A fundamental matrix in statistics is the “centering matrix” that is used to transform data to
deviations from their mean. First,

i x̄ = i
1
n

i′x =

⎡
⎢⎢⎣

x̄
x̄
...

x̄

⎤
⎥⎥⎦ = 1

n
ii′x. (A-32)

The matrix (1/n)ii′ is an n × n matrix with every element equal to 1/n. The set of values in
deviations form is

⎡
⎢⎣

x1 − x̄
x2 − x̄

· · ·
xn − x̄

⎤
⎥⎦ = [x − ix̄] =

[
x − 1

n
ii′x

]
. (A-33)

Because x = Ix,
[

x − 1
n

ii′x

]
=

[
Ix − 1

n
ii′x

]
=

[
I − 1

n
ii′

]
x = M0x. (A-34)

Henceforth, the symbol M0 will be used only for this matrix. Its diagonal elements are all
(1 − 1/n), and its off-diagonal elements are −1/n. The matrix M0 is primarily useful in com-
puting sums of squared deviations. Some computations are simplified by the result

M0i =
[

I − 1
n

ii′
]

i = i − 1
n

i(i′i) = 0,

which implies that i′M0 = 0′. The sum of deviations about the mean is then

n∑
i=1

(xi − x̄ ) = i′[M0x] = 0′x = 0. (A-35)

For a single variable x, the sum of squared deviations about the mean is

n∑
i=1

(xi − x̄ )2 =
(

n∑
i=1

x2
i

)
− nx̄2. (A-36)

In matrix terms,

n∑
i=1

(xi − x̄ )2 = (x − x̄ i)′(x − x̄ i) = (M0x)′(M0x) = x′M0′M0x.

Two properties of M0 are useful at this point. First, because all off-diagonal elements of M0

equal −1/n, M0 is symmetric. Second, as can easily be verified by multiplication, M0 is equal to
its square; M0M0 = M0.



Greene-2140242 book January 19, 2011 21:35

APPENDIX A ✦ Matrix Algebra 1019

DEFINITION A.1 Idempotent Matrix
An idempotent matrix, M, is one that is equal to its square, that is, M2 = MM = M. If M
is a symmetric idempotent matrix (all of the idempotent matrices we shall encounter are
symmetric), then M′M = M.

Thus, M0 is a symmetric idempotent matrix. Combining results, we obtain

n∑
i=1

(xi − x̄ )2 = x′M0x. (A-37)

Consider constructing a matrix of sums of squares and cross products in deviations from the
column means. For two vectors x and y,

n∑
i=1

(xi − x̄ )(yi − ȳ) = (M0x)′(M0y), (A-38)

so
⎡
⎢⎢⎢⎣

n∑
i=1

(xi − x̄ )2
n∑

i=1

(xi − x̄ )(yi − ȳ)

n∑
i=1

(yi − ȳ)(xi − x̄ )

n∑
i=1

(yi − ȳ)2

⎤
⎥⎥⎥⎦ =

[
x′M0x x′M0y

y′M0x y′M0y

]
. (A-39)

If we put the two column vectors x and y in an n × 2 matrix Z = [x, y], then M0Z is the n × 2
matrix in which the two columns of data are in mean deviation form. Then

(M0Z)′(M0Z) = Z′M0M0Z = Z′M0Z.

A.3 GEOMETRY OF MATRICES

A.3.1 VECTOR SPACES

The K elements of a column vector

a =

⎡
⎢⎣

a1

a2

· · ·
aK

⎤
⎥⎦

can be viewed as the coordinates of a point in a K-dimensional space, as shown in Figure A.1
for two dimensions, or as the definition of the line segment connecting the origin and the point
defined by a.

Two basic arithmetic operations are defined for vectors, scalar multiplication and addition. A
scalar multiple of a vector, a, is another vector, say a∗, whose coordinates are the scalar multiple
of a’s coordinates. Thus, in Figure A.1,

a =
[

1
2

]
, a∗ = 2a =

[
2
4

]
, a∗∗ = −1

2
a =

[
− 1

2

−1

]
.
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FIGURE A.1 Vector Space.

The set of all possible scalar multiples of a is the line through the origin, 0 and a. Any scalar
multiple of a is a segment of this line. The sum of two vectors a and b is a third vector whose
coordinates are the sums of the corresponding coordinates of a and b. For example,

c = a + b =
[

1
2

]
+

[
2
1

]
=

[
3
3

]
.

Geometrically, c is obtained by moving in the distance and direction defined by b from the tip of a
or, because addition is commutative, from the tip of b in the distance and direction of a. Note that
scalar multiplication and addition of vectors are special cases of (A-16) and (A-6) for matrices.

The two-dimensional plane is the set of all vectors with two real-valued coordinates. We label
this set R

2 (“R two,” not “R squared”). It has two important properties.

• R
2 is closed under scalar multiplication; every scalar multiple of a vector in R

2 is also
in R

2.
• R

2 is closed under addition; the sum of any two vectors in the plane is always a vector
in R

2.

DEFINITION A.2 Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and
addition.

Another example is the set of all real numbers, that is, R
1, that is, the set of vectors with one real

element. In general, that set of K-element vectors all of whose elements are real numbers is a
K-dimensional vector space, denoted R

K. The preceding examples are drawn in R
2.
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FIGURE A.2 Linear Combinations of Vectors.

A.3.2 LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

In Figure A.2, c = a + b and d = a∗ + b. But since a∗ = 2a, d = 2a + b. Also, e = a + 2b and
f = b + (−a) = b − a. As this exercise suggests, any vector in R

2 could be obtained as a linear
combination of a and b.

DEFINITION A.3 Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly inde-
pendent and any vector in the vector space can be written as a linear combination of that
set of vectors.

As is suggested by Figure A.2, any pair of two-element vectors, including a and b, that point
in different directions will form a basis for R

2. Consider an arbitrary set of vectors in R
2, a, b, and

c. If a and b are a basis, then we can find numbers α1 and α2 such that c = α1a + α2b. Let

a =
[

a1

a2

]
, b =

[
b1

b2

]
, c =

[
c1

c2

]
.

Then

c1 = α1a1 + α2b1,

c2 = α1a2 + α2b2.
(A-40)
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The solutions to this pair of equations are

α1 = b2c1 − b1c2

a1b2 − b1a2
, α2 = a1c2 − a2c1

a1b2 − b1a2
. (A-41)

This result gives a unique solution unless (a1b2 − b1a2) = 0. If (a1b2 − b1a2) = 0, then
a1/a2 = b1/b2, which means that b is just a multiple of a. This returns us to our original condition,
that a and b must point in different directions. The implication is that if a and b are any pair of
vectors for which the denominator in (A-41) is not zero, then any other vector c can be formed
as a unique linear combination of a and b. The basis of a vector space is not unique, since any
set of vectors that satisfies the definition will do. But for any particular basis, only one linear
combination of them will produce another particular vector in the vector space.

A.3.3 LINEAR DEPENDENCE

As the preceding should suggest, K vectors are required to form a basis for R
K. Although the

basis for a vector space is not unique, not every set of K vectors will suffice. In Figure A.2, a and
b form a basis for R

2, but a and a∗ do not. The difference between these two pairs is that a and b
are linearly independent, whereas a and a∗ are linearly dependent.

DEFINITION A.4 Linear Dependence
A set of k ≥ 2 vectors is linearly dependent if at least one of the vectors in the set can be
written as a linear combination of the others.

Because a∗ is a multiple of a, a and a∗ are linearly dependent. For another example, if

a =
[

1
2

]
, b =

[
3
3

]
, and c =

[
10
14

]
,

then

2a + b − 1
2

c = 0,

so a, b, and c are linearly dependent. Any of the three possible pairs of them, however, are linearly
independent.

DEFINITION A.5 Linear Independence
A set of vectors is linearly independent if and only if the only solution to

α1a1 + α2a2 + · · · + αKaK = 0

is

α1 = α2 = · · · = αK = 0.

The preceding implies the following equivalent definition of a basis.
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DEFINITION A.6 Basis for a Vector Space
A basis for a vector space of K dimensions is any set of K linearly independent vectors in
that vector space.

Because any (K + 1)st vector can be written as a linear combination of the K basis vectors, it
follows that any set of more than K vectors in R

K must be linearly dependent.

A.3.4 SUBSPACES

DEFINITION A.7 Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is spanned by
those vectors.

For example, by definition, the space spanned by a basis for R
K is R

K. An implication of this
is that if a and b are a basis for R

2 and c is another vector in R
2, the space spanned by [a, b, c] is,

again, R
2. Of course, c is superfluous. Nonetheless, any vector in R

2 can be expressed as a linear
combination of a, b, and c. (The linear combination will not be unique. Suppose, for example,
that a and c are also a basis for R

2.)
Consider the set of three coordinate vectors whose third element is zero. In particular,

a′ = [a1 a2 0] and b′ = [b1 b2 0].

Vectors a and b do not span the three-dimensional space R
3. Every linear combination of a and

b has a third coordinate equal to zero; thus, for instance, c′ = [1 2 3] could not be written as a
linear combination of a and b. If (a1b2 − a2b1) is not equal to zero [see (A-41)]; however, then
any vector whose third element is zero can be expressed as a linear combination of a and b. So,
although a and b do not span R

3, they do span something, the set of vectors in R
3 whose third

element is zero. This area is a plane (the “floor” of the box in a three-dimensional figure). This
plane in R

3 is a subspace, in this instance, a two-dimensional subspace. Note that it is not R
2; it

is the set of vectors in R
3 whose third coordinate is 0. Any plane in R

3 that contains the origin,
(0, 0, 0), regardless of how it is oriented, forms a two-dimensional subspace. Any two independent
vectors that lie in that subspace will span it. But without a third vector that points in some other
direction, we cannot span any more of R

3 than this two-dimensional part of it. By the same logic,
any line in R

3 that passes through the origin is a one-dimensional subspace, in this case, the set
of all vectors in R

3 whose coordinates are multiples of those of the vector that define the line.
A subspace is a vector space in all the respects in which we have defined it. We emphasize
that it is not a vector space of lower dimension. For example, R

2 is not a subspace of R
3. The

essential difference is the number of dimensions in the vectors. The vectors in R
3 that form a

two-dimensional subspace are still three-element vectors; they all just happen to lie in the same
plane.

The space spanned by a set of vectors in R
K has at most K dimensions. If this space has fewer

than K dimensions, it is a subspace, or hyperplane. But the important point in the preceding
discussion is that every set of vectors spans some space; it may be the entire space in which the
vectors reside, or it may be some subspace of it.
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A.3.5 RANK OF A MATRIX

We view a matrix as a set of column vectors. The number of columns in the matrix equals the
number of vectors in the set, and the number of rows equals the number of coordinates in each
column vector.

DEFINITION A.8 Column Space
The column space of a matrix is the vector space that is spanned by its column
vectors.

If the matrix contains K rows, its column space might have K dimensions. But, as we have seen,
it might have fewer dimensions; the column vectors might be linearly dependent, or there might
be fewer than K of them. Consider the matrix

A =

⎡
⎣

1 5 6
2 6 8
7 1 8

⎤
⎦ .

It contains three vectors from R
3, but the third is the sum of the first two, so the column space of

this matrix cannot have three dimensions. Nor does it have only one, because the three columns
are not all scalar multiples of one another. Hence, it has two, and the column space of this matrix
is a two-dimensional subspace of R

3.

DEFINITION A.9 Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned by its
column vectors.

It follows that the column rank of a matrix is equal to the largest number of linearly inde-
pendent column vectors it contains. The column rank of A is 2. For another specific example,
consider

B =

⎡
⎢⎢⎣

1 2 3
5 1 5
6 4 5
3 1 4

⎤
⎥⎥⎦ .

It can be shown (we shall see how later) that this matrix has a column rank equal to 3. Each
column of B is a vector in R

4, so the column space of B is a three-dimensional subspace of R
4.

Consider, instead, the set of vectors obtained by using the rows of B instead of the columns.
The new matrix would be

C =

⎡
⎣

1 5 6 3
2 1 4 1
3 5 5 4

⎤
⎦ .

This matrix is composed of four column vectors from R
3. (Note that C is B′.) The column space of

C is at most R
3, since four vectors in R

3 must be linearly dependent. In fact, the column space of
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C is R
3. Although this is not the same as the column space of B, it does have the same dimension.

Thus, the column rank of C and the column rank of B are the same. But the columns of C are
the rows of B. Thus, the column rank of C equals the row rank of B. That the column and row
ranks of B are the same is not a coincidence. The general results (which are equivalent) are as
follows.

THEOREM A.1 Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row rank and
its counterpart for column rank, we obtain the corollary,

the row space and column space of a matrix have the same dimension. (A-42)

Theorem A.1 holds regardless of the actual row and column rank. If the column rank of a
matrix happens to equal the number of columns it contains, then the matrix is said to have full
column rank. Full row rank is defined likewise. Because the row and column ranks of a matrix
are always equal, we can speak unambiguously of the rank of a matrix. For either the row rank
or the column rank (and, at this point, we shall drop the distinction),

rank(A) = rank(A′) ≤ min(number of rows, number of columns). (A-43)

In most contexts, we shall be interested in the columns of the matrices we manipulate. We shall
use the term full rank to describe a matrix whose rank is equal to the number of columns it
contains.

Of particular interest will be the distinction between full rank and short rank matrices. The
distinction turns on the solutions to Ax = 0. If a nonzero x for which Ax = 0 exists, then A does not
have full rank. Equivalently, if the nonzero x exists, then the columns of A are linearly dependent
and at least one of them can be expressed as a linear combination of the others. For example, a
nonzero set of solutions to

[
1 3 10
2 3 14

]⎡
⎣

x1

x2

x3

⎤
⎦ =

[
0
0

]

is any multiple of x′ = (2, 1, − 1
2 ).

In a product matrix C = AB, every column of C is a linear combination of the columns of
A, so each column of C is in the column space of A. It is possible that the set of columns in C
could span this space, but it is not possible for them to span a higher-dimensional space. At best,
they could be a full set of linearly independent vectors in A’s column space. We conclude that the
column rank of C could not be greater than that of A. Now, apply the same logic to the rows of
C, which are all linear combinations of the rows of B. For the same reason that the column rank
of C cannot exceed the column rank of A, the row rank of C cannot exceed the row rank of B.
Row and column ranks are always equal, so we can conclude that

rank(AB) ≤ min(rank(A), rank(B)). (A-44)

A useful corollary to (A-44) is

If A is M × n and B is a square matrix of rank n, then rank(AB) = rank(A). (A-45)
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Another application that plays a central role in the development of regression analysis is,
for any matrix A,

rank(A) = rank(A′A) = rank(AA′
). (A-46)

A.3.6 DETERMINANT OF A MATRIX

The determinant of a square matrix—determinants are not defined for nonsquare matrices—is
a function of the elements of the matrix. There are various definitions, most of which are not
useful for our work. Determinants figure into our results in several ways, however, that we can
enumerate before we need formally to define the computations.

PROPOSITION
The determinant of a matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their determinants
are nonzero. There are some settings in which the value of the determinant is also of interest, so
we now consider some algebraic results.

It is most convenient to begin with a diagonal matrix

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦ .

The column vectors of D define a “box” in R
K whose sides are all at right angles to one another.3

Its “volume,” or determinant, is simply the product of the lengths of the sides, which we denote

|D| = d1d2 . . . dK =
K∏

k=1

dk. (A-47)

A special case is the identity matrix, which has, regardless of K, |IK| = 1. Multiplying D by a
scalar c is equivalent to multiplying the length of each side of the box by c, which would multiply
its volume by cK. Thus,

|cD| = cK|D|. (A-48)

Continuing with this admittedly special case, we suppose that only one column of D is multiplied
by c. In two dimensions, this would make the box wider but not higher, or vice versa. Hence,
the “volume” (area) would also be multiplied by c. Now, suppose that each side of the box were
multiplied by a different c, the first by c1, the second by c2, and so on. The volume would, by an
obvious extension, now be c1c2 . . . cK|D|. The matrix with columns defined by [c1d1 c2d2 . . .] is
just DC, where C is a diagonal matrix with ci as its ith diagonal element. The computation just
described is, therefore,

|DC| = |D| · |C|. (A-49)

(The determinant of C is the product of the ci ’s since C, like D, is a diagonal matrix.) In particular,
note what happens to the whole thing if one of the ci ’s is zero.

3Each column vector defines a segment on one of the axes.
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For 2 × 2 matrices, the computation of the determinant is∣∣∣∣
a c
b d

∣∣∣∣ = ad − bc. (A-50)

Notice that it is a function of all the elements of the matrix. This statement will be true, in
general. For more than two dimensions, the determinant can be obtained by using an expansion
by cofactors. Using any row, say, i , we obtain

|A| =
K∑

k=1

aik(−1)i+k|Aik|, k = 1, . . . , K, (A-51)

where Aik is the matrix obtained from A by deleting row i and column k. The determinant of
Aik is called a minor of A.4 When the correct sign, (−1)i+k, is added, it becomes a cofactor. This
operation can be done using any column as well. For example, a 4 × 4 determinant becomes a
sum of four 3 × 3s, whereas a 5 × 5 is a sum of five 4 × 4s, each of which is a sum of four 3 × 3s,
and so on. Obviously, it is a good idea to base (A-51) on a row or column with many zeros in
it, if possible. In practice, this rapidly becomes a heavy burden. It is unlikely, though, that you
will ever calculate any determinants over 3 × 3 without a computer. A 3 × 3, however, might be
computed on occasion; if so, the following shortcut due to P. Sarrus will prove useful:

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13 − a21a12a33 − a11a23a32.

Although (A-48) and (A-49) were given for diagonal matrices, they hold for general matrices
C and D. One special case of (A-48) to note is that of c = −1. Multiplying a matrix by −1 does
not necessarily change the sign of its determinant. It does so only if the order of the matrix is odd.
By using the expansion by cofactors formula, an additional result can be shown:

|A| = |A′| (A-52)

A.3.7 A LEAST SQUARES PROBLEM

Given a vector y and a matrix X, we are interested in expressing y as a linear combination of the
columns of X. There are two possibilities. If y lies in the column space of X, then we shall be able
to find a vector b such that

y = Xb. (A-53)

Figure A.3 illustrates such a case for three dimensions in which the two columns of X both have
a third coordinate equal to zero. Only y’s whose third coordinate is zero, such as y0 in the figure,
can be expressed as Xb for some b. For the general case, assuming that y is, indeed, in the column
space of X, we can find the coefficients b by solving the set of equations in (A-53). The solution
is discussed in the next section.

Suppose, however, that y is not in the column space of X. In the context of this example,
suppose that y’s third component is not zero. Then there is no b such that (A-53) holds. We can,
however, write

y = Xb + e, (A-54)

where e is the difference between y and Xb. By this construction, we find an Xb that is in the
column space of X, and e is the difference, or “residual.” Figure A.3 shows two examples, y and y∗.

4If i equals k, then the determinant is a principal minor.
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Third coordinate

First coordinate

Second coordinate

x1
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(Xb)*

FIGURE A.3 Least Squares Projections.

For the present, we consider only y. We are interested in finding the b such that y is as close as
possible to Xb in the sense that e is as short as possible.

DEFINITION A.10 Length of a Vector
The length, or norm, of a vector e is given by the Pythagorean theorem:

‖e‖ =
√

e′e. (A-55)

The problem is to find the b for which

‖e‖ = ‖y − Xb‖
is as small as possible. The solution is that b that makes e perpendicular, or orthogonal, to Xb.

DEFINITION A.11 Orthogonal Vectors
Two nonzero vectors a and b are orthogonal, written a ⊥ b, if and only if

a′b = b′a = 0.

Returning once again to our fitting problem, we find that the b we seek is that for which

e ⊥ Xb.

Expanding this set of equations gives the requirement

(Xb)′e = 0

= b′X′y − b′X′Xb

= b′[X′y − X′Xb],
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or, assuming b is not 0, the set of equations

X′y = X′Xb.

The means of solving such a set of equations is the subject of Section A.5.
In Figure A.3, the linear combination Xb is called the projection of y into the column space

of X. The figure is drawn so that, although y and y∗ are different, they are similar in that the
projection of y lies on top of that of y∗. The question we wish to pursue here is, Which vector, y
or y∗, is closer to its projection in the column space of X? Superficially, it would appear that y is
closer, because e is shorter than e∗. Yet y∗ is much more nearly parallel to its projection than y, so
the only reason that its residual vector is longer is that y∗ is longer compared with y. A measure
of comparison that would be unaffected by the length of the vectors is the angle between the
vector and its projection (assuming that angle is not zero). By this measure, θ∗ is smaller than θ ,
which would reverse the earlier conclusion.

THEOREM A.2 The Cosine Law
The angle θ between two vectors a and b satisfies

cos θ = a′b
‖a‖ · ‖b‖ .

The two vectors in the calculation would be y or y∗ and Xb or (Xb)∗. A zero cosine implies
that the vectors are orthogonal. If the cosine is one, then the angle is zero, which means that the
vectors are the same. (They would be if y were in the column space of X.) By dividing by the
lengths, we automatically compensate for the length of y. By this measure, we find in Figure A.3
that y∗ is closer to its projection, (Xb)∗ than y is to its projection, Xb.

A.4 SOLUTION OF A SYSTEM OF LINEAR
EQUATIONS

Consider the set of n linear equations

Ax = b, (A-56)

in which the K elements of x constitute the unknowns. A is a known matrix of coefficients, and b
is a specified vector of values. We are interested in knowing whether a solution exists; if so, then
how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1 SYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, those in
which A is a square matrix. In what follows, therefore, we take n to equal K. Because the number
of rows in A is the number of equations, whereas the number of columns in A is the number of
variables, this case is the familiar one of “n equations in n unknowns.”

There are two types of systems of equations.
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DEFINITION A.12 Homogeneous Equation System
A homogeneous system is of the form Ax = 0.

By definition, a nonzero solution to such a system will exist if and only if A does not have full
rank. If so, then for at least one column of A, we can write the preceding as

ak = −
∑
m
=k

xm

xk
am.

This means, as we know, that the columns of A are linearly dependent and that |A| = 0.

DEFINITION A.13 Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a nonzero
vector.

The vector b is chosen arbitrarily and is to be expressed as a linear combination of the columns
of A. Because b has K elements, this solution will exist only if the columns of A span the entire
K-dimensional space, R

K.5 Equivalently, we shall require that the columns of A be linearly
independent or that |A| not be equal to zero.

A.4.2 INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed. Suppose that
we could find a square matrix B such that BA = I. If the equation system is premultiplied by this
B, then the following would be obtained:

BAx = Ix = x = Bb. (A-57)

If the matrix B exists, then it is the inverse of A, denoted

B = A−1.

From the definition,

A−1A = I.

In addition, by premultiplying by A, postmultiplying by A−1, and then canceling terms, we find

AA−1 = I

as well.
If the inverse exists, then it must be unique. Suppose that it is not and that C is a different

inverse of A. Then CAB = CAB, but (CA)B = IB = B and C(AB) = C, which would be a

5If A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, namely,
any b in the column space of A. But we are interested in the case in which there are solutions for all nonzero
vectors b, which requires A to have full rank.
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contradiction if C did not equal B. Because, by (A-57), the solution is x = A−1b, the solution to
the equation system is unique as well.

We now consider the calculation of the inverse matrix. For a 2 × 2 matrix, AB = I implies
that

[
a11 a12

a21 a22

][
b11 b12

b21 b22

]
=

[
1 0
0 1

]
or

⎡
⎢⎢⎣

a11b11 + a12b21 = 1

a11b12 + a12b22 = 0

a21b11 + a22b21 = 0

a21b12 + a22b22 = 1

⎤
⎥⎥⎦ .

The solutions are
[

b11 b12

b21 b22

]
= 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
= 1

|A|

[
a22 −a12

−a21 a11

]
. (A-58)

Notice the presence of the reciprocal of |A| in A−1. This result is not specific to the 2 × 2 case.
We infer from it that if the determinant is zero, then the inverse does not exist.

DEFINITION A.14 Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.

The simplest inverse matrix to compute is that of a diagonal matrix. If

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦, then D−1 =

⎡
⎢⎣

1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
· · ·

0 0 0 · · · 1/dK

⎤
⎥⎦,

which shows, incidentally, that I−1 = I.
We shall use aik to indicate the ikth element of A−1. The general formula for computing an

inverse matrix is

aik = |Cki |
|A| , (A-59)

where |Cki | is the kith cofactor of A. [See (A-51).] It follows, therefore, that for A to be non-
singular, |A| must be nonzero. Notice the reversal of the subscripts

Some computational results involving inverses are

|A−1| = 1
|A| , (A-60)

(A−1)−1 = A, (A-61)

(A−1)′ = (A′)−1. (A-62)

If A is symmetric, then A−1 is symmetric. (A-63)

When both inverse matrices exist,

(AB)−1 = B−1A−1. (A-64)
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Note the condition preceding (A-64). It may be that AB is a square, nonsingular matrix when
neither A nor B is even square. (Consider, e.g., A′A.) Extending (A-64), we have

(ABC)−1 = C−1(AB)−1 = C−1B−1A−1. (A-65)

Recall that for a data matrix X, X′X is the sum of the outer products of the rows X. Suppose
that we have already computed S = (X′X)−1 for a number of years of data, such as those given in
Table A.1. The following result, which is called an updating formula, shows how to compute the
new S that would result when a new row is added to X: For symmetric, nonsingular matrix A,

[A ± bb′]−1 = A−1 ∓
[

1
1 ± b′A−1b

]
A−1bb′A−1. (A-66)

Note the reversal of the sign in the inverse. Two more general forms of (A-66) that are occasionally
useful are

[A ± bc′]−1 = A−1 ∓
[

1
1 ± c′A−1b

]
A−1bc′A−1. (A-66a)

[A ± BCB′]−1 = A−1 ∓ A−1B[C−1 ± B′A−1B]−1B′A−1. (A-66b)

A.4.3 NONHOMOGENEOUS SYSTEMS OF EQUATIONS

For the nonhomogeneous system

Ax = b,

if A is nonsingular, then the unique solution is

x = A−1b.

A.4.4 SOLVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section A3.7. We found
the solution vector, b to be the solution to the nonhomogenous system X′y = X′Xb. Let a equal
the vector X′y and let A equal the square matrix X′X. The equation system is then

Ab = a.

By the preceding results, if A is nonsingular, then

b = A−1a = (X′X)−1(X′y)

assuming that the matrix to be inverted is nonsingular. We have reached the irreducible minimum.
If the columns of X are linearly independent, that is, if X has full rank, then this is the solution
to the least squares problem. If the columns of X are linearly dependent, then this system has no
unique solution.

A.5 PARTITIONED MATRICES

In formulating the elements of a matrix, it is sometimes useful to group some of the elements in
submatrices. Let

A =

⎡
⎣

1 4 5
2 9 3

8 9 6

⎤
⎦ =

[
A11 A12

A21 A22

]
.
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A is a partitioned matrix. The subscripts of the submatrices are defined in the same fashion as
those for the elements of a matrix. A common special case is the block-diagonal matrix:

A =
[

A11 0

0 A22

]
,

where A11 and A22 are square matrices.

A.5.1 ADDITION AND MULTIPLICATION
OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

A + B =
[

A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
, (A-67)

and

AB =
[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
. (A-68)

In all these, the matrices must be conformable for the operations involved. For addition, the
dimensions of Aik and Bik must be the same. For multiplication, the number of columns in Aij

must equal the number of rows in B jl for all pairs i and j . That is, all the necessary matrix products
of the submatrices must be defined. Two cases frequently encountered are of the form

[
A1

A2

]′[
A1

A2

]
= [A′

1 A′
2]

[
A1

A2

]
= [A′

1A1 + A′
2A2], (A-69)

and
[

A11 0

0 A22

]′[
A11 0

0 A22

]
=

[
A′

11A11 0

0 A′
22A22

]
. (A-70)

A.5.2 DETERMINANTS OF PARTITIONED MATRICES

The determinant of a block-diagonal matrix is obtained analogously to that of a diagonal matrix:
∣∣∣∣
A11 0

0 A22

∣∣∣∣ = |A11| · |A22| . (A-71)

The determinant of a general 2 × 2 partitioned matrix is
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = |A22| ·
∣∣A11 − A12A−1

22 A21

∣∣ = |A11| ·
∣∣A22 − A21A−1

11 A12

∣∣. (A-72)

A.5.3 INVERSES OF PARTITIONED MATRICES

The inverse of a block-diagonal matrix is

[
A11 0

0 A22

]−1

=
[

A−1
11 0

0 A−1
22

]
, (A-73)

which can be verified by direct multiplication.
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For the general 2 × 2 partitioned matrix, one form of the partitioned inverse is

[
A11 A12

A21 A22

]−1

=
[

A−1
11

(
I + A12F2A21A−1

11

) −A−1
11 A12F2

−F2A21A−1
11 F2

]
, (A-74)

where

F2 = (
A22 − A21A−1

11 A12

)−1
.

The upper left block could also be written as

F1 = (
A11 − A12A−1

22 A21

)−1
.

A.5.4 DEVIATIONS FROM MEANS

Suppose that we begin with a column vector of n values x and let

A =

⎡
⎢⎢⎢⎢⎣

n
n∑

i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎤
⎥⎥⎥⎥⎦

=
[

i′i i′x
x′i x′x

]
.

We are interested in the lower-right-hand element of A−1. Upon using the definition of F2 in
(A-74), this is

F2 = [x′x − (x′i)(i′i)−1(i′x)]−1 =
{

x′
[

Ix − i

(
1
n

)
i′x

]}−1

=
{

x′
[

I −
(

1
n

)
ii′

]
x

}−1

= (x′M0x)−1.

Therefore, the lower-right-hand value in the inverse matrix is

(x′M0x)−1 = 1∑n
i=1 (xi − x̄ )2

= a22.

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-right
block of (Z′Z)−1, where Z = [i, X]. The analogous result is

(Z′Z)22 = [X′X − X′i(i′i)−1i′X]−1 = (X′M0X)−1,

which implies that the K × K matrix in the lower-right corner of (Z′Z)−1 is the inverse of the
K × K matrix whose jkth element is

∑n
i=1(xij − x̄ j )(xik − x̄k). Thus, when a data matrix contains a

column of ones, the elements of the inverse of the matrix of sums of squares and cross products will
be computed from the original data in the form of deviations from the respective column means.

A.5.5 KRONECKER PRODUCTS

A calculation that helps to condense the notation when dealing with sets of regression models
(see Chapter 10) is the Kronecker product. For general matrices A and B,

A ⊗ B =

⎡
⎢⎢⎣

a11B a12B · · · a1KB
a21B a22B · · · a2KB

· · ·
an1B an2B · · · anKB

⎤
⎥⎥⎦ . (A-75)
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Notice that there is no requirement for conformability in this operation. The Kronecker product
can be computed for any pair of matrices. If A is K × Land B is m×n, then A⊗B is (Km)× (Ln).

For the Kronecker product,

(A ⊗ B)−1 = (A−1 ⊗ B−1), (A-76)

If A is M × M and B is n × n, then

|A ⊗ B| = |A|n|B|M,

(A ⊗ B)′ = A′ ⊗ B′,

trace(A ⊗ B) = tr(A)tr(B).

For A, B, C, and D such that the products are defined is

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

A.6 CHARACTERISTIC ROOTS AND VECTORS

A useful set of results for analyzing a square matrix A arises from the solutions to the set of
equations

Ac = λc. (A-77)

The pairs of solutions are the characteristic vectors c and characteristic roots λ. If c is any nonzero
solution vector, then kc is also for any value of k. To remove the indeterminancy, c is normalized
so that c′c = 1.

The solution then consists of λ and the n − 1 unknown elements in c.

A.6.1 THE CHARACTERISTIC EQUATION

Solving (A-77) can, in principle, proceed as follows. First, (A-77) implies that

Ac = λIc,

or that

(A − λI)c = 0.

This equation is a homogeneous system that has a nonzero solution only if the matrix (A − λI) is
singular or has a zero determinant. Therefore, if λ is a solution, then

|A − λI | = 0. (A-78)

This polynomial in λ is the characteristic equation of A. For example, if

A =
[

5 1
2 4

]
,

then

|A − λI| =
∣∣∣∣
5 − λ 1

2 4 − λ

∣∣∣∣= (5 − λ)(4 − λ) − 2(1) = λ2 − 9λ + 18.

The two solutions are λ = 6 and λ = 3.



Greene-2140242 book January 19, 2011 21:35

1036 PART VI ✦ Appendices

In solving the characteristic equation, there is no guarantee that the characteristic roots will
be real. In the preceding example, if the 2 in the lower-left-hand corner of the matrix were −2
instead, then the solution would be a pair of complex values. The same result can emerge in the
general n × n case. The characteristic roots of a symmetric matrix such as X′X are real, however.6

This result will be convenient because most of our applications will involve the characteristic
roots and vectors of symmetric matrices.

For an n × n matrix, the characteristic equation is an nth-order polynomial in λ. Its solutions
may be n distinct values, as in the preceding example, or may contain repeated values of λ, and
may contain some zeros as well.

A.6.2 CHARACTERISTIC VECTORS

With λ in hand, the characteristic vectors are derived from the original problem,

Ac = λc,

or

(A − λI)c = 0. (A-79)

Neither pair determines the values of c1 and c2. But this result was to be expected; it was the
reason c′c = 1 was specified at the outset. The additional equation c′c = 1, however, produces
complete solutions for the vectors.

A.6.3 GENERAL RESULTS FOR CHARACTERISTIC
ROOTS AND VECTORS

A K × K symmetric matrix has K distinct characteristic vectors, c1, c2, . . . cK. The corresponding
characteristic roots, λ1, λ2, . . . , λK, although real, need not be distinct. The characteristic vectors of
a symmetric matrix are orthogonal,7 which implies that for every i 
= j, c′

i c j = 0.8 It is convenient
to collect the K-characteristic vectors in a K × K matrix whose ith column is the ci corresponding
to λi ,

C = [c1 c2 · · · cK],

and the K-characteristic roots in the same order, in a diagonal matrix,

� =

⎡
⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

· · ·
0 0 · · · λK

⎤
⎥⎦ .

Then, the full set of equations

Ack = λkck

is contained in

AC = C�. (A-80)

6A proof may be found in Theil (1971).
7For proofs of these propositions, see Strang (1988).
8This statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic
vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right”
characteristic vectors, Ac = λc, and “left” characteristic vectors, d′A = λd′, which may not be equal.
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Because the vectors are orthogonal and c′
i ci = 1, we have

C′C =

⎡
⎢⎢⎢⎣

c′
1c1 c′

1c2 · · · c′
1cK

c′
2c1 c′

2c2 · · · c′
2cK

...

c′
Kc1 c′

Kc2 · · · c′
KcK

⎤
⎥⎥⎥⎦ = I. (A-81)

Result (A-81) implies that

C′ = C−1. (A-82)

Consequently,

CC′ = CC−1 = I (A-83)

as well, so the rows as well as the columns of C are orthogonal.

A.6.4 DIAGONALIZATION AND SPECTRAL DECOMPOSITION
OF A MATRIX

By premultiplying (A-80) by C′ and using (A-81), we can extract the characteristic roots of A.

DEFINITION A.15 Diagonalization of a Matrix
The diagonalization of a matrix A is

C′AC = C′C� = I� = �. (A-84)

Alternatively, by postmultiplying (A-80) by C′ and using (A-83), we obtain a useful representation
of A.

DEFINITION A.16 Spectral Decomposition of a Matrix
The spectral decomposition of A is

A = C�C′ =
K∑

k=1

λkckc′
k. (A-85)

In this representation, the K × K matrix A is written as a sum of K rank one matrices. This sum
is also called the eigenvalue (or, “own” value) decomposition of A. In this connection, the term
signature of the matrix is sometimes used to describe the characteristic roots and vectors. Yet
another pair of terms for the parts of this decomposition are the latent roots and latent vectors
of A.

A.6.5 RANK OF A MATRIX

The diagonalization result enables us to obtain the rank of a matrix very easily. To do so, we can
use the following result.
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THEOREM A.3 Rank of a Product
For any matrix A and nonsingular matrices B and C, the rank of BAC is equal to the rank
of A.

Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43), rank(BA) =
rank(A′B′), and applying (A-45) again, rank(A′B′) = rank(A′) because B′ is nonsingular
if B is nonsingular [once again, by (A-43)]. Finally, applying (A-43) again to obtain
rank(A′) = rank(A) gives the result.

Because C and C′ are nonsingular, we can use them to apply this result to (A-84). By an obvious
substitution,

rank(A) = rank(�). (A-86)

Finding the rank of � is trivial. Because � is a diagonal matrix, its rank is just the number of
nonzero values on its diagonal. By extending this result, we can prove the following theorems.
(Proofs are brief and are left for the reader.)

THEOREM A.4 Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots it
contains.

Note how this result enters the spectral decomposition given earlier. If any of the character-
istic roots are zero, then the number of rank one matrices in the sum is reduced correspondingly.
It would appear that this simple rule will not be useful if A is not square. But recall that

rank(A) = rank(A′A). (A-87)

Because A′A is always square, we can use it instead of A. Indeed, we can use it even if A is square,
which leads to a fully general result.

THEOREM A.5 Rank of a Matrix
The rank of any matrix A equals the number of nonzero characteristic roots in A′A.

The row rank and column rank of a matrix are equal, so we should be able to apply
Theorem A.5 to AA′ as well. This process, however, requires an additional result.

THEOREM A.6 Roots of an Outer Product Matrix
The nonzero characteristic roots of AA′ are the same as those of A′A.
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The proof is left as an exercise. A useful special case the reader can examine is the characteristic
roots of aa′ and a′a, where a is an n × 1 vector.

If a characteristic root of a matrix is zero, then we have Ac = 0. Thus, if the matrix has a zero
root, it must be singular. Otherwise, no nonzero c would exist. In general, therefore, a matrix is
singular; that is, it does not have full rank if and only if it has at least one zero root.

A.6.6 CONDITION NUMBER OF A MATRIX

As the preceding might suggest, there is a discrete difference between full rank and short rank
matrices. In analyzing data matrices such as the one in Section A.2, however, we shall often
encounter cases in which a matrix is not quite short ranked, because it has all nonzero roots, but
it is close. That is, by some measure, we can come very close to being able to write one column
as a linear combination of the others. This case is important; we shall examine it at length in our
discussion of multicollinearity in Section 4.7.1. Our definitions of rank and determinant will fail
to indicate this possibility, but an alternative measure, the condition number, is designed for that
purpose. Formally, the condition number for a square matrix A is

γ =
[

maximum root
minimum root

]1/2

. (A-88)

For nonsquare matrices X, such as the data matrix in the example, we use A = X′X. As a further
refinement, because the characteristic roots are affected by the scaling of the columns of X, we
scale the columns to have length 1 by dividing each column by its norm [see (A-55)]. For the
X in Section A.2, the largest characteristic root of A is 4.9255 and the smallest is 0.0001543.
Therefore, the condition number is 178.67, which is extremely large. (Values greater than 20 are
large.) That the smallest root is close to zero compared with the largest means that this matrix is
nearly singular. Matrices with large condition numbers are difficult to invert accurately.

A.6.7 TRACE OF A MATRIX

The trace of a square K × K matrix is the sum of its diagonal elements:

tr(A) =
K∑

k=1

akk.

Some easily proven results are

tr(cA) = c(tr(A)), (A-89)

tr(A′) = tr(A), (A-90)

tr(A + B) = tr(A) + tr(B), (A-91)

tr(IK) = K. (A-92)

tr(AB) = tr(BA). (A-93)

a′a = tr(a′a) = tr(aa′)

tr(A′A) =
K∑

k=1

a′
kak =

K∑
i=1

K∑
k=1

a2
ik.

The permutation rule can be extended to any cyclic permutation in a product:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). (A-94)
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By using (A-84), we obtain

tr(C′AC) = tr(ACC′
) = tr(AI) = tr(A) = tr(�). (A-95)

Because � is diagonal with the roots of A on its diagonal, the general result is the following.

THEOREM A.7 Trace of a Matrix
The trace of a matrix equals the sum of its characteristic roots. (A-96)

A.6.8 DETERMINANT OF A MATRIX

Recalling how tedious the calculation of a determinant promised to be, we find that the following
is particularly useful. Because

C′AC = �,

|C′AC| = |�|.
(A-97)

Using a number of earlier results, we have, for orthogonal matrix C,

|C′AC| = |C′| · |A| · |C| = |C′| · |C| · |A| = |C′C| · |A| = |I| · |A| = 1 · |A|
= |A|
= |�|.

(A-98)

Because |�| is just the product of its diagonal elements, the following is implied.

THEOREM A.8 Determinant of a Matrix
The determinant of a matrix equals the product of its characteristic roots.

(A-99)

Notice that we get the expected result if any of these roots is zero. The determinant is the
product of the roots, so it follows that a matrix is singular if and only if its determinant is zero
and, in turn, if and only if it has at least one zero characteristic root.

A.6.9 POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = A2. For positive integer
powers, these expressions can be computed by repeated multiplication. But this does not show
how to handle a problem such as finding a B such that B2 = A, that is, the square root of a matrix.
The characteristic roots and vectors provide a solution. Consider first

AA = A2 = (C�C′)(C�C′) = C�C′C�C′ = C�I�C′ = C��C′

= C�2C′.
(A-100)

Two results follow. Because �2 is a diagonal matrix whose nonzero elements are the squares of
those in �, the following is implied.

For any symmetric matrix, the characteristic roots of A2 are the squares of those of A,

and the characteristic vectors are the same. (A-101)
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The proof is obtained by observing that the second line in (A-100) is the spectral decomposi-
tion of the matrix B = AA. Because A3 = AA2 and so on, (A-101) extends to any positive integer.
By convention, for any A, A0 = I. Thus, for any symmetric matrix A, AK = C�KC′, K = 0, 1, . . . .
Hence, the characteristic roots of AK are λK, whereas the characteristic vectors are the same as
those of A. If A is nonsingular, so that all its roots λi are nonzero, then this proof can be extended
to negative powers as well.

If A−1 exists, then

A−1 = (C�C′)−1 = (C′)−1�−1C−1 = C�−1C′, (A-102)

where we have used the earlier result, C′ = C−1. This gives an important result that is useful for
analyzing inverse matrices.

THEOREM A.9 Characteristic Roots of an Inverse Matrix
If A−1 exists, then the characteristic roots of A−1 are the reciprocals of those of A, and the
characteristic vectors are the same.

By extending the notion of repeated multiplication, we now have a more general result.

THEOREM A.10 Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix A = C�C′, AK = C�KC′, K = . . . , −2,

−1, 0, 1, 2, . . . .

We now turn to the general problem of how to compute the square root of a matrix. In the
scalar case, the value would have to be nonnegative. The matrix analog to this requirement is that
all the characteristic roots are nonnegative. Consider, then, the candidate

A1/2 = C�1/2C′ = C

⎡
⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

· · ·
0 0 · · · √

λn

⎤
⎥⎦ C′. (A-103)

This equation satisfies the requirement for a square root, because

A1/2A1/2 = C�1/2C′C�1/2C′ = C�C′ = A. (A-104)

If we continue in this fashion, we can define the powers of a matrix more generally, still assuming
that all the characteristic roots are nonnegative. For example, A1/3 = C�1/3C′. If all the roots are
strictly positive, we can go one step further and extend the result to any real power. For reasons
that will be made clear in the next section, we say that a matrix with positive characteristic roots
is positive definite. It is the matrix analog to a positive number.

DEFINITION A.17 Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C�r C′, for any real number, r . (A-105)
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The characteristic roots of Ar are the r th power of those of A, and the characteristic vectors
are the same.

If A is only nonnegative definite—that is, has roots that are either zero or positive—then
(A-105) holds only for nonnegative r .

A.6.10 IDEMPOTENT MATRICES

Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their importance
in econometrics, we collect a few results related to idempotent matrices at this point. First, (A-101)
implies that if λ is a characteristic root of an idempotent matrix, then λ = λK for all nonnegative
integers K. As such, if A is a symmetric idempotent matrix, then all its roots are one or zero.
Assume that all the roots of A are one. Then � = I, and A = C�C′ = CIC′ = CC′ = I. If the
roots are not all one, then one or more are zero. Consequently, we have the following results for
symmetric idempotent matrices:9

• The only full rank, symmetric idempotent matrix is the identity matrix I. (A-106)• All symmetric idempotent matrices except the identity matrix are singular. (A-107)

The final result on idempotent matrices is obtained by observing that the count of the nonzero
roots of A is also equal to their sum. By combining Theorems A.5 and A.7 with the result that
for an idempotent matrix, the roots are all zero or one, we obtain this result:

• The rank of a symmetric idempotent matrix is equal to its trace. (A-108)

A.6.11 FACTORING A MATRIX

In some applications, we shall require a matrix P such that

P′P = A−1.

One choice is

P = �−1/2C′,

so that

P′P = (C′)′(�−1/2)′�−1/2C′ = C�−1C′,

as desired.10 Thus, the spectral decomposition of A, A = C�C′ is a useful result for this kind of
computation.

The Cholesky factorization of a symmetric positive definite matrix is an alternative represen-
tation that is useful in regression analysis. Any symmetric positive definite matrix A may be written
as the product of a lower triangular matrix L and its transpose (which is an upper triangular matrix)
L′ = U. Thus, A = LU. This result is the Cholesky decomposition of A. The square roots of the
diagonal elements of L, di , are the Cholesky values of A. By arraying these in a diagonal matrix D,
we may also write A = LD−1D2D−1U = L∗D2U∗, which is similar to the spectral decomposition in
(A-85). The usefulness of this formulation arises when the inverse of A is required. Once L is

9Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work,
however.
10We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are
other candidates. The reader can easily verify that C�−1/2C′ = A−1/2 works as well.
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computed, finding A−1 = U−1L−1 is also straightforward as well as extremely fast and accurate.
Most recently developed econometric software packages use this technique for inverting positive
definite matrices.

A third type of decomposition of a matrix is useful for numerical analysis when the inverse
is difficult to obtain because the columns of A are “nearly” collinear. Any n × K matrix A for
which n ≥ K can be written in the form A = UWV′, where U is an orthogonal n× K matrix—that
is, U′U = IK—W is a K × K diagonal matrix such that wi ≥ 0, and V is a K × K matrix such
that V′V = IK. This result is called the singular value decomposition (SVD) of A, and wi are the
singular values of A.11 (Note that if A is square, then the spectral decomposition is a singular
value decomposition.) As with the Cholesky decomposition, the usefulness of the SVD arises in
inversion, in this case, of A′A. By multiplying it out, we obtain that (A′A)−1 is simply VW−2V′.
Once the SVD of A is computed, the inversion is trivial. The other advantage of this format is its
numerical stability, which is discussed at length in Press et al. (1986).

Press et al. (1986) recommend the SVD approach as the method of choice for solv-
ing least squares problems because of its accuracy and numerical stability. A commonly used
alternative method similar to the SVD approach is the QR decomposition. Any n × K matrix,
X, with n ≥ K can be written in the form X = QR in which the columns of Q are orthonormal
(Q′Q = I) and R is an upper triangular matrix. Decomposing X in this fashion allows an ex-
tremely accurate solution to the least squares problem that does not involve inversion or direct
solution of the normal equations. Press et al. suggest that this method may have problems with
rounding errors in problems when X is nearly of short rank, but based on other published results,
this concern seems relatively minor.12

A.6.12 THE GENERALIZED INVERSE OF A MATRIX

Inverse matrices are fundamental in econometrics. Although we shall not require them much
in our treatment in this book, there are more general forms of inverse matrices than we have
considered thus far. A generalized inverse of a matrix A is another matrix A+ that satisfies the
following requirements:

1. AA+A = A.

2. A+AA+ = A+.

3. A+A is symmetric.
4. AA+ is symmetric.

A unique A+ can be found for any matrix, whether A is singular or not, or even if A is not
square.13 The unique matrix that satisfies all four requirements is called the Moore–Penrose
inverse or pseudoinverse of A. If A happens to be square and nonsingular, then the generalized
inverse will be the familiar ordinary inverse. But if A−1 does not exist, then A+ can still be
computed.

An important special case is the overdetermined system of equations

Ab = y,

11Discussion of the singular value decomposition (and listings of computer programs for the computations)
may be found in Press et al. (1986).
12The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems
that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these prob-
lems, which include some extremely difficult, ill-conditioned data sets, we found that the QR method would
reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR method should
be satisfactory for all but the worst problems.
13A proof of uniqueness, with several other results, may be found in Theil (1983).
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where A has n rows, K < n columns, and column rank equal to R ≤ K. Suppose that R equals
K, so that (A′A)−1 exists. Then the Moore–Penrose inverse of A is

A+ = (A′A)−1A′,

which can be verified by multiplication. A “solution” to the system of equations can be
written

b = A+y.

This is the vector that minimizes the length of Ab − y. Recall this was the solution to the least
squares problem obtained in Section A.4.4. If y lies in the column space of A, this vector will be
zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be computed. An
alternative solution can be obtained, however. We continue to use the matrix A′A. In the spectral
decomposition of Section A.6.4, if A has rank R, then there are R terms in the summation in
(A-85). In (A-102), the spectral decomposition using the reciprocals of the characteristic roots is
used to compute the inverse. To compute the Moore–Penrose inverse, we apply this calculation to
A′A, using only the nonzero roots, then postmultiply the result by A′. Let C1 be the Rcharacteristic
vectors corresponding to the nonzero roots, which we array in the diagonal matrix, �1. Then the
Moore–Penrose inverse is

A+ = C1�
−1
1 C′

1A′,

which is very similar to the previous result.
If A is a symmetric matrix with rank R ≤ K, the Moore–Penrose inverse is computed

precisely as in the preceding equation without postmultiplying by A′. Thus, for a symmetric
matrix A,

A+ = C1�
−1
1 C′

1,

where �−1
1 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

q =
n∑

i=1

n∑
j=1

xi xj aij. (A-109)

This quadratic form can be written

q = x′Ax,

where A is a symmetric matrix. In general, q may be positive, negative, or zero; it depends on A
and x. There are some matrices, however, for which q will be positive regardless of x, and others
for which q will always be negative (or nonnegative or nonpositive). For a given matrix A,

1. If x′Ax > (<) 0 for all nonzero x, then A is positive (negative) definite.
2. If x′Ax ≥ (≤) 0 for all nonzero x, then A is nonnegative definite or positive semidefinite

(nonpositive definite).

It might seem that it would be impossible to check a matrix for definiteness, since x can be
chosen arbitrarily. But we have already used the set of results necessary to do so. Recall that a
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symmetric matrix can be decomposed into

A = C�C′.

Therefore, the quadratic form can be written as

x′Ax = x′C�C′x.

Let y = C′x. Then

x′Ax = y′�y =
n∑

i=1

λi y2
i . (A-110)

If λi is positive for all i , then regardless of y—that is, regardless of x—q will be positive. This case
was identified earlier as a positive definite matrix. Continuing this line of reasoning, we obtain
the following theorem.

THEOREM A.11 Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of A are positive (negative),
then A is positive definite (negative definite). If some of the roots are zero, then A is
nonnegative (nonpositive) definite if the remainder are positive (negative). If A has both
negative and positive roots, then A is indefinite.

The preceding statements give, in each case, the “if” parts of the theorem. To establish
the “only if” parts, assume that the condition on the roots does not hold. This must lead to a
contradiction. For example, if some λ can be negative, then y′�y could be negative for some y,
so A cannot be positive definite.

A.7.1 NONNEGATIVE DEFINITE MATRICES

A case of particular interest is that of nonnegative definite matrices. Theorem A.11 implies a
number of related results.

• If A is nonnegative definite, then |A| ≥ 0. (A-111)

Proof: The determinant is the product of the roots, which are nonnegative.

The converse, however, is not true. For example, a 2 × 2 matrix with two negative roots is
clearly not positive definite, but it does have a positive determinant.

• If A is positive definite, so is A−1. (A-112)

Proof: The roots are the reciprocals of those of A, which are, therefore positive.

• The identity matrix I is positive definite. (A-113)

Proof: x′Ix = x′x > 0 if x 
= 0.

A very important result for regression analysis is

• If A is n × K with full column rank and n > K, then A′A is positive definite and AA′ is
nonnegative definite. (A-114)

Proof: By assumption, Ax 
= 0. So x′A′Ax = (Ax)′(Ax) = y′y = ∑
j y2

j > 0.
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A similar proof establishes the nonnegative definiteness of AA′. The difference in the latter case is
that because A has more rows than columns there is an x such that A′x = 0. Thus, in the proof, we
only have y′y ≥ 0. The case in which A does not have full column rank is the same as that of AA′.

• If A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.
(A-115)

Proof: x′B′ABx = y′Ay > 0, where y = Bx. But y cannot be 0 because B is nonsingular.

Finally, note that for A to be negative definite, all A’s characteristic roots must be negative. But,
in this case, |A| is positive if A is of even order and negative if A is of odd order.

A.7.2 IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the distributions of many test
statistics. As such, we shall encounter them fairly often. Two central results are of interest.

• Every symmetric idempotent matrix is nonnegative definite. (A-116)

Proof: All roots are one or zero; hence, the matrix is nonnegative definite by definition.

Combining this with some earlier results yields a result used in determining the sampling distri-
bution of most of the standard test statistics.

• If A is symmetric and idempotent, n × n with rank J , then every quadratic form in A can be
written x′Ax = ∑J

j=1 y2
j (A-117)

Proof: This result is (A-110) with λ = one or zero.

A.7.3 COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger” than another. We now
consider how to make such a comparison. As a starting point, the two matrices must have the
same dimensions. A useful comparison is based on

d = x′Ax − x′Bx = x′(A − B)x.

If d is always positive for any nonzero vector, x, then by this criterion, we can say that A is larger
than B. The reverse would apply if d is always negative. It follows from the definition that

if d > 0 for all nonzero x, then A − B is positive definite. (A-118)

If d is only greater than or equal to zero, then A − B is nonnegative definite. The ordering is not
complete. For some pairs of matrices, d could have either sign, depending on x. In this case, there
is no simple comparison.

A particular case of the general result which we will encounter frequently is.

If A is positive definite and B is nonnegative definite,
then A + B ≥ A. (A-119)

Consider, for example, the “updating formula” introduced in (A-66). This uses a matrix

A = B′B + bb′ ≥ B′B.

Finally, in comparing matrices, it may be more convenient to compare their inverses. The result
analogous to a familiar result for scalars is:

If A > B, then B−1 > A−1. (A-120)
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To establish this intuitive result, we would make use of the following, which is proved in Gold-
berger (1964, Chapter 2):

THEOREM A.12 Ordering for Positive Definite Matrices
If A and B are two positive definite matrices with the same dimensions and if every char-
acteristic root of A is larger than (at least as large as) the corresponding characteristic root
of B when both sets of roots are ordered from largest to smallest, then A − B is positive
(nonnegative) definite.

The roots of the inverse are the reciprocals of the roots of the original matrix, so the theorem can
be applied to the inverse matrices.

A.8 CALCULUS AND MATRIX ALGEBRA14

A.8.1 DIFFERENTIATION AND THE TAYLOR SERIES

A variable y is a function of another variable x written

y = f (x), y = g(x), y = y(x),

and so on, if each value of x is associated with a single value of y. In this relationship, y and x are
sometimes labeled the dependent variable and the independent variable, respectively. Assuming
that the function f (x) is continuous and differentiable, we obtain the following derivatives:

f ′(x) = dy
dx

, f ′′(x) = d2 y
dx2

,

and so on.
A frequent use of the derivatives of f (x) is in the Taylor series approximation. A Taylor

series is a polynomial approximation to f (x). Letting x0 be an arbitrarily chosen expansion point

f (x) ≈ f (x0) +
P∑

i=1

1
i!

di f (x0)

d(x0)i
(x − x0)i . (A-121)

The choice of the number of terms is arbitrary; the more that are used, the more accurate the
approximation will be. The approximation used most frequently in econometrics is the linear
approximation,

f (x) ≈ α + βx, (A-122)

where, by collecting terms in (A-121), α = [ f (x0) − f ′(x0)x0] and β = f ′(x0). The superscript
“0” indicates that the function is evaluated at x0. The quadratic approximation is

f (x) ≈ α + βx + γ x2, (A-123)

where α = [ f 0 − f ′0x0 + 1
2 f ′′0(x0)2], β = [ f ′0 − f ′′0x0] and γ = 1

2 f ′′0.

14For a complete exposition, see Magnus and Neudecker (1988).
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We can regard a function y = f (x1, x2, . . . , xn) as a scalar-valued function of a vector; that
is, y = f (x). The vector of partial derivatives, or gradient vector, or simply gradient, is

∂ f (x)

∂x
=

⎡
⎢⎣

∂y/∂x1

∂y/∂x2

· · ·
∂y/∂xn

⎤
⎥⎦ =

⎡
⎢⎣

f1

f2

· · ·
fn

⎤
⎥⎦ . (A-124)

The vector g(x) or g is used to represent the gradient. Notice that it is a column vector. The shape
of the derivative is determined by the denominator of the derivative.

A second derivatives matrix or Hessian is computed as

H =

⎡
⎢⎣

∂2 y/∂x1∂x1 ∂2 y/∂x1∂x2 · · · ∂2 y/∂x1∂xn

∂2 y/∂x2∂x1 ∂2 y/∂x2∂x2 · · · ∂2 y/∂x2∂xn

· · · · · · · · · · · ·
∂2 y/∂xn∂x1 ∂2 y/∂xn∂x2 · · · ∂2 y/∂xn∂xn

⎤
⎥⎦ = [ fij]. (A-125)

In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous and
continuously differentiable functions from Young’s theorem.) Each column of H is the derivative
of g with respect to the corresponding variable in x′. Therefore,

H =
[

∂(∂y/∂x)

∂x1

∂(∂y/∂x)

∂x2
· · · ∂(∂y/∂x)

∂xn

]
= ∂(∂y/∂x)

∂(x1 x2 · · · xn)
= ∂(∂y/∂x)

∂x′ = ∂2 y
∂x∂x′ .

The first-order, or linear Taylor series approximation is

y ≈ f (x0) +
n∑

i=1

fi (x0)
(

xi − x0
i

)
. (A-126)

The right-hand side is

f (x0) +
[

∂ f (x0)

∂x0

]′
(x − x0) = [ f (x0) − g(x0)′x0] + g(x0)′x = [ f 0 − g0′x0] + g0′x.

This produces the linear approximation,

y ≈ α + β ′x.

The second-order, or quadratic, approximation adds the second-order terms in the expansion,

1
2

n∑
i=1

n∑
j=1

f 0
ij

(
xi − x0

i

)(
xj − x0

j

) = 1
2
(x − x0)′H0(x − x0),

to the preceding one. Collecting terms in the same manner as in (A-126), we have

y ≈ α + β ′x + 1
2

x′�x, (A-127)

where

α = f 0 − g0′x0 + 1
2

x0′H0x0, β = g0 − H0x0 and � = H0.

A linear function can be written

y = a′x = x′a =
n∑

i=1

ai xi ,
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so

∂(a′x)

∂x
= a. (A-128)

Note, in particular, that ∂(a′x)/∂x = a, not a′. In a set of linear functions

y = Ax,

each element yi of y is

yi = a′
i x,

where a′
i is the ith row of A [see (A-14)]. Therefore,

∂yi

∂x
= ai = transpose of ith row of A,

and ⎡
⎢⎢⎣

∂y1/∂x′

∂y2/∂x′

· · ·
∂yn/∂x′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a′
1

a′
2

· · ·
a′

n

⎤
⎥⎥⎦ .

Collecting all terms, we find that ∂Ax/∂x′ = A, whereas the more familiar form will be

∂Ax
∂x

= A′. (A-129)

A quadratic form is written

x′Ax =
n∑

i=1

n∑
j=1

xi xj aij. (A-130)

For example,

A =
[

1 3
3 4

]
,

so that

x′Ax = 1x2
1 + 4x2

2 + 6x1x2.

Then

∂x′Ax
∂x

=
[

2x1 + 6x2

6x1 + 8x2

]
=

[
2 6
6 8

][
x1

x2

]
= 2Ax, (A-131)

which is the general result when A is a symmetric matrix. If A is not symmetric, then

∂(x′Ax)

∂x
= (A + A′)x. (A-132)

Referring to the preceding double summation, we find that for each term, the coefficient on aij is
xi xj . Therefore,

∂(x′Ax)

∂aij
= xi xj .
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The square matrix whose i jth element is xi xj is xx′, so

∂(x′Ax)

∂A
= xx′. (A-133)

Derivatives involving determinants appear in maximum likelihood estimation. From the
cofactor expansion in (A-51),

∂|A|
∂aij

= (−1)i+ j |Aij| = cij

where |C j i | is the j ith cofactor in A. The inverse of A can be computed using

A−1
ij = |C j i |

|A|
(note the reversal of the subscripts), which implies that

∂ ln|A|
∂aij

= (−1)i+ j |Aij|
|A| ,

or, collecting terms,

∂ ln|A|
∂A

= A−1′.

Because the matrices for which we shall make use of this calculation will be symmetric in our
applications, the transposition will be unnecessary.

A.8.2 OPTIMIZATION

Consider finding the x where f (x) is maximized or minimized. Because f ′(x) is the slope of
f (x), either optimum must occur where f ′(x) = 0. Otherwise, the function will be increasing
or decreasing at x. This result implies the first-order or necessary condition for an optimum
(maximum or minimum):

dy
dx

= 0. (A-134)

For a maximum, the function must be concave; for a minimum, it must be convex. The sufficient
condition for an optimum is.

For a maximum,
d2 y
dx2

< 0;

for a minimum,
d2 y
dx2

> 0.

(A-135)

Some functions, such as the sine and cosine functions, have many local optima, that is, many
minima and maxima. A function such as (cos x)/(1 + x2), which is a damped cosine wave, does
as well but differs in that although it has many local maxima, it has one, at x = 0, at which f (x)

is greater than it is at any other point. Thus, x = 0 is the global maximum, whereas the other
maxima are only local maxima. Certain functions, such as a quadratic, have only a single optimum.
These functions are globally concave if the optimum is a maximum and globally convex if it is a
minimum.

For maximizing or minimizing a function of several variables, the first-order conditions are

∂ f (x)

∂x
= 0. (A-136)
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This result is interpreted in the same manner as the necessary condition in the univariate case.
At the optimum, it must be true that no small change in any variable leads to an improvement
in the function value. In the single-variable case, d2 y/dx2 must be positive for a minimum and
negative for a maximum. The second-order condition for an optimum in the multivariate case is
that, at the optimizing value,

H = ∂2 f (x)

∂x ∂x′ (A-137)

must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order condition can usually be verified by inspection.

This situation will not generally be true in the multivariate case. As discussed earlier, checking the
definiteness of a matrix is, in general, a difficult problem. For most of the problems encountered
in econometrics, however, the second-order condition will be implied by the structure of the
problem. That is, the matrix H will usually be of such a form that it is always definite.

For an example of the preceding, consider the problem

maximizex R = a′x − x′Ax,

where

a′ = (5 4 2),

and

A =
[

2 1 3
1 3 2
3 2 5

]
.

Using some now familiar results, we obtain

∂ R
∂x

= a − 2Ax =
[

5
4
2

]
−

[
4 2 6
2 6 4
6 4 10

][
x1

x2

x3

]
= 0. (A-138)

The solutions are
[

x1

x2

x3

]
=

[
4 2 6
2 6 4
6 4 10

]−1 [
5
4
2

]
=

[
11.25

1.75
−7.25

]
.

The sufficient condition is that

∂2 R(x)

∂x ∂x′ = −2A =
[−4 −2 −6
−2 −6 −4
−6 −4 −10

]
(A-139)

must be negative definite. The three characteristic roots of this matrix are −15.746, −4, and
−0.25403. Because all three roots are negative, the matrix is negative definite, as required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian to verify
the sufficient condition. For a general matrix of order larger than 2, this will normally require a
computer. Suppose, however, that A is of the form

A = B′B,

where B is some known matrix. Then, as shown earlier, we know that A will always be positive
definite (assuming that B has full rank). In this case, it is not necessary to calculate the characteristic
roots of A to verify the sufficient conditions.
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A.8.3 CONSTRAINED OPTIMIZATION

It is often necessary to solve an optimization problem subject to some constraints on the solution.
One method is merely to “solve out” the constraints. For example, in the maximization problem
considered earlier, suppose that the constraint x1 = x2 −x3 is imposed on the solution. For a single
constraint such as this one, it is possible merely to substitute the right-hand side of this equation
for x1 in the objective function and solve the resulting problem as a function of the remaining two
variables. For more general constraints, however, or when there is more than one constraint, the
method of Lagrange multipliers provides a more straightforward method of solving the problem.
We

maximizex f (x) subject to c1(x) = 0,

c2(x) = 0,

· · ·
cJ (x) = 0.

(A-140)

The Lagrangean approach to this problem is to find the stationary points—that is, the points at
which the derivatives are zero—of

L∗(x, λ) = f (x) +
J∑

j=1

λ j c j (x) = f (x) + λ′c(x). (A-141)

The solutions satisfy the equations

∂L∗

∂x
= ∂ f (x)

∂x
+ ∂λ′c(x)

∂x
= 0 (n × 1),

∂L∗

∂λ
= c(x) = 0 (J × 1).

(A-142)

The second term in ∂L∗/∂x is

∂λ′c(x)

∂x
= ∂c(x)′λ

∂x
=

[
∂c(x)′

∂x

]
λ = C′λ, (A-143)

where C is the matrix of derivatives of the constraints with respect to x. The jth row of the J × n
matrix C is the vector of derivatives of the jth constraint, c j (x), with respect to x′. Upon collecting
terms, the first-order conditions are

∂L∗

∂x
= ∂ f (x)

∂x
+ C′λ = 0,

∂L∗

∂λ
= c(x) = 0.

(A-144)

There is one very important aspect of the constrained solution to consider. In the unconstrained
solution, we have ∂ f (x)/∂x = 0. From (A-144), we obtain, for a constrained solution,

∂ f (x)

∂x
= −C′λ, (A-145)

which will not equal 0 unless λ = 0. This result has two important implications:

• The constrained solution cannot be superior to the unconstrained solution. This is implied
by the nonzero gradient at the constrained solution. (That is, unless C = 0 which could
happen if the constraints were nonlinear. But, even if so, the solution is still no better than
the unconstrained optimum.)

• If the Lagrange multipliers are zero, then the constrained solution will equal the uncon-
strained solution.
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To continue the example begun earlier, suppose that we add the following conditions:

x1 − x2 + x3 = 0,

x1 + x2 + x3 = 0.

To put this in the format of the general problem, write the constraints as c(x) = Cx = 0, where

C =
[

1 −1 1
1 1 1

]
.

The Lagrangean function is

R∗(x, λ) = a′x − x′Ax + λ′Cx.

Note the dimensions and arrangement of the various parts. In particular, C is a 2 × 3 matrix, with
one row for each constraint and one column for each variable in the objective function. The vector
of Lagrange multipliers thus has two elements, one for each constraint. The necessary conditions
are

a − 2Ax + C′λ = 0 (three equations), (A-146)

and

Cx = 0 (two equations).

These may be combined in the single equation
[
−2A C′

C 0

][
x
λ

]
=

[
−a
0

]
.

Using the partitioned inverse of (A-74) produces the solutions

λ = −[CA−1C′]−1CA−1a (A-147)

and

x = 1
2

A−1[I − C′(CA−1C′)−1CA−1]a. (A-148)

The two results, (A-147) and (A-148), yield analytic solutions for λ and x. For the specific matrices
and vectors of the example, these are λ = [−0.5 −7.5]′, and the constrained solution vector,
x∗ = [1.5 0 −1.5]′. Note that in computing the solution to this sort of problem, it is not necessary
to use the rather cumbersome form of (A-148). Once λ is obtained from (A-147), the solution
can be inserted in (A-146) for a much simpler computation. The solution

x = 1
2

A−1a + 1
2

A−1C′λ

suggests a useful result for the constrained optimum:

constrained solution = unconstrained solution + [2A]−1C′λ. (A-149)

Finally, by inserting the two solutions in the original function, we find that R = 24.375 and
R∗ = 2.25, which illustrates again that the constrained solution (in this maximization problem)
is inferior to the unconstrained solution.
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A.8.4 TRANSFORMATIONS

If a function is strictly monotonic, then it is a one-to-one function. Each y is associated with
exactly one value of x, and vice versa. In this case, an inverse function exists, which expresses x
as a function of y, written

y = f (x)

and

x = f −1(y).

An example is the inverse relationship between the log and the exponential functions.
The slope of the inverse function,

J = dx
dy

= df −1(y)

dy
= f −1′(y),

is the Jacobian of the transformation from y to x. For example, if

y = a + bx,

then

x = −a
b

+
[

1
b

]
y

is the inverse transformation and

J = dx
dy

= 1
b
.

Looking ahead to the statistical application of this concept, we observe that if y = f (x) were
vertical, then this would no longer be a functional relationship. The same x would be associated
with more than one value of y. In this case, at this value of x, we would find that J = 0, indicating
a singularity in the function.

If y is a column vector of functions, y = f(x), then

J = ∂x
∂y′ =

⎡
⎢⎢⎢⎣

∂x1/∂y1 ∂x1/∂y2 · · · ∂x1/∂yn

∂x2/∂y1 ∂x2/∂y2 · · · ∂x2/∂yn

...

∂xn/∂y1 ∂xn/∂y2 · · · ∂xn/∂yn

⎤
⎥⎥⎥⎦ .

Consider the set of linear functions y = Ax = f(x). The inverse transformation is x = f−1(y),
which will be

x = A−1y,

if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the matrix
of partial derivatives of the inverse functions:

J =
[

∂xi

∂yj

]
.

The absolute value of the determinant of J,

abs(|J|) = abs

(
det

([
∂x
∂y′

]))
,

is the Jacobian determinant of the transformation from y to x. In the nonsingular case,

abs(|J|) = abs(|A−1|) = 1
abs(|A|) .
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In the singular case, the matrix of partial derivatives will be singular and the determinant of
the Jacobian will be zero. In this instance, the singular Jacobian implies that A is singular or,
equivalently, that the transformations from x to y are functionally dependent. The singular case
is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x can be
deduced from y is another question. Evidently, it depends on the Jacobian. If the Jacobian is
not zero, then the inverse transformations exist, and we can obtain x. If not, then we cannot
obtain x.

APPENDIX B

Q
PROBABILITY AND

DISTRIBUTION THEORY

B.1 INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course in statistics
is assumed, so most of the results will be stated without proof. The more advanced results in the
later sections will be developed in greater detail.

B.2 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome of a random process
that is almost never under our (the analyst’s) control. In the current literature, the descriptive
(and perspective laden) term data generating process, or DGP is often used for this underlying
mechanism. The observed (measured) outcomes of the process are assigned unique numeric
values. The assignment is one to one; each outcome gets one value, and no two distinct outcomes
receive the same value. This outcome variable, X, is a random variable because, until the data
are actually observed, it is uncertain what value X will take. Probabilities are associated with
outcomes to quantify this uncertainty. We usually use capital letters for the “name” of a random
variable and lowercase letters for the values it takes. Thus, the probability that X takes a particular
value x might be denoted Prob(X = x).

A random variable is discrete if the set of outcomes is either finite in number or countably
infinite. The random variable is continuous if the set of outcomes is infinitely divisible and, hence,
not countable. These definitions will correspond to the types of data we observe in practice. Counts
of occurrences will provide observations on discrete random variables, whereas measurements
such as time or income will give observations on continuous random variables.

B.2.1 PROBABILITY DISTRIBUTIONS

A listing of the values x taken by a random variable X and their associated probabilities is a
probability distribution, f (x). For a discrete random variable,

f (x) = Prob(X = x). (B-1)




