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Bayes vs frequentist

Bayesian statistics is not simply another
statistical tool to be added to ones analytical
toolbox. It is a different way of thinking about,

and doing, statistical analyses of all types.
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Words of Caution

Economists should be aware that Bayesian methods
constitute a radically different way of doing science.
Bayesian statistics is not just another tool to be added
into economists’ repertoire of statistical methods. Instead,
Bayesians categorically reject various tenets of statistics
and the scientific method that are currently widely
accepted in economics and other sciences. The Bayesian
approach has split the statistics world into warring
factions and it is fair to say that the Bayesian approach is
growing rapidly in influence.
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Very brief history of statistics

• Bayesian conceptual framework was developed 
by the Reverend Thomas Bayes (1702-1761), 
and published posthumously in 1764.

• Classical philosophy formalized in early 20th 
century (Karl Pearson, Ronald Fisher et al.) and 
quickly became dominant.

• Revival of Bayesian statistics in late 20th century 
due largely to computational advances (MCMC, 
WinBUGS software, etc.).
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Classical/Frequentist Statistics

• Fixed-effects parameters are fixed and 
unknown.

• Probabilities are defined to be the long term 
average under repetition of the experiment.

1. If a balanced coin is tossed many times then, on average, it will 
be Heads half the time.
2. 95% confidence intervals are constructed so that
they will contain the parameter 95 times out of 100 under 
repetition of the experiment.
3. No probabilistic interpretation for the particular
experiment performed.
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Classical/Frequentist Statistics

Pre-experiment interpretation:
• What is the probability of snow tomorrow?
• What is the probability for an increase in 

the stock price in next week?
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Classical/Frequentist Statistics
Post-experiment interpretation:
• At SMU second year students in economics are 

used as replicates of the experiment that 
observes 100 values from a standard normal 
distribution, N(0,1). They each compute 95% 
confidence intervals for µ(=0).

• In a large class there will typically be at least one 
CI that lies entirely below zero, and another that 
lies entirely above.

• Suppose that I toss a balanced coin, but do not 
reveal the outcome. What is the probability of 
Heads? 
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Bayesian Statistics

• Requires specification of prior knowledge 
-- Experimental observation is used to update the prior 
knowledge to obtain posterior knowledge.
-- Uses Bayes formula

• In the next chapter:
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Bayesian Statistics
Post-experiment interpretation: 
• At SMU second year students in economics are 

used as replicates of the experiment that 
observes 100 values from a standard normal 
distribution, N(0,1). They each compute 95% 
credible intervals for µ(=0). 

• In a large class there will typically be at least one 
CI that lies entirely below zero, and another that 
lies entirely above. 

• Suppose that I toss a balanced coin, but do not 
reveal the outcome. What is the probability of 
Heads? 
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Example: Future car sale

• Objective: Determine the future car sale, 
B, under various tariff rates and CoE prices

• Assume that we have some data to which 
an appropriate population dynamics model 
can be fitted.
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Frequentist

• Frequentist – might be able to produce a 
confidence interval for B. 

• How is this used to determine the 
consequences of various tariff and CoE rates?
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Bayesian

• The posterior distribution for B 
incorporates prior information/uncertainty, 
information provided by the data. 

• Moreover, it quantifies the probability of B 
taking certain values.
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Bayesian vs Frequentist

Who’s right? 
• Jury still divided after nearly a century. 
• Bayesians have moral high ground. 

-- Frequentists rely on the conditionality principle (CP) to define 
“replication” of the experiment. However, CP implies the likelihood 
principle (LP). LP is consistent with Bayesian method.

• Frequentists claim objectivity. 
-- Specification of priors is seldom unequivocal and “non-
informative” priors can only be rigorously defended in the simplest of 
cases. Frequentists view priors as subjective.
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Classical: some good features 

• Regarded as objective. 
• Works well in many cases. 
• Well developed methodology 

1. Unbiasedness of estimators 
2. Efficient estimators (e.g., minimum variance) 
3. Very general large sample (asymptotic) properties 
based on maximum likelihood. 
4. Model checking. 
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Classical: some bad features

• Technical problems re conditionality 
-- Numerous examples demonstrate the problems, 
notwithstanding that these examples are all rather 
contrived. Asymptotic theory not always available 

• Not doing what we want 
1. The null hypothesis is always false, so why bother 
testing it? 
2. p-values do not quantify how well the data support the 
hypothesis. 
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Bayesian: some good features

• Provides probabilistic interpretations. 
• Logically consistent method to update 

prior knowledge and uncertainty, using 
information contained in the data. 

• Uses prior knowledge, which often exists. 
• MCMC (Markov Chain Monte Carlo) 

provides very general purpose software for 
fitting complex models using off-the-shelf 
software.
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Bayesian: some bad features
• Needs prior knowledge, which is seldom 

unequivocal. 
• “Non-informative” priors are mythical in all but 

the simplest models. 
• “Reference” priors may be complicated and 

improper. 
• Posterior will depend strongly on prior if data 

poor. 
• MCMC is dangerous. 
• Techniques for model evaluation, diagnostics, 

sensitivity etc., are less well developed. 
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Bayesian vs Frequentist inference

Point Estimation
• Frequentists rely on the well developed theory of 

minimum variance unbiased estimators (MVUE). 
1. Sample mean and least squares estimators are MVUE for linear 
models with normal data. 
2. Maximum likelihood estimators are asymptotically MVUE. 

• Bayesians typically use posterior mean, which is 
known as the “Bayes estimator”. 
-- Posterior mean is optimal under squared error loss.
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Bayesian vs Frequentist inference

Hypothesis testing
• Frequentists attempt to reject a null hypothesis, 

H0, using a test which has small probability of 
falsely rejecting (though H0 is usually known to 
be false!).
-- Methodology is based on computing most powerful tests – that is, 
tests with greatest probability of rejecting H0 when it is false. 

• Bayesians specify prior probabilities on two (or 
more) hypotheses and obtain the posterior 
probabilities.
-- Optimal choice is the hypothesis with highest posterior probability.
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Bayesian vs Frequentist inference

Interval Estimation 
• Frequentists compute confidence intervals with a 

given “coverage” probability. 
-- “coverage” probability is interpreted as the proportion 
of such intervals expected to contain unknown 
parameter under repetition of the experiment. 

• Bayesians use intervals of highest posterior 
density. 
-- The HPD interval is the minimum width interval containing 95% 
(say) posterior probability.
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Bayes TheoremBayes Theorem
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Simple exampleSimple example
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Example: What is the probability that a fair dice rolled a 
1, given that it rolled an odd number?  

By Bayes theorem, using A=1 and B=odd, we have

Frequentists can interpret this probability under an 
experiment where a dice is rolled repeatedly, but even-
numbered rolls are discarded.
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Bayesian use of BayesBayesian use of Bayes

•• θθ denotes the unobservable quantities.denotes the unobservable quantities.
¯̄ Often just the parameters, but in some models will include Often just the parameters, but in some models will include 

random effects, process errors, predictions etc.random effects, process errors, predictions etc.

•• yy denotes the data.denotes the data.

•• f(y,f(y,θθ)) is the joint density of unobservables and data.is the joint density of unobservables and data.

•• f(y)f(y) is the (marginal) density of the data.is the (marginal) density of the data.

•• ππ((θθ | | y)y) is the posterior density of the unobservables is the posterior density of the unobservables 
given the data.given the data.
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Priors and likelihoodsPriors and likelihoods

where where 

•• The prior density of The prior density of θθ,, is denotedis denoted ππ((θθ).).
•• f(yf(y ||θθ) ) is theis the model for the data (e.g., regression, model for the data (e.g., regression, 

ANOVA, binomial, Poisson, etc.).  This gives the ANOVA, binomial, Poisson, etc.).  This gives the 
density function for the data.density function for the data. This is also known as This is also known as 
the the likelihoodlikelihood function.function.

Thus, the posterior can be obtained asThus, the posterior can be obtained as
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The fundamental theorem of probability:The fundamental theorem of probability:
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PriorsPriors
Prior information must be specified for every Prior information must be specified for every 

parameter in the model. parameter in the model. 

),...,,()( 21 pθθθπθπ =

where where ππ((θθ) ) is a joint density function.is a joint density function.
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Example: Binomial PriorsExample: Binomial Priors
If we observe If we observe Binomial(Binomial(nn,,pp) data, the ) data, the ““referencereference””

prior prior ππ(p(p)) is:is:
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Example: Binomial likelihoodExample: Binomial likelihood
If we observe y=20 successes from 100 trials If we observe y=20 successes from 100 trials 

then the likelihood for then the likelihood for pp=(=(probprob of success) isof success) is
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Model likelihood Model likelihood f(y)f(y)

The denominator of Bayes formula, The denominator of Bayes formula, f(y)f(y), is often called , is often called 
the model likelihood or marginal likelihood.  the model likelihood or marginal likelihood.  

•• f(y)f(y) acts solely as a “normalizing constant” (it does acts solely as a “normalizing constant” (it does 
not involve not involve θ θ )) and can usually be ignored when and can usually be ignored when 
working with working with ππ((θθ | | y).y).

•• f(y) f(y) is important for model comparison. is important for model comparison. 

The formula for f(y) isThe formula for f(y) is
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Example 1: Binomial dataExample 1: Binomial data
Observe Y=20 from a Binomial(100,p) experiment.

We need to calculate 

where π(p) ∝ p-1/2(1-p)-1/2 , 0<p<1

and   f(y,p) ∝ p20(1-p)80

So,   π(p|y) ∝ p19.5(1-p)79.5 , 0<p<1

The trick is to recognize that π(p|y) is the density 
function of a Beta(20.5,80.5) distribution.
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Example 2: IID Normal dataExample 2: IID Normal data
Here, the data (Y1, Y2, Y3, …, Yn) are independent and 

identically distributed as N(μ,σ2). [This is conditional 
on μ and σ2.]

To keep the calculus manageable, it is assumed that σ2

is known, so that    is only unknownμ

The prior on μ is N(ν,φ2).
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Example concludedExample concluded
The formula for The formula for ππ((μ μ || yy)) corresponds to a normal density.  corresponds to a normal density.  

Specifically,Specifically,
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Note that the posterior mean is a weighted average of the 
prior mean and sample mean.
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IID example in WinBUGSIID example in WinBUGS

model model IIDNormalIIDNormal

{{

for(i in 1:n) { y[i] ~ for(i in 1:n) { y[i] ~ dnorm(mu,prec.ydnorm(mu,prec.y) }) }

prec.yprec.y <<-- 1/sigma21/sigma2

mumu ~ ~ dnorm(nu,prec.mudnorm(nu,prec.mu))

prec.muprec.mu <<-- 1/phi21/phi2

}}

...plus a few details we shall see later...plus a few details we shall see later

The model is The model is 

YYii | | μ, σμ, σ22~ N(~ N(μ,σμ,σ22), i=1,…n,   and     ), i=1,…n,   and     μ μ ~ N(~ N(ν,φν,φ22).).
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The general caseThe general case
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In general, the calculus required to work with the above 
formula is formidable (to say the least).  In special cases, 
if the prior is chosen to “match” the likelihood, then the 
calculus is manageable.  These are known as conjugate 
priors.

Until the advent of MCMC, the computational difficulties 
were a major disadvantage of Bayesian modeling.  Now, 
it is the other way around, with MCMC permitting the 
easy fitting of models that may be intractable to 
frequentist statistics!
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Bayesian InferenceBayesian Inference
Chapter 3

•• Point EstimationPoint Estimation

•• Credible IntervalsCredible Intervals
¯̄ Use central intervals, or intervals of highest posterior Use central intervals, or intervals of highest posterior 

density. density. 

•• Hypothesis testingHypothesis testing

2Chapter 3

Point EstimationPoint Estimation

Posterior mean:Posterior mean:
The The ““bestbest”” estimator (in terms of minimizing squared error estimator (in terms of minimizing squared error 

loss) of an unknown parameter is simply the expected loss) of an unknown parameter is simply the expected 
value of the parameter under its posterior distribution. value of the parameter under its posterior distribution. 

The posterior mean is a.k.a. The posterior mean is a.k.a. BayesBayes estimator.estimator.

Example:Example: In the IID Normal example, the In the IID Normal example, the BayesBayes estimator estimator 
of of μ  μ  is is νν∗ ∗ ..
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Point EstimationPoint Estimation

Posterior mean:Posterior mean:
•• Easy to obtain from MCMC software.Easy to obtain from MCMC software.

•• The The BayesBayes estimator is not parameterization invariant.estimator is not parameterization invariant.
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Point EstimationPoint Estimation

Posterior mode:Posterior mode:

The value of The value of θθ that maximizes that maximizes ππ((θθ | | y)y)..
In the IID Normal example, the posterior mode of In the IID Normal example, the posterior mode of μ  μ  is also is also 

νν∗ ∗ ..

The posterior mode is calculated by ADMB (Automatic 
Differentiation Model Builder), but not by WinBUGS..
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Credible IntervalsCredible Intervals

Use central intervals or interval of highest posterior Use central intervals or interval of highest posterior 
density. density. 

6Chapter 3

HPD Interval HPD Interval (symmetric posterior)(symmetric posterior)
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HPD Interval HPD Interval (skewed posterior)(skewed posterior)
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Hypothesis testingHypothesis testing

From From GelmanGelman et al. (2003, Bayesian Data Analysis, 2et al. (2003, Bayesian Data Analysis, 2ndnd

Ed., p. 250)Ed., p. 250)

““The perspective of this book has little role for the nonThe perspective of this book has little role for the non--
Bayesian concept of hypothesis testsBayesian concept of hypothesis tests……. In order for a . In order for a 
Bayesian analysis to yield a nonzero probability for a Bayesian analysis to yield a nonzero probability for a 
point null hypothesis, it must begin with a nonzero point null hypothesis, it must begin with a nonzero 
prior probability for that hypothesis; in the case of a prior probability for that hypothesis; in the case of a 
continuous parameter, such a prior distribution (continuous parameter, such a prior distribution (……) ) 
usually seems contrived.usually seems contrived.””
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Model CheckingModel Checking

Some Some frequentistfrequentist concepts are used in the concepts are used in the 
context of posterior predictive model context of posterior predictive model 
checking, whereby the observed data are checking, whereby the observed data are 
compared to predictive outcomes.compared to predictive outcomes.

We’ll save this until later.

10Chapter 3

Model comparison/selectionModel comparison/selection

There are Bayesian equivalents of There are Bayesian equivalents of frequentistfrequentist
model selection tools (such as model selection tools (such as AkaikeAkaike’’ss
Information Criterion, AIC ). Information Criterion, AIC ). 

The most widely used is the Deviance The most widely used is the Deviance 
Information Criterion, DIC.Information Criterion, DIC.

WeWe’’ll leave DIC, and other model comparison ll leave DIC, and other model comparison 
techniques until later. techniques until later. 
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Prior distributionsPrior distributions
Reference priorsReference priors
-- JeffreysJeffreys’’ rulerule
-- Improper priorsImproper priors

Vague priorsVague priors

Informative priorsInformative priors

Hierarchical modelsHierarchical models

Sensitivity to priorSensitivity to prior

Chapter 4

2Chapter 4

Reference priorsReference priors

•• Historically, considerable research effort has focused Historically, considerable research effort has focused 
at obtaining at obtaining ““nonnon--informativeinformative”” priors (Note: flat priors priors (Note: flat priors 
are not nonare not non--informative in general).  However, like informative in general).  However, like 
the holy grail, this much sought after prize has proved the holy grail, this much sought after prize has proved 
extremely elusive.  It is now more common to use the extremely elusive.  It is now more common to use the 
terminology terminology ““reference priorreference prior”” to denote a prior that is to denote a prior that is 
considered a default prior (for the particular model in considered a default prior (for the particular model in 
question).question).

•• The most widely used method for obtaining a The most widely used method for obtaining a 
(potential) reference prior is (potential) reference prior is JeffreysJeffreys’’s rules rule..

•• Reference priors are frequently Reference priors are frequently improperimproper.  .  
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JeffreysJeffreys’’ rulerule
JeffreysJeffreys’’ rule is motivated by the desire that inference rule is motivated by the desire that inference 

should not depend on how a model is parameterized.should not depend on how a model is parameterized.

Example: if instantaneous mortality is Example: if instantaneous mortality is mm, then the , then the 
annual survival rate is annual survival rate is s=es=e--mm.  Some modelers might .  Some modelers might 
use use m, m, while others might use while others might use s.s. Inference should Inference should 
not depend on this arbitrary choice of not depend on this arbitrary choice of 
parameterization.parameterization.

JeffreysJeffreys’’ rule: rule: The reference prior is obtained as the The reference prior is obtained as the 
square root of the determinant of the information square root of the determinant of the information 
matrix for the model.matrix for the model.

4Chapter 4

JeffreysJeffreys’’ rulerule
JeffreysJeffreys’’ rule is widely accepted for single parameter rule is widely accepted for single parameter 

models, but its use is somewhat more controversial, models, but its use is somewhat more controversial, 
and often subject to modification, in multiand often subject to modification, in multi--parameter parameter 
modelsmodels…….and can also be a chore to calculate..and can also be a chore to calculate.

ExampleExample::

•• The JeffreysThe Jeffreys’’ prior for the mean of normally prior for the mean of normally 
distributed data is the flat prior, distributed data is the flat prior, π π ((μμ))=1, and for the =1, and for the 
standard deviation is the inverse prior standard deviation is the inverse prior π π ((σσ))=1/=1/σ σ (this (this 
is equivalent to is equivalent to loglog((σ σ ) being flat).) being flat).
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JeffreysJeffreys’’ rulerule
In general, the flat prior is the JeffreysIn general, the flat prior is the Jeffreys’’ prior for prior for 

““locationlocation”” parameters and the inverse prior is the parameters and the inverse prior is the 
JeffreysJeffreys’’ prior for prior for ““scalescale”” parameters. parameters. 

The above priors make intuitive sense:The above priors make intuitive sense:

•• If one is totally ignorant of a location parameter, then If one is totally ignorant of a location parameter, then 
it could take any value on the real line with equal it could take any value on the real line with equal 
prior probability.prior probability.

•• If totally ignorant about the scale of a parameter, then If totally ignorant about the scale of a parameter, then 
it is as likely to lie in the interval 1it is as likely to lie in the interval 1--10 as it is to lie in 10 as it is to lie in 
the interval 10the interval 10--100.  This implies a flat prior on the 100.  This implies a flat prior on the 
log scale.log scale.
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Improper priorsImproper priors

Priors such asPriors such as π π ((μμ))=1, =1, π π ((σσ))=1/=1/σ σ are are improperimproper
because they do not integrate to 1.  That is, the area because they do not integrate to 1.  That is, the area 
under the prior density is not unity (and, in fact, is under the prior density is not unity (and, in fact, is 
infinity).infinity).

In most cases, improper priors can be used in Bayesian In most cases, improper priors can be used in Bayesian 
analyses without major problems.  However, things to analyses without major problems.  However, things to 
watch out for are:watch out for are:

•• In a few models, the use of improper priors can result in In a few models, the use of improper priors can result in 
improper posteriors.improper posteriors.

•• Use of improper priors makes model selection and hypothesis Use of improper priors makes model selection and hypothesis 
testing difficult.testing difficult.

•• WinBUGS does not allow the use of improper priors.WinBUGS does not allow the use of improper priors.
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Vague priorsVague priors

Essentially, these are densities with high spread, such Essentially, these are densities with high spread, such 
as a normal density with extremely large variance.  as a normal density with extremely large variance.  
These give similar prior value over a large range of These give similar prior value over a large range of 
parameter values.parameter values.

•• In WinBUGS, the flat prior can be approximated by a In WinBUGS, the flat prior can be approximated by a 
vague normal density prior, with mean=0 and vague normal density prior, with mean=0 and 
variance=1,000,000, say.variance=1,000,000, say.

•• The inverse prior, The inverse prior, π π ((σσ))=1/=1/σ σ , , can be approximated by can be approximated by 
a Gamma density (with very small shape parameter a Gamma density (with very small shape parameter 
and rate parameters).and rate parameters).

8Chapter 4

Gamma approximating priorGamma approximating prior
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Informative priorsInformative priors
As the name suggests, informative priors convey As the name suggests, informative priors convey 

information concerning prior preference for certain information concerning prior preference for certain 
values of the parameters.  values of the parameters.  

Where does this prior information come from?Where does this prior information come from?
•• ““ExpertExpert”” opinion.opinion.

•• Previous experiments of a similar nature.  E.g., in fisheries, pPrevious experiments of a similar nature.  E.g., in fisheries, prior rior 
information about population parameters of a fish stock can be information about population parameters of a fish stock can be 
obtained from previous work done on other stocks of the same obtained from previous work done on other stocks of the same 
species.species.
¯̄ This can often be done formally using metaThis can often be done formally using meta--analysis or hierarchical analysis or hierarchical 

Bayesian modeling of the existing data.Bayesian modeling of the existing data.

10Chapter 4

Specifying informative priorsSpecifying informative priors

Rather than trying to directly specify values for the Rather than trying to directly specify values for the 
parameters of a prior density, it is often easier to parameters of a prior density, it is often easier to 
express probability bounds, from which the express probability bounds, from which the 
parameters can then be obtained.parameters can then be obtained.

Example:Example: The The ““expertexpert”” may specify that the growth rate of a may specify that the growth rate of a 
population is between 0.2 and 0.5 with 90% prior probability, population is between 0.2 and 0.5 with 90% prior probability, 
and be happy with a lognormal shaped prior density.  A quick bitand be happy with a lognormal shaped prior density.  A quick bit
of math shows that these quantiles correspond to a lognormal of math shows that these quantiles correspond to a lognormal 
with mean of with mean of --1.15 and standard deviation of  0.28 on the log 1.15 and standard deviation of  0.28 on the log 
scale.scale.
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Specifying informative priorsSpecifying informative priors

12Chapter 4

Hierarchical priorsHierarchical priors
These are twoThese are two--stage priors, in the sense that a prior is stage priors, in the sense that a prior is 

placed on a prior.placed on a prior.
Example:Example: The IID Normal(The IID Normal(μ,σμ,σ22) example (with known ) example (with known σσ22) used a ) used a 

N(N(ν,τν,τ22) prior on ) prior on μμ.  The values of .  The values of ν ν and and ττ22 are specified after due are specified after due 
consideration of the prior information (if any) known about consideration of the prior information (if any) known about μμ. . 

A hierarchical prior for this example would place priors on the A hierarchical prior for this example would place priors on the 
values of values of ν ν and and ττ22. This prior is known as a hyper. This prior is known as a hyper--prior, and its prior, and its 
parameters are known as hyperparameters are known as hyper--parameters.parameters.

Hierarchical priors are more flexible than nonHierarchical priors are more flexible than non--
hierarchical priors, and make the posterior less hierarchical priors, and make the posterior less 
sensitivity to the prior.sensitivity to the prior.
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Hierarchical modelsHierarchical models

Hierarchical models use hierarchical priors to perform Hierarchical models use hierarchical priors to perform 
metameta--analyses, whereby a number of related analyses, whereby a number of related 
experiments are performed and it is desired to experiments are performed and it is desired to 
combine information.combine information.

The relative ease of implementation, and interpretability, The relative ease of implementation, and interpretability, 
of Bayesian hierarchical models (c.f. of Bayesian hierarchical models (c.f. frequentistfrequentist
““empiricalempirical--BayesBayes”” mixture models) is a major mixture models) is a major strength strength 
of the Bayesian approach.of the Bayesian approach.

More on this later.More on this later.
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Sensitivity to priorSensitivity to prior

After doing a Bayesian analysis, it is never long before After doing a Bayesian analysis, it is never long before 
the inevitable question is asked the inevitable question is asked –– ““How would the How would the 
posterior change if you used a different prior?posterior change if you used a different prior?””

•• The most common and straightforward approach is to repeat the The most common and straightforward approach is to repeat the 
analysis using a handful of alternative priors.analysis using a handful of alternative priors.

•• Substantial highSubstantial high--powered theoretical research has investigated powered theoretical research has investigated 
the sensitivity of the posterior to the sensitivity of the posterior to ““arbitraryarbitrary”” changes to the prior, changes to the prior, 
but this work is currently of little help to the practitioner.but this work is currently of little help to the practitioner.

•• Simpler results exist for specific changes to the prior.Simpler results exist for specific changes to the prior.
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Simple sensitivity exampleSimple sensitivity example
Recall the IID Normal example where we saw that the posterior Recall the IID Normal example where we saw that the posterior 

mean was given by mean was given by 
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From this we can see that the change (derivative) in the 
posterior mean with respect to the prior mean is  
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which is just the ratio of posterior variance to prior variance.
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Sensitivity more generallySensitivity more generally

The sensitivity result from the previous slide can be The sensitivity result from the previous slide can be 
generalized.generalized.

For example, it can be shown that, if parameter For example, it can be shown that, if parameter μμ has a  has a  
N(N(νν, , ττ22) prior then the derivative of the posterior mean ) prior then the derivative of the posterior mean 
of any parameter of any parameter θθ with respect to with respect to νν is the posterior is the posterior 
covariance of covariance of μμ and and θθ , divided by , divided by ττ22 ..
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Bayesian computationBayesian computation
The problem of high dimensional integrationThe problem of high dimensional integration

Conjugate priorsConjugate priors

Importance samplingImportance sampling

Markov Chain Monte CarloMarkov Chain Monte Carlo

MetropolisMetropolis--Hastings algorithmHastings algorithm

Gibbs samplerGibbs sampler

MCMC diagnosticsMCMC diagnostics
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High dimensional integrationHigh dimensional integration
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Recall the formula for the posterior distribution:

In general θ  is a vector of unobserved quantities 
(“parameters”) and in some models its dimension could 
be in the 100’s or 1000’s.

Several aspects of Bayesian inference require 
integration with respect to π(θ | y) and θ .
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High dimensional integrationHigh dimensional integration
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Doing model comparison requires calculation of model 
likelihoods, f(y) . 

A bit of calculus shows that f(y) can be expressed as an 
integral with respect to the posterior density,

∫ ∫== θθπθθθ dyfdyfyf )()|(),()(
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High dimensional integrationHigh dimensional integration
Point estimation and interval calculation require the 
(marginal) density of individual elements of θ , which 
again requires integration with respect to the posterior 
density.

For example, the Bayes estimator of θi (the ith element 
of θ ) is 

iii dy θθπθ )|(∫=

where 

piii dddddyy θθθθθθπθπ ......)|()|( 1121 +−∫=

piii ddydyyE θθθπθθθπθθ ...)|()|()|( 1∫∫ ≡=
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Conjugate priorsConjugate priors

In simple models the integration problem can be In simple models the integration problem can be 
avoided by choosing a particular type of prior.avoided by choosing a particular type of prior.

•• the prior density of the prior density of θθ, , ππ((θθ)), is conjugate if , is conjugate if ππ((θθ | | y)y) will will 
belong to the same belong to the same ““statistical familystatistical family””..
¯̄ This was the case with the IID Normal example where both prior This was the case with the IID Normal example where both prior 

and posterior were normally distributed.and posterior were normally distributed.
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Sampling the posteriorSampling the posterior
Instead of trying to tackle the integration problem Instead of trying to tackle the integration problem ––

simulate a whopping great sample (e.g., 10,000simulate a whopping great sample (e.g., 10,000’’s) s) 
from the (joint) posterior from the (joint) posterior ππ((θθ | | y)y) ..

•• The Bayes estimator of a parameter can then be approximated The Bayes estimator of a parameter can then be approximated 
(to arbitrary precision) from its average over the samples from (to arbitrary precision) from its average over the samples from 
the posterior.the posterior.

•• Intervals can be obtained from drawing histograms of the Intervals can be obtained from drawing histograms of the 
sample values.sample values.

•• Model likelihoods can be approximated (to arbitrary precision) Model likelihoods can be approximated (to arbitrary precision) 
by the inverse of the average of by the inverse of the average of 1/ f(y | 1/ f(y | θθ)) over the samples from over the samples from 
the posterior.the posterior.
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Sampling the posteriorSampling the posterior
Two widely used approaches for sampling from Two widely used approaches for sampling from ππ((θθ | | y)y) ::

Importance sampling:Importance sampling:

•• Simulate values from a simple density that is similar Simulate values from a simple density that is similar 
to to ππ((θθ | | y)y), and do an adjustment (re, and do an adjustment (re--weighting).weighting).

Markov chain Monte Carlo (MCMC)Markov chain Monte Carlo (MCMC)

•• Simulate from a Markov chain which has Simulate from a Markov chain which has ππ((θθ | | y)y) as as 
its equilibrium distributionits equilibrium distribution..
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Importance samplingImportance sampling

Example: Example: The Bayes estimator of The Bayes estimator of θθii can be writtencan be written

θθ
θ
θπθθθπθθ dp

p
ydyyE i

ii )(
)(

)|()|()|( ∫∫ ==

where p(θ) is any density that is easy to sample from. 

The statistical interpretation of the above formula is that 
the Bayes estimator can be obtained by sampling (tens 
of thousands of) of θ values from the distribution with 
density function p(θ), and calculating the average of 

)(
)|(

θ
θπθ

p
yi
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Markov chain Monte CarloMarkov chain Monte Carlo

A Markov chain refers to a random process where the A Markov chain refers to a random process where the 
value at time (or iteration) value at time (or iteration) tt depends on the value at depends on the value at 
time time tt--11 but not on any earlier values.but not on any earlier values.

Methods such as the MetropolisMethods such as the Metropolis--Hastings algorithm Hastings algorithm 
implement a Markov chain to generate a (very long) implement a Markov chain to generate a (very long) 
sequence of random sequence of random θθ values.  The algorithm is values.  The algorithm is 
constructed such that the generated values come constructed such that the generated values come 
from the desired from the desired ““targettarget”” distribution, which in the distribution, which in the 
Bayesian context is Bayesian context is ππ((θθ | | y)y) ..
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MetropolisMetropolis--Hastings algorithmHastings algorithm

If we have just generated value If we have just generated value θθ((kk)), the Metropolis, the Metropolis--
Hastings algorithm proceeds by using a simple Hastings algorithm proceeds by using a simple 
““proposal densityproposal density”” pp((θθ,,θθ((kk))) to suggest that the next ) to suggest that the next 
value be value be θθ **.  This suggested value is accepted with .  This suggested value is accepted with 
probabilityprobability

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==+

)|(),(
)|(),(,1min)  Pr( )()(*

**)(
*)1(

yp
ypset kk

k
k

θπθθ
θπθθθθ

If θ * is not accepted then we “stay put”, and set θ(k+1)= θ(k).
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Gibbs samplerGibbs sampler
The Gibbs sampler is a special case of the MetropolisThe Gibbs sampler is a special case of the Metropolis--

Hastings algorithm in which (the vector) Hastings algorithm in which (the vector) θθ(k+1)(k+1) is is 
obtained from obtained from θθ(k)(k) by updating by updating the vector elements the vector elements 
one at a time.one at a time.

WinBUGS is the Windows based version of the WinBUGS is the Windows based version of the 
BBayesian analysis ayesian analysis UUsing sing GGibbs ibbs SSampler software.ampler software.
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MCMC softwareMCMC software
The BUGS software (including WinBUGS) undoubtedly The BUGS software (including WinBUGS) undoubtedly 

provides the easiest and most widely used provides the easiest and most widely used 
implementation of MCMC.  It is reasonably general, implementation of MCMC.  It is reasonably general, 
but there are some classes of models that it can not but there are some classes of models that it can not 
cope with.cope with.

Other software includes routines written in a variety of Other software includes routines written in a variety of 
languages (e.g., C++).  The Automatic Differentiation languages (e.g., C++).  The Automatic Differentiation 
Modeler Software (ADMB) is more powerful and Modeler Software (ADMB) is more powerful and 
general than BUGS, but is nongeneral than BUGS, but is non--free and is far harder free and is far harder 
to use.  (ADMB can also do pure maximum likelihood to use.  (ADMB can also do pure maximum likelihood 
analysis, and hence permits both Frequentist and analysis, and hence permits both Frequentist and 
Bayesian modeling.)Bayesian modeling.)
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MCMC propertiesMCMC properties
•• The MCMC algorithm needs to The MCMC algorithm needs to ““burn inburn in”” –– to become to become 

independent of the starting value.  independent of the starting value.  
¯̄ Usually enough to discard the first few thousand values.Usually enough to discard the first few thousand values.

•• Successive values may be highly correlated.  That is, Successive values may be highly correlated.  That is, 
the sequence of values from the chain are not the sequence of values from the chain are not 
generally independent.generally independent.

•• Badly behaved posterior densities (e.g., biBadly behaved posterior densities (e.g., bi--modal) modal) 
may result in mixing problems whereby some parts of may result in mixing problems whereby some parts of 
ππ((θθ | | y)y) are not properly sampled.are not properly sampled.
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MCMC diagnosticsMCMC diagnostics
Several software packages are available for checking Several software packages are available for checking 

the MCMC output.the MCMC output.

•• WinBUGS provides exploratory diagnostic tools and WinBUGS provides exploratory diagnostic tools and 
windows for seeing trace plots and histograms of the windows for seeing trace plots and histograms of the 
sampled values.sampled values.

•• CODA (Convergence Diagnostics Analysis) and BOA CODA (Convergence Diagnostics Analysis) and BOA 
(Bayesian Output Analysis) packages are available (Bayesian Output Analysis) packages are available 
for R and Splus on a variety of platforms.  These for R and Splus on a variety of platforms.  These 
perform more sophisticated checks.perform more sophisticated checks.
¯̄ WinBUGS provides the option to save the MCMC output in the form WinBUGS provides the option to save the MCMC output in the form 

required by CODA.required by CODA.
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The Gibbs SamplerThe Gibbs Sampler

The Gibbs sampler is a special case of the MetropolisThe Gibbs sampler is a special case of the Metropolis--
Hastings algorithm.  It generates a sample from an Hastings algorithm.  It generates a sample from an 
arbitrarily complex multidimensional distribution by arbitrarily complex multidimensional distribution by 
sampling from each of the univariate full conditional sampling from each of the univariate full conditional 
distributions in turn.distributions in turn.

Chapter 6
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BivariateBivariate exampleexample

To keep things simple, consider sampling from an To keep things simple, consider sampling from an 
arbitrary two dimensional distribution p(arbitrary two dimensional distribution p(θθ11, , θθ22).  ).  (In our (In our 
context, this will be the posterior distribution for a context, this will be the posterior distribution for a 
Bayesian model with two parameters, Bayesian model with two parameters, ππ((θθ11, , θθ2 2 | | yy). )). )

It is assumed that the two univariate conditional It is assumed that the two univariate conditional 
densities p(densities p(θθ11 | | θθ22) and p() and p(θθ22 | | θθ11) ) can be sampled from.can be sampled from.
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BivariateBivariate exampleexample

The Gibbs sampler argument proceeds as follows The Gibbs sampler argument proceeds as follows ––

IfIf we are able to generate a value we are able to generate a value θθ1 1 from the marginal from the marginal 
density p(density p(θθ11) , ) , then a value then a value θθ22 sampled from the sampled from the 
density p(density p(θθ22 | | θθ11) ) will have density function p(will have density function p(θθ22) ) and and 
the pair of values (the pair of values (θθ11, , θθ2 2 )) has joint density p(has joint density p(θθ11, , θθ22). ). 

Similarly, Similarly, 

IfIf we are able to generate a value we are able to generate a value θθ2 2 from the marginal from the marginal 
density p(density p(θθ22) , ) , then a value then a value θθ11 sampled from the sampled from the 
density p(density p(θθ11 | | θθ22) ) will have density function p(will have density function p(θθ11) ) and and 
the pair of values (the pair of values (θθ11, , θθ2 2 )) has joint density p(has joint density p(θθ11, , θθ22). ). ..
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BivariateBivariate exampleexample

If (If (θθ11
((kk)) , , θθ2 2 

((kk)) )) is the sampled point at iteration k then the is the sampled point at iteration k then the 
Gibbs sampler obtains the next point, (Gibbs sampler obtains the next point, (θθ11

((k+1k+1)) , , θθ2 2 
((k+1k+1)) ))

by generating by generating θθ11
((k+1k+1)) from the density p(from the density p(θθ11 | | θθ2 2 

((kk)) ) ) and and 
θθ22

((k+1k+1)) from the density p(from the density p(θθ22 | | θθ1 1 
((k+1k+1)) ) ) ..

The The ““burn inburn in”” period is required so that the period is required so that the IfIf ‘‘s on the s on the 
previous page are satisfied.previous page are satisfied.
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Higher dimensional parametersHigher dimensional parameters
The same idea works in p (>2) dimensions, but each univariate The same idea works in p (>2) dimensions, but each univariate 

density sampled from is a density sampled from is a ““full conditionalfull conditional”” density, whereby all density, whereby all 
other parameters are conditioned upon. other parameters are conditioned upon. 

For example, the value of For example, the value of θθ11
((k+1k+1)) is obtained by sampling from the is obtained by sampling from the 

univariate densityunivariate density

p(p(θθ11 | | θθ22
((kk) ) , , θθ33

((kk) ) ,...,,..., θθpp
((kk) ) ) ) 

and then the value of and then the value of θθ22
((k+1k+1)) is obtained by sampling from the is obtained by sampling from the 

univariate densityunivariate density

p(p(θθ22 | | θθ11
((k+1k+1) ) , , θθ33

((kk) ) ,...,,..., θθpp
((kk) ) ) ) 

……and so on.and so on.
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WinBUGS implementationWinBUGS implementation
In the Bayesian context, the univariate full conditional In the Bayesian context, the univariate full conditional 

densities that WinBUGS is working with aredensities that WinBUGS is working with are

ππ((θθ11 | | θθ22
((kk) ) , , θθ33

((kk) ) ,...,,..., θθpp
((kk) ) ,y),y)

These are, for a very large class of Bayesian models, These are, for a very large class of Bayesian models, 
relatively straightforward to deduce.  This is relatively straightforward to deduce.  This is 
essentially what WinBUGS is doing during the essentially what WinBUGS is doing during the 
compilation phase.compilation phase.
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WinBUGS implementationWinBUGS implementation
In particular, for models that can be drawn by doodles, In particular, for models that can be drawn by doodles, 

the full conditional density for any stochastic node is the full conditional density for any stochastic node is 
a function of only the parent and offspring nodes.  To a function of only the parent and offspring nodes.  To 
see this, note that Bayes formula sayssee this, note that Bayes formula says

),,...,,(
),,...,,,(

),,...,,|(
32

321
321 y

y
y

p

p
p θθθπ

θθθθπ
θθθθπ =

The  above full conditional density is a function of only θ1
because all other values are treated as constants, and so 
it is only terms in the joint density involving θ1 that are of 
relevance to the full conditional.
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Introduction to WinBUGSIntroduction to WinBUGS
WinBUGS is the Windows version of the WinBUGS is the Windows version of the BBayesian ayesian 

analysis analysis UUsing the sing the GGibbs ibbs SSampler software developed ampler software developed 
by the UK Medical Research Council and  the Imperial by the UK Medical Research Council and  the Imperial 
College of Science, Technology and Medicine, London. College of Science, Technology and Medicine, London. 

At the time of writing, WinBUGS is freely available atAt the time of writing, WinBUGS is freely available at

http://www.mrchttp://www.mrc--bsu.cam.ac.uk/bugsbsu.cam.ac.uk/bugs
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BUGS BackgroundBUGS Background
The BUGS project began in 1989 in the Biostatistics Unit 

of the Medical Research Council, U.K.

•• ““ClassicClassic”” BUGSBUGS
¯̄ Thomas et al. (1992). Thomas et al. (1992). 
¯̄ Batch mode Batch mode operation.operation.

•• WinBUGSWinBUGS
¯̄ Developed by MRC for Windows operating system in late 1990Developed by MRC for Windows operating system in late 1990’’s.s.
¯̄ Current version (May 2006) is 1.4, with upgrade to version 1.4.1Current version (May 2006) is 1.4, with upgrade to version 1.4.1..

•• OpenBUGSOpenBUGS
¯̄ Open source version of Open source version of WinBUGSWinBUGS for running on Windows and for running on Windows and 

Linux, as well as inside the R statistical package (Linux, as well as inside the R statistical package (BRugsBRugs).).
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BUGS and RBUGS and R
• CODA

¯ R package for convergence diagnosis (Best et al., 1995).
¯ Other similar R packages available, e.g., BOA.

• R2WinBUGS
¯ R package for executing WinBUGS from R (Sturtz et al., 2005).
¯ Uses the WinBUGS scripting language (the WinBUGS interface 

appears on the desktop).

• BRugs
¯ R package for running OpenBUGs components from within R.
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WinBUGS StructureWinBUGS Structure
Essentially, the Essentially, the WinBUGSWinBUGS program is simply a syntactical program is simply a syntactical 

representation of the model, in which the distributional representation of the model, in which the distributional 
form of the data and parameters are specified.form of the data and parameters are specified. ((It does not It does not 
require (in most cases) knowing the formulae of density functionrequire (in most cases) knowing the formulae of density functions).s).

),(~ pnBinomialy

y ~ y ~ dbin(p,ndbin(p,n))

For example,

is written in is written in WinBUGSWinBUGS asas

,...MipnBinomialy iii 1   , ),(~ =and

is written in is written in WinBUGSWinBUGS asas

for(ifor(i in 1:M) {in 1:M) {y[iy[i] ~ ] ~ dbin(p[i],n[idbin(p[i],n[i])}])}
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WinBUGSWinBUGS StructureStructure
NOTE: The interpretation of WinBUGS code is unlike that 

of other programming languages such as R.
In R:   y = y+1  makes perfect sense.
In WinBUGS:  y <- y+1  is nonsensical, because a datum 

(or parameter) can not equal itself plus unity.

If you can write the model down on paper, 
then you should be able to code it up in 
WinBUGS.

CAUTION: There is no guarantee that WinBUGS will 
“work”.

6Chapter 7

WinBUGSWinBUGS: Practical 1: Practical 1
•• Start up WinBUGS.Start up WinBUGS.
•• Click FileClick File-->New to open up a BUGS window.>New to open up a BUGS window.
•• Type in the code:Type in the code:

•• Click ModelClick Model-->Specification>Specification
¯̄ Click Click ““check modelcheck model””.  Bottom left of screen should say .  Bottom left of screen should say ““Model is Model is 

syntactically correct (else it will provide an error message andsyntactically correct (else it will provide an error message and the the 
cursor will be positioned at the error.)cursor will be positioned at the error.)

¯̄ This example contains no data (so ignore the This example contains no data (so ignore the ““load dataload data”” step, for step, for 
now). now). 

¯̄ Click Click ““compilecompile””..
¯̄ Click Click ““gengen initsinits””..

•• WinBUGSWinBUGS is now ready to generate the MCMC sample.is now ready to generate the MCMC sample.

model model NormalPriorNormalPrior
{{

mumu ~ dnorm(0,1)~ dnorm(0,1)
}}
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WinBUGSWinBUGS: Practical 1: Practical 1
•• Click ModelClick Model-->Update to open the Update Tool window.>Update to open the Update Tool window.

¯̄ Click Click ““updateupdate””..

¯̄ YouYou’’ve just generated 1000 samples from a Markov chain with a ve just generated 1000 samples from a Markov chain with a 
standard normal stationary distribution!standard normal stationary distribution!

¯̄ These first thousand samples have not been saved, which is good These first thousand samples have not been saved, which is good 
practice because the chain needs to burn in.practice because the chain needs to burn in.

•• Click InferenceClick Inference-->Samples to start the Sample Monitor.>Samples to start the Sample Monitor.
¯̄ Type Type ““mumu”” in the node box and click on in the node box and click on ““setset””..

•• Go to Update Tool and click Go to Update Tool and click ““updateupdate””..

•• Go to Sample Monitor ToolGo to Sample Monitor Tool
¯̄ Several choices of summary plots and statistics can now be selecSeveral choices of summary plots and statistics can now be selected.ted.

8Chapter 7

WinBUGSWinBUGS: Practical 2: Practical 2
Repeat Practical 1, but with a nonRepeat Practical 1, but with a non--normal distribution. normal distribution. 

To see the choices of distribution:To see the choices of distribution:

•• Click Help > User Manual.Click Help > User Manual.

•• Scroll down and click on Contents.Scroll down and click on Contents.

•• Follow the links: Follow the links: 
Model Specification > The BUGS language: stochastic Model Specification > The BUGS language: stochastic 

nodes > Distributionsnodes > Distributions
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WinBUGS: Practical 3
The previous two examples did not include any data. 

Here, we will assume that we observe a single 
observation y~N(μ,1), where μ has a standard normal 
prior distribution. ( In this case μ|y ~ N(0.5y,0.5) )

model NormalPrior
{

mu ~ dnorm(0,1)
y ~ dnorm(mu,1)

}
list(y=  )

After checking the model syntax, use the mouse to 
highlight the word “list”, and click “load data” on the 
Specification Tool window. Then, proceed as before.

Insert a number here
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WinBUGSWinBUGS: Practical 4: Practical 4
Recall, the IID Normal example with known Recall, the IID Normal example with known 

variance of the data:variance of the data:

model model IIDNormalIIDNormal
{{

for(i in 1:10) { y[i] ~ dnorm(mu,1) }for(i in 1:10) { y[i] ~ dnorm(mu,1) }
mumu ~ dnorm(0,1)~ dnorm(0,1)

}}
list(y=c(1.64,1.10,1.33,0.27,0.61,list(y=c(1.64,1.10,1.33,0.27,0.61,

0.25,0.25,--0.02,0.02,--0.08,0.43,0.08,0.43,--0.53 ))0.53 ))
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WinBUGS exampleWinBUGS example
More generally, in the case of ten (say), More generally, in the case of ten (say), iidiid observations:observations:

model model IIDNormalIIDNormal
{{

for(i in 1:10) { y[i] ~ dnorm(mu,1) }for(i in 1:10) { y[i] ~ dnorm(mu,1) }
mumu ~ dnorm(0,1)~ dnorm(0,1)

}}
list(y=c(1.64,1.10,1.33,0.27,0.61,list(y=c(1.64,1.10,1.33,0.27,0.61,

0.25,0.25,--0.02,0.02,--0.08,0.43,0.08,0.43,--0.53 ))0.53 ))

12Chapter 7

Moving alongMoving along……
Now, letNow, let’’s drop the assumption of known variance, and s drop the assumption of known variance, and 

instead we shall assume that the data are IID Normal instead we shall assume that the data are IID Normal 
with unknown mean with unknown mean μμ and unknown variance and unknown variance σσ22..

If an informative prior on If an informative prior on σσ22 is to be specified then an is to be specified then an 
inverse gammainverse gamma** distribution will typically be used. This distribution will typically be used. This 
corresponds to a gamma distribution on 1/ corresponds to a gamma distribution on 1/ σσ22 ..

If a If a ““nonnon--informativeinformative”” prior on prior on σσ22 is desired then it can be is desired then it can be 
approximated by specifying a highly dispersed gamma approximated by specifying a highly dispersed gamma 
distribution on 1/ distribution on 1/ σσ22 ..

*The gamma distribution is a generalization of the χ2 .
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Moving alongMoving along……
Note: Note: For normal densities, BayesianFor normal densities, Bayesian’’s typically work with s typically work with 

1/ 1/ σσ22 (precision) rather than (precision) rather than σσ22 (variance).  In (variance).  In 
WinBUGS, the normal density is specified as WinBUGS, the normal density is specified as 
dnorm(mean,precisiondnorm(mean,precision).).
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IID Normal, IID Normal, μ μ and and σσ2 2 unknownunknown
model IIDNormal2model IIDNormal2
{{

for(i in 1:10) { y[i] ~ for(i in 1:10) { y[i] ~ dnorm(mu,precdnorm(mu,prec) }) }
varvar <<-- 1/prec1/prec

#Add priors#Add priors
mumu ~ dnorm(0,1)~ dnorm(0,1)
precprec ~ dgamma(0.001,0.001)  #Disperse gamma~ dgamma(0.001,0.001)  #Disperse gamma

}}
#Data#Data
list( y=c( 1.64,1.10,1.33,0.27,0.61,0.25,list( y=c( 1.64,1.10,1.33,0.27,0.61,0.25,

--0.02,0.02,--0.08,0.43,0.08,0.43,--0.53 )  )0.53 )  )
##InitsInits
list( list( mumu=0, =0, precprec=1)=1)
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WinBUGS syntaxWinBUGS syntax
In WinBUGS, the tilde sign ~ means In WinBUGS, the tilde sign ~ means ““distributed asdistributed as””. It is . It is 

used to:used to:
•• Specify the distribution of the data.Specify the distribution of the data.
•• Specify the prior distributions.Specify the prior distributions.
•• Values to the left of a ~ are called Values to the left of a ~ are called ““stochasticstochastic””..

The left arrow <The left arrow <-- corresponds to the corresponds to the ““equalsequals”” sign. It is sign. It is 
used in calculations, such as  used in calculations, such as  varvar<<--1/prec1/prec

•• Values to the left of a <Values to the left of a <-- are called are called ““logicallogical””..
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Linear regression: Lines exampleLinear regression: Lines example
modelmodel
{{
for(i in 1:N){for(i in 1:N){

Y[i] ~ Y[i] ~ dnorm(mu[idnorm(mu[i], ], tautau))
mu[imu[i] <] <-- alpha + beta*(x[i] alpha + beta*(x[i] -- mean(x[]))mean(x[]))

}}
sigma <sigma <-- 1/sqrt(tau)1/sqrt(tau)
alpha ~ dnorm(0, 1.0Ealpha ~ dnorm(0, 1.0E--6)6)
beta ~ dnorm(0, 1.0Ebeta ~ dnorm(0, 1.0E--6)6)
tautau ~ dgamma(1.0E~ dgamma(1.0E--3, 1.0E3, 1.0E--3)3)

}}
list(x=c(1,2,3,4,5), Y=c(1,3,3,3,5), N=5 )list(x=c(1,2,3,4,5), Y=c(1,3,3,3,5), N=5 )
list(alpha = 0, beta = 0, list(alpha = 0, beta = 0, tautau = 1)= 1)
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Bayesian Diagnostics

• Convergence diagnostics. 
• Posterior predictive checks. 
• DIC, model selection, and complexity. 
• Bayes factors 
• Sensitivity analysis
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Convergence diagnostics

• Primarily, to assess whether the MCMC chain has 
converged to a stationary distribution. 

• We will use the CODA package in R. This implements 
diagnostic, based on multiple chains. 
1. Geweke diagnostic for stationarity. 
2. Heidelberger-Welch stationarity and run-length diagnostics. 
3. Raftery-Lewis run-length diagnostic (for quantiles). 

• The CODA package also contains: 
1. Diagnostic plots 
2. Functions for manipulating BUGS output 
3. A function to find HPD intervals
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A Stochastic Volatility Model

• Observation equation: 

• State equation:
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Priors
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A SV model – WinBugs Code
{  
#specify the observation equation

for (i in 1:N) {                                                
Ymean[i] <- exp(0.5*theta[i]);                    
Yisigma2[i] <- 1/(Ymean[i]*Ymean[i]);        
Y[i]~ dnorm(0,Yisigma2[i]);  
}
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A SV model -- Cont
#specify the state equation

theta0 ~ dnorm(mu,itau2);                                       
thetamean[1] <- mu + phi*(theta0-mu);   
theta[1] ~ dnorm(thetamean[1], itau2);                      
for (i in 2:N) {                                                

thetamean[i] <- mu + phi*(theta[i-1]-mu);             
theta[i] ~ dnorm(thetamean[i], itau2);                    

} 
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A SV model -- Cont
#specify the priors

phistar ~ dbeta(20,1.5);   
phi <- 2*phistar -1;  
mu ~ dnorm(-10,0.04);                                   
itau2 ~ dgamma(2.5,0.025);                           
tau <- sqrt(1/itau2);                                       
}
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A SV model -- Cont
#specify the sample size, initial value & data

list(N=1512)
list(phistar=0.975, mu=-10, itau2=50)
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DIC, model selection, & complexity.

• Spiegelhalter et al. (2002) formalized the concept of the deviance 
information criterion, DIC, as a measure of model fit and 
complexity. 

• The deviance is -2 times the log-likelihood

• Define “Dbar” as the posterior mean of the deviance

• and “Dhat” as the deviance evaluated at some plug-in estimate 
of theta, typically the posterior mean of theta
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DIC, model selection, & complexity.

• Using somewhat heuristic arguments, Spiegelhalter et al. (2002) 
argued that

quantifies the “effective number of parameters” in the model
• Model goodness of fit is a trade-off between model fit and model 

complexity. The DIC is defined to be

• or equivalenly
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DIC, model selection, & complexity.

• Spiegelhalter et al. (2002) developed DIC 
in the context of hierarchical models, but it 
has since been applied much more widely.
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Bayes factors

• To choose between two models, the Bayes
factor is the ratio of the marginal densities 
for the data under the two models

• where
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